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ABSTRACT: Physiologically based pharmacokinetic (PBPK) modeling is a powerful technique to inform risk assessment of
xenobiotic substances such as perfluorooctanoic acid (PFOA). In our previous study, a permeability-limited PBPK model was
developed to simulate the toxicokinetics and tissue distribution of PFOA in male rats. However, due to limited information on some
key model parameters (e.g., protein binding and active transport rates), the uncertainty of the permeability-limited PBPK model was
quite high. To address this issue, a hierarchical Bayesian analysis with Markov chain Monte Carlo (MCMC) was applied to reduce
the uncertainty of parameters and improve the performance of the PBPK model. With the optimized posterior parameters, the PBPK
model was evaluated by comparing its prediction with experimental data from three different studies. The results show that the
uncertainties of the posterior model parameters were reduced substantially. In addition, most of the PBPK model predictions were
improved: with the posterior parameters, most of the predicted plasma toxicokinetics (e.g., half-life) and tissue distribution fell well
within a factor of 2.0 of the experimental data. Finally, the Bayesian framework could provide insights into the molecular mechanisms
driving PFOA toxicokinetics: PFOA-protein binding, membrane permeability, and active transport.

1. INTRODUCTION

Perfluorooctanoic acid (C7F15COOH, PFOA) is one of the
most well-studied per- and polyfluoroalkyl substances (PFAS)
that were widely used in industrial and consumer products.1

The wide use of PFOA, however, has caused serious
environmental problems and public health concerns.2 Due to
its strong carbon−fluorine bonds, PFOA is highly persistent
once in the environment and is hard to be removed, which
results in its worldwide presence.3−5 In addition, experimental
studies indicate that PFOA accumulates in the human body,
with a biological half-life estimated to be 3.5 years.6

Epidemiological and animal data show that some toxic effects
on the immune system, liver, and endocrine system could be
associated with PFOA exposure.7−9

The persistence, bioaccumulation, and toxicity of PFOA
have received tremendous attention from environmental
scientists and regulatory agencies.10 Especially, a number of
physiologically based pharmacokinetic (PBPK) modeling tools

have been developed to inform risk assessment for PFOA in
different species such as humans, rats, and monkeys.11−17 The
chemical uptake rate to each tissue assumed by these models is
determined by the blood flow rate rather than cell membrane
permeability. By neglecting membrane permeability and its
associated parameters, the flow-limited assumption simplifies
the PBPK model process significantly. However, for chemicals
with large molecular weights and/or ionic charges (e.g., PFOA
which has a molecular weight of 414.09 Da and is negatively
charged at all environmentally and physiologically relevant
pH18), cell membrane permeability becomes the rate-limiting
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process for uptake and needs to be included in PBPK
models.19 In addition, none of the current flow-limited models
explicitly take the molecular mechanisms for PFOA
toxicokinetics (e.g., active transport facilitated by membrane
transporters) into consideration, which limits their ability to
explain features of the observed PFOA toxicokinetics. Finally,
without including membrane permeability, it is hard to build a
“bottom up” mechanistic flow-limited model for PFOA. In fact,
to the best of our knowledge, all the current flow-limited
models require observed in vivo data for fitting model
parameters (e.g., the resorption maximum and urinary
elimination rate) to achieve a satisfactory performance.11−17

When the in vivo data are limited, the flow-limited model may
not work well.15

Based on the above considerations, we developed a
permeability-limited PBPK model that explicitly considers
cellular membrane permeability of PFOA through different
tissues.20,21 In addition, our PBPK model included two other
important molecular mechanisms for PFOA toxicokinetics:
protein binding and active transport processes. Studies have
shown that PFOA is strongly bound to serum albumin in
plasma and to liver-type fatty acid binding protein (LFABP) in
the liver, making them major accumulation sites for
PFOA.22−25 Moreover, active transport facilitated by different
transporters is essential to the cellular uptake and efflux of
PFOA.26−29 For example, organic anion transporters and
organic anion transporting polypeptides have been reported to
play important roles in the renal elimination process of PFOA
in humans and rats.27−29 By incorporating membrane
permeability, active transport, and protein binding mecha-
nisms, our PBPK model has been successfully used to estimate
the toxicokinetics and tissue distribution of PFOA in both
rainbow trout and male rats.20,21 Moreover, instead of
requiring experimental data fitting, all the mechanism-related
parameters in the permeability-limited PBPK model were
extrapolated from in vitro assays.
However, the major limitation of this PBPK model is that

some mechanism-related parameters are either based on a
single study (e.g., the equilibrium association constant of PFOA
with rat serum albumin) or extrapolated from in vitro studies
(e.g., active transport rates in the kidney). The limited
knowledge about those key parameters leads to a substantial
amount of uncertainty in the PBPK model. To address this
issue, a hierarchical Bayesian analysis with Markov chain

Monte Carlo (MCMC) was applied to reduce the uncertainty
in parameters and improve the performance of the PBPK
model.30

With prior knowledge on model parameters and measured
toxicokinetic data sets, the hierarchical Bayesian framework
was used to estimate the posterior distribution of the model
parameters. Using the simulated posterior parameters, the
PBPK model was then used to estimate the plasma
toxicokinetics and tissue distribution of PFOA in male rats.
The PBPK model with optimized posterior parameters was
evaluated by comparing its prediction with experimental data
from three different studies.31−33 The Bayesian framework
provides a set of more reliable parameters not only for use in
PBPK modeling but also to provide insights into the key
features of the model structure: PFOA-protein binding,
membrane permeability, and active transport.

2. MATERIALS AND METHODS
The hierarchical Bayesian approach34 was employed to reduce the
uncertainty and variability of the permeability-limited PBPK model
for PFOA in the male rat. The Bayes rule is shown in the following
equation34

∫
θ θ θ

θ θ θ
| = |

|
P Y

P P Y
P P Y

( )
( ) ( )
( ) ( )d (1)

where θ is the PBPK model parameter vector to be estimated. Y is the
measured toxicokinetic data for PFOA. P(θ|Y) is the posterior
distribution of the model parameters, and P(θ) is the prior
distribution that describes the prior knowledge of parameters.
P(Y|θ) is the likelihood of the experimental data set. In order to
perform the Bayesian inference, first of all, prior distributions of
model parameters need to be defined. Here, we mainly focus on the
key parameters that are related to PFOA toxicokinetic mechanisms
due to the high uncertainty and sensitivity of those parameters. The
prior distributions for those parameters were extrapolated from the
literature. Next, the likelihood of the observed data set can be
calculated based on the PBPK model. Given the likelihood and prior
distribution of the parameter, the posterior distribution for those
parameters can be inferred from the Bayes rule. However, it is almost
impossible to obtain an analytical expression for P(θ|Y). For this
reason, the MCMC technique will be employed to estimate the
posterior distribution for the parameters. MCMC is a powerful
computational tool to provide samples of parameters without an
analytical expression for P(θ|Y).34

As indicated in Figure 1, the hierarchical structure consists of two
major parts: the subject level and the population level. At the subject

Figure 1. Workflow of hierarchical Bayesian analysis for the permeability limited PBPK model. The PBPK model is a function of chemical-related
parameters (θi), physiological covariables (ψi), exposure scenarios (Ei), and sampling time points (ti). The individual parameters for each subject i
(θi) are drawn from the population distribution with mean (μ) and variance (Σ). The experimental error term (ε) has a normal distribution with
mean 0 and variance (σ2). Based on the prior information of μ, Σ, and σ2 and experimental data points (Yi), the hierarchical Bayesian framework
with MCMC simulations was used to generate the posterior distribution for those parameters.
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level, for each individual i, the PBPK model (i.e., function f) was used
to predict the PFOA concentration−time profiles based on the given
parameters including chemical-related parameters (θi), physiological
covariables (ψi), exposure scenarios (Ei), and sampling time points
(ti). The prediction results are related to the experimentally measured
concentration data (Yi) through the following error model

ε= +Y Plog logi (2)

where the error term ε is a normal variable with mean set equal to 0
and variance to σ2. At the population level, to reflect the
interindividual variability, chemical-related parameters (θi) were
considered to be generated from a multivariate population
distribution, with population mean (μ) and variance (Σ). The prior
distribution of the μ and Σ for each parameter is discussed in Section
2.2. In this study, we mainly focus on the chemical-related parameters
because those parameters are highly sensitive and important to the
PBPK model performance;21 moreover, those parameters have very
high uncertainties due to the limited data availability. On the other
hand, physiological covariables, such as blood flow rate, tissue volume,
and surface area, had more data available and lower model sensitivity
according to our previous analysis. These were, thus, fixed in the
Bayesian framework to reduce the computational cost in the following
simulations.30,35

With the prior knowledge of the model parameters and the above
hierarchical Bayesian framework, the MCMC technique was
employed to numerically estimate the posterior distribution for the
model parameters. Finally, the resulting change in the central estimate
and the uncertainty and variability of those parameters were analyzed.
In the following sections, the various parts of the workflow

including the PBPK model structure, model parameters, experimental
data, MCMC simulation, and the analysis of the posterior
distributions are described.
2.1. PBPK Model Structure. The PBPK model is based on our

previous permeability-limited PBPK model for PFOA in male rats,21

with a single modification to the protein binding process (see Section
2.2.1 for more details) meant to simplify the PBPK model and reduce
the computational cost without sacrificing model performance.
Briefly, as shown in Figure S1, based on the physiology of the rat,

six tissues including blood, liver, kidney, gut, muscle, and adipose were
incorporated in the model. Blood functions as the systemic circulation
connecting each compartment together, and it is also a major
accumulation site of PFOA.31−33,36,37 Enterohepatic circulation
involving the liver and gut compartments may play an important
role in the distribution of PFOA and was thus considered in our
model.38 The kidneys were included because they are primary
elimination sites for PFOA.39 For comparison, muscle and adipose
were also added, given the observation that the lowest concentrations
of PFOA are found in these tissues.31,32 Finally, all other
compartments were lumped into a single “rest of body” compartment.
Each tissue compartment contains both a vascular space and tissue
space, the latter of which can be further divided into two
subcompartments: an interstitial fluid and a tissue. Three additional
compartments including gut lumen, bile, and renal filtrate were also
considered to describe the absorption and elimination of PFOA. It is
worth mentioning that our PBPK model represents a generic rat
because it was compared with the data from both Sprague-Dawley and
Wistar rats.
After PFOA is orally administered, it is assumed to enter into the

gut lumen compartment immediately, where it can be absorbed into
the gut tissue. PFOA can then enter into blood, through which it can
be transported to other tissues via membrane transport. The
membrane transport processes include both passive diffusion and
active transport facilitated by membrane transporters. For the liver
and kidney tissues, active transport involves a number of transporters
for uptake and efflux of PFOA (see Section 2.2.2 for details on
membrane transport and those transporters). For other tissues,
passive diffusion is more important in determining the transport of
PFOA because no transporters were reported to be responsible for the
transport of PFOA in those tissues. In each tissue, PFOA can bind to
different proteins such as serum albumin and LFABP, if they are

present (see Section 2.2.1 for details on protein binding); our model
suggests that protein binding processes are mainly responsible for the
tissue accumulation of PFOA. Finally, for the elimination of PFOA,
the kidney is the major elimination tissue, which involves glomerular
filtration, renal clearance, renal reabsorption, and renal efflux
processes. Except for glomerular filtration, all these processes are
facilitated by membrane transporters (see Section 2.2.2 for more
details). PFOA can transport from blood to filtrate via glomerular
filtration and renal clearance; it can also be reabsorbed from the
filtrate back to the tissue compartment through renal reabsorption.
Finally, the free fraction of PFOA in kidney tissues could be excreted
back into blood via the renal efflux process. The other elimination
tissue for PFOA is the gut, through fecal excretion.

2.2. Model Parameters. The parameters used to support the
PBPK model comprise rat physiological parameters and chemical-
related parameters. Physiological parameters, including the exchange
surface area and the volume for each compartment, blood flow rate, as
well as urinary, biliary, and fecal flow rates, are routinely available in
the literature for well-studied model species such as the rat, and are
summarized in Table S1. For chemical-related parameters, both
protein binding and cell membrane transport parameters were
considered as the underlying molecular mechanisms controlling
PFOA toxicokinetics.21

2.2.1. Protein Binding. In terms of the protein binding of PFOA, a
total of three proteins were considered: albumin (in blood and
interstitial compartments),22 LFABP (in both liver and kidney tissue
compartments),23 and α2μ-globulin (only in the kidney tissue
compartment);40 these proteins have all been demonstrated as
important determinants of PFAS accumulation in blood, the liver, and
the kidney. In our previous study,21 the PFOA protein binding was
modeled with the binding and dissociation rate constants (i.e., the kon
and koff), the associated mass balance equations are second order
differential equations because kon is a second-order rate constant; the
rate of association depends on both the concentration of PFOA and
the availability of protein binding sites. To simplify the calculation and
reduce the time complexity, in this work we define instead a linear
model for the protein binding process.41 In the linear model (eq 3),
the free fraction of PFOA (ff), that is, the ratio of free PFOA
concentration (Cfree) to the total PFOA concentration in tissue
(Ctotal), is determined by the equilibrium association constant (K) and
the maximum binding capacity (Bm, which is considered as the total
protein concentration in the compartment).

= =
+ ×

C
C K B

ff
1

1
free

total m (3)

Here, ff is considered to be independent of Cfree and the protein
binding of PFOA is therefore characterized by a constant parameter
predefined by K and Bm. The K of albumin, LFABP, and α2μ-globulin
as well as the concentration of those proteins in different tissues (i.e.,
Bm) were obtained from the literature and are shown in Tables S2 and
S3. With the free fraction parameter, the corresponding mass balance
equations become first-order differential equations (Supporting
Information Section S3). The linear binding model is able to generate
similar simulation results to the previous model, but its running time
is significantly improved, making the MCMC simulation more cost-
effective.

2.2.2. Membrane Transport. Both passive diffusion and active
transport facilitated by proteins play essential roles in membrane
transport of PFOA.20,21,27,38,42 To derive the mass balance equations
for those processes, passive diffusion rates for each tissue and active
transport rates for each relevant membrane transporter are required.
For passive diffusion, the effective permeability (Peff) for each tissue
was used to calculate the passive diffusion rate. As shown in eq 4,
permeability is estimated based on Fick’s law

=
Δ

P
J

A Ceff (4)

where J, the initial passive diffusion flux, was empirically determined
by extracting in vitro data from Weaver et al.;27 the average value of J
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is around 0.13 nmol/mg protein/min and is converted to mol/s by
scaling to the protein content of each tissue-specific cell type (Table
S2). A is the cellular surface area, which is assumed to be 4000 μm2

for a single cell.20 ΔC is the concentration of PFOA in the exposure
medium (i.e., 10 μmol/L in the Weaver et al. study).27

Once Peff is determined, the passive diffusion rate (k) between the
connected tissue compartments can be calculated as follows.
For diffusion between blood (B) and the interstitial fluid

compartment in each tissue (iF)

= = +− −
−

−

k k
Q P A
1 1iF B B iF

B
i

eff
B B iF

1i

k
jjjjjj

y

{
zzzzzz (5)

where QB
i is the blood flow to each tissue, and AB−iF is the surface area

of exchange between blood and the fluid compartment (Table S1).
For diffusion between the fluid (iF) and tissue (iT) subcompart-

ment in each tissue, only permeability accounts for the overall mass
transfer

= =− − −k k P AiF iT iT iF
eff
i iF iT (6)

For tissues containing the filtrate, bile, or gut lumen, the diffusion
between tissues and those subcompartments (iS) is calculated by

=− −k P AiS iT
eff
i iS iT (7)

=−
−

−k
k
CR

iT iS
iS iT

ss
C W (8)

where CRss
C−W is the steady-state cell−water concentration ratio,

which can be extrapolated from in vitro data.20 The values of CRss
C−W

for liver to bile, kidney to filtrate, and enterocyte to gut lumen are
shown in Table S4.
Regarding active transport, a total of five transporters including

organic anion transporters (Oat1 and Oat3),27 an organic anion
transporting polypeptide (Oatp1a1),27 the organic solute and steroid
transporter (Ostα/β),38 and Na+/taurocholate cotransporting poly-
peptide (Ntcp)38 were used to characterize the active cellular uptake
and efflux of PFOA. These transporters are responsible for four active
transport processes: (i) renal clearance, which involves Oat1 and Oat3
located at the basolateral membrane of proximal tubular cells; (ii)
renal reabsorption, which involves Oatp1a1 located at the apical
membrane of proximal tubular cells; (iii) renal efflux, which relates to
Ostα/β located at the basolateral membrane of proximal tubular cells;
and (iv) hepatocyte uptake, which relates to Oatp1a1 and Ntcp
located at the basolateral membrane of hepatocytes.39 Similar to the
passive diffusion process, Fick’s law was used to derive the coefficients
for those four active transport processes; the only difference is that the
J parameter in eq 4 corresponds to the flux of transporter-expressing
cell rather than the passive diffusion flux. The J value for each
transporter and the calculated active transport coefficients are shown
in Table S5. Finally, the active transport rate for each process can be
derived by multiplying the transport coefficient by the surface area for
exchange of the corresponding tissue.
2.2.3. Prior Distributions. As described above, many parameters are

involved in the PBPK model (68 in all). To reduce the computational
cost for the MCMC simulation, only the chemical-related parameters
to which the model was previously shown to be most sensitive21 were
selected for the uncertainty analysis. In our previous study, Monte
Carlo methods were used to conduct the sensitivity analysis. Briefly,
all the model parameters were sampled from their prior distributions
(10 000 samples were taken for each parameter) and then used to run
the PBPK model. Finally, correlation analysis was performed between
sampled parameters and model predictions of PFOA concentrations.
A high correlation coefficient indicates a parameter to which the
model is highly sensitive. Based on the correlation analysis results,
these highly sensitive parameters include protein binding parameters:
the equilibrium association constants, K, between PFOA and albumin
and LFABP; passive diffusion parameters: Peff of blood, the liver and
kidney, CRss

C−W of the liver and kidney; and active transport
parameters: active transport rates of the four active transport

processes discussed above (Table 1). Other parameters, such as
physiological parameters, K of α2μ-globulin, and Peff of gut, muscle

and adipose, were considered as fixed values in the hierarchical
Bayesian framework because those parameters were well-studied (low
uncertainty) or had much less influence on the model performance.21

Next, as described in Figure 1, the population mean (μ) of each
selected parameter was assigned with a log-normal prior distribution
with hyperparameter mean (M) and standard deviation (S). The M
value for each parameter was derived from the literature, as shown in
Table 1; the S value was calculated based on equation: S = e1/2ln(Cf),
where Cf represents confidence factor, which is an intuitive measure
of variance in log-normal distributions.43 For example, a Cf of 2
indicates that 95% of the values lie between 1/2 and 2 times the
median. Given the scarcity of the available data for those parameters, a
value of 5 was assigned for them, indicating the high uncertainty of
their prior distributions (Table 1).

The prior distributions assigned to the population variance of those
parameters (Σ2) were inverse gamma distribution: Σ2 ∼ InvGamma-
(α, β), where the shape parameter α is set to 3, and the scale
parameter β is set to 0.5 based on previous studies.30,35 The quantities
M, S, α and β are hyperparameters that embody prior knowledge of
the uncertainty and variability of the model parameters.

Finally, considering the high uncertainty and variation of
experimental data among different studies (e.g., 1 mg PFOA/kg BW
IV and oral dose scenarios from the Kemper31 and the Kim et al.33

studies), the prior distribution of the experimental error term (σ2) was
modeled as a noninformative uniform distribution with a lower bound
of 0.01 and upper bound of 3.3 for all experimental measure-
ments.30,35

2.3. Experimental Data. Several experimental studies have
reported toxicokinetics and tissue distribution of PFOA in male
rats. As summarized in Table 2, a total of seven data sets from three
studies were collected that cover different administration routes, dose
scenarios, sampling time of each tissue and rat species. All
concentration data were taken directly from tables or extracted
from plots with the WebPlotDigitizer tool (https://automeris.io/
WebPlotDigitizer/).

Table 1. Summary of the Parameters of the PBPK Model
Selected for MCMC Analysisa

parameters symbol values unit
confidence
factor (Cf)

effective permeability of
blood

Peff
B 0.18 mm/h 5

effective permeability of
kidney

Peff
K 0.16 mm/h 5

effective permeability of
liver

Peff
L 0.19 mm/h 5

steady-state cell−water
concentration ratio of
kidney

CRss
K 6.2 unitless 5

steady-state cell−water
concentration ratio of
liver

CRss
L 7.3 unitless 5

renal clearance rate
constant

Pb
clear 0.99 mm/h 5

renal reabsorption rate
constant

Pb
reab 0.43 mm/h 5

renal efflux rate constant Pb
efflux 0.50 mm/h 5

hepatocyte uptake rate
constant

Pb
uptake 0.64 mm/h 5

association constant of
albumin

Ka 2.4 × 104 M−1 5

association constant of
LFABP

KLFABP 1.4 × 105 M−1 5

aFor the association constants, the values represent measured
association constants multiplied by the number of binding sites.
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2.4. MCMC Simulation. With the prior information of the
population mean (μ) and variance (Σ2) and experimental error term
(σ2), the joint posterior distribution given the experimental data (Y)
can be determined based on Bayes’ theorem, as shown in eq 9.34

θ μ σ θ σ θ μ μ

σ

Σ | ∝ | × | Σ × × Σ

×

p Y p Y p p p

p

( , , , ) ( , ) ( , ) ( ) ( )

( )

2 2 2 2 2

2 (9)

p(μ), p(Σ2), and p(σ2) are the probabilities calculated from
corresponding prior distributions. p(θ|μ, Σ2) is the probability of an
individual chemical-related parameter θ, which is assumed to be log-
normally distributed as log(θ) ∼ N(log(μ), Σ2). Finally, p(Y|θ, σ2) is
the likelihood of the experimental data Y, which is determined based
on log(Y) ∼ N(log(P), σ2), where P is the predicted concentration−
time data from the PBPK model given a set of parameters (i.e., P =
f(θ, ψ, E, t), as in Figure 1).
Due to the nonlinearity of the PBPK model, it is impossible to

acquire an analytical expression for p(θ, μ, Σ2, σ2|Y). Instead, the
Delayed Rejection Adaptive Metropolis (DRAM) algorithm,44 a
commonly used MCMC sampling technique, was employed to
numerically approximate the joint posterior distribution. DRAM was
selected because it is highly efficient and has been successfully applied
in toxicokinetic models.30 Here, a total of four Markov chains were
constructed in the simulation. For each chain, the total number of
iterations was set to 300 000, with the first 150 000 iterations as a
“burn-in” period and the last 50 000 iterations as the output samples
for posterior distribution analysis.
2.5. Posterior Analysis and Evaluation. After an MCMC

simulation, the convergence of the posterior distributions needs to be
verified before further analysis. The Gelman−Rubin diagnostic was
used to assess the samples generated from the MCMC method.45

Specifically, the potential scale reduction factor (PSRF) (R ) was
calculated for each parameter distribution. When the posterior
distribution becomes stationary, R is close to 1. An R value of 1.2
or less is considered to be converged for the distribution, as
recommended by Gelman et al.46

Based on the MCMC output, the posterior quantiles and density
plots for the distribution of each selected model parameter were
generated for analysis. The PBPK model was then rerun with the
updated parameter distributions and its output was compared with
prior model results. Finally, based on the new predicted
concentration−time data, toxicokinetic parameters including half-
life, clearance, the maximum PFOA concentration in plasma (Cmax),
and the time required to reach the peak concentration (Tmax) were
calculated and compared with experimental data from other studies.
For the calculation of half-life (T1/2), we employed the first order
elimination rate (Ke), which is determined by considering the
elimination phase after Cmax and Tmax. Specifically, the following
equations were used to calculate the half-life value47

=T
K

ln(2)
1/2

e (10)

= −
−
−

K
C C
T T

ln( ) ln( )
e

end max

end max (11)

where Cend and Tend represent the concentration of PFOA and the
time at the end point, respectively. The following equation was used
to calculate clearance47

=clearance
dose
AUC (12)

where AUC is the area under the curve.
2.6. Software and Model Code. The PBPK model and MCMC

simulation were programmed in R (https://www.r-project.org/) using
mrgsolve (https://mrgsolve.github.io/), a package designed for
solving ordinary differential equations, for the PBPK model
development. The MCMC simulation was coded using the FME
package, which provides convenient functions for the DRAM
algorithm.48 All model codes are available in the Supporting
Information.

Table 2. Summary of PFOA Toxicokinetics Studies for Male Rats

administration
routes dose scenarios sampling time for tissues rat species references

single oral 1 mg/kg sample from blood at 0.25, 0.5, 1, 2, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 168, 192, 240,
288, 336, 384, 432, 480, 528 h

Sprague-Dawley Kemper31

single oral 0.1 mg/kg
single IV 1 mg/kg
single oral 1 mg/kg sample from liver, kidney, gut, muscle and adipose after 672 h
single oral 1 mg/kg sample from blood at 6, 12, 24, 48, 96, 144, 192, 240, 288 h; sample from liver and kidney

after 288 h
Sprague-Dawley Kim et al.33

single IV 1 mg/kg
single IV 0.041 mg/kg sample from blood at 5, 15, 45, 90, 120, 150, 210, 270, 300 min; sample from liver, kidney, gut

and adipose after 120 min
Wistar Kudo et

al.32

Table 3. Percentiles of the Prior and Posterior Distribution for Each Parameter

prior distribution posterior distribution

parameters 2.50% 50% 97.50% 2.50% 50% 97.50%

Peff
B 0.037 0.18 0.87 0.56 0.79 0.87

Peff
K 0.033 0.16 0.76 0.038 0.19 0.67

Peff
L 0.038 0.19 0.9 0.042 0.19 0.83

CRss
L 1.5 7.3 35 1.6 7.7 33

CRss
K 1.3 6.2 30 1.5 6.8 26

Pb
clear 0.21 0.99 4.8 0.3 1.7 4.6

Pb
reab 0.088 0.43 2.1 0.094 0.23 1.4

Pb
uptake 0.13 0.64 3.1 0.14 0.34 2.3

Pb
efflux 0.1 0.5 2.4 0.11 0.27 1.2

Ka 5.0 × 103 2.4 × 104 1.2 × 105 2.3 × 104 3.6 × 104 5.7 × 104

KLFABP 2.8 × 104 1.4 × 105 6.5 × 105 3.3 × 104 1.4 × 105 4.8 × 105
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Figure 2. Density plot of the prior and posterior distribution for each parameter. For each subplot, the x-axis represents the value of each parameter
(the unit for Ka and KLFABP is m

3/mol, CRss
L and CRss

K are unitless, and the remaining parameters have units of mm/h); the y-axis represents the
probability density.

Figure 3. PFOA toxicokinetics in plasma under different dose scenarios: (i) 1 mg PFOA/kg BW IV dose; (ii) 1 mg PFOA/kg BW oral dose; (iii)
0.041 mg PFOA/kg BW IV dose; (iv) 0.1 mg PFOA/kg BW oral dose. The gray line represents model results using prior parameter distributions;
the black line is with the posterior distributions. The upper, middle, and lower lines indicate the 97.5th, 50th, and 2.5th percentiles of the predicted
results, respectively. Red triangles, green squares, and blue circles represent the data sets extracted from the works of Kemper 2003, Kim et al. 2016,
and Kudo et al. 2007, respectively. The first 5 h time-course behavior for oral dose was zoomed in to show its upward trend at the beginning phase.
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3. RESULTS

3.1. Convergence Diagnosis. The trace plots for Markov
chains in MCMC are shown in Figures S2−S4. As indicated,
no visible trends or changes were observed in the trace plot for
each model parameter, suggesting good convergence of the
distribution for each parameter. In addition, the Gelman−
Rubin diagnostic results (Table S6) show that all parameters
have PSRF values between 1.001 and 1.02, with upper
confidence limits between 1.002 and 1.056. The multivariate
PSRF value, which forms the upper bound of PSRF for any
linear combination of the parameters, is 1.09. All PSRF values
are less than 1.2, indicating the posterior distributions in
MCMC have reached equilibrium and can be used for further
analysis.
3.2. Parameter Analysis. The percentile (2.5, 50 and

97.5%) and density plot comparisons between prior and
posterior distribution for each model parameter are shown in
Table 3 and Figure 2, respectively. After updating with
experimental data, the posterior distributions of the population
mean for all parameters were substantially narrower than their
prior distributions, indicating that the uncertainties of those
parameters were substantially reduced. In addition, an obvious
shift was observed in the density plot for some parameters (e.g.,
Peff
B and Ka in Figure 2). The percentiles of distributions also

showed significant changes (defined by larger than ±20% of
prior values49) between prior and posterior values for some
parameters. Specifically, the posterior median of the effective
permeability of blood vessels (Peff

B ) is 0.79 mm/h, which is 4.4
times higher than its prior median. In addition, the posterior
median of the Ka value (i.e., the association constant of albumin
multiplied by the number of binding sites) is 3.6 × 104 M−1,
which is increased by 48% compared to its prior median.
Finally, the posterior medians of all the active transport
parameters were substantially different from their prior values:
after updating with experimental data, the renal clearance rate
constant (Pb

clear, 1.7 mm/h) increased by 71.5%; the hepatocyte
uptake rate constant (Pb

uptake, 0.34 mm/h), renal reabsorption
rate (Pb

reab, 0.23 mm/h), and renal efflux rate constant (Pb
efflux,

0.27 mm/h) decreased by 47.4, 46.4, and 46.3%, respectively.
Finally, the effective permeability of the kidney and liver (i.e.,
Peff
K and Peff

L ), steady-state cell−water concentration ratio of the
kidney and liver (i.e., CRss

K and CRss
L), and the association

constant of LFABP (i.e., KLFABP) indicate posterior median of
0.19 mm/h, 0.19 mm/h, 7.7, 6.8, and 1.4 × 105 M−1,
respectively. No significant changes were observed for these
medians between their prior and posterior distributions, which
indicates that the prior information of these parameters agree
very well with the experimental toxicokinetics data.
3.3. Model Evaluation. The PBPK model was rerun with

the generated posterior parameter distribution and its results

were evaluated by comparing with both experimental
toxicokinetic data and model predictions based on prior
parameter information. The model evaluation for plasma
toxicokinetics and tissue distribution are described below.

3.3.1. Plasma Toxicokinetics. As shown in Figure 3, both
prior and posterior model predictions indicated a similar time-
course behavior to the experimental data. However, the 95%
range of the posterior prediction (black line) was substantially
smaller than that of the prior prediction (gray line),
demonstrating a significant decrease in the model uncertainty.
In addition, most experimental data fall within the 95% range
of the posterior prediction of PFOA concentration in plasma,
except for data from the Kim et al. study,33 which show a
higher elimination rate. It is worth noting that even under the
same dose scenarios (e.g., 1 mg PFOA/kg BW IV and oral
dose), the PFOA concentration profiles are quite different
between Kim et al.33 and the Kemper study.31 One reason for
the substantial difference could be due to the different
analytical methods used to measure PFOA concentration. In
the Kemper study,1 standard liquid chromatography−mass
spectrometry was used to detect the PFOA concentration in
plasma. By the time of the Kim et al. study,2 newer ultrahigh-
performance liquid chromatography-coupled tandem mass
spectrometry had become the standard, a more sensitive
method for PFAS analysis. In addition, the Kim et al. study
dosed three different PFAS simultaneouslyPFOA, PFOS,
and PFHxS, and it is therefore possible that the presence of the
other PFAS affected the toxicokinetics of PFOA. The
differences in PFOA concentration profiles observed under
the same dose for PFOA illustrate the significant variation that
can be found across experimental toxicokinetic studies. In the
case of these two studies, this is potentially problematic
because an older study with a larger number of data points
biases the model away from fitting a newer study with fewer
data points that may use a more reliable analytical method.
Given the differences in dosing (single vs multiple PFAS),
however, it is difficult to say definitively which is more reliable.
Finally, based on the predicted PFOA concentration profiles

in plasma, different toxicokinetic parameters were estimated
and compared with the experimental results from the Kemper
study (i.e., the Kemper data).31 As shown in Table 4, in
comparison with the Kemper data, the posterior model results
demonstrate much improvement from the prior model for the
half-life, clearance of PFOA, and maximum plasma concen-
tration of PFOA (Cmax); the posterior predicted values for
those toxicokinetic parameters fall well within a factor of 1.5 of
the Kemper data for three different dose scenarios. The half-
life seems to be independent of dose scenarios and is calculated
as 7.90 days, which is in very good agreement with the half-life
values from other experimental studies (range from 5.63 to 15

Table 4. Comparison of Toxicokinetic Parameters between Model Predictions and the Kemper Data31

dose scenario half-life (day) clearance (mL/day/kg) Cmax (ng/g) Tmax (h)

0.1 mg/kg oral prior 14.74 ± 15.55 69.31 ± 71.96 424 ± 147 5.15 ± 3.32
posterior 7.9 ± 0.66 26.95 ± 1.72 546 ± 50.9 2.87 ± 0.26
Kemper data 8.41 ± 1.56 23.10 ± 5.76 598 ± 127 10.25 ± 6.45

1 mg/kg oral prior 15.22 ± 19.86 65.83 ± 71.66 4246 ± 146 5.1 ± 3.11
posterior 7.91 ± 0.67 25.18 ± 1.55 5479 ± 532 2.89 ± 0.27
Kemper data 5.76 ± 1.33 20.9 ± 3.79 8431 ± 1161 9.0 ± 3.83

1 mg/kg IV prior 15.41 ± 17.52 68.78 ± 91.51
posterior 7.89 ± 0.67 24.99 ± 1.55
Kemper data 7.73 ± 0.82 21.51 ± 1.97
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days).50−53 The posterior clearance of PFOA is also very
similar under different dose cases and has an average value of
25.70 mL/day/kg, which falls within the range of other
experimental data (from 21.5 to 50.5 mL/day/kg).50,52,54 For
the time required to reach the maximum concentration (Tmax),
the prior and posterior model predictions are underestimated
by a factor of around 2 and 3.5, respectively. The major reason
for the underestimation of Tmax is due to a simplification of the
absorption process for PFOA. In our PBPK model, it is
assumed that orally administrated PFOA enters into the gut
lumen immediately; however, in reality, it could take some
time for PFOA to reach the small intestine. This simplifying
assumption was made due to the limited data available on the
absorption of PFOA.
3.3.2. Tissue Distribution. Figures 4 and S5−S7 show the

comparison of PFOA tissue distribution between model
predictions (with both prior and posterior parameter
distributions) and experimental results under different dose
scenarios. As indicated in Figure 4, our model was able to
successfully predict the tissue distribution patterns for PFOA
in long-term simulations (i.e., after 12 or 28 days): liver >
kidney > gut > muscle ≈ adipose. For a short-term dosing
scenario (e.g., 2 h), the predicted PFOA concentration in liver
was significantly lower than the measured data. Similar to the
plasma toxicokinetics results, the uncertainty for posterior
model predictions was reduced substantially compared with
the prior model. Most measured PFOA concentrations in each
tissue fall well within or overlap with the 95% prediction range,
except for the data from the Kudo et al. study.32

A further comparison was performed between the means of
experimental data in different tissues and the means of the
model predictions. For long-term simulations, the posterior
model predictions are well within a factor of two of measured
concentrations for both oral and IV dose. For short-term
dosing (i.e., the Kudo et al. study32), the hepatic PFOA
concentration was underestimated by the PBPK model but is
within a factor of 2.6.

4. DISCUSSION

In this study, we further strengthened our permeability-limited
PBPK model for PFOA in the male rat with the hierarchical
Bayesian framework. By incorporating measured PFOA
toxicokinetics data, the MCMC technique was able to generate
improved posterior distributions for key model parameters.
With the help of this statistical framework, not only were the
uncertainties of the posterior parameters substantially reduced
but most of the PBPK model predictions also became more
reliable and meaningful (e.g., the toxicokinetic parameters such
as half-life and clearance of PFOA estimated with posterior
parameters are well within a factor of 1.5 of the experimental
data, while the prior calculated toxicokinetic parameters fall
within a factor of 1.8 to 3.2 of the experimental data), thus
improving the risk assessment of PFOA. Although the PBPK
model using the posterior parameters demonstrates better
performance than the prior model, it is worth pointing out that
this is because the Bayesian framework used the experimental
data to update the parameter distributions. In other words, the
applicability of the posterior model relies on the accuracy of
the available experimental data sets. If one of these data sets
turn out to be unreliable, it may be tuning the model in the
wrong direction. As indicated in Figure 3, there are substantial
differences between the experimental data from the Kim et al.33

and Kemper studies.31 In addition, the Kemper study has more
data points (72 data points) than the Kim et al. study (18 data
points). Because the Bayesian framework is a data-driven
technique and its performance is closely associated with the
data sets, the posterior model fit better with the Kemper study
(which has many more data points), while most of the Kim et
al. data fall outside the 95% range of the model prediction. On
the other hand, the prior PBPK model, while it has high
uncertainty, relies on no in vivo toxicokinetics data and thus
could be less subject to bias. However, by building this MCMC
framework, we make it possible to continuously upgrade the
performance of the toxicokinetic model as more high-quality
data become available, and this can apply to both in vitro

Figure 4. PFOA terminal tissue distribution under different dose scenarios. (a) 28 days after 1 mg PFOA/kg BW oral dose; (b) 12 days after 1 mg
PFOA/kg BW IV dose; (c) 12 days after 1 mg PFOA/kg BW oral dose; (d) 2 h after 0.041 mg PFOA/kg BW IV dose. The grey and black lines
represent the 95% range of the model predictions using prior and posterior parameter distributions, respectively. Color bars are experimental data
sets from different studies (a: Kemper 2003, b and c: Kim et al. 2016, and d: Kudo et al. 2007) All experimental data are shown as mean ± standard
deviation.
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parameter data and in vivo toxicokinetic data. For example, if
more toxicokinetic data become available, the MCMC analysis
will lead to less biased results and therefore less biased
posterior distributions for key parameters. On the other hand,
if more parameter data become available, the posterior
distributions can be compared with the newly established
values to determine whether toxicokinetic data are biasing the
distributions in the wrong direction and thereby drive
decisions to eliminate those datasets from the analysis.
4.1. Toxicokinetics of PFOA. The Bayesian statistical

framework provided more insights into the molecular
mechanisms that result in the observed PFOA toxicokinetics.
As indicated in Table 3, the posterior median of the association
constant for albumin (Ka) increased substantially compared to
its prior value. It is worth pointing out that only one study was
available for the prior knowledge of Ka in rats, and its
association constant value (3.1 × 103 M−1 × 7.8 binding
sites22) is much smaller compared with the Ka values in
humans (e.g., 3.12 × 104 M−1 × 13 binding sites55 and 1.26 ×
104 M−1 × 2.4 binding sites24) and bovines (e.g., 4.36 × 104

M−1 × 1 binding sites56). Both our model predictions and the
comparison with other experimental data seem to indicate the
current Ka value for rat is a little low and more studies are
needed to measure Ka for PFOA with rat serum albumin.
Another important insight is about the renal elimination of

PFOA. From Table 4, compared with the prior half-life
parameter (a mean of around 15 days), the posterior values
(7.9 days) decreased substantially, indicating an increase in the
renal elimination of PFOA. The major reason for this is due to
the significant increase in the renal clearance rate constant
(Pb

clear) and the decrease in both the renal reabsorption rate
(Pb

reab) and efflux rate (Pb
efflux), as shown in Table 3. All those

active transport processes were facilitated by different trans-
porters. Although a total of five transporters were considered
for the renal elimination process, other transporters such as
Oatp4c157 and multidrug resistance-associated proteins
(Mrps)58 located at the proximal tubular cells were not
included due to limited information on their transport kinetics.
However, our model results indicate that those transporters
have the potential to significantly affect the elimination of
PFOA and more in vitro data are needed.
4.2. Tissue Distribution of PFOA. Our model can

successfully predict the tissue distribution patterns for PFOA
in long-term simulations (i.e., after 12 or 28 days): liver >
kidney ≈ blood > gut > muscle ≈ adipose. This pattern can be
explained with the protein binding in those tissues. As
described in eq 3, the protein binding for PFOA is determined
by both the equilibrium association constant and the protein
concentration in tissues. A strong association constant and
high protein concentration results in high bioaccumulation of
PFOA. Liver tissue has abundant LFABP and the association
constant of LFABP is quite strong (the median of the posterior
distribution is 1.4 × 105 M−1, Table 3), which results in the
highest accumulation of PFOA in liver. The kidney tissue also
contains LFABP, but its concentration is much lower than that
of liver; moreover, the kidney has high concentration of α2μ-
globulin (with a weak association constant of 5 × 102 M−1).40

For a blood tissue, it has abundant serum albumin, but the
association constant of albumin (the median of the posterior
distribution is 3.6 × 104 M−1, Table 3) is a little weaker than
LFABP. These protein binding data show that kidney and
blood are important accumulation sites for PFOA, but they
contain less PFOA compared to liver tissue. For other tissues

(i.e., gut, muscle and adipose), there is only a small amount of
albumin in their vascular space and interstitial fluid compart-
ments; therefore, they have much lower concentrations of
PFOA.
For the short-term dosing case (i.e., the 2 h experiment from

Kudo et al.32), the PBPK model did not perform as well as for
the long-term dosing simulation. The PFOA concentration in
the liver was substantially underestimated by the model, while
for gut and adipose, the PFOA concentration was over-
estimated by the model. This disagreement for the short-term
dosing case could be caused by the parameterization of the
surface area of those tissues or of passive diffusion. In addition,
the underestimation of PFOA in liver could be attributed to
cellular membrane association of PFOA at the beginning phase
of distribution to the liver. In fact, Kudo et al.32 showed that 2
h after dosing, around 97% of PFOA was found in the
membrane fraction. Therefore, PFOA might sorb to some
membrane components (e.g., protein or phospholipids59),
which slows down the distribution of PFOA to liver over a
short period. In the long-term simulation, it seems the
membrane binding of PFOA has a negligible effect on the
tissue distribution (Figure 4).

4.3. Model Limitations. The first limitation of the
Bayesian framework is that prior knowledge is very limited
for some model parameters, especially those related to protein
binding and active transport processes. For example, the active
efflux transporters Mrps, which are located at both the
basolateral and apical membranes of proximal tubular cells, are
dominant in female rats and could also be responsible for the
substantial gender difference in PFOA elimination between
male and female rats.39,58 However, due to the lack of
information on the transport kinetics of Mrps, a female rat
model for PFOA was not considered in this study. In addition,
the computational cost of MCMC simulations is very large,
especially for a complex PBPK model. In this study, all the
physiological parameters were fixed during the MCMC
simulation to reduce the computational burden, so the
opportunity to refine all parameters in the model was missed.

4.4. Call for Data. More data are required to further
improve the PBPK model and generalize it to other species and
other PFAS. First, data are needed on more PFAS-protein
interactions, such as the Mrps transporters, which have the
potential to significantly affect PFAS elimination, but for which
very limited information is currently available. Given the
importance of the equilibrium association constant of albumin
with PFOA in the PBPK model, further more accurate
measurements are also necessary for model validation. PFAS-
protein interaction data could be obtained through in vitro
studies or estimated with molecular modeling tools (e.g.,
molecular docking and molecular dynamics). Finally, more in
vivo toxicokinetic data on PFAS are needed for the Bayesian
analysis of the PBPK model. As shown in Figure 3, even under
the same dose scenarios, there is a substantial difference
between the toxicokinetics data from Kim et al.33 and
Kemper.31 We need more experimental data to reduce the
variability in observations, as well as to better understand
actual inter-individual and intrapopulation variability.
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