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Abstract. We survey some methods developed in a series of papers, for clas-

sifying localising subcategories of tensor triangulated categories. We illustrate

these methods by proving a new theorem, providing such a classification in the
case of the stable module category of a unipotent finite supergroup scheme.

1. Introduction

John Greenlees’ influence on mathematics is reflected throughout this volume,
and our own work has benefitted enormously from his insights. We should like to
mention in particular his collaboration with May [49] and Dwyer [40] on derived
completions and local cohomology; on the local cohomology spectral sequence in the
context of group cohomology [47] and his subsequent work with Lyubeznik [48]; and
on duality in algebra and topology; in particular, his work with Benson [12, 13, 14],
with Dwyer and Iyengar [41].

A broad framework for understanding localisation and duality was developed in
a series of papers [16]–[27]. Originally geared towards applications to representation
theory of finite groups and finite group schemes, the framework has been applied in
a number of other areas, such as commutative algebra [34], ring spectra [6], modules
over algebras of cochains [15, 17], and equivariant KK-theory [33]. This theory is
closely related to that of Balmer [3, 4, 5], but the point of view is different.

The purpose of this paper is to give an outline of the theory, by way of explain-
ing how it applies in the case of the stable module category of a unipotent finite
supergroup scheme. In particular, we shall prove the following theorem.

1.1. Theorem. Let G be a unipotent finite supergroup scheme over a field k of pos-
itive characteristic p > 3. The theory of support gives a one to one correspondence
between the localising subcategories of StMod(kG) and subsets of ProjH∗,∗(G, k).

Here StMod(kG) denotes the stable module category of kG-modules, H∗,∗(G, k)
the cohomology ring of G, and ProjH∗,∗(G, k) its projective spectrum. Supergroup
schemes are introduced Section 6 and the result above is proved in Section 10. The
statement above speaks of “the” theory of support, but in fact there are at least two,
quite distinct, notions of support in this context. One is obtained from specialising
the support theory introduced in [16], which is based on cohomology and applies
to any compactly generated triangulated category with a ring action; in this case
StMod(kG) with the canonical action of H∗,∗(G, k). The other notion of support
is inspired by the theory of π-points introduced by Friedlander and Pevtsova [45]
in the context of finite group schemes. That these two notions of support coincide
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for modules over finite supergroup schemes is one of the crucial steps in proving
the theorem above.

Theorem 1.1 was first proved, with no restrictions on the prime p, for finite
groups [18], using ideas from commutative algebra, mainly the Bernstein-Gelfand-
Gelfand correspondence. A new proof, from a more representation theoretic per-
spective, was given in [23], exploiting ideas from [45] and a concept of cosupport
for representations, which is related to derived completions introduced by Greenlees
and May [49]. These ideas also played a pivotal role in our proof of Theorem 1.1
for the case of finite group schemes [24].

Theorem 1.1 is a culmination of our work reported in [26, 27, 28]. We sketch the
details of how to put these pieces together in Section 9. This work take as a starting
point the applications of the theory of super polynomial functors to representations
and cohomology of finite supergroup schemes, developed in a series of papers by
Drupieski and Kujawa [35, 37, 39]. Their work [36] represents a development parallel
to our own. The main difference is that we treat both connected and non-connected
cases of unipotent supergroup schemes and are interested in infinite dimensional
kG-modules. In [36] one can find many intricate results, examples and calculations
for finite dimensional modules over connected group schemes.

Finally, in Section 11 we give a brief overview of the local duality for StMod(kG),
summarised in the following result.

1.2. Theorem. Let G be a finite supergroup scheme over a field k of positive char-
acteristic p > 3. For each p ∈ ProjH∗,∗(G, k), the corresponding localising subcat-
egory Γp StMod(kG) satisfies local duality.

Observe that, in contrast with Theorem 1.1, here G is not restricted to be unipo-
tent. For finite groups, such a statement was conjectured by Benson [9] and proved
by Benson and Greenlees [14]; see also [10]. In [25] we gave a new proof of their
result covering also the case of finite group schemes. It turns out that local duality
is a general feature of Gorenstein algebras, and can be viewed as an extension of a
duality theorem due to Auslander [1] and Buchweitz [29] generalising Tate duality
for finite groups. All this is explained in [22]. One can view the result above as a
variation, dealing with graded Gorenstein algebras.

In what follows, we have tried to present the development of the theory from
elementary abelian p-groups to finite groups to finite group schemes to finite super-
groups schemes. We focus mostly on stratification, and even then cannot hope to
present a complete account of the theory in a short survey. Thus the aim is to give
just a flavour of numerous techniques and developments that happened in the the-
ory of support varieties in (relatively) recent years many of which were influenced
by John Greenlees’ work.
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2. Local cohomology and support

Let T be a triangulated category, with shift Σ, admitting all small coproducts,
and compactly generated. The examples we have in mind come from algebra,
topology and geometry. The centre Z∗(T) of T is the graded ring whose degree
n part consists of the natural transformations η from the identity functor to Σn

satisfying ηΣ = (−1)nΣη. These form a graded commutative ring which is usually
not Noetherian. We assume that we are given a graded commutative Noetherian
ring R together with a homomorphism of rings R→ Z∗(T). This is called an action
of R on T. For X,Y in T set

Hom∗T(X,Y ) :=
⊕
n∈Z

HomT(X,ΣnY ) ;

this has a structure of an R-module, compatible with morphisms in T.
A subset V of a topological space X is specialization closed if V contains the

closure of its points. We write SpecR for the homogeneous primes ideals of R,
with the Zariski topology. For each specialisation closed subset V of SpecR, the
subcategory TV of V -torsion objects in T is the full subcategory consisting of the
objects X such that Hom∗T(C,X)p = 0 for each compact object C in T and each
p 6∈ V . For X in T there is a functorial triangle

ΓVX → X → LVX

where ΓVX is in TV , and LVX admits no non-zero maps from any object in TV .

2.1. Definition. Given a p in SpecR choose specialisation closed subsets V and
W with V 6⊆W and V ⊆W ∪ {p}, and define

ΓpX := ΓV LWX = LWΓVX.

This turns out to be independent of choice of V and W satisfying these condi-
tions, and defines an idempotent functor Γp : T → T which may be thought of as
isolating the layer of T corresponding to the prime p, and consisting of the objects
“supported at p.” The functor Γp has a right adjoint, which we denote Λp; it has
to do with completions along p, and plays an equally important role in the theory;
for details, see [16, 21].

2.2. Definition. The support and cosupport of an object X in T are the subsets

suppR(X) := {p ∈ SpecR | ΓpX 6= 0}
cosuppR(X) := {p ∈ SpecR | ΛpX 6= 0}

It is not hard to prove that both support and cosupport detect zero objects: an
object X in T is 0 if and only if suppR(X) = ∅, if and only if cosuppR(X) = ∅.

We focus mostly on support, but cosupport resurfaces in Section 10. We write
suppR(T) for

⋃
suppR(X), where X ranges over the objects in T.

Under mild conditions, such as R having finite Krull dimension, the localising
subcategory LocT(X) of T generated by an object X is equal to the localising
subcategory LocT({ΓpX | p ∈ suppR(T)}) generated by the objects ΓpX. If this
is the case, we say that the local-global principle holds. Then there is a one to
one correspondence between localising subcategories of T and functions assigning
to each p in suppR(T) a localising subcatgory of ΓpT. The function corresponding
to a localising subcategory S sends p to S∩ΓpT. This is described in detail in [18].

We say that an action of a graded commutative ring R on T stratifies T if the
local-global principle holds and for each p in suppR(T), the subcategory ΓpT is
a minimal with respect to inclusion, among localising subcategories of T. Under
these circumstances, there is one to one correspondence between localising subcat-
egories of T and the subsets of suppR(T). The subset corresponding to a localising
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subcategory S is its support, suppR S, by which we mean the set of primes p for
which Γp is not the zero functor on S.

2.3. Example. Let G be a finite group and k a field of characteristic p dividing
the order of G. The stable module category StMod(kG) is a compactly generated
triangulated category, with compact objects the finite dimensional kG-modules,
and there is an action of the cohomology ring H∗(G, k). In this case, we write
suppG(M) for suppH∗(G,k)(M).

The support of StMod(kG) is ProjH∗(G, k), which is the set SpecH∗(G, k)
excluding the maximal ideal consisting of all elements of positive degree. When M
is finite dimensional, suppG(M) is the closed subset of ProjH∗(G, k) defined by
AnnH∗(G,k) Ext∗,∗(M,M).

It is proved in [19] that when G is a p-group this action stratifies StMod(kG).

Such a stratification does not hold for general finite groups, because the local-
ising subcategories Γp StMod(kG) are tensor ideal, namely they are closed under
tensor products with all modules, whereas there may be localising subcategories
that are not. For a finite p-group, the only simple module is the trivial module k,
so the localising subcategory it generates is the whole of StMod(kG), and hence
all localising subcategories are tensor ideal. To address arbitrary finite groups, we
must take the tensor structure into account.

Tensor triangulated categories. Suppose now that T is a compactly generated
triangulated category that comes with a symmetric monoidal tensor product ⊗ : T×
T→ T, is exact in each variable, preserving small coproducts, and with unit 1. In
this situation, we say that T is a tensor triangulated category. There is a particularly
good kind of action of a graded commutative ring R on such a T; namely, one that
factor as R→ End∗T(1) followed by the natural map End∗T(1)→ Z∗(T) induced by
the tensor product. We say that such an action is canonical.

Given a canonical action of R on T, the functor Γp is naturally isomorphic
to Γp1 ⊗ −. The subcategory ΓpT is tensor ideal, meaning that it is closed under

tensoring with arbitrary objects in T. Denote by Loc⊗T (X) the tensor ideal localising
subcategory of T generated by an object X. The tensor version of the local-global
principle holds in this situation, and says that Loc⊗T (X) is equal to the tensor

ideal localising subcategory Loc⊗T ({ΓpX | p ∈ suppR(T)}). So we get a one to one
correspondence between tensor ideal localising subcategories of T and functions
assigning to each p in suppR(T) a tensor ideal localising subcategory of ΓpT.

We say that a canonical action of a graded commutative ring R stratifies a tensor
triangulated category T if for each p ∈ suppR(T), the subcategory ΓpT is minimal
as a tensor ideal localising subcategory. See also the work of Hovey, Palmieri, and
Strickland [50] where such a minimality plays a prominent role.

2.4. Example. Let G be a finite group. The stable module category of kG-modules
is a tensor triangulated category, with tensor unit the trivial module k. The Tate

cohomology ring Ĥ∗(G, k) is none other than the graded ring End∗StMod(kG)(k), and

so has a canonical action on StMod(kG). While Ĥ∗(G, k) is usually not Noetherian,
its subring H∗(G, k) is, which then inherits the canonical action on StMod(kG).

The following theorem is proved in [19].

2.5. Theorem. Let G be a finite group and k a field of characteristic p. As a
tensor triangulated category, the action of H∗(G, k) stratifies StMod(kG). In par-
ticular, there is a bijection, defined by suppG(−), between tensor ideal localising
subcategories of StMod(kG) and subsets of ProjH∗(G, k). �
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A key step in the proof is a reduction to elementary abelian groups, which
depends on the Quillen stratification theorem [53, 54], and work of Chouinard,
recalled below.

3. The rank variety

For a finite group G, there is another description of support that is much better
suited to computation. Chouinard [31] proved that over an arbitrary commutative
ring of coefficients k, a kG-module is projective if and only if its restriction to every
elementary abelian subgroup E of G is a projective kE-module. If k is a field of
characteristic p, we only need to consider elementary abelian p-subgroups. In this
case, when k is algebraically closed, Dade [32] proved that a finite dimensional kE-
module is projective if and only if its restriction to each cyclic shifted subgroup is
projective. The precise statement is as follows. If E := 〈g1, . . . , gr〉 ∼= (Z/p)r, is an
elementary abelian p-group, set Xi = gi − 1 in kE for 1 6 i 6 r. Then kE is a
truncated polynomial ring:

kE ∼=
k[X1, . . . , Xr]

(Xp
1 , . . . , X

p
r )
.

Let J(kE) be the radical, (X1, . . . , Xr), of kE. For λ = (λ1, . . . , λr) in Ar(k) set

Xλ := λ1X1 + · · ·+ λrXr in kE

and αλ : k[t]/(tp)→ kE for the homomorphism of k-algebras sending t toXλ. Given
a kE-module M , we write α∗λ(M) for the k[t]/(tp)-module obtained by restriction
along αλ.

3.1. Theorem (Dade [32]). Let k be an algebraically closed field of characteristic p,
and E an elementary abelian p-group. A finite dimensional dimensional kE-module
M is projective if and only if α∗λ(M) is projective for all 0 6= λ ∈ Ar(k). �

Based on this, Carlson [30] introduced the notion of rank variety.

3.2. Definition. Let k be an algebraically closed field of characteristic p, and E an
elementary abelian p-group. The rank variety of a finitely generated kE-module
M is the subset

V rE(M) := {λ ∈ Ar(k) | α∗λ(M) is not projective}
of Ar(k). We write V rkE(M) if the field of coefficients needs to be specified. Observe
that V rE(M) contains 0 and is homogenous. It is also closed, for projectivity over
k[t]/(tp) is detected by a rank condition on the operator representing the action of
t. This also gives a method for calculating equations defining V rE(M). Ostensibly,
this depends on the choice of generators for E as an elementary abelian group.
However, if α, β : k[t]/(tp) → kE are maps such that α(t) and β(t) have the same
image in J(kE)/J2(kE) then α∗(M) is projective if and only if β∗(M) is projective.
So it makes sense to think of the ambient affine space Ar(k) as identified with
J(kE)/J2(kE). We return to this ambiguity in Section 6 when we discuss π-points.

The cohomology ring of E is well-known and easy to compute:

H∗(E, k) =

{
k[y1, . . . , yr] if p = 2

k[x1, . . . , xr]⊗ Λ(y1, . . . , yr) for p odd

where yi is in degree one the xi is in degree two, and is the Bockstein β(yi) of yi.
Let k[Y1, . . . , Yr] be the coordinate ring of Ar(k). If p = 2, this can be identified

with H∗(E, k) in such a way that the Yi correspond to the yi. If p is odd, there is
a twist: we have to identify xi with Y pi , so that there is a Frobenius twist involved
in the identification of SpecH∗(E, k) with Spec k[Y1, . . . , Yr]. Carlson conjectured
that this identifies support and rank variety for a finite dimensional kE-module.
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3.3. Theorem (Avrunin, Scott [2]). Let k be an algebraically closed field. Under the
usual identification of radical homogeneous ideals in SpecH∗(E, k) with affine cones
in Ar(k), the radical ideal defining the subset suppE(M) corresponds to V rE(M) for
any finite-dimensional kE-module M .

Given an extension of fields k ⊆ K and a kE-module M , let MK be the KE-
module K ⊗k M . Benson, Carlson and Rickard [11] extended Dade’s theorem to
cover infinitely generated modules, as follows:

3.4. Theorem. A kE-module M is projective if and only if α∗λ(MK) is projective
for all extension fields K of k and all 0 6= λ in Ar(K).

For 0 6= λ ∈ Ar(K) let p ⊆ k[Y1, . . . , Yr] be the ideal consisting of homogeneous
polynomials that vanish at λ. This is a prime ideal and λ is a generic point for
p. Each p in Proj k[Y1, . . . , Yr] occurs this way. If λ ∈ Ar(K) and λ′ ∈ Ar(K ′) are
generic points for the same prime ideal, then α∗λ(MK) is projective if and only if
α∗λ′(MK′) is projective. So instead of a rank variety, we assign to M a subset of
Proj k[Y1, . . . , Yr].

3.5. Definition. Set VrE(M) to be the set of p ∈ Proj k[Y1, . . . , Yr] such that if
λ ∈ Ar(K) is generic for p then α∗λ(MK) is not projective.

Historically the rank variety was defined as a subset of Ar(k), but we switch
to considering projective varieties since all our constructions are “invariant” under
scalar multiplication. It follows from the main theorems of [11] that the subset
suppE(M) ⊆ ProjH∗(E, k) corresponds to VrE(M) for any kE-module M , once
the appropriate identification, involving Frobenius for p > 2, of ProjH∗(E, k) and
Pr−1 is made.

We shall see in Section 5 that the appropriate generalisation of these concepts
to finite group schemes leads to the theory of π-points.

4. Finite group schemes

In this section, we introduce finite group schemes, following the approach given
in [51, Chapter 1]. Throughout k will be a field.

An affine scheme over k is a representable functor from the category CAlg(k) of
commutative algebras over k to sets. The representing object of an affine scheme
S, denoted k[S], is called its coordinate ring. Thus S : CAlg(k) → Set takes the
form HomCAlg(k)(k[S],−).

An affine group scheme is a functor G : CAlg(k) → Grp whose composite with
the forgetful functor Grp → Set is representable. By Yoneda’s lemma, the natural
transformations given by the group operations give rise to a structure on k[G] of
commutative Hopf algebra. This gives a contravariant equivalence of categories
from affine group schemes to commutative Hopf algebras, sending G to k[G].

A finite group scheme is an affine group scheme G with the property that the
coordinate ring k[G] is finite dimensional over k. In this case, we may dualise to get
the group algebra kG := Homk(k[G], k), which has the structure of cocommutative
Hopf algebra. This gives a covariant equivalence of categories from finite group
schemes to finite dimensional cocommutative Hopf algebras, sending G to kG.

Finite groups are examples of finite group schemes, but there are many more,
including p-restricted Lie algebras, and Frobenius kernels of affine group schemes.
See, for example, [23, §1] for examples and an explanation of how finite groups fit
into the context.

Friedlander and Suslin [46] proved that for any finite group scheme G, the
k-algebra H∗(G, k) is Noetherian; moreover, the H∗(G, k)-module H∗(G,M) is
finitely generated for any finite dimensional kG-module M . This opened the door
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for the development of support theories for finite group schemes. Another landmark
development in this area was the theory of π-points.

5. The theory of π-points

The theory of π-points for finite group schemes was initiated by Friedlander
and Pevtsova [44, 45], and generalises rank varieties discussed in Section 3. This
approach does not rely on the choice of generators needed to define cyclic shifted
subgroups for elementary abelian p-groups which makes it applicable in a much
greater generality.

Let G be a finite group scheme over a field k of positive characteristic p. A
π-point α of G is given as follows. We choose an extension field K of k, a unipotent
abelian subgroup scheme E of GK , and a flat map

α : K[t]/(tp)→ KE ⊆ KGK .
Note that E does not have to come from a subgroup scheme of G by extension of
scalars. The flatness condition is equivalent to the statement that the image of t is
in J(KE) but not in J2(KE).

Given such an α consider the composite

H∗(G, k) ⊆ K⊗kH∗(G, k) ∼= H∗(GK ,K) ∼= Ext∗KGK (K,K)
α∗−−→ Ext∗K[t]/(tp)(K,K) .

The ring Ext∗K[t]/(tp)(K,K) is isomorphic to K[v] with |v| = 1 if p = 2, and to

K[u, v]/(u2) with |u| = 1 and |v| = 2 if p 6= 2. The nil radical is zero in the first
case, and the ideal (u) in the second case. We define p(α) to be the inverse image
in H∗(G, k) of the nil radical of Ext∗K[t]/(tp)(K,K) under the above map. This is a

homogeneous prime ideal in H∗(G, k). The following theorem is due to Friedlander
and Pevtsova [45].

5.1. Theorem. If α : K[t]/(tp)→ KGK and β : L[t]/(tp)→ LGL are π-points, the
following conditions are equivalent.

(i) p(α) = p(β);
(ii) α∗(MK) is projective if and only if β∗(ML) is projective for a kG-module

M ;
(iii) α∗(MK) is projective if and only if β∗(ML) is projective for any finite di-

mensional kG-module M . �

We therefore put an equivalence relation on the set of π-points of G, where α ∼ β
if and only if the equivalent conditions of the theorem hold. The map sending the
equivalence class of a π-point α to the prime p(α) gives a bijection between the
equivalence classes of π-points in G and the set ProjH∗(G, k).

With this equivalence relation, every π-point is equivalent to one that factors
through a subgroup scheme which is not only abelian unipotent, but elementary.
Let Ga be the additive group scheme and for each integer r > 0, let Ga(r) denote
its rth Frobenius kernel; see [51, Chapter 9].

5.2. Definition. A finite group scheme is elementary if it is isomorphic to the
group scheme Ga(r) × (Z/p)s with r, s > 0.

These group schemes are called “quasi-elementary” by Bendel [7]. For a finite
group scheme cohomology is detected, modulo nilpotents, on elementary subgroup
schemes over extension fields. This explains their central role in this theory.

5.3. Definition. Let G be a finite group scheme over a field k. The π-support,
denoted π- suppG(M), of a kG-module M is the subset of ProjH∗(G, k) consist-
ing of primes p(α), for α : K[t]/(tp) → KGK a π-point such that α∗(MK) is not
projective.
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The π-support is a “generator-invariant” generalisation of Carlson’s rank variety
for any finite group scheme. On the other hand, exactly as for finite groups, one
has a canonical action of H∗(G, k) on StMod(kG) and hence a notion of support
for kG-modules; see Section 2, especially 2.3. The following theorem from [45, 24]
reconciles these two notions. In doing so, it puts the results for elementary abelian
p-groups [2], finite groups [11], restricted Lie algebras [43], and infinitesimal group
schemes [8, 52] into a uniform statement.

5.4. Theorem. One has suppG(M) = π- suppG(M) for any kG-module M . �

6. Finite supergroup schemes

The definition of affine superschemes is parallel to that of affine group schemes.
It is obtained replacing the underlying category of vector spaces over k by the
category of super vector spaces. A super vector space over k is a Z/2-graded vector
space V = V0 ⊕ V1. The tensor product of two such is given by

(V ⊗W )0 = V0 ⊗W0 ⊕ V1 ⊗W1 and (V ⊗W )1 = V0 ⊗W1 ⊕ V1 ⊗W0 .

This tensor product has a symmetric braiding V ⊗W ∼= W ⊗ V given by sending
v ⊗ w to (−1)|v||w|w ⊗ v, where |v| denotes 0 if v ∈ V0 and 1 if v ∈ V1. Thus the
category SVec(k) of super vector spaces is a symmetric monoidal abelian category.
A commutative superalgebra over k is a commutative algebra in this category. Thus
it consists of an object A together with a multiplication A × A → A which is
commutative with respect to the symmetric braiding, associative, and unital. These
form a category CSAlg(k).

An affine superscheme over k is a representable functor from commutative su-
peralgebras over k to sets. The representing object of an affine superscheme S is the
coordinate ring k[S]. An affine supergroup scheme is a functor G : CSAlg(k)→ Grp
whose composite with the forgetful functor Grp→ Set is representable. The repre-
senting object, the coordinate ring k[G] of G, is a commutative Hopf superalgebra.
This way, we obtain a contravariant equivalence of categories from affine super-
group schemes to commutative Hopf superalgebras. A Hopf superalgebra need not
be a Hopf algebra, for the diagonal map need not be a map of ungraded algebras.

A finite supergroup scheme is an affine supergroup scheme G with the property
that the coordinate ring k[G] is finite dimensional over k. In this case, we may
dualise to get the group algebra kG = Homk(k[G], k), which has the structure of
cocommutative Hopf superalgebra. This way, we obtain a covariant equivalence
of categories from finite supergroup schemes to finite dimensional cocommutative
Hopf superalgebras.

Examples of finite supergroup schemes include finite groups, finite group schemes,
exterior algebras, as well as Frobenius kernels of affine supergroup schemes such as
the general linear ones GL(a|b) and the orthosymplectic ones OSp(a|2b). We write
G−a for the finite supergroup scheme whose group algebra is an exterior algebra
on one primitive element, in degree 1. This is the simplest example of a finite
supergroup scheme which is not a finite group scheme.

A finite supergroup scheme G is unipotent if the kernel of the augmentation map
kG → k is equal to the nil radical. This is equivalent to kG having exactly two
simple modules, the trivial module in even degree and the trivial module in odd
degree. For example, G−a is unipotent.

The module category for a finite supergroup scheme is an abelian category, with
a parity change functor Π. The action of an element a ∈ kG on Πm ∈ ΠM is
given by a.Πm = (−1)|a|Π(am) ∈ ΠM . The stable module category StMod(kG)
is a Z/2-graded triangulated category. So it comes with an internal shift Π whose
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square is naturally isomorphic to the identity, and a cohomological shift Ω−1. The
distinguished triangles

M1 →M2 →M3 → Ω−1M1

are those isomorphic to triangles coming from short exact sequences of kG-modules
via a pushout diagram

0 // M1
// M2

//

��

M3
//

��

0

0 // M1
// I // Ω−1M1

// 0

where I is an injective module into which M2 embeds.
For a Z/2-graded triangulated category T, we need a slight modification to the

definition of centre, to take account of the grading. We define Zn,j(T) (n ∈ Z,
j ∈ Z/2) to be the natural transformations η from the identity functor to ΣnΠj

satisfying ηΣ = (−1)nΣη and ηΠ = (−1)jΠη. These form a Z × Z/2-graded ring.
It is graded commutative, in the sense that if x ∈ Zm,i(T) and y ∈ Zn,j(T) then
yx = (−1)mn(−1)ijxy. The cohomology ring H∗,∗(G, k) is also Z × Z/2-graded
commutative in this sense. For example, H∗,∗(G−a , k) is a polynomial ring on a
single generator in degree (1, 1).

There is a canonical action of H∗,∗(G, k) on StMod(kG), so it makes sense to
try to stratify StMod(kG) as a Z/2-graded tensor triangulated category using this
action. The definition of localising subcategory needs to be modified to take account
of the extra grading; we only consider localising subcategories closed under the
operation Π.

6.1. Definition. We define ProjH∗,∗(G, k) to consist of the prime ideals which
are homogeneous with respect to both gradings, with the Zariski topology, and as
usual we exclude the maximal ideal of elements generated by homogeneous ele-
ments whose degree is not (0, 0). Since elements of degree (even,odd) or (odd,even)
square to zero, these elements are contained in every prime ideal. Modulo these
elements, the Z/2-grading is just the mod two reduction of the Z-grading, and so
we can ignore it. So we write H(G, k) for the singly graded ring whose degree
i component is the degree (i, 0) or (i, 1) component of H∗,∗(G, k) according as i
is even or odd. This is a graded ring which becomes strictly commutative if we
reduce modulo nilpotents, and at the level of topological spaces, ProjH(G, k) may
be identified with ProjH∗,∗(G, k). Thus for example H(G−a , k) is a polynomial ring
on a generator in degree one.

6.2. Definition. For a kG-module M , let suppG(M) denote the support defined
via the action of H(G, k) on StMod(kG), as in Section 2.

6.3. Remark. By definition, suppG(M) is a subset of ProjH(G, k). Recall that when
M is finite-dimensional, suppG(M) is a closed subset defined by the annihilator of
Ext∗,∗kG(M,M) as a module over H(G, k). Moreover, if G is unipotent, we can take
the annihilator of H∗,∗(G,M).

7. Elementary supergroup schemes

The definition of elementary supergroup schemes is more complicated than for fi-
nite group schemes, and we have so far only addressed the unipotent case. Drupieski
and Kujawa [37, 38, 39] suggest that similar definitions may suffice for arbitrary
finite supergroup schemes.

In [26] we construct a family of finite connected unipotent supergroup schemes
E−m,n with m,n > 1 related to the Witt vectors and declare a supergroup scheme
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to be elementary if it is isomorphic to a quotient of some E−m,n× (Z/p)s. These are
classified; see [26, Remark 8.14] and compare with Definition 5.2.

7.1. Theorem. Each elementary supergroup scheme is isomorphic to one of:

I. Ga(n) × (Z/p)s with n, s > 0,

II. Ga(n) ×G−a × (Z/p)s with n, s > 0,

III. (i) E−m,n × (Z/p)s with m > 2, n > 1, s > 0,

(ii) E−m,n,µ × (Z/p)s with m,n > 1, 0 6= µ ∈ k×/(k×)2 and s > 0.

Here, E−m,n,µ is a quotient of E−m+1,n+1 by a subgroup isomorphic to Ga(1), and

only depends on the image of µ in k×/(k×)2. �

7.2. Definition. The supergroup schemes of type III are said to be Witt elementary.

The role played by elementary supergroup schemes is explained by the following
analogue from [26] of the theorems of Quillen and Chouinard for finite groups.

7.3. Theorem. Let G be a unipotent finite supergroup scheme over a field k of
characteristic p > 3. Then the following hold:

(i) An element x ∈ H∗,∗(G, k) is nilpotent if and only if for every extension
field K of k and every elementary sub-supergroup scheme E of GK , the re-
striction of xK , the image of x in H∗,∗(GK ,K), to H∗,∗(E,K) is nilpotent.

(ii) A kG-module M is projective if and only if for every extension field K of
k and every elementary sub-supergroup scheme E of GK , the restriction of
MK to E is projective. �

Fortunately, if we ignore the comultiplicative structure of these elementary su-
pergroup schemes, the Z/2-graded algebra structure is easy to describe. The list
corresponds to the one from Theorem 7.1.

7.4. Proposition. If E is an elementary supergroup scheme over k then the algebra
kE is isomorphic to one of the following:

(i) a tensor product of copies of k[s]/(sp),
(ii) a tensor product of copies of k[s]/(sp) and one copy of k[σ]/(σ2),
(iii) a tensor product of copies of k[s]/(sp) and one copy of k[s, σ]/(sp

m

, sp−σ2),
where m > 1,

with |s| even and |σ| odd.

In particular, we have

(7.5) kE−m,n
∼=

k[s1, . . . , sn, σ]

(sp1, . . . , s
p
n−1, s

pm
n , sp − σ2)

with coproduct defined by

∆(si) = Si−1(s1 ⊗ 1, . . . , si ⊗ 1, 1⊗ s1, . . . , 1⊗ si) (i > 1)

∆(σ) = σ ⊗ 1 + 1⊗ σ,
where the Si are the maps coming from the comultiplication in Ga.

Although an elementary supergroup scheme is not necessarily commutative as a
Z/2-graded algebra, because of the factors of type 7.4 (iii), it is nonetheless com-
mutative in the ungraded sense.

7.6. Remark. For non-unipotent finite supergroup schemes, these elementary super-
group schemes are definitely not sufficient for detection. Drupieski and Kujawa [37]
introduced a slightly more general set of supergroup schemes which they show suf-
fice for GL(a|b)(r). Following their notation, if f is a p-polynomial, meaning a

polynomial of the form f(t) =
∑
i ait

pi , we shall write Mn;f for the supergroup
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scheme defined by replacing sp
m

n by f(sn) in (7.5), and with the same comultipli-
cation as E−m,n. Similarly, Mn;f,µ is obtained in the same way from E−m,n−1,µ. The

only unipotent ones among these are our E−m,n and E−m,n,µ. These are all quotients
of a supergroup scheme Mn. Set

kMn
∼=
k[s1, . . . , sn−1, σ][[sn]]

(sp1, . . . , s
p
n−1, σ

2 − spn)
,

kMn;f,µ
∼=

k[s1, . . . , sn, σ]

(sp1, . . . , s
p
n−1, f(sn) + µs1, σ2 − spn)

.

Thus kMn;f,µ is the group ring over k of the corresponding supergroup scheme. We
shall suppress the field from the notation, so that we also regard Mn as a profinite
supergroup scheme over any extension field K of k. Similarly, if f is a p-polynomial
with coefficients in K, and µ ∈ K, we shall write Mn;f,µ. Finally, if f = tp

m

and
µ = 0, we shall just write Mn;m; this is the same as E−m,n.

8. π-points, π-supports and rank varieties

To generalise the theory of π-points from finite group schemes to finite super-
group schemes, instead of flat maps from k[t]/(tp), we consider maps of finite flat
(or equivalently, projective) dimension from the superalgebra

Ak :=
k[t, τ ]

(tp − τ2)
(τ odd, t even)

We aim for theorems about unipotent finite supergroup schemes, but we stay more
general for now in the interest of later developments, and also because we shall
need to discuss GL(a|b)(n) as part of the proof. So we shall include the elementary
supergroup schemes Mn;f,µ from Remark 7.6, but note that if G is unipotent then
the only ones that occur are the ones listed at the beginning of Section 7.

We view Ak as a cocommutative Hopf superalgebra over k with τ and t primitive:

∆(τ) = τ ⊗ 1 + 1⊗ τ and ∆(t) = t⊗ 1 + 1⊗ t .
This defines a homomorphism of algebras since

∆(τ2) = (τ ⊗ 1 + 1⊗ τ)2

= τ2 ⊗ 1 + τ ⊗ τ − τ ⊗ τ + 1⊗ τ2

= tp ⊗ 1 + 1⊗ tp

= ∆(tp).

The cohomology ring of the k-algebra Ak is easy to compute:

Ext∗,∗Ak (k, k) = k[η]⊗ Λ(u)

where |η| = (1, 1) and |u| = (1, 0). In particular, modulo its radical it is a domain.

8.1. Definition. A π-point α of a finite supergroup scheme G is given as follows.
We choose an extension field K of k, an elementary sub-supergroup scheme E of
GK , and a map of superalgebras, but not necessarily respecting the coproduct,

α : AK → KE ⊆ KGK
of finite flat dimension.

We put an equivalence relation on π-points, analogous to the one in Section 5.

8.2. Definition. We say that π-points α : AK → KGK and β : AL → LGL are
equivalent if, for all finite dimensional kG-modules M , the module α∗(MK) has
finite flat dimension if and only if β∗(ML) has finite flat dimension. We write Π(G)
for the set of equivalence classes of π-points of G.
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8.3. Definition. We say a π-point α is K-rational if it is defined over the field K,
so that it is a map α : AK → KGK .

If E is an elementary sub-supergroup scheme of GK , and α : AK → KE is a
π-point, then the radical of the kernel of restriction

H∗,∗(G, k) ⊆ H∗,∗(GK ,K)→ H∗,∗(E,K)→ Ext∗,∗AK (K,K)

is a prime ideal p(α), for the target, modulo its radical, is a domain.

8.4. Lemma. If α and β are equivalent π-points, then p(α) = p(β).

Proof. A proof of this result is given in Proposition 6.8 of [27] for elementary su-
pergroup schemes; it involves Carlson’s Lζ modules. The same argument applies
without any change to the general case. �

8.5. Definition. By the preceding lemma, one gets a well-defined map

ΦG : Π(G) −→ ProjH∗,∗(G, k)

where α is sent to p(α). By [27, Theorem 6.9], see also [27, §8], it is bijective when
G is an elementary supergroup scheme. See Section 9 for the general case.

8.6. Definition. Let G be a finite unipotent supergroup scheme over a field k of
characteristic p > 3. The π-support of a kG-module M , denoted π- suppG(M), is
the subset of Π(G) consisting of equivalences classes of π-points α : AK → KG such
that α∗(MK) has infinite flat dimension. This is well-defined by design.

If E is an elementary supergroup scheme, then by Proposition 7.4 the group
algebra kE is isomorphic to one of the following algebras:

I. kE ∼= k[s1, . . . , sn]/(sp1, . . . , s
p
n),

II. kE ∼= k[s1, . . . , sn, σ]/(sp1, . . . , s
p
n, σ

2),
III. kE ∼= k[s1, . . . , sn, σ]/(sp1, . . . , s

p
n−1, s

pm

n , spn − σ2) for some m > 2, n > 1.

In each case, a set of representatives for equivalence classes of π-points of E can be
prescribed by choosing an extension field K of k and a point 0 6= λ = (λ1, . . . , λn+1)
in An+1(K). The π-point

αλ : AK → KEK

is as follows: In case I, which is covered by Carlson’s theory of rank varieties, set

αλ(t) = λ1s1 + · · ·+ λnsn and αλ(τ) = 0 .

In the second case, set

αλ(t) = λ1s1 + · · ·+ λnsn and αλ(τ) = λn+1σ .

See [27, §8]. In the last case, the π-point is defined by

(8.7)
αλ(t) = λ1s1 + · · ·+ λn−1sn−1 + λn−1sn−1 + λns

pm−1

n + λ2
n+1sn,

αλ(τ) = λpn+1σ.

Note that
(αλ(t))p = λ2p

n+1s
p
n = λ2p

n+1σ
2 = (αλ(τ))2

in KEK , so this does indeed define a homomorphism of algebras.
The result below, which reproduces [27, Theorem 4.12], extends Theorem 3.4.

8.8. Theorem. Let E be an elementary supergroup scheme defined over a field k.
An E-module M is projective if and only if α∗λ(MK) has finite flat dimension for
every extension field K of k and every 0 6= λ ∈ An+1(K). �

Combining with Theorem 7.3 yields that π-points detect projectivity of modules.

8.9. Theorem. Let G be a unipotent finite supergroup scheme over a field k of
characteristic p > 3. A kG-module M is projective if and only if π- suppG(M) = ∅.
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Proof. If M is projective, K is an extension field of k, and E is a sub-supergroup
scheme of GK , then resGK ,E(MK) is projective. So if α : AK → E → GK is a
π-point then α∗(MK) has finite flat dimension. Thus π- suppG(M) is empty.

Conversely, if π- suppG(M) = ∅ and E is a sub-supergroup scheme of GK for
some extension field K, then resGK ,E(MK) has empty π-support. By Theorem 8.8,
resGK ,E(MK) is projective for every such K and E. It follows from Theorem 7.3
that M is a projective kG-module. �

A crucial property of π-support is the tensor product formula.

8.10. Theorem. Let G be a unipotent finite supergroup scheme over a field k of
characteristic p > 3, and let M and N be kG-modules. As subsets of Π(G) we have

π- suppG(M ⊗k N) = π- suppG(M) ∩ π- suppG(N).

Proof. For any elementary sub-supergroup scheme E of GK , the restriction functor

resGK ,E : ModGK → ModE

commutes with tensor product. Hence, it suffices to prove the formula for elemen-
tary supergroup schemes. This is done in [27, Theorem 7.6]. �

For finite-dimensional modules over elementary supergroups π-support has a
“rank variety” interpretation, analogous to Carlson’s original construction recalled
in Definition 3.5.

Let k[Y1, . . . , Yn+1] be the coordinate ring of An+1(k). Since the map

ΦE : P (E)→ ProjH∗,∗(E, k) ∼= Pn(k)

is a homeomorphism, for any p ∈ Proj k[Y1, . . . , Yn+1] there is a “generic” point
λ ∈ An+1(K) such that ΦE(aλ) = p where aλ is the π-point defined in (8.7).

8.11. Definition. Let k be a field of characteristic p > 3, and let E be a Witt
elementary supergroup scheme over k. If M is an E-module, we define VrE(M) to
be the set of homogeneous primes p ∈ Proj k[Y1, . . . , Yn+1] such that if λ ∈ An+1(K)
is generic for p then α∗λ(MK) has infinite flat dimension as a KAK-module.

It follows from [27] that ΦE takes the π-support of M bijectively to VrE(M).

Here is a free resolution of the trivial AK-module K:

· · · → ΠAK ⊕AK

(
τ t

−tp−1 −τ
)

−−−−−−−−→ AK ⊕ΠAK

(
τ t

−tp−1 −τ
)

−−−−−−−−→ ΠAK ⊕AK
(τ,t)−−−→ AK → 0

This is periodic from degree one onwards, with period one. So for a π-point
α : AK → KEK and a E-module M , it follows that α∗(MK) has finite projec-
tive dimension as a AK-module if and only if Ext1

AK (K,α∗(MK)) = 0. Taking
homomorphisms from the above resolution to α∗(MK), this is true if and only if

ΠMK ⊕MK

(
αλ(τ) αλ(t)

−αp−1
λ (t) −αλ(τ)

)
−−−−−−−−−−−−−−→MK ⊕ΠMK

(
αλ(τ) αλ(t)

−αp−1
λ (t) −αλ(τ)

)
−−−−−−−−−−−−−−→ ΠMK ⊕MK

is exact. In particular, if M is a finitely generated E-module, of dimension d, we
can think of the action of

(8.12)
(

αλ(τ) αλ(t)

−αp−1
λ (t) −αλ(τ)

)
on a direct sum of two copies of MK as a 2d × 2d matrix whose square is zero.
Exactness is therefore just the condition that this matrix has rank equal to d,
which is the largest possible for a square zero matrix of this size. This condition
fails if and only if every d×d minor of the matrix vanishes. In particular, this is a set
of homogeneous polynomial conditions, and therefore defines a closed homogeneous
subvariety of An+1(K). So the following is an analogue of Carlson’s rank variety.
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8.13. Definition. If k is algebraically closed, and M is a finitely generated E-
module of dimension d, we define the rank variety V rE(M) to be {0} together with
the set of λ ∈ An+1(k) such that α∗λ(M) has infinite flat dimension. Equivalently,
V rE(M) is the set of points λ where the 2d × 2d matrix representing the action
of (8.12) on M has rank strictly less than d.

If we extend the field from k to K, the polynomial equations defining the variety
V rEK (MK) are exactly the same as those defining V rE(M). It follows that a prime p

is in VrE(M) if and only if a generic point for p in a suitable An+1(K) is contained
in the zero set of these polynomials. This happens if and only if p is contained in
the radical ideal defining V rE(M).

8.14. Theorem. For M a finite dimensional kG-module, VrE(M) is the Zariski
closed subset of Proj k[Y1, . . . , Yn+1] defined by the rank variety V rE(M).

On the other hand, it can be shown that for infinitely generated E-modules,
every subset of Proj k[Y1, . . . , Yn+1] occurs as VrE(M) for suitably constructed M .

9. ΦG is a homeomorphism

In this section we show that the map ΦG : Π(G)→ ProjH∗,∗(G, k), introduced in
Definition 8.6, is bijective for a unipotent finite supergroup scheme G. Surjectivity
will follow from Theorem 7.3 whereas for injectivity we have to recall some recent
results of Drupieski and Kujawa. We shall use supergroup schemes Mn and Mn;f,µ

introduced in Remark 7.6.
Let Homsgs/k(Mn, G) be a functor from commutative k-superalgebras to sets

defined as

Homsgs/k(Mn, G)(R) = Homsgs/R(Mn,R, GR).

9.1. Definition. It is shown in [37, Theorem 3.3.6] that if G is any affine su-
pergroup scheme of finite type then Homsgs/k(Mn, G) has the structure of a con-
nected affine superscheme of finite type over k, which we denote Vn(G). Simi-
larly, Homsgs/k(Mn;f,µ, G) is an affine sub-superscheme of Vn(G), which we denote

Vn;f,µ(G). In the case f = tp
m

and µ = 0, we shall write Vn;m(G).

The K-points of Vn(G) are maps Mn,K → GK as above. In particular, we can
identify Vn(G) with Vn(G(n)).

In §6.2 of [37], the authors construct a map of affine superschemes

ΨG : Vn(G)→ SpecH∗,∗(G, k)

coming from a map of coordinate rings

ψG : H∗,∗(G, k)→ k[Vn(G)].

Let GL(a|b) be the general linear supergroup; see, for example, [35]. For a connected
finite supergroup scheme GL(a|b)(n) which is the Frobenius kernel of GL(a|b), we
have the following. There is a map constructed in §6 of [37]

φ̄ : k[Vn(GL(a|b))]ev = k[Vn(GL(a|b)(n))]ev → H∗,0(GL(a|b)(n))

with the property that the composite

k[Vn(GL(a|b))]ev
φ̄−→ H(GL(a|b)(n))

ψGL(a|b)(n)−−−−−−−→ k[Vn;f,µ(GL(a|b))]ev
is the Frobenius morphism Fn followed by the quotient map

k[Vn(GL(a|b))]ev → k[Vn;f,µ(GL(a|b))]ev.

This has the following consequence, as pointed out in Theorem 6.2.3 of [37].
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9.2. Theorem. The image of map

ψGL(a|b)(n)
: H∗,∗(GL(a|b)(n), k)→ k[Vn;f,µ(GL(a|b)(n))]

contains the pnth power of every element of k[Vn;f,µ(GL(a|b)(n))]. The map

ΨGL(a|b)(n)
: Vn(GL(a|b)(n))→ SpecH∗,∗(GL(a|b)(n), k)

is injective on K-points for all extension fields K of k. �

The following is the analogu of [8, Theorem 5.2]; see also [44, Proposition 3.8].

9.3. Theorem. Let G be connected finite supergroup scheme of height at most n.
Then for m large enough, the image of the map

ψG : H∗,∗(G, k)→ k[Vn;m(G)]

contains the pnth power of every element of k[Vn;m(G)]. Consequently, the map
ΨG : Vn;m(G)→ SpecH∗,∗(G, k) is injective.

Proof. Choose an embedding G→ GL(a|b)(r) for suitable a, b and r. Then we have
the following diagram

H∗,∗(GL(a|b)(n), k)
ψGL(a|b)(n)

//

��

k[Vn;m(GL(a|b)(n))]

��

H∗,∗(G, k)
ψG // k[Vn;m(G)]

The upper horizontal map surjects onto pnth powers by Theorem 9.2, and the right
hand vertical map is surjective since Vn;m(G) → Vn;m(GL(a|b)(n)) is a closed
embedding by [37, Theorem 3.3.6]. It follows that the lower horizontal map surjects
onto pnth powers. �

For the algebra A = k[t, τ ]/(tp − τ2), we have a map

(9.4) e : A→ kMn → kMn;m

given by e(τ) = σ, e(t) = sn. Let Mn → GK be a homomorphism of supergroup
schemes. Since G is unipotent, the group algebra KGK is finite dimensional and
local. Hence, any element in the augmentation ideal is nilpotent. Therefore, the
homomorphism factors through some Mn;m. We compose to get a π-point of G:

eG : AK → KMn → KMn;m → KGK .

Thus we have maps

PHomsgs/k(Mn;m, G) ↪→ PHomsgs/k(Mn, G)→ Π(G)
ΦG−−→ ProjH∗,∗(G, k),

where we denote by PX the projectivization of a conical affine scheme X. It
follows from [37, §6.2] that the composition PHomsgs(Mn;m, G)→ ProjH∗,∗(G, k)
is induced by the map ΨG.

9.5. Proposition. The distinguished π-point e : A→ kMn:m induces a bijection

e∗ : Proj k[Vn;m(Mn;m)]→ Π(Mn;m).

Proof. This follows from Lemma 3.3.2 in [37]. �

9.6. Remark. Proposition 9.5 is effectively saying that any equivalence class of π-
points of Mn;m has a unique (up to a scalar) representative of the form φ ◦ e where
φ is an endomorphism of the supergroup scheme Mn;m.

This observation almost immediately extends to any finite connected unipotent
supergroup scheme G.
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9.7. Corollary. For any finite connected unipotent supergroup scheme G of height
n, the π-point eG : A→ kG induces a surjection

e∗G : Proj k[Vn(G)]→ Π(G).

Proof. Let α : AK → KGK be a π-point. Then α factors through an elementary
supergroup i : E ↪→ GK . We consider the case E = E−m,n, m ≥ 1, the other three
cases are similar.

We factor α = ι ◦ α′ : AK → KE−m,n → KGK . By Proposition 9.5 there exists

an endomorphism φ : E−m,n → E−m,n such that α′ is equivalent to φ◦ e : AK → E−m,n
as a π-point of E−m,n. Hence, α is equivalent to i ◦ φ ◦ e = e∗G(i ◦ φ) as a π-point of
G. Hence e∗G is surjective. �

9.8. Corollary. For G a finite connected unipotent supergroup scheme, the map
ΦG : Π(G)→ ProjH∗,∗(G, k) is injective.

Proof. Let G be of height n and choose large enough m such that any map Mn → G
factors through Mn:m. Then the composition

ΨG : Proj k[Vn:m(G)]
e∗G // Π(G)

ΦG // ProjH∗,∗(G, k)

is bijective by Theorem 9.3 and the first map is surjective by Corollary 9.7. Hence,
ΦG is injective. �

To prove the main result, Theorem 9.14, of this section we wish to extend Corol-
lary 9.8 to all—not necessarily connected—unipotent finite supergroup schemes.
The strategy for the reduction from the general to the connected case closely fol-
lows [44]. We outline the key steps of the argument citing the proofs from [44]
where they apply verbatim.

Let E be an elementary abelian p-group, which we can view as a supergroup
scheme concentrated in even degree. Denote by σE ∈ H∗(E, k) the cohomology
class defined as

σE =
∏

06=ξ∈H1(E,Fp)

β(ξ),

where β denotes the Bockstein homomorphism. The key property of σE is that
as a function on ProjH∗(E, k) it vanishes on any subvariety ProjH∗(E′, k) ⊂
ProjH∗(E, k) for a proper subgroup E′ of E.

For G a finite supergroup scheme with a group of connected components π0(G) =
E an elementary abelian p-group, we have a natural projection φ : G→ E. We set

σG = φ∗(σE) ∈ H∗,0(G, k).

The proof of the following result relies on the construction of the Evens norm [42]
and goes exactly as in [44, 4.4].

9.9. Proposition. Let G = G0 o π be a finite supergroup scheme with group of
connected components π. Let E be an elementary abelian p-subgroup of π. Then we
have an injective map

Spec(H∗,∗(G0 o E, k)[σ−1
G0oE])/Nπ(E)→ SpecH∗,∗(G, k)

induced by the embedding of supergroups G0 o E ↪→ G. �

9.10. Proposition. [44, 4.5] Let G = G0 o π and let (G0)π be the sub-supergroup
scheme of invariants of the connected component G0 under the action of π. Then
the image of the map in cohomology induced by the natural embedding of group
schemes (G0)π × π ↪→ G0 o π = G,

(9.11) H∗,∗(G, k)→ H∗,∗((G0)π × π, k),

contains the p|π|th power of every element. �



STRATIFICATION AND DUALITY 17

9.12. Corollary. Let G = G0 o E be a finite supergroup scheme with group of
connected components E. The natural map

ProjH∗,∗((G0)π × E, k)→ ProjH∗,∗(G, k)

is an embedding of topological spaces. �

The final preparatory result that we need underlines the connection between
rank and support varieties. Let α : A → kG be a k-rational π-point and p(α) be
the corresponding homogeneous prime ideal in H(G, k). Since α is defined over k,
p(α) defines a closed point on ProjH(G, k) and we can localise H∗,∗(G,M) at p(α).

9.13. Lemma. Let G be a unipotent finite supergroup scheme defined over an alge-
braically closed field k, and M a finite-dimensional kG-module. If α is a k-rational
π-point, then α∗(M) has finite flat dimension if and only if H∗,∗(G,M)p(α) = 0.

Proof. This is similar to the second half of the proof of [44, Theorem 4.8]. �

9.14. Theorem. If G is a unipotent finite supergroup scheme then the map

ΦG : Π(G)→ ProjH∗,∗(G, k)

is bijective. If k is algebraically closed then for any finite-dimensional kG-module
M , the map ΦG takes equivalence classes of k-rational π-points in π- suppG(M)
bijectively onto the closed points of suppG(M).

Proof. Surjectivity follows from Theorem 7.3, together with [27, Theorem 6.9] that
shows that ΦG is bijective for G elementary.

We have thus to show that if ΦG(α) = ΦG(β) for π-points α, β, then α is equiv-
alent to β. We first consider the case when α : A → kG and β : A → kG are both
defined over the ground field k which we assume to be algebraically closed.

In this case the proof is essentially the same as the proof of Theorem 4.6 of [44]
and proceeds in a series of reductions. We sketch the main steps here and refer the
reader to [44] for details.

Since k is perfect, we can write G = G0oπ where G0 is connected and π is a finite
group (the group of connected components of G). By definition, α factors through
some elementary supergroup Eα = E0

α × π0(Eα) and similarly β factors through
Eβ = E0

β×π0(Eβ). By choosing representatives α, β within their equivalence classes

in such a way that π0(Eα) and π0(Eβ) are minimal, we can apply Proposition 9.9
to show that π0(Eβ) is conjugate to π0(Eα) by an element in Nπ(π0(Eα)). Since
conjugation preserves equivalence of π-points, we can now assume that both π-
points factor through G0 oπ0(Eα). Hence, we reduce to the case when G = G0 oE
with the group of connected components elementary abelian.

Since α, β factor through elementary sub-supergroup schemes of G = G0 o E,
they both must factor through (G0)E × E. Corollary 9.12 now implies that we can
assume that G = (G0)E × E which completes the second reduction step. Finally,
since the group algebra of (G0)E×E is isomorphic to a group algebra of a connected
unipotent finite supergroup scheme, the statement follows from Corollary 9.8.

The statement about ΦG identifying equivalences classes of π-points defined over
k and closed points of suppG(M) is easily seen to be equivalent to Lemma 9.13.

We finally prove injectivity of ΦG for any π-points.
Let α, β be π-points such that p(α) = p(β). Since extending scalars does

not affect p(α), we can assume that α, β : AK → KGK are defined over the
same field K which is algebraically closed. Suppose α and β are not equivalent.
Then there exists a finite dimensional kG-module M such that α∗(M) has infi-
nite flat dimension but β∗(M) does not, or vice versa. Let p(α,K) be the rad-
ical of the kernel of the map α∗ : H(GK ,K) → H(AK ,K) which is a point in
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ProjH(GK ,K) lying over p(α), and similarly for p(β,K). Since ΦGK takes π-
points defined over K to the K-closed points of suppGK (MK), we conclude that
p(α,K) ∈ suppGK (MK). Hence, AnnH(GK ,K)H(GK ,MK) ⊂ p(α,K) (see Re-
mark 6.3); and similarly, AnnH(GK ,K)H(GK ,MK) 6⊂ p(β,K). But for an ideal I
of H(G, k) we have I ⊂ p(α) = p(α,K) ∩ H(G, k) if and only if I ⊂ pα,K . We
conclude that p(α) 6= p(β) which is a contradiction. Hence, ΦG is injective. �

9.15. Remark. We can endow Π(G) with the structure of the topological space by
choosing π- suppG(M) to be a closed set exactly when M is a finite-dimensional
kG-modules. With this topology ΦG becomes a homeomorphism.

10. Stratification

Knowing that ΦG is bijective we can apply the techniques developed for finite
group schemes to identify π- supp and supp for all kG-modules M , thereby prov-
ing the analogue of the result of Avrunin and Scott 3.3 for unipotent supergroup
schemes. The arguments for the results stated in this section are similar to the ones
for finite group schemes which appear in [24, 45], so we give only a brief outline of
how they go, referring the reader to those papers for details.

As always k will be a field of characteristic p > 3 and G a unipotent finite
supergroup scheme over k. We first compute π-supports of the local cohomology
modules introduced in § 2. From now on we identity ProjH∗,∗(G, k) with Π(G),
using Theorem 9.14.

10.1. Proposition. Let G be a unipotent finite supergroup scheme. If V is a spe-
cialisation closed subset of ProjH∗,∗(G, k) then

(i) π- suppG(ΓV (k)) = V ,
(ii) π- suppG(LV (k)) is the complement of V , and

(iii) π- suppG(Γp(k)) = {p}.

Proof. The proof of this is the same as in Proposition 6.6 of [45]. For the last
statement, we choose specialisation closed subsets V and W as in Definition 2.1,
and use the tensor product formula given in Theorem 8.10. �

Given Theorems 7.3 and 8.10, and Proposition 10.1, one can argue as in the
proof of [24, Theorem 6.1] to get establish the result below.

10.2. Theorem. Let G be a unipotent finite supergroup scheme. For any kG-module
M one has suppG(M) = π- suppG(M). �

At this point cosupport can no longer be ignored: We write cosuppG(M) for
the cosupport of a kG-module M , defined as in 2.2, using the action of H∗,∗(G, k)
on StMod(kG). The π-cosupport of M consists of equivalence classes of π-points
α : AK → KGK such that α∗(Homk(K,M)) has infinite flat dimension; compare
with Definition 8.6. It has to be checked that this is well defined; see [27, Theo-
rem 4.12] for the case of elementary supergroup schemes. Then, using [26, Theo-
rem 11.3] one can verify that π-cosupport, like π-support, detects projectivity.

10.3. Theorem. Let G be a unipotent finite supergroup scheme. A kG-module M
is projective if and only if π- cosuppG(M) = ∅. �

Here is the analogue of the tensor-product formula 8.10 for π-support, and proved
in the same way: reduce to the super elementary case and apply [27, Theorem 7.6].

10.4. Theorem. Let G be a unipotent finite supergroup scheme over a field k of
characteristic p > 3, and let M and N be kG-modules. As subsets of Π(G) we have

cosuppG Homk(M,N) = π- suppG(M) ∩ π- cosuppG(N). �
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It is now a simple matter to establish that StMod(kG) is stratified by the action
of H∗,∗(G, k). As explained in Section 2 this yields the classification of localising
subcategories of StMod(kG), namely, Theorem 1.1.

10.5. Theorem. Let G be a unipotent finite supergroup scheme over k. For point p
in ProjH∗,∗(G, k), the localising subcategory Γp StMod(kG) of StMod(kG) is min-
imal. In particular, there is a bijection, defined by π- suppG(−), between localising
subcategories of StMod(kG) and subsets of ProjH∗,∗(G, k).

Proof. Since G is unipotent every localising subcategory of StMod(kG) is tensor
ideal. Thus minimality of Γp StMod(kG) is tantamount to the statement that for
any non-projective modules M,N in this subcategory, the kG-module Homk(M,N)
is not projective; see [18, Lemma 3.9].

We can verify this in two ways: Using Proposition 10.1, and Theorems 10.3 and
10.4, one can mimic the proof of [23, Theorem 6.1] to prove that

π- cosuppG(M) = cosuppG(M) for any kG-module M .

Fix kG-modules M and N with suppG(M) = {p} = suppG(N). Then p is also
in π- suppG(M), by Theorem 10.2. Moreover, p is in the cosupport of N because
suppG(N) and cosuppG(N) have the same maximal elements [20, Theorem 4.13],
and hence also in π- cosuppG(N). Then using Theorem 10.4 one gets

π- cosuppG Homk(M,N) = π- suppG(M) ∩ π- cosuppG(N) = {p}

Thus Homk(M,N) is not projective, as desired.
Here is another way, which circumvents the cosupport detection theorem: Let m

be a closed point of ProjH∗,∗(G, k). We argue as in [24, Proposition 6.3]: Choose
a finite field extension K of k and a π-point α : AK → KG representing m. For any
kG-module M there is an isomorphism of GK-modules

Homk(K, k)⊗kM ∼= Homk(K,M)

Since the module on the left is a direct sum of copies of MK , we deduce that m is
in suppG(M) if and only if it is in cosuppG(M); this is the crucial observation. For
then given non-projective M,N in Γm StMod(kG) it allows us to conclude that m
is also in cosuppG(N), and hence Theorem 10.4 yields

π- cosuppG(Homk(M,N)) = {m} .

Applying the observation once again, we conclude that m is in the π-support of
Homk(M,N), so it is not projective, by Theorem 8.9.

This settles the desired minimality at closed points in ProjH∗,∗(G, k). A tech-
nique of reduction to closed points from [24, §8], see also [25, §3], allows us to
treat general prime ideals. Note that the extra grading on H∗,∗(G, k) introduces no
new complications because its projective spectrum is the same as that of the singly
graded ring H(G, k) discussed in Definition 6.1.

This finishes the proof of the theorem. �

As noted above, one can prove Theorem 10.5 without first establishing that
π- cosuppG(M) = cosuppG(M) for a kG-module M . In fact one can use deduce
this equality, and hence that π-cosupport detects projectivity, from the theorem
above. This is what is done in [24, Part IV], where the reader can find further
applications of the theorem.
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11. Local duality

Let now G be any (not necessarily unipotent) finite supergroup scheme over a
field k of positive characteristic p > 3. The group algebra kG is Frobenius; thus
there is an isomorphism of kG-modules

Homk(kG, k) ∼= kG⊗k δG
where δG is a one-dimensional kG-module and a super analogue of the modular
function for finite group schemes; see [28, §4]. In particular, it has a parity, denoted
εG, that records its internal degree. The isomorphism above leads to a duality on
the stable category of G, namely for all M,N in stmod(kG), there is a natural
isomorphism

(11.1) Homk(HomkG(M,N), k) ∼= HomkG(N,Ω(M ⊗k δG))

The isomorphism above can be deduced from Auslander’s defect formula; see [25,
§4] where this is done for finite group schemes. When G is a finite group, the
isomorphism above is nothing but classical Tate duality.

Building on the Tate duality theorem, one can mimic the arguments in [25], or
better yet [22] that treats general finite dimensional Gorenstein algebras, to get:

11.2. Theorem. Set H(G) := H∗,∗(G, k) and fix p in ProjH(G). The kG-module
Γp(δG) is a dualising object in Γp StMod(kG), in that, for any kG-module M there
is a natural isomorphism

Êxti,∗kG(M,Γp(δG)) ∼= HomH(G)(H
∗−d−i,∗+εG(G,M), I(p))

where d = dimH(G)/p and I(p) is the injective hull of the residue field at p. �

From this one gets, for example, a local cohomology spectral sequence:

Hs,t,j
p H∗,∗(G,M)p ⇒ H−s−t−d,j+εG(G,M ⊗ δG).

discovered by Greenlees in the context of finite groups [47, 48].
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