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Abstract

Autonomous vehicles use 3D sensors for perception. Cooperative
perception enables vehicles to share sensor readings with each
other to improve safety. Prior work in cooperative perception scales
poorly even with infrastructure support. AUTOCAST! enables scal-
able infrastructure-less cooperative perception using direct vehicle-
to-vehicle communication. It carefully determines which objects
to share based on positional relationships between traffic partici-
pants, and the time evolution of their trajectories. It coordinates
vehicles and optimally schedules transmissions in a distributed fash-
ion. Extensive evaluation results under different scenarios show that,
unlike competing approaches, AUTOCAST can avoid crashes and
near-misses which occur frequently without cooperative perception,
its performance scales gracefully in dense traffic scenarios provid-
ing 2-4x visibility into safety critical objects compared to existing
cooperative perception schemes, its transmission schedules can be
completed on the real radio testbed, and its scheduling algorithm is
near-optimal with negligible computation overhead.
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FIGURE 1: AUTOCAST enables multi-vehicle cooperative perception in a busy in-
tersection. The top graph shows that AUTOCAST orchestrates vehicles to selectively
share useful information (light blue arrows) about occluded objects, which the receiver
vehicles cannot see, but may affect the receivers trajectories (yellow dashed arrow). The
bottom graph shows the LIDAR perspectives of vehicle A, C, H, J: the upper row shows
the invisible area (orange arrows) before sharing; the lower row shows the previous
invisible objects (red points, blue arrows) visible after sharing.

1 Introduction

Autonomous driving technology has made great strides in transform-
ing transportation. To be socially acceptable and widely deployed, it
needs to ensure reliability over a broad set of unusual traffic situa-
tions and corner cases [49], reaching or surpassing human driving
safety levels (100M miles between fatalities [61]).

The reliability of today’s autonomous driving systems is critically
dependent on the accuracy of its perception component. However,
3-D sensors like LiDAR and stereo cameras suffer from line of
sight limitations: other vehicles and traffic participants (pedestrians,
bicyclists) can block a vehicle’s view. For example, in a popular
vehicular dataset (nuScenes [26]), 53.14% of over 204K labeled
pedestrians and 59.43% of 483K annotated vehicles are occluded.
The blind spots caused by occlusion can compromise the reliability
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of object detection and downstream path planning in many driving
situations, including left turns, lane changes, and overtaking.

Cooperative perception. To address this limitation, recent work [27,
41, 64, 78, 82] has proposed a novel new direction, cooperative per-
ception. In this approach, vehicles cooperatively exchange sensor
readings from 3D sensors to extend their visual horizon (Figure 1).
The benefits of cooperative perception for autonomous driving sys-
tems are clear: a vehicle can make decisions much earlier than it
otherwise might have been able to. Cooperative perception is a
natural next step beyond earlier prior work that considered safety
enhancements by having vehicles actively broadcast their location
continuously over short range DSRC radios [47]; these approaches
cannot capture passive participants (pedestrians and bicyclists), but
cooperative perception can.

Connected vehicles: enabling cooperative perception. Prior work
leverages recent advances in vehicular communication to enable
cooperative perception. AVR [65] enables vehicles to directly ex-
change stereo camera point clouds via vehicle-to-vehicle (V2V) com-
munication. EMP [82] exploits infrastructure support [22] to share
non-overlapping segments of LiDAR point clouds via vehicle-to-
infrastructure (V2I) communication, using an edge server as a relay.
Using static infrastructure, V2I can achieve higher bandwidth com-
pared to direct mobile V2V communication. For example, V2I using
LTE [23] can achieve nominal bandwidths of up to 300 Mbps [2-4],
whereas current commercial V2V products using DSRC? [13] can
only achieve around 6 Mbps. LTE and Wi-Fi, which many modern
vehicles have, increasingly support direct modes and wider chan-
nel bandwidths. However, WiFi-direct via 802.11n/ac or 60 GHz
(ad) cannot adapt to the highly variable wireless channel between
fast moving vehicles. Existing LTE-direct [39] chips for vehicular
applications, tend to achieve around 10 Mbps3.

Sharing point clouds is desirable but challenging. Like EMP and
AVR, we advocate for sharing raw points for cooperative perception,
as opposed to processed information, such as bounding boxes or vi-
sual features. Sharing bounding boxes limits cooperative perception
by the accuracy of the object detector deployed on the transmitter
vehicle. Among popular object detectors (VoxelNet [83], PointPil-
lars [51], CenterPoint [79]), the mean average precision (mAP) can
vary by 8%. The other alternative is to use a neural network to ex-
tract and share features. This approach would constrain innovation:
the receiver might wish to use the shared feature for many different
purposes (object detection, drivable space segmentation, trajectory
planning), and the transmitted features might limit the efficacy of
these tasks. Even for object detection, prior work has shown that
early fusion of shared point clouds can result in higher accuracy
compared to late fusion of processed features [78].

Nevertheless, sharing raw points is challenging. While AVR and
EMP have demonstrated feasibility, their scale is limited by the
network bottleneck: AVR is limited to two vehicles using V2V
communication; EMP scales up to six vehicles via V2I, but needs
infrastructure support.

Our focus: Scalable Infrastructure-less Cooperative Perception.
In this paper, we explore the problem of scalable infrastructure-
less cooperative perception, which permits vehicles to share raw

2Dedicated short range communication, a V2V standard.
35GAA [1] extensions for vehicles potentially reach higher rates.
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sensor data in dense traffic scenarios without the dependency on
edge servers. To motivate the problem, consider a busy intersection
(Figure 1) with complex traffic dynamics where no infrastructure
support is available: people and bicyclists crossing the street, traffic
waiting to make a turn, together with traffic flowing in the direction
of the green light. In such a scenario, there may be tens to hundreds
of traffic participants; if each vehicle could still share information
about participants that it sees, other vehicles would have more com-
plete information to plan better trajectories. Without infrastructure
support, our approach faces two challenges: fitting the shared data
into the narrower V2V bandwidth, and coordinating and scheduling
transmissions to avoid packet collision.

Sharing point clouds via V2V channel is feasible. The closest prior
work, EMP [82], demonstrated that it is possible to transfer, through
V2I channel, upto six non-overlapping segments of point clouds
(each of size 30-38 KB). For the purpose of autonomous driving
and collision avoidance, instead of an entire segment, a vehicle can
transmit point clouds of relevant objects in the scene. By emulating a
64-beam Velodyne LiDAR (which generates 2.2 M points/sec [12])
in photorealistic simulations of different driving scenarios (see §5),
we have found that point clouds for a detected object (e.g., a truck
close by) have up to 200 points (38.4 kbits*, an order of magni-
tude smaller than EMP segments). Ideally, to enable a vehicle to
track participants (especially fast-moving vehicles) precisely, each
vehicle must receive (and make trajectory planning decisions on)
point clouds at sub-second timescales. The finest decision interval,
denoted by T; is 100 ms, which is the interval at which the Velo-
dyne LiDAR generates a frame [12]. At 10 Hz (as clocked in EMP,
when T; = 100ms), a nominal V2V channel capacity of 10 Mbps
can fit from 25 dense vehicle point clouds to hundreds of sparser
(faraway) or smaller objects (pedestrians and cyclists). Compression
can further increase that number.

Distributed coordination and scheduling. Enabling cooperative
perception with infrastructure support can require a huge investment
with limited coverage. For example, EMP [82] supports coopera-
tive perception across only six vehicles every 100 m. Deploying
such services in urban scenarios, either to regional road-side units
(RSUs) or to aggregated edge clusters (e.g., cellular towers), can
be very expensive in terms of compute and cost. Moreover, using
edge servers as relays unnecessarily duplicates transmissions, which
wastes already scarce wireless bandwidth, and increases end-to-end
(V2V) delivery latency. In areas not covered by such edge services,
there is no scalable way to enable cooperative perception. For these
reasons, we focus on an infrastructure-less approach, where vehicles
coordinate directly amongst themselves in a distributed fashion to
determine which vehicle shares which object’s point cloud.

Contributions. In this paper, we discuss the design and implementa-
tion of AUTOCAST, a system that enables scalable infrastructure-less
cooperative perception. Beyond extracting object points, AUTOCAST
uses several techniques to maximize the utility of information shared
over the wireless channel. It determines visibility and relevance
when deciding whether to transmit. For example, if car A wants
to transmit roadway objects to car B, some of those objects may
already be visible to B; A need only transmit objects occluded at B.

4LiDAR beams are radial, points are denser for nearby objects than for faraway ones.
Objects faraway have smaller point cloud as well.
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FIGURE 2: AUTOCAST system architecture

Moreover, B may not need all occluded objects, since some of them
may not be relevant to its driving decision. AUTOCAST uses these
criteria to determine which objects should be transmitted when.

To this end, AUTOCAST makes three contributions.

o A suite of fast spatial reasoning algorithms that analyzes point
clouds to determine visibility and relevance.

e An efficient scheduling algorithm and a near-optimal heuristic
that prioritizes safety critical transmissions.

o A planner that fuses shared points, estimates object motion, and
finds collision free trajectories in a receding horizon.

We implement AUTOCAST in Carla [31], a photo-realistic au-
tonomous driving simulator. Our evaluation results (§5) show that
AUTOCAST can reduce all 100% hazardous situations (crashes,
deadlocks) caused by occlusion in single-vehicle based perception,
significantly reduce near-miss cases by providing early situational
awareness and increasing reaction time. AUTOCAST’s scheduler
prioritizes most relevant information, scales gracefully up to 40
vehicles within sharing range, increasing visibility into safety
critical objects by 2-4x of the time, 2-8x in visible size, and avoiding
all collisions that occur using alternative baselines. We have also
implemented a DSRC-radio based prototype for coordinated
transmissions. Our experiments validate the DSRC channel capacity
to meet this transmission schedule on time. Finally, we have
optimized the end-to-end pipeline to operate at >10 fps.

2 AUTOCAST Architecture

AUTOCAST’s end-to-end architecture (Figure 2) contains a control-
plane (§3) that exchanges beacons and makes transmission schedul-
ing decisions, and a data-plane (§4) that processes, transmits, and
uses point clouds to make trajectory planning decisions. This de-
coupling of data and control ensures that bandwidth intensive point
cloud data is directly transmitted between vehicles with minimum
delay for real time decisions, while at the same time the control
plane is able to make near optimal scheduling decisions.

The control plane. Two subcomponents constitute the control plane.
The metadata exchange component (§3.1) implements a protocol to
exchange metadata (needed for scheduling, obtained from the data
plane) among vehicles. The scheduler (§3.2) uses this information
to compute a transmission schedule, executed by the data plane.
The data plane. Two subcomponents constitute the data plane. Spa-
tial reasoning (§4.1) extracts moving objects from LiDAR sensors.
For each object, it determines which vehicles cannot see this object
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FIGURE 3: Scheduler domain (idealized): green vehicles are selected participants; red
vehicles are excluded. A guarding margin is applied to account for vehicle movement
during the decision interval.

and to which subset of them the object would be relevant; those are
the vehicles to whom this object should potentially be sent. Each
vehicle runs a trajectory planning component (§4.2), which fuses
the received objects to adapts its current trajectory.

3 Control Plane

We now describe metadata exchange and scheduling components
(Figure 2). Both the control plane and the data plane assume that each
vehicle is able to accurately position itself using a 3-D map [19] and
Simultaneous Localization and Mapping (SLAM [80, 81]), so that
each vehicle knows its own position precisely at all times. This kind
of positioning technology is mature and has been widely deployed.

3.1 Metadata Exchange

Deployment setting. Vehicles exchange metadata between them-
selves. Because the specifics of the metadata exchange can depend
upon the relationship between radio range and road geometry, we
describe metadata exchange for a concrete deployment setting, an
intersection. Intersections are also where cooperative perception can
help most [42], because they are among the most hazardous parts of
the road network.

Control messages. AUTOCAST participants periodically broadcast
control messages every Ty, the timescale at which the scheduler
makes decisions (§1). These control messages are highly likely to
reach each vehicle that is close to or at the intersection (Figure 3).
This is because lane widths are on the order of 3-4 m [18, 77], so
intersections of major streets with 3 lanes in each direction can be
on the order of 30 mx30 m. On the other hand, the nominal radio
range of LTE-direct, denoted as R, is over 170 m (urban non-line-of-
sight) [5, 67], so even vehicles far away from the intersection can
hear these messages. These control messages, or beacons, inform
vehicles of their neighbors location, so that the scheduler can identify
all those vehicles within a circle of radius’ (R/2); these are the
vehicles that can plausibly hear each other and they constitute the
scheduler’s domain (Figure 3)°. We discuss this, together with how
vehicles multiplex their transmissions to execute the schedule (§3.2).

5 AUTOCAST associates a guard band to allow for vehicle movement. This guard band
can be calculated from the posted speed limits: at 40 mph, a vehicle can move ~ 1.8 m
in one T (100 ms) interval.

®In practice, the radio range may be irregular. A smaller domain radius (e.g., 100 m,
much less than maximum radio range R) can be chosen to ensure all participants can
plausibly hear each other.
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Information exchanged in control messages. In AUTOCAST, par-
ticipants exchange two types of information in these messages. Stan-
dardization efforts have defined V2V messaging formats that ex-
change similar cooperative awareness messages [35]; we have left it
to future work to design a standard-compliant message exchange.

Trajectory. Each vehicle transmits its current trajectory to other
participants; the vehicle’s planner (§4.2) generates and updates the
trajectory every T;. A trajectory (denoted by t; for vehicle i) con-
sists of a series of waypoints and their associated timestamps. Each
waypoint indicates the position a vehicle expects to be at the corre-
sponding timestamp. To limit control overhead, AUTOCAST down-
samples trajectories into connected line segments for sharing. The
first waypoint in the trajectory is the current vehicle pose.

The object map. Using its 3D sensor, each vehicle can extract point
clouds of roadway objects; these are stationary or moving objects (ve-
hicles, pedestrians, cyclists) on the road surface. Denote by o; . the
k-th object in vehicle i’s view. Now, vehicle i receives broadcasted
trajectories from other vehicles. Using spatial reasoning techniques
described in §4.1, vehicle i computes the following two quantities
for each o; k. in its view: (1) v(; gy j is a boolean value that indicates
whether o; ¢ is visible to vehicle j. (2) r(; ) ; is a value that indicates
whether o; i is relevant to j’s current trajectory t;. We make the
notion of relevance precise in §4.1. Vehicle i then broadcasts an
object map that contains: (a) an ID for each object o; ., (b) the size
of 0; & in bytes, (¢) v(; k), j» and (d) r(; ) j- In §3.2, we explain how
the scheduler uses these values to compute a transmission schedule.
Loss compensation. Control messages can be lost; In case of a
loss, we reuse the trajectories from the most recent control message
(evicting waypoints up to the current timestamp). AUTOCAST also
extrapolates objects’ current locations based on latest locations and
timestamps. With extrapolated location, even when there is a packet
loss, AUTOCAST recalculates the visibility (v x) ;) and relevance
(7(i,k),j) metrics to update the object map.

Multiple scheduler domains. Figure 3 shows a scheduler domain
at an intersection. Each intersection may have a distinct scheduler
domain, and scheduler domains may exist along road segments as
well. To accommodate these, scheduler domains can be predefined
in high-definition maps. Using SLAM, vehicles can easily figure out
which domain they belong to. To avoid inter-domain interference,
neighboring domains can use different channels. Because the road
network naturally isolates the map into blocks, we only need to
assign scheduler domains with alternating channels along the length
of the road, while each domain covers the full width of the road.
Autonomous vehicles usually have multiple V2X antennas [10].
When they are at the border of two clusters, they can participate
in both clusters at the same time and handover from one to the
other following their moving direction. There is a large body of
literature [20, 21, 34, 62, 73] enabling distributed clustering in the
context of mobile ad hoc networks. In this work, we focus on the
novel aspect of the system design, and leave the exploration of
dynamic clustering to future work.

3.2 AUTOCAST Scheduler

In this section, we discuss AUTOCAST’s scheduler. Depending on
the network bandwidth and the number and size of objects o;
relevant to other vehicles, it may not be feasible to transmit all
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relevant objects before the next decision interval T;. The scheduler
decides which objects to transmit at every decision interval and in
what order. For example, if an object is likely to cause an imminent
collision, it must have a higher priority in the transmission schedule.
The underlying PHY layer may be able to transmit multiple PHY
frames’ during one decision interval; the scheduler must decide
which objects to transmit in which frames. Each vehicle computes
the schedule using the common list of control messages in its domain
(Figure 3); each vehicle then broadcasts the specific object in the
assigned PHY frame.

Preliminaries: notation and PHY layer. Let C = {1, ...,C} be the
set of vehicles and K = {1,..,K} be the set of objects across all
vehicles. Let x;’k = {0, 1} be a decision variable indicating whether
vehicle i transmits its object k at frame n (of N frames in total),
S™ be the size of frame n, and T" be the duration of frame n, thus

f
SaTh < T4, and T" = S]’i/B where B is the bandwidth.

T™ and B depend on the PHY technology. There are two technolo-
gies available today, DSRC and LTE-V (a variant of LTE-direct). B
varies between 5-10 Mbps and T" varies between 10 and 100 ms in
current standards. DSRC is based on TDMA while LTE-V offers
both an OFDM option and a TDMA option. In case of OFDM, a
frame multiplexes transmissions from multiple vehicles similarly to
uplink frames in cellular networks. In case of TDMA, a frame con-
sists of concatenated (in time) transmissions from multiple vehicles.

We assume the PHY layer uses QPSK as per common practice

in vehicle communication systems due to the challenging channel
[14, 15]. Thus, the system can deliver L = B X log(1 + ygpsk) bits
per unit time, where yppsk is the SINR value required by QPSK.
We model the PHY layer by the probability of successful delivery of
an object between two vehicles. We define a C X C channel matrix
comprising of these probabilities as follows, P = [p; j,i,j =1...C],
where p; j € [0, 1] indicates the probability of delivery from vehicle
ito j, Vi, j € C, (pi; are assumed independent).
Problem formulation: Markov Decision Process. Because a deci-
sion interval may have multiple frames, we formulate the scheduling
problem as a Markov Decision Process (MDP) that optimizes the
schedule across all frames.

State. Let h?i K).j indicate whether vehicle j has received object k

from vehicle i by frame n, and q;’ = {h?i k)j’Vi’ k}. We define the
state of the system at frame n by S" = {q, q7, ... q}:}, S" € S, with
S denoting the state space. Since the state changes for each frame, n

represents the discrete time steps over which the MDP operates.
Action. Let s;y denote the size of object o;f, A" = {xI', =
{0,1}, Vi, k| Xviec Zvkex Sik Xxlffk < SJ’Z} denote the action
taken at time step n, where A" € A, the action space.

Reward function. To maximize the total rewards the system needs
to carefully decide the action (A™) based on the current state (S™).
When the action is decided, the reward follows:

— 1
R'= 30 >0 > xie xR = hi g )X W, (D
VjeCVieC VkeK

7The term “frame” used in this section refer to the time steps in a decision interval Ty,
which is different from the lidar frame in §4
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where y(”i K. is the reward when object k is transmitted from vehicle
i to vehicle j, which we define by

Yk = (1= 0k, X Tik),j -
The rationale for this definition is that there is a reward if vehicle j
receives object k by vehicle i if object k is invisible and relevant to
vehicle j, see §3.1.
Transition probability. We compute the transmission probability
from one state to another based on action A" as follows:

Pn5n+1 [Tvixn _I(HVJefvl P>y eqn (1= Pu)) @)

where V1 = {]l(h?ﬁcln =1, h(”lk)J 0,x7,

vehicles j which successfully received the scheduled object during
time step n + 1, whereas V° = {j € C|(h8+kl)] =0, h(l k). =0, ka =
1} corresponds to vehicles which lost the scheduled object during

that frame.

= 1)} corresponds to all

Markov Decision Process. We define a finite-horizon MDP by the
tuple M(S, A, P?: s"+1’Rn)' To solve the MDP, we first define a
policy 7z to be a mapping from states to actions and seek to find the
optimal policy which maximizes the (expected, discounted) sum of
the rewards occurring from the selected actions over a (potentially
infinite) time horizon.

To find the optimal policy a recursive approach is used, which
updates (i) policy decisions 7(S™) at each frame n and (ii) the value
function U™ (S™) which keeps track of the sum of the rewards if
policy 7 is followed from state S™. Specifically, the corresponding
recursive formula is given by:

UTNS=T g Pl (R4

s™1). 3)

The rationale behind this equation is that an optimal policy can
be constructed by going backwards in time: we first construct an
optimal policy for the tail subproblem corresponding to the last
step at time step n = N, then apply the optimal policy to the tail
subproblem corresponding to the last two steps at time stepn = N—1,
and continue in this manner until an optimal policy for the entire
problem is formed.

One may use dynamic programming (DP) to find the optimal pol-
icy 7*(S™) € A which maximizes the value function in Equation 3
using the Bellman equation [24]. However, the time complexity
grows exponentially [63] with the number of states. This motivates
us to seek more scalable approaches.

Scheduling algorithms. We start by defining the weight of an object
at frame n, denoted by H; ” , to be the total rewards gained by the
system if the object is successfully delivered to all interested vehicles:

(l k)_ZVJEC i#j y(, k)]X(l h(, k).j (4’)

Note that the term (1 h(” ki ) indicates the object has not been
received during previous frames.

Consider a bipartite graph (Figure 4) which has destination vehi-
cles on the left and objects on vehicles on the right. The weight of
each edge between a vehicle and an object corresponds to the reward
if this vehicle receives that object. Then, H; ” can be computed by

adding the weights of the edges connecting to the (i, k) node.
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FIGURE 4: An illustration of Hi"k.

Greedy max-weight scheduler. Motivated by this representation, we
may use greedy solutions to the maximum weight matching problem
of a bipartite graph [76] to quickly find a good solution. Specifically,
at every frame/time step, the scheduler may select the transmission
pairs based on decreasing order of the H" value, leading to the
highest possible total weight/reward among the available transmis-
sions for each frame, until there is nothing to deliver or the decision
interval is over (i.e., n = N).

However, the above weight does not take the size of an object,
$j k» into account. Therefore, the scheduler may schedule an object
that has a large weight but occupies a large portion of the frame, as
opposed to scheduling a large number of smaller objects whose sum
of weights might be larger than the weight of the single large object.
One way to address this is to divide the weight of an object by its
size, and use the modified weight, Hl."k /si k instead, corresponding
to a normalized reward y("i’ K).j /Si ks over the size of the object.

Algorithm 1 Greedy Max-Weight Scheduler
. n X n
Input: Yk’ h(i,k),j’ si k» and Sf
Output: 7(S") = {x;’k}
1. forne{1,..,N}do
2. Calculate H lf’k from Eq. (4).

3. while Y v;cc Yviex Sik X xlffk < Sj’} do

4. Select a TX pair (i, k) with the largest H i"’k [Sik-
5. Set x ik =1.

6. end whlle

7. Update h( K based on the vehicle environment.

8. end for

We summarize in pseudo code the proposed greedy Max-Weight
algorithm (Algorithm 1). The time complexity of the scheduler can
be easily shown to equal O(NCK log(CK)). CPU experiments show
that the Greedy Max-Weight scheduler runs fast and achieves near
optimal performance for the scenarios that we have studied (§5).
FPTAS-based scheduler. We also propose to use a well known fully-
polynomial time approximation scheme (FPTAS) [32] to solve the
selection problem at every time step. We first introduce a dynamic
programming framework which solves the following equation:

DP(C x K, S?) =max{DP(C x K\ (i, k), 5?),
HY +DP(C X K\ (i, k), S7 = 1)} o)
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We then formulate the scheduling problem at each time step as a
binary Knapsack problem, and solve it using FPTAS. While more
efficient than dynamic programming, FPTAS still has high computa-
tional complexity (see §5).

Starvation compensation. When network capacity is insufficient
to transmit all objects, some objects may “starve” (not be transmit-
ted). To avoid this, AUTOCAST discards stale updates (point clouds),
increases such objects’ weight to maximize the likelihood that new
updates (if still relevant with positive rewards) are transmitted in a
future decision interval. Let m represent the number of decision in-
tervals over which an object has not been transmitted even though it
is still occluded and relevant. We replace in Algorithm 1 the value of
H l.’,lk/ Si ko With % x m/a?2,, where 6% denotes the variance and
is used to make sure the contributions of the size and the starvation
effects are normalized.

Other details. When a schedule is decided, the cooperative execu-
tion of that schedule among vehicles has differences depending on
which V2V technology is used. DSRC uses TDMA among vehicles.
LTE-V may use TDMA (mode 4) or SC-FDMA (mode 3), an OFDM
variant, where frequency-time slots can be assigned to vehicles based
on the schedule [15]. AUTOCAST can employ DSRC or any LTE-V
mode; in §5, we use real DSRC radios to demonstrate the scheduled
transmissions, and have left LTE-V integration to future work.

4 Data Plane

Autonomous vehicles use 3D sensors for perception, and a planning
algorithm to determine the vehicle’s trajectory. AUTOCAST proposes
to extend today’s autonomous driving with cooperative perception.
Its data plane achieves cooperative perception using spatial reason-
ing algorithms that generate object maps (§3.1), and a planner that
relies on cooperative perception to improve driving safety.

4.1 Spatial Reasoning

This component processes each frame of the LiDAR output and
generates the object maps. Specifically, for each object k in vehicle
i’s view, spatial reasoning determines the visibility vy ; of that
object with respect to another vehicle j, and the relevance r(; ) ;
of that object to that vehicle (§3.1). To do this, it must (a) detect
roadway objects within its view, (b) assess their geometric and
temporal relationships.

Extracting roadway objects. Several deep learning networks exist
[51, 74, 79, 83] that can detect objects in LiDAR frames. How-
ever, these can be slow, require significant compute resources, are
sometimes inaccurate, and generate information (e.g., identify object
classes and bounding boxes) that AUTOCAST does not need. For
AUTOCAST, we simply need point clouds of stationary or moving
objects on the road.

To extract these roadway objects, we voxelize [51, 55] the point
cloud by imposing a fine 2-D occupancy grid from the birds-eye-
view perspective of the LiDAR point cloud (Figure 5). More pre-
cisely, each 2-D grid element is a rectangular tube extending verti-
cally on the z-axis. Each point in the LiIDAR frame falls into exactly
one grid element. Each grid element may contain: (a) no points, (b)
only points on the ground, or (c) points above ground. AUTOCAST
can determine if a point lies on the ground or above the ground
because it knows the coordinates of the point, and the height of the
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FIGURE 5: Empty occupancy grids indicate occluded area.

LiDAR above the ground. Furthermore, AUTOCAST assumes that
each 2-D grid is labeled as either on the roadway surface or not.
This information can be obtained by running a segmentation algo-
rithm for drivable space detection on the 3-D map [59, 75]. Thus, all
points in a 2-D grid element of type (c) which are above the ground
constitute points belonging to a roadway object. The object itself
consists of all contiguous type (c) grid elements (as we discuss later
in §5, we use sub-meter grid dimensions so it is unlikely that points
belonging to two different vehicles would fall into the same grid).
Objects detected by different vehicles with the same grids (after
perspective transformation at the receiver (§4.2)) are identified as
the same unique object.

Visibility determination. With extracted objects, to determine
U(i,k),j» vehicle i simply traces a ray from vehicle j’s current position
around every object o; ;. in its own view (o; x+ includes the vehicle i
itself, if visible). If o; ;. falls into the shadow of o; ;-, then the latter
object occludes the former and o(; ), ; is false. If no such o; s exists,
and if Oik is within the LiDAR range of j, then Ui k), is true.
Relevance determination. The intuition behind relevance determi-
nation is that some objects may not be relevant to other vehicles,
even if invisible to those vehicles. For instance, if a vehicle is turn-
ing right at an intersection, it is unlikely to need information about
vehicles driving straight on the opposite lane. In AUTOCAST’s imple-
mentation, an object is relevant to another vehicle if the trajectories
of those two could potentially collide at some point in the future.
More precisely, r(;),; is a value that assesses whether vehicle
J’s trajectory can collide with o; ;.. Vehicle i gets j’s trajectory from
control messages. It obtains o; ;. ’s trajectory by estimating this ob-
jects” heading and velocity continuously over successive frames. By
extrapolating these trajectories, AUTOCAST can determine if the two
trajectories collide at some point in time. Given this, one can define
I(i,k),;j in two ways: (a) as a boolean value that is true when j can
collide with o; ., or (b) as the reciprocal of the time to collision (a
value between 0 and 1, assuming time is in milliseconds). The intu-
ition for the latter choice is clear: objects that j is likely to encounter
sooner are more relevant®.
Loss compensation. Similar to handling control message losses
(§3.1), data packet losses are also compensated by extrapolation.
Given a loss of a particular object, AUTOCAST calculates the center
of the object point cloud using the velocity estimated from the
location and timestamp of previous receptions. Then, it translates
the last received point cloud to the newly estimated location.

SAta large scale, boolean and reciprocal definitions perform similarly (Equation 1). For
simplicity, we used the boolean definition in our evaluation.
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4.2 Trajectory Planning

Autonomous vehicles use sensor inputs to make driving decisions.
These driving decisions occur at three different scales: route planning
occurs at the granularity of a trip, path and trajectory planning
occurs at the granularity of a road segment (a few tens to hundreds
of meters), and low-level control ensures that the vehicle follows
the planned trajectory by effecting steering and speed control. In
AUTOCAST, vehicles must make these decisions, by incorporating
received point-clouds into their own LiDAR output.

In this paper, in order to quantify the end benefits of cooperative
perception, we develop a path and trajectory planning algorithm that
incorporates objects received from other vehicles. The large, existing
literature on this topic (see, for example, [43, 45, 52]) does not take
cooperative perception into account. Recent research has recognized
and incorporated partial visibility into trajectory planning [33, 68],
but relies on training data and predictions of the geometry of the
invisible area. In contrast, we develop a planning algorithm using
concrete cooperative perception for trajectory planning.

Perspective transformation. Before it can plan a trajectory, AU-
TOCAST must re-position the received point clouds into its own
LiDAR output. It uses the 3-D map for this. The sending vehicle
positions the point cloud in its own coordinate frame of reference. To
re-position it to the receiver, let Ts be the transformation matrix from
the sender’s coordinate frame of reference to that of the 3-D map and
T, be the transformation matrix for the receiver. To transform a point
Vs in the sender’s view to a point V; in the receiver’s, AUTOCAST
uses: V, = T, « T, + V;. Having done this, it updates each occupancy
grid (§4.1) with the received point cloud, then uses the occupancy
grid to determine a path and then a trajectory.

Path Planning. This step determines a viable and safe path through
drivable space that avoids all objects. It uses the occupancy grid
defined above (§4.1) after augmenting it with received objects. To
understand path viability, recall that each grid element can either
have one or more points belonging to an object, or be unoccupied.
Moreover, using the 3-D map, we can annotate whether a grid ele-
ment belongs to drivable space or not, and also whether a vehicle
can traverse the grid element in both directions or uni-directionally.
The input to path planning is a source grid element and a target
grid element. The output of path planning is a path in the 2-d grid,
where the width of the path is the width of the car, and every grid
element that intersects with the path must (a) be unoccupied and (b)
be drivable in the direction from the source to the target. AUTOCAST
uses Ax heuristic search [44] to determine a valid path. We constrain
the search so that the resulting path is smooth: i.e., it does not have
sharp turns that could not be safely executed at the current speed.

Trajectory Planning and Collision Avoidance. On the resulting
path, AUTOCAST picks equally spaced waypoints; a trajectory is a
collection of waypoints and associated times at which the vehicle
reaches those waypoints. To determine those times, the trajectory
planner must determine a collision-free trajectory; when the vehicle
is at a particular waypoint, all other vehicles must be far enough
from that waypoint. To determine this, AUTOCAST uses the estimated
trajectory of received objects, as well as estimates of the trajectory
of vehicles within its own sensor’s view. AUTOCAST also calculates
the time of arrival to and departure from this waypoint based on
estimated speed and vehicle dimension. When a predicted collision
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is far enough, AUTOCAST follows the planned trajectory until within
stopping distance (based on current speed and brake deceleration)
of that waypoint of collision.

5 Performance Evaluation

In this section, we first evaluate AUTOCAST end-to-end: we show
that cooperative perception can improve driving safety on three
autonomous driving benchmarks (§5.2). We break down the results
by traffic density to discuss scalability (§5.3), and then detail the
results of each scenario (§5.4). Next, we evaluate the latency of each
processing module (§5.5), and validate transmissions using real V2V
radios (§5.6). We conclude with micro-benchmark evaluations on
the scheduling details (§5.7).

5.1 Methodology

The Carla simulator. Carla [31], a photo-realistic simulation plat-
form, uses a game engine to simulate the behavior of realistic envi-
ronments, and contains built in models of freeways, suburban roads,
and downtown streets. Users can create vehicles that traverse these
environments and attach advanced sensors such as LiDAR, Camera,
Depth Sensor to them. As these vehicles move through the environ-
ment, Carla simulates environment capture using these advanced
sensors. Users can design planning and control algorithms using the
captured environment to validate autonomous driving.

Implementation. We have implemented the scheduler, spatial rea-
soning, and trajectory planning in Carla. The total AUTOCAST im-
plementation is 27,124 lines of code. In addition, to configure the
scenarios, we have developed on top the Carla autonomous driving
challenge [6] evaluation code. In our implementation, all vehicles
use Carla’s default longitudinal and lateral PID controller as the
lower-level control to steer the vehicle along the planned trajectory.
To simulate metadata exchange between vehicles, we have incor-
porated V2V. Specifically, our implementation models LTE-Direct
QPSK with 10 MHz bandwidth [39], which translates to a peak rate
of ~ 7.2 Mbps. We implement LTE-Direct TDMA Mode 4 [39] and
simulate V2V channel loss in all scenarios using models described
in 3GPP standards [14, 15].
End-to-end evaluation scenarios. To demonstrate the benefits of
AUTOCAST end-to-end, we have implemented three scenarios (Fig-
ure 6) from the US National Highway Transportation Safety Admin-
istration (NHTSA) Precrash typology [60]. In these, occlusions can
impact driving decisions.

Overtaking A stopped truck on a single-lane road forces a car to
move to the lane with on-coming traffic. The truck occludes
the car’s view of the opposite lane.

Unprotected left turn A car and a truck wait to turn left in opposite
directions at an intersection. The truck blocks the car’s view
oncoming traffic.

Red-light violation A truck waits to turn left at an intersection, and
a car drives straight towards the intersection. Another car
jumps the red-light in the perpendicular direction; the violator
is occluded by the truck.

Experiments with real radios. To demonstrate that an implemen-
tation of AUTOCAST can plausibly work over real radios, we run
AUTOCAST on a small-scale testbed using three iSmartWays DSRC
radios [9]. In these experiments, we record the trace data from all
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FIGURE 6: End-to-end evaluation scenarios: overtaking, unprotected left-turn, and red-light violation. A planner on the ego vehicle (gray, bottom of the bird-eye view) finds a
trajectory to navigate through each scenario without collision. The gradient trajectory color (green to blue) indicates a temporal horizon (closer to farther). The LiDAR views show the
perception results using either non-sharing baseline (Single), or AUTOCAST. The red points in the LiDAR view are shared points, while the white ones are from the ego vehicle itself. In
each scenario, a passive (without communication capability) collider vehicle (red), occluded by a truck (orange) and thus invisible from the ego’s Single view, may cause a hazardous
situation. AUTOCAST makes the ego vehicle aware of the collider so the ego can react early to avoid a collision.

scenarios; for each frame (every 100ms), the trace includes all ex-
changed metadata, the computed schedule, and the object point
clouds. We then playback the trace over DSRC radios to validate if
the scheduled transmissions complete in time.

Baselines. We compare AUTOCAST against an approach in which
each car makes trajectory planning decisions based on its own sensor
alone (called Single), and one in which cars within range deliver
objects in a round-robin fashion (called Agnostic). We also imple-
mented EMP [82], an edge-assisted cooperative perception scheme,
as another baseline. Because EMP is a V2I solution instead of V2V,
for fair comparisons, we assign EMP a total bandwidth of 50 Mbps,
but use 7.2 Mbps for Agnostic and AUTOCAST. Finally, we also
compare against an idealized baseline, Unlimited, in which all points
can be transmitted without bandwidth constraints. In quantifying the
efficacy of our greedy scheduler, we also compare it with 1) FPTAS,
2) Optimal using dynamic programming.

Metrics. We use several metrics to evaluate AUTOCAST. In end-to-
end experiments, we quantify scenarios outcomes (e.g., a crash, or
a near miss), the reaction time (between when a vehicle detects a
potential collision and the time needed for it to avoid the collision),
and the closest distance between two vehicles at any point during
the scenario. To analyze the scalability, we compare the collider
visibility in terms of the number of visible frames and shared points
under different schemes at different traffic densities. To evaluate
the scheduler’s efficacy, we quantify rewards, time complexity, and
scheduled delay of objects with different rewards.

5.2 End-to-end Scenario Evaluation

Goal. The NHTSA pre-crash typology defines a set of challenging
scenarios. In this section we seek to understand whether cooperative
perception can result in safer driving outcomes than a system with-
out this capability. We evaluate these scenarios in Carla: for each
scenario, we explore different points of the scenario parameter space
(described below), and record the metrics described above.

Terminology and Experiment Setting. In each of our scenarios
(Figure 6), there are three entities: the gray sedan is the ego vehicle
on which AUTOCAST runs, the red sedan is a passive collider which
cannot communicate and only uses its own sensors to plan its trajec-
tory, and the orange truck is an occluder. In each scenario, the paths
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FIGURE 7: Scenario Outcome

between the ego and the collider intersect. We set up their speeds
such that their trajectories almost collide (i.e., both vehicles would
come very close to each other if both did not see each other at all).

Specifically, we generate several configurations as follows. We
set the base speed of the collider to 3 different values (20 km/h,
30 km/h and 40 km/h). At a given base speed, the collider’s trajectory
would (in the absence of avoidance) intersect with that of the ego.
A second dimension of the configuration is an intersection delta;
ranging from -2 s to +2 s (with steps of 0.25 s), a value of § means
the collider actually arrives at the intersection point § s before (or
after) the ego vehicle. This latter parameter controls how closely the
two cars approach each other. This gives us a total of 24 different
configurations for each scenario. For each configuration, we also
vary the number of vehicles (from 5 to 40 within range R (§3.1)) to
evaluate the performance at different scales.

We present three sets of results. First, we present the end-to-end
results for all scenarios that highlights AUTOCAST’s performance
against Single, EMP, Agnostic, and Unlimited. Then, we break it
down by traffic density to highlight the scalability (§5.3) against the
baselines. Finally, to illustrate subtleties in AUTOCAST’s design, we
break down results by scenario (§5.4), in a sparser traffic setting.

Outcomes. With this setting, there are four possible outcome: safe
passage, near-miss, crash, and deadlock. A near miss occurs when
the ego and collider pass within 2 m of each other. In deadlock, which
occurs only in Overtaking, both vehicles stop without colliding but
neither can make forward progress. This situation is not inherently
unsafe, it does represent an undesirable driving outcome where
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FIGURE 8: Safe passage vs. traffic density

participants must coordinate to resolve the deadlock. Beyond these
outcomes, we are also interested in quantifying the closest distance
between vehicles during any point in the simulation, and the reaction
time (the time between when the ego is aware of the collider to the
last possible moment before it can start braking).

Results: Dense Traffic. Our first set of results demonstrate the effi-
cacy of AUTOCAST in settings that it was designed for: highly dense
settings with a large number of traffic participants, where channel
capacity precludes transmission of point clouds of all participants. In
this experiment, we ran all three scenarios (overtaking, left turn, and
red light violation), but varied the traffic density from 5 to 40 vehi-
cles within range R (§3.1). For each configuration of each scenario,
we additionally vary the collider speed from 20 to 40 km/h.

Figure 7 plots the fraction of outcomes for each of the five al-
ternatives we consider (Single, EMP, Agnostic, AUTOCAST, and
Unlimited). AUTOCAST ensures safe passage at all collider speeds
in all scenarios. By contrast, Single, which does not use cooperative
perception, incurs crashes about half the time, many deadlocks and
some near misses. EMP [82] divides full point clouds into segments
of a voronoi diagram. Each vehicle transmits the closest segment to
an edge server, which then can forward to other vehicle recipients.
Using an order of magnitude higher V21 communication bandwidth,
EMP safely passes half of the traces, incurs about 20% crashes and
20% deadlocks, most of which happens at high density scenarios.
EMP does not consider object relevance, or prioritize segments, SO
suffers from lower collider visibility (see scalability results in §5.3).
Agnostic, which also does not prioritize transmissions, but benefits
from object-based transmission, passes 20% more traces with lower
V2V bandwidth. Similar to EMP, at higher density, Agnostic exhibits
an undesirable outcome in about a third of scenario settings. Unlim-
ited achieves 100% safe passage, which validates the robustness of
our planner design across our scenario configurations and collider
speed choices.

We discuss differences between AUTOCAST, EMP and Agnostic
below. AUTOCAST outperforms EMP and Agnostic for two reasons:
(a) it extracts objects and prioritizes on cheap transmissions based
on visibility and relevance, and, (b) when data to be transmitted
exceeds the channel capacity, and some objects have to be left out,
AUTOCAST compensates by prioritizing these objects in the next
decision interval. This ensures consistent and continuous updates
for critical invisible objects. In EMP and Agnostic, due to delayed
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FIGURE 9: Collider visibility: visible time and visible size vs. traffic density

or missing updates, the closest distance to the collider is often below
2 m, leaving the ego vehicle almost O reaction time.

Next, we show more details by analyzing why AUTOCAST can
outperform other baselines at scale (§5.3), and breaking down the
results by scenario (§5.4) for detailed analysis.

5.3 Scalability Results

We now show the scalability of AUTOCAST by breaking down the
evaluation results (Figure 7) by traffic density.

Safe passage at different traffic densities. Figure 8 shows the per-
centage of safe passage of all scenarios with the number of vehicles
varying from 5 to 40. The Single baseline shows a uniform perfor-
mance across traffic densities: using ego vehicle’s LiDAR alone can
only pass around 25% of the traces. It is interesting to see at very
high density (40 vehicles), the rate is slightly higher because the
road becomes crowded, forcing all participants, including the ego
vehicle, to slow down and proceed with caution. In contrast, EMP
and Agnostic achieve on average around 60% safe passages, but most
success concentrate at low density. As the traffic density increases,
it is harder to avoid collisions and near-misses. We discuss key in-
sights into poor scalability of both approaches. Given an order of
magnitude higher bandwidth for V21, EMP is able to share almost all
Voronoi segments [82] at low density to cover the entire area. How-
ever, as the number of vehicles increases, each vehicle is transmitting
a smaller and smaller segment around it, where the point cloud is
the densest. Therefore, the total number of points to share, covering
the same area, increases and exceeds even the V2I bandwidth limit.
Also, since EMP does not prioritize segments based on relevance to
receivers, the ego vehicle is aware of the collider only when the par-
ticular segment, where the collider is in, gets transmitted. Agnostic,
which isolates objects to reduce bandwidth requirement, but does
not prioritize object transmission, incurs a few near misses at low
densities. As density increases, Agnostic incurs more crashes and
deadlocks; with 10 vehicles and above, the probability of collider
being transmitted is very low; Agnostic exhibits an undesirable out-
come in about half of scenario settings. Over all traffic densities,
AUTOCAST is near-perfect: it maintains 100% safe passage to 20
vehicles; at the highest traffic density we have evaluated, it incurs
a small number of near misses without any collisions. Using only
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7.2 Mbps, AUTOCAST scales gracefully to up to 40 vehicles in a
distributed fashion, not depending on infrastructure support.

Collider visibility. To better understand the scalability results, we
pick one intersection scenario (Scenario C: red-light violation) to
evaluate and compare the collider visibility against different base-
lines. Figure 9 shows the percentage of frames where collider is
visible (left) and the size of the shared point cloud of the collider
(right). Unlimited depicts the maximum physical visibility of the
collider from all vantage points in this particular scenario. Because
both Agnostic and EMP does not prioritize transmissions, the chance
of the collider being transmitted is highly dependent on the number
of objects (or segments in EMP’s case) to be transmitted and their
sizes: at low traffic density, EMP is likely to transmit all segments,
Agnostic has a higher chance to transmits the collider among less
other objects; at high density, EMP cannot transmit all segments, and
Agnostic renders lower collider visible time as well. It is critical for
the planner to have high and stable collider visibility, because how
often and how big the point cloud of the collider gets transmitted
directly determines the object detection accuracy, reaction time, the
trajectory planning, the control decisions, and therefore the scenario
outcome (see per-scenario analysis §5.4). AUTOCAST enables safe
passage at high traffic density by providing consistent and stable
(>80% of the time) visibility into occluded and relevant objects to
avoid safety hazards.

5.4 Per-scenario Results

We now illustrate the benefit of cooperative perception in each of
these three scenarios. We do this at low density, because the traffic
dynamics are simpler and the results are easier to understand. For
these results, we omit Agnostic and EMP because at low density the
performance is comparable.

Overtaking. Figure 10 shows, for AUTOCAST and Single, a stacked
bar that counts the number of outcomes of each type. Without coop-
erative perception, safe passage occurs only in 20% of the configura-
tions. Crashes occur in about 5% of the configurations. These occur
because the ego vehicle moves into the oncoming lane, but neither
vehicle has enough time to stop. About 20% of the configurations
result in near misses, and the remaining settings result in deadlocks.
By contrast, AUTOCAST ensures safe passage in all configurations,
but incurs near misses in about 5% of the configurations.
AUTOCAST’s cooperative perception enables (Figure 11) much
higher reaction times (average 13.3 seconds at 20 km/h), than with-
out (average 0.31 s at 20 km/h, and zero at higher speeds), explaining
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its better performance. Finally, we have also investigated why AU-
TOCAST incurs some near misses (with a minimum closest distance
of 1.74 meters) in this scenario. At low collider speeds, the ego is
aware of the oncoming vehicle for 13 seconds and plans to stop the
car as close and safe as possible to start lane change right after the
collider passes; this represents a benign near-miss.

Unprotected left-turn. This scenario is more benign than overtak-
ing, because the ego is obstructed to a lesser extent. Without AUTO-
CAST, Figure 10 shows that 16.7% of the configurations resulted
in a crash and 16.7% in a near miss. For this scenario, AUTOCAST
ensures safe passage in all configurations. Because this scenario is
benign, reaction times are in general higher both with and without
AUTOCAST. Without AUTOCAST, crashes occur when the collider
arrives in the shadow of the truck as the ego vehicle starts to turn
left. When the collider’s speed is high, it cannot brake fast enough
to avoid the collision or near miss. With AUTOCAST, reaction times
and closest distances are generally quite high.

Red-light violation. For this scenario, Single always incurs an unde-
sirable outcome (75% crashes, 25% near miss). The occlusion angle
is so wide that there is no time for the ego vehicle to react whatsoever
(0 sec in the third column of Figure 11). By contrast, AUTOCAST
only incurs a few near-misses at low speeds: the controller is aware
of the collider, but decides to leave little room to pass by.

5.5 Pipeline Micro-benchmark

AUTOCAST carefully optimizes the perception and planning
pipelines to achieve around 80 ms end-to-end processing latency.
Figure 12 shows the average processing time and its variance for
each module over 6000 frames, 2000 frames for each scenario.
Object extraction and path planning are the most compute intensive.
We use the Minkowski Engine [29] for fast sparse quantization and
Numba [11] to speed up python loop execution such as the extended
Ax search and the isolated island detection. The execution time
of each module may or may not be dependent on various factors.
Quantization only depends on the number of lidar inputs. Creating
the occupancy grid and extracting surrounding objects is depends
on environment complexity, so their variances are high, but the
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maximum variance is below 20%. Path planning takes on average
24.17 ms, but its results can be reused across frames with a fast
waypoint check (~10 ms) across frames. The total latency is well
below 100 ms, so AUTOCAST can process LiDAR at full frame rate
(10 fps). To sense and react to the dynamics in the environment,
sensor suite (LiDar, Stereo Cameras, efc.) on autonomous vehicles
are clocked at a minimum of 10 fps. Therefore it is critical to
optimize the processing pipeline to operate over 10 fps.

5.6 Experiments with V2V radios

Methodology. In this section, we replay the transmission schedules
from one configuration of each scenario over a test bed with three
DSRC radios; each transmission is carried over a random transceiver
pair. We programmed the DSRC radios to use LTE-Direct TDMA
Mode 4 [39], a listen-before-transmission mode to follow the sched-
ule. To coordinate the radios, we designed simple handshake mes-
sages and timeout mechanisms to maintain synchronization among
all radios. The precise synchronization mechanism that incurs mini-
mum overhead is an open topic beyond the scope of this paper.

For each scenario, we record the point cloud data to transmit and
the computed transmission schedule. In the simulator, the schedule
is based on a theoretical model of the channel with a fixed data
rate. The goal of this evaluation is to validate whether the DSRC
radios can finish the scheduled transmission in time and evaluate the
significance of packet loss and its impact on the transmissions.

Results. Figure 13 shows the end-to-end latency for each 100 ms
decision interval. We played back traces with different traffic den-
sities to see if DSRC radios can always fulfill the schedule. At low
density, the number of objects to transmit is small®. The bandwidth
saturates at 20 vehicles and objects get prioritized: those over 100
ms is compensated next interval. The results show that DSRC can
always finish the schedule in time. Prioritization in the schedule is
the reason AUTOCAST can maintain high visibility on collider and
safety-critical objects. Figure 14 takes the overtaking scenario as an
example to show the transmissions of each object in detail without
background traffic. The scheduled transmissions are in the upper
subplot and the actual DSRC transmissions on the bottom. Each
shared object is represented by a line with a unique color compared
to other objects in the same decision interval. Each colored line starts
from the time of the beginning of the transmission, ends when the
transmission completes. The x-axis represents the time in ms, the
y-axis represents the time within each decision interval (100 ms).

9To evaluate DSRC under different bandwidth saturation level, we reduced the number
of passive traffic participants in this setting.

FIGURE 13: End-to-end latency per decision in-

FIGURE 14: Transmissions in the overtaking sce-
nario at low density

If an object is lost due to channel variability and dropped packets,
the solid line becomes a dashed line. In the overtaking scenario, the
collider’s point cloud as observed by the truck is in yellow, blue
represents the truck’s point cloud as observed by the collider. As the
collider moves closer to the truck, both observations are larger and
hence the length of yellow and blue transmission is longer. Red is the
ego’s point cloud as observed by the truck, and purple is the truck’s
point cloud as observed by the ego. Blue and purple transmissions
are also scheduled: the ego and collider broadcasting the truck’s
(occluder’s) point cloud. In theory, they need not be transmitted be-
cause the truck is visible and not relevant; AUTOCAST does transmit
objects with less relevance when possible.

5.7 Scheduling Algorithms

We evaluate the optimality of different scheduling algorithm (Opti-
mal, FPTAS, Greedy, Agnostic) in terms of total rewards and reward
ratio, algorithm complexity and scalability with respect to the num-
ber of vehicles, and transmission delay for objects with different
rewards. We conduct this set of by setting the vehicle on autopilot
mode, entering and exiting an intersection from all directions.

Optimality, Complexity, and Scalability. We first evaluate the
optimality. Figure 15 plots the total scheduled rewards when the
number of vehicles varies from 5 to 40. Specifically, Greedy has
less than 2% difference from Optimal while Agnostic has upto 40%
difference from Greedy. Figure 16 further shows the computation
time of the schedule with different number of vehicles. Although
the total rewards are close, greedy is two orders of magnitude faster
than FPTAS whereas the running time of optimal (dynamic pro-
gramming) can quickly become prohibitive. Vehicular environments
can be highly dynamic which requires the schedule to be computed
frequently; only the proposed greedy algorithm can finish within the
100ms decision interval with 40 vehicles.

Scheduled Delay. The scheduled delay is measured by calculating
the duration from the start of each decision interval (every 100 ms)
to the time that a particular object is received. Figure 17 shows
the scheduled delay of each object in a 20 cars scenario. It gives
more details behind the scene, explains the reward ratio difference
by showing the transmission priority. AUTOCAST’s optimization
always put the object with the highest normalized rewards top of
the schedule which results in lower scheduled delay, whereas the
latency of objects scheduled in Agnostic is random.
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6 Related Work

Connected Vehicles and Infrastructure: Connected vehicles can
improve the safety and reliability of self-driving cars. Communica-
tion technologies, e.g.,, DSRC [47] and LTE-Direct [39, 67], provide
capabilities to exchange information among cars by different types
of transmission, i.e.,, multicasting, broadcasting, and unicasting.
Automakers are deploying V2V/V2X communications in their up-
coming models [16, 17]). The academic community has started to
build city-scale advanced wireless research platforms (COSMOS
[7]), as well as large connected vehicle testbed in the U.S. (MCity
[18]) and Europe (DRIVE C2X [77]), which gives an opportunity
to explore the application feasibility of connected vehicles via V2V
communications in practice.
Sensor/Visual Information: Processing visual information from
sensors (e.g., LiDAR, stereo cameras, efc.) is important for au-
tonomous driving systems [56], which rely on visual information
to make a on-road decisions for detection [28], tracking [57], and
motion forecasting [58]. In addition, there is a large body of work
on vehicle context and behavior sensing [40, 66, 71] to enhance ve-
hicular situational awareness. AUTOCAST, and several related works
discussed below, take the next step of designing how to share this
information among nearby vehicles.
Vehicle Sensor Sharing: Prior research has attempted context shar-
ing among vehicles. Rybicki et al. [72] discuss challenges of VANET-
based approaches, and propose to leverage infrastructure to build
distributed, cooperative Traffic Information Systems. Other work has
explored robust inter-vehicle communication [30, 50, 70], an automo-
tive ontology for intelligent vehicles [37], principles of community
sensing that offer mechanisms for sharing data from privately held
sensors [48], and sensing architectures [54] for semantic services.
Motivated by “See-through” [41], several prior work on streaming
video for enhanced visibility have been proposed [25, 38, 46, 53, 69].
More recent work [27, 65, 82] demonstrates the feasibility of
sharing point clouds, but with limited scale and infrastructure sup-
port [22]. In AUTOCAST, we focus on enabling clusters of vehicles
to share sensor information at scale in the absence of edge servers.

7 Limitations and Future Work

To focus on evaluating the scalability of cooperative perception and
the impact on driving behavior, AUTOCAST assumes perfect pose
estimation in simulation. In practice, high-definition maps result in
positioning errors of 10-30 cm. We have examined the impact of this
error on our end-to-end results by perturbing the vehicle location
with a Gaussian noise. Because we set a 2 m threshold for near-
miss, this positioning error does not affect the end-to-end results. To
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demonstrate the impact on driving, we have designed three scenarios
where occlusions can trigger a potential crash between vehicles.
We leave small objects such as pedestrians and cyclists to future
work. For vehicular connectivity, we have used DSRC radios. Our
experiments demonstrate the feasibility of AUTOCAST, but DSRC
technology is being phased out [8, 36], and is being replaced by
other alternatives, such as C-V2X. Nevertheless, because our design
can accommodate LTE-Direct TDMA Mode 4 [39], AUTOCAST is
fully compatible with C-V2X radios, and should perform similarly in
C-V2X equipped vehicles. Finally, V2V communication security is
crucial for cooperative perception, but is currently an open problem
that future work should investigate. We expect that robustness to
attacks can be achieved, in part, by cross-validating contributions
from different vehicles.

8 Conclusion

In this paper, we have designed and implemented AUTOCAST, a
system that scales cooperative perception to dense traffic settings
without infrastructure dependency. AUTOCAST allows vehicles to
share point clouds of dynamic objects with each other, but because
these can congest the wireless channel, it carefully determines which
objects to transmit based on visibility and relevance. These proper-
ties are input to a distributed scheduling algorithm that determines a
transmission schedule at every decision interval. For several challeng-
ing traffic scenarios, AUTOCAST significantly outperforms baseline
approaches that do not employ cooperative perception, or do not
prioritize objects transmissions, or rely on edge relay services. Its
perception and planning pipelines have been optimized to process
LiDAR data at frame rate in under 100 ms. Future work can improve
perception and planning modules, experiment over LTE-V radios,
design corresponding representation fusion for end-to-end control,
and enhance vehicle communication security.
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