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A B S T R A C T   

The abundance of training data is not guaranteed in various supervised learning applications. One of these 
situations is the post-earthquake regional damage assessment of buildings. Querying the damage label of each 
building requires a thorough inspection by experts, and thus, is an expensive task. A practical approach is to 
sample the most informative buildings in a sequential learning scheme. Active learning methods recommend the 
most informative cases that are able to maximally reduce the generalization error. The information-theoretic 
measure of mutual information (MI), which maximizes the expected information gain over the input domain, 
can be used for informative sampling of a dataset in a pool-based scenario. However, the computational 
complexity of the standard MI algorithm prevents the utilization of this method on large datasets. A local kernels 
strategy was proposed to reduce the computational costs, but the adaptability of the kernels to the observed 
labels was not considered in the original formulation of this strategy. In this article, an adaptive local kernels 
methodology is developed that enables the conformability of the kernels to the observed output data while 
enhancing the computational complexity of the standard MI algorithm. The proposed algorithm is developed to 
work with a Gaussian process regression (GPR) method, where the kernel hyperparameters are updated after 
each label query using maximum likelihood estimation. In the sequential learning procedure, the updated 
hyperparameters can be used in the MI kernel matrices to improve the sample suggestion performance. The 
advantages of the proposed method are demonstrated in a simulation of the 2018 Anchorage, AK, earthquake. It 
is shown that while the proposed algorithm enables GPR to reach acceptable performance using fewer training 
data, the computational demand remains lower than the standard local kernels strategy.   

1. Introduction 

The normal functionality of the built environment (such as buildings, 
roads, bridges, power, and communication networks) supports a com
munity’s fundamental needs. However, this functionality may be 
interrupted by major natural and man-made hazards [1]. Especially in a 
regional hazard, making informed decisions to guide the emergency 
response or community recovery is challenging. Accurate and 
promptly-gathered data about the distribution of damage in the built 
environment, including location and severity, facilitates optimal solu
tions in the evacuation, shelter designation, and financial aid estima
tions [2]. 

1.1. Current practice in damage estimation 

In the natural hazards research community, state-of-the-art 

approaches to obtaining the infrastructure’s damage condition after 
regional hazards fit into two categories. The first is through developing 
physical-law-based functions to map the hazard’s intensity and infra
structural characteristics to estimate the post-hazard conditions. These 
functions can be fragility models describing the probability of the 
structural responses exceeding a threshold, given the hazard’s intensity 
[3-6]. Fragility functions can be modeled in two ways, analytically and 
empirically [7]. Empirical methods rely on the data obtained from his
torical earthquake events and require expert judgment to classify the 
observed data for different building types and damage states. The 
analytical methods, on the other hand, calculate the responses for 
different groups of engineered buildings and fit fragility curves to the 
generated data in order to classify the damage state of a building. 
However, both analytical and empirical methods require expert judg
ment and recalibration using historical data to be adapted to a specific 
event. 
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The other commonly-used approach is deterministic simulations, 
including finite-element and other simplified models. Simulation-based 
approaches aim to accurately replicate an individual structure’s 
response time history during an event. In the past decade, with 
increasing computational capacity and the popularity of geo-coded in
formation in computer programs (GIS systems), single-structure simu
lations are expanded to regional simulations that include hundreds of 
thousands of structures [8-11]. To conduct such a task for a seismic 
event, the complete time histories of ground motions at all structural 
locations, as well as each structure’s physical properties (at least mass, 
stiffness, and damping), are needed. In addition to scarcity, such 
detailed information is highly uncertain due to construction practices, 
material irregularities, and modeling limitations. 

Due to the issues discussed above, other approaches are often 
adopted to assess the infrastructural damage from data and observations 
obtained directly after the hazard. The well-known structural health 
monitoring (SHM) techniques fall into this category. Advances in SHM 
demonstrate structural damage detection capability using measure
ments from sensors deployed in structures [12-15]. However, this option 
is not yet commonly available due to the high cost of sensor installation 
and maintenance. At the same time, on-ground field observations are 
conducted for a comprehensive assessment of post-earthquake infra
structural damage. Post-event reconnaissance surveying teams are 
commonly dispatched to the affected region to inspect damage and 
failure mechanisms of buildings [16]. Although valuable information is 
gathered in these surveys, the excessive time requirements and lack of 
guidelines for identifying the information-rich buildings for inspection 
make this method inefficient. Consequently, only a limited number of 
buildings, selected randomly, are chosen for a damage inspection. 

1.2. Regional building damage inference problem 

Buildings in a region share various aspects that are influential in their 
susceptibility to earthquake damage, and certain patterns can be found 
in the mechanisms that cause buildings damages in a region [17-19]. In 
other words, different buildings’ damage intensities can be inferred by 
entering different inputs into a complex function. This problem can be 
solved as a black-box model with the building variables and ground 
motion characteristics as inputs and the building’s damage state as 
output. 

To understand the regional damage distribution from the scarce 
observation data, the isolated information needs to be translated in a 
consistent and systematic way. One can utilize the data obtained from 
field observations to train a supervised model and infer the damage for 

unobserved buildings in the region. To maintain affordability, minimal 
experimental data should be demanded. In the case of continuous 
damage labels, a regression algorithm should be considered as the sur
rogate model. As shown in [20, 21], Gaussian process regression (GPR) 
can be a suitable surrogate for modeling the non-linear development of 
buildings’ damage when the observation data is sparse. 

In this problem, observations are obtained as the reconnaissance 
team physically inspects buildings on a sequential basis. An active 
learning procedure can handle the efficient sampling of these inputs to 
fit the model with a minimal number of label queries. Various active 
learning kriging methods are proposed for structural reliability analysis 
where the areas located near the boundary of the failure domain are of 
high value to the surrogate model [22-25]. In the regional damage 
estimation problem, however, the interest is in the prediction of damage 
for all buildings. Therefore, the damage labels of the buildings in the 
pool have a uniform level of importance, and the question is how to 
sample the buildings from the pool such that the prediction accuracy is 
maximized for the rest of the pool. Fig. 1 shows an active learning 
strategy for regional damage assessment of buildings. 

In a pool-based active sampling approach, a simple heuristic is to 
consider the prediction confidence interval as a measure to find the 
datapoints that the model is most uncertain about. This sampling 
method minimizes the model entropy [26]. A greedy algorithm was 
proposed in [27], referred to as the Active Learning McKay (ALM), 
where a sequential sampling is performed by picking the datapoint with 
the highest variance for the next user labeling. However, this method 
tends to favor the datapoints close to the boundary of the input domain. 
In high-dimensional input spaces, boundary points mostly carry infor
mation about the outside of the domain of interest, resulting in a waste 
of information obtained from the queried labels [28]. Another popular 
algorithm was suggested by Cohn [29], where at each step, the expected 
reduction in predictive variance is maximized over the entire input 
space. Although showing better results compared to ALM, the Cohn 
method can be extremely expensive computationally [30]. 

Guestrin et al. [28] proposed a sampling method based on the 
information-theoretic quantity of Mutual Information (MI) to address 
the issue of picking points on the edges of the input domain in ALM. MI 
measures the amount of information obtained from observation of a 
random variable about another in terms of the Shannon entropy [31]. 
This idea can be applied as a sampling strategy to find a query subset 
that maximizes the MI between observed and unobserved sample out
puts. It was shown that MI performs superiorly compared to the other 
classical experiment design criteria [28]. MI has been widely studied in 
sensor placement [32], robot path planning [33-35], design of 

Fig. 1. The application of the active learning framework for the regional damage prediction problem.  
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experiments [36], and pool-based sample selections [37, 38]. However, 
solving this optimization problem can be NP-hard, and thus, a greedy 
algorithm was proposed that would reduce the computations to poly
nomial complexity [28]. Nevertheless, the computational complexity of 
the MI algorithm has always been the objective of various studies. Beck 
and Guillas [39] introduced a nugget parameter for better stability and 
used block matrix formulations to reduce the matrix inverse calculations 
to a single Cholesky decomposition in each iteration. However, the 
memory requirements are still a limitation for a large pool of available 
datapoints. Other studies have developed batch mode active learning 
methods based on the MI criterion [37, 40]. 

To enhance the practicality of maximizing MI, in addition to the 
greedy algorithm, Gusterin et al. [28] suggested a local kernels (LK) 
strategy, which reduces the size of kernel matrices and hence improves 
the matrix inverse computations [28]. Due to the negligible impact, 
datapoints with covariances smaller than a threshold are filtered out of 
the covariance matrices at each step in the LK strategy. The hyper
parameters required for creating the covariance matrices were estimated 
from the batch of training data in [28]. However, in the damage 
assessment problem, where the data becomes available on a sequential 
basis, the training data and the hyperparameters are not available before 
starting the damage inspection surveys. Therefore, if the standard LK 
algorithm is used, the set of initial hyperparameters should be chosen 
arbitrarily, which will result in suboptimal prediction performance. 

In this paper, an adaptive local kernels (ALK) method is proposed 
that will learn the hyperparameters through maximum likelihood esti
mation (MLE) as new labels become available. As a result, the influence 
of the irrelevant dimensions of the dataset in the sampling procedure is 
reduced, and the representativeness of the selected datapoints improves. 
This algorithm can be utilized to determine judicious choices of sparse 
structural observations iteratively. Continuing on the previous work in 
the regional infrastructural damage assessment after earthquakes [21], 
active learning and sampling are established based on the Gaussian 
process regression algorithm. The framework is tested on an earthquake 
testbed which is simulated using the rWHALE program provided by the 
SimCenter at NHERI [41]. The performance of the adaptive inspection 
using different active learning algorithms is evaluated in both accuracy 
and computational efficiency. The results are also compared with offline 
learning, where the batch selection approach is taken. 

The remainder of this article is as follows: Section 2 provides the 
fundamental theories of the GPR, active learning, and the standard MI 
algorithms. Section 3 introduces the proposed adaptive local kernels 
method and demonstrates its advantages on a simplified example. Sec
tion 4 describes the earthquake testbed and the dataset that is used to 
show the application of the proposed method in regional damage 
assessment. Section 5 thoroughly evaluates the outcomes of the damage 
estimation with the proposed method and compares them with the 
current active learning methods. And Section 6 summarizes the contri
butions of this study. 

2. Active learning with gaussian process regression 

Surrogate models are popular for representing high-fidelity com
puter experiments or physical phenomena. The calibration procedure 
for these models consists of sampling an experiment at various input 
values, which can be very expensive. Choosing these values randomly 
might be inefficient since redundant or uninformative instances might 
be selected [42]. The purpose of machine learning with active sample 
selection, also known as active learning, is to find inputs with a 
configuration that maximizes the metamodel’s learning rate under a 
fixed budget. In a pool-based scenario, where a pool of n unlabeled 
samples is given, and the training budget is limited to h samples, active 
learning iteratively picks a maximum of h instances so that the trained 
model can predict the labels for the remaining samples with maximum 
accuracy [43]. 

In this section, the theory of GPR and the maximum likelihood 

estimation of its hyperparameters are briefly discussed. Also, the theo
retical basis of active sample selection methods for GPR is introduced. 
Starting with the ALM method, the simple greedy algorithm based on the 
probabilistic predictions of GPR is described. Next, the formulation of 
the standard MI algorithm and its improvements over the ALM method 
are explained. The efficient LK algorithm and the proposed ALK method 
are introduced in the subsequent discussion. 

2.1. Gaussian process regression 

To predict the damage intensity of a building, linear regression can 
be performed. However, linear regression does not provide any notion of 
uncertainty for the predictions made [28]. GPs are natural generaliza
tions of the linear regression model that can provide a measure of con
fidence for the prediction of any new input. GPR (also known as kriging 
in geostatistics) has been proven to be a powerful method for highly 
non-linear functions [44-47]. A GP is a distribution over functions such 
that any finite number of points sampled at particular inputs from each 
function has a joint Gaussian distribution [48]. The posterior distribu
tion of these functions is calculated by conditioning a prior on the output 
observations. The posterior distribution at an input can then be 
considered as the predicted output for that input location. From a simple 
weight-space view, we can analogize the GP prediction to linear 
regression by considering every prediction as a weighted sum of the 
observed outputs. The weights are determined based on the similarity of 
the inputs of the observed outputs to the input of the to-be-predicted 
point [49]. The similarity measure is calculated in kernel space using 
a covariance function K, which is described later. Therefore, if we 
consider the set of all inputs as V , given the observations yA for a subset 
A ⊂V , the conditional probability distribution of label yx for a new 
input x ∈ V can be computed as p(yx

⃒
⃒yA ) such that 

μx|A = μx + ΣxA Σ−1
AA (yA − μA ), (1)  

σ2
x|A = K(x, x) − ΣxA Σ−1

AA ΣA x (2)  

where ΣAA = K(A , A ) + σ2
nI, σ2

n is independent Gaussian noise of ob
servations, and I is the identity matrix. 

Although the prior mean function is commonly considered zero, the 
covariance function plays an intrinsic role in modeling the data [49]. 
The Squared Exponential covariance function is widely used for prac
tical applications due to its smoothness and differentiability. However, 
in this study, the Rational Quadratic (RQ) covariance function KRQ is 
used, which is a scaled summation of the SE functions [48]. In a previous 
study, the Automatic Relevance Determination type of the RQ function 
was shown to model the damage data with the best fit [21]. Considering 
two multidimensional input vectors rp and rq, which specify the location 
of the datapoints p and q in the input space, the KRQ between these 
points can be computed as 

KRQ(p, q) = σ2
f

(

1 +
(
rp − rq

)T M
2α

(
rp − rq

)
)−α

(3)  

where σ2
f is the signal variance, M = diag(l)−2 in which l is the vector 

containing the characteristic lengthscales, and α > 0 determines the 
shape of the function. The parameters in the vector of lengthscales l and 
the signal variance σ2

f determine the level of variability of the covariance 
function. Every element of vector l can be varied to set the correlation of 
points in the associated dimension of the data. Further information 
regarding the properties of different covariance functions and their pa
rameters can be found in [21, 48]. The vector of hyperparameters θ = {l,
σ2

f , α, σ2
n} is tuned during the training procedure with maximum likeli

hood estimation (MLE). 
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2.1.1. Maximum Likelihood Estimation (MLE) 
The hyperparameters in vector θ should be tuned so that the 

covariance function can model the dataset optimally. Because of the 
fortunate tractability of the integrals for Gaussian processes with 
Gaussian likelihoods, Bayesian inference can be incorporated to obtain a 
closed-form equation for the marginal likelihood with regards to the 
hyperparameters. In practice, it is easier to minimize the negative log 
marginal likelihood. The log marginal likelihood can be written as 

logp(yA |rA , θ) = −
1
2
yA

TΣ−1
AA yA −

1
2

log
⃒
⃒ΣAA

⃒
⃒ −

n
2

log2π (4)  

The optimization for this loss function is performed by a conjugate 
gradient algorithm where the partial derivatives of Eq. 4 with respect to 
elements of θ can be calculated as 

∂
∂θj

logp(yA |rA , θ) =
1
2
yA

T Σ−1
AA

∂ΣAA

∂θj
Σ−1

AA yA

−
1
2

tr
(

Σ−1
AA

∂ΣAA

∂θj

) (5)  

For the RQ covariance function, the directional derivatives of the log 
marginal likelihood with regards to the hyperparameters can be ob
tained as: 

∂ΣAA

∂li
= σ2

f ×

⃒
⃒rp,i − rq,i

⃒
⃒2

l3
i Qα+1 (6)  

∂ΣAA

∂σ2
f

= 2σf Q−α (7)  

∂ΣAA

∂σ2
n

= 2σnI (8)  

∂ΣAA

∂α = σ2
f

(
− lnQ + Q−1)

× Q−α (9)  

where Q = 1 + (rp − rq)
T M

2α (rp − rq). Some libraries of the GPML toolbox 
[50] are used for inference purposes in this article. 

2.2. Active sample selection methods 

In the regional damage assessment problem, if there are n = |V |

buildings in a region, we can only inspect h = |A |≪n for damage eval
uation due to the time and budget restrictions. Any building inspection 
can take up to two man-hours, as reported in [51]. Therefore, to achieve 

the most information gain in an affordable time frame, the learning 
procedure should be able to suggest the most informative cases for label 
queries. An active learning strategy can be pursued to ensure the 
informativeness of the buildings that are inspected for damage. 

2.2.1. Active learning MacKay (ALM) method 
A heuristic approach is to pick the inputs that are most uncertain 

about each other, which is equivalent to maximizing the entropy in the 
selected datapoints[27]. 

argmax
A :|A |=h

H(A ) (10)  

Solving this optimization problem, however, is NP-hard. Given a set of 
observations A , the differential entropy of a Gaussian random variable x 
is defined as 

H(x|A ) =
1
2

log
(

2πeσ2
x|A

)
(11)  

which is a monotonic function of the variance and can be obtained from 
Eq. (2). Therefore, instead of solving Eq. (10) in one operation, a greedy 
algorithm can be adopted to make the observations sequentially. In this 
approach, at each step, given the indices of the points labeled previ
ously, the unlabeled point with the highest variance is picked for label 
query [27]. 

The most uncertain areas in a fitted GP are the boundaries of the 
input domain. Therefore, picking the inputs where they are most un
certain about each other is also equivalent to placing the observations on 
the boundary of the input domain. Since every observation can improve 
the prediction uncertainty for queries within close proximity of its input, 
selecting the samples on the boundaries wastes a great portion of the 
observation information [28]. This issue is more pronounced in 
high-dimensional datasets. 

2.2.2. Standard mutual information (MI) method 
To adjust the problem of boundary preference in the ALM method, it 

was proposed to maximize the MI between observed and unobserved 
samples, rather than focusing on maximizing the entropy only for the 
selected inputs [28]. This approach finds a set of samples such that the 
entropy of the training set is maximized while the entropy of the testing 
set is minimized. Intuitively, this approach gathers the most diverse and 
information-rich samples for training and keeps the common datapoints 
in the testing set. This set can be obtained by solving the following 
equation 

A = argmax
A : A ⊂V

H(V \A ) − H(V \A |A ) (12)  

which is equivalent to maximizing the MI, I(A; V \A ), between set A 

and the rest of the samples V \A . Analogous to Eq. (10), this problem is 
NP-complete. To reduce the complexity, an approximation approach 
was proposed in [28], where a greedy algorithm finds a suboptimal 
subset A in poly-time. At each step, this algorithm picks the samples 
that increase the MI the most. After a few simplifications, the following 
equation can be used to pick the sample x at each step 

argmax
x: x∈V \A

H(x|A ) − H
(

x|A
)

(13)  

where V \(A ∪ x) is denoted as A . The first term in Eq. (13) is similar to 
the greedy entropy rule in Eq. (11), but the second term biases the 
objective towards the center of the input space. This algorithm is 
guaranteed to perform within a constant factor approximation of the 
problem in Eq. (12). However, the bottleneck is the computation of Σ−1

A A 

in Eq. (2) for all the samples in V \A. This brings the computing 
complexity to O (hn4), which is still impractical for large datasets 
(n > 1000). 

Algorithm 1 
MI with local kernels (MI-LK) [28].  

Input: 
Covariance ΣV V ,h, V ,

ε > 0  
Output:   

The set of recommended cases A ⫅V  

Begin 
1 A = ϕ  

2 for x in V :  

3 δx = H(x) −

H̃ε(x|V \x)

4 for j in {1, 2, …, h}:  

5 x* = argmax
x

δx  

6 A = A ∪ x*  

7 for x in N(x*; ε):  

8 δx =

H̃ε(x|A ) − H̃ε(x
⃒
⃒
⃒A )
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2.2.3. Mutual information with local Kernel (MI-LK) 
To further improve the computational efficiency, it was suggested 

that only local kernels be considered in the calculations. In positive 
covariance functions, correlations between datapoints decay with dis
tance, and datapoints located far from each other are practically inde
pendent [28]. Therefore, we can assume H(x|A ) ≈ H̃ε(x|B ), where B is 
obtained from removing all elements x′ from A if |K(x, x′

)| < ε for a 
small ε. It was shown that for d = |B |, the computing complexity re
duces to O (nd3 + hn + hd4). To limit the computing complexity to a 
certain level, the size of the local kernel matrix, d, can also be restricted. 
This implementation enforces a limit on the maximum number of local 
neighbors for each x* such that |N(x*; ε)| ≤ d. The local kernels algo
rithm suggested in [28], referred to as MI-LK hereafter, is shown in 
Algorithm 1. 

One of the shortcomings of the formulation of the MI-LK algorithm is 
that the process should take place before the label observation starts. In 
this algorithm, the vector δ contains the values of local MI based on the 
defined kernel parameters. Since the scale of δ is retained in the 
sequential process of this algorithm, and only parts of it are updated in 
each step, a set of constant hyperparameters should be used throughout 
the process. Therefore, it is not feasible to update the kernel hyper
parameters for calculating MI values as new labels are seen in the 
learning procedure. 

3. MI with adaptive local Kernels (MI-ALK) 

In practice, the hyperparameters are rarely known before seeing any 
labels and are continuously updated by MLE as new labels are observed. 
It has been shown that by using the updated hyperparameters in each 
step of the standard MI procedure, the sampling performance improves 
significantly [38]. In this study, we modified the LK formulation to 
enable the possibility of adaptable kernels to the hyperparameters’ 
changes. The proposed adaptive local kernels method, referred to as 
MI-ALK, keeps the computing complexity within the practical ranges 
and does not require the known hyperparameters before seeing any 

instances. Algorithm 2 shows the steps of the procedure. 
In contrast to the LK algorithm, the ALK does not rely on the initial 

hyperparameters, and an arbitrarily chosen initial θ vector does impact 
the algorithm’s performance. The algorithm starts with the allocation of 
a null set to A and iterates through lines 3 to 9 for a maximum number 
of h iterations. In each iteration, the covariance matrix is updated with 
the new hyperparameter set obtained from MLE based on the observed 
labels. To keep the close neighbors of x in the calculations of the local 
kernels, we define a parameter λ as a percentage of the maximum cor
relation by multiplying the coefficient ε to the autocovariance of any 
datapoint in the dataset. Line 6 is responsible for the determination of 
the most informative point given the set of training points A . To avoid 
large sets of N(x; ε), at this step, a limit can be imposed on the maximum 
number of neighbors. The label is queried for the selected point, and θ is 
updated through MLE in line 8. It should be pointed out that lines 8 and 
9 are essential parts of any sequential GPR procedure and are not spe
cific to this algorithm. We only use the results of the MLE in line 8 to 
improve the covariance calculations in our datapoint selection with MI. 
Depending on the approach for limiting the number of neighbors, the 
computing complexity of this algorithm is always ≤ O (nhd3). 

3.1. Concept validation on a non-linear system response prediction 

In order to validate the improvement of the active sample selection 
quality with the proposed adaptive kernels method, the LK and ALK 
algorithms are compared on predicting the maximum response of a 
simple non-linear SDOF system in this section. 

Numerical Model Formulation: A Bouc-Wen (BW) model is used to 
generate a dataset with multiple input parameters determining the 
shape of the hysteresis cycles of the SDOF system. BW is a phenome
nological model that is experimentally validated and shown to be able to 
capture the nonlinear behavior of inelastic steel material [52, 53]. The 
BW formulation is based on the displacement u and the restoring force of 
the SDOF system z as [54] 

ż =
1
η

[
Au̇ − v

(
βz|z|

w−1
|u̇| + γ|z|

wu̇
)]

(14)  

where η,A,v,β,γ, and wdetermine the shape of the hysteretic behavior of 
the system. Rearranging the parameters, we have: 

ż = s1u̇ −
(

s2z|z|
s4−1

|u̇| + s3|z|
s4 u̇

)
(15)  

where 

s =

[

s1 =
A
η, s2 =

vβ
η , s3 =

vγ
η , s4 = w

]

(16)  

It has been shown that the acceptable range of parameters for vector s 
should be 
{

s ∈ R4|s1 > 0, |s3| ≤ s2, s4 ≥ 1
}

. (17)  

Based on this model, the equation of motion for a non-linear damped 
SDOF system as shown in Fig. 2 can be formed as 

mü + cu̇ + ku + z = F(t) (18)  

where m, c, and k are system’s mass, damping, and stiffness, respec
tively, and F(t) is a function of time that corresponds to input loading. 

To generate the dataset, system parameters m, c, and k are considered 
to be the same among generated models, and only the parameters in 
vector s are randomly chosen to populate the dataset. The values 
considered for these parameters are shown in Table 1. 

Training set generation: The input loading to the system is set as F(t)
= 2cos(t) over the time interval t ∈ [0, 10]. The maximum displacement 
response of the system, max

t
u(t) is considered as the output label for 

Algorithm 2 
MI with adaptive local kernels (MI-ALK).  

Input: 
Covariance function K,h, V , ε ∈ (0,1)

Output: 
The set of recommended cases A ⫅V  

Begin 
1 A = ϕ  

2 Initialize θ randomly  
3 for j in {1, 2, …, h} :

4 ΣV V = Kθ(V , V )

5 λ = Kθ(x,x) × ε  

6 x* = argmax
x∈V \A

H(x|A ) − H̃λ(x|V \(A ∪ x))

7 A = A ∪ x*  

8* θ = argmax
θ

logp(yA |A , θ)

9* label inference for V \A using Eqs. 1 and 2  

* These lines are a part of GPR algorithm in general. 

Fig. 2. The non-linear damped SDOF system setup.  
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prediction. We generated 400 realizations based on the random pa
rameters described in Table 1. At this point, the dataset entails the four 
parameters of the vector s as input and the maximum displacement as 
output for every realization. However, the input dimensions mentioned 
thus far are direct variables of the system, and they are all influential in 
the output of the system. In practical applications, however, unimpor
tant or even pure noise dimensions might be present in the dataset. 
Therefore, to introduce noise in our dataset, copies of the parameters s1 
and s2 contaminated with a zero-mean Gaussian noise of variance 
0.0025, referred to as s′

1 and s′

2, along with two independent Gaussian 
noise variables with N (0, 1), referred to as N1 and N2, are added to the 
dataset. Consequently, the total number of the input dimensions in
creases to eight, as shown in Table 1. Similarly, a Gaussian noise of 
variance 0.0025 is added to the labels. 

Testing scenarios: The hyperparameter vector θ is used in the 
calculation of the covariance matrices in the MI procedure, as shown in 
Eq. (3). Therefore, providing an optimally chosen θ for covariance cal
culations can improve the performance of MI. However, in a sequential 
learning scheme, θ is not known before seeing any labels. Therefore, to 
demonstrate the impact of θ on the sampling performance, the algo
rithms are tested with two different sets of initial θ. In case 1, for all 
realizations, the vector is chosen as θ = [1, ⋯, 1]1 × 11, called arbitrary 

θ. In case 2, θ is determined based on the optimized hyperparameters 
from MLE by considering the entire dataset in training. To identify the 
optimal hyperparameters, the MLE is run for 100 trials with random 
seeds, as shown in Fig. 3. The distributions of the converged values for 
the SDOF system are shown in Fig. 3 over 100 trials. The converged 
hyperparameter set, which yields the largest MLE, marked with blue 
dots in Fig. 3, is considered as the optimum value. The outcomes of the 
algorithms based on this θ are called MLE optimized θ. 

Observing the obtained lengthscales for the 8 input dimensions of the 
dataset, it can be seen that smaller values are assigned to the first four 
dimensions, l1 to l4, compared to l5 and l6. This is expected since the 
latter dimensions are contaminated with noise, and larger lengthscales 
indicate a lower impact on the inference. This effect is magnified for 
dimensions l7 and l8 which are pure Gaussian noise variables. 

The lengthscales are not known before seeing any labels, and 
therefore, active learning algorithms need to start with arbitrarily cho
sen initial θ, which is often a vector of constant values. If the active 
learning algorithm is not able to update the hyperparameters as new 
labels are seen, it will consider the same level of importance for every 
dimension of the dataset throughout the learning procedure, which re
sults in suboptimal performance. 

Learning configuration: To be consistent with the regional damage 
assessment conditions where a pool of buildings is available and the 
reconnaissance team needs to choose from that pool, a transductive 
learning approach is pursued in this paper. In this approach, samples are 
selected from a pool of datapoints for label queries, and the outputs of 
the remaining samples in the same pool are predicted. To have mean
ingful results, each algorithm is run 100 times on 80% of the dataset, 
called V 80, which is chosen randomly with different seeds. To have a 
fair comparison between all algorithms, it is better to include the 
training set in the prediction evaluations in order to reduce the effect of 
different testing sets on the results [43]. Therefore, the true labels of the 
training points are considered as the predictions for those points, and 
accuracy is calculated for all the points in the chosen V 80. 

For all scenarios mentioned above, the active learning algorithm 
chooses the samples sequentially using ε = 0.01 K(., .) and d = 50. The 
accuracy of the predictions is evaluated using the standardized mean 
square error (SMSE) as 

SMSE(μ*, y*) =
1
n*

(∑n*
i=1(μ*i − y*i)

)2

var(y*)
(19) 

Table 1 
System parameters used for generating the SDOF dataset. The symbols in parentheses indicate the corresponding lengthscale in the GPR model.  

m  c  k  s1 (l1) s2 (l2) s3 (l3) s4 (l4) s1
′

(l5) s2
′

(l6) N1 (l7) N2 (l8)

1.0 0.2 1.0 ∼ U (0.5, 2.5) ∼ N (0, 1) ∼ N (0, 1) ∼ U (1, 2) s1+∼ N (0, 0.0025) s2+∼ N (0, 0.0025) ∼ N (0, 1) ∼ N (0, 1)

Fig. 3. Converged hyperparameters for the SDOF dataset using MLE.  

(a) (b) (c) (d)

Fig. 4. The improvements in predictive performance for the SDOF dataset under different active learning scenarios. (a) and (c) show MI-LK results, while (b) and (d) 
present MI-ALK outcomes. 
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and also, the correlation coefficient (CC) between the predicted and true 
labels as 

CC(μ*, y*) =
1

n* − 1
∑n*

i=1

(
μ*i − E(μ*)

SD(μ*)

)(
y*i − E(y*)

SD(y*)

)

(20)  

where SD indicates the standard deviation of the random variable. 
Comparison and results: The performance of the algorithms is 

compared based on the initially feeded θ in Fig. 4. This figure shows the 
median improvement of the prediction accuracy after the 10th sample is 
observed. Also, the values of the area under the curve (AUC) are shown 
to quantify the performance measurements. 

Considering Fig. 4 (a) and (c), it can be seen that the LK algorithm 
can perform significantly better if optimal hyperparameters are used 
through the learning procedure. However, in the case of arbitrarily 
chosen hyperparameters, the samples selected by the algorithm delay 
the convergence of the GPR. At the same time, Fig. 4 (b) and (d) show 
that the MI-ALK performs almost independently of the initial hyper
parameters and provide samples that allow GPR to converge earlier. 
Comparing the AUC values in Fig 4 (c) and (d), it can be inferred that 
while the MI-LK performance improves about 20% if optimal hyper
parameters are used, the MI-ALK changes only about 5% as a result of 
the different initial hyperparameters. Furthermore, comparing the cases 
with optimal initial θ between the algorithms, it is observed that MI-ALK 
presents lower AUC, which indicates better performance. 

4. Regional Earthquake Impacted Building Damage Simulation 
Testbed 

The application of the proposed data sampling method to a practical 

example is studied in this section. The case study consists of a simulated 
earthquake scenario using the rWHALE program provided by the Sim
Center at NHERI [41]. The simulation is aimed at estimating the seismic 
damage and loss for individual buildings at a city scale. SimCenter 
designed a customizable workflow to streamline the risk assessment 
procedure. The workflow is briefly explained, and the earthquake test
bed is described subsequently. 

The workflow starts with gathering basic building information and 
creating a building inventory. The basic building information such as the 
number of stories, year built, floor area, structural type, etc., and other 
parameters such as the first vibration period suggested by [55] for 
typical building types are used to create an MDOF shear model for each 
building. The input ground motions to the MDOF models are chosen 
according to the geographical location of the buildings. A time history 
analysis is then performed to obtain the engineering demand parameters 
(EDP) such as maximum acceleration, drift ratio, and residual 
displacement. Once EDPs are calculated, a loss estimation procedure, 
adopted from the FEMA-P58 [56] guidelines, is followed, and the 
building’s economic loss ratio along with repair time, repair cost, unsafe 
placard, etc., are calculated. More details regarding each step in the 
workflow are available at [41]. 

Anchorage M7.1 earthquake scenario: Anchorage, AK, experienced a 
magnitude 7.1 earthquake on November 30th, 2018. This event is 
simulated in this scenario. Ground motions recorded by 38 strong- 
motion recording stations throughout Anchorage are obtained from 
[57] and are used as input to the models of 97 k buildings (Fig. 5). The 
nearest neighbor algorithm is used to assign a ground motion to a 
building. To keep the visualizations optimal, 10 k buildings are 
randomly selected for this study. 

Fig. 5. Distribution of the seismic intensity in terms of PGA for NE and NN horizontal directions. Ground motion recording stations are shown with triangular marks 
where each station is assigned to its nearest buildings. 

Table 2 
List of features and labels for the regional damage assessment dataset.  

Building variables Earthquake indices Damage indices 

Feature Range Feature Range Label Range 

Floor area (m2) [25, 17723] Sa(T1) (cm/s2) [93.3, 1323.9] Max floor acceleration (m/s2) [1.6, 7.5] 
Year of built [1900, 2018] Arias [486.9, 4490.7] Interstory drift ratio [0.0, 0.02] 
No. of stories [1, 14] Fajfar [4.3, 20.7] Residual roof displacement (m) [0.0, 0.01] 
Occupancy type 5 types Inter quantile range [0.0, 0.2] Unsafe placard probability [0.0, 1.0] 
Longitude [-149.7, -150.0] Kurtosis [11.8, 110.1] Economic loss ratio [0.0, 0.9] 
Latitude [61.0, 61.2] Spectral intensity [357.1, 1156.3]    
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4.1. Data description 

Each of the 10 k datapoints consists of basic building information and 
various earthquake intensity indices. In total, six variables are consid
ered for each building, and six features are derived from ground motion 
signals. The labels are chosen from the typical EDPs of buildings to 
reflect different types of damage. While maximum absolute floor ac
celeration contributes to most non-structural damages in earthquakes, 
maximum drift ratio is an indicator of structural damage [58]. Also, the 
residual displacement is a proper measure for the repairability of the 
structure. Moreover, the economic loss ratio and the probability of un
safe placard of the building are computed as a result of the mentioned 
EDPs and are correlated to the total damage state of the building. The list 
of all features and labels is shown in Table 2. It should be noted that the 
occupancy type of buildings is a categorical variable and is one-hot 
encoded in the input. 

4.2. Learning configurations 

To assess the performance of the proposed algorithm in both 
computational complexity and prediction accuracy, a number of 
learning configurations are considered for comparison as follows: 

RND: A batch learning approach with a random selection of the 
training set is assumed as a baseline for comparison with the active 
learning methods. This method is commonly used in general supervised 
learning applications. 

ALM: As a simple greedy method, ALM is considered as the basic 
active learning approach in GPR. Although the computational 
complexity is very low, the predictive performance may not be great for 
high-dimensional datasets. 

MI-LK: The local kernels method (explained in Algorithm 1) helps the 
implementation of the MI criterion on large datasets by removing the 
less important datapoints from the covariance matrices. To keep the 
computing complexity at a certain range, for this problem, different 
values of d and ε are considered for the calculation of the local covari
ance matrices. The kernels are calculated with randomized parameters 
of initial θ. Also, the independent noise σ2

n is considered to be 10−4 for all 
cases for better stability in the Cholesky decompositions. 

MI-ALK: The adaptive local kernels method, proposed in this study, 
performs similarly to the MI-LK algorithm with the advantage of using 
label data to update the kernel space after each label query. In contrary 
to the MI-LK method, ε is determined as a large percentage of the 
updated autocovariance. Similar to the MI-LK algorithm, both ε and d 
are altered for different computational demands and accuracy. 

The summary of the considered algorithms, along with their 
parameter configurations, is shown in Table 3. For both MI-LK and MI- 
ALK algorithms, the two variants are chosen, such that the first repre
sents an algorithm’s fast performance while the accuracy might be 
compromised, and the second variant sets the parameters ε and d for 
larger and more flexible kernel matrices, which results in greater 
computational demands and higher predictive performance. 

Since damage inspections during a short period after the occurrence 
of an earthquake cannot be performed in abundant numbers, the 
maximum training data size is considered to be 200 for this case study. 

The RND method is performed using increasing training set sizes at in
crements of 10. The active learning methods are assessed through a 
sequential approach where one label is queried at each step. In general 
machine learning applications, cross-validation of the training set is a 
suitable tool to provide insight into the performance of a model on the 
test set. However, cross-validation results may not be used as a fair 
measure to compare active learning methods. These methods tend to 
maximize the diversity of the selected samples in the training set and 
hence are expected to return poor cross-validation scores. In fact, it is 
highly likely that a random sampling approach scores higher cross- 
validation results compared to active learning methods, which is 
certainly not seen when evaluating the performance of the models on the 
testing set. Therefore, the evaluation of the algorithms’ performances 
are done in the same way as the demonstrative example in Section 3.1; a 
transductive learning on the V 80 set. Also, to reduce the dependency of 
the results to the initial θ and the pool of data, for every configuration, 
64 realizations with random V 80s and initial θs are performed. 

5. Inference performance, computational efficiency, and 
discussion 

The damage inference performance is evaluated based on several 
measures in this section. First, the levels of representativeness for sam
ples suggested by each algorithm are presented. Second, the impact of 
the active learning algorithm on the accuracy of the predictions and the 
number of samples required for the GPR to infer with acceptable per
formance is evaluated. And third, the computational demands of the 
algorithms are compared. 

5.1. Representativeness 

A key factor in understanding the advantages of the sampled data in 
an active learning algorithm is the representativeness of the training 
data for the entire testing pool. Considering Eq. 1, it can be inferred that 
GPR predicts each new label by calculating a weighted average of the 
previously observed labels. The weights are calculated in the covariance 
matrix, and training points closer to the desired testing point have 
greater covariances. Therefore, one could expect higher predictive 
performance if testing points had closer representatives in the training 
set. To obtain a training set with high representativeness, an active 
learning method should select samples that improve the prediction ac
curacy of a large number of unlabeled datapoints located in close 
proximity to the selected samples [59]. 

To find the maximum similarity of a testing point to any point in the 
training set, we measure the covariance of each testing point to its 
closest point in the training set. The closer the measured correlation is to 
unity, the more similar a point is to its representative in the training set. 
The maximum similarity of the testing point x* at step h of the training 
procedure can be obtained from the following equation 

Covmax(x*)h = max
i∈A (1:h)

K(x*, xi) (21)  

where A is the set of all training points. The final set of identified 
hyperparameters are used for covariance calculations in Eq. 21. 

Table 3 
The studied learning methods and associated parameters.  

Algorithm Training steps ε  d  No. of Random Testing Realizations 

RND 10:10:200 - - 64 (random V 80)  
ALM 1:200 - - 64 (random initial θ and V 80)  
MI-LK1 1:200 10−2 × K(., .) 100 64 (random initial θ and V 80)  

MI-LK2 1:200 10−5 × K(., .) 800 64 (random initial θ and V 80)  

MI-ALK1 1:200 0.999 100 64 (random initial θ and V 80)  
MI-ALK2 1:200 0.95 300 64 (random initial θ and V 80)   
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In this section, firstly, we use a random batch sampling approach to 
demonstrate the effect of representativeness on the prediction accuracy. 
To measure the prediction accuracy from a sensible point of view for 
individual datapoints, the Relative Difference (RD) formula is used as 

RD(μ*, y*) =
|(μ* − y*)|

max(μ*, y*)
(22)  

Fig. 6 compares the prediction accuracy for testing points when GPR is 
trained on randomly selected training sets of size 200 over 64 re
alizations. The normalized Covmax is used to differentiate the well- 
represented testing points from the under-represented ones. The re
sults shown in Fig. 6 indicate a positive correlation between the level of 
representativeness and prediction accuracy. Based on this observation, 
we can state that an under-represented testing point is more likely to be 
predicted inaccurately than a well-represented testing point. Therefore, 
the Covmax criterion can be used to assign a level of confidence to the 
prediction of a testing point when true labels are unknown. 

Observing the effect of representativeness on prediction accuracy, 
we move on to compare the training sets sampled by active learning 
methods based on this criterion. Representativeness is calculated at each 
step of the active learning for all the points in the testing set to provide a 
better intuition into the behavior of each method. To obtain a smooth 
curve that shows the distribution of the Covmax for all testing points, a 
normal distribution curve with N (Covmax(x*)h, 0.01) is considered for 
every testing point x*, and the summation of all the individual curves is 
considered as the distribution of the maximum training-testing simi

larity. Since the domain of similarity is limited to [0, 1], a truncated 
normal distribution should be considered where the probability density 
function (PDF) can be calculated as 

PDF(a; μ′

, σ, ρmin, ρmax ) =
1
σ

ϕ
(

a−μ′

σ

)

Φ
(

ρmax−μ′

σ

)
− Φ

(
ρmin−μ′

σ

) (23)  

where μ′ is the mean, σ is the standard deviation (SD), ρmin and 
ρmax define the domain of the variable ρmin ≤ a ≤ ρmax, and 

ϕ(ξ) =
1̅̅

̅̅̅
2π

√ exp
(

−
1
2

ξ2
)

, (24)  

Φ(ξ) =
1
2

(

1 + erf
(

ξ
̅̅̅
2

√

))

. (25)  

Therefore, to obtain a smooth spike at the location of the maximum 
covariance for the testing point x*, we calculate the PDF as 

PDF(a; Covmax(x*)h, 0.01, 0.1 ) =
1

0.01

ϕ
(

a−Covmax(x*)h
0.01

)

Φ
(

1−Covmax(x*)h
0.01

)

− Φ
(

0−Covmax(x*)h
0.01

)

(26)  

and to obtain the distribution of the maximum covariances for all testing 
points at step h, we have 

PDF(Covmax(X*)h) =
1
n

∑n

i=1
PDF

(
Covmax

(
x*

i

)

h

)
(27)  

where n is the total number of testing points. Finally, this procedure is 
repeated for every realization and averaged over all realizations, so we 
can rewrite Eq. 27 as: 

PDF(Covmax(X*)h) =
1

n′ n
∑n′

j=1

∑n

i=1
PDF

(
Covmax

(
x*

i

)

h

)

j (28) 

Fig. 6. Comparison of the prediction accuracy based on the normalized Covmax.  

Fig. 7. The PDFs of maximum similarity at step h = 50.  

Table 4 
The average percentage of testing points with maximum similarity less than 0.5 
among training points at step h = 50.  

Algorithm ALM MI-LK1 MI-LK2 MI-ALK1 MI-ALK2 

Label 1 0.17 7.87 4.31 0.95 2.68 
Label 2 0.00 2.70 2.39 0.11 0.10 
Label 3 35.87 6.79 5.92 2.08 2.30 
Label 4 0.24 3.47 2.92 0.08 0.53 
Label 5 0.74 1.16 0.51 0.08 0.23  
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where n′ is the number of realizations. Eq. 28 is used for each active 
learning configuration in Table 3 and for all labels. 

The calculated PDFs at step h = 50 of each algorithm are shown in 
Fig. 7 to characteristically compare the obtained similarities of each 
algorithm at the early steps of the training procedure. The differences in 
the density of the curves on small similarity ranges are noticeable be
tween MI-LK and MI-ALK variants. MI-LK variants present higher den
sities in the similarity range of [0, 0.5] for all five labels, which indicates 
that a higher percentage of testing points are located within this range. 
We consider these points as poorly-represented in the training set. To 
quantitively compare the algorithms, the percentage of the poorly- 
represented points at step h = 50 of the training procedure are shown 
in Table 4. Comparing MI-LK with MI-ALK variants, it can be seen that 
the percentage of poorly-represented testing points is between 0.08% 

and 2.68% for MI-ALK, while this percentage is between 0.51% and 
7.87% for MI-LK. It should be noted that although ALM seemingly 
presents good results from this point of view, on average, about 70% of 
the testing points are located below the 0.9 similarity level, and thus, 
ALM still performs poorly considering the percentage of the very well- 
represented testing points. This percentage is about 20% for MI-LK1 
and MI-ALK1 and about 16% for MI-LK2 and MI-ALK2. 

To visualize the variations of the PDFs based on the arrival of the new 
labels, the obtained PDFs for each step of the training procedure are 
stacked side by side to form a 2D image and present the variations of the 
distribution of the maximum similarity for every configuration. Fig. 8 
shows the progress of the maximum similarity during the training pro
cedure. In this figure, the shaded areas show the PDFs from the top, 
where a darker color indicates a smaller probability density. It can be 

Fig. 8. The rate of improvement in the representativeness of the training points for each method.  
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seen that in all configurations, the mean of the PDFs, which is shown by 
a dashed line, increases as new points are added to the training set. 
These modifications are stemmed from the increase in the number of 
testing points having close representatives, which improves the training- 
testing similarity. 

Considering the shaded areas, we notice light-colored horizontal 
strips on the images for the MI-LK methods that are stretched through 
the training procedure. These strips indicate a high density of low- 

represented testing points. Although the strips are present in MI-ALK 
configurations in Labels 2 and 3 as well, they fade away before reach
ing 50 training points, while they continue well above 150 training 
points in MI-LK configurations. Furthermore, considering Label 1, nar
row white bands at the bottom of the images for MI-LK1 and MI-LK2 are 
observable and highlighted with red rectangles. For instance, on 
average, after labeling 100 training points, about 3% of the testing 
points with MI-LK1 and 1% of testing points with MI-LK2 still have 

Fig. 9. Illustration of the mean and SD of the similarity PDFs at three different training steps.  

Fig. 10. Progress in the predictive performance of the GPR in terms of SMSE when using different active learning configurations.  

Fig. 11. Progress in the predictive performance of the GPR in terms of CC when using different active learning configurations.  

Table 5 
Additional sets of ε and d for computational comlexty comparison.   

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

MI-LK 
ε × Kθ0(., .) 10−1  10−2  10−3  10−4  10−5  10−6  10−7  

d  100 200 300 400 500 600 700 

MI-ALK 
ε  0.9999 0.999 0.99 0.98 0.97 0.96 0.95 
d  50 100 100 150 200 250 3000  
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almost zero similarity to any points in the training set. We can also 
notice the slower rate of progress in similarity for the ALM method. For 
instance, using ALM for the prediction of Label 3, Fig. 8 shows that PDFs’ 
mean improves at a slow rate and even after observing 150 labels, about 
37% of testing points have a maximum similarity below 80%. 

For a better quantitative comparison, the mean and SDs of the PDFs 
are shown at h = 50, h = 100, and h = 150 of the training procedure in 
Fig. 9 and Tables A1 and A2. Compared to ALM, the higher PDFs’ means 
and thus better representatives in the training set are observable with all 
MI methods. Also, assessing the three training steps, it can be seen that 
compared to MI-LK, the mean values are higher, and the SDs are smaller 
in MI-ALK variants. For instance, considering the 100th step of training 
for Label 3, the mean and SD of maximum similarity are at 0.93 and 0.15 
for MI-LK1, respectively, whereas they are at 0.97 and 0.07 for MI-ALK1. 
It can be inferred that MI-ALK1 has found similar representatives for a 
higher percentage of testing points. It is worth noting that from the 
representativeness point of view, the improvements are less significant 
when parameters are tweaked within each algorithm. 

5.2. Predictive performance 

To compare the predictive performance across learning methods, 
SMSE and CC are calculated between the predicted labels and true la
bels. Figs. 10 and 11 show the calculated median of the progress of the 
predictive performance over all realizations as labels are queried for new 
samples in terms of the SMSE and CC, respectively. In these figures, 
methods that converge to an accuracy level with a smaller number of 
training points are preferred. It can be seen that as expected, the ALM 
method performs poorly compared to the other methods due to the is
sues stated in Section 2.2. The results of the random selection method 
(RND) are shown as error bars for each batch size. The error bars indi
cate the 0.25 and 0.75 quantiles, and it can be seen that high variations 
exist in the predictive performance of Label 3. These variations indicate 
the highly non-linear underlying function and vulnerability of GPR to 
the selected training data for this label. At the same time, variants of the 
MI-LK method perform considerably better than the RND method for 
Labels 1, 3, and 5. The MI-LK1 shows less appealing results in the pre
diction of Labels 2 and 5. Although prediction results are improved with 
increasing the limit d and reducing ε in MI-LK2 for all labels, both var
iants of MI-LK experience unstable predictions for Label 3. 

At the same time, compared to MI-LK, the two variants of MI-ALK 
present significantly better results for Labels 2, 3, and 5, and converge 
after observing ~75 training points. The performance is comparable in 
Labels 1 and 4 between MI-ALK2 and MI-LK2, although the latter re
quires a much higher limit for the covariance matrix size d. 

5.3. Computational complexity 

At the same level of importance as the predictive performance, 
computing complexity should be evaluated for the proposed method. 
Computing complexity can be referred to as the total time demand of an 
algorithm as well as the memory requirements. In this study, the 
memory concerns are relieved by limiting the maximum number of local 
neighbors for both MI algorithms. However, one should be careful if 
using the standard greedy MI algorithm suggested in [28], as the 
inversion of large matrices is required. The focus of the computing 
complexity measurement in this study is the total processing time 
required by each method. To this end, a finer set of ε and d values are 
considered for MI-LK and MI-ALK algorithms to present the improve
ments in accuracy versus the time complexity. The additional sets of ε 
and d are shown in Table 5. Realizations are performed with parallel 
programming in Matlab and are run on Intel Xeon Skylake nodes with 32 
cores each, allocated by the center for high performance computing 
(CHPC) of the University of Utah. The timings include the total time 
required by the sample selection procedure as well as the prediction 
steps until the maximum number of training points are selected. 

Fig. 12 compares the processing times opposed by the predictive 
performance for each method. To quantify the predictive performance, 
the area under the curve (AUC) of the mean SMSE graph is calculated for 
each realization [43]. The calculation of the AUCs starts at step 75, 
which is roughly the step that algorithms converge and present mean
ingful results. Also, for each method, the median value is shown with a 
larger marker in Fig. 12. 

Comparing the results shown in Fig. 12, it can be seen that in all label 
predictions, the maximum accuracy obtained from MI-ALK is equal or 
higher than MI-LK. At the same time, this high accuracy is obtained with 
a better time complexity compared to the MI-LK’s best performance. 
Comparing the median AUC SMSE for case 7 of both algorithms, the 
maximum performance of the MI-ALK algorithm is 4%, 47%, 32%, 3%, 
and 37% higher than MI-LK for Labels 1 to 5, respectively. At the same 
time, the computational complexity of the MI-ALK for these labels is 
25%, 7%, 16%, 14%, and 11% lower than MI-LK, respectively. Finally, 
at almost the same levels of computing complexity, it can be seen that 
case 1 of MI-LK performs significantly better than the ALM method. 

5.4. Discussion 

The proposed active learning method enables the GPR algorithm to 
be implemented in the damage assessment of buildings after an earth
quake. This algorithm reduces the inspection costs by avoiding unim
portant buildings and performs efficiently by finding close 
representatives for the buildings in the region. Therefore, in a progres
sive approach, the damage level of all buildings can be inferred with 
high accuracy. 

Fig. 12. Processing times required for each learning method to reach to the maximum training size limit. The x-axis displays the predictive performance in terms of 
AUC SMSE. 
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Although the proposed algorithm provides more informative samples 
for the GPR algorithm and expedites the improvements of performance, 
it requires higher computational demands compared to the LK algorithm 
for identical ε and d parameters. This extra computation is well justified 
when label query comes at high expenses, such as in the regional 
damage assessment problem. In other words, to achieve the same level 
of predictive performance, we may identify the samples in a short time 
using the MI-LK algorithm and spend a certain amount of time querying 
the labels or identify fewer but more informative samples using the MI- 
ALK algorithm and consequently spend less time in the label query 
process. The fewer number of label queries can reduce the overall 
learning expenses and compensate for the extra computational demand. 

Considering Figs. 10 and 11, although the gap between the results of 
LK and ALK methods diminishes after 200 training points for Labels 2, 3, 
and 4, the final accuracy of the ALK is still higher in Labels 1 and 5. In 
this article, we assumed a budget for 200 training points. However, if the 
limit were anywhere between 50 to 150 training points, the final pre
dictive performance of the ALK method would be significantly higher 
than LK in Labels 2, 3, and 5. The urgent demand for the reconnaissance 
data and the limitation of resources in the aftermath of an earthquake 
can cause such limitations, and therefore, a method that is known to 
provide higher performance using fewer damage inspections is 
preferred. The ALK method can train a more powerful surrogate model 
under those limitations, which subsequently leads to a more accurate 
estimation of the overall loss after an earthquake. 

Finally, it is worth noting that the processing times shown in Fig. 12 
are obtained when 32 realizations were run simultaneously in parallel. 
In a real-world scenario, a single realization on a laptop or PC with 
higher CPU clock speeds compared to the CHPC nodes (2.1 GHz) will 
require significantly shorter processing times. In fact, the calculations 
required for sample selection with MI-ALK2 on an Intel Core i5 7500 CPU 
only adds about ~4 seconds of computational overhead at each step. 
Therefore, without the need for strong workstations, the method can be 
applied on the go following the occurrence of an earthquake. 

6. Conclusion 

A new active-learning procedure is formulated to adaptively select 
and infer the post-seismic building damage in an impacted region. 
Through a non-linear SDOF response prediction test, it was concluded 
that updating the hyperparameters used to create the kernel matrices 
utilized by the MI formulation after observing new labels can adjust the 
sample selection by reducing the effect of the unimportant data di
mensions. The key contributions and findings of the manuscript are 
described in the following:  

• The adaptable formulation of the local kernels strategy based on the 
information-theoretic measure of mutual information could sub
stantially improve the sample selection phase of the learning 
procedure.  

• Through a simulated earthquake testbed, the performance of the 
proposed MI-ALK method was compared with the standard MI-LK 
method for the sample selection of 5 different damage indicators. 
It was shown that the predictions obtained by MI-ALK converge to 
acceptable levels of accuracy using fewer training points. Further
more, the instability of predictions with the observation of new la
bels was reduced with MI-ALK.  

• Compared to MI-LK, the samples selected by MI-ALK could cover the 
domain of input faster and were better representatives of the pool of 
unlabeled samples.  

• The improvements in performance were observed while the MI-ALK 
performed at lower computational demands. For the labels consid
ered in the regional damage assessment study, the performance of 
the MI-ALK showed improvements of up to 47% while reducing the 
computational demands up to 25%. 
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Appendix 

Tables A1 and A2. 

Table A1 
Mean values of the maximum similarity distribution at different training steps 
for each algorithm.  

Algorithm Training step Label 1 Label 2 Label 3 Label 4 Label 5 

ALM 
50 0.83 0.84 0.62 0.89 0.82 
100 0.88 0.91 0.74 0.91 0.89 
150 0.91 0.95 0.84 0.92 0.93 

MI-LK1 

50 0.88 0.95 0.88 0.94 0.95 
100 0.93 0.97 0.93 0.96 0.97 
150 0.94 0.97 0.94 0.96 0.98 

MI-LK2 

50 0.91 0.96 0.89 0.95 0.97 
100 0.94 0.98 0.93 0.97 0.98 
150 0.95 0.99 0.95 0.97 0.98 

MI-ALK1 

50 0.90 0.97 0.91 0.96 0.97 
100 0.93 0.99 0.97 0.97 0.99 
150 0.95 0.99 0.98 0.98 0.99 

MI-ALK2 

50 0.90 0.98 0.93 0.96 0.98 
100 0.94 0.99 0.97 0.98 0.99 
150 0.95 0.99 0.98 0.98 0.99  

Table A2 
SDs of the maximum similarity distribution at different training steps for each 
algorithm.  

Algorithm Training step Label 1 Label 2 Label 3 Label 4 Label 5 

ALM 
50 0.11 0.10 0.22 0.08 0.11 
100 0.09 0.07 0.20 0.07 0.08 
150 0.07 0.05 0.16 0.06 0.06 

MI-LK1 

50 0.23 0.13 0.20 0.16 0.11 
100 0.19 0.13 0.17 0.15 0.09 
150 0.18 0.10 0.16 0.14 0.08 

MI-LK2 

50 0.19 0.12 0.18 0.14 0.07 
100 0.16 0.08 0.15 0.12 0.06 
150 0.14 0.05 0.12 0.10 0.06 

MI-ALK1 

50 0.12 0.05 0.14 0.06 0.05 
100 0.09 0.02 0.07 0.04 0.02 
150 0.08 0.02 0.05 0.03 0.02 

MI-ALK2 

50 0.14 0.05 0.14 0.08 0.06 
100 0.11 0.02 0.07 0.05 0.02 
150 0.09 0.02 0.05 0.04 0.02  

M. Sheibani and G. Ou                                                                                                                                                                                                                        



Reliability Engineering and System Safety 215 (2021) 107915

14

References 

[1] Dehghani NL, Fereshtehnejad E, Shafieezadeh A. A Markovian approach to 
infrastructure life-cycle analysis: modeling the interplay of hazard effects and 
recovery. Earthquake Eng Struct Dyn 2020. 

[2] Pena FJ. Efficient computation of accurate seismic fragility functions through 
strategic statistical selection (doctoral dissertation. Purdue University Graduate 
School; 2019. 

[3] Newmark NM. Probability of predicted seismic damage in relation to nuclear 
reactor facility design. Consulting Engr Services. 1975. 

[4] Porter K. A beginner’s guide to fragility, vulnerability, and risk. Encyclopedia 
Earthquake Eng 2015:235–60. 

[5] Ellingwood BR, Rosowsky DV, Li Y, Kim JH. Fragility assessment of light-frame 
wood construction subjected to wind and earthquake hazards. J Struct Eng 2004; 
130(12):1921–30. 

[6] Lupoi G, Franchin P, Lupoi A, Pinto PE. Seismic fragility analysis of structural 
systems. J Eng Mech 2006;132(4):385–95. 
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