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The abundance of training data is not guaranteed in various supervised learning applications. One of these
situations is the post-earthquake regional damage assessment of buildings. Querying the damage label of each
building requires a thorough inspection by experts, and thus, is an expensive task. A practical approach is to
sample the most informative buildings in a sequential learning scheme. Active learning methods recommend the
most informative cases that are able to maximally reduce the generalization error. The information-theoretic
measure of mutual information (MI), which maximizes the expected information gain over the input domain,
can be used for informative sampling of a dataset in a pool-based scenario. However, the computational
complexity of the standard MI algorithm prevents the utilization of this method on large datasets. A local kernels
strategy was proposed to reduce the computational costs, but the adaptability of the kernels to the observed
labels was not considered in the original formulation of this strategy. In this article, an adaptive local kernels
methodology is developed that enables the conformability of the kernels to the observed output data while
enhancing the computational complexity of the standard MI algorithm. The proposed algorithm is developed to
work with a Gaussian process regression (GPR) method, where the kernel hyperparameters are updated after
each label query using maximum likelihood estimation. In the sequential learning procedure, the updated
hyperparameters can be used in the MI kernel matrices to improve the sample suggestion performance. The
advantages of the proposed method are demonstrated in a simulation of the 2018 Anchorage, AK, earthquake. It
is shown that while the proposed algorithm enables GPR to reach acceptable performance using fewer training
data, the computational demand remains lower than the standard local kernels strategy.

1. Introduction approaches to obtaining the infrastructure’s damage condition after

regional hazards fit into two categories. The first is through developing

The normal functionality of the built environment (such as buildings,
roads, bridges, power, and communication networks) supports a com-
munity’s fundamental needs. However, this functionality may be
interrupted by major natural and man-made hazards [1]. Especially in a
regional hazard, making informed decisions to guide the emergency
response or community recovery is challenging. Accurate and
promptly-gathered data about the distribution of damage in the built
environment, including location and severity, facilitates optimal solu-
tions in the evacuation, shelter designation, and financial aid estima-
tions [2].

1.1. Current practice in damage estimation

In the natural hazards research community, state-of-the-art
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physical-law-based functions to map the hazard’s intensity and infra-
structural characteristics to estimate the post-hazard conditions. These
functions can be fragility models describing the probability of the
structural responses exceeding a threshold, given the hazard’s intensity
[3-6]. Fragility functions can be modeled in two ways, analytically and
empirically [7]. Empirical methods rely on the data obtained from his-
torical earthquake events and require expert judgment to classify the
observed data for different building types and damage states. The
analytical methods, on the other hand, calculate the responses for
different groups of engineered buildings and fit fragility curves to the
generated data in order to classify the damage state of a building.
However, both analytical and empirical methods require expert judg-
ment and recalibration using historical data to be adapted to a specific
event.
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Fig. 1. The application of the active learning framework for the regional damage prediction problem.

The other commonly-used approach is deterministic simulations,
including finite-element and other simplified models. Simulation-based
approaches aim to accurately replicate an individual structure’s
response time history during an event. In the past decade, with
increasing computational capacity and the popularity of geo-coded in-
formation in computer programs (GIS systems), single-structure simu-
lations are expanded to regional simulations that include hundreds of
thousands of structures [8-11]. To conduct such a task for a seismic
event, the complete time histories of ground motions at all structural
locations, as well as each structure’s physical properties (at least mass,
stiffness, and damping), are needed. In addition to scarcity, such
detailed information is highly uncertain due to construction practices,
material irregularities, and modeling limitations.

Due to the issues discussed above, other approaches are often
adopted to assess the infrastructural damage from data and observations
obtained directly after the hazard. The well-known structural health
monitoring (SHM) techniques fall into this category. Advances in SHM
demonstrate structural damage detection capability using measure-
ments from sensors deployed in structures [12-15]. However, this option
is not yet commonly available due to the high cost of sensor installation
and maintenance. At the same time, on-ground field observations are
conducted for a comprehensive assessment of post-earthquake infra-
structural damage. Post-event reconnaissance surveying teams are
commonly dispatched to the affected region to inspect damage and
failure mechanisms of buildings [16]. Although valuable information is
gathered in these surveys, the excessive time requirements and lack of
guidelines for identifying the information-rich buildings for inspection
make this method inefficient. Consequently, only a limited number of
buildings, selected randomly, are chosen for a damage inspection.

1.2. Regional building damage inference problem

Buildings in a region share various aspects that are influential in their
susceptibility to earthquake damage, and certain patterns can be found
in the mechanisms that cause buildings damages in a region [17-19]. In
other words, different buildings’ damage intensities can be inferred by
entering different inputs into a complex function. This problem can be
solved as a black-box model with the building variables and ground
motion characteristics as inputs and the building’s damage state as
output.

To understand the regional damage distribution from the scarce
observation data, the isolated information needs to be translated in a
consistent and systematic way. One can utilize the data obtained from
field observations to train a supervised model and infer the damage for

unobserved buildings in the region. To maintain affordability, minimal
experimental data should be demanded. In the case of continuous
damage labels, a regression algorithm should be considered as the sur-
rogate model. As shown in [20, 21], Gaussian process regression (GPR)
can be a suitable surrogate for modeling the non-linear development of
buildings’ damage when the observation data is sparse.

In this problem, observations are obtained as the reconnaissance
team physically inspects buildings on a sequential basis. An active
learning procedure can handle the efficient sampling of these inputs to
fit the model with a minimal number of label queries. Various active
learning kriging methods are proposed for structural reliability analysis
where the areas located near the boundary of the failure domain are of
high value to the surrogate model [22-25]. In the regional damage
estimation problem, however, the interest is in the prediction of damage
for all buildings. Therefore, the damage labels of the buildings in the
pool have a uniform level of importance, and the question is how to
sample the buildings from the pool such that the prediction accuracy is
maximized for the rest of the pool. Fig. 1 shows an active learning
strategy for regional damage assessment of buildings.

In a pool-based active sampling approach, a simple heuristic is to
consider the prediction confidence interval as a measure to find the
datapoints that the model is most uncertain about. This sampling
method minimizes the model entropy [26]. A greedy algorithm was
proposed in [27], referred to as the Active Learning McKay (ALM),
where a sequential sampling is performed by picking the datapoint with
the highest variance for the next user labeling. However, this method
tends to favor the datapoints close to the boundary of the input domain.
In high-dimensional input spaces, boundary points mostly carry infor-
mation about the outside of the domain of interest, resulting in a waste
of information obtained from the queried labels [28]. Another popular
algorithm was suggested by Cohn [29], where at each step, the expected
reduction in predictive variance is maximized over the entire input
space. Although showing better results compared to ALM, the Cohn
method can be extremely expensive computationally [30].

Guestrin et al. [28] proposed a sampling method based on the
information-theoretic quantity of Mutual Information (MI) to address
the issue of picking points on the edges of the input domain in ALM. MI
measures the amount of information obtained from observation of a
random variable about another in terms of the Shannon entropy [31].
This idea can be applied as a sampling strategy to find a query subset
that maximizes the MI between observed and unobserved sample out-
puts. It was shown that MI performs superiorly compared to the other
classical experiment design criteria [28]. MI has been widely studied in
sensor placement [32], robot path planning [33-35], design of
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experiments [36], and pool-based sample selections [37, 38]. However,
solving this optimization problem can be NP-hard, and thus, a greedy
algorithm was proposed that would reduce the computations to poly-
nomial complexity [28]. Nevertheless, the computational complexity of
the MI algorithm has always been the objective of various studies. Beck
and Guillas [39] introduced a nugget parameter for better stability and
used block matrix formulations to reduce the matrix inverse calculations
to a single Cholesky decomposition in each iteration. However, the
memory requirements are still a limitation for a large pool of available
datapoints. Other studies have developed batch mode active learning
methods based on the MI criterion [37, 40].

To enhance the practicality of maximizing MI, in addition to the
greedy algorithm, Gusterin et al. [28] suggested a local kernels (LK)
strategy, which reduces the size of kernel matrices and hence improves
the matrix inverse computations [28]. Due to the negligible impact,
datapoints with covariances smaller than a threshold are filtered out of
the covariance matrices at each step in the LK strategy. The hyper-
parameters required for creating the covariance matrices were estimated
from the batch of training data in [28]. However, in the damage
assessment problem, where the data becomes available on a sequential
basis, the training data and the hyperparameters are not available before
starting the damage inspection surveys. Therefore, if the standard LK
algorithm is used, the set of initial hyperparameters should be chosen
arbitrarily, which will result in suboptimal prediction performance.

In this paper, an adaptive local kernels (ALK) method is proposed
that will learn the hyperparameters through maximum likelihood esti-
mation (MLE) as new labels become available. As a result, the influence
of the irrelevant dimensions of the dataset in the sampling procedure is
reduced, and the representativeness of the selected datapoints improves.
This algorithm can be utilized to determine judicious choices of sparse
structural observations iteratively. Continuing on the previous work in
the regional infrastructural damage assessment after earthquakes [21],
active learning and sampling are established based on the Gaussian
process regression algorithm. The framework is tested on an earthquake
testbed which is simulated using the rWHALE program provided by the
SimCenter at NHERI [41]. The performance of the adaptive inspection
using different active learning algorithms is evaluated in both accuracy
and computational efficiency. The results are also compared with offline
learning, where the batch selection approach is taken.

The remainder of this article is as follows: Section 2 provides the
fundamental theories of the GPR, active learning, and the standard MI
algorithms. Section 3 introduces the proposed adaptive local kernels
method and demonstrates its advantages on a simplified example. Sec-
tion 4 describes the earthquake testbed and the dataset that is used to
show the application of the proposed method in regional damage
assessment. Section 5 thoroughly evaluates the outcomes of the damage
estimation with the proposed method and compares them with the
current active learning methods. And Section 6 summarizes the contri-
butions of this study.

2. Active learning with gaussian process regression

Surrogate models are popular for representing high-fidelity com-
puter experiments or physical phenomena. The calibration procedure
for these models consists of sampling an experiment at various input
values, which can be very expensive. Choosing these values randomly
might be inefficient since redundant or uninformative instances might
be selected [42]. The purpose of machine learning with active sample
selection, also known as active learning, is to find inputs with a
configuration that maximizes the metamodel’s learning rate under a
fixed budget. In a pool-based scenario, where a pool of n unlabeled
samples is given, and the training budget is limited to h samples, active
learning iteratively picks a maximum of h instances so that the trained
model can predict the labels for the remaining samples with maximum
accuracy [43].

In this section, the theory of GPR and the maximum likelihood
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estimation of its hyperparameters are briefly discussed. Also, the theo-
retical basis of active sample selection methods for GPR is introduced.
Starting with the ALM method, the simple greedy algorithm based on the
probabilistic predictions of GPR is described. Next, the formulation of
the standard MI algorithm and its improvements over the ALM method
are explained. The efficient LK algorithm and the proposed ALK method
are introduced in the subsequent discussion.

2.1. Gaussian process regression

To predict the damage intensity of a building, linear regression can
be performed. However, linear regression does not provide any notion of
uncertainty for the predictions made [28]. GPs are natural generaliza-
tions of the linear regression model that can provide a measure of con-
fidence for the prediction of any new input. GPR (also known as kriging
in geostatistics) has been proven to be a powerful method for highly
non-linear functions [44-47]. A GP is a distribution over functions such
that any finite number of points sampled at particular inputs from each
function has a joint Gaussian distribution [48]. The posterior distribu-
tion of these functions is calculated by conditioning a prior on the output
observations. The posterior distribution at an input can then be
considered as the predicted output for that input location. From a simple
weight-space view, we can analogize the GP prediction to linear
regression by considering every prediction as a weighted sum of the
observed outputs. The weights are determined based on the similarity of
the inputs of the observed outputs to the input of the to-be-predicted
point [49]. The similarity measure is calculated in kernel space using
a covariance function K, which is described later. Therefore, if we
consider the set of all inputs as 7, given the observationsy , for a subset
/C 7, the conditional probability distribution of label y, for a new
input x € 7" can be computed as p(yx|y.,) such that

P = Mo + 220, 0 — M) ¢h)
0y, = Kx,x) -2 %, (2

where X, = K(+/,) + 021,62 is independent Gaussian noise of ob-
servations, and I is the identity matrix.

Although the prior mean function is commonly considered zero, the
covariance function plays an intrinsic role in modeling the data [49].
The Squared Exponential covariance function is widely used for prac-
tical applications due to its smoothness and differentiability. However,
in this study, the Rational Quadratic (RQ) covariance function Kgq is
used, which is a scaled summation of the SE functions [48]. In a previous
study, the Automatic Relevance Determination type of the RQ function
was shown to model the damage data with the best fit [21]. Considering
two multidimensional input vectors r, and rg, which specify the location
of the datapoints p and q in the input space, the Krq between these
points can be computed as

M —a
KRQ(]LQ):G?(lJ”(Tpfrq)T% (rpfrq)> (3)

where af is the signal variance, M = diag({)~? in which [ is the vector
containing the characteristic lengthscales, and o > 0 determines the
shape of the function. The parameters in the vector of lengthscales I and
the signal variance (7]% determine the level of variability of the covariance
function. Every element of vector / can be varied to set the correlation of
points in the associated dimension of the data. Further information
regarding the properties of different covariance functions and their pa-
rameters can be found in [21, 48]. The vector of hyperparameters § = {1,
o7, a,05} is tuned during the training procedure with maximum likeli-
hood estimation (MLE).
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Algorithm 1
MI with local kernels (MI-LK) [28].

Input:
Covariance X5 5-,h, 7,
e>0

Output:
The set of recommended cases ./C 7~

Begin

1 o =¢

2 for xin 7

3 5 = H(x) —
He(x| 7\x)

4 forjin {1, 2, ..., h}:

5 X" = argmaxdy,

6 o = Dx

7 for x in N(x"; ¢):

8 O =
H,(x|.«/) — H,(x|7)

2.1.1. Maximum Likelihood Estimation (MLE)

The hyperparameters in vector @ should be tuned so that the
covariance function can model the dataset optimally. Because of the
fortunate tractability of the integrals for Gaussian processes with
Gaussian likelihoods, Bayesian inference can be incorporated to obtain a
closed-form equation for the marginal likelihood with regards to the
hyperparameters. In practice, it is easier to minimize the negative log
marginal likelihood. The log marginal likelihood can be written as

n

1 1
logn(y.,Ir./.0) = —y.,"E Ay, — slog|E.,, | — 5 logn “

The optimization for this loss function is performed by a conjugate
gradient algorithm where the partial derivatives of Eq. 4 with respect to
elements of ¢ can be calculated as

d 1 0%y
a_gjl()gp(y./‘r'me) = Eyo/TE»/rl/ ()9}- 2';./fl//y./

(5)

For the RQ covariance function, the directional derivatives of the log
marginal likelihood with regards to the hyperparameters can be ob-
tained as:

650;2/ =20;0"" @
% = 20,1 ®)
P p(~mot+o ) x 0 ®

where Q =1+ (r, — rq)Tsza (rp —rq). Some libraries of the GPML toolbox
[50] are used for inference purposes in this article.

2.2. Active sample selection methods

In the regional damage assessment problem, if there are n = | 7~
buildings in a region, we can only inspect h = |.2/|<n for damage eval-
uation due to the time and budget restrictions. Any building inspection
can take up to two man-hours, as reported in [51]. Therefore, to achieve
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the most information gain in an affordable time frame, the learning
procedure should be able to suggest the most informative cases for label
queries. An active learning strategy can be pursued to ensure the
informativeness of the buildings that are inspected for damage.

2.2.1. Active learning MacKay (ALM) method

A heuristic approach is to pick the inputs that are most uncertain
about each other, which is equivalent to maximizing the entropy in the
selected datapoints[27].
argmaxH (/) (10)

A |=h

Solving this optimization problem, however, is NP-hard. Given a set of
observations .7, the differential entropy of a Gaussian random variable x
is defined as

H(x|.%7) = %log (27‘[60“3‘ ,/) an

which is a monotonic function of the variance and can be obtained from
Eq. (2). Therefore, instead of solving Eq. (10) in one operation, a greedy
algorithm can be adopted to make the observations sequentially. In this
approach, at each step, given the indices of the points labeled previ-
ously, the unlabeled point with the highest variance is picked for label
query [27].

The most uncertain areas in a fitted GP are the boundaries of the
input domain. Therefore, picking the inputs where they are most un-
certain about each other is also equivalent to placing the observations on
the boundary of the input domain. Since every observation can improve
the prediction uncertainty for queries within close proximity of its input,
selecting the samples on the boundaries wastes a great portion of the
observation information [28]. This issue is more pronounced in
high-dimensional datasets.

2.2.2. Standard mutual information (MI) method

To adjust the problem of boundary preference in the ALM method, it
was proposed to maximize the MI between observed and unobserved
samples, rather than focusing on maximizing the entropy only for the
selected inputs [28]. This approach finds a set of samples such that the
entropy of the training set is maximized while the entropy of the testing
set is minimized. Intuitively, this approach gathers the most diverse and
information-rich samples for training and keeps the common datapoints
in the testing set. This set can be obtained by solving the following
equation
o = argmaxH( 7'\ — H(7'\A|L) 12)

o/ ACT

which is equivalent to maximizing the MI, I(A; 7"\.+7), between set .«/
and the rest of the samples 7"\.«/. Analogous to Eq. (10), this problem is
NP-complete. To reduce the complexity, an approximation approach
was proposed in [28], where a greedy algorithm finds a suboptimal
subset .o/ in poly-time. At each step, this algorithm picks the samples
that increase the MI the most. After a few simplifications, the following
equation can be used to pick the sample x at each step

argmax H (x|.o/) — H(x\@) 13

X x€7\A

where 7°\(A Ux) is denoted as .«/. The first term in Eq. (13) is similar to
the greedy entropy rule in Eq. (11), but the second term biases the
objective towards the center of the input space. This algorithm is
guaranteed to perform within a constant factor approximation of the
problem in Eq. (12). However, the bottleneck is the computation of E’Tl/
in Eq. (2) for all the samples in 7"\A. This brings the computing
complexity to @(hn*), which is still impractical for large datasets
(n > 1000).
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Algorithm 2
MI with adaptive local kernels (MI-ALK).

Input:
Covariance function K,h, 7",¢ € (0,1)
Output:
The set of recommended cases ./C 7~
Begin
1 A =¢
2 Initialize 6 randomly
3 forjin {1, 2, ..., h}:
4 Xy =Kg(7,7)
5 A =Ky(x,x) x €
6 X" = argmax H(x|/) — H;(x| 7"\ (/ UX))
x€ 7\,
7 o =/ UX
8* 6 = argmaxlogp(y ,|.«/,0)
9* label in?erence for 7°\A using Eqs. 1 and 2

* These lines are a part of GPR algorithm in general.

2.2.3. Mutual information with local Kernel (MI-LK)

To further improve the computational efficiency, it was suggested
that only local kernels be considered in the calculations. In positive
covariance functions, correlations between datapoints decay with dis-
tance, and datapoints located far from each other are practically inde-
pendent [28]. Therefore, we can assume H(x|.%/) ~ H,(x|.%), where .2 is
obtained from removing all elements x from ./ if |[K(x,x )| < ¢ for a
small ¢. It was shown that for d = |%|, the computing complexity re-
duces to @(nd® + hn + hd*). To limit the computing complexity to a
certain level, the size of the local kernel matrix, d, can also be restricted.
This implementation enforces a limit on the maximum number of local
neighbors for each x* such that |[N(x";¢)| < d. The local kernels algo-
rithm suggested in [28], referred to as MI-LK hereafter, is shown in
Algorithm 1.

One of the shortcomings of the formulation of the MI-LK algorithm is
that the process should take place before the label observation starts. In
this algorithm, the vector é contains the values of local MI based on the
defined kernel parameters. Since the scale of § is retained in the
sequential process of this algorithm, and only parts of it are updated in
each step, a set of constant hyperparameters should be used throughout
the process. Therefore, it is not feasible to update the kernel hyper-
parameters for calculating MI values as new labels are seen in the
learning procedure.

3. MI with adaptive local Kernels (MI-ALK)

In practice, the hyperparameters are rarely known before seeing any
labels and are continuously updated by MLE as new labels are observed.
It has been shown that by using the updated hyperparameters in each
step of the standard MI procedure, the sampling performance improves
significantly [38]. In this study, we modified the LK formulation to
enable the possibility of adaptable kernels to the hyperparameters’
changes. The proposed adaptive local kernels method, referred to as
MI-ALK, keeps the computing complexity within the practical ranges
and does not require the known hyperparameters before seeing any

u(t): displacement

-

k: stiffnes
stiffness F(f): external force
C: damping

Z: resisting force

Fig. 2. The non-linear damped SDOF system setup.
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instances. Algorithm 2 shows the steps of the procedure.

In contrast to the LK algorithm, the ALK does not rely on the initial
hyperparameters, and an arbitrarily chosen initial # vector does impact
the algorithm’s performance. The algorithm starts with the allocation of
a null set to .7 and iterates through lines 3 to 9 for a maximum number
of h iterations. In each iteration, the covariance matrix is updated with
the new hyperparameter set obtained from MLE based on the observed
labels. To keep the close neighbors of x in the calculations of the local
kernels, we define a parameter 1 as a percentage of the maximum cor-
relation by multiplying the coefficient ¢ to the autocovariance of any
datapoint in the dataset. Line 6 is responsible for the determination of
the most informative point given the set of training points .2/. To avoid
large sets of N(x; ¢), at this step, a limit can be imposed on the maximum
number of neighbors. The label is queried for the selected point, and 6 is
updated through MLE in line 8. It should be pointed out that lines 8 and
9 are essential parts of any sequential GPR procedure and are not spe-
cific to this algorithm. We only use the results of the MLE in line 8 to
improve the covariance calculations in our datapoint selection with MI.
Depending on the approach for limiting the number of neighbors, the
computing complexity of this algorithm is always < #(nhd®).

3.1. Concept validation on a non-linear system response prediction

In order to validate the improvement of the active sample selection
quality with the proposed adaptive kernels method, the LK and ALK
algorithms are compared on predicting the maximum response of a
simple non-linear SDOF system in this section.

Numerical Model Formulation: A Bouc-Wen (BW) model is used to
generate a dataset with multiple input parameters determining the
shape of the hysteresis cycles of the SDOF system. BW is a phenome-
nological model that is experimentally validated and shown to be able to
capture the nonlinear behavior of inelastic steel material [52, 53]. The
BW formulation is based on the displacement u and the restoring force of
the SDOF system z as [54]

£= o [ (e il 1) | -

where 17,A,v,f,7, and wdetermine the shape of the hysteretic behavior of
the system. Rearranging the parameters, we have:

¢ = syt — (sa2lel il + 5520 as)
where
A
s = |:S1:—7 Sz:v;ﬂ, 53:K7 S4:W:| (16)
n n n

It has been shown that the acceptable range of parameters for vector s
should be

{s € R%s; >0, s3] < 52,5 > 1}. a7

Based on this model, the equation of motion for a non-linear damped
SDOF system as shown in Fig. 2 can be formed as

mii + cii + ku +z = F(t) (18)

where m, ¢, and k are system’s mass, damping, and stiffness, respec-
tively, and F(t) is a function of time that corresponds to input loading.

To generate the dataset, system parameters m, ¢, and k are considered
to be the same among generated models, and only the parameters in
vector s are randomly chosen to populate the dataset. The values
considered for these parameters are shown in Table 1.

Training set generation: The input loading to the system is set as F(t)
= 2cos(t) over the time interval t € [0, 10]. The maximum displacement
response of the system, mtaxu(t) is considered as the output label for
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Table 1
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System parameters used for generating the SDOF dataset. The symbols in parentheses indicate the corresponding lengthscale in the GPR model.

m

c

k

s1 ()

sz (I2)

s3 (ls)

4 (la)

51’ (Is)

Sz/ (16)

N; ()

N2 (Is)

1.0

0.2

1.0

~ %(0.5, 2.5)

~ (0, 1)

~ (0, 1)

~ (1, 2)

s1+~.47(0, 0.0025)

sa+~.77(0, 0.0025)

~ 170, 1)

~. (0, 1)

10 — — :

MLE (log 6,)
[w=]
lei

-10 1

¥ distribution e optimum

Fig. 3. Converged hyperparameters for the SDOF dataset using MLE.

prediction. We generated 400 realizations based on the random pa-
rameters described in Table 1. At this point, the dataset entails the four
parameters of the vector s as input and the maximum displacement as
output for every realization. However, the input dimensions mentioned
thus far are direct variables of the system, and they are all influential in
the output of the system. In practical applications, however, unimpor-
tant or even pure noise dimensions might be present in the dataset.
Therefore, to introduce noise in our dataset, copies of the parameters s;
and s, contaminated with a zero-mean Gaussian noise of variance
0.0025, referred to as s; and s,, along with two independent Gaussian
noise variables with .77(0, 1), referred to as N; and N, are added to the
dataset. Consequently, the total number of the input dimensions in-
creases to eight, as shown in Table 1. Similarly, a Gaussian noise of
variance 0.0025 is added to the labels.

Testing scenarios: The hyperparameter vector € is used in the
calculation of the covariance matrices in the MI procedure, as shown in
Eq. (3). Therefore, providing an optimally chosen @ for covariance cal-
culations can improve the performance of MI. However, in a sequential
learning scheme, € is not known before seeing any labels. Therefore, to

6. In case 2, 0 is determined based on the optimized hyperparameters
from MLE by considering the entire dataset in training. To identify the
optimal hyperparameters, the MLE is run for 100 trials with random
seeds, as shown in Fig. 3. The distributions of the converged values for
the SDOF system are shown in Fig. 3 over 100 trials. The converged
hyperparameter set, which yields the largest MLE, marked with blue
dots in Fig. 3, is considered as the optimum value. The outcomes of the
algorithms based on this @ are called MLE optimized 6.

Observing the obtained lengthscales for the 8 input dimensions of the
dataset, it can be seen that smaller values are assigned to the first four
dimensions, I; to 14, compared to Is and ls. This is expected since the
latter dimensions are contaminated with noise, and larger lengthscales
indicate a lower impact on the inference. This effect is magnified for
dimensions I; and Ig which are pure Gaussian noise variables.

The lengthscales are not known before seeing any labels, and
therefore, active learning algorithms need to start with arbitrarily cho-
sen initial @, which is often a vector of constant values. If the active
learning algorithm is not able to update the hyperparameters as new
labels are seen, it will consider the same level of importance for every
dimension of the dataset throughout the learning procedure, which re-
sults in suboptimal performance.

Learning configuration: To be consistent with the regional damage
assessment conditions where a pool of buildings is available and the
reconnaissance team needs to choose from that pool, a transductive
learning approach is pursued in this paper. In this approach, samples are
selected from a pool of datapoints for label queries, and the outputs of
the remaining samples in the same pool are predicted. To have mean-
ingful results, each algorithm is run 100 times on 80% of the dataset,
called 7 g0, which is chosen randomly with different seeds. To have a
fair comparison between all algorithms, it is better to include the
training set in the prediction evaluations in order to reduce the effect of
different testing sets on the results [43]. Therefore, the true labels of the
training points are considered as the predictions for those points, and
accuracy is calculated for all the points in the chosen 77g.

For all scenarios mentioned above, the active learning algorithm
chooses the samples sequentially using ¢ = 0.01 K(.,.) and d = 50. The
accuracy of the predictions is evaluated using the standardized mean
square error (SMSE) as

demonstrate the impact of # on the sampling performance, the algo- (28 (s — y.ﬂ.))2
rithms are tested with two different sets of initial 8. In case 1, for all SMSE(u:, y+) = . var(y+) a9
realizations, the vector is chosen as @ = [1,---,1]; , ;;, called arbitrary
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Fig. 4. The improvements in predictive performance for the SDOF dataset under different active learning scenarios. (a) and (c) show MI-LK results, while (b) and (d)

present MI-ALK outcomes.
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where each station is assigned to its nearest buildings.

Table 2
List of features and labels for the regional damage assessment dataset.

Building variables Earthquake indices

Damage indices

Feature Range Feature

Floor area (m?) [25, 17723] Sa(T1) (cm/s)

Year of built [1900, 2018] Arias

No. of stories [1, 14] Fajfar

Occupancy type 5 types Inter quantile range
Longitude [-149.7, -150.0] Kurtosis

Latitude [61.0, 61.2] Spectral intensity

Range Label Range
[93.3, 1323.9] Max floor acceleration (m/s?) [1.6,7.5]
[486.9, 4490.7] Interstory drift ratio [0.0, 0.02]
[4.3, 20.7] Residual roof displacement (m) [0.0, 0.01]
[0.0, 0.2] Unsafe placard probability [0.0, 1.0]
[11.8,110.1] Economic loss ratio [0.0, 0.9]

[357.1, 1156.3]

and also, the correlation coefficient (CC) between the predicted and true
labels as

crn- SR )

where SD indicates the standard deviation of the random variable.

Comparison and results: The performance of the algorithms is
compared based on the initially feeded @ in Fig. 4. This figure shows the
median improvement of the prediction accuracy after the 10" sample is
observed. Also, the values of the area under the curve (AUC) are shown
to quantify the performance measurements.

Considering Fig. 4 (a) and (c), it can be seen that the LK algorithm
can perform significantly better if optimal hyperparameters are used
through the learning procedure. However, in the case of arbitrarily
chosen hyperparameters, the samples selected by the algorithm delay
the convergence of the GPR. At the same time, Fig. 4 (b) and (d) show
that the MI-ALK performs almost independently of the initial hyper-
parameters and provide samples that allow GPR to converge earlier.
Comparing the AUC values in Fig 4 (c) and (d), it can be inferred that
while the MI-LK performance improves about 20% if optimal hyper-
parameters are used, the MI-ALK changes only about 5% as a result of
the different initial hyperparameters. Furthermore, comparing the cases
with optimal initial @ between the algorithms, it is observed that MI-ALK
presents lower AUC, which indicates better performance.

4. Regional Earthquake Impacted Building Damage Simulation
Testbed

The application of the proposed data sampling method to a practical

example is studied in this section. The case study consists of a simulated
earthquake scenario using the rWHALE program provided by the Sim-
Center at NHERI [41]. The simulation is aimed at estimating the seismic
damage and loss for individual buildings at a city scale. SimCenter
designed a customizable workflow to streamline the risk assessment
procedure. The workflow is briefly explained, and the earthquake test-
bed is described subsequently.

The workflow starts with gathering basic building information and
creating a building inventory. The basic building information such as the
number of stories, year built, floor area, structural type, etc., and other
parameters such as the first vibration period suggested by [55] for
typical building types are used to create an MDOF shear model for each
building. The input ground motions to the MDOF models are chosen
according to the geographical location of the buildings. A time history
analysis is then performed to obtain the engineering demand parameters
(EDP) such as maximum acceleration, drift ratio, and residual
displacement. Once EDPs are calculated, a loss estimation procedure,
adopted from the FEMA-P58 [56] guidelines, is followed, and the
building’s economic loss ratio along with repair time, repair cost, unsafe
placard, etc., are calculated. More details regarding each step in the
workflow are available at [41].

Anchorage M7.1 earthquake scenario: Anchorage, AK, experienced a
magnitude 7.1 earthquake on November 30", 2018. This event is
simulated in this scenario. Ground motions recorded by 38 strong-
motion recording stations throughout Anchorage are obtained from
[57] and are used as input to the models of 97 k buildings (Fig. 5). The
nearest neighbor algorithm is used to assign a ground motion to a
building. To keep the visualizations optimal, 10 k buildings are
randomly selected for this study.
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Table 3

The studied learning methods and associated parameters.
Algorithm Training steps € d No. of Random Testing Realizations
RND 10:10:200 - 64 (random 77gg)
ALM 1:200 - 64 (random initial @ and 7 g)
MI-LK; 1:200 1072 x K(.,.) 100 64 (random initial @ and 7 gp)
MI-LK, 1:200 1075 x K(.,.) 800 64 (random initial @ and 77go)
MI-ALK; 1:200 0.999 100 64 (random initial # and 7go)
MI-ALK, 1:200 0.95 300 64 (random initial @ and 7 go)

4.1. Data description

Each of the 10 k datapoints consists of basic building information and
various earthquake intensity indices. In total, six variables are consid-
ered for each building, and six features are derived from ground motion
signals. The labels are chosen from the typical EDPs of buildings to
reflect different types of damage. While maximum absolute floor ac-
celeration contributes to most non-structural damages in earthquakes,
maximum drift ratio is an indicator of structural damage [58]. Also, the
residual displacement is a proper measure for the repairability of the
structure. Moreover, the economic loss ratio and the probability of un-
safe placard of the building are computed as a result of the mentioned
EDPs and are correlated to the total damage state of the building. The list
of all features and labels is shown in Table 2. It should be noted that the
occupancy type of buildings is a categorical variable and is one-hot
encoded in the input.

4.2. Learning configurations

To assess the performance of the proposed algorithm in both
computational complexity and prediction accuracy, a number of
learning configurations are considered for comparison as follows:

RND: A batch learning approach with a random selection of the
training set is assumed as a baseline for comparison with the active
learning methods. This method is commonly used in general supervised
learning applications.

ALM: As a simple greedy method, ALM is considered as the basic
active learning approach in GPR. Although the computational
complexity is very low, the predictive performance may not be great for
high-dimensional datasets.

MI-LK: The local kernels method (explained in Algorithm 1) helps the
implementation of the MI criterion on large datasets by removing the
less important datapoints from the covariance matrices. To keep the
computing complexity at a certain range, for this problem, different
values of d and ¢ are considered for the calculation of the local covari-
ance matrices. The kernels are calculated with randomized parameters
of initial @. Also, the independent noise 62 is considered to be 10~* for all
cases for better stability in the Cholesky decompositions.

MI-ALK: The adaptive local kernels method, proposed in this study,
performs similarly to the MI-LK algorithm with the advantage of using
label data to update the kernel space after each label query. In contrary
to the MI-LK method, ¢ is determined as a large percentage of the
updated autocovariance. Similar to the MI-LK algorithm, both ¢ and d
are altered for different computational demands and accuracy.

The summary of the considered algorithms, along with their
parameter configurations, is shown in Table 3. For both MI-LK and MI-
ALK algorithms, the two variants are chosen, such that the first repre-
sents an algorithm’s fast performance while the accuracy might be
compromised, and the second variant sets the parameters ¢ and d for
larger and more flexible kernel matrices, which results in greater
computational demands and higher predictive performance.

Since damage inspections during a short period after the occurrence
of an earthquake cannot be performed in abundant numbers, the
maximum training data size is considered to be 200 for this case study.

The RND method is performed using increasing training set sizes at in-
crements of 10. The active learning methods are assessed through a
sequential approach where one label is queried at each step. In general
machine learning applications, cross-validation of the training set is a
suitable tool to provide insight into the performance of a model on the
test set. However, cross-validation results may not be used as a fair
measure to compare active learning methods. These methods tend to
maximize the diversity of the selected samples in the training set and
hence are expected to return poor cross-validation scores. In fact, it is
highly likely that a random sampling approach scores higher cross-
validation results compared to active learning methods, which is
certainly not seen when evaluating the performance of the models on the
testing set. Therefore, the evaluation of the algorithms’ performances
are done in the same way as the demonstrative example in Section 3.1; a
transductive learning on the 7gq set. Also, to reduce the dependency of
the results to the initial & and the pool of data, for every configuration,
64 realizations with random 7 gys and initial fs are performed.

5. Inference performance, computational efficiency, and
discussion

The damage inference performance is evaluated based on several
measures in this section. First, the levels of representativeness for sam-
ples suggested by each algorithm are presented. Second, the impact of
the active learning algorithm on the accuracy of the predictions and the
number of samples required for the GPR to infer with acceptable per-
formance is evaluated. And third, the computational demands of the
algorithms are compared.

5.1. Representativeness

A key factor in understanding the advantages of the sampled data in
an active learning algorithm is the representativeness of the training
data for the entire testing pool. Considering Eq. 1, it can be inferred that
GPR predicts each new label by calculating a weighted average of the
previously observed labels. The weights are calculated in the covariance
matrix, and training points closer to the desired testing point have
greater covariances. Therefore, one could expect higher predictive
performance if testing points had closer representatives in the training
set. To obtain a training set with high representativeness, an active
learning method should select samples that improve the prediction ac-
curacy of a large number of unlabeled datapoints located in close
proximity to the selected samples [59].

To find the maximum similarity of a testing point to any point in the
training set, we measure the covariance of each testing point to its
closest point in the training set. The closer the measured correlation is to
unity, the more similar a point is to its representative in the training set.
The maximum similarity of the testing point x” at step h of the training
procedure can be obtained from the following equation

COViax (x°),, = max K(x',x;) 21

ies/(1:h)

where .o/ is the set of all training points. The final set of identified
hyperparameters are used for covariance calculations in Eq. 21.
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Table 4
The average percentage of testing points with maximum similarity less than 0.5
among training points at step h = 50.

Algorithm ALM MI-LK, MI-LK, MI-ALK; MI-ALK,
Label 1 0.17 7.87 4.31 0.95 2.68
Label 2 0.00 2.70 2.39 0.11 0.10
Label 3 35.87 6.79 5.92 2.08 2.30
Label 4 0.24 3.47 2.92 0.08 0.53
Label 5 0.74 1.16 0.51 0.08 0.23

In this section, firstly, we use a random batch sampling approach to
demonstrate the effect of representativeness on the prediction accuracy.
To measure the prediction accuracy from a sensible point of view for
individual datapoints, the Relative Difference (RD) formula is used as

RD (., y+) = - =yl (22)

T max(p., y+)

Fig. 6 compares the prediction accuracy for testing points when GPR is
trained on randomly selected training sets of size 200 over 64 re-
alizations. The normalized Covn.x is used to differentiate the well-
represented testing points from the under-represented ones. The re-
sults shown in Fig. 6 indicate a positive correlation between the level of
representativeness and prediction accuracy. Based on this observation,
we can state that an under-represented testing point is more likely to be
predicted inaccurately than a well-represented testing point. Therefore,
the Covmax criterion can be used to assign a level of confidence to the
prediction of a testing point when true labels are unknown.

Observing the effect of representativeness on prediction accuracy,
we move on to compare the training sets sampled by active learning
methods based on this criterion. Representativeness is calculated at each
step of the active learning for all the points in the testing set to provide a
better intuition into the behavior of each method. To obtain a smooth
curve that shows the distribution of the Covy,.x for all testing points, a
normal distribution curve with ./ (CoViax(x"),,0.01) is considered for
every testing point x*, and the summation of all the individual curves is
considered as the distribution of the maximum training-testing simi-

larity. Since the domain of similarity is limited to [0, 1], a truncated
normal distribution should be considered where the probability density
function (PDF) can be calculated as

()

/ 1
PDF(Q;Mvo-vpmimpmax ):_ v 7 (23)
c <D</'nm” —u ) _ q)(pm.n;;« )
where 4 is the mean, ¢ is the standard deviation (SD), p;, and
Pmax define the domain of the variable p_;, <a <p_.., and
#6) = =ewn( 57 29
=—exp| —=¢ ),
var T\ 2
o(e) 1<1+ f( ¢ )) 25)
== err| —= .
2 V2

Therefore, to obtain a smooth spike at the location of the maximum
covariance for the testing point x", we calculate the PDF as

4) (a—Cava (" )/,)
. 1 0.01
PDF(a; CoVipax(x'),,,0.01,0.1 ) =—

0.01 1—Covinax (x"), 0—Covimax (x"),,
(D( 0.01 L) - @ DXTR

(26)

and to obtain the distribution of the maximum covariances for all testing
points at step h, we have

n

PDF(Covanx(X');) = % > PDF(Covaa (x7),)

i=1

27)

where n is the total number of testing points. Finally, this procedure is
repeated for every realization and averaged over all realizations, so we
can rewrite Eq. 27 as:

1 "

PDF(Covpy (X)) = - Z PDF (Covax (x;),); (28)

j=1 =1
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Fig. 8. The rate of improvement in the representativeness of the training points for each method.

where n' is the number of realizations. Eq. 28 is used for each active
learning configuration in Table 3 and for all labels.

The calculated PDFs at step h = 50 of each algorithm are shown in
Fig. 7 to characteristically compare the obtained similarities of each
algorithm at the early steps of the training procedure. The differences in
the density of the curves on small similarity ranges are noticeable be-
tween MI-LK and MI-ALK variants. MI-LK variants present higher den-
sities in the similarity range of [0, 0.5] for all five labels, which indicates
that a higher percentage of testing points are located within this range.
We consider these points as poorly-represented in the training set. To
quantitively compare the algorithms, the percentage of the poorly-
represented points at step h = 50 of the training procedure are shown
in Table 4. Comparing MI-LK with MI-ALK variants, it can be seen that
the percentage of poorly-represented testing points is between 0.08%

10

and 2.68% for MI-ALK, while this percentage is between 0.51% and
7.87% for MI-LK. It should be noted that although ALM seemingly
presents good results from this point of view, on average, about 70% of
the testing points are located below the 0.9 similarity level, and thus,
ALM still performs poorly considering the percentage of the very well-
represented testing points. This percentage is about 20% for MI-LK;
and MI-ALK; and about 16% for MI-LKy and MI-ALKo.

To visualize the variations of the PDFs based on the arrival of the new
labels, the obtained PDFs for each step of the training procedure are
stacked side by side to form a 2D image and present the variations of the
distribution of the maximum similarity for every configuration. Fig. 8
shows the progress of the maximum similarity during the training pro-
cedure. In this figure, the shaded areas show the PDFs from the top,
where a darker color indicates a smaller probability density. It can be
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SMSE

2
R _MIfALK1

. MIALK,

50

100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 2000 50 100 150 200
Training size Training size Training size Training size Training size
Label 1 Label 2 Label 3 Label 4 Label 5
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Table 5
Additional sets of ¢ and d for computational comlexty comparison.
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7
£x Kpo(.,.) 107! 1072 1073 1074 1075 10°¢ 1077
MI-LK
d 100 200 300 400 500 600 700
3 0.9999 0.999 0.99 0.98 0.97 0.96 0.95
MI-ALK
d 50 100 100 150 200 250 3000

seen that in all configurations, the mean of the PDFs, which is shown by
a dashed line, increases as new points are added to the training set.
These modifications are stemmed from the increase in the number of
testing points having close representatives, which improves the training-
testing similarity.

Considering the shaded areas, we notice light-colored horizontal
strips on the images for the MI-LK methods that are stretched through
the training procedure. These strips indicate a high density of low-

11

represented testing points. Although the strips are present in MI-ALK
configurations in Labels 2 and 3 as well, they fade away before reach-
ing 50 training points, while they continue well above 150 training
points in MI-LK configurations. Furthermore, considering Label 1, nar-
row white bands at the bottom of the images for MI-LK; and MI-LKj are
observable and highlighted with red rectangles. For instance, on
average, after labeling 100 training points, about 3% of the testing
points with MI-LK; and 1% of testing points with MI-LK; still have
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Fig. 12. Processing times required for each learning method to reach to the maximum training size limit. The x-axis displays the predictive performance in terms of

AUC SMSE.

almost zero similarity to any points in the training set. We can also
notice the slower rate of progress in similarity for the ALM method. For
instance, using ALM for the prediction of Label 3, Fig. 8 shows that PDFs’
mean improves at a slow rate and even after observing 150 labels, about
37% of testing points have a maximum similarity below 80%.

For a better quantitative comparison, the mean and SDs of the PDFs
are shownath = 50, h =100, and h = 150 of the training procedure in
Fig. 9 and Tables A1 and A2. Compared to ALM, the higher PDFs’ means
and thus better representatives in the training set are observable with all
MI methods. Also, assessing the three training steps, it can be seen that
compared to MI-LK, the mean values are higher, and the SDs are smaller
in MI-ALK variants. For instance, considering the 100t step of training
for Label 3, the mean and SD of maximum similarity are at 0.93 and 0.15
for MI-LK;, respectively, whereas they are at 0.97 and 0.07 for MI-ALK;.
It can be inferred that MI-ALK; has found similar representatives for a
higher percentage of testing points. It is worth noting that from the
representativeness point of view, the improvements are less significant
when parameters are tweaked within each algorithm.

5.2. Predictive performance

To compare the predictive performance across learning methods,
SMSE and CC are calculated between the predicted labels and true la-
bels. Figs. 10 and 11 show the calculated median of the progress of the
predictive performance over all realizations as labels are queried for new
samples in terms of the SMSE and CC, respectively. In these figures,
methods that converge to an accuracy level with a smaller number of
training points are preferred. It can be seen that as expected, the ALM
method performs poorly compared to the other methods due to the is-
sues stated in Section 2.2. The results of the random selection method
(RND) are shown as error bars for each batch size. The error bars indi-
cate the 0.25 and 0.75 quantiles, and it can be seen that high variations
exist in the predictive performance of Label 3. These variations indicate
the highly non-linear underlying function and vulnerability of GPR to
the selected training data for this label. At the same time, variants of the
MI-LK method perform considerably better than the RND method for
Labels 1, 3, and 5. The MI-LK; shows less appealing results in the pre-
diction of Labels 2 and 5. Although prediction results are improved with
increasing the limit d and reducing ¢ in MI-LKj for all labels, both var-
iants of MI-LK experience unstable predictions for Label 3.

At the same time, compared to MI-LK, the two variants of MI-ALK
present significantly better results for Labels 2, 3, and 5, and converge
after observing ~75 training points. The performance is comparable in
Labels 1 and 4 between MI-ALK; and MI-LK», although the latter re-
quires a much higher limit for the covariance matrix size d.
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5.3. Computational complexity

At the same level of importance as the predictive performance,
computing complexity should be evaluated for the proposed method.
Computing complexity can be referred to as the total time demand of an
algorithm as well as the memory requirements. In this study, the
memory concerns are relieved by limiting the maximum number of local
neighbors for both MI algorithms. However, one should be careful if
using the standard greedy MI algorithm suggested in [28], as the
inversion of large matrices is required. The focus of the computing
complexity measurement in this study is the total processing time
required by each method. To this end, a finer set of ¢ and d values are
considered for MI-LK and MI-ALK algorithms to present the improve-
ments in accuracy versus the time complexity. The additional sets of ¢
and d are shown in Table 5. Realizations are performed with parallel
programming in Matlab and are run on Intel Xeon Skylake nodes with 32
cores each, allocated by the center for high performance computing
(CHPCQ) of the University of Utah. The timings include the total time
required by the sample selection procedure as well as the prediction
steps until the maximum number of training points are selected.

Fig. 12 compares the processing times opposed by the predictive
performance for each method. To quantify the predictive performance,
the area under the curve (AUC) of the mean SMSE graph is calculated for
each realization [43]. The calculation of the AUCs starts at step 75,
which is roughly the step that algorithms converge and present mean-
ingful results. Also, for each method, the median value is shown with a
larger marker in Fig. 12.

Comparing the results shown in Fig. 12, it can be seen that in all label
predictions, the maximum accuracy obtained from MI-ALK is equal or
higher than MI-LK. At the same time, this high accuracy is obtained with
a better time complexity compared to the MI-LK’s best performance.
Comparing the median AUC SMSE for case 7 of both algorithms, the
maximum performance of the MI-ALK algorithm is 4%, 47%, 32%, 3%,
and 37% higher than MI-LK for Labels 1 to 5, respectively. At the same
time, the computational complexity of the MI-ALK for these labels is
25%, 7%, 16%, 14%, and 11% lower than MI-LK, respectively. Finally,
at almost the same levels of computing complexity, it can be seen that
case 1 of MI-LK performs significantly better than the ALM method.

5.4. Discussion

The proposed active learning method enables the GPR algorithm to
be implemented in the damage assessment of buildings after an earth-
quake. This algorithm reduces the inspection costs by avoiding unim-
portant buildings and performs efficiently by finding close
representatives for the buildings in the region. Therefore, in a progres-
sive approach, the damage level of all buildings can be inferred with
high accuracy.
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Although the proposed algorithm provides more informative samples
for the GPR algorithm and expedites the improvements of performance,
it requires higher computational demands compared to the LK algorithm
for identical ¢ and d parameters. This extra computation is well justified
when label query comes at high expenses, such as in the regional
damage assessment problem. In other words, to achieve the same level
of predictive performance, we may identify the samples in a short time
using the MI-LK algorithm and spend a certain amount of time querying
the labels or identify fewer but more informative samples using the MI-
ALK algorithm and consequently spend less time in the label query
process. The fewer number of label queries can reduce the overall
learning expenses and compensate for the extra computational demand.

Considering Figs. 10 and 11, although the gap between the results of
LK and ALK methods diminishes after 200 training points for Labels 2, 3,
and 4, the final accuracy of the ALK is still higher in Labels 1 and 5. In
this article, we assumed a budget for 200 training points. However, if the
limit were anywhere between 50 to 150 training points, the final pre-
dictive performance of the ALK method would be significantly higher
than LK in Labels 2, 3, and 5. The urgent demand for the reconnaissance
data and the limitation of resources in the aftermath of an earthquake
can cause such limitations, and therefore, a method that is known to
provide higher performance using fewer damage inspections is
preferred. The ALK method can train a more powerful surrogate model
under those limitations, which subsequently leads to a more accurate
estimation of the overall loss after an earthquake.

Finally, it is worth noting that the processing times shown in Fig. 12
are obtained when 32 realizations were run simultaneously in parallel.
In a real-world scenario, a single realization on a laptop or PC with
higher CPU clock speeds compared to the CHPC nodes (2.1 GHz) will
require significantly shorter processing times. In fact, the calculations
required for sample selection with MI-ALK; on an Intel Core i5 7500 CPU
only adds about ~4 seconds of computational overhead at each step.
Therefore, without the need for strong workstations, the method can be
applied on the go following the occurrence of an earthquake.

6. Conclusion

A new active-learning procedure is formulated to adaptively select
and infer the post-seismic building damage in an impacted region.
Through a non-linear SDOF response prediction test, it was concluded
that updating the hyperparameters used to create the kernel matrices
utilized by the MI formulation after observing new labels can adjust the
sample selection by reducing the effect of the unimportant data di-
mensions. The key contributions and findings of the manuscript are
described in the following:

e The adaptable formulation of the local kernels strategy based on the
information-theoretic measure of mutual information could sub-
stantially improve the sample selection phase of the learning
procedure.

Through a simulated earthquake testbed, the performance of the
proposed MI-ALK method was compared with the standard MI-LK
method for the sample selection of 5 different damage indicators.
It was shown that the predictions obtained by MI-ALK converge to
acceptable levels of accuracy using fewer training points. Further-
more, the instability of predictions with the observation of new la-
bels was reduced with MI-ALK.

Compared to MI-LK, the samples selected by MI-ALK could cover the
domain of input faster and were better representatives of the pool of
unlabeled samples.

The improvements in performance were observed while the MI-ALK
performed at lower computational demands. For the labels consid-
ered in the regional damage assessment study, the performance of
the MI-ALK showed improvements of up to 47% while reducing the
computational demands up to 25%.

13

Reliability Engineering and System Safety 215 (2021) 107915

CRediT author statement

Mohamadreza Sheibani, Conceptualization, Methodology, Formal
analysis, Validation, Writing- Original draft preparation

Ge Ou, Supervision, Conceptualization, Writing- Reviewing and
Editing, Funding acquisition

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This material is based upon work supported by the University of
Utah, and the National Science Foundation under award numbers
2112758 and 2004658. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

Appendix

Tables A1 and A2.

Table Al
Mean values of the maximum similarity distribution at different training steps
for each algorithm.

Algorithm  Training step  Label 1 Label 2  Label 3 Label 4  Label 5
50 0.83 0.84 0.62 0.89 0.82
ALM 100 0.88 0.91 0.74 0.91 0.89
150 0.91 0.95 0.84 0.92 0.93
50 0.88 0.95 0.88 0.94 0.95
MI-LK; 100 0.93 0.97 0.93 0.96 0.97
150 0.94 0.97 0.94 0.96 0.98
50 0.91 0.96 0.89 0.95 0.97
MI-LK, 100 0.94 0.98 0.93 0.97 0.98
150 0.95 0.99 0.95 0.97 0.98
50 0.90 0.97 0.91 0.96 0.97
MI-ALK; 100 0.93 0.99 0.97 0.97 0.99
150 0.95 0.99 0.98 0.98 0.99
50 0.90 0.98 0.93 0.96 0.98
MI-ALK; 100 0.94 0.99 0.97 0.98 0.99
150 0.95 0.99 0.98 0.98 0.99
Table A2

SDs of the maximum similarity distribution at different training steps for each
algorithm.

Algorithm  Training step  Label 1 Label 2  Label3  Label4  Label 5
50 0.11 0.10 0.22 0.08 0.11
ALM 100 0.09 0.07 0.20 0.07 0.08
150 0.07 0.05 0.16 0.06 0.06
50 0.23 0.13 0.20 0.16 0.11
MI-LK; 100 0.19 0.13 0.17 0.15 0.09
150 0.18 0.10 0.16 0.14 0.08
50 0.19 0.12 0.18 0.14 0.07
MI-LK; 100 0.16 0.08 0.15 0.12 0.06
150 0.14 0.05 0.12 0.10 0.06
50 0.12 0.05 0.14 0.06 0.05
MI-ALK; 100 0.09 0.02 0.07 0.04 0.02
150 0.08 0.02 0.05 0.03 0.02
50 0.14 0.05 0.14 0.08 0.06
MI-ALK, 100 0.11 0.02 0.07 0.05 0.02
150 0.09 0.02 0.05 0.04 0.02




M. Sheibani and G. Ou

References

[1]

[2]

[3]
[4]
[5]

[6]

[71

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Dehghani NL, Fereshtehnejad E, Shafieezadeh A. A Markovian approach to
infrastructure life-cycle analysis: modeling the interplay of hazard effects and
recovery. Earthquake Eng Struct Dyn 2020.

Pena FJ. Efficient computation of accurate seismic fragility functions through
strategic statistical selection (doctoral dissertation. Purdue University Graduate
School; 2019.

Newmark NM. Probability of predicted seismic damage in relation to nuclear
reactor facility design. Consulting Engr Services. 1975.

Porter K. A beginner’s guide to fragility, vulnerability, and risk. Encyclopedia
Earthquake Eng 2015:235-60.

Ellingwood BR, Rosowsky DV, Li Y, Kim JH. Fragility assessment of light-frame
wood construction subjected to wind and earthquake hazards. J Struct Eng 2004;
130(12):1921-30.

Lupoi G, Franchin P, Lupoi A, Pinto PE. Seismic fragility analysis of structural
systems. J Eng Mech 2006;132(4):385-95.

Erdik M, Sesetyan K, Demircioglu MB, Hancilar U, Ziilfikar C. Rapid earthquake
loss assessment after damaging earthquakes. Soil Dyn Earthquake Eng 2011;31(2):
247-66.

Lu X, Han B, Hori M, Xiong C, Xu Z. A coarse-grained parallel approach for seismic
damage simulations of urban areas based on refined models and GPU/CPU
cooperative computing. Adv Eng Software 2014;70:90-103.

Xu Z, Zhang H, Lu X, Xu Y, Zhang Z, Li Y. A prediction method of building seismic
loss based on BIM and FEMA P-58. Automat Construct 2019;102:245-57.

Xu Z, Lu X, Zeng X, Xu Y, Li Y. Seismic loss assessment for buildings with various-
LOD BIM data. Adv Eng Inf 2019;39:112-26.

Xiong C, Lu X, Huang J, Guan H. Multi-LOD seismic-damage simulation of urban
buildings and case study in Beijing CBD. Bull Earthquake Eng 2019;17(4):2037-57.
Farrar CR, Worden K. An introduction to structural health monitoring. Philos Trans
R Soc, A 2007;365(1851):303-15.

Fan W, Qiao P. Vibration-based damage identification methods: a review and
comparative study. Struct Health Monitor 2011;10(1):83-111.

Ou J, Li H. Structural health monitoring in mainland China: review and future
trends. Struct Health Monitor 2010;9(3):219-31.

Roohi M, Hernandez EM. Performance-based post-earthquake decision-making for
instrumented buildings. arXiv preprint; 2020. arXiv:2002.11702.

Brando G, Rapone D, Spacone E, O’Banion MS, Olsen MJ, Barbosa AR, Faggella M,
Gigliotti R, Liberatore D, Russo S, Sorrentino L. Damage reconnaissance of
unreinforced masonry bearing wall buildings after the 2015 Gorkha, Nepal,
Earthquake. Earthquake Spectra 2017;33(S1). S243-S273.

De Stefano M, Pintucchi B. A review of research on seismic behaviour of irregular
building structures since 2002. Bull Earthquake Eng 2008;6(2):285-308.
Bayraktar A, Altunisik AC, Pehlivan M. Performance and damages of reinforced
concrete buildings during the October 23 and November 9, 2011 Van, Turkey,
earthquakes. Soil Dyn Earthquake Eng 2013;53:49-72.

Shakya M, Kawan CK. Reconnaissance based damage survey of buildings in
Kathmandu valley: an aftermath of 7.8 Mw, 25 April 2015 Gorkha (Nepal)
earthquake. Eng Fail Anal 2016;59:161-84.

Sheibani M, Ou G. Effective learning of post-seismic building damage with sparse
observations. Model validation and uncertainty quantification, volume 3. Cham:
Springer; 2020. p. 365-73.

Sheibani M, Ou G. The development of Gaussian process regression for effective
regional post-earthquake building damage inference. Computer-Aided Civil and
Infrastructure Engineering 2021;36(3):264-88.

Zhang X, Wang L, Sgrensen JD. REIF: A novel active-learning function toward
adaptive Kriging surrogate models for structural reliability analysis. Reliab Eng
Syst Saf 2019;185:440-54.

Yuan K, Xiao NC, Wang Z, Shang K. System reliability analysis by combining
structure function and active learning kriging model. Reliab Eng Syst Saf 2020;195:
106734.

Guo Q, Liu Y, Chen B, Yao Q. A variable and mode sensitivity analysis method for
structural system using a novel active learning Kriging model. Reliability
Engineering & System Safety; 2020, 107285.

Xiao M, Zhang J, Gao L. A system active learning Kriging method for system
reliability-based design optimization with a multiple response model. Reliability
Engineering & System Safety; 2020, 106935.

Kapoor A, Grauman K, Urtasun R, Darrell T. Active learning with gaussian
processes for object categorization. In: 2007 IEEE 11th international conference on
computer vision. IEEE; 2007. p. 1-8.

MacKay DJ. Information-based objective functions for active data selection. Neural
Comput 1992;4(4):590-604.

Krause A, Singh A, Guestrin C. Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. J Machine Learn Res
2008;9(Feb):235-84.

Cohn DA. Neural network exploration using optimal experiment design. Neural
Netw 1996;9(6):1071-83.

14

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

[58]

[59]

Reliability Engineering and System Safety 215 (2021) 107915

Seo S, Wallat M, Graepel T, Obermayer K. Gaussian process regression: active data
selection and test point rejection. Mustererkennung 2000. Berlin, Heidelberg:
Springer; 2000. p. 27-34.

Michaud, 1.J., 2019. Simulation-based bayesian experimental design using mutual
information.

Li Q, Cui T, Weng Y, Negi R, Franchetti F, Ilic MD. An information-theoretic
approach to PMU placement in electric power systems. IEEE Trans Smart Grid
2012;4(1):446-56.

Cao N, Low KH, Dolan JM. Multi-robot informative path planning for active
sensing of environmental phenomena: a tale of two algorithms. arXiv preprint;
2013. arXiv:1302.0723.

Binney J, Krause A, Sukhatme GS. Informative path planning for an autonomous
underwater vehicle. In: 2010 IEEE international conference on robotics and
automation. IEEE; 2010. p. 4791-6.

Van Nguyen L, Kodagoda S, Ranasinghe R, Dissanayake G. Locational optimization
based sensor placement for monitoring gaussian processes modeled spatial
phenomena. In: 2013 IEEE 8th conference on industrial electronics and
applications (ICIEA). IEEE; 2013. p. 1706-11.

Choi HL, Ahn J, Cho DH. Information-maximizing adaptive design of experiments
for wind tunnel testing. Eng Optim 2014:329-34.

Sourati J, Akcakaya M, Dy JG, Leen TK, Erdogmus D. Classification active learning
based on mutual information. Entropy 2016;18(2):51.

Wan J, Athitsos V, Jangyodsuk P, Escalante HJ, Ruan Q, Guyon I. CSMMI: Class-
specific maximization of mutual information for action and gesture recognition.
IEEE Trans Image Process 2014;23(7):3152-65.

Beck J, Guillas S. Sequential design with mutual information for computer
experiments (MICE): emulation of a tsunami model. SIAM/ASA J Uncertainty
Quantification 2016;4(1):739-66.

Mathikolonis T, Guillas S. Surrogate-based optimization using mutual information
for computer experiments (optim-MICE). arXiv preprint; 2019. arXiv:1909.04600.
Lu X, McKenna F, Cheng Q, Xu Z, Zeng X, Mahin SA. An open-source framework for
regional earthquake loss estimation using the city-scale non-linear time history
analysis. Earthquake Spectra; 2020. 8755293019891724.

Guo Y. Active instance sampling via matrix partition. Advances in Neural
Information Processing Systems; 2010. p. 802-10.

Wu D. Pool-based sequential active learning for regression. IEEE Trans Neural
Networks Learning Syst 2018;30(5):1348-59.

Li M, Sadoughi M, Hu Z, Hu C. A hybrid Gaussian process model for system
reliability analysis. Reliab Eng Syst Saf 2020;197:106816.

Sadoughi M, Li M, Hu C. Multivariate system reliability analysis considering highly
non-linear and dependent safety events. Reliab Eng Syst Saf 2018;180:189-200.
Wan HP, Mao Z, Todd MD, Ren WX. Analytical uncertainty quantification for
modal frequencies with structural parameter uncertainty using a Gaussian process
metamodel. Eng Struct 2014;75:577-89.

Tamhidi, A., Kuehn, N., Ghahari, S.F., Taciroglu, E. and Bozorgnia, Y., 2020.
Conditioned simulation of ground motion time series using gaussian process
regression.

Williams CK, Rasmussen CE. Gaussian processes for machine learning. Cambridge,
MA: MIT press; 2006.

Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian process regression:
Modelling, exploring, and exploiting functions. J Math Psych 2018;85:1-16.
Rasmussen CE, Nickisch H. Gaussian processes for machine learning (GPML)
toolbox. J Machine Learn Res 2010;11:3011-5.

Applied Technology Council (ATC). Database on the performance of structures
near strong-motion recordings: 1994 Northridge, California, earthquake. Rep. No.
ATC-38; 2000.

Ou G, Dyke SJ, Prakash A. Real time hybrid simulation with online model
updating: An analysis of accuracy. Mech Syst Sig Process 2017;84:223-40.
Sheibani M, Ou G. A Bayesian optimized framework for successful application of
unscented Kalman filter in parameter identification of MDOF structures. Journal of
Low Frequency Noise, Vibration and Active Control 2021;1. 14613484211014316.
Lu ZR, Yao R, Wang L, Liu J. Identification of non-linear hysteretic parameters by
enhanced response sensitivity approach. Int J Non Linear Mech 2017;96:1-11.
Federal Emergency Management Agency (FEMA). Multi-Hazard Loss Estimation
Methodology, Earthquake Model. HAZUS-MH2; 2012. p. 1.

Federal Emergency Management Agency (FEMA). Seismic Performance Assessment
of Buildings Volume 1-Methodology. Rep. No. FEMA P-58-1; 2012.

Rekoske J, Moschetti MP, Thompson EM, Hearne MG, Tape C. USGS Database of
Ground Motions from in-Slab Earthquakes Near. Anchorage, Alaska: Center for
Engineering Strong Motion Data (CESMD; 2019. https://doi.org/10.5066/
P9Y491AY. 2008-2019.

Alvanitopoulos PF, Andreadis I, Elenas A. Interdependence between damage
indices and ground motion parameters based on Hilbert-Huang transform. Meas
Sci Technol 2009;21(2):025101.

Du B, Wang Z, Zhang L, Zhang L, Liu W, Shen J, Tao D. Exploring
representativeness and informativeness for active learning. IEEE Trans Cybernet
2015;47(1):14-26.


http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0001
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0001
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0001
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0002
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0002
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0002
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0003
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0003
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0004
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0004
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0005
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0005
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0005
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0006
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0006
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0007
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0007
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0007
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0008
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0009
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0009
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0010
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0010
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0011
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0011
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0012
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0012
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0013
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0013
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0014
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0014
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0015
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0015
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0016
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0017
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0017
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0018
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0019
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0019
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0019
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0020
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0020
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0020
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0022
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0022
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0022
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0023
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0024
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0024
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0024
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0025
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0026
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0027
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0027
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0028
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0029
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0029
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0030
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0032
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0033
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0033
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0033
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0034
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0034
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0034
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0035
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0035
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0035
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0035
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0036
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0036
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0037
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0037
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0038
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0038
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0038
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0039
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0039
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0039
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0040
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0040
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0041
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0041
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0041
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0042
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0042
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0043
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0043
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0044
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0044
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0045
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0045
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0046
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0048
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0049
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0050
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0050
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0051
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0052
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0052
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021a
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021a
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0021a
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0054
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0054
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0055
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0055
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0056
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0056
https://doi.org/10.5066/P9Y491AY
https://doi.org/10.5066/P9Y491AY
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0058
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0058
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0058
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0059
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0059
http://refhub.elsevier.com/S0951-8320(21)00431-2/sbref0059

	Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference
	1 Introduction
	1.1 Current practice in damage estimation
	1.2 Regional building damage inference problem

	2 Active learning with gaussian process regression
	2.1 Gaussian process regression
	2.1.1 Maximum Likelihood Estimation (MLE)

	2.2 Active sample selection methods
	2.2.1 Active learning MacKay (ALM) method
	2.2.2 Standard mutual information (MI) method
	2.2.3 Mutual information with local Kernel (MI-LK)


	3 MI with adaptive local Kernels (MI-ALK)
	3.1 Concept validation on a non-linear system response prediction

	4 Regional Earthquake Impacted Building Damage Simulation Testbed
	4.1 Data description
	4.2 Learning configurations

	5 Inference performance, computational efficiency, and discussion
	5.1 Representativeness
	5.2 Predictive performance
	5.3 Computational complexity
	5.4 Discussion

	6 Conclusion
	CRediT author statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix
	References


