
Representing Regular Languages of Infinite
Words Using Mod 2 Multiplicity Automata

Dana Angluin1, Timos Antonopoulos1(�), Dana Fisman2, and Nevin George1

1 Yale University, New Haven, CT, USA
timos.antonopoulos@yale.edu

2 Ben-Gurion University, Beer-Sheva, Israel

Abstract. We explore the suitability of mod 2 multiplicity automata
(M2MAs) as a representation for regular languages of infinite words.
M2MAs are a deterministic representation that is known to be learnable
in polynomial time with membership and equivalence queries, in contrast
to many other representations. Another advantage of M2MAs compared
to non-deterministic automata is that their equivalence can be decided in
polynomial time and complementation incurs only an additive constant
size increase. Because learning time is parameterized by the size of the
representation, particular attention is focused on the relative succinct-
ness of alternate representations, in particular, LTL formulas and Büchi
automata of the types: deterministic, non-deterministic and strongly un-
ambiguous. We supplement the theoretical results of worst case upper
and lower bounds with experimental results computed for randomly gen-
erated automata and specific families of LTL formulas.

Keywords: Multiplicity Automata · Regular Omega Languages · Büchi
Automata · Linear Temporal Logic · Conciseness

1 Introduction

Regular languages of infinite words (or ω-words) play an important role in ver-
ification of reactive systems. The question of whether a system S satisfies a
specification given by a temporal logic formula ϕ can be reduced to the question
of whether L(S) ∩ L(¬ϕ) is empty, where L(S) is the set of ω-words represent-
ing the computation paths of the system S and L(¬ϕ) is the set of ω-words
representing computations that violate ϕ. Automata are a useful machinery for
performing operations on languages such as complementation and intersection,
and for deciding properties such as emptiness and equivalence. Many verification
tools are implemented using reductions to automata [20].

Regular ω-languages can be represented using various types of automata (e.g.
Büchi, Rabin, Parity, etc.). Different automata types differ in their succinctness
and in the complexity of performing operations of interest. Non-deterministic
Büchi automata (NBAs) are one of the most popular acceptor types for regular
ω-languages, mainly due to their simplicity, succinctness, and good complexity

c© The Author(s) 2022
P. Bouyer and L. Schröder (Eds.): FoSSaCS 2022, LNCS 13242, pp. 1–20, 2022.
https://doi.org/10.1007/978-3-030-99253-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99253-8_1&domain=pdf

for the emptiness problem. An issue with Büchi automata is that their deter-
ministic version (DBAs) is strictly less expressive: while NBAs accept all regular
ω-languages, DBAs recognize only a strict subset thereof. Another issue is that
complementation of NBAs is hard; it has a 2Ω(n log n) lower bound (where n is the
number of states) [16]. This motivated the introduction of complete unambiguous
Büchi automata (CUBA) by Carton and Michel who showed that every regular
ω-language can be represented by a CUBA, i.e. there is a way to limit the non-
determinism without losing expressiveness [8]. Bousquet and Löding proposed
strongly unambiguous Büchi automata (SUBA), a slight relaxation of CUBA for
which they have shown that equivalence can be decided in polynomial time [6].

The SUBA model was also shown useful in terms of learnability of regular
ω-languages — Angluin, Antonopoulos and Fisman have shown that SUBAs are
polynomially predictable using membership queries (while NBAs, under plausi-
ble cryptographic assumptions, are not) [1]. Their proof makes use of a model of
automata called Mod 2 Multiplicity Automata (M2MA). Informally, multiplicity
automata are an algebraic variant of automata that compute functions from fi-
nite words to a field K [4,5], and M2MAs are multiplicity automata that work
over the field GF (2) = {0, 1} where sum and product are computed modulo 2.

In this paper we look at questions concerning the adequacy of M2MAs for
representing regular ω-languages. We note that M2MAs operate on finite words,
and their use for representing regular ω-languages follows a reduction, by Cal-
brix, Nivat and Podelski from a regular ω-language L to a regular language
(L)$ of finite words [7]. We thus start by reviewing the succinctness of M2MAs
with respect to automata on finite words, particularly of types non-deterministic
(NFAs), deterministic (DFAs), and unambiguous (UFAs). We show that M2MAs
are more succinct than DFAs and UFAs, whereas with respect to NFAs there
are in the worst case exponential gaps in going from M2MAs to NFAs and vice
versa.

We also study the complexity of performing basic operations on M2MAs;
complementation can be done with an additive constant increase in size, and
union and intersection with the product of sizes. There is a known cubic algo-
rithm to minimize a weighted automaton [10,19], which applies to an M2MA
and also implies cubic procedures for determining emptiness and equivalence.

We then investigate the succinctness of M2MAs in representing regular ω-
languages, by comparing translations from linear temporal logic (LTL) formulas
and Büchi automata (deterministic, non-deterministic and strongly unambigu-
ous) into M2MAs, DFAs, UFAs, SUBAs and NBAs (where the former three use
the (L)$ representation). The results are summarized in Fig. 3.

To complement the theoretical bounds, we implemented procedures to trans-
form SUBAs to UFAs and UFAs to M2MAs, and to minimize and learn M2MAs,
and report estimates of the average size increases in transforming random SUBAs,
DBAs, and NBAs to M2MAs. We also determine the minimum dimensions of
M2MAs and minimum sizes of DFAs for a few members of three specific families
of LTL formulas and compare them with the respective ω-automaton sizes.

2 D. Angluin et al.

2 Preliminaries

For nonnegative integers k and `, [k..`] is the set of nonnegative integers n such
that k ≤ n ≤ `. Given a finite alphabet Σ, Σ∗ is the set of finite words over Σ.
The length of a word x is |x| and the empty word is ε. Σn = {x ∈ Σ∗ | |x| = n}.
The reverse of a word x is xr. A language L is any subset of Σ∗. The reverse of
L, denoted Lr, is {xr | x ∈ L}. The Hankel matrix of a language L is the infinite
matrix whose rows and columns are indexed by elements of Σ∗, where the entry
for row x and column y is 1 if xy ∈ L and 0 if xy 6∈ L.

The set of infinite words (or ω-words) over Σ is the set of all maps from
the positive integers to Σ and is denoted Σω. An ω-language is any subset of
Σω. For a finite or infinite word w, w[i] denotes the symbol at position i, with
indices starting at 1. Concatenation of a finite word x with a finite or infinite
word y is denoted xy. The word x is a prefix of xy and the word y is a suffix
of xy. The suffix of w starting at position i is denoted w[i :]. If x ∈ Σ∗ and k
is a nonnegative integer, xk denotes the concatenation of k copies of x, and xω

denotes the concatenation of x with itself infinitely many times. An ω-word is
ultimately periodic if it can be written in the form u(v)ω for u, v ∈ Σ∗ with
|v| > 0. If A1 and A2 are sets and S ⊆ A1 × A2, then we define the projection
π1(S) = {a1 | (∃a2)(a1, a2) ∈ S} and analogously for the projection π2.

2.1 NFAs, UFAs, DFAs, NBAs, UBAs, SUBAs, and DBAs

A (nondeterministic) finite-state automaton A is a tuple (Σ,Q, I,∆, F) consist-
ing of a finite alphabet Σ, a finite set Q of states, a set I ⊆ Q of initial states,
a set F ⊆ Q of final states, and a transition relation ∆ ⊆ Q × Σ × Q. The
transition relation ∆ is deterministic if for every state q ∈ Q and every symbol
σ ∈ Σ, there is at most one state q′ ∈ Q such that (q, σ, q′) ∈ ∆. The size of a
finite-state automaton is |Q|.

For a word w, a run of A on w is a sequence of states q0, q1, . . . such that
for each i that indexes a symbol in w, (qi−1, w[i], qi) ∈ ∆. Thus, for w ∈ Σ∗

a run on w is a sequence of length |w| + 1, and for w ∈ Σω, a run on w is an
infinite sequence of states. A run on w is initial if q0 ∈ I. A finite run is final
if q|w| ∈ F , and an infinite run is final if there are infinitely many values of i
for which qi ∈ F . Acceptors of languages and ω-languages may be defined using
finite-state automata, as follows. In each case, the language of words accepted
by an acceptor A is denoted L(A).

A nondeterministic finite acceptor (NFA) is a finite-state automaton A that
accepts a word w ∈ Σ∗ if there exists a run of A on w that is both initial
and final. An NFA A is an unambiguous finite acceptor (UFA) if for every word
w ∈ L(A) there is exactly one run of A on w that is initial and final. An NFA
A is a deterministic finite acceptor (DFA) if there is exactly one initial state
(|I| = 1) and the transition relation ∆ is deterministic. The languages over Σ
that are accepted by NFAs, UFAs, or DFAs is precisely the regular languages
over Σ.

A nondeterministic Büchi acceptor (NBA) is a finite-state automaton A that
accepts a word w ∈ Σω if there exists a run of A on w that is both initial and

Representing Languages Using M2MAs 3

final. An NBA is an unambiguous Büchi acceptor (UBA) if for every w ∈ L(A),
there exists exactly one run of A on w that is initial and final. Bousquet and
Löding [6] introduced the concept of a strongly unambiguous Büchi acceptor
(SUBA), which is an NBA such that for every w ∈ Σω, there is at most one final
run of the acceptor on w — note that the condition of being initial is dropped.
Thus, every SUBA is a UBA. The ω-languages over Σ that are accepted by
NBAs, UBAs, or SUBAs are precisely the regular ω-languages. An NBA is a
deterministic Büchi acceptor (DBA) if there is exactly one initial state (|I| = 1)
and the transition relation ∆ is deterministic. Every DBA is a UBA, but is not
necessarily a SUBA. The ω-languages that are accepted by DBAs are a proper
subclass of the class of all regular ω-languages.

For Büchi acceptors, we also consider a generalized version, GNBA, in which
the acceptance condition is specified not by a single set of final states, but by a
collection F of sets of final states. For a GNBA, a run q0, q1, . . . is final iff for
each F ∈ F , there exist infinitely many indices i such that qi ∈ F . Applying this
generalization to a SUBA yields a GSUBA. There is a standard translation of a
GNBA of size n with k sets of final states into an NBA of size kn, in which there
are k copies of the GNBA automaton. However, applying this construction to a
GSUBA does not in general yield a SUBA.

2.2 LTL formulas

The syntax of linear temporal logic (LTL) [18] over a set AP of atomic proposi-
tions is given by the following grammar ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ©ϕ | (ϕ1U ϕ2)
where p ∈ AP is an atomic proposition.

The semantics of LTL relates ω-words over 2AP to formulas as shown on the
right (recall that indexing of words starts at 1). Additional Boolean and temporal

w |= p iff p ∈ w[1]
w |= ¬ϕ iff w 6|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |=©ϕ iff w[2 :] |= ϕ
w |= (ϕ1 U ϕ2) iff ∃j. w[j :] |= ϕ2 and

∀i < j. w[i :] |= ϕ1

connectives are defined in the
usual way. In particular > (true)
is defined as p∨¬p, ♦ϕ (eventually
ϕ) is defined as (> U ϕ) and �ϕ
(always ϕ) is defined as ¬♦(¬ϕ).

The ω-language of an LTL for-
mula ϕ, denoted L(ϕ), is the set
of ω-words for which it is true. The size of an LTL formula ϕ is the number of dis-
tinct subformulas it contains. Every LTL formula represents a regular ω-language
(see Section 5). However, not every regular ω-language can be represented by an
LTL formula; in particular, the regular ω-languages that can be represented by
LTL formulas are noncounting [9].

2.3 M2MAs

A multiplicity automaton represents a function mapping Σ∗ to elements of a field
K. We focus on the case where K = {0, 1} and product and sum are computed
modulo 2. A mod 2 multiplicity acceptor (M2MA) of dimension d is a tuple
A = (Σ, vI , {µσ}σ∈Σ , vF), where Σ is the input alphabet, vI ∈ Kd is the initial

4 D. Angluin et al.

vector, vF ∈ Kd is the final vector, and for each σ ∈ Σ, µσ is a d× d transition
matrix over K, that is, an element of Kd×d.

The vectors vI and vF are interpreted as d×1 column vectors. The transpose
operation is denoted by >, and the inner product of two column vectors v, w ∈ Kd
is denoted v>w.

To define L(A) we inductively define the matrix µx for all x ∈ Σ∗. If x = ε,
then µx is the d × d identity matrix. If x = σy for some σ ∈ Σ and y ∈ Σ∗

then µx = µσµy. The function fA : Σ∗ → K computed by A is defined by
fA(x) = v>I µxvF . A word x is accepted by A if fA(x) = 1.

We refer to column vectors v ∈ Kd as states or co-states of A. A state v is
reachable iff there exists a word x ∈ Σ∗ such that v = (v>I µx)>. A co-state w is
co-reachable iff there exists a word x ∈ Σ∗ such that w = µxvF . For any state
v, Lv(A) denotes the language of words accepted by A with its initial vector
replaced by v.

We assume standard results from finite dimensional vector spaces. If U is a
vector space of dimension k over the field {0, 1} then |U | = 2k. If U is a vector
subspace of the vector space V , then the orthogonal complement of U is the set
U⊥ = {v | v>u = 0 ∀u ∈ U}, U⊥ is a vector subspace of V which is disjoint
from U except for the zero vector, and the dimensions of U and U⊥ sum to the
dimension of V .

The following simple lemmas relate M2MAs to UFAs and DFAs, and show
that M2MAs accept exactly the regular languages.

Lemma 1. [Beimel et al. [4]] Let L ⊆ Σ∗. If L is accepted by a UFA of size n,
it is also accepted by an M2MA of dimension n.

Lemma 2. Let L ⊆ Σ∗. If L is accepted by an M2MA of dimension d with R
reachable states, then L is also accepted by a DFA of R states. Clearly, R ≤ 2d.

Beimel et al. [4] have shown that there is a polynomial time algorithm to
learn an unknown M2MA using equivalence and membership queries.

2.4 Size lower bounds for DFAs, M2MAs and NFAs

Given a language L ⊆ Σ∗, we define an observation table for L as an ` × m
matrix T of 0’s and 1’s where each row i is associated with a finite word xi and
each column j is associated with a finite word yj , and the entry Ti,j is 1 if and
only if xiyj ∈ L. This terminology is derived from its use in algorithms to learn
DFAs. An observation table for L is thus a finite submatrix of its Hankel matrix.

Certain properties of observation tables for a language L yield lower bounds
on acceptors recognizing L. Recall that the rank of a matrix is the number of
linearly independent rows (or columns) it contains.

Lemma 3. Let T be an observation table for the regular language L with rows
associated with finite words xi for i = [1..`] and columns associated with finite
words yj for j ∈ [1..m]. Assume T has n distinct rows and rank d over the field
{0, 1}. Then any DFA to accept L must have at least n states, and any M2MA
to accept L must have dimension at least d.

Representing Languages Using M2MAs 5

Proof. Let D be a DFA accepting L. If the rows for xi and xk are distinct, then
there is a column j on which they differ, that is, xiyj ∈ L iff xkyj 6∈ L. Thus,
the states of D reached from the initial state on the words xi and xk must be
different and D has at least n states.

Let M be an M2MA accepting L. Following the argument of Beimel et al. [4],
the observation table is a submatrix of the Hankel matrix of the language L,
and its rank (modulo 2) is a lower bound for the rank (modulo 2) of the Hankel
matrix, which is a lower bound for the size of any M2MA accepting L. ut

For lower bounds for NFAs, we use the concept of covering the observation
table by 1-monochromatic rectangles. If R and C are subsets of the indices of
the rows and columns (respectively) of a matrix M , then the (R,C)-rectangle of
M is the matrix obtained from M by deleting those rows whose indices are not
in R and those columns whose indices are not in C. The (R,C)-rectangle of a
matrix M is v-monochromatic iff all of its entries are equal to the value v.

Let M be a matrix of 0 and 1 values. A 1-rectangle cover of M is a set
{(Rs, Cs) | s ∈ [1..t]}, of 1-monochromatic rectangles (Rs, Cs) of M such that
for every i and j, if Mi,j = 1 then there exists some s ∈ [1..t] such that i ∈ Rs
and j ∈ Cs. A minimum 1-rectangle cover of M is a 1-rectangle cover of M of
minimum possible cardinality t.

Lemma 4. Let T be an `×m observation table for the regular language L. Any
NFA M recognizing L must have at least as many states as the cardinality of the
minimum 1-rectangle cover of T .

This is implied by Theorem 5.2.4.10 and Exercise 5.2.5.14 of Hromkovič [12].
For completeness we provide a simple direct proof.

Proof. Let the strings indexing the rows of T be xi for i ∈ [1..`] and the strings
indexing the columns of T be yj for j ∈ [1..m]. For each state q of M , let Rq be
the set of all i ∈ [1..`] such that xi reaches q from an initial state of M , and let
Cq be the set of all j ∈ [1..m] such that yj reaches a final state of M from q.

Clearly (Rq, Cq) must be a 1-monochromatic rectangle of T , because if i ∈ Rq
and j ∈ Cq then xiyj is accepted by M and the entry Ti,j must be 1. Also, if
Ti,j = 1, then xiyj must be accepted by M , so there must exist a state q of M
such that xi reaches q from an initial state of M and yj reaches a final state
of M from q, that is, i ∈ Rq and j ∈ Cq. Thus, the rectangles (Rq, Cq) for all
states q of M form a 1-rectangle covering of T , and the number of states of M
is greater than or equal to the cardinality of the minimum 1-rectangle covering
of T . ut

Corollary 1. If L is a regular language with an n× n observation table T that
has exactly one 1 in every row and column, then any DFA, M2MA, or NFA to
recognize L must have at least n states.

6 D. Angluin et al.

ε a b
ε 1 1 1
b 1 0 1
c 1 1 0
ba 0 0 0

Fig. 1: Observation
table with rank 3.

As an example of the use of these results, let L be the reg-
ular language over {a, b, c} consisting of those strings that do
not contain any occurrences of the substrings ba or cb, with
the observation table for L in Fig. 1. There are 4 different
rows, so any DFA to accept L must have at least 4 states.
The mod 2 rank of the table is 3 (the first three rows are a
row basis) so any M2MA accepting L must have dimension
at least 3. The observation table with rows c and b, and columns a and b is the
2 × 2 identity matrix, so any NFA to accept L must have at least 2 states. In
fact, there is a DFA of 4 states, an M2MA of dimension 3, and an NFA of 2
states accepting L, so for this example, the lower bounds are tight.

3 M2MAs as representations of regular languages

We consider the computational cost and size implications of some common op-
erations and decision questions using M2MAs to represent regular languages.

3.1 M2MAs: procedures for operations and properties

Reverse Given an M2MA A accepting a regular language L, an M2MA Ar

accepting the reverse language Lr may be obtained from A by exchanging the
initial and final vectors, and transposing each of the transition matrices. Thus,
the minimum dimension of an M2MA accepting L is equal to the minimum
dimension of an M2MA accepting Lr. Reversing is similarly easy for UFAs and
NFAs, but may incur an exponential increase in size for a DFA.

Sum If for i = 1, 2, Mi is a multiplicity automaton of dimension di computing
the function fi : Σ∗ → K, then the sum f1 + f2 is computed by a multiplicity
automaton M of dimension d1 +d2 constructed as the direct product of M1 and
M2 as follows. State vectors of M are the concatenation of state vectors of M1

and M2, including the initial and final vectors. For each σ ∈ Σ, the transition
matrix µσ is a (d1+d2)×(d1+d2) matrix obtained by putting (µ1)σ in the upper
left, (µ2)σ in the lower right, and setting the remaining entries to 0. This ensures
that the state updates of M1 and M2 are done in parallel for each symbol, and
the output is the sum of the outputs for M1 and M2.

Boolean operations For M2MAs, complementation follows directly from the
sum construction. If A is an M2MA of dimension d and C is the M2MA of dimen-
sion 1 that outputs 1 on every string, then the sum construction with M and C
yields an M2MA of dimension d+1 that accepts the regular language Σ∗ \L(A).
For DFAs, complementation is size-preserving, while for NFAs, complementation
may incur an exponential increase in size.

Given M2MAs Ai of dimension di for i = 1, 2, the intersection language
L(A1) ∩ L(A2) is accepted by an M2MA of dimension d1 · d2 obtained from A1

Representing Languages Using M2MAs 7

and A2 using the Kronecker product of matrices.3 Union can then be obtained
from complementation and intersection.

Minimization, Equivalence, and Emptiness Sakarovitch [10,19] describes
a cubic-time algorithm to minimize a weighted automaton with weights from a
skew field, which has the following corollary.

Corollary 2 (of Theorem 5.20 in [10]). Given an M2MA A of dimension d,
an M2MA A′ of the minimum possible dimension accepting L(A) may be found
in time O(|Σ|d3).

An M2MA recognizes the empty language iff it has dimension 0 when minimized,
and the equivalence of two M2MAs may be tested by determining if their sum
is the empty language.

3.2 Conciseness comparisons for regular languages

We summarize known results comparing the conciseness of M2MAs with that of
DFAs, UFAs and NFAs as representations of regular languages in Fig. 2. The
entry for row A and column B is “−” if the representation A is an instance
of the representation B, otherwise, starting with a machine of size n in the
representation A, how large must an equivalent machine in the representation B
be in the worst case? The entry 2Θ(n) means that there is a lower bound of 2cn

and an upper bound of 2dn for positive constants c and d.

DFA UFA NFA M2MA
DFA − − − n

UFA 2Θ(n) − − n

NFA 2Θ(n) 2Θ(n) − 2Θ(n)

M2MA 2Θ(n) 2Θ(n) 2Θ(n) −
Fig. 2: Worst-case size bounds for

representations of regular languages.

We briefly explain the entries in the
table. A DFA is also a UFA and an NFA,
and a UFA is also an NFA. A DFA or UFA
of size n can be converted to an equiv-
alent M2MA of dimension n (Lemma 1).
The subset construction to determinize an
NFA of size n yields a DFA (and there-
fore also a UFA or M2MA) of size at most
2n. An M2MA of dimension n can be con-
verted to a DFA (or UFA or NFA) of size
at most 2n (Lemma 2). The language Bn = Σ∗ ·1 ·Σn, for Σ = {0, 1}, consisting
of binary strings with a 1 located n + 1 symbols before the end is accepted by
a UFA of size n + 2 (and therefore also an NFA of size n+ 2 and an M2MA of
dimension n+ 2), but requires at least 2n+1 states for any DFA that accepts it.

For the problem of converting an NFA to an M2MA, Kaznatcheev and
Panangaden [13] consider the language Ln = Σ∗

(
(0Σn−11) + (1Σn−10)

)
Σ∗ for

Σ = {0, 1}, and show that Ln is recognized by an NFA of 2n+2 states, but that
any M2MA to recognize Ln must have dimension at least 2n. By Lemma 1, this
lower bound applies also to UFAs.

For the problem of converting an M2MA to an NFA, Kaznatcheev and Panan-
gaden [13] give a family of languages {Ln} such that Ln is recognized by an

3 If A is an m×n matrix and B is a p×q matrix, then the Kronecker product A⊗B is
the pm× qn block matrix, with blocks of size B, where the block-matrix at position
(i, j) is aijB [17, Def 1.2.1].

8 D. Angluin et al.

M2MA of dimension n+ 2, and prove that any NFA to recognize Ln must have
at least 2n/2 − 2 states. Here we provide a simpler proof of a stronger lower
bound. Let Ln be the language recognized by the M2MA given in Fig. 1 of
the paper of Kaznatcheev and Panangaden. This M2MA accepts a word iff the
number of indices i such that both w[i] and w[i+ n] is 1, is odd.

Lemma 5. Any NFA to recognize Ln must have at least 2n−1 states.

Proof. The language Ln has an observation table Tn of dimension 2n × 2n, in
which the rows and columns are indexed by strings x, y ∈ {0, 1}n. We view
strings in {0, 1}n as vectors of length n over the field {0, 1}, so that the entry
corresponding to the pair (x, y) is the inner product of the vectors x and y, that
is x>y. Note that the inner product x>y is 1 iff the number of indices i such
that both xy[i] and xy[i+n] is 1, is odd. The lower bound of 2n− 1 then follows
from Lemma 4 and the following Lemma. ut

Lemma 6. The minimum 1-rectangle covering of the observation table Tn just
defined has cardinality 2n − 1.

Proof. For the upper bound it suffices to consider a 1-rectangle covering of Tn
consisting of pairs (R,C) where R is the singleton index of a nonzero row and
C consists of the indices of the occurrences of 1 in that row.

If x ∈ {0, 1}n is the zero vector, then x>y is 0 for all vectors y; otherwise,
x>y = 1 for exactly half the vectors y, that is, for 2n−1 columns of Tn. Hence,
Tn contains exactly 2n−1(2n − 1) entries of value 1. We now show that any 1-
monochromatic rectangle (R,C) of Tn has at most 2n−1 entries of 1, which shows
that a minimum 1-rectangle covering of Tn must have cardinality at least 2n−1.

Let (R,C) be any 1-monochromatic rectangle of Tn. Let U be the vector
subspace spanned by the vectors x corresponding to indices in R, and let B be
a basis for U whose indices are drawn from R. Let k = |B|, so that |U | = 2k.
Every element of U is a sum of elements of B, but a sum of an even number of
elements of B will be 0 in all the columns with indices in C, so R can contain
the indices of at most half the elements of U , that is, |R| ≤ 2k−1.

Let S = {v | u>v = 1 ∀u ∈ B}, the set of vectors whose inner product with
all elements of B is 1; clearly, |C| ≤ |S|. We use inclusion/exclusion to find the
cardinality of S, as follows.

|S| = 2n − |
⋃
u∈B
{v | u>v = 0}|

= 2n − |
⋃
C⊆B

C⊥|

= 2n − k2n−1 +

(
k

2

)
2n−2 − . . . (−1)k2n−k

= 2n · (1− 1

2
)k

= 2n−k

Thus, |C| ≤ 2n−k. Then |R×C| ≤ 2k−1 ·2n−k = 2n−1, concluding the proof. ut

Representing Languages Using M2MAs 9

4 Representing regular omega-languages using regular
languages

In the preliminaries we discussed NBAs, SUBAs and DBAs, and LTL formulas as
representations of regular ω-languages. Here we explain that M2MAs and other
automata over finite words can also be used to represent regular ω-languages.

A regular ω-language is uniquely determined by the set of ultimately periodic
ω-words it contains. Let L be a regular ω-language and let $ be a symbol not
in the alphabet of L. To represent the set of ultimately periodic words in L,
Calbrix, Nivat and Podelski [7] introduced the related language of finite words
L$ = {u$v | u(v)ω ∈ L} and proved that it is regular.

Thus a regular ω-language L can be represented by an acceptor for the regular
language L$, for example, a DFA, UFA, NFA or M2MA. The representation of
L$ by an M2MA was used by Angluin, Antonopoulos, and Fisman [1] in showing
that regular ω-languages are polynomially predictable with membership queries
as a function of the size of the smallest SUBA accepting the language.

We note that if for i = 1, 2, Ai is an M2MA of dimension di accepting
(Li)$ for the regular ω-language Li, then there is an M2MA of dimension d1 · d2
accepting (L1 ∩ L2)$, and an M2MA of dimension d1 + 3 accepting (Σω \ L1)$.
The former follows by the intersection result for M2MAs, and the latter follows
by the sum result applied to A1 and the dimension 3 M2MA that accepts the
set {u$v | u ∈ Σ∗, v ∈ Σ+}.

5 Conciseness comparisons for regular omega-languages

We present known and new results comparing the conciseness of M2MAs with
that of several other representations of regular ω-languages, summarized in
Fig. 3. The entry for row A and column B gives upper (above) and lower (below)
bounds on the worst case increase in size for a representation of type A of size
or dimension n to an equivalent representation of type B. The entry is “−” if a
representation of type A is an instance of a representation of type B. The entries
for the columns for DFA, UFA, M2MA, and NFA are for the language L$. An
arrow indicates that the (lower or upper) bound is derived from a related (lower
or upper) bound in the table. For example, the upper bound for the row DBA
and columns UFA, M2MA and NFA are derived from the upper bound for the
row DBA and column DFA. We now discuss the entries.

5.1 Size increases for LTL formulas

Upper bounds
There is a “classic” algorithm, described by Baier and Katoen [3, Chapter 5], to
translate an LTL formula of size n into a GNBA of size 2n with at most n sets
of final states, which then yields an NBA of size at most n2n. This shows that
every LTL formula represents a regular ω-language, and gives an upper bound
for translating an LTL formula to an NBA. Another algorithm to translate LTL
formulas into NBAs is given by Gerth, Peled, Vardi and Wolper [11].

10 D. Angluin et al.

DFA UFA M2MA NFA (G)SUBA NBA

22O(n)

2O(n) (2n, n) n2n

via UFA Cor.3
← ←

Prop. 1 [3]

2Ω(n) 2Ω(n) 2Ω(n)LTL

→ →
Thm. 2 Thm. 2

→
[3]

n + n3n
2

[14]
← ← ← ↓ −

2Ω(n logn) 2Ω(n) 2Ω(n) 2Ω(n)DBA

[2]
→

Thm. 3 Thm. 3 [6]
−

2n + 2n3n
2

n + n3n
2

(12n)n

[14]
← ←

[14] [8]
−

NBA

↑ ↑ ↑ ↑ ↑ −

2n2 + n↑
[6]

← ← − −

2Ω(n) 2n2 − n + 2 2n2 − n + 2
SUBA

[1]
→

Thm. 4 Thm. 4
− −

Fig. 3: Worst-case size bounds for representations of regular ω-languages.

Concerning the classic translation algorithm, Bousquet and Löding [6] give a
brief argument and state that “Hence the automaton that is constructed in this
standard way is strongly unambiguous.” Wilke [21] states that “Every tempo-
ral formula with n subformulas can be translated into an equivalent backwards
deterministic generalized Büchi automaton with at most 2n states and as many
Büchi sets as there are subformulas with leading temporal operator F (eventu-
ally) or U (until).” To clarify these earlier statements, we reformulate them in
our terminology. This gives an upper bound for transforming an LTL formula to
a GSUBA.

Proposition 1. Let φ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Applying the classic translation algorithm
to φ yields a GSUBA of size 2n with m sets of final states.

Proof. Baier and Katoen [3] show that the algorithm yields a GNBA M of the
given size in which each state corresponds to an assignment of true or false to
every subformula of φ. Moreover, if the ω-word w is accepted from a state q,
then q assigns true to each subformula ψ of φ iff ψ is true for w. Hence there
is at most one state of M from which the ω-word w is accepted, and thus M is
also GSUBA. ut

To get an upper bound for translation of LTL formulas to UFAs, M2MAs,
and NFAs, we would like to use the property of being strongly unambiguous.
However, if the resulting GSUBA has more than one set of final states, trans-
forming it in the usual way into an NBA does not in general yield a SUBA.
Instead, we generalize to GSUBAs the method of Bousquet and Löding [6] for
transforming a SUBA accepting L into a UFA accepting L$.

Representing Languages Using M2MAs 11

Theorem 1. There is an algorithm to transform a GSUBA of size n with m
sets of final states accepting L into a UFA of size 2mn2 +n accepting L$. It runs
in time polynomial in n and 2m.

Proof. Let L be accepted by the GSUBA M = (Σ,Q, I,∆,F) with n = |Q|
and m = |F|. We index the elements of F as Fi for i ∈ [1..m]. Bousquet and
Löding [6, Lemma 1] show that u(v)ω is accepted by a SUBA iff there exists a
state q reachable from an initial state on reading u, such that on the word v
there is a computation path that loops from q back to q while passing through
an accepting state. For the GSUBA M , the condition is that the computation
path that loops from q back to q must pass through at least one state from each
Fi for i ∈ [1..m].

We define an NFA M ′ = (Σ′, Q′, I ′, ∆′, F ′) as follows. The alphabet is Σ′ =
Σ ∪ {$}. The state set is Q′ = Q ∪Q1, where Q1 = {(q1, q2, S) | q1, q2 ∈ Q,S ⊆
[1..m]}. The initial states are I ′ = I. The transition relation is ∆′ = ∆∪∆1∪∆2,
where ∆1 is the set of all triples ((q1, q2, S), σ, (q′1, q

′
2, S
′)) such that q′1 = q1,

(q2, σ, q
′
2) ∈ ∆, and S′ = S ∪ T , where T = {i ∈ [1..m] | q′2 ∈ Fi}. And ∆2

contains all triples (q, $, (q, q, ∅)) such that q ∈ Q. The set of final states F ′ is
the set of triples (q1, q2, S) such that S = [1..m] and q1 = q2.

Then M ′ has 2mn2 +n states, and can be constructed in time polynomial in
n and 2m given the GSUBA M . On an input u$v, the NFA M ′ behaves like M
on the word u, reaching some state q. Then on the symbol $, M ′ transitions to
the state (q, q, ∅), recording the state q reached after reading u. As M ′ continues
reading v, the first component remembers q while the second component transi-
tions as in M . The third component, S, records the set of indices of those final
sets Fi that have been visited in the processing of v. The input u$v is accepted
by M ′ iff there is a state q of M reachable from a state of I on input u such that
there exists a computation path in M on input v from q to q that visits at least
one state in Fi for every i ∈ [1..m]. Thus M ′ accepts L$. (Note that the set S
generalizes the single bit used in Bousquet and Löding’s construction.)

To see that M ′ is a UFA, we note that if there are two different accepting
computations in M ′ for u$v, then these may be used to construct two different
accepting computations in M for u(v)ω, contradicting the fact that M is a
GSUBA. ut

The entry in Fig. 3 for row LTL and column UFA is then justified by the
following.

Corollary 3. Let φ be an LTL formula of size n with temporal operators next
and until, with m until subformulas. Then there is a UFA of size 22n+m + 2n to
accept L(φ)$.

For transforming LTL to DFA, we have only the doubly-exponential bound
for transforming an LTL formula to a UFA and the UFA to DFA.

Lower bounds
We first generalize Lemma 3 to DBAs and Lemma 4 to NBAs. An observation

12 D. Angluin et al.

table for an ω-language L is a matrix T ∈ {0, 1}`×m with rows indexed by finite
words xi for i ∈ [1..`] and columns indexed by ω-words yj for j ∈ [1..m] such
that Ti,j = 1 iff xiyj ∈ L. Then we have the following, proved analogously to
Lemma 3 and Lemma 4.

Lemma 7. Let T be an observation table for the ω-language L. If T has n
distinct rows, then any DBA accepting L has at least n states.

Lemma 8. Let T be an observation table for the ω-language L. If the minimum
1-cover of T has cardinality n, then any NBA to recognize L has at least n states.

Baier and Katoen [3, Theorem 5.4.2] give a lower bound for a family of LTL
formulas φn of size poly(n) for which equivalent NBAs must have at least 2n

states. Below we give a simplified and slightly strengthened version of their lower
bound, which also applies to M2MAs or NFAs for L$.

Theorem 2. For every positive integer n there exists an LTL formula ψn of
size at most 2n+ 6 such that any NBA accepting L(ψn) must have size at least
2n. Any NFA or M2MA accepting L(ψn)$ must have size or dimension at least
2n.

Proof. Let p be a propositional variable. For any positive integer n we define
the LTL formula ψn = �(p → ©n(p)) ∧ (¬p → ©n(¬p)). We use ©n

to represent the composition of © with itself n times, so ©3(p) abbreviates
©(©(©(p))). The formula ψn has size 2n+6. Let the symbols 0 and 1 represent
the assignment of false and true to p. Then L(ψn) is the language of ω-words w
over {0, 1} such that for some x ∈ Σn, w = xω.

For L(ψn)$, let x1, x2, . . . , x2n be any total ordering of all the elements of
{0, 1}n, and consider the observation table T with rows corresponding to xi and
columns corresponding to $xi for i ∈ [1..2n]. Clearly, there is exactly one 1 in
row xi, in the column $xi, so this observation table is the 2n×2n identity matrix,
which has rank 2n, and any NFA or M2MA accepting L(ψn)$ must have size at
least 2n by Corollary 1.

For the lower bound on NBAs, we observe that if we instead index the
columns of T with (xi)

ω, it becomes an observation table for the ω-language
L(ψn), and remains the 2n × 2n identity matrix, which implies that any NBA
accepting L(φn) must have at least 2n states, by Lemma 8. ut

5.2 Size increases for DBAs, NBAs, SUBAs

Upper bounds
For an NBA of n states accepting L, Calbrix, Nivat and Podelski [7] show that

there is a DFA of 2n + 22n
2+n states to accept L$. Kuperberg, Pinault and

Pous [14] give a more concise construction that yields for L$ an NFA of size

n + n3n
2

and a DFA of size 2n + 2n3n
2

. For the conversion of an NBA of n
states to a SUBA, Carton and Michel provide the upper bound of (12n)n [8].

Representing Languages Using M2MAs 13

Starting with a DBA instead of an NBA, the NFA construction of Kuperberg,
Pinault and Pous is fully deterministic, so the upper bound of n+n3n

2

holds for
transforming a DBA into a DFA. Bousquet and Löding [6] show that a SUBA of
n states accepting the ω-language L may be transformed into a UFA of 2n2 + n
states accepting L$.

Lower bounds

For transforming a DBA for L into a DFA for L$, Angluin and Fisman [2] prove
that for every n there is a DBA of n+ 2 states accepting a language L such that
no DFA of fewer than n! states accepts L$. For transforming a DBA into a UFA,
M2MA or NFA, we prove the following result.

Theorem 3. For every even positive integer n there is an ω-language Ln that
is accepted by a DBA of n + 5 states such that any UFA, NFA or M2MA to
accept (Ln)$ must have size or dimension at least

(
n
n/2

)
, which is ∼ 2n/

√
πn/2.

Proof (Sketch). The proof uses a modification of the DBAs in the construction
by Angluin and Fisman [2]. Here we sketch the main idea and give an example.
Let n = 2k for some nonnegative integer k, let Σ2k = {σ1, . . . , σ2k} and let Σ
be Σ2k ∪ {0, L,E, F}. Consider the regular ω-language defined by the ω-regular
expression

(
∪σ∈Σ\{0} (σ · (Σ \ {σ})∗ · σ)

)ω
, which is accepted by a DBA with

2k+ 5 states. Given two subsets C and D of Σ2k, each of size k, we define words
uC and vD such that (uC · vD)ω is in the language if and only if C = D. The
main idea behind the construction is that vD forces each symbol σD in Σ2k \D
to be followed by the character 0. Thus, if the string preceding (and including)
an occurrence of such a symbol σD is described by the (unambiguous) regular
expression (

⋃
σ∈Σ\{0} σ · (Σ \ {σ})∗ · σ)∗, then the symbol 0 that follows cannot

be properly consumed, resulting in the ω-word being not in the language. We
construct the words uC and vD in such a way that this can happen if and only if
such a symbol σD ∈ Σ2k \D is also in C. Since C and D are subsets of Σ2k, each
of size k, this happens exactly when C 6= D. There is therefore an observation
table with rows indexed by $uC for all subsets C of size k and whose columns are
indexed by vD for all subsets D of size k, and where each entry, corresponding
to row and column subsets C and D respectively, is 1 if and only if C = D. By
Corollary 1, the result follows. ut

uC = F · 2 · F · 2 · 3 · 2 · 3 · L · 3
vC = L · E · 1 · 0 · 4 · 0 · E
vD = L · E · 1 · 0 · 3 · 0 · E

Example. Let Σ2k = {1, 2, 3, 4}, let Σ be
Σ2k∪ {0, L,E, F}, let C = {2, 3}, and let D =
{2, 4}. Then uC , vC and vD are defined on the
right. Then (uC ·vC)ω is in the language, whereas (uC ·vD)ω is not (since C 6= D).

For the lower bound on transforming a DBA into a SUBA, Bousquet and
Löding [6] show that for every positive integer n there exists an ω-language that
is accepted by a DBA with n + 1 states, and cannot be accepted by a SUBA
with fewer than 2n−1 states.

14 D. Angluin et al.

For transforming a SUBA into a DFA, Angluin, Antonopoulos and Fisman [1,
Theorem 5] give a family of ω-languages such that Ln is accepted by a SUBA
of size 4n + 5, but any DFA to accept (Ln)$ or its reverse must have size at
least 2n. For transforming a SUBA into a UFA, M2MA or NFA, we prove the
following asymptotically tight lower bound.

Theorem 4. For every positive integer m greater than 3, there is an ω-language
L that is accepted by a SUBA with m states, but no M2MA of dimension less
than 2m2 −m+ 2 or NFA or UFA of size less than 2m2 −m+ 2 accepts (L)$.

Proof (Sketch). For every n ∈ N we define Ln to be the regular ω-language over
Σ = {a, b, c} given by the expression ((cc·bn)∗·aa·bn)ω. This language is accepted
by a SUBA Sn, with m = n+ 3 states. We construct a specific observation table
M for the language (Ln)$. We then show that any 1-rectangle cover of M is of
size at least 2m2 −m+ 2, which implies by Lemma 4 that the number of states
of any NFA (or UFA) for the language (Ln)$ is at least 2m2−m+ 2. We further
show that the rank of M is 2m2 − m + 2, and by Lemma 3, obtain that the
dimension of any M2MA for this language is also at least 2m2 −m+ 2. ut

6 Empirical results

We report typical size increases in going from a random SUBA, DBA or NBA
acceptor for a regular ω-language L to a minimized M2MA (and DFA, in the
case of a SUBA) for L$. We also report computed sizes of minimized M2MAs
and DFAs for L(φn)$ for members of particular families {φn} of LTL formulas.
Code is available in the GitHub repository:
https://github.com/nevingeorge/Learning Automata.

For the generation of random SUBAs, DBAs or NBAs, our procedure is
as follows. Given parameters n, f , and t we generate a transition relation on
n states (random reverse-deterministic for a SUBA, random deterministic for a
DBA, and all possible transitions for an NBA), select f of the n states at random
to be final, and randomly remove t of the transitions. The resulting transition
relation is trimmed to remove non-live states and their transitions. The trimmed
acceptor may have fewer than n states.

If the goal is a SUBA, using the criterion of Wilke [21], we check that there
do not exist two different states q1 and q2 and a nonempty finite word v such
that for i = 1, 2, there is a loop on v from qi to qi that passes through a final
state. If the acceptor fails this test, it is rejected, and the procedure is repeated
until a SUBA is successfully generated.

6.1 SUBAs to minimized M2MAs and DFAs

For random SUBAs to minimized M2MAs, we first generate a random SUBA
with Σ = {a, b, c}, n ∈ {5, 10, 15}, t ∈ {[1, 5], [2, 10], [18, 22]} (resp.), and f = 2
or f = 3 with equal probability. We then convert it into a UFA using the
algorithm of Bousquet and Löding [6], and minimize the equivalent M2MA.

Representing Languages Using M2MAs 15

https://github.com/nevingeorge/Learning_Automata

Fig. 4: Random SUBAs to minimized M2MAs Fig. 5: Random SUBAs, NBAs, and DBAs to
minimized M2MAs

Fig. 6: Random SUBAs to minimized DFAs

We performed the above process on approximately 220, 000 randomly generated
SUBAs.

Fig. 4 is a plot of the average minimized M2MA dimension for each trimmed
SUBA size from 1 to 10. Upon performing quadratic regression, we obtain the
orange curve 1.212n2− .2248n, and the blue curve is the theoretical upper bound
of 2n2 +n given in Fig. 3. The quadratic fit has a R2 of 0.9996 while a linear fit
has a R2 of 0.9370, suggesting that the growth is indeed quadratic. This curve
satisfies the theoretical upper bound of 2n2 + n, and suggests that the lower
bound of Ω(n2) holds on average.

For random SUBAs to minimized DFAs, we also calculated the number of
reachable states of each minimized M2MA. This is the number of states in the
equivalent minimized DFA, by a property of the minimization algorithm of Corol-
lary 2. From Fig. 3, the lower bound in going from a SUBA to a DFA is 2Ω(n),
and the upper bound is 2n + 2n3n

2

.

In the left graph in Fig. 6, the blue data points representing the results of
the SUBA to DFA experiment grow much more sharply than the results of the
SUBA to M2MA experiment, so it is clear that a SUBA can be represented more
concisely as an M2MA than as a DFA on average. Upon taking the log (base 2),
we obtain a roughly linear fit as seen in the right graph with equation .7196n+
1.738 and a R2 of .9841, suggesting that on average the growth is exponential.
The standard deviation and range of converted DFA sizes was large for this
conversion, making it difficult to make firm claims about the growth. However,
the data suggests that the exponential lower bound likely holds on average, and
that in general the upper bound of 2n + 2n3n

2

is a severe overestimate.

16 D. Angluin et al.

6.2 NBAs and DBAs to minimized M2MAs

For NBAs and DBAs, a minimized M2MA is computed using the M2MA learning
algorithm of Beimel et al. [4], which makes membership and equivalence queries
to the NBA or DBA. Instead of exact equivalence queries, we use approximate
equivalence queries, implemented by testing membership agreement on a sample
of randomly generated ultimately periodic words. Thus, the dimension of the
learned M2MA may be an underestimate of the true minimum dimension of an
M2MA for L$.

For the NBA/DBA to M2MA experiments, we generated approximately 1000
random NBAs/DBAs with Σ = {a, b, c}, n ∈ {5, . . . , 10}, t ∈ [0, n] for DBAs
and t in ranges within [90, 680] for NBAs, and f = 2 or f = 3 with equal
probability. For the approximate equivalence queries, we tested 1000 random
ultimately periodic words of length at most 25. The results of the experiments
can be seen in Fig. 5. The fitted NBA and DBA curves are quadratic with
equations 1.096n2 − .8947n and 1.318n2 − 1.392n, respectively. The quadratic
fits for the NBA and DBA results have a R2 of .9954 and .9961, respectively,
while linear fits have a R2 of .9227 and .9118, respectively. These experiments
have limitations: the use of approximate equivalence queries, the small sample
size (because of the time requirements of the learning algorithm), and the large
standard deviation and range of converted M2MA sizes. However, the results
from all three conversions are very similar, suggesting that in these conditions,
SUBAs, NBAs, and DBAs don’t vary significantly on average with respect to
their equivalent M2MA representations.

6.3 LTL formulas to minimized M2MAs

Random LTL formulas seem not to provide much insight, so we consider spe-
cific families of LTL formulas: bounded request/grant formulas and two families
based on the hierarchy of Manna and Pnueli [15], namely obligation and reac-
tivity formulas. Empirically, for each of the first few members of each family we
calculate the minimum dimension of an M2MA and the minimum size of a DFA
accepting the corresponding L$ language, and use the online tool provided by
the Spot website (https://spot.lrde.epita.fr/) to find an ω-language acceptor for
the corresponding L. (Omitted Spot entries exceeded the limit on calculation
time.)

The canonical request/grant formula is of the form �(p → ♦(q)), which
asserts that whenever a request (p) is made, it is eventually granted (q). In the
bounded version, a number of steps n is specified, and the assertion is that the
request is granted within n steps. Thus, for each natural number n, we have a
formula Rn = �(p → (q ∨ ©(q) ∨ ©2(q) ∨ . . . ∨ ©n(q))). The table in Fig. 7a
gives the resulting sizes and dimensions for n from 0 to 5. It is reasonable to
conjecture n+ 1 for the size of a DBA, n2 + 3n+ 3 for the minimum dimension
of an M2MA, and 2n2 + 3n+ 4 for the minimum size of a DFA representing Rn.

The family of obligation formulas we consider is: Fn = ∧ni=1(�pi∨♦qi). Using
conjunction and minimization, we calculate the minimum dimension M2MA (and
minimum size DFA) for L$ for these formulas for n up to 5. The table in Fig. 7b

Representing Languages Using M2MAs 17

https://spot.lrde.epita.fr/

n DBA M2MA DFA

0 1 3 4

1 2 7 9

2 3 13 18

3 4 21 31

4 5 31 48

5 6 43 69

(a) Rn sizes.

n DBA M2MA DFA

1 3 7 9

2 9 19 23

3 27 55 63

4 81 163 179

5 − 487 519

(b) Fn sizes.

n GNBA M2MA DFA

1 (4,1) 5 6

2 (10, 2) 11 12

3 (28, 3) 29 30

4 − 83 84

5 − 245 246

(c) Gn sizes.

Fig. 7: Size or dimension of acceptors for families of LTL formulas.

shows the results. It is reasonable to conjecture 3n for the size of a DBA, 2 ·3n+1
for the minimum dimension of an M2MA, and 2 · 3n + 2n + 1 for the minimum
size of a DFA to represent Fn.

The family of reactivity formulas we consider is: Gn = ∧ni=1(�♦pi ∨ ♦�qi).
We proceed as for the obligation formulas, with the results shown in the table
in Fig. 7c. Note that these formulas cannot be represented by DBAs, but are
instead represented by GNBAs, which may have multiple sets of final states. For
example, the entry (10, 2) indicates a GNBA with 10 states and 2 sets of final
states. A reasonable conjecture in this case is (3n+ 1, n) for the size of a GNBA,
3n + 2 for the minimum dimension of an M2MA, and 3n + 3 for the minimum
size of a DFA representing Gn.

In these cases, the minimum dimension of an M2MA (and size of a DFA)
appears to grow at most as a polynomial in the size of an ω-language acceptor,
quadratically for the bounded request/grant family, and linearly for the obliga-
tion and reactivity families.

7 Summary and conclusions

We provide a survey of size relations of M2MAs as a representation of regular
languages and regular ω-languages, as well as empirical results for several of
these relations. New theoretical results include an improvement of the lower
bound for transforming an M2MA to an NFA, an upper bound of 2O(n) for the
translation of an LTL formula of size n to a UFA, NFA, or M2MA, a lower bound
of 2Ω(n) for the translation of a DBA of n states to an M2MA or NFA, and an
asymptotically optimal lower bound of 2n2−n+2 for the translation of a SUBA
of n states to an M2MA or NFA.

M2MAs have many advantages as a representation for regular ω-languages:
determinism, succinct complementation, and polynomial time algorithms for
minimization, equivalence testing, and learning with membership and equiva-
lence queries. M2MAs are as succinct as DFAs, sometimes exponentially more
so, and deserve further study.

Acknowledgements We would like to thank the anonymous reviewers for their
insightful feedback. This work was supported in part by ONR Grant N00014-
17-1-2787, by NSF awards CCF-2106845, CCF-2131476, by BSF grant 2016239
and by ISF Grant 2507/21.

18 D. Angluin et al.

References

1. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata
are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL. pp. 8:1–8:17 (2020)

2. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning

functions represented as multiplicity automata. J. ACM 47(3), 506–530 (May 2000)
5. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity

and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (1996)
6. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly un-

ambiguous Büchi automata. In: Language and Automata Theory and Appli-
cations, 4th International Conference, LATA. Proceedings. pp. 118–129 (2010).
https://doi.org/10.1007/978-3-642-13089-2 10

7. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Proceedings of the 9th International Conference on Mathematical
Foundations of Programming Semantics. pp. 554–566. Springer-Verlag (1994)

8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1-
3), 37–81 (2003). https://doi.org/10.1016/S0304-3975(02)00618-7

9. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]. pp. 261–306 (2008)

10. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata, chap.
4: Rational and Recognizable Series, by Jaques Sakarovitch, pp. 105–174. Springer-
Verlag Berlin Heidelberg (2009)

11. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: Protocol Specification, Testing and Verification XV.
PSTV 1995. Springer (1996). https://doi.org/10.1007/978-0-387-34892-6 1

12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer-
Verlag Berlin Heidelberg (1997), (There is also 2013 edition.)

13. Kaznatcheev, A., Panangaden, P.: Weighted automata are compact and actively
learnable. Information Processing Letters 171 (2021), (The authors were appar-
ently unaware of prior results on learning multiplicity automata by Beimel et al.
and others.)

14. Kuperberg, D., Pinault, L., Pous, D.: Coinductive algorithms for Büchi automata.
In: Developments in Language Theory - 23rd International Conference, DLT Pro-
ceedings. pp. 206–220 (2019)

15. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed
Computing. p. 377–410. PODC ’90, Association for Computing Machinery (1990).
https://doi.org/10.1145/93385.93442

16. Michel, M.: Complementation is much more difficult with automata on infinite
words. In: Manuscript, CNET (1988)

17. Moser, B.K.: Linear algebra and related introductory topics. In: Linear Models, A
Mean Model Approach, A volume in Probability and Mathematical Statistics. pp.
1–22 (1996)

18. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57 (1977)
19. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, USA

(2009)

Representing Languages Using M2MAs 19

https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1145/93385.93442

20. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency - Structure versus Automata (8th Banff Higher Order Workshop,
Banff, Canada, August 27 - September 3, 1995, Proceedings). pp. 238–266 (1995).
https://doi.org/10.1007/3-540-60915-6 6

21. Wilke, T.: ω-automata. CoRR abs/1609.03062 (2016), http://arxiv.org/abs/
1609.03062

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

20 D. Angluin et al.

https://doi.org/10.1007/3-540-60915-6_6
http://arxiv.org/abs/1609.03062
http://arxiv.org/abs/1609.03062
http://creativecommons.org/licenses/by/4.0/

	Representing Regular Languages of Infinite Words Using Mod 2 Multiplicity Automata
	1 Introduction
	2 Preliminaries
	2.1 NFAs, UFAs, DFAs, NBAs, UBAs, SUBAs, and DBAs
	2.2 LTL formulas
	2.3 M2MAs
	2.4 Size lower bounds for DFAs, M2MAs and NFAs

	3 M2MAs as representations of regular languages
	3.1 M2MAs: procedures for operations and properties
	3.2 Conciseness comparisons for regular languages

	4 Representing regular omega-languages using regularlanguages
	5 Conciseness comparisons for regular omega-languages
	5.1 Size increases for LTL formulas
	5.2 Size increases for DBAs, NBAs, SUBAs

	6 Empirical results
	6.1 SUBAs to minimized M2MAs and DFAs
	6.2 NBAs and DBAs to minimized M2MAs
	6.3 LTL formulas to minimized M2MAs

	7 Summary and conclusions
	References

