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Squeezing the angular momentum of an ensemble of complex multilevel atoms
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Squeezing of collective atomic spins has been shown to improve the sensitivity of atomic clocks and
magnetometers to levels significantly below the standard quantum limit. In most cases the requisite atom-atom
entanglement has been generated by dispersive interaction with a quantized probe field or by state-dependent
collisions in a quantum gas. Such experiments typically use complex multilevel atoms like Rb or Cs, with the
relevant interactions designed so that atoms behave like pseudospin- 1

2 particles. We demonstrate the viability
of spin squeezing for collective spins composed of the physical angular momenta of 106 Cs atoms, each in
an internal spin-4 hyperfine state. A peak metrological squeezing of at least 5dB is generated by quantum
backaction from a dispersive quantum nondemolition (QND) measurement, implemented using a two-color
optical probe that minimizes tensor light shifts without sacrificing measurement strength. Other significant
developments include the successful application of composite pulse techniques for accurate dynamical control
of the collective spin, enabled by broadband suppression of background magnetic fields inside a state-of-the-art
magnetic shield. The absence of classical noise allows us to compare the observed quantum projection noise
and squeezing to a theoretical model that properly accounts for both the relevant atomic physics and the spatial
mode of the collective spin, finding good quantitative agreement and thereby validating its use in other contexts.
Our work sets the stage for experiments on quantum feedback, deterministic squeezing, and closed-loop mag-
netometry. The implementation of real-time feedback may also create an opportunity for new types of quantum
simulation, wherein the evolution of a quantum system is conditioned on the outcome of a time-continuous QND
measurement. Such a scheme has the potential to access new regimes near the quantum-classical boundary, with
opportunities to study long-standing issues related to quantum-classical correspondence in chaotic systems.
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I. INTRODUCTION

Quantum control on multiple scales, from single parti-
cles to complex many-body systems, is integral to quantum
information science. Examples range from digital quan-
tum computing and analog quantum simulation to quantum
metrology and sensing. For metrology and sensing applica-
tions, a rapidly growing body of work has focused on the
generation and use of squeezed collective spin states to im-
prove the performance of atomic clocks, atom interferometers,
and magnetometers [1]. Recent experiments have shown that
significant gains are possible in the near term, with demon-
strated improvements of up to 20 dB in the sensitivity of
microwave spectroscopy relative to the standard quantum
limit [2,3].

Squeezing of collective atomic spins have typically been
generated either through dispersive interaction with a shared
mode of quantized light [2–7] or by state-dependent colli-
sions in a quantum gas [8–11]. With few exceptions [4,10]
these experiments have used complex atoms such as Rb or
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Cs and the relevant interactions have been designed to ensure
that each atom behaves, as far as possible, as an effective
pseudospin- 1

2 particle. In that case squeezing of the collec-
tive spin results solely from correlations between individual
spins, and experiments can largely sidestep the complexities
of quantum control within the large hyperfine manifolds that
are characteristic of alkali-metal atoms.

In this article we demonstrate that quantum backaction
from a dispersive quantum nondemolition (QND) measure-
ment can produce at least 5dB of metrologically useful
squeezing of a collective angular momentum formed by the
physical angular momenta of individual Cs atoms in the
6S1/2( f = 4) hyperfine state. Our measurement is imple-
mented by detecting the spin-dependent Faraday rotation of
an optical probe beam during a single pass through the atomic
ensemble. For hyperfine spins f � 1, this is generally far from
an ideal QND scenario because of probe-induced rank-2 ten-
sor light shifts that drive nontrivial evolution of the individual
spins; this has been a major obstacle for squeezing of col-
lective angular momenta in the past [12,13]. Minimization of
unwanted light shifts is a common challenge in atomic physics
and is usually achieved with a magic frequency or two-
component probe (for examples relevant to Faraday and QND
measurements see, e.g., [14,15] and [16,17], respectively).
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FIG. 1. (a) Experimental setup for optical measurement of a collective atomic spin F̂z. A linearly polarized optical probe does a single
pass through a cloud of approximately 106 Cs atoms held in an optical trap inside a magnetic shield (not shown) and the resulting spin-
dependent Faraday rotation is measured with a shot-noise-limited polarimeter. The polarimeter output m(t ) is integrated for a time T to yield
a measurement M of the QND observable M̂ ∝ F̂z. (b) Two-color tensor light shift V� (r) = V1/2(r) +V3/2(r), in units of the tensor light shift
V (r) when probing with a single color on the j ′ = 3/2 transition and using the same detuning and total power. (c) Measurement strength r for
two-color probing, in units of rmax for single-color probing. Dashed red lines indicate whereV� (r) = 0 and red diamonds indicate the estimated
operating point used in the experiment. (d) and (e) Close-ups, with ellipses indicating the estimated one standard error contour for the detuning
and power ratios. (f) and (g) Tensor light shift and measurement strength for cuts through the red diamond in (d), as a function of the detuning
and power ratios. Vertical black lines are the estimated operating points and the shaded gray areas indicate the corresponding plus or minus one
standard error range. (h) Experimentally observed cancellation of the tensor light shift, as indicated by the decay of the magnitude F (T ) of the
spin as a function of time. The three data sets correspond to optical pumping (black), optical pumping plus tensor light shift (blue triangles),
and optical pumping plus two-color cancellation of the tensor light shift (red circles). The dotted lines are fits of decaying exponentials to the
experimental data.

Here we show that the QND and nonperturbing character
of the Faraday measurement can be effectively recovered
through the use of a two-color probe, with components de-
tuned relative to the Cs D1 and D2 lines in such a way that their
Faraday rotation signals add constructively while the tensor
light shifts cancel. Additional complications arise from the
magnetic moment of individual Cs atoms, which makes ini-
tialization and squeezing of the collective angular momentum
highly sensitive to ambient magnetic fields. In our experiment,
we show that this problem can be addressed with a combina-
tion of magnetic shielding and composite-pulse techniques. In
the end, our observed degree of squeezing is in good quan-
titative agreement with a model that properly accounts for
the relevant atomic physics and collective spin mode, thereby

validating a considerable body of theoretical work. Finally,
the elimination of tensor light shifts in principle frees us to
manipulate the individual hyperfine spins in ways that can
enhance the entangling power of the QND measurement and
maximize the overall metrological advantage [18].

II. EXPERIMENTAL IMPLEMENTATION OF QND
MEASUREMENT

A schematic of our experiment is shown in Fig. 1(a). Our
atomic ensemble consists of approximately 106 Cs atoms
prepared in the 6S1/2( f = 4) hyperfine manifold and held in
an elongated dipole force trap located inside a high-quality,
three-layer magnetic shield that attenuates ambient fields by
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a factor of at least 104 in a bandwidth from DC to 50 kHz.
The optical probe is a linearly polarized TEM00 spatial mode
laser beam doing a single pass though the atom cloud, after
which the spin-dependent Faraday rotation is measured with a
shot-noise-limited polarimeter whose output is integrated for
some time T . The coupled spin-probe system is governed by
a Hamiltonian

Ĥ = h̄�F̂z + h̄χ F̂zŜ3 + Ĥ (2), (1)

where F̂z is in units of h̄ and the three terms represent the
interaction with a bias magnetic field along the z axis, the
atom-probe Faraday interaction, and a small but important
atom-probe irreducible rank-2 tensor interaction (referred to
as the tensor interaction in what follows) which we will set
aside for now and return to below. The magnetic and Faraday
interaction terms commute and the former has no effect on the
latter. Accordingly, in what follows we will refer to spin ob-
servables in the rotating frame. For a single-color probe tuned
near one of the 6S1/2 → 6Pj′ , j′ = {1/2, 3/2}, transitions of
an alkali-metal atom, this scenario is well studied and we give
here only a brief summary of the most important aspects. The
reader is referred to the literature [13,19–22] for more detail.

The Faraday interaction h̄χ F̂zŜ3 couples the Ŝ3 component
of the probe Stokes vector to a collective spin mode F̂z =∑

n β(rn) f̂ (n)
z , where the weights β(rn) = I (rn)/Imax are given

by the intensities seen by the atoms relative to the peak inten-
sity at the probe waist and where the quantity N1 = ∑

n β(rn)
is an effective atom number defined such that F = N1 f . The
strength of the coupling is characterized by the polarization
rotation angle χ = −C(1)

j′ (σ0/A)(�/2�), where σ0 = 3λ2/2π

is the resonant scattering cross section for unit oscillator
strength, A = πw2

0 is the characteristic probe cross section, �

is the natural linewidth of the atomic transition, and � is the
detuning from resonance. Here and throughout, the denotation
C(K )

j′ refers to effective tensor coefficients associated with the
atom-probe interaction (see Appendix A for details).

We configure the experiment such that the input Stokes
vector lies along the 1 axis of the Poincaré sphere and the
polarimeter measures Ŝ2. Note that for a traveling-wave probe
the Stokes vector components are related to photon flux rather
than photon number. Thus, for weak Faraday interaction,
the input-output relation is Ŝout

2 = Ŝin
2 + χ Ŝin

1 F̂z, where Ŝin
1 �

ṄL/2 for large 〈Ŝin
1 〉, with ṄL = P/h̄ω the photon flux in a

probe of power P and frequency ω. The polarimeter output
m(t ) is a continuous-time measurement of the observable

m̂(t ) = h̄ω
(
2Ŝin

2 + χṄLF̂z
)
, (2)

and integrating it for a time T yields a measurement M of our
essential QND observable

M̂ = h̄ω

(∫ T

0
2Ŝin

2 dt + χṄLT F̂z

)
, (3)

where the two parts correspond to contributions from probe
shot noise and the Faraday signal, respectively. In principle,
there is also a contribution to m̂(t ) and M̂ from the ten-
sor interaction Ĥ (2), but this is already small for the probe
detunings considered here and averages to zero in the rotat-
ing frame [13]. Thus, given a measurement outcome M, the
maximum-likelihood estimate for the spin is Fz = M/g(T ),

where g(T ) = h̄ωχ ṄLT is the integrated polarimeter output
per unit angular momentum, equal to the energy scattered into
the signal mode Ŝout

2 per unit angular momentum.
The backaction from a measurement of M̂ is quantified by

the measurement strength

r = �M2
PN

�M2
SN

= χ2ṄLT�F 2
z , (4)

where �M2
PN = (h̄ω)2χ2Ṅ2

LT
2�F 2

z and �M2
SN = (h̄ω)2ṄLT

are the contributions to the overall measurement variance
�M2 from spin quantum projection noise (PN) and probe shot
noise (SN). In the absence of atom loss and decoherence from
optical pumping, measurement backaction would in principle
produce a spin-squeezed state (SS) with quantum projection
noise reduced by a factor 1/(1 + r). A more relevant measure
is the so-called metrological squeezing

ξ 2
m =

(
�F 2

z

〈F̂x〉
)

SS

/(
�F 2

z

〈F̂x〉
)

CS

, (5)

defined as the improvement in sensitivity relative to a spin-
coherent state (CS) when measuring small rotations [23]. Loss
and decoherence will affect the quantum projection noise and
mean spin on a timescale set by the characteristic photon
scattering rate γ , which limits the useful measurement time
to T ∼ γ −1. For alkali-metal atoms and large detuning one
finds that χ2ṄL ∝ γ , and the minimum value of ξ 2

m becomes
independent of probe power and detuning and also whether
one probes near the 6S1/2 → 6Pj=1/2 (D1) or 6S1/2 → 6Pj=3/2

(D2) transition.

III. TENSOR LIGHT SHIFTS

Beyond loss and decoherence, metrological squeezing in
our system is strongly affected by the atom-probe tensor inter-
action. Because the tensor polarizability has negligible effect
on the probe polarization it can be effectively modeled as a
single-atom tensor light shift. For linear probe polarization
along x this takes the form

Ĥ (2) =
∑
n

C(2)V (rn)
(
f̂ (n)
x

)2
, (6)

where the scalar magnitude of the light shift, V (rn), de-
pends on the atomic transition, the local probe intensity, and
the detuning. Note that [Ĥ (2), F̂z] 	= 0, which means the ten-
sor interaction compromises the QND character of a spin
measurement via the Faraday interaction. In [24] a QND mea-
surement was recovered, on average, by rapidly alternating the
probe between x and y polarization. We similarly recover an
(imperfect) QND measurement by adding a bias field along
z, in which case the effective tensor light shift in the rotating
frame takes the form

Ĥ (2)
RF =

∑
n C

(2)V (rn)
(
f̂ (n)
z

)2

2
, (7)

and thus [Ĥ (2)
RF , F̂z] = 0 [12]. This turns out to be insufficient

when working with spin f � 1 atoms, for which a Hamilto-
nian of this type will drive complex dynamics of the internal
atomic spin [13] in a manner that is inhomogeneous across
the ensemble and cannot be undone by standard dynamical
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decoupling techniques. The result is a rapid collapse of the
mean spin that interferes with the QND measurement and
prevents any significant degree of metrological squeezing.

In our experiment we minimize the overall tensor light
shift with a two-color probe consisting of spatially mode
matched components near the D1 ( j′ = 1/2) and D2 ( j′ =
3/2) transitions; from here on we label with j′ any quantity
that differs between the two transitions and associated probe
fields. For alkali-metal atoms at detunings much larger than
the excited-state hyperfine splitting, we have χ j′ ∝ C(1)

j′ /� j′

and Vj′ (rn) ∝ C(2)
j′ Pj′/� j′ , with tensor coefficients [13]

C(1)
1/2 ≈ 1

3 f
, C(2)

1/2 ≈ ζ1/2�1/2

�1/2
, ζ1/2 > 0,

C(1)
3/2 ≈ − 1

3 f
, C(2)

3/2 ≈ ζ3/2�3/2

�3/2
, ζ3/2 < 0.

Thus, when the detunings �1/2 and �3/2 have opposite sign
the Faraday signals add constructively and the tensor light
shifts counteract each other. Exact cancellation occurs when
C(2)

1/2V1/2(rn) = −C(2)
3/2V3/2(rn), which can be achieved for a

range of powers and detunings of the j′ = 1/2 and j′ = 3/2
components. The possible combinations can be found using
Eq. (A3) in Appendix A.

Maximizing the measurement strength brings further con-
straints. The measured observable is now

M̂ =
∑
j′

M̂ j′ , (8)

where

M̂ j′ = h̄ω j′

(∫ T

0
2
(
Ŝin

2

)
j′dt + χ j′Ṅ j′T F̂z

)
.

The variances are �M2
PN = (

∑
j′ h̄ω j′χ j′Ṅ j′ )2T 2�F 2

z and

�M2
SN = (

∑
j′ h̄

2ω2
j′Ṅ j′ )T and the measurement strength is

again r = �M2
PN/�M2

SN. Finally, in analogy to single-color
probing, the metrological squeezing will peak for a measure-
ment time T ∼ (

∑
j′ γ j′ )−1.

As outlined in Appendix A, it is straightforward to numer-
ically calculate both measurement strength and tensor light
shift as a function of the ratios �1/2/�3/2 and P1/2/P3/2.
The resulting contour plots in Fig. 1 show a favorable region
near �1/2/�3/2= − 1 and P1/2/P3/2 ≈ 0.2, where V� (r) ≈ 0
and r ≈ 0.96rmax. Probe absorption and scalar light shifts
are additional concerns if the detunings are too small or too
large, respectively. By experimentation we have found a sweet
spot around �3/2= − 580�3/2 (−3.0 GHz), with a combined
probe power P1/2 + P3/2 ≈ 20 μW in a 26-μm beam waist,
where both absorption and scalar light shifts are negligible.
Operationally, our power and wave meters are not accurate
enough to dial in the desired powers and detunings in a single
step, but once they are set as accurately as possible we can
compensate by fine-tuning P1/2 to minimize the observed spin
decay (discussed below). We then do a final set of power
and detuning measurements to determine the nominal working
point. As shown in Fig. 1, the result is consistent with zero
light shift when taking into account the estimated measure-
ment uncertainty.

In our experiment the most sensitive way to detect and
cancel tensor light shifts is to measure and minimize the mean
spin decay as a function of time. To do so, we compare three
different probe scenarios with identical measurement strength.
In the first, we prepare a spin-coherent state along the z di-
rection and measure F̂z as a function of time T . Because F̂z
commutes with the light shift Hamiltonian, any decay of 〈F̂z〉
must be entirely due to optical pumping and thus serves as
a baseline for how well we can do. In the second scenario
we use a single-color probe, prepare a spin-coherent state
along z, rotate it to point along x, turn the probe on for a
time T during which the spin evolves due to the tensor light
shift, rotate it back to point along z, and immediately measure
F̂z. The third scenario is identical to the second, except that
we use a two-color probe and fine-tune P1/2 to minimize the
mean spin decay and thus the tensor light shift. Figure 1(h)
shows how this plays out with probe parameters for which
peak metrological squeezing occurs with back-to-back mea-
surements of T ≈ 120 μs each. Fitting each data set with a
decaying exponential, we find 1/e decay times of 2888 μs
due to optical pumping alone and 2083 μs due to optical
pumping plus carefully minimized tensor light shifts. Thus,
at T = 240 μs the additional mean spin decay from residual
tensor light shifts is approximately 3%, which is negligible for
our purposes. By comparison, a single-color probe leads to a
1/e decay time of 460 μs and a mean spin decay of 40% at
240 μs.

IV. QUANTUM PROJECTION NOISE

With the two-color Faraday QND measurement in place,
the observation of spin quantum projection noise is relatively
straightforward. The basic sequence begins by preparing the
individual atomic spins in the state | f ,mz = f 〉, through a
combination of optical pumping and selective removal of
atoms in other states. This is equivalent to preparing the
collective spin mode in |F,Mz = F 〉, where F = N1 f and the
effective atom number N1 can be found from a measurement
of F̂z. We next apply a single radio-frequency (rf) pulse at
the bias Larmor frequency � = 250 kHz to rotate the spin
by π/2 around y, resulting in a close-to-minimum-uncertainty
spin-coherent state that is aligned approximately along x. At
this point we turn on the optical probe and record the output of
the polarimeter for several milliseconds. Integrating the mea-
surement record from t = 0 to T then yields a measurement of
the observable M̂. Repeating the sequence at least 100 times
allows us to estimate �M2, and doing the same without atoms
in the trap gives an independent estimate of �M2

SN.
Figure 2(a) shows a typical data set consisting of estimates

for �M2 at T = 120 μs, for a range of effective atom numbers
N1. We fit this data with a function

�M2 = �M2
SN + aN1 + b(N1)2, (9)

where the three terms correspond to probe shot noise,
quantum projection noise, and “classical” projection noise
resulting from errors in the rotation that puts the spin-coherent
state along x. Focusing on the quantum projection noise
�M2

PN, we find that for this data set it exceeds �M2
SN by

5.1 dB at the largest N1, corresponding to a measurement
strength r = 3.25. In the absence of loss and decoherence,
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FIG. 2. Estimated measurement variance of the QND observable M̂, in units of g(T ) = h̄ωχ ṄLT (energy scattered into the signal mode
per unit angular momentum). (a) Measurement variance �M2 for a spin-coherent state (integration time T = 120 μs) versus the effective atom
number N1. The data (black circles) are fitted with a function �M2 = �M2

SN + aN1 + bN2
1 (black line) to separate out probe shot noise (blue),

quantum projection noise (green), and classical projection noise (gray). The dashed line is the predicted �M2
PN based on the known geometry

and the measured N1. Preparation of the collective spin includes a noisy rotation by π/2 around y; this is the source of the observed classical
projection noise. (b) Two data sets taken on different days (up and down triangles), showing the fitted �M2 (solid line) and predicted �M2

PN

(dashed line) for a maximally mixed spin state. The spherical symmetry of the state eliminates sensitivity to noisy rotations and thus classical
projection noise. (c) Two data sets taken on different days (up and down triangles), equivalent to (a) except that a robust composite pulse is
used to implement the π/2 rotation around y. This almost entirely removes classical projection noise, leaving only shot noise and quantum
projection noise. In all cases the measurement variance is estimated from 100 trials at the lowest atom number, gradually increasing to 500
trials at the highest atom number, such that the error bars (standard deviation of the mean) on �M2 remain similar for different N1.

this value implies a postmeasurement reduction of projection
noise (quantum and classical combined) to a level 6.3 dB
below the spin-coherent state. However, this is not a good
approximation given the characteristic photon scattering rate
1/γ ∼ 35 μs for this data set. Also shown [Fig. 2(b)] is a
data set where the collective spin is initially prepared in a
maximally mixed (thermal) state, for which the quantum pro-
jection noise is a factor of 10

3 larger than for the spin-coherent
state. The spherical symmetry of this state means it is not
affected by noisy rotations or tensor light shifts during the
measurement and thus rules out any introduction of classical
projection noise. The maximally mixed state is prepared as
in [25] and serves as a very robust calibration of the quan-
tum projection noise present in our experiment. Separately,
the quantum projection noise observed in Fig. 2(a) and that
observed in Fig. 2(b) are in very close agreement with a
prediction based on the measured N1 and the known geometry
of the experiment.

V. COMPOSITE PULSE CONTROL

The classical projection noise visible in Fig. 2(a) is a stark
reminder of the challenge posed by dynamical control of large
collective spins. As already outlined, for this data set a single
rf pulse was applied to drive a rotation R(θ1, ε1), where nomi-
nally θ1 = π/2 and ε1 = y. In practice, both the angle and axis
of rotation are fluctuating due to variations in rf amplitude and
detuning. Thus, if θ1 is subject to Gaussian fluctuations with
zero mean and variance �θ2

1 , classical and quantum projec-
tion noise will be equal when �θ1 = �Fz/F . That is, for a
collective spin F ∼ 106, the rms angle error must be of order
10 μrad or less for classical projection noise to be negligible.

Furthermore, fluctuations in the bias magnetic field affects the
detuning and thus the axis of rotation, ε1 = y + (��/�rf )z,
where �� is the rms error in the bias Larmor frequency and
�rf is the rf Larmor frequency. In the absence of magnetic
shielding, this is the dominant source of classical projection
noise in our experiment.

To overcome this problem, we use a composite rota-
tion implemented with two consecutive rf pulses R(θ2) =
R(θ2, ε2)R(θ1, ε1), where nominally ε1 = y, θ1 = π/2, ε2 =
x, and the two pulses are subject to identical amplitude and
detuning errors. As seen in Fig. 3, the overall projection noise
(�Fz )2 is insensitive to both amplitude and detuning errors
at θ2 = 3π/2 and to detuning errors only at θ2 = 0, 2π . Data
taken for a range of θ2 are in good agreement with predictions
assuming Gaussian amplitude and detuning variations from
run to run of our experiment and reach the quantum projection
noise floor at θ2 = 3π/2. This is the operating point used for
the data in Fig. 2(c), showing that we can reliably reach the
quantum projection noise floor for effective atom numbers in
the entire range N1 � 106. A separate set of data in Fig. 3
shows that our composite pulse performs poorly in the ab-
sence of magnetic shielding, most likely because the detuning
error is changing during the 160-μs pulse duration. This is
consistent with the presence of residual magnetic fields in the
DC 50-kHz range in our laboratory.

VI. METROLOGICAL SPIN SQUEEZING

Squeezing by measurement backaction is inherently non-
deterministic and applying it to metrology or sensing requires
two successive measurements, one before and one after the
spin rotation of interest. Thus, the appropriate measure of
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FIG. 3. Initial state preparation with a composite rotation
R(θ2) = R(θ2, ε2 )R(θ1, ε1), where nominally θ1 = π/2, ε1 = y, ε2 =
x, and �M2 is measured as a function of θ2. For θ2 = 3π/2 the se-
quence is robust to fluctuations in both amplitude and detuning of the
rf field that drives the rotations; for θ2 = 0, 2π it is robust to detuning
but not amplitude fluctuations. Blue circles are experimental data, the
dark blue solid line is the prediction of a model with detuning and
amplitude fluctuations, and the light blue dotted line is the prediction
of a model with detuning fluctuations only. Red triangles are data
taken in the absence of magnetic shielding, showing a poor fit to the
model (red dashed line) due to ambient AC magnetic fields.

metrological advantage is based on the conditional variance
of back-to-back measurements M̂1 and M̂2 [7],

ξ 2 = �(M2|M1)2 − �M2
SN

�M2
PN

|〈F̂1〉|2
|〈F̂2〉|2

. (10)

As defined, this metrological squeezing parameter accounts
for squeezing of the conditional variance as well as the
injection of quantum projection noise and loss of
mean spin that occurs due to atom loss and optical
pumping. To estimate the conditional variance from
experimental data, we first relate it to the covariance
�(M2|M1)2 = �M2

2 − cov(M1,M2)2/�M2
1 and then estimate

cov(M1,M2) = [�(M1 + M2)2 − �(M1 − M2)2]/4 directly
from sets of measurement records that we separate into two
sections of length T . Finally, the reduction in mean spin
during the measurement is obtained from the data in Fig. 1.
Figure 4 is a typical data set showing ξ 2 versus T , attaining a
degree of metrological squeezing corresponding to
ξ 2 � −5 dB at ∼120 μ.

VII. COMPARISON TO THEORY

Our experiment offers a unique opportunity to validate
the predictions of a full quantitative model of Faraday
interaction-based quantum measurements of collective atomic
spins, as shown in Fig. 4. We employ a first-principles
stochastic master equation (SME) that includes both the ef-
fect of measurement backaction and a complete description
of optical pumping [19,26]. Such a model is faced with
three complicating factors: (i) complex many-body dynam-
ics, (ii) spatial inhomogeneities in the probe intensity and
atomic density, and (iii) the complex internal hyperfine lev-
els. Given the modest coupling strength achieved here, the
many-body state is well approximated as a Gaussian state,
described simply by a set of one- and two-body correla-
tions [26–28], the former describing the mean spin and the
latter the spin-spin correlations. We address inhomogeneity
as in [19] by projecting into a basis of Laguerre-Gaussian
and longitudinal spatial modes. Finally, as in [26,28], we

FIG. 4. (a) Metrological squeezing parameter ξ 2 for N1 = 106 and estimated from 2700 back-to-back measurements of duration T . Up
and down triangles correspond to two separate data sets taken on different days; the red solid line is the estimated metrological squeezing
when combining both sets and analyzing them as one and the shaded area is the corresponding one standard deviation error band. (b) Results
from a detailed theoretical model of spin squeezing in our experiment, showing the predicted reduction in quantum projection noise (black
line with square) and the predicted metrological squeezing ξ 2

m defined as in Eq. (5) (blue line with triangle); these quantities are not accessible
in the experiment. The red line with a circle shows the predicted metrological squeezing ξ 2, defined as in Eq. (10) and estimated from
27 000 simulated measurement records that have been analyzed using the exact same protocol as measurement records from the experiment.
Metrological squeezing equivalent to ξ 2 � −5 dB is observed in both the experiment and simulated data.
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restrict the internal dynamics by treating each atom as a qutrit
|↑〉, |↓〉, |T 〉. For the initial spin-coherent-state preparation
we have |↑〉 = | f = 4,mx = 4〉, and the Faraday interac-
tion leads to entanglement dominantly with |↓〉 = | f = 4,

mx = 3〉. Optical pumping also couples |↑〉 → |↓〉 and |↓
〉 → |T 〉 = | f = 4,mx = 2〉; the latter is important to account
for transfer of coherence [18]. As described in [26,28] and
Appendix B, we use the SME to obtain a closed set of
one- and two-body correlations functions in this truncated
basis, projected into the basis of spatial modes. These are
numerically integrated to generate both a direct theoretical
prediction of the spin-squeezing parameters as a function
of time and a simulation of the noisy polarimeter signal
m(t ). When analyzed the same way as experimental data,
the latter predicts a degree of metrological squeezing in
good quantitative agreement with the experiment, given re-
alistic uncertainties about the atom cloud size and probe
geometry.

VIII. SUMMARY AND OUTLOOK

With the work reported here, we have demonstrated the
viability of spin squeezing for large collective spins com-
posed of the individual physical angular momenta of up to
106 Cs atoms. Metrological squeezing equivalent to ξ 2 �
−5 dB was generated by quantum backaction from a dis-
persive QND measurement, implemented with a two-color
optical probe that minimizes tensor light shifts without
sacrificing measurement strength. Other significant devel-
opments include the successful application of composite
pulse techniques for accurate dynamical control of collec-
tive spins, enabled in part by broadband suppression of
background magnetic fields inside a high-quality magnetic
shield. Finally, we have compared the observed quantum
projection noise and conditional squeezing to a theoretical
model that accounts for the relevant atomic physics and
collective spin mode, finding good quantitative agreement
and validating its use when modeling other, more complex
experiments.

Looking ahead, a clear next step is to demonstrate that the
observed conditional squeezing conveys an actual metrolog-
ical advantage when detecting a small spin rotation inserted
between back-to-back measurements, both in broadband AC
magnetometry near the bias Larmor frequency and in near DC
magnetometry without a bias field. Having solved the twin
problems of tensor light shifts and accurate dynamical control,
there are additional avenues to explore, notably the combina-
tion of internal and collective spin control. Prior theoretical
work from our collaboration suggests that significant addi-
tional squeezing and as much as 10 dB improvement in the
sensitivity of atomic magnetometry might be achieved, given
sufficiently accurate control of the internal atomic state [18].
Other opportunities include a revisit of long-standing ideas
related to continuous measurement and real-time feedback
for deterministic squeezing and closed-loop magnetometry
[29,30]. The introduction of real-time feedback also provides
an opportunity for new types of quantum nonlinear dynamics,
wherein the evolution of a quantum system is conditioned on
the outcome of a time-continuous QND measurement. This
has the potential to access new regimes of quantum simula-

tion near the quantum-classical boundary and opportunities to
study long-standing issues related to quantum-classical corre-
spondence in chaotic systems [31,32].
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APPENDIX A: QUANTITIES THAT DEPEND ON ATOMIC
TENSOR POLARIZABILITY

The main part of this article uses a compact notation to ac-
count for hyperfine structure in the Cs 6P1/2 and 6P3/2 excited
states. In the following we summarize the relevant atomic
physics [13] and define a number of parameters referred to
above, e.g., Faraday rotation angles, light shifts, scattering
rates, etc.

1. Atom-light interaction

The atom-laser light-shift interaction is characterized by
a series of effective tensor coefficients C(K )

j′ , for irreducible
rank K = 0, 1, 2 scalar, vector, and tensor interactions, re-
spectively. We define

C(K )
j′ =

∑
f ′

C(K )
j′ f ′ f

� j′

� j′ f ′ f
, (A1)

where primed and unprimed quantum numbers refer to elec-
tronic excited and ground states, respectively. The individual
detunings � j′ f ′ f = ω j′ − (Ej′ f ′ − Ej f )/h̄ are with respect to
the |6S1/2( f )〉 → |6Pj′ ( f ′)〉 transitions, and we define the ef-
fective detuning � j′ with respect to the |6S1/2( f = 4)〉 →
|6Pj′ ( fmax)〉 transition. Expressions for the coefficients C(K )

j′ f ′ f
can be found in Appendix A of Ref. [13].

The vector light shift leads to Faraday interaction, where
we have defined the characteristic Faraday rotation angle as

χ j′ =
∑
f ′

χ j′ f ′ =
∑
f ′

−C(1)
j′ f ′ f

σ j′

A

� j′

2� j′ f ′ f

= −C(1)
j′

σ j′

A

� j′

2� j′
. (A2)

Here � j′ = 4
3h̄ d

2
j′ j

ω3
j′

c3 is the characteristic spontaneous emis-
sion rate on the j′ → j transition, d j′ j is the reduced dipole

moment, and σ j′ = 3λ2
j′

2π
is the resonant scattering cross

section.
For x-polarized light, the irreducible rank-2 tensor light

shift for an atom at position rn, with local electric field EL, j′ (r)
and intensity I j′ (rn), is

Ĥ (2)
j′ (rn) =

∑
f ′

C(2)
j′ f ′ f

h̄�2
j′ (rn)

4� j′ f ′ f

[
f̂ (n)
x

]2

=
∑
f ′

C(2)
j′ f ′ f

� j′

� j′ f ′ f

h̄� j′

8

I (rn)

Isat, j′

� j′

� j′

[
f̂ (n)
x

]2

= C(2)
j′ Vj′ (rn)

[
f̂ (n)
x

]2
, (A3)
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where � j′ (rn) = −d j′ jEL, j′ (rn)/h̄ is the Rabi frequency and
Isat, j′ is the saturation intensity for unit oscillator strength.
The characteristic photon scattering rate is

γ j′ =
∑
f ′

σ j′ Imax, j′

h̄ω j′

�2
j′

4�2
j′ f ′ f

= σ j′ Imax, j′

h̄ω j′

�2
j′

4�2
j′

∑
f ′

�2
j′

�2
j′ f ′ f

, (A4)

where
∑

f ′
�2

j′
�2

j′ f ′ f
≈ 1 for detunings much larger than the

excited-state hyperfine splitting.

2. Measurement

For a single-color probe tuned near the |6S1/2( f = 4)〉 →
|6Pj′ 〉 transition the measurement strength is

r j′ =
(
�M2

PN

)
j′(

�M2
SN

)
j′

= (h̄ω j′χ j′Ṅ j′ )2T 2
j′ �F 2

z

(h̄ω j′ )2Ṅ j′Tj′

= η2
j′Tj′

κ j′
�F 2

z , (A5)

where Ṅ j′ = Pj′/h̄ω j′ is the photon flux and we have defined
η j′ = h̄ω j′χ j′ Ṅ j′ and κ j′ = (h̄ω j′ )2Ṅ j′ . Choosing Tj′ ∼ 1/γ j′ ,
we get a measure for the largest useful measurement strength

rmax = η2
j′�F 2

z

κ j′γ j′
. (A6)

Considering now a two-color probe with components
close to the |6S1/2( f = 4)〉 → |6P1/2〉 and |6S1/2( f = 4)〉 →
|6P3/2〉 transitions, respectively, we have

r = (η1/2 + η3/2)2T2C�F 2
z

κ1/2 + κ3/2

= η2
3/2T2C�F 2

z

κ3/2

(1 + η1/2/η3/2)2

1 + κ1/2/κ3/2
. (A7)

In this case the useful measurement time is given by the
combined scattering rates T2C ∼ 1/(γ1/2 + γ3/2). Substituting
and rearranging, we get

η2
3/2T2C�F 2

z

κ3/2
= η2

3/2T3/2�F 2
z

κ3/2

T2C

T3/2

= rmax
γ3/2

γ1/2 + γ3/2
(A8)

and finally an expression for the useful measurement strength
in units of its maximum value

r

rmax
= 1

1 + γ1/2/γ3/2

(1 + η1/2/η3/2)2

1 + κ1/2/κ3/2
. (A9)

Using the effective Faraday rotation angles and scattering
rates defined above, it is then straightforward to numerically
calculate r/rmax. Figure 1(c) in the main text shows how this
quantity varies as a function of the relative probe detunings
and powers, for �3/2 = −580�3/2.

APPENDIX B: THREE-DIMENSIONAL MODEL FOR
TWO-COLOR POLARIMETRY

We model the spin squeezing in our experiment via a
first-principles stochastic master equation that accounts for
both measurement backaction and optical pumping in the
interaction of the laser beam with the atomic cloud, fol-
lowed by detection in the polarimeter. This model builds on
the work of Norris and Baragiola [19,26] and we refer the
reader to previous references for much of the detail. Such
a model is faced with three complicating factors: (i) com-
plex many-body dynamics, (ii) spatial inhomogeneities in the
probe intensity and atomic density, and (iii) the complex in-
ternal structure of hyperfine levels. We tackle (i) using the
Gaussian approximation, tracking only one- and two-point
correlation functions, which is an excellent approximation
in the weak-coupling regime. In [19] (ii) was addressed by
incorporating the three-dimensional character of the cloud and
the light, which results in the inhomogeneous scattering of
the light into a superposition of transverse modes. In [26] (iii)
was addressed by the using of encoding into qutrits, which
captures the essential quantum correlations. The model in
(iii) employed a simplified model of decoherence, applicable
when the probe detuning is large compared to the excited-state
hyperfine splitting. Here we unify (i), (ii), and (iii) and include
a full decoherence model, appropriate for our two-color probe
geometry. The model described here includes all the details on
the relevant atomic physics, local and collective decoherences,
continuous measurement effects, and the inhomogeneities in
the atomic cloud and the probe, and it gives a reliable de-
scription of the experimental spin squeezing generated at early
times.

1. Light-shift interaction

For low saturation, the atom-light interaction is described
by the light shift Hamiltonian which can be decomposed
into irreducible scalar, vector, and tensor parts [13]. The
scalar interaction does not drive dynamics, and the irreducible
tensor interaction, H (2) in Eq. (A3), is canceled using two
probe lasers, one detuned near the D1 line (6S1/2 → 6P1/2

transition) and the other near the D2 line (6S1/2 → 6P3/2 tran-
sition), as described in the main text. The remaining nontrivial
term is the irreducible vector light shift. Taking the direction
of propagation of the laser as the z direction, the vector light
shift couples the atomic spin operator f̂z to the Ŝ3 Stokes
component of the field, giving the Faraday interaction. For the
two-color laser probes

ĤFaraday = χ1/2 f̂z(Ŝ3)1/2 + χ3/2 f̂z(Ŝ3)3/2, (B1)

where χ j′ is given in Eq. (A2). Here and throughout we
assume that the atom is prepared in the f = 4 hyperfine man-
ifold of the 6S1/2 electronic ground state.

In the presence of the probe beams, each atom also un-
dergoes optical pumping. We track optical pumping with
magnetic sublevels in the f = 4 manifold, which dominantly
couple to the probe; optical pumping into the f = 3 hyperfine
manifold is treated as loss. The dynamical map that describes
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optical pumping for a single atom is then [13]

γ j′ (r)D j′[ρ̂] := − i

h̄

[
Ĥ j′

lossρ̂ − ρ̂Ĥ j′†
loss

] + � j′
∑
q

Ŵ j′
q ρ̂Ŵ j′†

q ,

(B2)

where Ĥ j′
loss is the anti-Hermitian part of the light shift leading

to absorption and the jump operators are given as

Ŵ j′
q =

∑
f ′

� j′ (r)/2

� j′, f ′ f=4 + i� j′/2

(
e∗
q · D̂ j′

f=4, f ′
)(

�εL · D̂ j′†
f ′ f=4

)
,

(B3)
which arise from absorption of a laser photon with polar-
ization �εL and emission of a photon with polarization q
(labeling elements of the spherical basis). The operators D̂ j′†

f ′ f
are dimensionless raising operators from ground to excited
sublevels, defined in [13]. The local photon scattering rate for
a laser tuned near the j′ resonance for a unit Clebsch-Gordon
coefficient strength is γ j′ (r) = [I (r)/I j′,max]γ j′ .

In the experiment a strong bias magnetic field is ap-
plied along the probe propagation direction. Since the
Larmor precession frequency is large compared to the scat-
tering rate, we make a rotating-wave approximation by
performing the average over a Larmor cycle D j′ [ρ̂] →

1
2π

∫ 2π

φ=0 dφ Û (φ)D j′[ρ̂]Û †(φ), where Û (φ) = exp(−iφ f̂z ).

2. Geometry of the atomic cloud and probe light

Atoms in the cloud experience a Faraday interaction and
optical pumping proportional to the local intensity, which
varies across the ensemble according to both the cloud den-
sity and the spatially varying probe. We account for spatial
inhomogeneities by projecting into a basis of spatial modes,
using an extended version of the model introduced in [19].

The distribution of atoms in the optical trap is described by
a Gaussian density

η(r) = η0 exp

(
−2

r2
⊥

w2
⊥

− 2
z2

w2
z

)
, (B4)

where w2
⊥ and w2

z are e−2 variances along the perpendicular
and parallel directions to the probe, respectively, and η0 is the
peak density at the center of the cloud. The total number of
atoms is NA = ∫

dz d2r⊥η(r).
Each probe is a linearly polarized, paraxial TEM00 beam

with electric field �EL, j′ (r⊥, z) = exEL, j′u00(r⊥, z), where ex
is the probe polarization, EL, j′ is the peak electric-field am-
plitude, and u00(r⊥, z) is the fundamental Laguerre-Gauss
(LG) spatial mode. The transverse LG spatial modes are di-
mensionless and orthonormal,

∫
d2r⊥u∗

pl (r⊥, z)up′l ′ (r⊥, z) =
Aδp,p′δl,l ′ , where A is the transverse beam area.

We decompose the probe light collectively scattered by the
atoms into the basis of transverse LG modes. Each paraxial
mode of light in the far field (at the polarimeter) is coupled
via the Faraday interaction to a collective spin wave defined
across the atomic ensemble,

F̂ pl
z =

NA∑
n=1

βpl (rn) f̂ (n)
z . (B5)

Here rn is the position of the atom and the complex-valued
weighting coefficients βpl (r) = u∗

pl (r⊥, z)u00(r⊥, z) can be in-
terpreted as the absorption of an ex-polarized probe photon
in the fundamental 00 mode followed by emission of an ey-
polarized photon into the pl mode. The polarimeter measures
in the 45◦ polarization basis, selecting the ey-polarized scat-
tered light in the fundamental 00 mode (the Faraday rotation
signal) via homodyne-type detection, with the large-amplitude
probe serving as the local oscillator. The result is that the
polarimeter performs an effective measurement of the fun-
damental spin wave F̂ 00

z , referred to in the main text for
brevity as F̂z.

3. Stochastic master equation

In the infinitesimal limit the differential signal from the
polarimeter is described by

dM = 〈
F̂ 00
z

〉
dt + 1√

κ
dW, (B6)

where the first term is the Faraday rotation signal from the
light scattered into the spatial mode of the probe and the
second is the shot noise from the probe described by the
Wiener process dW .

The continuously monitored polarimetry signal can be used
to provide a conditional update of the collective atomic state
using a stochastic master equation. For two-color probing, the
dynamics of the collective atomic state ρ̂C is governed by the
stochastic master equation [19]

dρ̂C =
√

κ

4
H00[ρ̂C]dW + κ

4

∑
p,l

Lpl [ρ̂C]dt

+
∑
j′

NA∑
n=0

γ j′ (rn)D(n)
j′ [ρ̂C]dt . (B7)

The conditional dynamics from the continuous polarimetry
measurements are described by the first two terms, with the
superoperators defined as

Hpl [ρ̂C] := F̂ pl
z ρ̂C + ρ̂CF̂

pl†
z − Tr

[(
F̂ pl
z + F̂ pl†

z

)
ρ̂C

]
ρ̂C,

(B8)

Lpl [ρ̂C] := F̂ pl
z ρ̂CF̂

pl†
z − 1

2 F̂
pl†
z F̂ pl

z ρ̂C − 1
2 ρ̂CF̂

pl†
z F̂ pl

z . (B9)

The first term Hpl [ρ̂C] drives the conditional dynamics that
depend on the measurement signal and the L00[ρ̂C] term de-
scribes the associated backaction. The other terms Lpl [ρ̂C]
for pl 	= 00 give the additional collective decoherence from
unmeasured forward-scattered light in other spatial modes.
The effective measurement rate

κ =
[
sgn(χ1/2)

√
Ṅ1/2κ1/2 + sgn(χ3/2)

√
Ṅ3/2κ3/2

]2

Ṅ1/2 + Ṅ3/2
(B10)

is composed from the measurement rates for each probe,

κ j′ = χ2
j′Ṅ j′ , (B11)

where Ṅj′ is the photon flux in the probe tuned near the |6Pj′ 〉
resonance.

The final term in the SME describes the effects of lo-
cal optical pumping as individual atoms diffusely scatter
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photons proportional to their local scattering rate γ j′ (r) =
[I j′ (r)/I j′,max]γ j′ = β00(r)γ j′ . The effect of local optical
pumping on spin squeezing will be described in the following
sections.

4. Multilevel structure of cesium atoms in the ensemble

For weak coupling, the many-body state of the large en-
semble is well described in the Gaussian approximation, fully
determined by one- and two-body correlations. The dynamics
of these correlations are governed by the adjoint form of the
SME (B7) and form a closed set of equations that can be
integrated together. In Ref. [19] the constituent atoms were
spin 1

2 , so the collective spin operators themselves were used;
here we take into account the multilevel nature of each Cs
atom. Below we present the formalism for the symmetric
collective situation and describe the projection onto spatial
modes for the full three-dimensional model.

We treat the internal state space of each individual Cs atom
as a three-level system (qutrit) with basis states,

|↑〉 := |6S1/2, f = 4,mx = 4〉,
|↓〉 := |6S1/2, f = 4,mx = 3〉,
|T 〉 := |6S1/2, f = 4,mx = 2〉. (B12)

This basis is chosen as follows. Initially, each atom is op-
tically pumped into a fiducial internal state |↑〉. The QND
measurement, following the Faraday interaction, is dominated
by symmetrically entangling atoms in |↑〉 with atoms in the
coupled state |↓〉. We include the transfer state |T 〉 to account
for transfers of coherence that occur due to partial indistin-
guishability of scattered photons during optical pumping [18].
In principle, one could continue this process and construct
a complete “Faraday basis” for the internal state of a single
Cs atom. For weak coupling, three states suffice. Using this
truncated Hilbert space, atoms optically pumped to the f = 3
manifold are lost, as are atoms that exit the qutrit subspace
within the f = 4 manifold. These effects are accounted for by
projecting the Faraday interaction and optical pumping map
into the qutrit basis.

5. Collective operators

In order to calculate the spin-squeezing parameter and gen-
erate simulated experimental polarimeter signals [Eq. (B6)]
we require the collective spin moments 〈F̂x〉, 〈F̂z〉, and �F̂ 2

z .
These moments are decomposed in terms of collective pop-
ulation and coherence operators, defined over the qutrit
subspaces in the atoms,

N̂i :=
NA∑
n=1

n̂(n)
i , X̂i j :=

NA∑
n=1

x̂(n)
i j , (B13)

where the single-atom operators are

n̂i := |i〉〈i|, (B14a)

x̂i j := 1√
2

(|i〉〈 j| + | j〉〈i|), (B14b)

with {i, j} ∈ {↑,↓,T } and j > i in x̂i j to avoid redun-
dancy. The collective spin operators F̂x and F̂z that appear in
Eq. (B29) relate to these operators as [26]

F̂x ≈ f N̂↑ + ( f − 1)N̂↓ + ( f − 2)N̂T , (B15a)

F̂z ≈ v↑X̂↑↓ + w↑X̂↓T , (B15b)

where the coefficients v↑ := √
(� f 2

z )↑ and w↑ :=√
2(� f 2

z )↓ − 2(� f 2
z )↑ depend on single-atom variances

of f̂z under |↑〉 and |↓〉 [26]. This gives, for the variance,

�F 2
z ≈ v2

↑�X 2
↑↓ + 2v↑w↑〈�X̂↑↓�X̂↓T 〉 + w2

↑�X 2
↓T , (B16)

where �Â := Â − 〈Â〉. Equations (B15) are appropriate for
short times (several photon scattering times) when the major-
ity of the population resides in the fiducial state and little is
lost outside the qutrit subspace.

6. Equations of motion for the spatially inhomogeneous
collective operators

We combine the three-dimensional model with the mul-
tilevel description of the spin-4 Cs atoms and present the
coupled set of equations for the collective operators. As dis-
cussed in detail in Refs. [19,26,33], in order to account for
the local optical pumping, we divide the z direction (along the
probe’s propagation) into coarse-grained longitudinal slices of
width �z. Then, within each longitudinal slice the collective
operators are projected into the set of transverse LG modes.
This approximate longitudinal-mode decomposition improves
as �z decreases.

A single-body collective operator labeled by the transverse
pl mode decomposes longitudinally as

Ôpl =
NA∑
n=1

βpl (rn)ô(n) =
∑
k

Ôpl (zk ), (B17)

where Ôpl (zk ) = ∑
nk

βpl (rnk )ô(nk ), with this sum running only
over those atoms in the longitudinal slice centered at zk
with width �z. The collective fundamental-mode spin op-
erators that contribute to the polarimeter signal (B6) and
spin-squeezing parameter (B29) are single body and decom-
pose spatially as

F̂ 00
x ≈

∑
k

[
f N̂00

↑ (zk ) + ( f − 1)N̂00
↓ (zk ) + ( f − 2)N̂00

T (zk )
]
,

(B18a)

F̂ 00
z ≈

∑
k

[
v↑X̂ 00

↑↓(zk ) + w↑X̂ 00
↓T (zk )

]
. (B18b)

A collective operator such as (F̂ 00
z )2 involves two sums

over longitudinal modes, as it describes correlations between
atoms both within a single longitudinal slice and also between
different slices. Thus it contains both one-body and two-body
terms, each of which is affected differently by local optical
pumping.

Local optical pumping (B2) generates dynamics for single-
body operators,

d

dt
ô(n)

∣∣∣∣
op

=
∑
j′

γ j′ (rn)D(n)†
j′ [ô(n)], (B19)

023710-10



SQUEEZING THE ANGULAR MOMENTUM OF AN ENSEMBLE … PHYSICAL REVIEW A 104, 023710 (2021)

where the dagger on the optical pumping map indicates that
it is in adjoint form (appropriate for Heisenberg-picture evo-
lution of operators). For two-body operators, optical pumping
leads to a decay of correlations driven by the dynamics,

d

dt
ô(m)v̂(n)

∣∣∣∣
op

=
∑
j′

{
γ j′ (rm)D(m)†

j′ [ô(m)]v̂(n)

+ γ j′ (rn)ô(m)D(n)†
j′ [v̂(n)]

}
. (B20)

The optical pumping map for each local operator is weighted
by the local scattered rate of the associated atom. The fact that

the optical pumping acts locally breaks the collective symme-
try of the spin waves in the SME (B7) and leads to a coupling
of collective spin waves at the same longitudinal slice but in
different LG modes. Here we use the optical pumping map
after the rotating wave approximation with respect to the bias
magnetic field has been applied, as described at the end of
Sec. II A.

As discussed in detail in Ref. [19], the evolutions of
single-body and two-body collective operators couple in a
complicated way between spatial modes. Nevertheless, by
projecting the effects of the optical pumping map into the
qutrit basis we find the closed deterministic set of equations
in the Gaussian approximation [26]

d

dt

〈
N̂ pl
i (zk )

〉 = cplp′l ′ (zk )
∑
j′

∑
�

∑
p′,l ′

γ j′Tr[D†
j′[n̂i]n̂�]

〈
N̂ p′l ′

� (zk )
〉
, (B21a)

d

dt
〈X̂ pl

i j (zk )X̂ p′l ′
i′ j′ (zk′ )〉s

= −κ
∑
k′′,k′′′

[
v↑

〈
X̂ 00

↑↓(zk′′ )X̂ pl
i j (zk )

〉
s + w↑

〈
X̂ 00

↓T (zk′′ )X̂ pl
i j (zk )

〉
s

][
v↑

〈
X̂ 00

↑↓(zk′′′ )X̂ p′l ′
i′ j′ (zk′ )

〉
s + w↑

〈
X̂ 00

↓T (zk′′′ )X̂ p′l ′
i′ j′ (zk′ )

〉
s

]

+
∑
j′

∑
�,m

∑
p′′,l ′′

γ j′
(
cplp′′l ′′ (zk )Tr[D†

j′[x̂i j]x̂�m]
〈
X̂ p′l ′
i′ j′ (zk′ )X̂ p′′l ′′

�m (zk )
〉
s + cp

′l ′
p′′l ′′ (zk′ )Tr[D†

j′[x̂i′ j′ ]x̂�m]
〈
X̂ pl
i j (zk )X̂ p′′l ′′

�m (zk′ )
〉
s

)

+ δk,k′
∑
j′

∑
�

∑
p′′,l ′′

γ j′g
pl p′l ′
p′′l ′′ (zk′ )Tr[N j′ [x̂i j, x̂i′ j′]n̂�]

〈
N̂ p′′l ′′

�m (zk′ )
〉
, (B21b)

where {�,m} ∈ {↑,↓,T } and we use symmetrized moments 〈ÂB̂〉s := 1
2 〈ÂB̂ + B̂Â〉. The superoperator in the final line, which

arises from the two-body decay map in Eq. (B20), is

N j′ [â, b̂] := 1
2 (D†

j′[{â, b̂}+] − {D†
j′[â], b̂}+ − {â,D†

j′ [b̂]}+), (B22)

where {â, b̂}+ = âb̂+ b̂â is the anticommutator. The coefficients that describe the projection of the optical pumping into the LG
modes are [19,26,33]

cplp′l ′ (z) := 1

A

∫
d2r⊥[u00(r⊥, z)]2u∗

pl (r⊥, z)u∗
p′l ′ (r⊥, z), (B23)

gpl p
′l ′

p′′l ′′ (z) := 1

A

∫
d2r⊥u00(r⊥, z)up′′l ′′ (r⊥, z)βpl (r⊥, z)βp′l ′ (r⊥, z). (B24)

The single-body quadratures that contribute to the spin waves 〈F̂ pl
z 〉, including the squeezed spin wave 〈F̂ 00

z 〉, depend on the
measurement record and evolve according to the adjoint-form SME

d
〈
X̂ pl
i j (zk )

〉 =√
κ
〈
�X̂i j (zk )�F̂ 00

z

〉
sdW +

∑
j′

∑
�

∑
p′,l ′

γ j′c
pl
p′l ′ (zk ){Tr(D j′[x̂i j]n̂�)〈N̂�(zk )〉

+
∑
m

Tr(D j′[x̂i j]x̂�m)〈X̂�m(zk )〉}dt . (B25)

The full set of operator equations of motion is found by expanding �F̂ 00
z in terms of the collective quadratures using Eq. (B18).

Finally, every atom in the cloud is optically pumped to the fiducial state |↑〉, giving initial conditions for the above equations,

〈
N̂ pl
i (zk )

〉
(t0) =

∫ zk+�z/2

zk−�z/2
dz

∫
d2r⊥η(r⊥, z)βpl (r⊥, z)〈↑|n̂i|↑〉, (B26)

〈
X̂ pl
i j (zk )

〉
(t0) =

∫ zk+�z/2

zk−�z/2
dz

∫
d2r⊥η(r⊥, z)βpl (r⊥, z)〈↑|x̂i j |↑〉, (B27)

〈
X̂ pl
i j (zk )X̂ p′l ′

i′ j′ (zk′ )
〉
s(t0) = δk,k′

∫ zk+�/z2

zk−�z/2
dz

∫
d2r⊥η(r⊥, z)βpl (r⊥, z)〈↑|x̂i j x̂i′ j′ |↑〉s. (B28)

Into this model we input the experimental parameters: (i) probe powers, (ii) probe detunings, (iii) probe spatial modes, (iv)
atomic-cloud peak density, and (v) atomic-cloud-density e−2 variances. We numerically integrate Eqs. (B21) and (B25), whose
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solutions are used to reconstruct the first- and second-order collective spin moments, including the squeezed spin-wave variance
(�F 00

z )2, using Eqs. (B18).
With the equations of motion for these one- and two-body correlations, we can calculate the metrological squeezing parameter

ξ 2
m =

(
�φ

�φCS

)2

= 2 f
N2

1

N2

(
�F 00

z

)2

〈
F̂ 00
x

〉2 , (B29)

where 〈F̂ 00
x 〉CS = N1 f and (�F 00

z )2 = N2 f /2, and the effective atom numbers are NK := ∫
d3r η(r)|u00|2K [19]. This gives a

theoretical prediction of the squeezing as a function of time, as shown in Fig. 3(b) (blue curve).
We can also directly simulate numerically the measurement record using Eq. (B6). A simulation of the stochastically varying

spin moment 〈F̂ 00
z 〉 also allows us to directly generate simulated data for each integration of the equations. We analyze a

collection of simulated measurement records in the same way we do bona fide measurement records from the experiment as
shown in Fig. 3(b) (red curve).
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