

Counting hypergraphs with large girth

Sam Spiro | Jacques Verstraëte

Department of Mathematics, University of California, San Diego, La Jolla, California, USA

Correspondence

Sam Spiro, Department of Mathematics, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0112, USA.

Email: sspiro@ucsd.edu

Funding information

ETH Zürich Foundation; National Science Foundation

Abstract

Morris and Saxton used the method of containers to bound the number of n -vertex graphs with m edges containing no ℓ -cycles, and hence graphs of girth more than ℓ . We consider a generalization to r -uniform hypergraphs. The *girth* of a hypergraph H is the minimum $\ell \geq 2$ such that there exist distinct vertices v_1, \dots, v_ℓ and hyperedges e_1, \dots, e_ℓ with $v_i, v_{i+1} \in e_i$ for all $1 \leq i \leq \ell$. Letting $N_m^r(n, \ell)$ denote the number of n -vertex r -uniform hypergraphs with m edges and girth larger than ℓ and defining $\lambda = \lceil (r-2)/(\ell-2) \rceil$, we show

$$N_m^r(n, \ell) \leq N_m^2(n, \ell)^{r-1+\lambda},$$

which is tight when $\ell-2$ divides $r-2$ up to a $1+o(1)$ term in the exponent. This result is used to address the extremal problem for subgraphs of girth more than ℓ in random r -uniform hypergraphs.

KEY WORDS

Berge, cycle, hypergraph

1 | INTRODUCTION

Let \mathcal{F} be a family of r -uniform hypergraphs, or r -graphs for short. Define $N^r(n, \mathcal{F})$ to be the number of \mathcal{F} -free r -graphs on $[n] := \{1, \dots, n\}$, and define $N_m^r(n, \mathcal{F})$ to be the number of \mathcal{F} -free r -graphs on $[n]$ with exactly m hyperedges. If $\text{ex}(n, \mathcal{F})$ denotes the maximum number of hyperedges in an \mathcal{F} -free r -graph on $[n]$, then it is not difficult to see that for $1 \leq m \leq \text{ex}(n, \mathcal{F})$,

$$\left(\frac{\text{ex}(n, \mathcal{F})}{m}\right)^m \leq \binom{\text{ex}(n, \mathcal{F})}{m} \leq N_m^r(n, \mathcal{F}) \leq \binom{\binom{n}{r}}{m} \leq \left(\frac{en^r}{m}\right)^m,$$

and summing over m one obtains $2^{\Omega(\text{ex}(n, \mathcal{F}))} = N^r(n, \mathcal{F}) = 2^{O(\text{ex}(n, \mathcal{F}) \log n)}$. The state-of-the-art for bounding $N^r(n, \mathcal{F})$ is the work of Ferber, McKinley, and Samotij [9] which shows that if F is an r -uniform hypergraph with $\text{ex}(n, F) = O(n^\alpha)$ and α not too small, then

$$N^r(n, F) = 2^{O(n^\alpha)},$$

and this result encompasses many of the earlier results in the area [3,4,6,17].

There are relatively few families for which effective bounds for $N_m^r(n, \mathcal{F})$ are known. One family where results are known is $\mathcal{C}_{[\ell]} = \{C_3, C_4, \dots, C_\ell\}$, the family of all graph cycles of length at most ℓ . Morris and Saxton implicitly proved the following in this setting:

Theorem 1.1 (Morris and Saxton [17]). *For $\ell \geq 3$ and $k = \lfloor \ell/2 \rfloor$, there exists a constant $c = c(\ell) > 0$ such that if n is sufficiently large and $m \geq n^{1+1/(2k-1)}(\log n)^2$, then*

$$N_m^2(n, \mathcal{C}_{[\ell]}) \leq e^{cm}(\log n)^{(k-1)m} \left(\frac{n^{1+1/k}}{m}\right)^{km}.$$

In the appendix we give a formal proof of this result. Theorem 1.1 generalizes earlier results of Füredi [11] when $\ell = 4$ and of Kohayakawa, Kreuter, and Steger [15]. Erdős and Simonovits [8] conjectured for $\ell \geq 3$ and $k = \lfloor \ell/2 \rfloor$,

$$\text{ex}(n, \mathcal{C}_{[\ell]}) = \Omega(n^{1+1/k}) \tag{1}$$

which is only known to hold for $\ell \in \{3, 4, 5, 6, 7, 10, 11\}$ —see Füredi and Simonovits [12] and also [24] for details. The truth of this conjecture would imply that the upper bound in Theorem 1.1 is tight up to the exponent of $(\log n)^m$.

In this paper we extend Theorem 1.1 to r -graphs. For $\ell \geq 2$, an r -graph F is a *Berge ℓ -cycle* if there exist distinct vertices v_1, \dots, v_ℓ and distinct hyperedges e_1, \dots, e_ℓ with $v_i, v_{i+1} \in e_i$ for all $1 \leq i \leq \ell$. In particular, a hypergraph H is said to be *linear* if it contains no Berge 2-cycle. We denote by \mathcal{C}_ℓ^r the family of all r -uniform Berge ℓ -cycles. If H is an r -graph containing a Berge cycle, then the *girth* of H is the smallest $\ell \geq 2$ such that H contains a Berge ℓ -cycle. Let $\mathcal{C}_{[\ell]}^r = \mathcal{C}_2^r \cup \mathcal{C}_3^r \cup \dots \cup \mathcal{C}_\ell^r$ denote the family of all r -uniform Berge cycles of length at most ℓ . With this $\mathcal{C}_{[\ell]}^2 = \mathcal{C}_{[\ell]}$, and an r -graph has girth larger than ℓ if and only if it is $\mathcal{C}_{[\ell]}^r$ -free. We again emphasize that hypergraphs with girth $\ell \geq 2$ are all linear. We write $N_m^r(n, \ell) := N_m^r(n, \mathcal{C}_{[\ell]}^r)$ for the number of n -vertex r -graphs with m edges and girth larger than ℓ and $N^r(n, \ell) := N^r(n, \mathcal{C}_{[\ell]})$ for the number of n -vertex r -graphs with girth larger than ℓ .

Balogh and Li [2] proved for all $\ell, r \geq 3$ and $k = \lfloor \ell/2 \rfloor$,

$$N^r(n, \ell) = 2^{O(n^{1+1/k})}.$$

This upper bound would be tight up to an $n^{o(1)}$ term in the exponent if the following is true:

Conjecture 1. *For all $\ell \geq 3$ and $r \geq 2$ and $k = \lfloor \ell/2 \rfloor$,*

$$\text{ex}(n, \mathcal{C}_{[\ell]}^r) = n^{1+1/k-o(1)}.$$

Conjecture 1 holds for $\ell = 3, 4$ and $r \geq 3$ —see [7, 16, 22, 23]—but is open and evidently difficult for $\ell \geq 5$ and $r \geq 3$. Györi and Lemons [13] proved $\text{ex}(n, \mathcal{C}_{\ell}^r) = O(n^{1+1/k})$ with $k = \lfloor \ell/2 \rfloor$, so the conjecture concerns constructions of dense r -graphs of girth more than ℓ . The conjecture for $r = 2$ without the $o(1)$ is (1), and for each $r \geq 3$ is stronger than (1), as can be seen by forming a graph from an extremal n -vertex r -graph of girth more than ℓ whose edge set consists of an arbitrary pair of vertices from each hyperedge. We emphasize that the $o(1)$ term in Conjecture 1 is necessary for $\ell = 3$, due to the Ruzsa–Szemerédi theorem [7, 22], and for $\ell = 5$, due to the work of Conlon, Fox, Sudakov, and Zhao [5].

1.1 | Counting r -graphs of large girth

In this study we simplify and refine the arguments of Balogh and Li [2] to prove effective and almost tight bounds on $N_m^r(n, \ell)$ relative to $N_m^2(n, \ell)$.

Theorem 1.2. *Let $\ell, r \geq 3$ and $\lambda = \lceil (r-2)/(\ell-2) \rceil$. Then for all $m, n \geq 1$,*

$$N_m^r(n, \ell) \leq N_m^2(n, \ell)^{r-1+\lambda}. \quad (2)$$

We note that (2) corrects a bound¹ which appears in [20]. The inequality (2) is essentially tight when $\ell-2$ divides $r-2$, due to standard probabilistic arguments (see, e.g., Janson, Łuczak, and Rucinski [14]): it is possible to show that when $m \leq n^{1+1/(\ell-1)}$, the uniform model of random n -vertex r -graphs with m edges has girth larger than ℓ with probability at least a^{-m} for some constant $a > 1$ depending only on ℓ and r . In particular, there exist some constants $b, c > 1$ such that for $m \leq n^{1+1/(\ell-1)}$ we have

$$\begin{aligned} N_m^r(n, \ell) &\geq a^{-m} \binom{\binom{n}{r}}{m} \geq b^{-m} (n^r/m)^m \geq b^{-m} (n^2/m)^{\left(r-1+\frac{r-2}{\ell-2}\right)m} \geq c^{-m} \\ &\cdot N_m^2(n, \ell)^{r-1+\frac{r-2}{\ell-2}}, \end{aligned} \quad (3)$$

where the third inequality used $m \leq n^{1+1/(\ell-1)}$ and the last inequality used the trivial bound $N_m^2(n, \ell) \leq (en^2/m)^m$. This shows that the bound of Theorem 1.2 is best possible when $\ell-2$ divides $r-2$ up to a multiplicative error of c^{-m} for some constant $c > 1$. We believe that (3) should define the optimal exponent, and propose the following conjecture:

Conjecture 2. *For all $r \geq 2$, $\ell \geq 3$ and $m, n \geq 1$,*

¹Theorem 20 of [20] claims a stronger upper bound for $N_m^r(n, 4)$ than what we prove in Theorem 1.2, but we have confirmed with the authors that there was a subtle error in their proof.

$$N_m^r(n, \ell) \leq N_m^2(n, \ell)^{r-1+\frac{r-2}{\ell-2}}.$$

Theorem 1.2 shows that this conjecture is true when $\ell - 2$ divides $r - 2$, so the first open case of Conjecture 2 is when $\ell = 4$ and $r = 3$.

In the case that Berge ℓ -cycles are forbidden instead of all Berge cycles of length at most ℓ , we can prove an analog of Theorem 1.2 with weaker quantitative bounds. To this end, let $N_{[m]}^r(n, \mathcal{F})$ denote the number of n -vertex \mathcal{F} -free r -graphs on at most m hyperedges.

Theorem 1.3. *For each $\ell, r \geq 3$, there exists $c = c(\ell, r)$ such that*

$$N_m^r(n, \mathcal{C}_\ell^r) \leq 2^{cm} \cdot N_{[m]}^2(n, \mathcal{C}_\ell)^{r!/2}.$$

We suspect that this result continues to hold with $N_{[m]}^2(n, \mathcal{C}_\ell)$ replaced by $N_m^2(n, \mathcal{C}_\ell)$.

1.2 | Subgraphs of random r -graphs of large girth

Denote by $H_{n,p}^r$ the r -graph obtained by including each hyperedge of K_n^r independently and with probability p . Given a family of r -graphs \mathcal{F} , let $\text{ex}(H_{n,p}^r, \mathcal{F})$ denote the size of a largest \mathcal{F} -free subgraph of $H_{n,p}^r$. Recall that a statement depending on n holds *asymptotically almost surely* or a.a.s. if it holds with probability tending to 1 as $n \rightarrow \infty$. A hypergraph of girth at least three is a linear hypergraph, and it is not hard to show by a simple first moment calculation that if $p \geq n^{-r} \log n$, then a.a.s.

$$\text{ex}(H_{n,p}^r, \mathcal{C}_{[2]}^r) = \Theta(\min\{pn^r, n^2\}).$$

Our first result essentially determines the a.a.s. behavior of the number of edges in an extremal subgraph of $H_{n,p}^r$ of girth four. In this theorem we omit the case $p < n^{-r+\frac{3}{2}}$, as it is straightforward to show that a.a.s. $\text{ex}(H_{n,p}^r, \mathcal{C}_{[3]}^r) = \Theta(pn^r)$ when $p \geq n^{-r} \log n$ in this range.

Theorem 1.4. *Let $r \geq 3$. If $p \geq n^{-r+\frac{3}{2}}(\log n)^{2r-3}$, then a.a.s.*

$$p^{\frac{1}{2r-3}} n^{2-o(1)} \leq \text{ex}(H_{n,p}^r, \mathcal{C}_{[3]}^r) \leq p^{\frac{1}{2r-3}} n^{2+o(1)}.$$

Due to Theorems 1.2 and 1.4, the number of linear triangle-free r -graphs with n vertices and m edges where $n^{3/2+o(1)} \leq m \leq \text{ex}(n, \mathcal{C}_{[3]}^r) = o(n^2)$ and $r \geq 3$ is

$$N_m^r(n, 3) = N_m^2(n, 3)^{2r-3+o(1)} = \left(\frac{n^2}{m}\right)^{(2r-3)m+o(m)}.$$

The authors and Nie et al. [19] obtained bounds for r -uniform loose triangles,² where for $r = 3$ the same essentially tight bounds as in Theorem 1.4 were obtained, but for $r > 3$

²The loose triangle is the Berge triangle whose edges pairwise intersect in exactly one vertex.

there remains a significant gap. In the case of subgraphs of girth larger than four, Theorem 1.2 allows us to generalize results of Morris and Saxton [17] and earlier results of Kohayakawa, Kreuter, and Steger [15] giving subgraphs of large girth in random graphs in the following way:

Theorem 1.5. *Let $\ell \geq 4$ and $r \geq 2$, and let $k = \lfloor \ell/2 \rfloor$ and $\lambda = \lceil (r-2)/(\ell-2) \rceil$. Then a.a.s.*

$$\begin{aligned} & \text{ex}\left(H_{n,p}^r, \mathcal{C}_{[\ell]}^r\right) \\ & \leq \begin{cases} n^{1+\frac{1}{\ell-1}+o(1)} & n^{-r+1+\frac{1}{\ell-1}} \leq p < n^{\frac{-(r-1+\lambda)(k-1)}{2k-1}} (\log n)^{(r-1+\lambda)k}, \\ p^{\frac{1}{(r-1+\lambda)k}} n^{1+\frac{1}{k}+o(1)} & n^{\frac{-(r-1+\lambda)(\ell-1-k)}{\ell-1}} (\log n)^{(r-1+\lambda)k} \leq p \leq 1. \end{cases} \end{aligned}$$

If Conjecture 1 is true, then

$$\text{ex}\left(H_{n,p}^r, \mathcal{C}_{[\ell]}^r\right) \geq \begin{cases} n^{1+\frac{1}{\ell-1}+o(1)} & n^{-r+1+\frac{1}{\ell-1}} \leq p < n^{\frac{-(r-1)(\ell-1-k)}{\ell-1}}, \\ p^{\frac{1}{(r-1)k}} n^{1+\frac{1}{k}-o(1)} & n^{\frac{-(r-1)(\ell-1-k)}{\ell-1}} \leq p \leq 1. \end{cases}$$

We emphasize that there is a significant gap in the bounds of Theorem 1.5 due to the presence of λ in the exponent of p in the upper bound and its absence in the lower bound, and this gap is closed by Theorem 1.4 when $\ell = 3$ by an improvement to the lower bound. A similar phenomenon appears in the recent work of Mubayi and Yepremyan [18], who determined the a.a.s. value of the extremal function for loose even cycles in $H_{n,p}^r$ for all but a small range of p . It seems likely that the following conjecture is true:

Conjecture 3. *Let $\ell, r \geq 3$ and $k = \lfloor \ell/2 \rfloor$. Then there exists $\gamma = \gamma(\ell, r)$ such that a.a.s.*

$$\text{ex}\left(H_{n,p}^r, \mathcal{C}_{[\ell]}^r\right) = \begin{cases} n^{1+\frac{1}{\ell-1}+o(1)} & n^{-r+1+\frac{1}{\ell-1}} \leq p < n^{-\frac{\gamma(\ell-1-k)}{\ell-1}}, \\ p^{\frac{1}{\gamma k}} n^{1+\frac{1}{k}+o(1)} & n^{-\frac{\gamma(\ell-1-k)}{\ell-1}} \leq p \leq 1. \end{cases}$$

Conjecture 2 suggests the possible value $\gamma(\ell, r) = r-1 + (r-2)/(\ell-2)$, which is the correct value for $\ell = 3$ by Theorem 1.4. We are not certain that this is the right value of γ in general, even when $r = 3$ and $\ell = 4$, and more generally, Conjecture 1 is an obstacle for $r \geq 3$ and $\ell \geq 5$. Theorem 1.5 shows that if γ exists, then $(r-1)k \leq \gamma \leq (r-1+\lambda)k$ provided Conjecture 1 holds.

Letting $f(n, p) = \text{ex}(H_{n,p}^3, \mathcal{C}_{[4]}^3)$, we plot the bounds of Theorem 1.5 in Figure 1, where the upper bound is in blue and the lower bound is in green. The truth of Conjecture 2 for $\ell = 4$ would imply the slightly better upper bound $f(n, p) \leq p^{1/5} n^{3/2+o(1)}$.

Notation: A set of size k will be called a k -set. As much as possible, when working with a k -graph G and an r -graph H with $k < r$, we will refer to elements of $E(G)$ as edges and elements of $E(H)$ as hyperedges. Given a hypergraph H on $[n]$, we define the k -shadow $\partial^k H$ to be the k -graph on $[n]$ consisting of all k -sets e which lie in a hyperedge of $E(H)$. If G_1, \dots, G_q are k -graphs on $[n]$, then $\bigcup G_i$ denotes the k -graph G on $[n]$ which has edge set $\bigcup E(G_i)$.

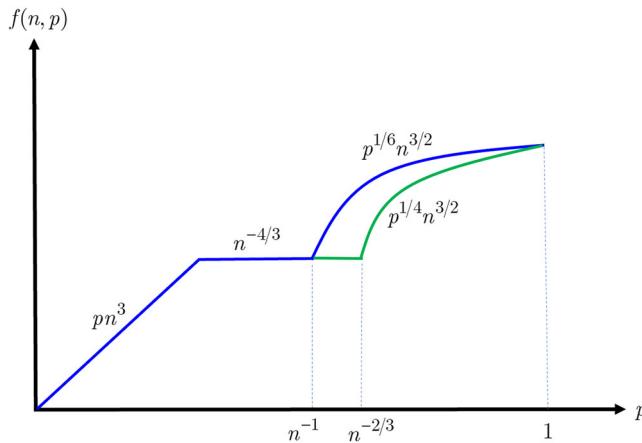


FIGURE 1 Subgraphs of $H_{n,p}^3$ of girth five

2 | PROOF OF THEOREM 1.2

As Balogh and Li [2] observed, if $\ell \geq 3$ and H has girth larger than ℓ , then H is uniquely determined by $\partial^2 H$, which we can view as the graph obtained by replacing each hyperedge of H by a clique. A key insight in proving Theorem 1.2 is that we can replace each hyperedge of H with a sparser graph B and still uniquely recover H from this graph. To this end, we say that a graph B is a *book* if there exist cycles F_1, \dots, F_k and an edge xy such that $B = \bigcup F_i$ and $E(F_i) \cap E(F_j) = \{xy\}$ for all $i \neq j$. In this case we call the cycles F_i the *pages* of B and we call the common edge xy the *spine* of B . The following lemma shows that if we replace each hyperedge in H by a book on r vertices which has small pages, then the vertex sets of books in the resulting graph are exactly the hyperedges of H .

Lemma 2.1. *Let H be an r -graph of girth larger than ℓ . If $\partial^2 H$ contains a book B on r vertices such that every page has length at most ℓ , then there exists a hyperedge $e \in E(H)$ such that $V(B) = e$.*

Proof. Let F be a cycle in $\partial^2 H$ with $V(F) = \{v_1, \dots, v_p\}$ such that $v_i v_{i+1} \in E(\partial^2 H)$ for $i < p$ and $v_1 v_p \in E(\partial^2 H)$. If $p \leq \ell$ we claim that there exists an $e \in E(H)$ such that $V(F) \subseteq e$. Indeed, by definition of $\partial^2 H$ there exists some hyperedge $e_i \in E(H)$ with $v_i, v_{i+1} \in e_i$ for all $i < p$ and some hyperedge e_p with $v_1, v_p \in e_p$. If all of these e_i hyperedges are equal then we are done, so we may assume $e_1 \neq e_p$. Define i_1 to be the largest index such that $e_i = e_1$ for all $i \leq i_1$, define i_2 to be the largest index so that $e_i = e_{i+1}$ for all $i_1 < i \leq i_2$, and so on up to $i_q = p$, and note that $2 \leq q \leq p$ since $e_1 \neq e_p$. If all the e_{i_j} hyperedges are distinct, then they form a Berge q -cycle in H since $v_{1+i_j} \in e_{i_j} \cap e_{1+i_j} = e_{i_j} \cap e_{i_{j+1}}$ for all j , a contradiction. Thus we can assume $e_{i_j} = e_{i_{j'}}$ for some $j < j'$. We can further assume that $e_{i_s} \neq e_{i_{s'}}$ for any $j \leq s < s' < j'$, as otherwise we could replace j, j' with s, s' . Finally note that $j < j' - 1$, as otherwise we would have $e_{i_j} = e_{i_j} = e_{i_{j+1}}$, contradicting the maximality of i_j . We conclude that the distinct hyperedges $e_{i_j}, e_{i_{j+1}}, \dots, e_{i_{j'-1}}$ form a Berge $(j' - j)$ -cycle with $2 \leq j' - j \leq \ell$ in H , a contradiction. This proves the claim.

Now let B be a book with spine xy and pages F_1, \dots, F_k of length at most ℓ . By the claim there exist hyperedges $e_1, \dots, e_k \in E(H)$ such that $V(F_i) \subseteq e_i$ for all i , and in particular

$x, y \in e_i$ for all i . Because H is linear, this implies that all of these hyperedges are equal and we have $V(B) \subseteq e_1$. If B has r vertices, then we further have $V(B) = e_1$. \square

We now complete the proof of Theorem 1.2. With $\lambda := \lceil (r-2)/(\ell-2) \rceil$ we observe for all $\ell, r \geq 3$ that there exists a book graph B on r vertices $\{x_1, \dots, x_r\}$ with $r-1+\lambda$ edges $f_1, \dots, f_{r-1+\lambda}$. Indeed if $\ell-2$ divides $r-2$ one can take λ copies of C_ℓ which share a common edge, and otherwise one can take $\lambda-1$ copies of C_ℓ and a copy of C_p with $p = r - (\lambda-1)(\ell-2) \geq 3$. From now on we let B denote this book graph. If $f_i = \{x_j, x_{j'}\} \in E(B)$ and $e = \{v_1, \dots, v_r\} \subseteq [n]$ is any r -set with $v_1 < \dots < v_r$, define $\phi_i(e) = \{v_j, v_{j'}\}$. If H is an r -graph on $[n]$, define $\phi_i(H)$ to be the graph on $[n]$ which has all edges of the form $\phi_i(e)$ for $e \in E(H)$; so in particular $\bigcup \phi_i(H)$ is the graph obtained by replacing each hyperedge of H with a copy of B .

Let $\mathcal{H}_{m,n}$ denote the set of r -graphs on $[n]$ with m hyperedges and girth more than ℓ , and let $\mathcal{G}_{m,n}$ be the set of graphs on $[n]$ with m edges and girth more than ℓ . We claim that ϕ_i maps $\mathcal{H}_{m,n}$ to $\mathcal{G}_{m,n}$. Indeed, if $H \in \mathcal{H}_{m,n}$ then each hyperedge of H contributes a distinct edge to $\phi_i(H)$ since H is linear, so $e(\phi_i(H)) = e(H) = m$. One can show that if $\phi_i(e_1), \dots, \phi_i(e_p)$ form a p -cycle in $\phi_i(H)$, then e_1, \dots, e_p form a Berge p -cycle in H ; so $H \in \mathcal{H}_{m,n}$ implies $\phi_i(H)$ does not contain a cycle of length at most ℓ .

Let $\mathcal{G}_{m,n}^t = \{(G_1, G_2, \dots, G_t) : G_i \in \mathcal{G}_{m,n}\}$. Then we define a map $\phi : \mathcal{H}_{m,n} \rightarrow \mathcal{G}_{m,n}^{r-1+\lambda}$ by

$$\phi(H) = (\phi_1(H), \dots, \phi_{r-1+\lambda}(H)).$$

We claim that this map is injective. Indeed, fix some $H \in \mathcal{H}_{m,n}$ and let $\mathcal{B}(G)$ denote the set of books B in the graph $G := \bigcup \phi_i(H) \subseteq \partial^2 H$. By definition of ϕ we have $E(H) \subseteq \mathcal{B}(G)$ for all H . Moreover, if $H \in \mathcal{H}_{m,n}$ then Lemma 2.1 implies $\mathcal{B}(G) \subseteq E(H)$. Thus $E(H)$ (and hence H) is uniquely determined by G , which is itself determined by $\phi(H)$, so the map is injective. In total we conclude

$$N_m^r(n, \ell) = |\mathcal{H}_{m,n}| \leq |\mathcal{G}_{m,n}^{r-1+\lambda}| = N_m^2(n, \ell)^{r-1+\lambda},$$

proving Theorem 1.2. \square

3 | PROOF OF THEOREM 1.3

For arbitrary hypergraphs H , the map $\phi(H) = \partial^{r-1}H$ (let alone the map to $\partial^2 H$) is not injective. However, we will show that this map is “almost” injective when considering H which are C_ℓ^r -free. To this end, we say that a set of vertices $\{v_1, \dots, v_r\}$ is a *core set* of an r -graph H if there exist distinct hyperedges e_1, \dots, e_r with $\{v_1, \dots, v_r\} \setminus \{v_i\} \subseteq e_i$ for all i . The following observation shows that core sets are the only obstruction to $\phi(H) = \partial^{r-1}H$ being injective.

Lemma 3.1. *Let H be an r -graph. If $\{v_1, \dots, v_r\}$ induces a K_r^{r-1} in $\partial^{r-1}H$, then either $\{v_1, \dots, v_r\} \in E(H)$ or $\{v_1, \dots, v_r\}$ is a core set of H .*

Proof. By assumption of $\{v_1, \dots, v_r\}$ inducing a K_r^{r-1} in $\partial^{r-1}H$, for all i there exist $e'_i \in E(\partial^{r-1}H)$ with $e'_i = \{v_1, \dots, v_r\} \setminus \{v_i\}$. By definition of $\partial^{r-1}H$, this means there exist (not necessarily distinct) $e_i \in E(H)$ with $e_i \supseteq e'_i = \{v_1, \dots, v_r\} \setminus \{v_i\}$. Given this, either

$e_i = \{v_1, \dots, v_r\}$ for some i , or all of the e_i distinct, in which case $\{v_1, \dots, v_r\}$ is a core set of H . In either case we conclude the result. \square

We next show that \mathcal{C}_ℓ^r -free r -graphs have few core sets.

Lemma 3.2. *Let $\ell, r \geq 3$ and let H be a \mathcal{C}_ℓ^r -free r -graph with m hyperedges. The number of core sets in H is at most $\ell^2 r^2 m$.*

Proof. We claim that H contains no core sets if $\ell \leq r$. Indeed, assume for contradiction that H contained a core set $\{v_1, \dots, v_r\}$ with distinct hyperedges $e_i \supseteq \{v_1, \dots, v_r\} \setminus \{v_i\}$. It is not difficult to see that the hyperedges e_1, \dots, e_ℓ form a Berge ℓ -cycle, a contradiction to H being \mathcal{C}_ℓ^r -free. Thus from now on we may assume $\ell > r$.

Let \mathcal{A}_1 denote the set of core sets in H , and for any $\mathcal{A}' \subseteq \mathcal{A}_1$ and $(r-1)$ -set S , define $d_{\mathcal{A}'}(S)$ to be the number of core sets $A \in \mathcal{A}'$ with $S \subseteq A$. Observe that $d_{\mathcal{A}_1}(S) > 0$ for at most $\binom{r}{r-1}m = rm(r-1)$ -sets S , since in particular S must be contained in a hyperedge of H .

Given \mathcal{A}_i , define $\mathcal{A}'_i \subseteq \mathcal{A}_i$ to be the core sets $A \in \mathcal{A}_i$ which contain an $(r-1)$ -set S with $d_{\mathcal{A}_i}(S) \leq \ell r$, and let $\mathcal{A}_{i+1} = \mathcal{A}_i \setminus \mathcal{A}'_i$. Observe that $|\mathcal{A}'_i| \leq \ell r \cdot rm$ since each $(r-1)$ -set S with $d_{\mathcal{A}_i}(S) > 0$ is contained in at most ℓr elements of \mathcal{A}'_i . In particular,

$$|\mathcal{A}_1| \leq (\ell - r) \cdot \ell r^2 m + |\mathcal{A}_{\ell-r+1}| \leq \ell^2 r^2 m + |\mathcal{A}_{\ell-r+1}|. \quad (4)$$

Assume for the sake of contradiction that $\mathcal{A}_{\ell-r+1} \neq \emptyset$. We prove by induction on $r \leq i \leq \ell$ that one can find distinct vertices v_1, \dots, v_i and distinct hyperedges $e_1, \dots, e_{i-1}, \tilde{e}_i$ such that $v_j, v_{j+1} \in e_j$ for $1 \leq j < i$ and $v_1, v_i \in \tilde{e}_i$, and such that $\{v_i, v_{i-1}, \dots, v_{i-r+2}, v_1\} \in \mathcal{A}_{\ell-i+1}$. For the base case, consider any $\{v_r, v_{r-1}, \dots, v_1\} \in \mathcal{A}_{\ell-r+1}$. As this is a core set, there exist distinct hyperedges $e_j \supseteq \{v_1, \dots, v_r\} \setminus \{v_{j+2}\}$ and $\tilde{e}_r \supseteq \{v_1, \dots, v_r\} \setminus \{v_2\}$, proving the base case of the induction.

Assume that we have proven the result for $i < \ell$. By assumption of $\{v_i, v_{i-1}, \dots, v_{i-r+2}, v_1\} \in \mathcal{A}_{\ell-i+1}$, we have $\{v_i, v_{i-1}, \dots, v_{i-r+2}, v_1\} \notin \mathcal{A}'_{\ell-i}$, so there exists a set of vertices $\{u_1, \dots, u_{\ell-r+1}\}$ such that $\{v_i, v_{i-1}, \dots, v_{i-r+3}, v_1, u_j\} \in \mathcal{A}_{\ell-i}$ for all j . Because $|\bigcup_{k=1}^{i-1} e_k| \leq \ell r$, there exists some j such that $u_j \notin \bigcup_{k=1}^{i-1} e_k$. For this j , let $v_{i+1} := u_j$ and let e_i, \tilde{e}_{i+1} be distinct hyperedges containing v_i, v_{i+1} and v_1, v_{i+1} , respectively, which exist by the assumption of this being a core set. Note that v_{i+1} is distinct from every other $v_{i'}$ since $v_{i'} \in \bigcup_{k=1}^{i-1} e_k$ for $i' \leq i$, and similarly the hyperedges e_i, \tilde{e}_{i+1} are distinct from every hyperedge $e_{i'}$ with $i' < i$ since these new hyperedges contain $v_{i+1} \notin \bigcup_{k=1}^{i-1} e_k$. This proves the inductive step and hence the claim. The $i = \ell$ case of this claim implies that H contains a Berge ℓ -cycle, a contradiction. Thus $\mathcal{A}_{\ell-r+1} = \emptyset$, and the result follows by (4). \square

Combining these two lemmas gives the following result, which allows us to reduce from r -graphs to $(r-1)$ -graphs. We recall that $N_{[m]}^r(n, \mathcal{F})$ denotes the number of n -vertex \mathcal{F} -free r -graphs on at most m hyperedges.

Proposition 3.3. *For each $\ell, r \geq 3$, there exists $c = c(\ell, r)$ such that*

$$N_{[m]}^r(n, \mathcal{C}_\ell^r) \leq 2^{cm} \cdot N_{[m]}^r(n, \mathcal{C}_\ell^{r-1})^r.$$

Proof. If $e = \{v_1, v_2, \dots, v_r\} \subseteq [n]$ is any r -set with $v_1 < v_2 < \dots < v_r$, let $\phi_i(e) = \{v_1, \dots, v_r\} \setminus \{v_i\}$. Given an r -graph H on $[n]$, let $\phi_i(H)$ be the $(r-1)$ -graph on $[n]$ with edge set $\{\phi_i(e) : e \in E(H)\}$, and define $\phi(H) = (\phi_1(H), \phi_2(H), \dots, \phi_r(H))$ and $\psi(H) = (\phi(H), E(H))$. Observe that $\bigcup \phi_i(H) = \partial^{r-1} H$. Let $\mathcal{H}_{[m],n}$ denote the set of all r -graphs on $[n]$ with at most m hyperedges which are \mathcal{C}_ℓ^r -free, and let $\phi(\mathcal{H}_{[m],n})$, $\psi(\mathcal{H}_{[m],n})$ denote the image sets of $\mathcal{H}_{[m],n}$ under these respective maps. Observe that ψ is injective since it records $E(H)$, so it suffices to bound how large $\psi(\mathcal{H}_{[m],n})$ can be.

Let $\mathcal{G}_{[m],n}$ denote the set of $(r-1)$ -graphs on $[n]$ which have at most m edges and which are \mathcal{C}_ℓ^{r-1} -free. It is not difficult to see that $\phi(\mathcal{H}_{[m],n}) \subseteq \mathcal{G}_{[m],n}$. We observe by Lemmas 3.1 and 3.2 that for any $(G_1, G_2, \dots, G_r) \in \phi(\mathcal{H}_{[m],n})$, say with $\phi(H) = (G_1, \dots, G_r)$, there are at most $(1 + \ell^2 r^2)m$ copies of K_r^{r-1} in $\bigcup G_i = \partial^{r-1} H$. We also observe that if $((G_1, G_2, \dots, G_r), E) \in \psi(\mathcal{H}_{[m],n})$, then E is a set of at most m copies of K_r^{r-1} in $\bigcup G_i$. Thus given any $(G_1, \dots, G_r) \in \phi(\mathcal{H}_{[m],n}) \subseteq \mathcal{G}_{[m],n}$, there are at most $2^{(1+\ell^2 r^2)m}$ choices of E such that $((G_1, \dots, G_r), E) \in \psi(\mathcal{H}_{[m],n})$. We conclude that

$$N_{[m]}^r(n, \mathcal{C}_\ell^r) = |\mathcal{H}_{[m],n}| \leq |\mathcal{G}_{[m],n}|^r \cdot 2^{(1+\ell^2 r^2)m} = N_{[m]}^r(n, \mathcal{C}_\ell^{r-1})^r \cdot 2^{(1+\ell^2 r^2)m},$$

proving the result. \square

Applying this proposition repeatedly gives $N_{[m]}^r(n, \mathcal{C}_\ell^r) \leq 2^{cm} N_{[m]}^2(n, \mathcal{C}_\ell)^{r!/2}$. Combining this with the trivial inequality $N_m^r(n, \mathcal{C}_\ell^r) \leq N_m^r(n, \mathcal{C}_\ell^r)$ gives Theorem 1.3.

4 | PROOF OF THEOREMS 1.4 AND 1.5

To prove that our bounds hold a.a.s., we use the Chernoff bound [1].

Proposition 4.1 (Alon and Spencer [1]). *Let X denote a binomial random variable with N trials and probability p of success. For any $\epsilon > 0$ we have $\Pr[|X - pN| > \epsilon pN] \leq 2\exp(-\epsilon^2 pN/2)$.*

Proof of the upper bounds in Theorem 1.5. Let

$$p_0 = n^{-\frac{(r-1+\lambda)(k-1)}{2k-1}} (\log n)^{(r-1+\lambda)k}.$$

For $p \geq p_0$, define

$$m = p^{\frac{1}{(r-1+\lambda)k}} n^{1+\frac{1}{k}} \log n,$$

and note that this is large enough to apply Theorem 1.1 for $p \geq p_0$. Let Y_m denote the number of subgraphs of $H_{n,p}^r$ which are \mathcal{C}_ℓ^r -free and have exactly m edges, and note that

$\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r) \geq m$ if and only if $Y_m \geq 1$. By Markov's inequality, Theorem 1.2, and Theorem 1.1:

$$\begin{aligned} \Pr[Y_m \geq 1] &\leq \mathbb{E}[Y_m] = p^m \cdot N_m^r(n, \ell) \\ &\leq p^m \cdot N_m^2(n, \ell)^{r-1+\lambda} \\ &\leq \left(p^{\frac{1}{r-1+\lambda}} e^c (\log n)^{k-1} \left(\frac{n^{1+\frac{1}{k}}}{m} \right)^k \right)^{m(r-1+\lambda)} \\ &= \left(\frac{e^c}{\log n} \right)^{m(r-1+\lambda)}. \end{aligned}$$

The right-hand side converges to zero, so for $p \geq p_0$, a.a.s.

$$\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r) < m.$$

As $\mathbb{E}[\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r)]$ is nondecreasing in p , the bound

$$\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r) < n^{1+\frac{1}{\ell-1}} (\log n)^2$$

continues to hold a.a.s. for all $p < p_0$. □

Proof of the upper bound in Theorem 1.4. This proof is almost identical to the previous, so we omit some of the redundant details. Let $m = p^{\frac{1}{2r-3}} n^2 \log n$ and let Y_m denote the number of subgraphs of $H_{n,p}^r$ which are $\mathcal{C}_{[\ell]}^r$ -free and have exactly m edges. By Markov's inequality, Theorem 1.2, and the trivial bound $N_m^2(n, 3) \leq \binom{n^2}{m}$ which is valid for all m , we find for all p

$$\Pr[Y_m \geq 1] \leq p^m (en^2/m)^{(2r-3)m} = (e/\log n)^m.$$

This quantity converges to zero, so we conclude the result by the same reasoning as in the previous proof. □

This proof shows that for all p we have $\mathbb{E}[\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r)] < p^{\frac{1}{2r-3}} n^2 \log n$. However, for $p \leq n^{-r+3/2}$ this is weaker than the trivial upper bound $\mathbb{E}[\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r)] \leq p \binom{n}{r}$.

Proof of the lower bounds in Theorem 1.5. We use homomorphisms similar to Foucaud, Krivelevich, and Perarnau [10] and Perarnau and Reed [21]. If F and F' are hypergraphs and $\chi : V(F) \rightarrow V(F')$ is any map, we let $\chi(e) = \{\chi(u) : u \in e\}$ for any $e \in E(F)$. For two r -graphs F and F' , a map $\chi : V(F) \rightarrow V(F')$ is a *homomorphism* if $\chi(e) \in E(F')$ for all $e \in E(F)$, and χ is a *local isomorphism* if χ is a homomorphism and $\chi(e) \neq \chi(f)$ whenever $e, f \in E(F)$ with $e \cap f \neq \emptyset$. A key lemma is the following: □

Lemma 4.2. *If $F \in \mathcal{C}_{[\ell]}^r$ and $\chi : F \rightarrow F'$ is a local isomorphism, then F' has girth at most ℓ .*

Proof. Let F be a Berge p -cycle with $p \leq \ell$ and $E(F) = \{e_1, e_2, \dots, e_p\}$. Then there exist distinct vertices v_1, v_2, \dots, v_p such that $v_i \in e_i \cap e_{i+1}$ for $i < p$ and $v_p \in e_p \cap e_1$. First assume there exists $i \neq j$ such that $\chi(e_i) = \chi(e_j)$. By reindexing, we can assume $\chi(e_1) = \chi(e_k)$ for some $k > 1$, and further that $\chi(e_i) \neq \chi(e_j)$ for any $1 \leq i < j < k$. Note that $k \geq 3$ since $e_1 \cap e_2 \neq \emptyset$ and χ is a local isomorphism. If we also have $\chi(v_i) \neq \chi(v_j)$ for all $1 \leq i < j < k$, then $\chi(v_i) \in \chi(e_i) \cap \chi(e_{i+1})$ for $i < k-1$ and $\chi(v_{k-1}) \in \chi(e_{k-1}) \cap \chi(e_1)$, so $\chi(e_1), \chi(e_2), \dots, \chi(e_{k-1})$ is the edge set of a Berge $(k-1)$ -cycle in F' as required.

Suppose $\chi(v_i) = \chi(v_j)$ for some $1 \leq i < j < k$, and as before we can assume there exists no $i \leq i' < j' < j$ with $\chi(v_{i'}) = \chi(v_{j'})$. Then $\chi(v_i), \chi(v_{i+1}), \dots, \chi(v_{j-1})$ are distinct vertices with $\chi(v_h) \in \chi(e_h) \cap \chi(e_{h+1})$ for $i \leq h < j-1$ and $\chi(v_{j-1}) \in \chi(e_{j-1}) \cap \chi(e_1)$. Note that $\chi(v_i) \neq \chi(v_{i+1})$ since this would imply $|\chi(e_i)| < r$, contradicting that χ is a homomorphism, so $j > i+1$. Thus the hyperedges $\chi(e_i), \chi(e_{i+1}), \dots, \chi(e_{j-1})$ form a Berge $(j-i)$ -cycle in F' with $j-i \geq 2$ as desired.

This proves the result if $\chi(e_i) = \chi(e_j)$ for some $i \neq j$. If this does not happen and the $\chi(v_i)$ are all distinct, then F' is a Berge p -cycle, and if $\chi(v_i) = \chi(v_j)$ then the same proof as above gives a Berge $(j-i)$ -cycle in F' . \square

The following lemma allows us to find a relatively dense subgraph of large girth in any r -graph whose maximum i -degree is not too large, where the i -degree of an i -set S is the number of hyperedges containing S .

Lemma 4.3. *Let $\ell, r \geq 3$ and let H be an r -graph with maximum i -degree Δ_i for each $i \geq 1$. If $t \geq r^2 4^r \Delta_i^{1/(r-i)}$ for all $i \geq 1$, then H has a subgraph H' of girth larger than ℓ with*

$$e(H') \geq \text{ex}\left(t, \mathcal{C}_{[\ell]}^r\right) t^{-r} \cdot e(H).$$

Proof. Let J be an extremal $\mathcal{C}_{[\ell]}^r$ -free r -graph on t vertices and $\chi : V(H) \rightarrow V(J)$ chosen uniformly at random. Let $H' \subseteq H$ be the random subgraph which keeps the hyperedge $e \in E(H)$ if

- (1) $\chi(e) \in E(J)$, and
- (2) $\chi(e) \neq \chi(f)$ for any other $f \in E(H)$ with $|e \cap f| \neq 0$.

We claim that H' is $\mathcal{C}_{[\ell]}^r$ -free. Indeed, assume H' contained a subgraph F isomorphic to some element of $\mathcal{C}_{[\ell]}^r$. Let F' be the subgraph of J with $V(F') = \{\chi(u) : u \in V(F)\}$ and $E(F') = \{\chi(e) : e \in E(F)\}$, and note that $F \subseteq H'$ implies that each hyperedge of F satisfies (1), so every element of $E(F')$ is a hyperedge in J . By conditions (1) and (2), χ is a local isomorphism from F to F' . By Lemma 4.2, $F' \subseteq J$ contains a Berge cycle of length at most ℓ , a contradiction to J being $\mathcal{C}_{[\ell]}^r$ -free.

It remains to compute $\mathbb{E}[e(H')]$. Given $e \in E(H)$, let A_1 denote the event that (1) is satisfied, let $E_i = \{f \in E(H) : |e \cap f| = i\}$, and let A_2 denote the event that $\chi(f) \notin \chi(e)$ for any $f \in \bigcup_i E_i$, which in particular implies (2) for the hyperedge e . It is not too difficult to see that $\Pr[A_1] = r! e(J) t^{-r}$, and that for any $f \in E_i$ we have $\Pr[\chi(f) \subseteq \chi(e) | A_1] = (r/t)^{r-i}$. Note for each $i \geq 1$ that $|E_i| \leq 2^r \Delta_i$, as e has at most 2^r subsets of size i each of i -degree at most Δ_i . Taking a union bound we find

$$\Pr[A_2|A_1] \geq 1 - \sum_{i=1}^r |E_i|(r/t)^{r-i} \geq 1 - \sum_{i=1}^r 2^r \Delta_i (r/t)^{r-i} \geq 1 - \sum_{i=1}^r r^{-1} 2^{-r} \geq \frac{1}{2},$$

where the second to last inequality used $(r4^r)^{i-r} \geq r^{-1}4^{-r}$ for $i \leq r$. Consequently

$$\Pr[e \in E(H')] = \Pr[A_1] \cdot \Pr[A_2|A_1] \geq r! e(J) t^{-r} \cdot \frac{1}{2} \geq e(J) t^{-r},$$

and linearity of expectation gives $\mathbb{E}[e(H')] \geq e(J) t^{-r} \cdot e(H) = \text{ex}(t, \mathcal{C}_{[\ell]}^r) t^{-r} \cdot e(H)$. Thus there exists some $\mathcal{C}_{[\ell]}^r$ -free subgraph $H' \subseteq H$ with at least $\text{ex}(t, \mathcal{C}_{[\ell]}^r) t^{-r} \cdot e(H)$ hyperedges. \square

By the Chernoff bound one can show for

$$p \geq p_1 := n^{\frac{-(r-1)(\ell-1-k)}{\ell-1}}$$

that a.a.s. $H_{n,p}^r$ has maximum i -degree at most $\Theta(pn^{r-i})$ for all i . If Conjecture 1 is true, then a.a.s. for $p \geq p_1$ Lemma 4.3 with $t = \Theta(p^{1/(r-1)} n)$ gives

$$\text{ex}(H_{n,p}^r, \mathcal{C}_{[\ell]}^r) = \Omega\left(t^{-r} \text{ex}\left(t, \mathcal{C}_{[\ell]}^r\right) pn^r\right) = p^{\frac{1}{(r-1)k}} n^{1+\frac{1}{k}-o(1)}.$$

This proves the lower bound in Theorem 1.5. \square

Proof of the lower bound in Theorem 1.4. We use the following variant of Lemma 4.3:

Lemma 4.4. *Let H be an r -graph and let $R_{\ell,v}(H)$ be the number of Berge ℓ -cycles in H on v vertices. For all $t \geq 1$, H has a subgraph H' of girth larger than 3 with*

$$e(H') \geq \left(e(H) t^{2-r} - \sum_{\ell=2}^3 \sum_v t^{2-v} R_{\ell,v}(H) \right) e^{-c\sqrt{\log t}},$$

where $c > 0$ is an absolute constant.

Proof. By the work of Ruzsa and Szemerédi [22] and Erdős, Frankl, and Rödl [7], it is known for all t that there exists a $\mathcal{C}_{[3]}^r$ -free r -graph J on t vertices with $t^2 e^{-c\sqrt{\log t}}$ hyperedges. Choose a map $\chi : V(H) \rightarrow V(J)$ uniformly at random and define $H'' \subseteq H$ to be the subgraph which keeps a hyperedge $e = \{v_1, \dots, v_r\} \in E(H)$ if and only if $\chi(e) \in E(J)$.

We claim that if e_1, e_2, e_3 form a Berge triangle in H'' , then $\chi(e_1) = \chi(e_2) = \chi(e_3)$. Observe that if v_1, v_2, v_3 are vertices with $v_i \in e_i \cap e_{i+1}$, then we must have, for example, as otherwise $|\chi(e_2)| < r$. Because J is linear we must have $|\chi(e_i) \cap \chi(e_j)| \in \{1, r\}$. These hyperedges cannot all intersect in 1 vertex since this together with the distinct vertices $\chi(v_1), \chi(v_2), \chi(v_3)$ defines a Berge triangle in H'' , so we must have to say $\chi(e_1) = \chi(e_2)$. But this means $\chi(v_3), \chi(v_2)$ are distinct vertices in $\chi(e_1) = \chi(e_2)$ and $\chi(e_3)$, so $|\chi(e_1) \cap \chi(e_3)| > 1$ and we must have $\chi(e_1) = \chi(e_3)$ as desired.

The probability that a given Berge triangle C on v vertices in H maps to a given hyperedge in J is at most $(r/t)^v$ (since this is the probability that every vertex of C maps into the edge of J). By linearity of expectation, H'' contains at most $\sum_v R_{3,v}(H)e(J)(r/t)^v$ Berge triangles in expectation. An identical proof shows that H'' contains at most $\sum_v R_{2,v}(H)e(J)(r/t)^v$ Berge 2-cycles in expectation. We can then delete a hyperedge from each of these Berge cycles in H'' to find a subgraph H' with

$$\mathbb{E}[e(H')] \geq e(J)t^{-r} \cdot e(H) - \sum_{\ell=2}^3 \sum_v R_{\ell,v}(H)e(J)(r/t)^v.$$

The result follows since $e(J) = t^2 e^{-c\sqrt{\log t}}$. \square

We now prove the lower bound in Theorem 1.4. By Markov's inequality one can show that a.a.s. $R_{3,3r-3}(H_{n,p}^r) = O(p^3 n^{3r-3})$. By the Chernoff bound we have a.a.s. that $e(H_{n,p}^r) = \Omega(pn^r)$, so if we take $t = p^{2/(2r-3)} n(\log n)^{-1}$, then a.a.s. $t^{5-3r} R_{3,3r-3}(H_{n,p}^r)$ is significantly smaller than $t^{2-r} e(H_{n,p}^r)$. A similar result holds for each term $t^{2-v} R_{\ell,v}(H_{n,p}^r)$ with $\ell = 2, 3$ and $v \leq \ell(r-1)$, so by Lemma 4.4 we conclude $\text{ex}(H_{n,p}^r, \mathcal{C}_{[3]}^r) \geq p^{1/(2r-3)} n^{2-o(1)}$ a.a.s., proving the lower bound in Theorem 1.4.

We note that the proof of Lemma 4.4 fails for larger ℓ . In particular, a Berge 4-cycle can appear in H'' by mapping onto two edges in J intersecting at a single vertex, and with this the bound becomes ineffective.

5 | CONCLUDING REMARKS

- In this paper, we extended ideas of Balogh and Li to bound the number of n -vertex r -graphs with m edges and girth more than ℓ in terms of the number of n -vertex graphs with m edges and girth more than ℓ . The reduction is best possible when $m = \Theta(n^{\ell/(\ell-1)})$ and $\ell-2$ divides $r-2$. Theorem 1.3 shows that similar reductions can be made when forbidding a single family of Berge cycles.

By using variations of our method, we can prove the following generalization. For a graph F , a hypergraph H is a *Berge- F* if there exists a bijection $\phi : E(F) \rightarrow E(H)$ such that $e \subseteq \phi(e)$ for all $e \in E(F)$. Let $\mathcal{B}^r(F)$ denote the family of r -uniform Berge- F . We can prove the following extension of Theorem 1.3: if there exists a vertex $v \in V(F)$ such that $F - v$ is a forest, then there exists $c = c(F, r)$ such that

$$N_m^r(n, \mathcal{B}^r(F)) \leq 2^{cm} \cdot N_{[m]}^2(n, F)^{r!/2}.$$

For example, this result applies when F is a theta graph. We do not believe that the exponent $r!/2$ is optimal in general, and we propose the following problem.

Problem 1. Let $\ell, r \geq 3$. Determine the smallest value $\beta = \beta(\ell, r) > 0$ such that there exists a constant $c = c(\ell, r)$ so that, for all $m, n \geq 1$,

$$N_m^r(n, \mathcal{C}_\ell^r) \leq 2^{cm} \cdot N_{[m]}^2(n, C_\ell)^\beta.$$

Theorem 1.3 shows that $\beta \leq r!/2$ for all ℓ, r , but in principle we could have $\beta = O_\ell(r)$. We claim without proof that it is possible to use variants of our methods to show $\beta(3, r), \beta(4, r) \leq \binom{r}{2}$, but beyond this we do not know any nontrivial upper bounds on β .

• We proposed Conjecture 3 on the extremal function for subgraphs of large girth in random hypergraphs: for some constant $\gamma = \gamma(\ell, r)$, a.a.s.

$$\text{ex}\left(H_{n,p}^r, \mathcal{C}_{[\ell]}\right) = \begin{cases} n^{1+\frac{1}{\ell-1}+o(1)} & n^{-r+1+\frac{1}{\ell-1}} \leq p < n^{-\frac{\gamma(\ell-1-k)}{\ell-1}}, \\ p^{\frac{1}{\gamma k}} n^{1+\frac{1}{k}+o(1)} & n^{-\frac{\gamma(\ell-1-k)}{\ell-1}} \leq p \leq 1. \end{cases}$$

For $\ell = 3$, this conjecture is true with $\gamma = 2r - 3$, and Conjecture 2 suggests perhaps $\gamma = r - 1 + (r - 2)/(\ell - 2)$, although we do not have enough evidence to support this (see also the work of Mubayi and Yepremyan [18] on loose even cycles). It would be interesting as a test case to know if $\gamma(3, 4) = 5/2$:

Problem 2. Prove or disprove that Conjecture 3 holds with $\gamma(3, 4) = 5/2$.

• It seems likely that $N_m^r(n, \mathcal{F})$ controls the a.a.s. behavior of $\text{ex}(H_{n,p}^r, \mathcal{F})$ as $n \rightarrow \infty$. Specifically, it is clear that if \mathcal{F} is a family of finitely many r -graphs and $p = p(n)$ and $m = m(n)$ are defined so that $p^m N_m^r(n, \mathcal{F}) \rightarrow 0$ as $n \rightarrow \infty$, then a.a.s. as $n \rightarrow \infty$, $H_{n,p}^r$ contains no \mathcal{F} -free subgraph with at least m edges. It would be interesting to determine when $H_{n,p}^r$ a.a.s. contains an \mathcal{F} -free subgraph with at least m edges. In particular, we leave the following problem:

Problem 3. Let $m = m(n)$ and $p = p(n)$ so that $p^m N_m^r(n, \ell) \rightarrow \infty$ as $n \rightarrow \infty$. Then $H_{n,p}^r$ a.a.s. contains a subgraph of girth more than ℓ with at least m edges.

In particular, perhaps one can obtain good bounds on the variance of $N_m^r(n, \ell)$ in $H_{n,p}^r$.

ACKNOWLEDGMENTS

We thank the referees for their helpful comments.

REFERENCES

1. N. Alon and J. H. Spencer, *The probabilistic method*. John Wiley & Sons, Hoboken, New Jersey, 2004.
2. J. Balogh and L. Li, *On the number of linear hypergraphs of large girth*, J. Graph Theory. **93** (2020), no. 1, 113–141.
3. J. Balogh, B. Narayanan, and J. Skokan, *The number of hypergraphs without linear cycles*, J. Combin. Theory Ser. B. **134** (2019), 309–321.
4. J. Balogh and W. Samotij, *The number of $K_{s,t}$ -free graphs*, J. Lond. Math. Soc. **83** (2011), no. 2, 368–388.
5. D. Conlon, J. Fox, B. Sudakov, and Y. Zhao, *The regularity method for graphs with few 4-cycles*, J. London Math. Soc. **104** (2021), no. 5, 2376–2401.
6. J. Corsten and T. Tran, *Balanced supersaturation for degenerate hypergraphs*, J. Graph Theory. arXiv preprint arXiv:1707.03788, 2021.
7. P. Erdős, P. Frankl, and V. Rödl, *The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent*, Graphs Combin. **2** (1986), no. 1, 113–121.
8. P. Erdős and M. Simonovits, *Supersaturated graphs and hypergraphs*, Combinatorica. **3** (1983), no. 2, 181–192.

9. A. Ferber, G. McKinley, and W. Samotij, *Supersaturated sparse graphs and hypergraphs*, Int. Math. Res. Not. **2020** (2020), no. 2, 378–402.
10. F. Foucaud, M. Krivelevich, and G. Perarnau, *Large subgraphs without short cycles*, SIAM J. Discrete Math. **29** (2015), no. 1, 65–78.
11. Z. Füredi, *Random Ramsey graphs for the four-cycle*, Discrete Math. **126** (1994), no. 1–3, 407–410.
12. Z. Füredi and M. Simonovits, *The history of degenerate (bipartite) extremal graph problems*, (L. Lovasz, I. Z. Ruzsa, and V. T. Sos eds.), Erdős Centennial, Springer, Berlin, 2013, pp. 169–264.
13. E. Győri and N. Lemons, *Hypergraphs with no cycle of a given length*, Combin. Probab. Comput. **21** (2012), no. 1–2, 193.
14. S. Janson, T. Łuczak, and A. Rucinski, *Random graphs*, Wiley-Interscience Series in Discrete Mathematics and Optimization, (R. L. Graham, and J. K. Lenstra eds.), Wiley-Interscience, New York, 2000.
15. Y. Kohayakawa, B. Kreuter, and A. Steger, *An extremal problem for random graphs and the number of graphs with large even-girth*, Combinatorica. **18** (1998), no. 1, 101–120.
16. F. Lazebnik and J. Verstraëte, *On hypergraphs of girth five*, Electron. J. Combin. **10** (2003), no. 1, R25.
17. R. Morris and D. Saxton, *The number of $C_{2\ell}$ -free graphs*, Adv. Math. **298** (2016), 534–580.
18. D. Mubayi and L. Yepremyan, *Random Turán theorem for hypergraph cycles*, arXiv preprint arXiv:2007.10320, 2020.
19. J. Nie, S. Spiro, and J. Verstraëte, *Triangle-free subgraphs of hypergraphs*, Graphs Combin. **37** (2021), no. 6, 2555–2570.
20. C. Palmer, M. Tait, C. Timmons, and A. Z. Wagner, *Turán numbers for Berge-hypergraphs and related extremal problems*, Discrete Math. **342** (2019), no. 6, 1553–1563.
21. G. Perarnau and B. Reed, *Existence of spanning \mathcal{F} -free subgraphs with large minimum degree*, Combin. Probab. Comput. **26** (2017), no. 3, 448–467.
22. I. Z. Ruzsa and E. Szemerédi, *Triple systems with no six points carrying three triangles*, Combinatorics (Proceedings of the Fifth Hungarian Colloquium Keszthely, 1976), vol. II, vol. **18**, Colloquium Mathematical Society, János Bolyai, 1978, pp. 939–945.
23. C. Timmons and J. Verstraëte, *A counterexample to sparse removal*, European J. Combin. **44** (2015), 77–86.
24. J. Verstraëte, *Extremal problems for cycles in graphs*, Recent Trends in Combinatorics, IMA Vol. Math. Appl., vol. **159**, Springer, Cham, 2016, pp. 83–116.

How to cite this article: S. Spiro and J. Verstraëte, *Counting hypergraphs with large girth*, J. Graph Theory. 2022;100:543–558. <https://doi.org/10.1002/jgt.22794>

APPENDIX A: PROOF OF THEOREM 1.1

Here we give a formal proof of Theorem 1.1. The key tool will be the following theorem of Morris and Saxton.

Theorem 1 (Morris and Saxton [17, Theorem 5.1]). *For each $k \geq 2$, there exists a constant $C = C(k)$ such that the following holds for sufficiently large $t, n \in \mathbb{N}$ with $t \leq n^{(k-1)^2/k(2k-1)} / (\log n)^{k-1}$. There exists a collection $\mathcal{G}_k(n, t)$ of at most*

$$\exp(Ct^{-1/(k-1)}n^{1+1/k} \log t)$$

graphs on $[n]$ such that $e(G) \leq tn^{1+1/k}$ for all $G \in \mathcal{G}_k(n, t)$ and such that every C_{2k} -free graph is a subgraph of some $G \in \mathcal{G}_k(n, t)$.

Recall that we wish to prove that for $\ell \geq 3$ and $k = \lfloor \ell/2 \rfloor$, there exists a constant $c > 0$ such that if n is sufficiently large and $m \geq n^{1+1/(2k-1)}(\log n)^2$, then

$$N_m^2(n, \mathcal{C}_{[\ell]}) \leq e^{cm}(\log n)^{(k-1)m} \left(\frac{n^{1+1/k}}{m} \right)^{km}.$$

The bound is trivial if $\ell = 3$ since $N_m^2(n, C_3) \leq \binom{n^2}{m}$, so we may assume $\ell \geq 4$ from now on. Because $N_m^2(n, \mathcal{C}_{[\ell]}) \leq N_m^2(n, C_{2k})$ for all $\ell \geq 4$, it suffices to prove this bound for $N_m^2(n, C_{2k})$. For any integer $t \leq n^{(k-1)^2/k(2k-1)} / (\log n)^{k-1}$ and n sufficiently large, Theorem 1 implies

$$N_m^2(n, C_{2k}) \leq |\mathcal{G}_k(n, t)| \cdot \binom{tn^{1+1/k}}{m} \leq \exp(Ct^{-1/(k-1)}n^{1+1/k} \log t) \cdot (etn^{1+1/k}/m)^m, \quad (\text{A1})$$

with the first inequality using that every C_{2k} -free graph on m edges is an m -edged subgraph of some $G \in \mathcal{G}_k(n, t)$. By taking $t = (n^{1+1/k} \log n/m)^{k-1}$, which is sufficiently small to apply (A1) provided $m \geq n^{1+1/(2k-1)}(\log n)^2$, we see that $N_m^2(n, C_{2k})$ satisfies the desired inequality.