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1 | INTRODUCTION

Let F be a family of r-uniform hypergraphs, or r-graphs for short. Define N"(n, F) to be the
number of F-free r-graphs on [n] := {1, ..., n}, and define N;,(n, F) to be the number of
F-free r-graphs on [n] with exactly m hyperedges. If ex(n, F) denotes the maximum number
of hyperedges in an F-free r-graph on [n], then it is not difficult to see that for
1 <m<ex(n,F),
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m m

and summing over m one obtains 2%xD) = N7 (pn, F) = 20 Plogn) The state-of-the-art for
bounding N" (n, F) is the work of Ferber, McKinley, and Samotij [9] which shows that if F is an
r-uniform hypergraph with ex(n, F) = O(n%) and « not too small, then

N"(n, F) = 200,

and this result encompasses many of the earlier results in the area [3,4,6,17].

There are relatively few families for which effective bounds for N, (n, F) are known. One
family where results are known is Cp) = {Cs, Cy, ..., Cp}, the family of all graph cycles of length
at most ¢. Morris and Saxton implicitly proved the following in this setting:

Theorem 1.1 (Morris and Saxton [17]). For € > 3 and k = |€/2], there exists a constant
¢ = c(£) > 0 such that if n is sufficiently large and m > n'*/@~Y(log n)?, then

n1+1/k)km

N, (n, Ciep) < e (log n)(k—l)m(

In the appendix we give a formal proof of this result. Theorem 1.1 generalizes earlier results
of Fiiredi [11] when ¢ = 4 and of Kohayakawa, Kreuter, and Steger [15]. Erdés and Simonovits
[8] conjectured for ¢ > 3 and k = |£/2],

ex(n, Cpg)) = Q(n'+1/k) 1)

which is only known to hold for ¢ € {3, 4, 5, 6, 7, 10, 11}—see Fiiredi and Simonovits [12] and
also [24] for details. The truth of this conjecture would imply that the upper bound in
Theorem 1.1 is tight up to the exponent of (log n)™ .

In this paper we extend Theorem 1.1 to r-graphs. For € > 2, an r-graph F is a Berge ¢-cycle if
there exist distinct vertices vy, ..., V, and distinct hyperedges e, ..., e, with v;, v;4; € ¢; for all
1 <i < €. In particular, a hypergraph H is said to be linear if it contains no Berge 2-cycle. We
denote by C}, the family of all r-uniform Berge ¢-cycles. If H is an r-graph containing a Berge
cycle, then the girth of H is the smallest ¢ > 2 such that H contains a Berge #-cycle. Let
Clep = C5U C3U --- U () denote the family of all r-uniform Berge cycles of length at most €.
With this C[zg] = Cj¢), and an r-graph has girth larger than ¢ if and only if it is Cf, -free. We again
emphasize that hypergraphs with girth £ > 2 are all linear. We write Ny, (1, €) := Ny, (n, C[,})
for the number of n-vertex r-graphs with m edges and girth larger than ¢ and
N"(n, €) == N"(n, Cfp)) for the number of n-vertex r-graphs with girth larger than ¢.

Balogh and Li [2] proved for all ¢, r > 3 and k = |£/2],
Nr(n, e) — 20(n1+1/k).

This upper bound would be tight up to an n°@® term in the exponent if the following is
true:
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Conjecture 1. Forall ¢ >3 andr > 2 and k = |£/2],
ex(n, C['é,]) = pltl/k—o(),

Conjecture 1 holds for ¢ = 3,4 and r > 3—see [7,16,22,23]—but is open and evidently
difficult for ¢ > 5 and r > 3. Gyori and Lemons [13] proved ex(n,C,) = O(n'*'/*) with
k = [€/2], so the conjecture concerns constructions of dense r-graphs of girth more than ¢. The
conjecture for r = 2 without the o(1) is (1), and for each r > 3 is stronger than (1), as can be
seen by forming a graph from an extremal n-vertex r-graph of girth more than ¢ whose edge set
consists of an arbitrary pair of vertices from each hyperedge. We emphasize that the 0(1) term
in Conjecture 1 is necessary for ¢ = 3, due to the Ruzsa-Szemerédi theorem [7,22], and for
¢ = 5, due to the work of Conlon, Fox, Sudakov, and Zhao [5].

1.1 | Counting r-graphs of large girth

In this study we simplify and refine the arguments of Balogh and Li [2] to prove effective and
almost tight bounds on N7, (n, ) relative to N2 (n, £).

Theorem 1.2. Let¢,r >3 and 1 =[(r — 2)/(€ — 2)1. Then for all m,n > 1,
N (n, €) < NZ(n, &) ~1+4, )

We note that (2) corrects a bound' which appears in [20]. The inequality (2) is essentially
tight when ¢ — 2 divides r — 2, due to standard probabilistic arguments (see, e.g., Janson,
Luczak, and Rucinski [14]): it is possible to show that when m < n'+1/¢=1, the uniform model
of random n-vertex r-graphs with m edges has girth larger than ¢ with probability at least a="
for some constant a > 1 depending only on ¢ and r. In particular, there exist some constants
b, ¢ > 1 such that for m < n'*1/¢=1 we have

N.(n, &) > ¢ () > b (e fmy > b (2 m)(T R s e
" 3)

r—2

- N2(n, &) 'o=2,

where the third inequality used m < n'*1/(¢~D and the last inequality used the trivial bound
N2 (n, €) < (en?/m)™. This shows that the bound of Theorem 1.2 is best possible when £ — 2
divides r — 2 up to a multiplicative error of ¢c™™ for some constant ¢ > 1. We believe that (3)
should define the optimal exponent, and propose the following conjecture:

Conjecture 2. Forallr >2,¢ >3 and m,n > 1,

'Theorem 20 of [20] claims a stronger upper bound for N/, (n, 4) than what we prove in Theorem 1.2, but we have
confirmed with the authors that there was a subtle error in their proof.
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NI.(n, &) < N2(n, €)= 1+4=3.
Theorem 1.2 shows that this conjecture is true when ¢ — 2 divides r — 2, so the first open
case of Conjecture 2 is when € = 4 and r = 3.
In the case that Berge ¢-cycles are forbidden instead of all Berge cycles of length at most ¢,
we can prove an analog of Theorem 1.2 with weaker quantitative bounds. To this end, let
Nip (n, F) denote the number of n-vertex F-free r-graphs on at most m hyperedges.

Theorem 1.3. For each ¢, r > 3, there exists c = c(¢, r) such that
Ni(n, C5) < 2 - Ny (n, G2

We suspect that this result continues to hold with Nﬁn] (n, Cp) replaced by N2 (n, Cy).

1.2 | Subgraphs of random r-graphs of large girth

Denote by H, , the r-graph obtained by including each hyperedge of K, independently and with
probability p. Given a family of r-graphs F, let ex(H, ,, F) denote the size of a largest F-free
subgraph of H, ,,. Recall that a statement depending on n holds asymptotically almost surely or
a.a.s. if it holds with probability tending to 1 asn — oo. A hypergraph of girth at least three is a
linear hypergraph, and it is not hard to show by a simple first moment calculation that if
p > n~"log n, then a.as.

ex(H)
(

v Chy) = ©(min{pn’, n2).

Our first result essentially determines the a.a.s. behavior of the number of edges in an

extremal subgraph of H, , of girth four. In this theorem we omit the case p < nta, as it is
straightforward to show that a.a.s. ex(H, ,, C[3;) = ©(pn") when p > n™"log n in this range.

Theorem 1.4. Letr > 3. If p > n~"+2(log n)* 3, then a.a.s.
1 1
pr-imoW < ex(Hj , Cfy)) < pr-in?+o),

Due to Theorems 1.2 and 1.4, the number of linear triangle-free r-graphs with n vertices and
m edges where n*/2+°® < m < ex(n, Cfz)) = o(n?) and r > 3 is

l’l2 (2r-=3)m+o(m)
" .

N;, (1, 3) = N2 (n, 3)7=3+00) = [—

The authors and Nie et al. [19] obtained bounds for r-uniform loose triangles,” where for
r = 3 the same essentially tight bounds as in Theorem 1.4 were obtained, but for r > 3

The loose triangle is the Berge triangle whose edges pairwise intersect in exactly one vertex.
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there remains a significant gap. In the case of subgraphs of girth larger than four,
Theorem 1.2 allows us to generalize results of Morris and Saxton [17] and earlier results of
Kohayakawa, Kreuter, and Steger [15] giving subgraphs of large girth in random graphs in
the following way:

Theorem 1.5. Let¢ >4 andr > 2,andletk = |€/2]and A =[(r — 2) /(€ — 2)]. Then
a.a.s.

r r
eX(Hn,p’ [e])
1 1 —(r=1+1)(k—1)
Py +o(1) nH ey <p<n w1 (log n)(r—1+/1)k’

1 —(r—142)(¢=1-k)
p<r—11+A>k n'titow n = (log n)r=1#+Mk < p < 1.

If Conjecture 1 is true, then

_1 _ 1 —(r=1)(¢=1-k)
) S n'te—ito® ntHt e i <p<n oo,

ex(H,f 4
p Vel ) = 1 1 —(r=1)(=1-k)
L+ -o()) ]

pe-vkn <p<LlL

We emphasize that there is a significant gap in the bounds of Theorem 1.5 due to the
presence of 4 in the exponent of p in the upper bound and its absence in the lower bound,
and this gap is closed by Theorem 1.4 when ¢ = 3 by an improvement to the lower bound.
A similar phenomenon appears in the recent work of Mubayi and Yepremyan [18], who
determined the a.a.s. value of the extremal function for loose even cycles in H, , for all but
a small range of p. It seems likely that the following conjecture is true:

Conjecture 3. Let ¢,r > 3 and k = |€/2]. Then there exists y = y (¢, r) such that a.a.s.

1 1 y(€-1-k)
it Tt <p<nTT e,
y(e=1-k)

x(HipCla) =1,
prentteto p= T < p <1,

Conjecture 2 suggests the possible value y(€,r) =r — 1 + (r — 2) /(€ — 2), which is the
correct value for ¢ = 3 by Theorem 1.4. We are not certain that this is the right value of y in
general, even when r = 3 and ¢ = 4, and more generally, Conjecture 1 is an obstacle for r > 3
and ¢ > 5. Theorem 1.5 shows that if y exists, then (r — 1)k <y < (r — 1 + 1)k provided
Conjecture 1 holds.

Letting f (n,p) = ex(H, ,,
the upper bound is in blue and the lower bound is in green. The truth of Conjecture 2 for
¢ = 4 would imply the slightly better upper bound f (n, p) < p'/3n3/2+o(),

Notation: A set of size k will be called a k-set. As much as possible, when working with
a k-graph G and an r-graph H with k < r, we will refer to elements of E(G) as edges and
elements of E(H) as hyperedges. Given a hypergraph H on [n], we define the k-sha-
dow 9*H to be the k-graph on [n] consisting of all k-sets e which lie in a hyperedge of E (H).
If Gy, ..., G; are k-graphs on [n], then U G; denotes the k-graph G on [n] which has edge
set U E(G)).

Cf’4]), we plot the bounds of Theorem 1.5 in Figure 1, where
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FIGURE 1 Subgraphs of H,, of girth five

2 | PROOF OF THEOREM 1.2

As Balogh and Li [2] observed, if ¢ > 3 and H has girth larger than ¢, then H is uniquely determined
by 82H, which we can view as the graph obtained by replacing each hyperedge of H by a clique.
A key insight in proving Theorem 1.2 is that we can replace each hyperedge of H with a sparser
graph B and still uniquely recover H from this graph. To this end, we say that a graph B is a book if
there exist cycles F, ..., Fy and an edge xy such that B = U F, and E (F}) N E (Fj) = {xy} for alli # j.
In this case we call the cycles F,; the pages of B and we call the common edge xy the spine of B. The
following lemma shows that if we replace each hyperedge in H by a book on r vertices which has
small pages, then the vertex sets of books in the resulting graph are exactly the hyperedges of H.

Lemma 2.1. Let H be an r-graph of girth larger than €. If 3°H contains a book B on r
vertices such that every page has length at most €, then there exists a hyperedge e € E (H)
such that V (B) = e.

Proof. Let F be a cycle in °H with V (F) = {vy, ..., vy} such that v, € E(6°H) for
i < p and vv, € E(8°H). If p < ¢ we claim that there exists an e € E(H) such that
V(F) C e. Indeed, by definition of °H there exists some hyperedge ¢; € E(H) with
Vi, Vip1 € ¢ for all i < p and some hyperedge e, with vy, v, € e,. If all of these e;
hyperedges are equal then we are done, so we may assume e; # e,. Define i; to be the
largest index such that e; = e; for all i < i, define i, to be the largest index so that
e; = ¢4 foralliy <i<i,andsoonuptoi; = p,and note that2 < g < p since e; # ¢,. If
all the e; hyperedges are distinct, then they form a Berge g-cycle in H since
Vi4i; € € N ey = e, N e, for all j, a contradiction. Thus we can assume e;, = ei; for
some j < j'. We can further assume that e; # e;, for any j < s < s’ < j’, as otherwise we
could replace j,j’ with s, s’. Finally note that j < j' — 1, as otherwise we would have
e, = €, = €41, contradicting the maximality of i;. We conclude that the distinct
hyperedges e;, e;;,,, ..., €;,_, form a Berge (j —j)cycle with 2<j'—j<# in H, a
contradiction. This proves the claim.

Now let B be a book with spine xy and pages Fy, ..., Fy of length at most €. By the claim
there exist hyperedges ey, ..., ex € E(H) such that V(F) C ¢; for all i, and in particular
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X,y € e; for all i. Because H is linear, this implies that all of these hyperedges are equal
and we have V (B) C e;. If B has r vertices, then we further have V (B) = e;. O

We now complete the proof of Theorem 1.2. With 4 := [(r — 2) /(€ — 2)] we observe for all
¢,r > 3 that there exists a book graph B on r vertices {x,..,x,} with r —1 + 1 edges
fis ws fr_14- Indeed if £ — 2 divides r — 2 one can take A copies of C, which share a common
edge, and otherwise one can take A —1 copies of C, and a copy of C, with
p=r—@A—-1)(¢—-2)>3. From now on we let B denote this book graph. If
fi=,x/} € EB) and e={v,..,»} C[n] is any r-set with v <---<v, define
¢,(e) = {vj, v;}. If H is an r-graph on[n], define ¢,(H) to be the graph on [n] which has all edges
of the form ¢, (e) for e € E(H); so in particular | J ¢,(H) is the graph obtained by replacing each
hyperedge of H with a copy of B.

Let H,,,, denote the set of r-graphs on [n] with m hyperedges and girth more than ¢, and let
Gm,n be the set of graphs on [n] with m edges and girth more than ¢. We claim that ¢, maps H,,,
t0 G- Indeed, if H € H,, , then each hyperedge of H contributes a distinct edge to ¢,(H) since
H is linear, so e(¢;(H)) = e(H) = m. One can show that if ¢;(e), ..., ¢;(e,) form a p-cycle in
¢;,(H), then ey, ..., e, form a Berge p-cycle in H; so H € H,,,, implies ¢,(H) does not contain a
cycle of length at most €.

Let gi,,,n ={(Gy, Gy, ..., G) : G; € Gy ). Then we define a map ¢ : Hpp — an‘,}l” by

¢(H) = (¢, (H), ..o $y_1 12 (H)).

We claim that this map is injective. Indeed, fix some H € H,,, and let 3(G) denote the set
of books B in the graph G := J ¢,(H) C 8°H. By definition of ¢ we have E(H) C B(G) for all
H. Moreover, if H € H,, , then Lemma 2.1 implies B(G) C E (H). Thus E (H) (and hence H) is
uniquely determined by G, which is itself determined by ¢ (H), so the map is injective. In total
we conclude

Nr’;i(n’ €) = |Hm’n| S |g;n_}l+/1| = Nr%l(n’ €)V—1+/1’

proving Theorem 1.2. [

3 | PROOF OF THEOREM 1.3

For arbitrary hypergraphs H, the map ¢ (H) = 8"~'H (let alone the map to 42H) is not injective.
However, we will show that this map is “almost” injective when considering H which are
C)-free. To this end, we say that a set of vertices {vy, ..., v} is a core set of an r-graph H if there
exist distinct hyperedges ey, ..., e, with {vy, ..., v,}\ {vi} C ¢ for all i. The following observation
shows that core sets are the only obstruction to ¢ (H) = 8"~'H being injective.

Lemma 3.1. Let H be an r-graph. If {vy, ..., v} induces a K/™' in 0" 'H, then either
v, ., v} € E(H) or {vy, ..., v} is a core set of H.

Proof. By assumption of {v,,...,v,} inducing a K/~! in 0"'H, for all i there exist
e/ € E(0"'H) with ¢/ = {vy, ..., v,}\ {v}. By definition of 8"~'H, this means there exist
(not necessarily distinct) e; € E(H) with ¢; 2 ¢/ = {vy, .., v.}\ {v}. Given this, either
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e; = {vy, ..., v} for some i, or all of the ¢; distinct, in which case {v, ..., v} is a core set of H.
In either case we conclude the result. O

We next show that C),-free r-graphs have few core sets.

Lemma 3.2. Let#,r > 3 and let H be a C),-free r-graph with m hyperedges. The number
of core sets in H is at most €*r*m.

Proof. We claim that H contains no core sets if £ < r. Indeed, assume for contradiction
that H contained a core set {vy, ..., v;} with distinct hyperedges ¢; 2 {vy, ..., v.}\ {v}. It is
not difficult to see that the hyperedges ey, ..., e, form a Berge ¢-cycle, a contradiction to H
being C-free. Thus from now on we may assume ¢ > r.

Let A; denote the set of core sets in H, and for any A" C A; and (r — 1)-set S, define
d 4 (S) to be the number of core sets A € A with S C A. Observe that d 4,(S) > 0 for at
most (ri

of H.

Given A;, define A; C A, to be the core sets A € A; which contain an (r — 1)-set S
with d 4,(S) < ¢r, and let A;;; = A;\ A]. Observe that |Ajl < ér - rm since each (r — 1)-
set S with d 4,(S) > 0 is contained in at most €r elements of A;. In particular,

1)m = rm(r — 1)-sets S, since in particular S must be contained in a hyperedge

Al < (€ =7) - r2m 4 |Ap_rpl < €22m 4 1A, il 4)

Assume for the sake of contradiction that A,_,.; # @. We prove by induction on
r<i<é¢ that one can find distinct vertices vj,.., v; and distinct hyperedges
ey, ..., ¢i_1, ¢ such that v,v,,€¢ for 1<j<i and v,v,€¢, and such that
Vi, Vi_1, ooy Viepy2, V1} € Ap_iy1. For the base case, consider any {v,, V_1, ..., V1} €Ap_ry1.
As this is a core set, there exist distinct hyperedges e 2 {vy, ..., v}\{vj4+2} and
€ 2 {vy, ..., v}\ {v2}, proving the base case of the induction.

Assume that we have proven the result for i< ¢. By assumption of
Vi Viely oo Viepp2, V1} € Ap_iy1, We have {v, Vi1, ..., Vimpyo, V1} € Aj_;, S0 there exists a
set of vertices {u, ..., Ugr41} such that {v;, vi_1, ..., Viory3, V1, 45} € A,_; for all j. Because
|U§;11 el < ¢r, there exists some j such thatu; ¢ Uf;ll e,. For this j, let v;41 == u; and let
e;, €;+1 be distinct hyperedges containing v;, v;4; and vy, v;41, respectively, which exist by
the assumption of this being a core set. Note that v;,; is distinct from every other v; since
vy € Uiz} e for i’ <i, and similarly the hyperedges e;, &, are distinct from every
hyperedge e; with i’ < i since these new hyperedges contain v;;; & UiZ} ex. This proves
the inductive step and hence the claim. The i = ¢ case of this claim implies that
H contains a Berge ¢-cycle, a contradiction. Thus A,_,+1 = @, and the result follows

by (4). O

Combining these two lemmas gives the following result, which allows us to reduce from
r-graphs to (r — 1)-graphs. We recall that N, (n, F) denotes the number of n-vertex F-free
r-graphs on at most m hyperedges.

Proposition 3.3. For each ¢, r > 3, there exists c = c(¢, r) such that
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r

Ny (7, €5) < 27 - Ny (m, €577)

Proof. If e={v,vs.,n} C[n] is any r-set with v <V, <--<v, let
¢,(e) = {vy, ..., v }\ {vi}. Given an r-graph H on [n], let ¢;(H) be the (r — 1)-graph on [n]
with edge set {¢,(e) : e € E(H)}, and define ¢(H) = (¢,(H), ¢,(H), ..., ¢,(H)) and
Y(H) = (¢p(H), E(H)). Observe that |J ¢,(H) = 8" 'H. Let Hjp,,» denote the set of all
r-graphs on [n] with at most m hyperedges which are Cj-free, and let ¢ (Hjm),n), ¥ (H{m],n)
denote the image sets of H|,,),» under these respective maps. Observe that 3 is injective
since it records E (H), so it suffices to bound how large ¢ (M| ,») can be.

Let Gim},» denote the set of (r — 1)-graphs on [n] which have at most m edges and
which are C}; '-free. It is not difficult to see that ¢(Hjmy,n) S Glm)..- We observe by
Lemmas 3.1 and 3.2 that for any (Gy, Gy, ..., Gr) € ¢ (Hmy,n), say with ¢(H) = (G4, ..., G;),
there are at most (1 + #*2)m copies of K/~! in |J G; = 3""'H. We also observe that if
((G1, Gy oy, G), E) € P(Himy,n), then E is a set of at most m copies of K; ™! in JG;. Thus
given any (Gy, .., G;) € ¢(Himp,n) C Gfm).n» there are at most 20+¢79™ choices of E such
that ((Gy, ..., Gv), E) € ¥ (Hjmy,n). We conclude that

N[m](n, Crg) = |H[m]’n| < |g[m]’n|r . 2(1+gzr2)m — N[rm] (n, Crg_l)r . 2(1+ezr2)m’

proving the result. O

Applying this proposition repeatedly gives Ny, (1, Cp) < 2“’"N[§n] (n, C,)"'/2. Combining this
with the trivial inequality Ny, (n, Cy) < N\, (n, Cy) gives Theorem 1.3.

4 | PROOF OF THEOREMS 1.4 AND 1.5
To prove that our bounds hold a.a.s., we use the Chernoff bound [1].

Proposition 4.1 (Alon and Spencer [1]). Let X denote a binomial random variable with
N trials and probability p of success. For any € > 0 we have Pr[IX — pN| > epN] <
2exp(—€e?pN/2).

Proof of the upper bounds in Theorem 1.5. Let

(r—1+A)(k—1)
pp=n"  2%-1  (logn)r—1+dk,

For p > p,, define
1 g4 1
m = pe-1+nkn ' k log n,

and note that this is large enough to apply Theorem 1.1 for p > p,. Let Y, denote the
number of subgraphs of H, , which are Cj,}-free and have exactly m edges, and note that
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ex(H,, p,

Theorem 1.1:

Clz) 2 m if and only if Y, > 1. By Markov's inequality, Theorem 1.2, and

E[Y.] = p™ - Npu(n, €)
pm . N'i(n,g)r—l+/1

1\k m(r—1+21)
< | primze¢ (log n)k-1 nt
m

e ]m(r—1+/1)

The right-hand side converges to zero, so for p > p,, a.a.s.

ex(H
(

n,p> C{g]) < m.

As [E[ex(H, p, C[,))] is nondecreasing in p, the bound

ex(H,
(

1
- Cfg]) < n'*o=1(log n)?

continues to hold a.a.s. for all p < p,. O

Proof of the upper bound in Theorem 1.4. This proof is almost identical to the previous,

1

so we omit some of the redundant details. Let m = p=-:n?log n and let Y;, denote the
number of subgraphs of Hy , which are Cj,-free and have exactly m edges. By Markov's

inequality, Theorem 1.2, and the trivial bound N2 (n, 3) < (’r’;) which is valid for all m,
we find for all p

Pr[Y,, > 1] < p™(en?/m)®=3m = (e/log n)™.

This quantity converges to zero, so we conclude the result by the same reasoning as in the
previous proof. O

This proof shows that for all p we have E[ex(H,,, Ci,)] < px-3n?log n. However, for

p < n7"+3/2 this is weaker than the trivial upper bound Elex(H, p, Cop)] < p('rl)

Proof of the lower bounds in Theorem 1.5. We use homomorphisms similar to Foucaud,
Krivelevich, and Perarnau [10] and Perarnau and Reed [21]. If F and F’ are hypergraphs
and y: V(F) » V(F') is any map, we let y(e) = {y(u) : u € e} for any e € E(F). For
two r-graphs F and F’, amap y : V(F) — V (F’) is a homomorphism if y (e) € E (F') for
all e € E(F), and y is a local isomorphism if y is a homomorphism and y (e) # x (f)
whenever e, f € E(F) with e N f# @. A key lemma is the following: O

Lemma 4.2. IfF € Cj, and x : F — F'is a local isomorphism, then F' has girth at most €.
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Proof. Let F be a Berge p-cycle with p < ¢ and E(F) = {ey, e,, ..., ¢,}. Then there exist
distinct vertices v, Vs, ..., v, such that v, € ¢, N ey for i <p and v, € ¢, N e;. First
assume there exists i #j such that x(e) = x(e). By reindexing, we can assume
x (e1) = x(ex) for some k > 1, and further that y(e;) # x(e;) forany 1 <i < j < k. Note
that k > 3 since e; N e, # @ and y is a local isomorphism. If we also have y (v;) # x (v))
for all 1<i<j<k, then y(w) e xy(e) ny(eyr) for i<k—1 and y(v_1) €Ex
(ex—1) N x(e1), so x(e1), x(ez), ..., x (ex—1) is the edge set of a Berge (k — 1)-cycle in F’
as required.

Suppose x (v;) = x (vj) for some 1 <i <j <k, and as before we can assume there
exists no i < i’ <j <j with y(vy) = x(vy). Then Y (), ¥ (Wis1), ..., x (vj—1) are distinct
vertices with x (vy) € x(ep) N x(ens1) for i <h <j—1 and x(vj-1) € x(e-1) N x(en).
Note that y (v;) # x (vi+1) since this would imply ly (e;)| < r, contradicting that y is a
homomorphism, so j> i+ 1. Thus the hyperedges x(e),x (€i+1), ..., x(¢j—1) form a
Berge (j — i)-cycle in F’ with j — i > 2 as desired.

This proves the result if y (e;) = x (e;) for some i # j. If this does not happen and the
x (v;) are all distinct, then F’ is a Berge p-cycle, and if y (v;) = x (v;) then the same proof
as above gives a Berge (j — i)-cycle in F'. O

The following lemma allows us to find a relatively dense subgraph of large girth in any
r-graph whose maximum i-degree is not too large, where the i-degree of an i-set S is the number
of hyperedges containing S.

Lemma 4.3. Let £,r > 3 and let H be an r-graph with maximum i-degree A; for each
i > 1.Ift > r24AY ") for alli > 1, then H has a subgraph H' of girth larger than € with

e(H") 2 ex(t, Cfp )" - e(H).

Proof. Let J be an extremal Cj,-free r-graph on ¢ vertices and y : V (H) — V(J) chosen
uniformly at random. Let H' C H be the random subgraph which keeps the hyperedge
ec E(H) if

(1) x(e) € E(J), and
(2) x(e) # x(f) for any other f € E(H) with le n fl # 0.

We claim that H’ is Cf, -free. Indeed, assume H' contained a subgraph F isomorphic
to some element of Cf,j. Let F’ be the subgraph of J with V (F') = {y (u) : u € V(F)} and
E(F')={x(e) : e € E(F)}, and note that F C H' implies that each hyperedge of F
satisfies (1), so every element of E (F') is a hyperedge in J. By conditions (1) and (2), y is
a local isomorphism from F to F’. By Lemma 4.2, F’ C J contains a Berge cycle of length
at most ¢, a contradiction to J being Cj,-free.

It remains to compute E[e(H")]. Given e € E (H), let A, denote the event that (1) is
satisfied, let E; = {f € E(H) : le n fI = i}, and let A, denote the event that y (f) € x(e)
for any f € |; E;, which in particular implies (2) for the hyperedge e. It is not too difficult
to see that Pr[A;] = rle(J)t™", and that for any f € E; we have Pr[y(f) C x(e)l4] =
(r/t)~L Note for each i > 1 that IEjl < 2"A;, as e has at most 2" subsets of size i each of
i-degree at most A;. Taking a union bound we find
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r r r
PriA Al > 1= YIEI(r/ty~ 1> 1= ) 2A(r /)12 1= ) rii27r >

i=1 i=1 i=1

1
2 9
where the second to last inequality used (r4")"~" > r~'47" for i < r. Consequently

Prle € E(H')] = Pr[A] - Pr[AA ] > rle()t™ - — > et

N |

and linearity of expectation gives [E[e(H')] > e(J)t™" - e(H) = ex(t, Cjp)t™" - e(H).
Thus there exists some C[,j-free subgraph H' C H with at least ex(t, C[,)t™" - e(H)
hyperedges. O

By the Chernoff bound one can show for

—(r=1)(¢=1-k)

prl =n -1

that a.a.s. Hy , has maximum i-degree at most ©(pn"~") for all i. If Conjecture 1 is true, then
a.a.s. for p > p; Lemma 4.3 with t = ®(p!/"~Vn) gives

1
eX(H,f’p, C[Q;]) = Q(t"ex(t, C[’gl)pnr) = pren' T W,

This proves the lower bound in Theorem 1.5. O
Proof of the lower bound in Theorem 1.4. We use the following variant of Lemma 4.3:

Lemma 4.4. Let H be an r-graph and let R, (H) be the number of Berge €-cycles in H
on v vertices. For all t > 1, H has a subgraph H' of girth larger than 3 with

3
e(H) > |e(H)t>" — Z th_ng,v(H) e—c\/logt,

=2 v
where ¢ > 0 is an absolute constant.

Proof. By the work of Ruzsa and Szemeredi [22] and Erdds, Frankl, and Rodl [7], it is
known for all ¢ that there exists a Cf;-free r-graph J on t vertices with 12e—clogt
hyperedges. Choose a map y : V (H) — V (J) uniformly at random and define H" C H to
be the subgraph which keeps a hyperedge e = {vy, .., v} € E(H) if and only if
x(e) e E(J).

We claim that if ey, e, e; form a Berge triangle in H', then y(e;) = x(e;) = x (es).
Observe that if vy, v,, v3 are vertices with v; € ¢; N e;;1, then we must have, for example,
as otherwise [y (e;)| < r. Because J is linear we must have [y (¢;) N x (¢! € {1, r}. These
hyperedges cannot all intersect in 1 vertex since this together with the distinct vertices
x (), x (n2), x (v3) defines a Berge triangle in H', so we must have to say y (e;) = x (e).
But this means x(v3),x(v,) are distinct vertices in y(e;) = y(e;) and yx(es), so
Iy (e1) N x(e3)! > 1 and we must have y (e;) = x(e3) as desired.
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The probability that a given Berge triangle C on v vertices in H maps to a given
hyperedge in J is at most (r/t)” (since this is the probability that every vertex of C maps
into the edge of J). By linearity of expectation, H" contains at most Y Rz, (H)e(J)(r/t)"
Berge triangles in expectation. An identical proof shows that H' contains at most
2 Rov(H)e(J)(r/t) Berge 2-cycles in expectation. We can then delete a hyperedge from
each of these Berge cycles in H' to find a subgraph H' with

3
Ele(H)] 2 e(Dt™ - e(H) = 3 3} Rey(H)e()(r/t).

=2 v

The result follows since e(J) = t2e—clogt O

We now prove the lower bound in Theorem 1.4. By Markov's inequality one can show that a.a.s.
R33_3(Hy ) = O(p*n®*~3). By the Chernoff bound we have a.as. that e(H, ,) = Q(pn"), so if we

taket = p*/@ =3 n(log n)~!, then a.as. £>~3Rs 3,_3(H, ,) is significantly smaller than t>~"e (H, ,). A
similar result holds for each term t>="R,,, (H, ) with ¢ = 2,3 and v < €(r — 1), so by Lemma 4.4
we conclude ex(Hy, ,, Cf3)) 1> p"/@ =9 n?=°M aas, proving the lower bound in Theorem 1.4,

We note that the proof of Lemma 4.4 fails for larger ¢. In particular, a Berge 4-cycle can
appear in H" by mapping onto two edges in J intersecting at a single vertex, and with this the
bound becomes ineffective.

5 | CONCLUDING REMARKS

* In this paper, we extended ideas of Balogh and Li to bound the number of n-vertex r-graphs
with m edges and girth more than ¢ in terms of the number of n-vertex graphs with m edges
and girth more than ¢. The reduction is best possible when m = @(n¢/“~V) and ¢ — 2 divides
r — 2. Theorem 1.3 shows that similar reductions can be made when forbidding a single family
of Berge cycles.

By using variations of our method, we can prove the following generalization. For a graph
F, a hypergraph H is a Berge-F if there exists a bijection ¢ : E(F) — E(H) such thate C ¢(e)
for all e € E (F). Let B"(F) denote the family of r-uniform Berge-F. We can prove the following
extension of Theorem 1.3: if there exists a vertex v € V (F) such that F — v is a forest, then
there exists ¢ = c(F, r) such that

Ny (n, B'(F)) < 2™ - Ny (n, F)"/2,

For example, this result applies when F is a theta graph. We do not believe that the
exponent r!/2 is optimal in general, and we propose the following problem.

Problem 1. Let#,r > 3. Determine the smallest value 8 = (¢, r) > 0 such that there
exists a constant ¢ = ¢ (¢, r) so that, for all m,n > 1,

N (n, c;) < 2 . N2, (n, Cp)P.
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Theorem 1.3 shows that § < r!/2 for all ¢, r, but in principle we could have 8 = O,(r). We
claim without proof that it is possible to use variants of our methods to show

B@B3,r),BM4,r) < (;) but beyond this we do not know any nontrivial upper bounds on f.

* We proposed Conjecture 3 on the extremal function for subgraphs of large girth in random
hypergraphs: for some constant y = y (¢, r), a.a.s.

(—1-k)
pltetito)  pr+l+ly <p< n="

k]

y(e-1

ex(Hr , Cly ) = -
n.p> €] pyflknl+%+0(1) n- e-1 2 <p< 1.

For ¢ = 3, this conjecture is true with y = 2r — 3, and Conjecture 2 suggests perhaps
y=r—1+4 (r—2)/(¢ — 2), although we do not have enough evidence to support this (see
also the work of Mubayi and Yepremyan [18] on loose even cycles). It would be interesting as a
test case to know if y(3,4) = 5/2:

Problem 2. Prove or disprove that Conjecture 3 holds with y(3,4) = 5/2.

* It seems likely that N;, (n, F) controls the a.a.s. behavior of ex(H,, ,, ) as n — oo. Spe-

D’
cifically, it is clear that if F is a family of finitely many r-graphs and p = p(n) and m = m(n)
are defined so that p™N,, (n, F) — 0 as h — oo, then a.a.s. as n — oo, H,f,p contains no F-free
subgraph with at least m edges. It would be interesting to determine when H, , a.a.s. contains

an F-free subgraph with at least m edges. In particular, we leave the following problem:

Problem 3. Let m = m(n) and p = p(n) so that p™N, (n,€) - o as n = oo. Then
H, , a.a.s. contains a subgraph of girth more than ¢ with at least m edges.

In particular, perhaps one can obtain good bounds on the variance of N, (n, £) in H, ,.
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APPENDIX A: PROOF OF THEOREM 1.1

Here we give a formal proof of Theorem 1.1. The key tool will be the following theorem of
Morris and Saxton.

Theorem 1 (Morris and Saxton [17, Theorem 5.1]). For each k > 2, there exists a constant
C = C (k) such that the following holds for sufficiently large t, n € N with t < nk=1°/k@k=1)/
(log n)k=1. There exists a collection G(n, t) of at most

exp(Ct=1/k=Dpl+1/kJog 1)

graphs on [n] such that e(G) < tn'*'/* for all G € Gi(n, t) and such that every Cy-free
graph is a subgraph of some G € Gi(n, t).
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Recall that we wish to prove that for ¢ > 3 and k = |£/2], there exists a constant ¢ > 0 such
that if n is sufficiently large and m > n'+1/k=D(log n)?, then

pl+1/k km
Nz (n, Cjgp) < e (log n)k—bm (_) .

m

The bound is trivial if ¢ = 3 since N2 (n, C;) < (:’:), so we may assume ¢ > 4 from now on.

Because Ny, (1, Cpg)) < Nj(n, Cy) for all € > 4, it suffices to prove this bound for N3 (n, Cy).
For any integer ¢t < nk=1*/kk=1) /(Jog n)k=1 and n sufficiently large, Theorem 1 implies

1+1/k
Ny (n, Cy) < 1G(n, D)1 - [”" ] < exp(Ce~V/&=Dpt+1/klog 1) - (etn'+1/* /mym,
m
(A1)

with the first inequality using that every Cy-free graph on m edges is an m-edged subgraph of
some G € Gi(n, t). By taking t = (n'*/¥log n/m)*=!, which is sufficiently small to apply (A1)
provided m > n'+1/®=D(log n)?, we see that N2 (n, Cy) satisfies the desired inequality.





