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Abstract

Morris and Saxton used the method of containers to

bound the number of n‐vertex graphs with m edges

containing no ℓ‐cycles, and hence graphs of girth more

than ℓ. We consider a generalization to r‐uniform hy-

pergraphs. The girth of a hypergraph H is the mini-

mum ℓ 2≥ such that there exist distinct vertices

v v, …,1 ℓ and hyperedges e e, …,1 ℓ with v v e,i i i+1 ∈ for

all i1 ℓ≤ ≤ . Letting N n( , ℓ)m
r denote the number of n‐

vertex r‐uniform hypergraphs with m edges and girth

larger than ℓ and defining  λ r= ( − 2) (ℓ − 2)∕ ,

we show

N n N n( , ℓ) ( , ℓ) ,m
r

m
r λ2 −1+≤

which is tight when ℓ − 2 divides r − 2 up to a
o1 + (1) term in the exponent. This result is used to

address the extremal problem for subgraphs of girth
more than ℓ in random r‐uniform hypergraphs.
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1 | INTRODUCTION

Let  be a family of r‐uniform hypergraphs, or r‐graphs for short. Define N n( , )r  to be the
number of  ‐free r‐graphs on n n[ ] {1, …, }≔ , and define N n( , )m

r  to be the number of
 ‐free r‐graphs on n[ ]with exactlym hyperedges. If nex( , ) denotes the maximum number
of hyperedges in an  ‐free r‐graph on n[ ], then it is not difficult to see that for

m n1 ex( , )≤ ≤ ,
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and summing overm one obtains N n2 = ( , ) = 2n r O n nΩ(ex( , )) (ex( , )log )  . The state‐of‐the‐art for
bounding N n( , )r  is the work of Ferber, McKinley, and Samotij [9] which shows that if F is an
r‐uniform hypergraph with n F O nex( , ) = ( )α and α not too small, then

N n F( , ) = 2 ,r O n( )α

and this result encompasses many of the earlier results in the area [3,4,6,17].
There are relatively few families for which effective bounds for N n( , )m

r  are known. One
family where results are known is C C C= { , , …, }[ℓ] 3 4 ℓ , the family of all graph cycles of length
at most ℓ. Morris and Saxton implicitly proved the following in this setting:

Theorem 1.1 (Morris and Saxton [17]). For ℓ 3≥ and  k = ℓ 2∕ , there exists a constant
c c= (ℓ) > 0 such that if n is sufficiently large and m n n(log )k1+1 (2 −1) 2≥ ∕ , then







N n e n

n

m
( , ) (log ) .m

cm k m
k km

2
[ℓ]

( −1)
1+1

 ≤
∕

In the appendix we give a formal proof of this result. Theorem 1.1 generalizes earlier results
of Füredi [11] when ℓ = 4 and of Kohayakawa, Kreuter, and Steger [15]. Erdős and Simonovits
[8] conjectured for ℓ 3≥ and  k = ℓ 2∕ ,

n nex( , ) = Ω( )k[ℓ]
1+1 ∕

(1)

which is only known to hold for ℓ {3, 4, 5, 6, 7, 10, 11}∈ —see Füredi and Simonovits [12] and
also [24] for details. The truth of this conjecture would imply that the upper bound in
Theorem 1.1 is tight up to the exponent of n(log )m .

In this paper we extend Theorem 1.1 to r‐graphs. For ℓ 2≥ , an r‐graph F is a Berge ℓ‐cycle if
there exist distinct vertices v v, …,1 ℓ and distinct hyperedges e e, …,1 ℓ with v v e,i i i+1 ∈ for all

i1 ℓ≤ ≤ . In particular, a hypergraph H is said to be linear if it contains no Berge 2‐cycle. We
denote by r

ℓ the family of all r‐uniform Berge ℓ‐cycles. If H is an r‐graph containing a Berge
cycle, then the girth of H is the smallest ℓ 2≥ such that H contains a Berge ℓ‐cycle. Let

=r r r r
[ℓ] 2 3 ℓ   ∪ ∪ ⋯ ∪ denote the family of all r‐uniform Berge cycles of length at most ℓ.

With this =[ℓ]
2

[ℓ]  , and an r‐graph has girth larger than ℓ if and only if it is r
[ℓ] ‐free. We again

emphasize that hypergraphs with girth ℓ 2≥ are all linear. We write N n N n( , ℓ) ( , )m
r

m
r r

[ℓ]≔

for the number of n‐vertex r‐graphs with m edges and girth larger than ℓ and
N n N n( , ℓ) ( , )r r r

[ℓ]≔ for the number of n‐vertex r‐graphs with girth larger than ℓ.

Balogh and Li [2] proved for all rℓ, 3≥ and  k = ℓ 2∕ ,

N n( , ℓ) = 2 .r O n( )k1+1∕

This upper bound would be tight up to an no (1) term in the exponent if the following is
true:
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Conjecture 1. For all ℓ 3≥ and r 2≥ and  k = ℓ 2∕ ,

( )n nex , = .r k o
[ℓ]

1+1 − (1) ∕

Conjecture 1 holds for ℓ = 3, 4 and r 3≥ —see [7,16,22,23]—but is open and evidently
difficult for ℓ 5≥ and r 3≥ . Györi and Lemons [13] proved n O nex( , ) = ( )r k

ℓ
1+1 ∕ with

 k = ℓ 2∕ , so the conjecture concerns constructions of dense r‐graphs of girth more than ℓ. The
conjecture for r = 2 without the o (1) is (1), and for each r 3≥ is stronger than (1), as can be
seen by forming a graph from an extremal n‐vertex r‐graph of girth more than ℓ whose edge set
consists of an arbitrary pair of vertices from each hyperedge. We emphasize that the o (1) term
in Conjecture 1 is necessary for ℓ = 3, due to the Ruzsa–Szemerédi theorem [7,22], and for
ℓ = 5, due to the work of Conlon, Fox, Sudakov, and Zhao [5].

1.1 | Counting r‐graphs of large girth

In this study we simplify and refine the arguments of Balogh and Li [2] to prove effective and
almost tight bounds on N n( , ℓ)m

r relative to N n( , ℓ)m
2 .

Theorem 1.2. Let rℓ, 3≥ and  λ r= ( − 2) (ℓ − 2)∕ . Then for all m n, 1≥ ,

N n N n( , ℓ) ( , ℓ) .m
r

m
r λ2 −1+≤ (2)

We note that (2) corrects a bound1 which appears in [20]. The inequality (2) is essentially
tight when ℓ − 2 divides r − 2, due to standard probabilistic arguments (see, e.g., Janson,
Łuczak, and Rucinski [14]): it is possible to show that whenm n1+1 (ℓ−1)≤ ∕ , the uniform model
of random n‐vertex r‐graphs withm edges has girth larger than ℓ with probability at least a m−

for some constant a > 1 depending only on ℓ and r . In particular, there exist some constants
b c, > 1 such that for m n1+1 (ℓ−1)≤ ∕ we have


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
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
( ) ( )N n a
m

b n m b n m c

N n

( , ℓ) ( ) ( )

( , ℓ) ,

m
r m

n

r m r m m r r m m

m
r r

− − − 2 −1+ −2
ℓ−2 −

2 −1+ −2
ℓ−2

≥ ≥ ∕ ≥ ∕ ≥

⋅

(3)

where the third inequality used m n1+1 (ℓ−1)≤ ∕ and the last inequality used the trivial bound
N n en m( , ℓ) ( )m

m2 2≤ ∕ . This shows that the bound of Theorem 1.2 is best possible when ℓ − 2

divides r − 2 up to a multiplicative error of c m− for some constant c > 1. We believe that (3)
should define the optimal exponent, and propose the following conjecture:

Conjecture 2. For all r 2≥ , ℓ 3≥ and m n, 1≥ ,

1Theorem 20 of [20] claims a stronger upper bound for N n( , 4)m
r than what we prove in Theorem 1.2, but we have

confirmed with the authors that there was a subtle error in their proof.
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N n N n( , ℓ) ( , ℓ) .m
r

m
r r2 −1+ −2

ℓ−2≤

Theorem 1.2 shows that this conjecture is true when ℓ − 2 divides r − 2, so the first open
case of Conjecture 2 is when ℓ = 4 and r = 3.

In the case that Berge ℓ‐cycles are forbidden instead of all Berge cycles of length at most ℓ,
we can prove an analog of Theorem 1.2 with weaker quantitative bounds. To this end, let
N n( , )m

r
[ ]  denote the number of n‐vertex  ‐free r‐graphs on at most m hyperedges.

Theorem 1.3. For each rℓ, 3≥ , there exists c c r= (ℓ, ) such that

( )N n N n C, 2 ( , ) .m
r r cm

m
r

ℓ [ ]
2

ℓ
! 2 ≤ ⋅ ∕

We suspect that this result continues to hold with N n C( , )m[ ]
2

ℓ replaced by N n C( , )m
2

ℓ .

1.2 | Subgraphs of random r‐graphs of large girth

Denote by Hn p
r
, the r‐graph obtained by including each hyperedge of Kn

r independently and with
probability p. Given a family of r‐graphs  , let Hex( , )n p

r
,  denote the size of a largest  ‐free

subgraph of Hn p
r
, . Recall that a statement depending on n holds asymptotically almost surely or

a.a.s. if it holds with probability tending to 1 as n → ∞. A hypergraph of girth at least three is a
linear hypergraph, and it is not hard to show by a simple first moment calculation that if
p n nlogr−≥ , then a.a.s.

( )H pn nex , = Θ(min{ , }).n p
r r r
, [2]

2

Our first result essentially determines the a.a.s. behavior of the number of edges in an
extremal subgraph of Hn p

r
, of girth four. In this theorem we omit the case p n< r− + 3

2 , as it is
straightforward to show that a.a.s. H pnex( , ) = Θ( )n p

r r r
, [3] when p n nlogr−≥ in this range.

Theorem 1.4. Let r 3≥ . If p n n(log )r r− + 2 −33
2≥ , then a.a.s.

( )p n H p nex , .o
n p
r r o2− (1)
, [3]

2+ (1)r r

1

2 −3

1

2 −3≤ ≤

Due to Theorems 1.2 and 1.4, the number of linear triangle‐free r‐graphs with n vertices and
m edges where n m n o nex( , ) = ( )o r3 2+ (1)

[3]
2≤ ≤∕ and r 3≥ is







N n N n

n

m
( , 3) = ( , 3) = .m

r
m

r o
r m o m

2 2 −3+ (1)
2 (2 −3) + ( )

The authors and Nie et al. [19] obtained bounds for r‐uniform loose triangles,2 where for
r = 3 the same essentially tight bounds as in Theorem 1.4 were obtained, but for r > 3

2The loose triangle is the Berge triangle whose edges pairwise intersect in exactly one vertex.
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there remains a significant gap. In the case of subgraphs of girth larger than four,
Theorem 1.2 allows us to generalize results of Morris and Saxton [17] and earlier results of
Kohayakawa, Kreuter, and Steger [15] giving subgraphs of large girth in random graphs in
the following way:

Theorem 1.5. Let ℓ 4≥ and r 2≥ , and let  k = ℓ 2∕ and  λ r= ( − 2) (ℓ − 2)∕ . Then
a.a.s.







( )H

n n p n n

p n n n p

ex ,

< (log ) ,

(log ) 1.

n p
r r

o r r λ k

k
o r λ k

, [ℓ]

1+ 1
ℓ−1

+ (1) − +1+ 1
ℓ−1 ( −1+ )

1+ 1 + (1) ( −1+ )

r λ k

k

r λ k

r λ k

−( −1+ ) ( −1)

2 −1

1
( −1+ )

−( −1+ ) (ℓ−1− )

ℓ−1



≤
≤

≤ ≤

If Conjecture 1 is true, then





( )H
n n p n

p n n p
ex ,

< ,

1.
n p
r r

o r

k
o

, [ℓ]

1+ 1
ℓ−1

+ (1) − +1+ 1
ℓ−1

1+ 1 − (1)

r k

r k
r k

−( −1)(ℓ−1− )
ℓ−1

1
( −1)

−( −1)(ℓ−1− )
ℓ−1

 ≥
≤

≤ ≤

We emphasize that there is a significant gap in the bounds of Theorem 1.5 due to the
presence of λ in the exponent of p in the upper bound and its absence in the lower bound,
and this gap is closed by Theorem 1.4 when ℓ = 3 by an improvement to the lower bound.
A similar phenomenon appears in the recent work of Mubayi and Yepremyan [18], who
determined the a.a.s. value of the extremal function for loose even cycles in Hn p

r
, for all but

a small range of p. It seems likely that the following conjecture is true:

Conjecture 3. Let rℓ, 3≥ and  k = ℓ 2∕ . Then there exists γ γ r= (ℓ, ) such that a.a.s.





( )H
n n p n

p n n p

ex , =
< ,

1.
n p
r r

o r
γ k

o
γ k, [ℓ]

1+ 1
ℓ−1

+ (1) − +1+ 1
ℓ−1

−
(ℓ−1− )
ℓ−1

1+ + (1) −
(ℓ−1− )
ℓ−1γk k

1 1


≤

≤ ≤

Conjecture 2 suggests the possible value γ r r r(ℓ, ) = − 1 + ( − 2) (ℓ − 2)∕ , which is the
correct value for ℓ = 3 by Theorem 1.4. We are not certain that this is the right value of γ in
general, even when r = 3 and ℓ = 4, and more generally, Conjecture 1 is an obstacle for r 3≥

and ℓ 5≥ . Theorem 1.5 shows that if γ exists, then r k γ r λ k( − 1) ( − 1 + )≤ ≤ provided
Conjecture 1 holds.

Letting f n p H( , ) = ex( , )n p,
3

[4]
3 , we plot the bounds of Theorem 1.5 in Figure 1, where

the upper bound is in blue and the lower bound is in green. The truth of Conjecture 2 for
ℓ = 4 would imply the slightly better upper bound f n p p n( , ) o1 5 3 2+ (1)≤ ∕ ∕ .

Notation: A set of size k will be called a k‐set. As much as possible, when working with
a k‐graph G and an r‐graph H with k r< , we will refer to elements of E G( ) as edges and
elements of E H( ) as hyperedges. Given a hypergraph H on n[ ], we define the k‐sha-
dow Hk∂ to be the k‐graph on n[ ] consisting of all k‐sets e which lie in a hyperedge of E H( ).
If G G, …, q1 are k‐graphs on n[ ], then  Gi denotes the k‐graph G on n[ ] which has edge
set  E G( )i .
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2 | PROOF OF THEOREM 1.2

As Balogh and Li [2] observed, if ℓ 3≥ andH has girth larger than ℓ, thenH is uniquely determined
by H2∂ , which we can view as the graph obtained by replacing each hyperedge of H by a clique.
A key insight in proving Theorem 1.2 is that we can replace each hyperedge of H with a sparser
graph B and still uniquely recover H from this graph. To this end, we say that a graph B is a book if
there exist cycles F F, …, k1 and an edge xy such that B F= i and E F E F xy( ) ( ) = { }i j∩ for all i j≠ .
In this case we call the cycles Fi the pages of B and we call the common edge xy the spine of B. The
following lemma shows that if we replace each hyperedge in H by a book on r vertices which has
small pages, then the vertex sets of books in the resulting graph are exactly the hyperedges of H .

Lemma 2.1. Let H be an r‐graph of girth larger than ℓ. If H2∂ contains a book B on r

vertices such that every page has length at most ℓ, then there exists a hyperedge e E H( )∈

such that V B e( ) = .

Proof. Let F be a cycle in H2∂ with V F v v( ) = { , …, }p1 such that v v E H( )i i+1
2∈ ∂ for

i p< and v v E H( )p1
2∈ ∂ . If p ℓ≤ we claim that there exists an e E H( )∈ such that

V F e( ) ⊆ . Indeed, by definition of H2∂ there exists some hyperedge e E H( )i ∈ with
v v e,i i i+1 ∈ for all i p< and some hyperedge ep with v v e, p p1 ∈ . If all of these ei
hyperedges are equal then we are done, so we may assume e ep1 ≠ . Define i1 to be the
largest index such that e e=i 1 for all i i1≤ , define i2 to be the largest index so that
e e=i i +11

for all i i i<1 2≤ , and so on up to i p=q , and note that q p2 ≤ ≤ since e ep1 ≠ . If
all the eij hyperedges are distinct, then they form a Berge q‐cycle in H since
v e e e e=i i i i i1+ 1+j j j j j+1

∈ ∩ ∩ for all j, a contradiction. Thus we can assume e e=i ij j′
for

some j j< ′. We can further assume that e ei is s′
≠ for any j s s j< ′ < ′≤ , as otherwise we

could replace j j, ′ with s s, ′. Finally note that j j< ′ − 1, as otherwise we would have
e e e= =i i i +1j j j′ , contradicting the maximality of ij. We conclude that the distinct
hyperedges e e e, , …,i i ij j j+1 ′−1

form a Berge j j( ′ − )‐cycle with j j2 ′ − ℓ≤ ≤ in H , a
contradiction. This proves the claim.

Now let B be a book with spine xy and pages F F, …, k1 of length at most ℓ. By the claim
there exist hyperedges e e E H, …, ( )k1 ∈ such that V F e( )i i⊆ for all i, and in particular

FIGURE 1 Subgraphs of Hn p,
3 of girth five
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x y e, i∈ for all i. Because H is linear, this implies that all of these hyperedges are equal
and we have V B e( ) 1⊆ . If B has r vertices, then we further have V B e( ) = 1. □

We now complete the proof of Theorem 1.2. With  λ r( − 2) (ℓ − 2)≔ ∕ we observe for all
rℓ, 3≥ that there exists a book graph B on r vertices x x{ , …, }r1 with r λ− 1 + edges

f f, …, r λ1 −1+ . Indeed if ℓ − 2 divides r − 2 one can take λ copies of Cℓ which share a common
edge, and otherwise one can take λ − 1 copies of Cℓ and a copy of Cp with
p r λ= − ( − 1)(ℓ − 2) 3≥ . From now on we let B denote this book graph. If
f x x E B= { , } ( )i j j′ ∈ and e v v n= { , …, } [ ]r1 ⊆ is any r‐set with v v< < r1 ⋯ , define
ϕ e v v( ) = { , }i j j′ . If H is an r‐graph on n[ ], define ϕ H( )i to be the graph on n[ ]which has all edges
of the form ϕ e( )i for e E H( )∈ ; so in particular ϕ H( )i is the graph obtained by replacing each
hyperedge of H with a copy of B.

Let m n, denote the set of r‐graphs on n[ ] withm hyperedges and girth more than ℓ, and let

m n, be the set of graphs on n[ ]withm edges and girth more than ℓ. We claim that ϕi maps m n,
to m n, . Indeed, if H m n,∈ then each hyperedge of H contributes a distinct edge to ϕ H( )i since
H is linear, so e ϕ H e H m( ( )) = ( ) =i . One can show that if ϕ e ϕ e( ), …, ( )i i p1 form a p‐cycle in
ϕ H( )i , then e e, …, p1 form a Berge p‐cycle in H ; so H m n,∈ implies ϕ H( )i does not contain a
cycle of length at most ℓ.

Let G G G G= {( , , …, ) : }m n
t

t i m n, 1 2 , ∈ . Then we define a map ϕ : m n m n
r λ

, ,
−1+ → by

ϕ H ϕ H ϕ H( ) = ( ( ), …, ( )).r λ1 −1+

We claim that this map is injective. Indeed, fix some H m n,∈ and let G( ) denote the set
of books B in the graph G ϕ H H( )i

2≔ ⊆ ∂ . By definition of ϕ we have E H G( ) ( )⊆ for all
H . Moreover, if H m n,∈ then Lemma 2.1 implies G E H( ) ( ) ⊆ . Thus E H( ) (and hence H) is
uniquely determined by G, which is itself determined by ϕ H( ), so the map is injective. In total
we conclude

   N n N n( , ℓ) = = ( , ℓ) ,m
r

m n m n
r λ

m
r λ

, ,
−1+ 2 −1+ ≤

proving Theorem 1.2. □

3 | PROOF OF THEOREM 1.3

For arbitrary hypergraphs H , the map ϕ H H( ) = r−1∂ (let alone the map to H2∂ ) is not injective.
However, we will show that this map is “almost” injective when considering H which are
r
ℓ ‐free. To this end, we say that a set of vertices v v{ , …, }r1 is a core set of an r‐graph H if there

exist distinct hyperedges e e, …, r1 with v v v e{ , …, } { }r i i1 ⧹ ⊆ for all i. The following observation
shows that core sets are the only obstruction to ϕ H H( ) = r−1∂ being injective.

Lemma 3.1. Let H be an r‐graph. If v v{ , …, }r1 induces a Kr
r−1 in Hr−1∂ , then either

v v E H{ , …, } ( )r1 ∈ or v v{ , …, }r1 is a core set of H .

Proof. By assumption of v v{ , …, }r1 inducing a Kr
r−1 in Hr−1∂ , for all i there exist

e E H′ ( )i
r−1∈ ∂ with e v v v′ = { , …, } { }i r i1 ⧹ . By definition of Hr−1∂ , this means there exist

(not necessarily distinct) e E H( )i ∈ with e e v v v′ = { , …, } { }i i r i1⊇ ⧹ . Given this, either
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e v v= { , …, }i r1 for some i, or all of the ei distinct, in which case v v{ , …, }r1 is a core set of H .
In either case we conclude the result. □

We next show that r
ℓ ‐free r‐graphs have few core sets.

Lemma 3.2. Let rℓ, 3≥ and let H be a r
ℓ ‐free r‐graph withm hyperedges. The number

of core sets in H is at most r mℓ2 2 .

Proof. We claim that H contains no core sets if rℓ ≤ . Indeed, assume for contradiction
that H contained a core set v v{ , …, }r1 with distinct hyperedges e v v v{ , …, } { }i r i1⊇ ⧹ . It is
not difficult to see that the hyperedges e e, …,1 ℓ form a Berge ℓ‐cycle, a contradiction to H
being r

ℓ ‐free. Thus from now on we may assume rℓ > .
Let 1 denote the set of core sets in H , and for any ′ 1 ⊆ and r( − 1)‐set S, define

d S( )′ to be the number of core sets A ′∈ with S A⊆ . Observe that d S( ) > 0
1 for at

most ( )m rm=
r

r − 1
r( − 1)‐sets S, since in particular S must be contained in a hyperedge

of H .
Given i , define ′i i ⊆ to be the core sets A i∈ which contain an r( − 1)‐set S

with d S r( ) ℓ
i ≤ , and let = ′i i i+1  ⧹ . Observe that   r rm′ ℓi ≤ ⋅ since each r( − 1)‐

set S with d S( ) > 0
i is contained in at most rℓ elements of ′i . In particular,

     r r m r m(ℓ − ) ℓ + ℓ + .r r1
2

ℓ− +1
2 2

ℓ− +1  ≤ ⋅ ≤ (4)

Assume for the sake of contradiction that rℓ− +1 ≠ ∅. We prove by induction on
r i ℓ≤ ≤ that one can find distinct vertices v v, …, i1 and distinct hyperedges
e e e, …, , ˜i i1 −1 such that v v e,j j j+1 ∈ for j i1 <≤ and v v e, ˜i i1 ∈ , and such that
v v v v{ , , …, , }i i i r i−1 − +2 1 ℓ− +1∈ . For the base case, consider any v v v{ , , …, }r r−1 1 ∈ rℓ− +1 .
As this is a core set, there exist distinct hyperedges e v v v{ , …, } { }j r j1 +2⊇ ⧹ and
e v v v˜ { , …, } { }r r1 2⊇ ⧹ , proving the base case of the induction.

Assume that we have proven the result for i < ℓ. By assumption of
v v v v{ , , …, , }i i i r i−1 − +2 1 ℓ− +1∈ , we have v v v v{ , , …, , } ′i i i r i−1 − +2 1 ℓ−∉ , so there exists a
set of vertices u u{ , …, }r1 ℓ +1 such that v v v v u{ , , …, , , }i i i r j i−1 − +3 1 ℓ−∈ for all j. Because
 e rℓk

i
k=1

−1 ≤ , there exists some j such that u ej k
i

k=1
−1∉ . For this j, let v ui j+1 ≔ and let

e e, ˜i i+1 be distinct hyperedges containing v v,i i+1 and v v, i1 +1, respectively, which exist by
the assumption of this being a core set. Note that vi+1 is distinct from every other vi′ since

v ei k
i

k′ =1
−1∈ for i i′ ≤ , and similarly the hyperedges e e, ˜i i+1 are distinct from every

hyperedge ei′ with i i′ < since these new hyperedges contain v ei k
i

k+1 =1
−1∉ . This proves

the inductive step and hence the claim. The i = ℓ case of this claim implies that
H contains a Berge ℓ‐cycle, a contradiction. Thus =rℓ− +1 ∅, and the result follows
by (4). □

Combining these two lemmas gives the following result, which allows us to reduce from
r‐graphs to r( − 1)‐graphs. We recall that N n( , )m

r
[ ]  denotes the number of n‐vertex  ‐free

r‐graphs on at most m hyperedges.

Proposition 3.3. For each rℓ, 3≥ , there exists c c r= (ℓ, ) such that
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( ) ( )N n N n, 2 , .m
r r cm

m
r r r

[ ] ℓ [ ] ℓ
−1 ≤ ⋅

Proof. If e v v v n= { , , …, } [ ]r1 2 ⊆ is any r‐set with v v v< < < r1 2 ⋯ , let
ϕ e v v v( ) = { , …, } { }i r i1 ⧹ . Given an r‐graph H on n[ ], let ϕ H( )i be the r( − 1)‐graph on n[ ]

with edge set ϕ e e E H{ ( ) : ( )}i ∈ , and define ϕ H ϕ H ϕ H ϕ H( ) = ( ( ), ( ), …, ( ))r1 2 and
ψ H ϕ H E H( ) = ( ( ), ( )). Observe that  ϕ H H( ) =i

r−1∂ . Let m n[ ], denote the set of all
r‐graphs on n[ ] with at mostm hyperedges which are r

ℓ ‐free, and let ϕ ψ( ), ( )m n m n[ ], [ ], 

denote the image sets of m n[ ], under these respective maps. Observe that ψ is injective
since it records E H( ), so it suffices to bound how large ψ ( )m n[ ], can be.

Let m n[ ], denote the set of r( − 1)‐graphs on n[ ] which have at most m edges and
which are r

ℓ
−1 ‐free. It is not difficult to see that ϕ ( )m n m n

r
[ ], [ ], ⊆ . We observe by

Lemmas 3.1 and 3.2 that for any G G G ϕ( , , …, ) ( )r m n1 2 [ ],∈ , say with ϕ H G G( ) = ( , …, )r1 ,
there are at most r m(1 + ℓ )2 2 copies of Kr

r−1 in  G H=i
r−1∂ . We also observe that if

G G G E ψ(( , , …, ), ) ( )r m n1 2 [ ],∈ , then E is a set of at mostm copies of Kr
r−1 inGi. Thus

given any G G ϕ( , …, ) ( )r m n m n
r

1 [ ], [ ], ∈ ⊆ , there are at most 2 r m(1+ℓ )2 2
choices of E such

that G G E ψ(( , …, ), ) ( )r m n1 [ ],∈ . We conclude that

   ( ) ( )N n N n, = 2 = , 2 ,m
r

m n m n
r r m

m
r r r

r m
[ ] ℓ [ ], [ ],

(1+ℓ )
[ ] ℓ

−1 (1+ℓ )2 2 2 2
   ≤ ⋅ ⋅

proving the result. □

Applying this proposition repeatedly gives N n N n C( , ) 2 ( , )m
r r cm

m
r

[ ] ℓ [ ]
2

ℓ
! 2 ≤ ∕ . Combining this

with the trivial inequality N n N n( , ) ( , )m
r r

m
r r

ℓ [ ] ℓ ≤ gives Theorem 1.3.

4 | PROOF OF THEOREMS 1.4 AND 1.5

To prove that our bounds hold a.a.s., we use the Chernoff bound [1].

Proposition 4.1 (Alon and Spencer [1]). Let X denote a binomial random variable with
N trials and probability p of success. For any ϵ > 0 we have  X pN pNPr[ − > ϵ ] ≤

pN2exp(−ϵ 2)2 ∕ .

Proof of the upper bounds in Theorem 1.5. Let

p n n= (log ) .
r λ k

k r λ k
0

−
( −1+ )( −1)

2 −1 ( −1+ )

For p p0≥ , define

m p n n= log ,k
1+ 1

r λ k

1

( −1+ )

and note that this is large enough to apply Theorem 1.1 for p p0≥ . Let Ym denote the
number of subgraphs of Hn p

r
, which are r

[ℓ] ‐free and have exactlym edges, and note that
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H mex( , )n p
r r
, [ℓ] ≥ if and only if Y 1m ≥ . By Markov's inequality, Theorem 1.2, and

Theorem 1.1:

























Y Y p N n

p N n

p e n
n

m

e

n

Pr[ 1] [ ] = ( , ℓ)

( , ℓ)

(log )

=
log

.

m m
m

m
r

m
m

r λ

c k

k m r λ

c m r λ

2 −1+

−1
1+

( −1+ )

( −1+ )

r λ

k1
−1+

1

≥ ≤ ⋅

≤ ⋅

≤

The right‐hand side converges to zero, so for p p0≥ , a.a.s.

( )H mex , < .n p
r r
, [ℓ]

As H[ex( , )]n p
r r
, [ℓ] is nondecreasing in p, the bound

( )H n nex , < (log )n p
r r
, [ℓ]

1+ 1
ℓ−1 2

continues to hold a.a.s. for all p p< 0. □

Proof of the upper bound in Theorem 1.4. This proof is almost identical to the previous,
so we omit some of the redundant details. Let m p n n= log2

r
1

2 −3 and let Ym denote the
number of subgraphs of Hn p

r
, which are r

[ℓ] ‐free and have exactly m edges. By Markov's

inequality, Theorem 1.2, and the trivial bound ( )N n( , 3)m
n

m
2

2

≤ which is valid for all m,

we find for all p

Y p en m e nPr[ 1] ( ) = ( log ) .m
m r m m2 (2 −3)≥ ≤ ∕ ∕

This quantity converges to zero, so we conclude the result by the same reasoning as in the
previous proof. □

This proof shows that for all p we have H p n n[ex( , )] < logn p
r r
, [ℓ]

2
r
1

2 −3 . However, for

p n r− +3 2≤ ∕ this is weaker than the trivial upper bound ( )H p[ex( , )]n p
r r n

r, [ℓ] ≤ .

Proof of the lower bounds in Theorem 1.5. We use homomorphisms similar to Foucaud,
Krivelevich, and Perarnau [10] and Perarnau and Reed [21]. If F and F′ are hypergraphs
and χ V F V F: ( ) ( ′)→ is any map, we let χ e χ u u e( ) = { ( ) : }∈ for any e E F( )∈ . For
two r‐graphs F and F′, a map χ V F V F: ( ) ( ′)→ is a homomorphism if χ e E F( ) ( ′)∈ for
all e E F( )∈ , and χ is a local isomorphism if χ is a homomorphism and χ e χ f( ) ( )≠

whenever e f E F, ( )∈ with e f∩ ≠ ∅. A key lemma is the following: □

Lemma 4.2. If F r
[ℓ]∈ and χ F F: ′→ is a local isomorphism, then F′ has girth at most ℓ.
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Proof. Let F be a Berge p‐cycle with p ℓ≤ and E F e e e( ) = { , , …, }p1 2 . Then there exist
distinct vertices v v v, , …, p1 2 such that v e ei i i+1∈ ∩ for i p< and v e ep p 1∈ ∩ . First
assume there exists i j≠ such that χ e χ e( ) = ( )i j . By reindexing, we can assume
χ e χ e( ) = ( )k1 for some k > 1, and further that χ e χ e( ) ( )i j≠ for any i j k1 < <≤ . Note
that k 3≥ since e e1 2∩ ≠ ∅ and χ is a local isomorphism. If we also have χ v χ v( ) ( )i j≠

for all i j k1 < <≤ , then χ v χ e χ e( ) ( ) ( )i i i+1∈ ∩ for i k< − 1 and χ v χ( )k−1 ∈

e χ e( ) ( )k−1 1∩ , so χ e χ e χ e( ), ( ), …, ( )k1 2 −1 is the edge set of a Berge k( − 1)‐cycle in F′

as required.
Suppose χ v χ v( ) = ( )i j for some i j k1 < <≤ , and as before we can assume there

exists no i i j j′ < ′ <≤ with χ v χ v( ) = ( )i j′ ′ . Then χ v χ v χ v( ), ( ), …, ( )i i j+1 −1 are distinct
vertices with χ v χ e χ e( ) ( ) ( )h h h+1∈ ∩ for i h j< − 1≤ and χ v χ e χ e( ) ( ) ( )j j−1 −1 1∈ ∩ .
Note that χ v χ v( ) ( )i i+1≠ since this would imply  χ e r( ) <i , contradicting that χ is a
homomorphism, so j i> + 1. Thus the hyperedges χ e χ e χ e( ), ( ), …, ( )i i j+1 −1 form a
Berge j i( − )‐cycle in F′ with j i− 2≥ as desired.

This proves the result if χ e χ e( ) = ( )i j for some i j≠ . If this does not happen and the
χ v( )i are all distinct, then F′ is a Berge p‐cycle, and if χ v χ v( ) = ( )i j then the same proof
as above gives a Berge j i( − )‐cycle in F′. □

The following lemma allows us to find a relatively dense subgraph of large girth in any
r‐graph whose maximum i‐degree is not too large, where the i‐degree of an i‐set S is the number
of hyperedges containing S.

Lemma 4.3. Let rℓ, 3≥ and let H be an r‐graph with maximum i‐degree Δi for each

i 1≥ . If t r 4 Δr i
r i2 1 ( − )≥ ∕ for all i 1≥ , then H has a subgraph H′ of girth larger than ℓ with

( )e H t t e H( ′) ex , ( ).r r
[ℓ]

−≥ ⋅

Proof. Let J be an extremal r
[ℓ] ‐free r‐graph on t vertices and χ V H V J: ( ) ( )→ chosen

uniformly at random. Let H H′ ⊆ be the random subgraph which keeps the hyperedge
e E H( )∈ if

(1) χ e E J( ) ( )∈ , and
(2) χ e χ f( ) ( )≠ for any other f E H( )∈ with  e f 0∩ ≠ .

We claim that H′ is r
[ℓ] ‐free. Indeed, assume H′ contained a subgraph F isomorphic

to some element of r
[ℓ] . Let F′ be the subgraph of J with V F χ u u V F( ′) = { ( ) : ( )}∈ and

E F χ e e E F( ′) = { ( ) : ( )}∈ , and note that F H′⊆ implies that each hyperedge of F

satisfies (1), so every element of E F( ′) is a hyperedge in J . By conditions (1) and (2), χ is
a local isomorphism from F to F′. By Lemma 4.2, F J′ ⊆ contains a Berge cycle of length
at most ℓ, a contradiction to J being r

[ℓ] ‐free.
It remains to compute e H[ ( ′)]. Given e E H( )∈ , let A1 denote the event that (1) is

satisfied, let  E f E H e f i= { ( ) : = }i ∈ ∩ , and let A2 denote the event that χ f χ e( ) ( )⊈

for any f Ei i∈ , which in particular implies (2) for the hyperedge e. It is not too difficult
to see that A r e J tPr[ ] = ! ( ) r

1
− , and that for any f Ei∈ we have χ f χ e APr[ ( ) ( ) ] =1⊆

r t( )r i−∕ . Note for each i 1≥ that  E 2 Δi
r

i≤ , as e has at most 2r subsets of size i each of
i‐degree at most Δi. Taking a union bound we find
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    A A E r t r t rPr[ ] 1 − ( ) 1 − 2 Δ ( ) 1 − 2
1

2
,

i

r

i
r i

i

r
r

i
r i

i

r
r

2 1

=1

−

=1

−

=1

−1 −≥ ∕ ≥ ∕ ≥ ≥

where the second to last inequality used r r( 4 ) 4r i r r− −1 −≥ for i r≤ . Consequently

e E H A A A r e J t e J tPr[ ( ′)] = Pr[ ] Pr[ ] ! ( )
1

2
( ) ,r r

1 2 1
− −∈ ⋅ ≥ ⋅ ≥

and linearity of expectation gives e H e J t e H t t e H[ ( ′)] ( ) ( ) = ex( , ) ( )r r r−
[ℓ]

−≥ ⋅ ⋅ .

Thus there exists some r
[ℓ] ‐free subgraph H H′ ⊆ with at least t t e Hex( , ) ( )r r

[ℓ]
− ⋅

hyperedges. □

By the Chernoff bound one can show for

p p n1

r k−( −1)(ℓ−1− )
ℓ−1≥ ≔

that a.a.s. Hn p
r
, has maximum i‐degree at most pnΘ( )r i− for all i. If Conjecture 1 is true, then

a.a.s. for p p1≥ Lemma 4.3 with t p n= Θ( )r1 ( −1)∕ gives

( )( ) ( )H t t pn p nex , = Ω ex , = .n p
r r r r r k

o
, [ℓ]

−
[ℓ]

1+ 1 − (1)
r k
1

( −1) 

This proves the lower bound in Theorem 1.5. □

Proof of the lower bound in Theorem 1.4. We use the following variant of Lemma 4.3:

Lemma 4.4. Let H be an r‐graph and let R H( )vℓ, be the number of Berge ℓ‐cycles in H
on v vertices. For all t 1≥ , H has a subgraph H′ of girth larger than 3 with

 





e H e H t t R H e( ′) ( ) − ( ) ,r

v

v
v

c t2−

ℓ=2

3
2−

ℓ,
− log≥

where c > 0 is an absolute constant.

Proof. By the work of Ruzsa and Szemeredi [22] and Erdős, Frankl, and Rödl [7], it is

known for all t that there exists a r
[3] ‐free r‐graph J on t vertices with t e c t2 − log

hyperedges. Choose a map χ V H V J: ( ) ( )→ uniformly at random and define H H″ ⊆ to
be the subgraph which keeps a hyperedge e v v E H= { , …, } ( )r1 ∈ if and only if
χ e E J( ) ( )∈ .

We claim that if e e e, ,1 2 3 form a Berge triangle in H″, then χ e χ e χ e( ) = ( ) = ( )1 2 3 .
Observe that if v v v, ,1 2 3 are vertices with v e ei i i+1∈ ∩ , then we must have, for example,
as otherwise  χ e r( ) <2 . Because J is linear we must have  χ e χ e r( ) ( ) {1, }i j∩ ∈ . These
hyperedges cannot all intersect in 1 vertex since this together with the distinct vertices
χ v χ v χ v( ), ( ), ( )1 2 3 defines a Berge triangle in H″, so we must have to say χ e χ e( ) = ( )1 2 .
But this means χ v χ v( ), ( )3 2 are distinct vertices in χ e χ e( ) = ( )1 2 and χ e( )3 , so
 χ e χ e( ) ( ) > 11 3∩ and we must have χ e χ e( ) = ( )1 3 as desired.
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The probability that a given Berge triangle C on v vertices in H maps to a given
hyperedge in J is at most r t( )v∕ (since this is the probability that every vertex of C maps
into the edge of J ). By linearity of expectation, H″ contains at most  R H e J r t( ) ( )( )v v

v
3, ∕

Berge triangles in expectation. An identical proof shows that H″ contains at most
 R H e J r t( ) ( )( )v v

v
2, ∕ Berge 2‐cycles in expectation. We can then delete a hyperedge from

each of these Berge cycles in H″ to find a subgraph H′ with

 e H e J t e H R H e J r t[ ( ′)] ( ) ( ) − ( ) ( )( ) .r

v

v
v−

ℓ=2

3

ℓ,≥ ⋅ ∕

The result follows since e J t e( ) = c t2 − log . □

We now prove the lower bound in Theorem 1.4. By Markov's inequality one can show that a.a.s.
R H O p n( ) = ( )r n p

r r
3,3 −3 ,

3 3 −3 . By the Chernoff bound we have a.a.s. that e H pn( ) = Ω( )n p
r r
, , so if we

take t p n n= (log )r2 (2 −3) −1∕ , then a.a.s. t R H( )r
r n p

r5−3
3,3 −3 , is significantly smaller than t e H( )r

n p
r2−
, . A

similar result holds for each term t R H( )v
v n p

r2−
ℓ, , with ℓ = 2, 3 and v rℓ( − 1)≤ , so by Lemma 4.4

we conclude H p nex( , ) ]n p
r r r o
, [3]

1 (2 −3) 2− (1) ≥ ∕ a.a.s., proving the lower bound in Theorem 1.4.

We note that the proof of Lemma 4.4 fails for larger ℓ. In particular, a Berge 4‐cycle can
appear in H″ by mapping onto two edges in J intersecting at a single vertex, and with this the
bound becomes ineffective.

5 | CONCLUDING REMARKS

• In this paper, we extended ideas of Balogh and Li to bound the number of n‐vertex r‐graphs
with m edges and girth more than ℓ in terms of the number of n‐vertex graphs with m edges
and girth more than ℓ. The reduction is best possible whenm n= Θ( )ℓ (ℓ−1)∕ and ℓ − 2 divides
r − 2. Theorem 1.3 shows that similar reductions can be made when forbidding a single family
of Berge cycles.

By using variations of our method, we can prove the following generalization. For a graph
F , a hypergraph H is a Berge‐F if there exists a bijection ϕ E F E H: ( ) ( )→ such that e ϕ e( )⊆

for all e E F( )∈ . Let F( )r denote the family of r‐uniform Berge‐F . We can prove the following
extension of Theorem 1.3: if there exists a vertex v V F( )∈ such that F v− is a forest, then
there exists c c F r= ( , ) such that

N n F N n F( , ( )) 2 ( , ) .m
r r cm

m
r

[ ]
2 ! 2 ≤ ⋅ ∕

For example, this result applies when F is a theta graph. We do not believe that the
exponent r! 2∕ is optimal in general, and we propose the following problem.

Problem 1. Let rℓ, 3≥ . Determine the smallest value β β r= (ℓ, ) > 0 such that there
exists a constant c c r= (ℓ, ) so that, for all m n, 1≥ ,

( )N n N n C, 2 ( , ) .m
r r cm

m
β

ℓ [ ]
2

ℓ ≤ ⋅
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Theorem 1.3 shows that β r! 2≤ ∕ for all rℓ, , but in principle we could have β O r= ( )ℓ . We
claim without proof that it is possible to use variants of our methods to show

( )β r β r(3, ), (4, )
r

2
≤ , but beyond this we do not know any nontrivial upper bounds on β.

•We proposed Conjecture 3 on the extremal function for subgraphs of large girth in random
hypergraphs: for some constant γ γ r= (ℓ, ), a.a.s.





( )H
n n p n

p n n p
ex , =

< ,

1.
n p
r r

o r

o
, [ℓ]

1+ + (1) − +1+ −

1+ + (1) −

γ k

γk k

γ k

1
ℓ−1

1
ℓ−1

(ℓ−1− )
ℓ−1

1 1 (ℓ−1− )
ℓ−1


≤

≤ ≤

For ℓ = 3, this conjecture is true with γ r= 2 − 3, and Conjecture 2 suggests perhaps
γ r r= − 1 + ( − 2) (ℓ − 2)∕ , although we do not have enough evidence to support this (see
also the work of Mubayi and Yepremyan [18] on loose even cycles). It would be interesting as a
test case to know if γ (3, 4) = 5 2∕ :

Problem 2. Prove or disprove that Conjecture 3 holds with γ (3, 4) = 5 2∕ .

• It seems likely that N n( , )m
r  controls the a.a.s. behavior of Hex( , )n p

r
,  as n → ∞. Spe-

cifically, it is clear that if  is a family of finitely many r‐graphs and p p n= ( ) and m m n= ( )

are defined so that p N n( , ) 0m
m
r  → as n → ∞, then a.a.s. as n → ∞, Hn p

r
, contains no  ‐free

subgraph with at least m edges. It would be interesting to determine when Hn p
r
, a.a.s. contains

an  ‐free subgraph with at least m edges. In particular, we leave the following problem:

Problem 3. Let m m n= ( ) and p p n= ( ) so that p N n( , ℓ)m
m
r → ∞ as n → ∞. Then

Hn p
r
, a.a.s. contains a subgraph of girth more than ℓ with at least m edges.

In particular, perhaps one can obtain good bounds on the variance of N n( , ℓ)m
r in Hn p

r
, .
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APPENDIX A: PROOF OF THEOREM 1.1

Here we give a formal proof of Theorem 1.1. The key tool will be the following theorem of
Morris and Saxton.

Theorem 1 (Morris and Saxton [17, Theorem 5.1]). For each k 2≥ , there exists a constant
C C k= ( ) such that the following holds for sufficiently large t n, ∈ with t n k k k( −1) (2 −1)2

≤ ∕∕

n(log )k−1 . There exists a collection n t( , )k of at most

Ct n texp( log )k k−1 ( −1) 1+1∕ ∕

graphs on n[ ] such that e G tn( ) k1+1≤ ∕ for all G n t( , )k∈ and such that every C k2 ‐free
graph is a subgraph of some G n t( , )k∈ .
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Recall that we wish to prove that for ℓ 3≥ and  k = ℓ 2∕ , there exists a constant c > 0 such
that if n is sufficiently large and m n n(log )k1+1 (2 −1) 2≥ ∕ , then







N n e n

n

m
( , ) (log ) .m

cm k m
k km

2
[ℓ]

( −1)
1+1

 ≤
∕

The bound is trivial if ℓ = 3 since ( )N n C( , )m
n

m
2

3

2

≤ , so we may assume ℓ 4≥ from now on.

Because N n N n C( , ) ( , )m m k
2

[ℓ]
2

2 ≤ for all ℓ 4≥ , it suffices to prove this bound for N n C( , )m k
2

2 .
For any integer t n n(log )k k k k( −1) (2 −1) −12

≤ ∕∕ and n sufficiently large, Theorem 1 implies

  





N n C n t

tn

m
Ct n t etn m( , ) ( , ) exp( log ) ( ) ,m k k

k
k k k m2

2

1+1
−1 ( −1) 1+1 1+1≤ ⋅ ≤ ⋅ ∕

∕
∕ ∕ ∕

(A1)

with the first inequality using that every C k2 ‐free graph on m edges is an m‐edged subgraph of
some G n t( , )k∈ . By taking t n n m= ( log )k k1+1 −1∕∕ , which is sufficiently small to apply (A1)
provided m n n(log )k1+1 (2 −1) 2≥ ∕ , we see that N n C( , )m k

2
2 satisfies the desired inequality.
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