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Abstract—Using sensor data from multiple modalities
presents an opportunity to encode redundant and complemen-
tary features that can be useful when one modality is corrupted
or noisy. Humans do this everyday, relying on touch and
proprioceptive feedback in visually-challenging environments.
However, robots might not always know when their sensors are
corrupted, as even broken sensors can return valid values. In
this work, we introduce the Crossmodal Compensation Model
(CCM), which can detect corrupted sensor modalities and
compensate for them. CMM is a representation model learned
with self-supervision that leverages unimodal reconstruction
loss for corruption detection. CCM then discards the corrupted
modality and compensates for it with information from the
remaining sensors. We show that CCM learns rich state
representations that can be used for contact-rich manipulation
policies, even when input modalities are corrupted in ways not
seen during training time.

I. INTRODUCTION

Here is an experiment that you can try at home: take a
water bottle and unscrew the cap. Now close your eyes and
try to close the water bottle. Most humans, even without
visual senses, can rely on proprioceptive and tactile sensing
when performing manipulation tasks. To study the inverse
relationship (in an experiment best not done at home),
Johansson et al. [14] anesthetized the fingertips of human
subjects which impacted their ability to light a match. The
experiment video [15] shows that while the human subject
at first struggled to manipulate the match without haptic
feedback, they were still able to light it within about 20
seconds of trial and error. Neuroscience research provides
more evidence that humans can take information from one
sensor modality to compensate for missing information of
another in a crossmodal manner. This has been shown for
visual and tactile feedback in tasks, such as object size
prediction [9] and object manipulation [13], as well as visual
and auditory information [1, 2, 25].

We aim to endow a robot with the same capability of
crossmodal compensation. This is an important for avoiding
potentially dangerous outcomes when deploying a robot to
the real world. There are many cases when a sensor can
break, produce erroneous data, become occluded, or change
with lighting conditions. In this work, we focus on the case in
which one of our sensors experiences failure modes or noise
unseen during train time. We want our robot to accomplish
tasks robustly, even in the face of the corrupted sensor data.
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Fig. 1: We propose Crossmodal Compensation Model that can (1)
detect when a sensor input is corrupted, which in this case is the
image data, (2) reject the corrupted image as input to our policy,
and (3) correct for the rejected image by compensating the missing
image information with the remaining force and depth information
in the fusion module.

There have been several recent works that can perform
inference or complete downstream task in the presence of
missing modalities [23, 24, 33-35, 37]. However, they need
to know what modality is missing at inference time. In
this work, we are interested in crossmodal compensation at
inference time, when we lack knowledge on which sensor
modality may be corrupted.

Other works, particularly in autonomous driving, actively
detect when sensor inputs are out-of-distribution (OOD)
with respect to the training data [16, 31] and compensate
for it [10, 29]. However, these works focus on avoiding
collision and require querying expert feedback, which limit
the generalization of their methods to manipulation tasks.

Several works on robot manipulation have shown that
Bayesian filtering approaches to sensor fusion can perform
state estimation even when some sensor readings are cor-
rupted [18, 26, 27, 39]. These methods require the user to
explicitly define the estimated state, as well as the analytical
forward and measurement models that may be hard to specify
or intractable to compute online. While differentiable filters
such as [20] can learn how to fuse multiple modalities,
they were not demonstrated to recover from corrupted sensor
inputs unseen during train time.

To detect corrupted sensor readings and compensate for
them, we introduce the Crossmodal Compensation Model
(CCM), a novel latent variable representation model that
can be used to generate state feedback for a learned policy
that compensates for corrupted sensor inputs. CCM performs
crossmodal compensation for corrupted sensor inputs in three
steps: CCM (1) detects which modality is corrupted through
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Fig. 2: CCM is a multimodal latent representation model that takes
RGB image, depth, force, and robot proprioception data as inputs,
and jointly trains to reconstruct the input modalities as well as
to predict self-supervised objectives used in [19]. Additionally,
we learn a latent distance objective: during training, we drop a
random input modality and learn to reduce the L2 distance between
our compensated latent representation z,,,,,;; and the full modality
representation Z,qi¢.

out-of-distribution detection, (2) rejects and discards the
corrupted sensor reading, and (3) corrects for the discarded
modality with information from the remaining modalities. By
learning to reconstruct each input modality, CCM compares
unimodal reconstruction results with the sensor inputs to
identify the corrupted sensor. CCM jointly learns this recon-
struction objective with self-supervised objectives introduced
in [19] that were shown to be crucial for learning a rich
representation that lends itself to control. CCM learns to per-
form crossmodal compensation by minimizing the distance
between a representation generated with dropped modalities
and the representation generated with full modalities. CCM
is robust to corrupted sensor readings, and, by correcting for
them, generates rich state representations that can be used
for contact-rich manipulation policies.

II. RELATED WORK

Multimodal Representation Learning. The complementary
nature of heterogeneous sensor modalities holds the promise
of providing more informative feedback for solving per-
ception and manipulation tasks than uni-modal approaches.
Several works have combined visual and tactile information
for object tracking [18, 27, 39], shape completion [36], grasp
assessment [4, 7, 11, 32], and scene understanding [5, 6].
Many of these multimodal approaches are trained through a
classification objective for inference tasks [4, 7, 11, 38]. In
prior works [19, 21], we proposed a self-supervised approach
to learn multimodal representations that were used as policy
inputs, but do not explicitly use the multimodal information
to compensate for corrupted sensor readings. In this work, we
leverage similar architectures and self-supervised objectives
from [21] to train our representations.

Missing Modality Representations. While many works
have shown that using multimodal data sources can improve
the robustness and accuracy of an inference task [3, 19,
30, 35, 37, 40], the multimodal data source can sometimes
be noisy or incomplete. Motivated by this, previous works
have tackled the problem of noisy or missing modalities by

learning explicit crossmodal models or robust joint represen-
tations.

One approach to handle missing modalities is to explicitly
predict how to transfer from one modality to another. [23,
33] use deep generative models to predict between raw
vision and touch. Other works, such as [24, 34, 35, 37],
drop modalities during train time to reconstruct the missing
modality, perform inference, or both.

To account for the missing modalities during training, Tsai

et al. [35] learns a new model for each missing modality.
On the other hand, Wu et al. [37] and Tan et al. [34] use a
variational product-of-experts (PoE) approach to recover the
joint representation when inputs are missing, eliminating the
need to parameterize new models. Our work uses the PoE
approach similar to [37]. All recent work on compensating
missing modalities assume to know which modality is miss-
ing, which is not always the case. In contrast, our approach
both detects and compensates for missing modalities.
Out of Distribution Detection. Detecting OOD inputs in
control tasks can prevent catastrophic failure in robots. While
many works detect OOD data with deep neural network-
based architectures [10, 16, 29, 31], none of these work
look at using crossmodal compensation for OOD data. In
this work, we follow [31] and train a variational autoencoder,
using the reconstruction error at test time to detect when a
single modality is OOD. There is a vast amount of literature
relating to OOD detection, and we refer the reader to this
survey paper [8] for more information.

III. PROBLEM STATEMENT

Our goal is to learn to perform a manipulation tasks even
with corrupted sensor readings. Our algorithm learns the
manipulation task with multiple modalities as input, and uses
data from the un-corrupted sensor modalities to compensate
for the corrupted ones. We model the manipulation task as a
finite-horizon, discounted Markov Decision Process (MDP)
M, with a state space S, an action space A, state transition
dynamics 7 : & x A — &S, an initial state distribution
po, a reward function r : S x A — R, horizon T, and
discount factor v € (0,1]. To determine an optimal policy
m, we want to maximize the expected discounted reward
Br [ S (s an)|.

We represent the policy by a neural network with pa-
rameters 6, that are learned as described in Sec. IV-D. A
is defined over continuously-valued 3D displacements Ax
in Cartesian space. S is defined by the low-dimensional
latent representation z,,,;; = f(01, 02, ...0,,) inferred from
multimodal sensory inputs o; through an encoder f. This
encoder is a neural network parameterized by 4

In this work, we are interested in cases when the robot
is receiving corrupted sensor readings during policy rollout
at test time. We describe how our model compensates for
corrupted sensor readings below.

IV. METHOD OVERVIEW

Our proposed model, CCM, attempts to detect and com-
pensate for corrupted sensor readings at the representation



level. CCM is a multimodal latent variable model that en-
codes heterogeneous inputs into a multimodal representation
Zmuit Using a variational PoE approach [37]. We jointly
train modality reconstruction, self-supervised objectives, and
a latent distance objective to learn useful representations.
To compensate for the corrupted sensor reading o}, the
representation model first detects which sensor is corrupted
(see Sec. IV-B). Then, the representation model removes
the corrupted input and performs crossmodal compensa-
tion, i.e. inferring a compensated latent representation z;
that is close to 2, (fully modality latent representation):

’ 2 ~
, On) = 20 . )
flo1,02,...0;, ...0n) = 2, .11 = Zmuit(see Sec. IV-C)

A. Multimodal Representation Model

CCM is a multimodal latent variable model trained with
self-supervision. Our model encodes 4 types of data: RGB
images(orgp), depth images (0geptn) from a fixed RGB-D
camera, haptic feedback from a wrist-mounted force-torque
(F/T) sensor (0force), and end-effector position, and linear
velocity (0prop). Information from each modality is then
fused into a single multimodal latent representation 2,,¢.

We use the same modality specific encoders as our prior
work [19] to capture domain-specific features, except for our
force encoder, as we found that using a convolution-based
architecture helps with force reconstruction. We take the last
32 readings from a F/T sensor as a one-channel (1 x 32 x 6)
input into a 5-layer two-dimensional CNN. We add a single
fully-connected layer to the end of each modality encoder to
map into a 2 X d-dimensional variational parameter vector
with d = 128 as in [19].

We assume that each modality is conditionally indepen-
dent given the fused multimodal latent variable representa-
tion Zn,q¢- Each modality encoder maps to a multivariate
isotropic Gaussian parametrized by z,, = {tm, 0, } which
is then fused using a PoE approach [37]. The resulting
multivariate Gaussian distribution of the multimodal latent
space will have mean 02 = (30 0%)~! and variance
15 = (0 o2 (00 02) 7L, where n is the number
of modalities, 4; and 012- are the variational parameters of
the j-th dimension. We also add an isotropic multivariate
Gaussian prior as an additional expert.

Following [19], we train our model using a variational
objective by minimizing the Evidence of Lower BOund
(ELBO) over our dataset D = {{o;,yi,a;}|i = 1..n}
with observations, o, labels for self-supervised objectives,
y, and actions, a: L;(0s, ¢s) = By, (z/p,)[log pe, (Dil|z)] —
KL[ge, (2|D;)||p(z)]. We model the approximate posterior
¢4, (z|0;) as a neural network encoder parameterized by ¢.
We model the likelihood pg,(0;,y;,a:|z) with a decoder
neural network, parameterized by 6.

Decoder Architectures In this work, our model jointly
optimizes self-supervised objectives and reconstruction ob-
jectives. For the self-supervised objectives, our model learns
to predict action-conditional optical flow, next-step end-
effector pose, whether the end-effector will be in contact
at the next time step, and whether the input modalities

are paired. The decoder architectures for these four self-
supervised objectives are described in [19]. We also learn to
reconstruct our input modalities, commonly used for repre-
sentation learning [22]. Models that learn to reconstruct their
inputs can also be used for out-of-distribution detection [8],
which we use for detecting when an input modality is
corrupted during test time.

The force decoder uses a 4-layer deconvolutional decoder
for reconstruction. We found it difficult to reconstruct the
small and often noisy torques from the force/torque sensor,
so our force decoder only reconstructs 3-dimensions forces.

For reconstructing the RGB and depth image from the the

multimodal vector 2,1, we use a 5-layer deconvolutional
decoder for each modality. To encourage our network to learn
reconstruction of the robot interacting with the environment
(instead of the static background), we take the boolean sum
of the robot in image-space throughout the entire dataset
to create a mask. At the end of each of our 5-layer depth
and image decoders, one deconvolution layer reconstructs the
entire image or depth data and another deconvolution layer
reconstructs the image or depth data in the masked region.
We find that learning to reconstruct both the masked and
complete image/depth helps with learning speed and stability.
Missing Modality Training Objective CCM learns to
perform modality compensation by dropping one of the 3
modalities {0rG B, OForce, ODeptn } at €ach training step (we
assume Oprop 1s always present). The latent representation
with missing modality is referred to as as 2/, ;.
We encourage 2, ... to be close to our full modality
representation z,,¢, SO a policy trained on zy,,;; can take
2z ¢ as input. We encourage this by introducing a latent
distance loss between them. Our full objective then becomes
ELBO(0,yi, i) + ||Zmutt — 2|3

B. Out-Of-Distribution Detection

Similar to [31], we use reconstruction error (L2 distance
between input and its reconstruction) to detect input that
is out-of-distribution and therefore deemed to come from
a corrupted sensor. For some observed modality o, €
{0RGB, ODepths OForce },» We assume that the multimodal
model the reconstruction error will be large when the model
reconstructs inputs that are OOD from training data. We
can threshold the reconstruction error as a method of pre-
dicting OOD inputs. For each modality, we choose the
thresholds with the best Area Under the Receiver Operating
Characteristic Curve (AUROC) performance for detecting
corruption in the validation dataset. For the reconstructed
F/T data, we threshold the reconstruction error on each
of the 3 dimensions and consider the modality an outlier
when 2 or more of the dimensions are out-of-distribution.
Since we are using a multimodal representation, corruption in
one modality may affect reconstruction in another modality
leading to the detection of more than one corrupted modality.
We handle this ambiguity by selecting the modality with the
largest standard deviation away from the mean reconstruction
error for that modality in the training set. We found these
hyperparameters to be robust in our experiments.
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Fig. 3: Examples of the ground truth data and various kinds of
corrupted inputs (from the top and left to right): RGB occlusion,
RGB rotations, RGB lighting change, depth rotation, depth box
occlusion, blackout force, and force noise.

C. Crossmodal Compensation

Following the detection of the corrupted input with OOD
detection, we leverage the cross-modal relationships in our
model to compensate for the corrupted input. Our approach
does not make any assumptions about the nature of the
modality corruption. We take the conservative approach and
assume that the information of the corrupted modality is too
out-of-distribution from our training data and cannot be used.

We then treat the crossmodal compensation problem as a
missing modality problem. Since our representation model
is trained with missing modalities, we can simply drop
the corrupted modality and use the recalculated multimodal
representation z/,, ;. as a proxy for zp., as seen in Fig. 1.

For the context of this study, we detect and compensate
corrupted sensor readings from one of the three input modal-
ities, namely RGB images, force, and depth.

D. Policy Learning

Our final goal is to equip a robot with a policy for
performing contact-rich manipulation tasks that leverages
our latent multimodal representation. We use our latent
multimodal representation z,,,;; as state input to our policy.
When there is a detected corrupted input, the policy takes the

L .
crossmodal compensated representation z;, . as state input.

V. EXPERIMENTAL DESIGN

The primary goal of our experiments is to examine the
effectiveness of our pipeline in detecting and compensating
for corrupted inputs while retaining useful features for policy
learning. Our experiments attempt to answer two main ques-
tions: 1) How well can we learn a manipulation task using
the learned representation as input? 2) Can a policy trained
with CCM handle corrupted sensor input?

To analyze how our model detects and compensates for
corrupted sensor modalities, we additionally design exper-
iments to answer the following questions: 3) Can we use
reconstruction error to reliably detect corrupted sensor read-
ings? 4) How close to the latent full-modality representation
Zmuit 18 the crossmodal compensated representation z;nult?

A. Experimental Setup.

Peg Insertion Task We use a contact-rich peg insertion task
as an experimental test-bed for our algorithm. We perform
our robot experiments in simulation using the RoboSuite
[28] platform with the Franka Panda robot, a 7-DoF torque-
controlled robot. Four sensor modalities are available in
simulation, including proprioception, an RGB-D camera, and
a force-torque sensor. The proprioceptive input is the end-
effector pose as well as linear and angular velocity. RGB
images and depth maps are recorded from a fixed camera
pointed at the robot. Input images to our model are down-
sampled to 128 x 128. We use a square peg with size (1.4
X 1.4 x 7.5)cm and 1mm clearance in all directions. We use
the shaped reward for peg insertion from [21].

Dataset Collection and Pre-processing. We apply standard
pre-processing techniques for our RGB image and depth
inputs by normalizing the data with the min and max values.
We clip and normalize the range of F/T sensor data to the
97th percentile and 3rd percentile of the data for each of the
6 dimensions; there is minimal difference between a robot
applying 30N of force and 100N of force for our task. We
also weight samples in the dataset to ensure that there are
sufficient samples of contact data during training. Finally,
for the model to learn pairing, we use unpaired examples
where the robot end-effectors are at least 6 centimeters apart
from each other to make sure that the inputs are sufficiently
different from one other.

Reinforcement Learning Algorithm and Architecture.
After representation training, we freeze the representation
model and use our latent representation as state input to
our RL policy. We use a state-of-the-art model-free off-
policy RL algorithm, Soft Actor-Critic [12]. We use a 2-
layer Tanh Gaussian policy that takes as input the 128-
dimensional latent representation from our representation
model, and produces 3D position displacement Az of the
robot end-effector. We adopt the shaped reward from [21]
that encourages the peg to be close to the hole and insert.
For simplicity, we refer to the policies trained with the CCM
representation as CCM policies, and the representation model
as simply CCM. We use the same format for our baselines.
Corrupted Sensor Inputs. We test our model in detecting
and compensating for a variety of unimodal corrupted inputs
after policy learning. To accomplish this, we design a wide
range of sensor corruptions. For RGB images, we randomly
insert black boxes around the robot, change the lighting, and
perform in-plane image rotations. For depth inputs, we insert
similar random occlusions, and transform the depth image
with random in-plane rotations. For F/T inputs, we randomly
set forces to O (which corresponds to the bottom third
percentile of the representation training data) and random
Gaussian noise with variances [0.5, 0.25, 0.1]. Examples of
different kinds of corrupted inputs are shown in Figure 3.
Implementation Details. We train the representation model
with the Adam optimizer [17] with a learning rate of 0.0001
and (3 values of (0.9, 0.999). The model is trained over 75
epochs with a batch size of 64. For policy learning, we train 3



Model Name Normal Input Corrupted Image Corrupted Depth Corrupted Force
Comp. Not Comp. Comp. Not Comp. Comp. Not Comp.

CCM (Our Model) 96.7% 80.7 % 29.3% 82.0% 0.7% 78.0% 81.3%
MFM 100.0% 8.7% 50.0% 0.7% 0.7% 57.3% 18.7%
Recon CCM 81.3% 71.3% 69.3% 67.3% 2.0% 69.3% 72.0%
SS CCM 43.3% 40.7% 6.0% 4.7% 2.0% 38.7% 30.0%
CCM No Dist 99.3% 0.7% 28.0% 3.3% 0.0% 30.0% 22.0%
CCM No Force 96.7% 78.7% 5.3% 44.7% 14.0% n/a n/a

TABLE I: The average success rates for our policies. We train 3 policies per model, and evaluate 50 trials per each policy with: normal
inputs, corrupted but compensated inputs (Comp.), and corrupted but not compensated inputs (Not Comp.). We see that while MFM had
the highest task success rates when given normal inputs, our proposed model, CCM, outperformed all other baselines when compensating
for corrupted modality inputs. Not Comp. is given as comparison to see how policies perform when no compensation occurs.

random seeds per representation model, for 750,000 training
steps. Each episode horizon is 200 steps.

Evaluation Metrics. We evaluate our algorithm’s ability to
compensate for corrupted inputs by reporting the success rate
of our trained policies when given corrupted depth, image,
and force readings. We also report the task success rate of
our trained policies when given normal inputs.

B. Baselines

We choose to compare CCM with the Multimodal Fac-
torized Model (MFM), another multimodal representation
model that deals with missing modalities [35]. MFM uses
Wasserstein Autoencoders (instead of a variational version)
to learn a factorized multimodal representation, one for
reconstruction objectives and one for self-supervised objec-
tives, and explicitly parameterizes each missing modality
model with neural networks. Although MFM was not in-
troduced as a representation model for policy learning and
does not perform OOD detection, we include it as part of
our baseline model and implement the same corrupted sensor
detection algorithm as CCM.

Our model architecture is similar to the Multimodal
Variational Autoencoder (MVAE) [37], but with two key
differences: we train with additional self-supervised and
latent distance losses. Instead of considering MVAE as a
baseline, we evaluate how the different components of CCM
contribute to its success with an ablation study.

C. Ablation Study

A full CCM model learns a representation with self-
supervised, reconstruction, and latent distance objectives. We
propose the following ablation baselines:

1) Recon CCM: CCM trained with reconstruction and

latent distance objective.

2) SS CCM: CCM trained with self-supervised and latent
distance objectives. We use Recon CCM for corrupted
sensor detection.

3) CCM No Dist: CCM trained with self-supervised and
reconstruction objectives only.

4) CCM No Force: CCM trained with zeroed out forces
during representation and policy learning.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Policy Learning for Contact-rich Tasks

We report the learning curves of our policies for the peg
insertion task in Fig. 4a. To evaluate the success rate of

peg insertion given normal inputs, we evaluate every learned
policy 50 times, and report for each model the average policy
success rate in Table I (see Normal Input column).

The MFM policies are able to learn the task faster, and
had a 100% success rate given normal inputs, compared to
CCM policies’ 96.7% success rate. By factorizing the self-
supervised and reconstruction models and learning a new
neural network model for each missing modality, MFM has
a more complex model architecture than CCM and more
parameters (7.7 million compared to 5.6 million), which
might explain its success in learning the task.

For our ablation study, we see that CCM No Dist policies
also learned as fast as the MFM policies, and achieved a
99.3% success rate. In comparison, SS CCM and Recon
CCM policies had high variances among its learned policies,
and had low average task success rates of 43.3% and 81.3%
respectively. CCM policies’ better performance suggests that
learning both self-supervised and reconstruction objectives
helps to learn a more successful representation for policy
learning. On the other hand, the success of CM No Dist
policies suggests that learning the latent distance objective
negatively affects the representation’s efficacy as state repre-
sentation for controls. One possible explanation is that when
we drop a modality during training, the distance objective
encourages the latent representation to only learn features
that can be crossmodally compensated by the other modali-
ties, which serves as a kind of regularization. However, we
only observe a small 2.6% difference in task success between
CCM and CCM No Dist.

B. Compensation of Corrupted Inputs

We evaluate each learned policy 50 times for corrupted
force, image, and depth inputs. For each type of corrupted
modality, we randomly choose a type of sensor corruption as-
sociated with the modality (described in Sec. V-A and Fig. 3)
at every step of the policy rollout. The task success rates can
be found in Table I. We also report the average success rate
when sensor inputs are corrupted but not compensated for.

The MFM policies struggled with compensating corrupted
inputs, especially for image and depth data, in which the suc-
cess rates dropped from 100% to 8.7% and 0.7% respectively.

CCM No Dist policy success rates also dropped drastically
when given corrupted inputs. This is expected, because CCM
No Dist is not trained to map the compensated 2, to the
full modality z,,,;;. Thus, the policies receive very different
state feedback at test time with corrupted input compared to
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Fig. 4: (a) Training curves for reinforcement learning on the peg
insertion task, 3 random seeds per model (b) We show in log-scale
the latent L2 distance between full modality 2.+ and compensated
modality z,,.;:, for different compensated modalities. CCM No
Dist and MFM had relatively high latent L2 distances, providing
an explanation why the two models struggled with compensation.

training with normal input. Both SS CCM and Recon CCM
policies performed better than CCM No Dist when given
corrupted inputs. However, the performances of SS CCM
and Recon CCM in this experiment are upper-bounded by
how well the policies trained with normal inputs.

Overall, CCM policies outperformed all others with cor-
rupted sensor inputs. To better understand why CCM rep-
resentations performed better than the others in crossmodal
compensation, we analyze how well each model detects and
compensates for corrupted inputs below.

C. Corrupted Reading Detection

To study detection of corrupted sensor data, we use
corruptions shown in Fig. 3 and evaluate the AUROC for
detecting them in the representation learning test set. As seen
in Table II, all models were able to detect corrupted depth
data with an AUROC score of 1.0. Both MFM and CCM
No Dist have lower AUROC scores for detecting corrupted
Image and Force data than other models, but not by much.

Because CCM No Dist and MFM both had high AUROC
for corrupted depth data detection, but failed to compensate
for corrupted depth data during policy rollout, this suggests
that CCM No Dist and MFM struggled with compensation
rather than detection of corrupted inputs.

D. Latent Representation Distance

We show the L2 distance between the full modality latent
variable 2, and the compensated latent variable 2/ .. in
Fig. 4b as evaluated on the test set for representation learn-
ing. While a small L2 distance does not guarantee successful

Models Depth  Image  Force
CCM (Our Model)  1.00 0.98 0.97
MFM 1.00 0.97 0.89
Recon CCM 1.00 0.98 0.98
CCM No Dist 1.00 0.95 0.92
CCM No Force 1.00 0.97 n/a

TABLE II: AUROC for classifying if multimodal inputs had cor-
rupted depth, image, or force data in our test data. We used a thresh-
old reconstruction loss (comparing input data and reconstructed
data) for each modality to perform corruption detection.

crossmodal compensation, it is a proxy measure for how
well a model can compensate for corrupted modalities during
policy rollout.

Notably, MFM and CCM No Dist have much higher latent
distances than others. This explains their poor performance
in compensating for corrupted inputs. Recon CCM had the
lowest latent distances, explaining why Recon CCM policies
had lower performance drop with corrupted inputs than CCM
policies (on average, a 12% vs. a 16.5% drop). However,
CCM policies had better normal input policy performance.
In other words, the representations learned with CCM are
able to balance good policy performance with normal inputs
as well as crossmodal compensation with corrupted inputs.

E. Redundant Information among Modalities

Past works have demonstrated the ability to predict haptic
information from vision and vice versa [23, 33], indicating
that force and visual data share redundant information. In our
results, we observe that CCM policies performed 3.3% better
when using corrupted force input than when compensating
for force, and Recon CCM performed 2.7% better when
using corrupted force input than when compensating for it.
This suggests the policies might be ignoring the force input.

Although these results show that the benefit of compen-
sating for corrupted force information is limited when vision
data is available, the results from our CCM No Force baseline
show that force information helps compensate for corrupted
depth and image inputs. CCM No Force has lower task
success rates compared to CCM: 44.7% compared to 82%
when compensating for corrupted depth, and 78.7% com-
pared to 80.7% when compensating for corrupted images.
It also results in higher latent distances when either visual
input is missing.

VII. CONCLUSIONS

We introduced CCM, a self-supervised method for learn-
ing representations that crossmodally compensatse for cor-
rupted inputs. By leveraging reconstruction losses, CCM
can detect a variety of corrupted sensor inputs. Following
detection, CCM rejects and discards the corrupted modality
and use the remaining modalities to approximate the joint
multimodal representation through crossmodal compensa-
tion. We showed that the policies learned with the CCM’s
representation is able perform a peg insertion task even when
sensor inputs are corrupted. We compare CCM with other
multimodal representation learning baselines, and perform a
thorough analysis of how our model performs in detecting



corrupted sensor inputs and compensating for them. We
find that our novel model outperforms all others for task
completion with corrupted sensors.
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