




level. CCM is a multimodal latent variable model that en-

codes heterogeneous inputs into a multimodal representation

zmult using a variational PoE approach [37]. We jointly

train modality reconstruction, self-supervised objectives, and

a latent distance objective to learn useful representations.

To compensate for the corrupted sensor reading o′i, the

representation model first detects which sensor is corrupted

(see Sec. IV-B). Then, the representation model removes

the corrupted input and performs crossmodal compensa-

tion, i.e. inferring a compensated latent representation z′t
that is close to zmult (fully modality latent representation):

f(o1, o2, ...o
′
i, ...on) = ẑ′mult ≈ zmult(see Sec. IV-C).

A. Multimodal Representation Model

CCM is a multimodal latent variable model trained with

self-supervision. Our model encodes 4 types of data: RGB

images(oRGB), depth images (odepth) from a fixed RGB-D

camera, haptic feedback from a wrist-mounted force-torque

(F/T) sensor (oforce), and end-effector position, and linear

velocity (oprop). Information from each modality is then

fused into a single multimodal latent representation zmult.

We use the same modality specific encoders as our prior

work [19] to capture domain-specific features, except for our

force encoder, as we found that using a convolution-based

architecture helps with force reconstruction. We take the last

32 readings from a F/T sensor as a one-channel (1× 32× 6)

input into a 5-layer two-dimensional CNN. We add a single

fully-connected layer to the end of each modality encoder to

map into a 2 × d-dimensional variational parameter vector

with d = 128 as in [19].

We assume that each modality is conditionally indepen-

dent given the fused multimodal latent variable representa-

tion zmult. Each modality encoder maps to a multivariate

isotropic Gaussian parametrized by zm = {µm, σm} which

is then fused using a PoE approach [37]. The resulting

multivariate Gaussian distribution of the multimodal latent

space will have mean σ2
j = (

∑n+1
i=1 σ2

ij)
−1 and variance

µj = (
∑n+1

i=1 µijσ
2
ij)(

∑n+1
i=1 σ2

ij)
−1, where n is the number

of modalities, µj and σ2
j are the variational parameters of

the j-th dimension. We also add an isotropic multivariate

Gaussian prior as an additional expert.

Following [19], we train our model using a variational

objective by minimizing the Evidence of Lower BOund

(ELBO) over our dataset D = {{oi, yi, ai}|i = 1...n}
with observations, o, labels for self-supervised objectives,

y, and actions, a: Li(θs, φs) = Eqφs (z|Di)[log pθs(Di|z)] −
KL[qφs

(z|Di)||p(z)]. We model the approximate posterior

qφs
(z|oi) as a neural network encoder parameterized by φs.

We model the likelihood pθs(oi, yi, ai|z) with a decoder

neural network, parameterized by θs.

Decoder Architectures In this work, our model jointly

optimizes self-supervised objectives and reconstruction ob-

jectives. For the self-supervised objectives, our model learns

to predict action-conditional optical flow, next-step end-

effector pose, whether the end-effector will be in contact

at the next time step, and whether the input modalities

are paired. The decoder architectures for these four self-

supervised objectives are described in [19]. We also learn to

reconstruct our input modalities, commonly used for repre-

sentation learning [22]. Models that learn to reconstruct their

inputs can also be used for out-of-distribution detection [8],

which we use for detecting when an input modality is

corrupted during test time.

The force decoder uses a 4-layer deconvolutional decoder

for reconstruction. We found it difficult to reconstruct the

small and often noisy torques from the force/torque sensor,

so our force decoder only reconstructs 3-dimensions forces.

For reconstructing the RGB and depth image from the the

multimodal vector zmult, we use a 5-layer deconvolutional

decoder for each modality. To encourage our network to learn

reconstruction of the robot interacting with the environment

(instead of the static background), we take the boolean sum

of the robot in image-space throughout the entire dataset

to create a mask. At the end of each of our 5-layer depth

and image decoders, one deconvolution layer reconstructs the

entire image or depth data and another deconvolution layer

reconstructs the image or depth data in the masked region.

We find that learning to reconstruct both the masked and

complete image/depth helps with learning speed and stability.

Missing Modality Training Objective CCM learns to

perform modality compensation by dropping one of the 3

modalities {oRGB , oForce, oDepth} at each training step (we

assume oprop is always present). The latent representation

with missing modality is referred to as as z′mult.

We encourage z′mult to be close to our full modality

representation zmult, so a policy trained on zmult can take

z′mult as input. We encourage this by introducing a latent

distance loss between them. Our full objective then becomes

ELBO(oi, yi, ai) + ||zmult − z′mult||
2
2.

B. Out-Of-Distribution Detection

Similar to [31], we use reconstruction error (L2 distance

between input and its reconstruction) to detect input that

is out-of-distribution and therefore deemed to come from

a corrupted sensor. For some observed modality om ∈
{oRGB , oDepth, oForce}, we assume that the multimodal

model the reconstruction error will be large when the model

reconstructs inputs that are OOD from training data. We

can threshold the reconstruction error as a method of pre-

dicting OOD inputs. For each modality, we choose the

thresholds with the best Area Under the Receiver Operating

Characteristic Curve (AUROC) performance for detecting

corruption in the validation dataset. For the reconstructed

F/T data, we threshold the reconstruction error on each

of the 3 dimensions and consider the modality an outlier

when 2 or more of the dimensions are out-of-distribution.

Since we are using a multimodal representation, corruption in

one modality may affect reconstruction in another modality

leading to the detection of more than one corrupted modality.

We handle this ambiguity by selecting the modality with the

largest standard deviation away from the mean reconstruction

error for that modality in the training set. We found these

hyperparameters to be robust in our experiments.





Model Name Normal Input Corrupted Image Corrupted Depth Corrupted Force

Comp. Not Comp. Comp. Not Comp. Comp. Not Comp.

CCM (Our Model) 96.7% 80.7% 29.3% 82.0% 0.7% 78.0% 81.3%
MFM 100.0% 8.7% 50.0% 0.7% 0.7% 57.3% 18.7%
Recon CCM 81.3% 71.3% 69.3% 67.3% 2.0% 69.3% 72.0%
SS CCM 43.3% 40.7% 6.0% 4.7% 2.0% 38.7% 30.0%
CCM No Dist 99.3% 0.7% 28.0% 3.3% 0.0% 30.0% 22.0%
CCM No Force 96.7% 78.7% 5.3% 44.7% 14.0% n/a n/a

TABLE I: The average success rates for our policies. We train 3 policies per model, and evaluate 50 trials per each policy with: normal
inputs, corrupted but compensated inputs (Comp.), and corrupted but not compensated inputs (Not Comp.). We see that while MFM had
the highest task success rates when given normal inputs, our proposed model, CCM, outperformed all other baselines when compensating
for corrupted modality inputs. Not Comp. is given as comparison to see how policies perform when no compensation occurs.

random seeds per representation model, for 750,000 training

steps. Each episode horizon is 200 steps.

Evaluation Metrics. We evaluate our algorithm’s ability to

compensate for corrupted inputs by reporting the success rate

of our trained policies when given corrupted depth, image,

and force readings. We also report the task success rate of

our trained policies when given normal inputs.

B. Baselines

We choose to compare CCM with the Multimodal Fac-

torized Model (MFM), another multimodal representation

model that deals with missing modalities [35]. MFM uses

Wasserstein Autoencoders (instead of a variational version)

to learn a factorized multimodal representation, one for

reconstruction objectives and one for self-supervised objec-

tives, and explicitly parameterizes each missing modality

model with neural networks. Although MFM was not in-

troduced as a representation model for policy learning and

does not perform OOD detection, we include it as part of

our baseline model and implement the same corrupted sensor

detection algorithm as CCM.

Our model architecture is similar to the Multimodal

Variational Autoencoder (MVAE) [37], but with two key

differences: we train with additional self-supervised and

latent distance losses. Instead of considering MVAE as a

baseline, we evaluate how the different components of CCM

contribute to its success with an ablation study.

C. Ablation Study

A full CCM model learns a representation with self-

supervised, reconstruction, and latent distance objectives. We

propose the following ablation baselines:

1) Recon CCM: CCM trained with reconstruction and

latent distance objective.

2) SS CCM: CCM trained with self-supervised and latent

distance objectives. We use Recon CCM for corrupted

sensor detection.

3) CCM No Dist: CCM trained with self-supervised and

reconstruction objectives only.

4) CCM No Force: CCM trained with zeroed out forces

during representation and policy learning.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Policy Learning for Contact-rich Tasks

We report the learning curves of our policies for the peg

insertion task in Fig. 4a. To evaluate the success rate of

peg insertion given normal inputs, we evaluate every learned

policy 50 times, and report for each model the average policy

success rate in Table I (see Normal Input column).

The MFM policies are able to learn the task faster, and

had a 100% success rate given normal inputs, compared to

CCM policies’ 96.7% success rate. By factorizing the self-

supervised and reconstruction models and learning a new

neural network model for each missing modality, MFM has

a more complex model architecture than CCM and more

parameters (7.7 million compared to 5.6 million), which

might explain its success in learning the task.

For our ablation study, we see that CCM No Dist policies

also learned as fast as the MFM policies, and achieved a

99.3% success rate. In comparison, SS CCM and Recon

CCM policies had high variances among its learned policies,

and had low average task success rates of 43.3% and 81.3%

respectively. CCM policies’ better performance suggests that

learning both self-supervised and reconstruction objectives

helps to learn a more successful representation for policy

learning. On the other hand, the success of CM No Dist

policies suggests that learning the latent distance objective

negatively affects the representation’s efficacy as state repre-

sentation for controls. One possible explanation is that when

we drop a modality during training, the distance objective

encourages the latent representation to only learn features

that can be crossmodally compensated by the other modali-

ties, which serves as a kind of regularization. However, we

only observe a small 2.6% difference in task success between

CCM and CCM No Dist.

B. Compensation of Corrupted Inputs

We evaluate each learned policy 50 times for corrupted

force, image, and depth inputs. For each type of corrupted

modality, we randomly choose a type of sensor corruption as-

sociated with the modality (described in Sec. V-A and Fig. 3)

at every step of the policy rollout. The task success rates can

be found in Table I. We also report the average success rate

when sensor inputs are corrupted but not compensated for.

The MFM policies struggled with compensating corrupted

inputs, especially for image and depth data, in which the suc-

cess rates dropped from 100% to 8.7% and 0.7% respectively.

CCM No Dist policy success rates also dropped drastically

when given corrupted inputs. This is expected, because CCM

No Dist is not trained to map the compensated z′mult to the

full modality zmult. Thus, the policies receive very different

state feedback at test time with corrupted input compared to





corrupted sensor inputs and compensating for them. We

find that our novel model outperforms all others for task

completion with corrupted sensors.
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