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Abstract

The Bollobds set pairs inequality is a fundamental result in extremal set theory
with many applications. In this paper, for n > k >t > 2, we consider a collection of
k families A; : 1 <4 < k where A; = {A;; C [n]:j € [n]}sothat A;;,N---NAg,, #
@ if and only if there are at least t distinct indices i1,1%9,...,i%x. Via a natural
connection to a hypergraph covering problem, we give bounds on the maximum size
Brt(n) of the families with ground set [n].

Mathematics Subject Classifications: 05D05, 05D40, 05C65

1 Introduction

A central topic of study in extremal set theory is the maximum size of a family of subsets
of an n-element set subject to restrictions on their intersections. Classical theorems in the
area are discussed in Bollobds [2]. In this paper, we generalize one such theorem, known
as the Bollobds set pairs inequality or two families theorem [3]:

Theorem 1. (Bollobas) Let A = {Ay, Ao, ..., A} and B = {By, Ba, ..., By} be families
of finite sets, such that A; N\ Bj # @ if and only if i,j € [m] are distinct. Then

" /14, 0B\ T
< 1.
Z( Al ) S )

For convenience, we refer to a pair of families A and B satisfying the conditions of Theorem
1 as a Bollobds set pair. The inequality above is tight, as we may take the pairs (A;, B;)
to be distinct partitions of a set of size a + b with |A;| = a and |B;| = b for 1 < i < (“}7).
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The latter inequality was proved for a = 2 by Erdés, Hajnal and Moon [5], and in general
has a number of different proofs [11, 12, 14, 17, 18]. A geometric version was proved by
Lovész [17, 18], who showed that if Ay, Ao, ..., A, and By, By, ..., B, are respectively
a-dimensional and b-dimensional subspaces of a linear space and dim(A4; N B;) = 0 if and
only if 7, j € [m] are distinct, then m < (“+b).

a

1.1 Main Theorem

Theorem 1 has been generalized in a number of different directions in the literature [6,
9, 13, 16, 21, 24]. In this paper, we give a generalization of Theorem 1 from the case
of two families to k > 3 families of sets with conditions on the k-wise intersections.
For 2 < t < k, a Bollobds (k,t)-tuple is a sequence (Aj, As,..., A) of set families
A; = {A4;, - 1 <i < m} where ﬂ;?:l Aji, # @ if and only if at least ¢ of the indices
i1,12, ..., are distinct. We refer to m as the size of the Bollobas (k, t)-tuple. Let [m],
denote the set of sequences of ¢ distinct elements of [m| and fix a surjection ¢ : [k] — [t].
For o € [m](—1), set o(t) = o(1) and define A1 5(¢) = (;.5(5)=1 4jo) and, for 2 < j < ¢,
we define

j—1
Ajo@) = [ Ao\ | Anol0).
h:p(h)=j h=1

Using this notation, we generalize (1) as follows:

Theorem 2. Let k >t > 2 and m > t, let ¢ : [k] — [t| be a surjection, and let
(Aq, Aa, ..., Ag) be a Bollobas (k,t)-tuple of size m. Then

|A1o(6) U Az, (¢) U+ U Ao (9)\
> | ) <t

Ao (9)] [A2o(d)] - [Aro(0) (2)

o€[m]_1)

We show in Section 2.1 that this inequality is tight for all £ > t = 2, but do not have an
example to show that this inequality is tight for any ¢ > 2.

Forn >k >t > 2, let fx+(n) denote the maximum m such that there exists a Bollobés
(k,t)-tuple of size m consisting of subsets of [n]. Then (1) gives fa2(n) < (Ln72 J) which
is tight for all n > 2. Letting H(q) = —qlog, ¢ — (1 — ¢q) log,(1 — q) denote the standard
binary entropy function, we prove the following theorem:

Theorem 3. For k > 3 and large enough n,

1 log, Bra2(n) 1 log, (ke)

- ——+<H|(+-)<——+".

k n k k (3)
For k>t >3 and large enough n,

10g2 € < 10g2 ﬁk,t(n) < 2 (4)

T I K TV
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This determines log, B 2(n) up to a factor of order log, k& and log, Bk (n) up to a fac-
tor of order 3. We leave it as an open problem to determine the asymptotic value of
(logy Bt(n))/n as n — oo for any k > 3 and ¢ > 2. A natural source for lower bounds on
Br.t(n) comes from the probabilistic method — see the random constructions in Section 3.1
which establish the lower bounds in Theorem 3. To prove Theorem 3, we use a natural
connection to hypergraph covering problems.

1.2 Covering hypergraphs

Theorem 1 has a wide variety of applications, from saturation problems [3, 19] to covering
problems for graphs [11, 20], complexity of 0-1 matrices [23], geometric problems [1],
counting cross-intersecting families [7], crosscuts and transversals of hypergraphs [24, 25,
26], hypergraph entropy [15, 22], and perfect hashing [8, 10]. In this section, we give
an application of our main results to hypergraph covering problems. For a k-uniform
hypergraph H, let f(H) denote the minimum number of complete k-partite k-uniform
hypergraphs whose union is H. In the case of graph covering, a simple connection to
the Bollobés set pairs inequality (1) may be described as follows. Let K, \ M denote
the complement of a perfect matching M = {z;y; : 1 < i < n} in the complete bipartite
graph K, , with parts X = {z1,29,...,2,} and Y = {y1,y2,...,yn}. If Hy,Ho,... Hp,
are complete bipartite graphs in a minimum covering of K, , \ M, then let A; = {j :
r; € V(Hj)} and B; = {j : y; € V(H;)}. Setting A = {A;}icpm) and B = {B;}icpm, it is
straightforward to check that (A, B) is a Bollobds set pair, and Theorem 1 applies to give

F ) = wing: (1) = ). 5

In a similar way, Theorem 2 applies to covering complete k-partite k-uniform hypergraphs.
Let K, p,. n denote the complete k-partite k-uniform hypergraph with parts X; = {x;; :
j € [n]} for i € [k]. Let Hy:(n) denote the subhypergraph consisting of hyperedges
{14y, T2y, -, Tk, } such that at least ¢ of the indices iy, 1is, ..., 4 are distinct, and set
fri(n) = f(His(n)). Then there is a one-to-one correspondence between Bollobas (k,)-
tuples of subsets of [m] and coverings of Hj;(n) with m complete k-partite k-graphs. We
let Bj.(m) be the maximum size of a Bollobés (k,t)-tuple of subsets of [m], so that

frie(n) = min{m : By(m) > n}. (6)

This correspondence together with Theorem 2 will be exploited to prove

) mingon () =) Y

which is partly an analog of (5). More generally, we prove the following theorem:

Theorem 4. For k > 3 and large enough n,

R Y Y
logy(ke) ~ H(y) ~ logyn

1
k
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For k >t >3 and large enough n,

( k )(t—l)“” o Treln) (t+1)tt1( b ) (9)

t—1 2 = logyn  logye t—1

The bounds on fi(n) in Theorem (3) follow immediately from this theorem and (6).
Equation (9) gives the order of magnitude for each ¢ > 3 as k — oo, but for t = 2,
Equation (8) has a gap of order log, k. From (7), we obtain [ja(n) < (Ln%cj)' It is
perhaps unsurprising that the asymptotic value of f+(n)/log, n as n — oo is not known
for any k > 2, since a limiting value of f(KF¥)/log,n is not known for any k > 2 — see
Korner and Marston [15] and Guruswami and Riazanov [10].

1.3 Organization and notation

Given a subset A C [n], let A° := [n] \ A be the complement of A in [n]. For positive
integers k < n, let (n)g) = (n)(n —1)---(n — k 4 1) denote the falling factorial. This
paper is organized as follows. In Section 2, we prove Theorem 2. In Section 2.1, we
construct a Bollobds (k, 2)-tuple which achieves equality in Theorem 2 and in Section 2.2,
we construct a Bollobds (k,2)-tuple which gives the lower bound in Equation (3). The
upper bound on fi:(n) in Theorem 4 comes from a probabilistic construction in Section
3.1, and the proof of the lower bound on f;(n) is given in Section 3.3; we prove (7) in
Section 3.2.

2 Proof of Theorem 2

Given a Bollobds set (k,t)-tuple (Ay,...,A;) with A; = {4;;, : 1 < i < m} and a
surjection ¢ : [k] — [t], consider A(¢) : 1 < £ < ¢ where Ay(¢p) = {Ani(¢) : 1 <i < m}
and

It follows that (A;(¢),...,Ai(¢)) is a Bollobas set (t,t)-tuple and hence it suffices to
prove Theorem 2 in the case where t = k. In this setting, surjections ¢ : [k] — [k] simply
permute the k families and as such we suppress the notation of ¢ for the remainder of this
section. One of the proofs of Theorem 1, given a Bollobas set pair, defines a collection
of chains C; for i € [m] and shows that these chains are necessarily disjoint. Similarly,
given a Bollobés set (k, k)-tuple, we will define a collection of chains C, for every ordered
collection o of (k — 1) distinct indices of [m] and show these chains are pairwise disjoint.

Let (Ay, ..., Ay) with A; = {A,; : 1 <i < m} be a Bollobés set (k, k)-tuple, and set

m

X - U(Al’i U Agﬂ' U te U Ak,z)

i=1
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with | X| = n. For o € [m](;_1), define a subset €, of permutations 7 : X — [n] by

6, = {7r : X = [n]: Jnax m(z) < ernAizr}U 7(y) < Jnax w(y) < < errililf’lgw(z)} .

Letting U, := Ay, U --- U Ay, elementary counting methods give

n |Uy | -
= l... I(n — |l =n!.
|6, | (|U0|> | Ay |1 Ao [Y(n — U, ) = n! (|A17J| o |Ak:,a|> . (10)

We will now prove a lemma which states that {% },cm (1, forms a disjoint collection of
a permutations. The general proof only works for £ > 4, so we first consider k = 3.

Lemma 5. If 01,0, € [m](g) are distinct, then €, NC,, = @.

Proof. Seeking a contradiction, suppose there exists m € 6,, N 6,,. After relabeling, it
suffices to consider the following five cases.

(1) o1 ={1,3} and 0o = {2,4} (2) oy
(3) o1 ={1,2} and 05 = {1,3} (4) oy
(5) o1 = {1,2} and 09 = {3,1}.
In case (1), without loss of generality, max{n(z) : z € A;1} < max{m(z):z € Ay} and
thus m € €, yields

{1,3} and 0y = {2, 3}
{1,2} and 09 = {2,3}

ma ) < ma r) < min .
:EGAi(l 7T( ) = xEAl)Yiz 7r< ) y€A274\A172 7T(y>

Then as Ay 1 N Ay 4N Aso # &, there exists w € A1 N Ay 4N Az, It follows that w ¢ A o
since if w € A9, then w € Ay5 N Ay N A3y # J; a contradiction. But this yields a
contradiction as
mw) < max 7(x) < max m(r) < min 7 < m(w).
(w) < Jnax (z) < Jnax (z) e uin, (y) < m(w)
In case (2), without loss of generality, max{7(z) : € A;;} < max{m(x): 2 € A;-} and

we recover a similar contradiction as case (1) by noting that there exists w € A; 1N Az 3N
A3’2 with w ¢ ALQ.

In case (3) we may assume max{m(x): x € Ags\ A11} < max{7n(z) : 2z € A3\ A1} and
e %173 ylelds maX{ﬂ'(iL') T € A273 \ Al,l} < mln{ﬂ'(l’) T € A371 \ (Al,l U A273)}. Thus

max{m(x):x € Ao\ A11} <min{n(z) : v € A31 \ (411U Az3)}

and there exists w € A;3 N Ayo N Azq with w ¢ A;; and w ¢ Ays. It follows that
m(w) < 7(w), a contradiction.

In case (4), if max{n(z): 2z € A1} < max{n(z): x € Ay}, then using w € A; 1N Az3N
Az 5 and noting w ¢ A; 2, we get a contradiction. Thus, we may assume otherwise and
m € Cy 2 gives

max 7(z) < max m(x) < min 7(2).
TEAL 2 TE€ALL 2€A3,1\(A1,1UA22)
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This is a contradiction as there exists w € Aj 5N Ay 3N Agq with w ¢ Ay ; and w ¢ As .
In case (5), if max{m(x) : x € A;1} < max{m(z) : v € A3}, then we may proceed as
in the latter part of case (4) using w € A;;1 N Ao N Ass and w ¢ Ay; and w ¢ A 3
to get a contradiction. Otherwise, proceeding as in case (1) and noting there exists
w € Al’g N AQ’Q N Ag,l, but w ¢ Al,l y161dS a contradiction. ]

A similar argument yields the analog of Lemma 5 to the case where k > 4.
Lemma 6. Let k > 4. If 01,02 € [m]x_1) are distinct, then €,, NE,, = 2.
Proof. Since 01,09 € [m]—1) are distinct, there exists minimal h € [k — 1] so that

o1(h) # o2(h). Seeking a contradiction, suppose there exists a 7 € 6,, N %6,,. Without
loss of generality,

max{m(x):x € Apy } < max{n(z): 2 € Apy,} <min{m(z): z € A, }.

Now, consider a bijection 7 : [k — 1]\ {h} — [k — 1]\ {1} which has no fixed points. As in
Lemma 5, we want to show that there exists a w € Ay, ,, N Ay, and consider two separate
cases.

First, suppose that o1(h) ¢ oo([k—1]). As |[{o1(h),02(1),...,02(k—1)}| = k, there exists

w € Ah,al(h) N Ak,gz(l) N ﬂ Al,o’z(T(l))' (11)
l€lk—1]\{h}

Next, suppose that o;(h) = o3(x) for some x. We now claim that x # 1. If h = 1,

then this is trivial. If A > 1, then oy(1) = 03(1), so o1(h) # 02(1) since oy(h) # o1(1).

For 7 as above, there exists y € [k — 1] \ {h} so that 7(y) = z. Taking ~ distinct from

{o2(1),...,00(k — 1)} \ {o2(x)}, [{o1(h),7,02(1),...,00(k — 1)} \ {o2(z)}| = k and hence
there exists

W E Apo) N Ak N Ay N () Avoaieay)- (12)

lelk—1]\{y,h}

By construction, w € Aj, ;5 (n) N Agoya)- Suppose there exists a t € [k — 1]\ {h} so

that w € A;q,). As 7 has no fixed points, replacing the set in the k-wise intersection

corresponding to A; with A, ,, ) in either (11) or (12), w is an element of this new k-wise

intersection with (k — 1) distinct indices; a contradiction. If w € A, 5,4, then we may

similarly replace Ap o, (n) With Ap g,y in the k-wise intersection in either (11) or (12) to

get a contradiction. Thus, w ¢ A; 5,a) U+ U Ag_1,6,6—1) and hence w € Ay 5, N Ag o, SO

that 7m(w) < m(w); a contradiction. O

Using Equation (10), Lemma 5, and Lemma 6, we are now able to prove Theorem 2 in
the case where t = k. There are n! total permutations, and Lemma 5 and Lemma 6 yield
that each of which appears in at most one of the sets €, for o € [m]y_1). Hence, using
|€,| in Equation (10),

]Alau---uAkay)l
G| = n!- ’ ’ < nl
)DRCAED DTN G

o€[m]x_1) o€[m]x_1)

and thus the result follows by dividing through by n!.
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2.1 Sharpness of Theorem 2

We give a simple construction establishing the sharpness of Theorem 2 for k£ >t = 2. Let
n > 4k and using addition modulo n, define Ay ; = {i}°, A;; ={i—(j —1),i+(j —1)}°
forje2,k—1],and Ay; ={i —k+2,i—k+3,...,i+k—2}. Letting A; = {A;;}icp]
for all j € [k], we will show (A4,...,Ax) is a Bollobds (k,2)-tuple. Since [A;;| =n —1
and [As,;N---NAg,;| =1, Theorem 2 with ¢ = 2 and surjection ¢ : [k] — [2] with ¢(1) =1
and ¢(i) = 2 for ¢ # 1 gives

"L A4 Az N A\ T "1
1 > ’ ’ ’ = - = 1
(M 25

By construction, for all i € [n], A;; N Ag,; N--- N Ag; = . It thus suffices to show these
are the only empty k-wise intersections. To this end, for ¢ = (iy,...,i,x_1), define

A('L) = Al,il N---N Ak,17ik71.
Lemma 7. Let i = (i1,...,0-1). If A(3)° = Ak, then iy = -+ = iy.

Proof. We proceed by induction on k£ where the result is trivial when k£ = 2. In the case
where k > 2, i1 — k + 2 = i + x for some x such that —(k —2) < = < (k —2) and thus
’ik,1+<k—2) :ikfl—(k—2)+(2/€—4):ik+$+(2k—4).

Next, there is a y such that —(k —2) < y < (k —2) with i1 + (k —2) = i +y, and since
n > 4k, v+ 2k — 4 = y with equality over Z and moreover iy, + (k—2) = i+ (k —2) over
Z and hence 1 = 1;_1. Removing these elements from each set, the result then follows by
induction. 0

If Al,il MN---N Ak,ik = @, then as A(Z) = Al,i1 N A27Z'2 - Ak—l,ik,p
@=A1; NAgs, N N A1 N A, = A(R) N Ay

The result follows by noting |A(2)| > n — (2k — 3), |Ax,,| = 2k — 3, and using Lemma 7.

2.2 An Explicit Construction

Let k& > 3. An explicit construction of a Bollobds (k,2)-tuple (A, As, ..., Ax) where
|A;| = 2™ and each A; consists of subsets of X for | X| = kn may be described as follows.
Let [; :={z;1,%j2,...,2;,} and consider X = [ U --- U I,. Now, for each f : [n] — [2]
and j € [k], define
Ajp =T 4i-15 - s T f)+i-11"

where we work modulo k& within the subscripts of I;. It is straightforward to check that
(Ay, Ag, ..., Ay) is a Bollobas (k, 2)-tuple. This establishes the lower bound on fi 2(n) in
Equation (3) and hence the upper bound on fj2(n) in Equation (8).
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3 Proof of Theorem 4

3.1 Upper bound on fi.(n)

We wish to find a covering of Hj(n) with complete k-partite k-graphs and assume the
parts of Hy:(n) are X, X, ..., X). For each subset T' of [k] of size t, consider the
uniformly random coloring xr : [n] — T. Given such a xr, let Y; C X; be the vertices
of color i for ¢ € T; that is Y; := {wx;; : x(j) = i} and ¥; = X, for ¢ ¢ T. Denote by
H(T, x) the (random) complete k-partite hypergraph with parts Y7, Y5, ..., Y, and note
that H(T,x) C Hy.(n). We place each H(T,x) a total of N times independently and
randomly where

N =

L (t+ 1)t'logyn J
(k—t+1)logye

and produce (’;)N random subgraphs H (T, x). For a set partition m of [k], let |7| denote
the number of parts in the partition and index the parts by [|7|]. Given a set partition

’/T:(Pl,PQ,...,PS),let
fmty="> 11Inl

Tels)® €T

If U is the number of edges of Hy;(n) not in any of these subgraphs, then

E(U) <> nm@ - H)NMED = 3" ps Y (1 — )N, (13)

|| >t t<s<k |w|=s

For sufficiently large n, we claim that E(U) < 1, which implies there exists a covering
of Hy4(n) with at most (';)N complete k-partite k-graphs, as required. The following
technical lemma states that f is a decreasing function in the set partition lattice, and
that f(m,t) increases when we merge all but one element of a smaller part of = with a
larger part of :

Lemma 8. Letk>s>t>2, and let m = (P, Py, ..., Ps) be a partition of [k].

(i) If 7 is a refinement of m with |1'| = s+ 1, then f(m,t) < f(7',1).
(ii) If|Pi| =2 |P2| =2 and a € Py, and 7' is the partition (P, Py, ..., P.) of [k]

with P{ = PyU Py \ {a} and Py = {a} and with P! = P; for 3 <i < s, then
f(n',t) < f(m,t).

The proof of Lemma 8 part (i) is in Appendix A and the proof of (ii) is similar to the proof
of (i). By Lemma 8, a set partition of [k] into s parts which minimizes f(7,t) consists of
one part of size k — s+ 1 and s — 1 singleton parts and hence

min{f(ﬂ,t):]7T|:3}:(k—5+1)(8_1)+<S_1>. (14)

t—1 t

In what follows, we denote a set partition of [k] into s parts which minimizes f(m,t) by
Ts.
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For n large enough, and all s where t < s < k, we will show

E:mpj(l-f%)NfWJ):> -
D jnfs (1 — L)) -

Replacing the numerator with its largest term and each term in denominator with its
largest term,

D=1 = NI ) y (1 — ¢)yNFet) ]
Z\ﬂ:s(l — t*t)Nf(ﬂ,t) = S(l{, S)(l _ tft)Nf(ﬂ’s,t) - S(k,é’)

(1 — YN =f(msit)

where S(k, s) is the Stirling number of the second kind. Taking n > S(k, s), we will show
in Appendix B that

1
1 — ¢ YN (mest) = f(s,t) > s—t 15
S(k, 3)( ) " (15)

Therefore, the index s = ¢ maximizes the right hand side of Equation (13), and hence
EU] < (k—t+1)(n") Y (1=t < (=t 4+ Dn'S(k,t)(1 — )N <
||=t

for our choice of N provided n > kS(k,t). Thus,

E\ (t+ 1)ttlogyn (t+1D)tt /K
= log, n.
t)(k—t+1)log,e log, e

fra(n) < (

3.2 Lower bound on fi2(n)

In this section, we show

fip(n) > minfm : ((mn;m)”}' (16)

Let {Hy, Hs, ..., H,,} be a covering of Hyo(n) with m = f;2(n) complete k-partite k-
graphs. We recall Hy5(n) = K, .. »\M, where M is a perfect matching of K,,,, . For
i € [k] and j € [n], define A;; = {H, :x;; € V(H,)} and A, = {4, : 1 <j<n}. Asin
(6), (A1, Aa, ..., As) is a Bollobés (k, 2)-tuple of size n. For convenience, for each i € [k],
let ¢; : [k] — [2] be so that ¢; (1) = {i}. Taking the sum of inequality from Theorem 2

with t = 2 over all i € [k],

k n
‘Alj ¢z UA23(¢2)|) k 7
Sy (M sk "

i=1 j=

We use this inequality to give a lower bound on fi2(n) = m. First we observe

m n k n k
DV =D D Al =YD 1Al (18)

r=1 =1 i=1 j=1 i=1
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Let 0H denote the set of (k— 1)-tuples of vertices contained in some edge of a hypergraph
H. Then

m

S CIOH, noOM| =Y Az ()], (19)

r=1 j=1 i=1

Putting the above identities together,

m m n k

D IWVH) + Y 10H,NOM| = > (JAL(0)] + Az (9)]). (20)

r=1 r=1 j=1 i=1

We note |0H, NOM| < |V(H,)|/(k — 1), and therefore

Z |0H, NOM| < i (21)

r=1

It follows that

n k

DD (A (00l + A2 (0)]) < Z (22)

=1 i=1

Subject to the linear inequalities (18) and (22), the left side of (17) is minimized when

kn|Ay;(¢0)] = 320 [V(H,)| and kn(|Ay;(6:)] + |[Az;(¢0)]) = (k — 1)[A1;(¢:)]. Since
[V(H,)| < (k= 1)n for all r € [m], (17) implies (},},,) > n, which gives (16). O

3.3 Lower bound on fi x(n)

Let X = {H,, Hs, ..., H,} be a minimal covering of Hy ;(n) with complete k-partite k-
graphs, so m = f(Hx(n)). Given a k-partite k-graph H, consider its 2-shadow O»(H) =
{RCV(H):|R|=k—2,RCeforsomeeé€ H}. Let (H) = ;" D(H,;).

Given R € 05(H) and H; € H, let H;(R) := {e € (V(fi)) : e UR € H;} be the possibly
empty link graph of the edge R in the hypergraph H; and let V(H;(R)) be the set of
vertices in the link graph. Observe that double counting yields

Re%%%) <; |V(Hi(R))|> B ; (Reazz(:Hi) |V(Hi(R))|)' (23)

An optimization argument yields |02(H;)| is maximized when the parts of H; are of equal
or nearly equal maximal size. Since |V (H;(R))| < 2(n — k + 2), the right hand side of
Equation (23) is bounded above by

Z( S i(R))I) <m- (’;) : (%)k_2-2(n— k+2). (24)

i=1  Redy(H;)
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For a lower bound on the left hand side of Equation (23), fix R € 0y(H) and without loss
of generality suppose that R = {x11,...,25_242}. Let Y = [k — 1,n]. Let Ky be the
complete bipartite graph with two distinct copies of Y and M = {(zg_14,21; : 7 € Y}
be a perfect matching in Kyy. Then, {H;(R),...,H,(R)} forms a biclique cover of
Kyy \ M. Applying the convexity result of Tarjan [23, Lemma 5],

m

S IV(H(R))| = (n—k +2)logy(n — k + 2).

i=1

Noting that [02(H)| = (5)(n) -2, the left hand side of Equation (23) is bounded below
by

> (S wmm) = (5) -kt osn- k2. @
Reda(H) N i=1

Comparing the bounds from Equation (24) and Equation (25),

_ k—2
(n) (k2 logy(n — k + 2) > k log, n

k2
2(%) 2

m =

provided that n is large enough.

For t > 3 and t < k, the lower bound on fj;(n) in Theorem 4 is obtained from the lower
bounds on f;_1,—1(n— 1) as follows: Let H = {H,, Hs, ..., H,,} be a minimal covering of
Hj.+(n) with complete k-partite k-graphs, so m = f(Hp+(n)). Given T € (k—[liq)’ define
Hr C Hm(n) by

Hr = {{z15, .- Tri} € Hyp(n) 145 =1V j €T}

It follows that at least fi_1; 1(n — 1) of the complete k-partite k-graphs in H are needed
to cover Hy. Moreover, for distinct T',T" € (k__['ﬂrl), the corresponding complete k-partite
k-graphs from H are necessarily pairwise disjoint and hence

k k _1)t-3
fre(n) = (k: b 1>ft1,t1<n -1) > (t B 1)@71)

provided that n is large enough.

log, n

4 Concluding remarks

e Our main theorem, Theorem 2 is tight for ¢ = 2 and k£ > 2, as shown in Section 2.1.
It would be interesting to generalize this example to 2 < t < k to determine whether
Theorem 2 is tight in general. The first open case is t = k = 3.

e A particular case of the Bollobds set pairs inequality occurs when every set in A has

size a and every set in B has size b, and one obtains the tight bound |A| < (azb). The

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(3) (2021), #P3.8 11



generalization to Bollobds (k,t)-tuples for k£ > 3 is equally interesting but wide open, as
are potential generalizations to vector spaces — see Lovész [17, 18].

e Orlin [20] proved that the clique cover number cc(K,\M) of a complete graph K, minus

a perfect matching M is precisely min{m : 2(&721 ) > n}. Theorem 4 yields lower bounds
on the clique cover number of the complement o% a perfect matching M in the complete

k-uniform hypergraph K*:

Corollary 9. Let KX\ M be the complement of a perfect matching in K*. Then

n

log, 7 - klogy ¥
H(%) g log, (ke)

co(KF\ M) >
e It would be interesting to prove an analog of Equation (16) for ¢ > 3. That is,

_ m
frie(n) = min{m : (Oq Olt> > -1}

for some optimal a,...,a;. The difficulty here lies in determining effective bounds on

|Ai,o(¢)|'
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A Proof of Lemma 8(i)
Let k > s>t > 2 and let 1 = (P, Ps, ..., P;) be a partition of [k]. In this section, we
will show that if 7’ is a refinement of m with |7/| = s + 1, then f(m,t) < f(7',t).

Proof. Let m = Py|Ps| - - - | Ps and without loss of generality, 7’ = P,|P,|P| - - - |Ps. Setting
TA) ={T €[s]®:1¢T}and T'(7,9) = {T € {x,y,2,...,s}V : z,y ¢ T}, it follows

that
> IIiri= > 1115k
TeT (1) €T TeT (7,y) i€T

Now, letting 7(1) = {T € [s]® : 1 € T} and T'(2,79) = {T € {7,9,2,...,s}¥ 1z €
T,y ¢ T}and T'(T,y) = {T € {z,y,2,...,s}V .0 ¢ T,y € T}, we see that

> 1wi= > liei+e > 1w
TeT (1) €T TeT (z,y) €T TeT (x,g) €T
since |Py| = |Py| + | Py|. Thus letting T’(m y) ={T €{r,y,2,...,s}V 0 € T,y € T},
ft) - = > 117
TeT (z,y) i€T

and in particular f(7,t) < f(7',¢). O

B Proof of Equation (15)

Let S(k, s) be the Stirling number of the second kind and f(7) be as in Section 3. In this
section we will show
(1 _ t*t)N(f(ﬂ'i,t)ff(ﬂ's,t)) > nS*t.

S(k,s)
Proof. First, we recall that
(t+ 1)t'logyn

N= L(k—t—l—l)loggeJ and f(ﬂs’t):%_ﬁl)(jj) * (8;1)

As a result, when t < s < k, a calculation yields that

s—1
)~ St = (=5 (7). (26)
Letting n > S(k, t), after taking log, () on both sides of (15), it suffices to prove that
f(ﬂ—sat)_f(ﬂ-7t) —
N - T i —t'logy(1 —t7) ) = (s —t +1)logy(n). (27)

Using the fact that (1 —t=%)" < e~' and our choice of N, it suffices to show that

(s—t+1)(k—t+1)
f(ms,t) = f(me, t) > ] .

The inequality in (28) holds for all k£ > s >t > 3 by using (26). O

(28)
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