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The human-robot interaction community has developed many methods for robots to navigate safely and so-
cially alongside humans. However, experimental procedures to evaluate these works are usually constructed
on a per-method basis. Such disparate evaluations make it difficult to compare the performance of such meth-
ods across the literature. To bridge this gap, we introduce SocNavBench, a simulation framework for evalu-
ating social navigation algorithms. SocNavBench comprises a simulator with photo-realistic capabilities and
curated social navigation scenarios grounded in real-world pedestrian data. We also provide an implementa-
tion of a suite of metrics to quantify the performance of navigation algorithms on these scenarios. Altogether,
SocNavBench provides a test framework for evaluating disparate social navigation methods in a consistent
and interpretable manner. To illustrate its use, we demonstrate testing three existing social navigation meth-
ods and a baseline method on SocNavBench, showing how the suite of metrics helps infer their performance
trade-offs. Our code is open-source, allowing the addition of new scenarios and metrics by the community to
help evolve SocNavBench to reflect advancements in our understanding of social navigation.
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1 INTRODUCTION

Robots must navigate in a safe, predictable, and socially acceptable manner to succeed in spaces
designed for and occupied by humans—often referred to as social navigation. Many methods for
social navigation have emerged in the human-robot interaction (HRI) literature [10, 19, 24, 30,
33, 35, 52, 57, 60], focusing on large dense crowds [19, 52], local interactions with small crowds
[35, 57], and specific methods for service scenarios [7, 39, 49]. However, it remains difficult to
evaluate these methods against one another in a consistent manner. Each algorithm tends to be
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evaluated using scenarios and metrics chosen by the researchers for their specific implementa-
tions. There is currently no single method that enables the characterization of the strengths and
weaknesses of different social navigation approaches in a consistent and interpretable manner. In
this work, we introduce a simulation-based evaluation framework to enable direct comparisons
between different social navigation approaches. Our algorithm-agnostic framework uses ecolog-
ically valid test scenarios based on real-world pedestrian data and introduces a series of metrics
that quantify different aspects of navigation.

Social navigation is a difficult task to benchmark for several reasons. First, what constitutes
successful social navigation is subjective and heavily dependent on contextual factors, including
location, available space, the mobility of surrounding humans, the robot’s function, and local or
cultural norms. For example, it is much more acceptable for a robot to cut across pedestrian paths
if ferrying emergency medicine to a mall customer experiencing an anaphylactic reaction than if
delivering food to a customer in the food court. However, not all scenarios are this clear. The same
robot performing the same task in a hospital should now avoid obstructing nurses, doctors, and
patients. In our navigation benchmark, we provide a number of automatically computed metrics
that quantify system characteristics, such as robot energy expenditure, path smoothness, speed,
and safety, among others. Using these metrics, evaluations of social navigation algorithms can
prioritize characteristics appropriate for the robot’s context.

Second, it is difficult to create consistent and repeatable realistic navigation scenarios with
which to fairly compare different algorithms, while also being faithful to real-world pedestrian
behavior. If we attempted to replicate scenarios across different robots and algorithms in the real
world, then we would have to artificially constrain human participants to follow certain paths or
move to fixed targets. However, such artificially contrived scenarios can cause people to behave
in unnatural and constrained ways, which would render such an evaluation ineffective at repre-
senting real-world, natural social navigation. Instead, our navigation benchmark evaluates social
navigation in simulation, allowing for perfectly repeatable experiments. To keep our simulator
representative of real-world pedestrians, we crafted 33 representative navigation scenarios with
real-world pedestrian trajectories. Additionally, the simulator provides 3D rendering and a depth
map for algorithms that use those to provide a more realistic simulation.

Third, like most HRI problems, social navigation is subject to immense variation amongst hu-
mans. While many social navigation algorithms are currently evaluated in simulation [9-11, 19, 20,
22,34,54,57, 60], such simulators are usually constructed ad hoc by each individual research group,
with pedestrian trajectories generated via models of pedestrian behavior. Evaluating with synthet-
ically constructed pedestrian trajectories means that the evaluation may not represent real-world
performance around human pedestrians. In contrast, our simulator uses real-world pedestrian data
replayed in realistic navigation scenarios. The data are sourced from several open-source data sets
that capture a variety of crowd characteristics and navigation environments. While this does not
account for mutual motion where pedestrians react to the robot motions, this does support the
default social navigation goal of not affecting the humans’ intended motion.

In summary, our work addresses existing gaps in the evaluation of social navigation algorithms
with SocNavBench, a pre-recorded pedestrian simulation framework. We include a set of curated
episodes containing a variety of social navigation scenarios in different environments and fea-
turing different crowd characteristics. Further, we propose a suite of metrics that evaluate social
navigation algorithms along complementary axes of performance to illustrate the trade-offs that
social navigation algorithms must make. These trade-offs include balancing robot speeds and di-
rectness of trajectories with causing minimal pedestrian disruption.

SocNavBench is useful for researchers interested in comparing social navigation algorithms
and robot designers interested in selecting the best navigation algorithm for their application. We
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Fig. 1. SocNavBench is a social navigation test bench comprising a photo-realistic renderer, a curated set
of navigation scenarios based on real-world pedestrian data, and a suite of metrics to characterize the per-
formance of robot navigation algorithms. SocNavBench can take as input a full or partial stack navigation
algorithm. It supports simulated photorealistic RGB-D sensing and model-based control.

provide an API that supports testing any social navigation algorithm on a simulated robot in one of
33 scenarios (Figure 1). SocNavBench automatically outputs metric scores, a detailed simulator log,
and videos that show the robot in action. Robotics researchers can use SocNavBench to compare
their own algorithms to prior work with a repeatable scenario using consistent metrics, enabling
apples-to-apples comparisons. Given several social navigation algorithms and a particular scenario
in which to deploy a robot, a system designer can also use SocNavBench as a diagnostic tool to
choose which algorithm (or specific parameters for a given algorithm) is appropriate for their
particular context. To illustrate how SocNavBench can be employed, we implement three popular
social navigation algorithms [10, 19, 57] and a naive, pedestrian-unaware baseline method within
the simulator, and we report results comparing them.
In this article, our contributions are:

(1) a photo-realistic simulator with a navigation algorithm agnostic API,

(2) acurated set of episodic social navigation scenarios comprising various environment layouts
and pedestrian densities based on real-world pedestrian data for use with the simulator,

(3) a suite of evaluation metrics to measure the performance of social navigation algorithms

across these episodes,
(4) a test bench comprising the above three components for evaluating social navigation algo-

rithms, and
(5) a comparison of three existing social navigation strategies and a baseline using the afore-
mentioned episodes and metrics.

2 RELATED WORK
2.1 Social Navigation Methods

The evolution of social navigation algorithms developed by the HRI research community is re-
flected by the increasing capabilities to model high-level context and human behavior variation.
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Early works on robot navigation focused on decoupled models. These models treat pedestrians
as independent moving entities or simply dynamic obstacles. Some examples include the dy-
namic window approach [15], randomized dynamic planning approaches using RRT [28] and
velocity obstacles approaches [13]. Later, researchers realized that the biggest challenge in ad-
dressing pedestrians lies in the uncertainty of pedestrians’ future trajectories. Works such as
References [11, 21, 41] attempted to predict future moving patterns of the dynamic entities in the
environment.

Researchers later determined that interaction modeling is the key to better human behavior
modeling. Models without interaction modeling often run into the freezing robot problem [52]. One
of the earliest works to address interaction in navigation was the social forces model [19]. This
model uses forces to steer agents away from obstacles and other agents and to steer agents toward
goals and other attractive entities. More recent attempts to model interactions have been diverse.
Vandenberg et al. proposed reciprocal velocity obstacles to account for the reciprocity of planning
under velocity obstacles for a pair of pedestrians [57]. More recently, topology concepts have
been employed in modeling how pedestrians unanimously reach a common meta-level passing
strategy in a game theoretic setting [34]. Trautman et al. attempted to model interaction via a
joint density term inside the pedestrians’ Gaussian process mixtures models [51]. Other works
explicitly modeled certain aspects of interaction and incorporated them in navigation, such as
grouping considerations [22, 38, 62], proxemics [6, 55], and personality traits [6].

Growing in popularity, researchers have also attempted to use learning-based models [30, 51] to
capture context and interaction. Deep reinforcement learning has been used to develop a collision
avoidance policy, augmented with social awareness rules to inject interaction components [9, 10].
The model’s reward definition can be adjusted to retrain policies for new context. Inverse rein-
forcement learning techniques have also been used in an attempt to implicitly capture interaction
into a cost function by observing how real pedestrians navigate [23, 26, 40]. In a more well-defined
problem space, the pedestrian trajectory prediction problem shares a similar necessity of model-
ing pedestrian interactions. In this problem domain, the learning-based models contain interaction
modeling modules to enhance pedestrian future states predictions, which can then be potentially
adopted as future obstacle space in a navigation setting. For example, Social-LSTM [2] and Social-
GAN [17] used social pooling layers to summarize pedestrian spatial distribution for both context
and interaction modeling. SoPhie [44] additionally used top-down view image patches around
pedestrians to better understand the pedestrians’ surrounding context. Another interaction mod-
eling technique used graph-based relationships [36, 61] to implicitly learn attention weights for
all pairs of pedestrians, with higher weights corresponding to more interactions.

2.2 Evaluating Social Navigation

High variation in context and human behavior is not only a challenge for social navigation algo-
rithms but also for evaluating these algorithms. Furthermore, what set of metrics define a success-
ful social navigation is subjective and difficult to define. Given infinite resources, the ideal test
strategy could be running thousands of trials of a robot navigating through crowds in many differ-
ent real-world locations. Likewise, the ideal metric could be to ask the hundreds of thousands of
pedestrians who have interacted with the robot, as well as the people who tasked the robot, to rate
their experiences. However, the cost of running such a study is impractical, so researchers have
used various testing strategies and metrics to approximate the ideal test.

One group of strategies to approximate the ideal test is to evaluate social navigation algorithms
in a small-scale, real-world setting. One such approach is to run a qualitative demonstration in the
wild without objective or subjective metrics [10, 26]. These demonstrations are not easily repro-
ducible and cannot be effectively used to compare different algorithms fairly. Another approach is
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to run user studies in a controlled setting. Typically, this is done by asking a few participants to start
at specific locations and reach specific goals while the robot navigates nearby [24, 26, 27, 32, 40, 56].
Similarly, some teams ask human participants to teleoperate a robot and compare the algorithm’s
performance with the humans’ [23, 53]. While these controlled, real-world test strategies offer the
benefit of realism, human participant studies at scale are very expensive. This also creates limits on
crowd size and context variety. It may seem possible to overcome this by conducting user studies
in the wild [14, 23, 45, 53], but it is nearly impossible to repeat the same scenario for algorithm
comparisons and controlled iterative development.

Another method of approximating the ideal test is to use real-world datasets. This is accom-
plished by replacing one of the pedestrians with a robot and comparing the performance differ-
ences by treating the replaced pedestrian’s trajectory as the ground truth trajectory [30, 52]. A
similar method is to put a virtual robot in the scene and ask it to navigate to designated waypoints
[5, 6, 8]. The benefit of the virtual-robot-in-dataset testing strategy is that it is a good approxima-
tion to real-world scenarios as it uses real-world pedestrian trajectories and environments. Because
datasets typically contain hundreds of trajectories, this testing method offers large quantities of
test cases. By combining scenes from different datasets, we can further gain a decent variety of
context. For these reasons, we developed our approach around real-world pedestrian trajectories
in our simulator. An unmet need in prior implementations of this method is that it is impossible
for a simulated robot to obtain realistic sensor inputs. Thus, the social navigation algorithms being
tested need to rely on the assumption of perfect perception.

The final popular approach to approximate the ideal test is to use simulators. Simulators offer
the benefit of generating large numbers of test cases, but a critical concern is what models should
be used to simulate pedestrian behavior. One approach some researchers used is called “self-play”
[10, 19, 22, 34, 54, 57]. Each agent in the simulated environment uses the same social navigation
algorithm to “play” against each other. Another common approach is called “against-all” [9, 11, 20,
60]. In this case, the social navigation algorithm is implemented on one agent. Then, that agent is
tested against all other agents governed by a different model. The fundamental problem with these
two pedestrian modeling approaches is that instead of testing against actual human behavior, the
social navigation models are treated as ground truth.

Instead of simulating pedestrian behavior, we directly source real-world pedestrian trajecto-
ries from natural behavior datasets. To overcome the inability to obtain sensor inputs for these
datasets, we simulate environments by applying real-world textures on pedestrians and environ-
ments, which we then use to generate photorealistic sensor inputs. Additionally, since ours is a
simulated setting, we can still generate large quantities of test cases. By combining the benefits of
the dataset and simulator-based testing strategies, every element in our approach is grounded in
reality. Therefore, we believe our testing strategy is a better approximation of the ideal test.

In terms of the human rating metric used in the ideal test, it is possible to ask human observers
to rate how simulated robots behave in our simulators, as is the case in References [31, 45]. How-
ever, our aim is to make our simulator a diagnostic tool that automatically outputs scores, so
human ratings are not logistically reasonable. Therefore, we decided to adopt approximations to
the human rating metric, as seen in most dataset- and simulator-based testing methods. Common
approximations to the pedestrian experience ratings (i.e., social ratings) include collisions or suc-
cess rate [6, 9, 10, 40], closeness to pedestrians [6, 23, 26, 51, 52], path predictability [32, 40], among
others. Common approximations to evaluation by robot task-givers (i.e., task efficiency) include
time to the reach goal [9, 10, 23, 40], speed [26, 51], path length [30, 40, 52], and other navigation
performance-based metrics. Our large selection of metrics offers users of SocNavBench the ability
to prioritize metrics they deem most suitable for their specific needs. We demonstrate the use and
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interpretation of these metrics by testing on three different existing algorithms and providing a
comparison of these metrics.

3 SOCNAVBENCH DESIGN
3.1 Overview

Our proposed tool, SocNavBench, is a simulator-based benchmark with prerecorded real-world
pedestrian data replayed (Figure 2). The simulator can run in two modes, Schematic and Full-render.
The Schematic mode focuses on trajectory-based navigation with the problem of perception ab-
stracted away. In the Full-render mode, we provide an RGB-D image with customizable camera
position and intrinsic parameters to simulate real-world, on-board sensing.

Algorithms evaluated by the tool see several episodes comprising different prerecorded human
trajectories and environments. For each such episode, the algorithm under evaluation receives
one of several environment maps (Figure 3) and a start and goal configuration within that envi-
ronment that it must traverse in an efficient and socially acceptable manner. We measure robot
navigation efficiency by measuring the robot’s smoothness and directness of path as well as its en-
ergy expenditure. We measure social acceptability from potential disruptions to recorded human
paths, with the most socially acceptable paths not only avoiding collisions with pedestrians but
also maintaining a comfortable distance from pedestrians whenever possible.

An assumption we use is that the pre-recorded pedestrian trajectories that were recorded in the
absence of a robot are the preferred trajectories of these pedestrians. At minimum, a social robot
present in the original scenario should not cause pedestrians to deviate from this path. Therefore,
we should not see collisions with the pre-recorded pedestrians. Likewise, any robot action that
leads to motions very close to replayed human trajectories would probably have induced pedes-
trian deviations from their preferred path. This is also sub-optimally social. For a discussion of the
validity and limitations of this assumption see Section 5.3

Our metrics suite is designed with these considerations in mind. In particular, we measure pedes-
trian disruption in two ways: a time-to-collision measure and a closest-pedestrian distance mea-
sure. The distribution of these metrics helps quantify how close the robot comes to cutting off
pedestrians during its navigation. Additionally, we provide metrics that quantify the directness
(versus circuitousness), smoothness (versus jerkiness), and energy efficiency of the robot’s naviga-
tion. Together, these represent a characterization of both the appropriateness and efficiency of the
robot’s navigation.

3.2 Pre-recorded pedestrian Data and Episode Curation

The pre-recorded pedestrian data used in SocNavBench comes from the UCY [29] and ETH
[42] pedestrian trajectory datasets, which are widely accepted and used by the community
[2,6,8,17,52] and were also included in recent pedestrian trajectory prediction benchmarks [4, 25].
These data include varied crowd densities and walking speeds, as well as interesting pedestrian
behaviors, such as grouping, following, passing, pacing, and waiting. Pedestrian trajectory data is
replayed at the simulator tick rate (default 25 fps) with a 1:1 ratio to recorded time, i.e., replayed
pedestrian trajectories have the same velocities as the recorded ones. If the simulated robot col-
lides with a pedestrian, then SocNavBench registers that collision and the pedestrian’s replayed
motion is unchanged. Future support for reactive pedestrians is planned, which has its own set of
assumptions and tradeoffs (see Section 5.3 for a discussion)

We manually curated a set of episodes that include challenging scenarios from the aforemen-
tioned pre-recorded datasets. These episodes consist of a diversity of crowd sizes, speeds, and
densities, as well as directions of motion with respect to the robot’s traversal task, while excluding

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 3, Article 26. Publication date: July 2022.



A Grounded Simulation Testing Framework for Evaluating Social Navigation 26:7

Real Pedestrian Dataset (Univ) Schematic Render

Fig. 2. An example of the transfer of real data to the simulator. Pedestrian trajectories are replayed at the
same speed and environment structures are faithfully reflected for navigation.

ETH Univ DoubleHotel

® Pedestrian Tk 'I rr1T1T R l- T m ® Pedestrian

Fig. 3. Example maps available in SocNavBench. Maps have varied environment structures as well as varied
crowd sizes and densities.

trivial scenarios with very low crowd densities.! We also include multiple environments (Figure 3)
with different types of configurations, hence providing environmental obstacle diversity as well.
In total, we have 33 episodes, each lasting for at most 60 s. Our curated episodes contain an av-
erage of 44 pedestrians (standard deviation = 13), with the minimum being 24 and the maximum
being 72. Additionally, to allow users access to large numbers of episodes, we have added sup-
port for random episode sampling, which samples a queried number of random robot start and
goal pairs in a randomly selected map along with one of the corresponding handpicked sections
of recorded pedestrians from the aforementioned curated episodes. These random start and goal
pairs are picked in a way that ensures they are reachable in 25 s when using the maximum permit-
ted robot velocity. While forgoing the benefits of hand-picked starts and goals (such as scenarios
that require the robot to cross a high density crowd flow), this will allow users to use the simulator
for learning purposes where large sample sizes are especially important.

'Here, crowd density refers to the number of pre-recorded pedestrians per unit area.
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Fig. 4. An illustration of simulator flow control in synchronous mode. At each iteration, the candidate algo-
rithms uses the Joystick API to send a sense() signal, plans with the newly received world data, and then
sends back an act() signal.

We adapted meshes from the Stanford Large-scale 3D Indoor Spaces Dataset (SD3DIS) [3]
to provide the physical environments in which these episodes to take place, modifying them to
reflect the spaces in which the original data was collected. We chose a variety of segments from
the pedestrian datasets to include a distribution of crowd sizes, crowd densities, pedestrian speeds,
and pedestrian trajectories. Robot start and goal positions within these scenarios were sampled
such that they were semantically meaningful whenever possible. For example, we chose the start
position of the robot to be the exit from a building and the goal to be the end of a sidewalk in one
scenario.

For perspective rendering, we based our system upon The HumANav Dataset [50], which uses
Google’s Swiftshader renderer for photorealistic RGB and depth visuals. Importantly, the render-
ing engine for this project is separate from the specific meshes used, so any custom meshes could
be used. The building mesh scans in the environment originated from the SD3DIS [3], but they
were modified to replicate the environments in which the pedestrian data was recorded (Figure 2).
Human meshes were drawn from the SURREAL Dataset [59], which includes photorealistic meshes
for various human body configurations, genders, and lighting conditions. In particular, 6,000 hu-
man models form SURREAL are used that are parameterized by body configuration, pose, and
velocity during walking. For replaying human poses accurately, we can calculate the body orien-
tation and walking velocity of the recorded pedestrians from their recorded trajectory. These are
then plugged into the aforementioned parameterized human models to be rendered such that ac-
curately represent the poses that would have occurred naturally when walking at that speed and
orientation.

3.3 SocNavBench Simulator Mechanics

SocNavBench provides a socket-based interface for candidate algorithms (clients) to communicate
with the simulator (server) and the simulated RobotAgent (Figure 4). At each evaluation start, the
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client is sent metadata about the episodes on which it is going to be evaluated. Then, episodes
are served to the client sequentially, including environment information, a time budget for each
episode, and start and goal locations. Each episode ends either when the robot reaches the goal
(Completion), collides with an environmental obstacle (Environment Collision), or runs out of time
for that episode (Timeout). Each Completion may be a successful episode (Success) if there were no
collisions. If the robot collided with a pedestrian during its completion of the episode, however,
then we count the episode as a Pedestrian Collision and the episode cannot count as an overall
success.

The flow control in SocNavBench can be understood based on a classical sense-plan-act cycle
design. When a candidate algorithm performs a sense action, it requests an updated WorldState
from the simulator. This state is a position for all pedestrians in the scene in Schematic mode
and an RGB-D image in the Full-render mode. It can then plan on the received state and send
either velocity or position commands to update the simulated RobotAgent. Importantly, this ab-
straction allows many different types of algorithms to be compatible with SocNavBench, including
end-to-end learning-based methods. This also allows individual parts of a modular navigation al-
gorithm to be tested in an ablation study. For example, a planning algorithm could be tested with
an RGB-D-based perception method in Full-render mode and also with perfect perception using
the Schematic mode, hence isolating the navigation performance differences attributable to the
perception method.

3.3.1 Synchronicity. Our simulator can run in two modes with respect to robot client and sim-
ulator server synchronicity: Asynchronous and Synchronous. In asynchronous mode, the simulator
constantly updates at a fixed rate (simulator time is moving forward) while listening to the robot
client for inputs in the background. In this mode, more complex algorithms that run slower will
loop through their sense-plan-act cycles in a manner close to the real world, where taking too long
to plan may result in the sensed data being stale by the time the action is performed.

In contrast, in the synchronous mode, the simulator listens for a robot command at each simu-
lator step. This is the default mode, which does not penalize algorithms for “thinking time.” The
synchronous option is preferred, since thinking time may be dictated in part by the compute hard-
ware used, leading to irreproducible results. However, a user may want to run the simulator in
asynchronous mode for a more realistic evaluation. This is especially relevant if the user (1) can
control for the computational hardware across different algorithms and (2) is testing on the hard-
ware to be used during deployment.

3.3.2  Rendering Modes. SocNavBench supports two rendering modes: Schematic and Full-render
(Figure 5). For visualization purposes, our approach plots a schematic top-view of the entire scene,
but it also includes the option of a full render from the perspective of a camera specified by an
arbitrary 6-dof pose. The default pose corresponds to a camera attached atop a Pioneer robot [1].
The Full-render mode additionally contains building scans for the environment, and human meshes
for the pedestrians. The default modes of operation are Synchronous and Schematic. Henceforth,
when not specified, these are the modes used.

3.3.3  Simulated Robot Specifications. The simulated robot is able to run in velocity control
mode and in direct position control mode. In velocity control mode, the robot is subject to kine-
matic constraints according to a three-dimensional unicycle model with dynamics:

x=vcos¢, Y=vsing, ¢=o, (1)
where the position of the robot is (x, y) and the heading is ¢.
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Topview RGB Depth
(Schematic/Full render) (Full render) (Full render)

ETH

Fig. 5. The different types of sensing data available across both rendering modes, Schematic and Full-render.
Camera direction is represented by the colored cone.

However, most social navigation algorithms [10, 19, 35], including ones that provide guarantees
of collision-free navigation [57], do not include a dynamics model in the derivation of their guar-
antees. To ensure compatibility, we also provide a velocity-limited holonomic control mode, which
is akin to position control with upper bounded instantaneous velocity.

We based the default simulated robot design on the Pioneer 3-DX robot [1] using the base sys-
tem dimensions and maximum velocity according to off-the-shelf specifications. In the full 3D
rendering mode, the default camera height is typical for an on-board RGB-D camera on this base.
However, these options are customizable to represent any robot base and sensor position on that
base, since any arbitrary 6-dof camera pose camera pose can be specified.
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Table 1. The Metrics Suite Implemented in SocNavBench

Metric Units Definition
Meta statistics
Overall success — the fraction of episodes successfully completed (robot reached
rate goal position and did not collide with any pedestrians)
Failure cases — the distribution of failure cases over Timeout, Pedestrian Colli-
sion, and, Environment Collision
Total pedestrian — the total number of pedestrian collisions across all episodes
collisions considered.
Average planning  seconds the average time spent by the simulator waiting for the plan-
wait time ning algorithm per simulation step
Path quality
Path length meters  the total distance traversed by the robot in the episode
Path length ratio — the ratio of straight line distance between the end and goal to
the robot’s path length for any episode
Goal traversal ratio — the ratio of the robot’s distance to goal at the episode end and
distance to goal at the episode start
Path irregularity radians averaged over each point of the robot trajectory, this is the an-
gle between the robot heading and the vector pointing to goal
Path traversal time seconds the total simulator time taken to traverse the robot’s path
Motion quality
Average speed m/s average speed of the robot over its entire trajectory
Average energy Joule assuming unit mass, the robot energy expenditure is calculated
expenditure as the integral of the squared robot velocity over the entire ro-
bot trajectory
Average accelera- ~ m/s? average acceleration of the robot over its entire trajectory
tion
Average jerk m/s3 average jerk (time derivative of acceleration) of the robot over
its entire trajectory
Pedestrian related
Closest-pedestrian ~ meters  at each robot trajectory segment, this is the distance to the
distance closest-pedestrian
Time-to-collision seconds at each robot trajectory segment, this is the minimum time-to-

collision for any pedestrian in the environment

See Section 3.4 for more details and considerations.

3.4 Evaluation Criteria and Metrics

We define several metrics (Table 1) that may be important considerations for a socially navigat-
ing robot and can help characterize the trade-off between robot appropriateness and efficiency.
The metrics fall into four general evaluation categories: path quality, motion quality, pedestrian
disruption, and meta statistics.

Path quality. Path quality metrics quantify the quality and efficiency of the path generated by
the social navigation algorithm. These metrics are focused on the robot’s path in a global sense.
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(1) Path length (meters): the total distance traversed by the robot in the episode. Usually, lower
is better and indicates that a robot takes more direct paths.

(2) Path length ratio: the ratio of straight line distance between the start and goal to the robot’s
path length for any episode. Usually, higher is better and indicates that a robot takes more
direct paths. Trade-offs between navigation optimality and pedestrian safety may affect this
metric.

(3) Path irregularity (radians): averaged over each point of the robot trajectory, this is the ab-
solute angle between the robot heading and the vector pointing to goal [18]. For a straight
path from start to goal, path irregularity is zero. Usually, lower is better and indicates that
a robot takes more direct paths, though as with path length ratio, this may vary based on
other factors like pedestrian safety.

(4) Goal traversal ratio: calculated for Incomplete episodes, this is the ratio of the robot’s distance
to goal at the episode end to start. This is useful to quantify the partial success of algorithms
when not completing the episode due to timeout or collision with the environment. Lower
is better and indicates the robot gets closer to the goal during Incomplete episodes.

(5) Path traversal time (seconds): total simulator time taken to traverse the robot’s path. Lower is
usually better but higher may be acceptable if the robot yields to pedestrians more frequently.

Motion quality. The quality of the robot’s motion is characterized by the smoothness and
efficiency of the robot’s movement. These metrics quantify the robot’s energy expenditure, accel-
eration, and jerk.

(1) Average speed (meters/second): average speed of the robot over its entire trajectory.

(2) Average energy expenditure (Joules): robot energy is calculated as the integral of the
squared robot velocity over the entire robot trajectory, assuming unit mass. Total robot en-
ergy expended is related to total path and velocity, but is slightly different from each. For
example, two different algorithms may yield to pedestrians either by moving out of the way
or by stopping before moving out of the way is necessary. The second algorithm may take
the same overall time and have similar average velocity as the first but will expend lower
energy in total. All other things equal, lower energy expenditure is better.

(3) Average acceleration (meters/second?): average acceleration of the robot over its entire tra-
jectory.

(4) Average jerk (meters/second’): average jerk (time derivative of acceleration) of the robot
over its entire trajectory. Lower indicates that the robot takes smoother paths, which are
more predictable and legible for surrounding pedestrians while also consuming less energy.

Pedestrian-related. These metrics capture the robot’s movements with respect to the surround-
ing pedestrians. They are mainly focused on the safety of the robot’s navigation.

(1) Closest-pedestrian distance (meters): at each robot trajectory segment, this is the distance
to the closest pedestrian. Pedestrian distances more than 10 m are saturated to 10 m.

(2) Time-to-collision (seconds): at each robot trajectory segment, this is the minimum time-
to-collision to any pedestrian in the environment. The time-to-collision for any robot-
pedestrian pair is computed by linearly extrapolating the robot and pedestrian trajectories
using their instantaneous velocity. This is equivalent to the time it would take the robot-
pedestrian pair to collide if, at the end of this trajectory segment, they continued moving
at their current speed in their current heading. This is calculated for every robot-pedestrian
pair in the environment and the minimum TTC is selected. Times larger than 10 s are satu-
rated to 10 s.
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The two metrics above are similar but not the same and are better interpreted together. For ex-
ample, a robot may follow a crowd walking in the same direction very closely, which would have
a low Closest-pedestrian distance. However, because their motions are in the same direction, the
Time-to-collision will also be high, indicating overall a lower pedestrian disruption. Between two
algorithms with similar Time-to-collision, users may prefer the higher Closest-pedestrian distance
in scenarios where giving pedestrians a wider berth is preferred. These two metrics are range
limited, since instantaneous values of Times-to-collision greater than 10 s and Closest-pedestrian
distances greater than 10 m are unlikely to impact the robot’s operation in any way. Leaving these
outliers in would affect their averages, which may reflect an overall safer robot navigation than is
actually the case.

Meta statistics. Additionally, the tool generates a selection of overall success meta-statistics
for the entire collection of episodes:

(1) Overall success rate: the fraction of episodes successfully completed (robot reached goal po-
sition and never collided with any pedestrian). Episodes may be completed but not successful
if they have pedestrian collisions but no timeouts or environment collisions.

(2) Total pedestrian collisions: the total number of pedestrian collisions across all episodes con-
sidered. Lower is better.

(3) Failure cases: the distribution of failure cases over Timeout, Pedestrian Collision, and Envi-
ronment Collision. This is reported as a tuple (T/PC/EC). Lower numbers for each category
are better.

(4) Average planning wait time (seconds): the average time the simulator waited for commands
from the planner. If the algorithms are tested on identical hardware, then this provides a
measure of the complexity of the algorithm and, hence, its feasibility for real-time, on-board
robot operation. Lower is better.

In the above descriptions, we describe the interpretation of metrics individually with all other
metrics being equal. However, this is rarely the case during social navigation where algorithms
are constantly negotiating a safety versus efficiency trade-off. Hence, these metrics must be taken
in context with each other, which is demonstrated in Section 5.1

4 EXPERIMENTS
4.1 Choice of Candidate Algorithms

We evaluate three existing social navigation algorithms and a simple pedestrian-unaware baseline
on SocNavBench.

We chose Social Forces [19], ORCA [57], and SA-CADRL [10] as the three candidate social navi-
gation algorithms, because they represent the evolution of the field over three decades. The Social
Forces model [19] is an early influential work on modeling pedestrian navigation that motivates
many subsequent contributions in the robot navigation domain [37, 43, 63]. ORCA [57] is a popu-
lar baseline method used by many recent social navigation algorithms [9, 10, 32] for performance
comparisons. CADRL [10] is a recent, popular, and relatively state-of-the-art model using a deep
reinforcement learning-based navigation method.

Social-forces-based pedestrian dynamics (henceforth, Social Forces) is a formulation to explain
pedestrian navigation behavior as being under the influence of “social forces,” including an attrac-
tive force to their goal, a repulsive force from other pedestrians and obstacles, and other attractive
forces to interesting objects or other pedestrians in the environment. We use an open-source im-
plementation of this method from a popular pedestrian crowd simulator PedSim [16]. This method
does not follow an angular velocity constraint.
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ORCA: Optimal Reciprocal Collision Avoidance [57] (henceforth, ORCA) is an efficient naviga-
tion planner that provides theoretical non-collision guarantees assuming all agents in the envi-
ronment use the same planning policy. The core idea behind reciprocal velocity obstacles used
by ORCA is reciprocal reaction from both the pedestrian and the robot. Because in our simula-
tor the pedestrians are not reacting to the robot, we changed the collaboration coefficients of
the pedestrians to be 0 and that of the robot to be 1. However, ORCA, like most existing social
navigation frameworks, does not account for system kinematics and dynamics in its formulation.
Because its performance guarantees are void when a post-hoc kinematic constraint is applied,
we run ORCA in an unbounded angular velocity mode without kinematic constraints on linear
velocities.

SA-CADRL: socially aware collision avoidance with deep reinforcement learning (henceforth,
CADRL) [10] is a deep reinforcement learning-based social navigation method that formulates
social navigation as a cooperative multi-agent collision avoidance problem with well-crafted rules
to inject social awareness. We are using the four-agent version of the network. Because the num-
ber of agents to be fed into the network is fixed, we only take observations from the three nearest
pedestrians to the robot. We used the pre-trained model provided by the authors, as described in
the article. Similar to ORCA, CADRL does not consider kinematic constraints.

Additionally, we implemented a meta-level planner for ORCA and CADRL, because CADRL
does not possess obstacle avoidance capabilities and the authors of CADRL and ORCA [58] en-
dorsed the inclusion of a meta-level planner. The meta-level planner is responsible for identifying
a near-future waypoint for the robot to reach, directing the robot away from obstacles in the pro-
cess. The planner we use is a sampling planner (from Reference [50]) that samples trajectories
from a connectivity graph and evaluates them via heuristic cost functions and returns the min-
imum cost trajectory within a budget. Our meta planner has heuristic-based obstacle avoidance
and goal-seeking capabilities. In operation, the meta planner plans a sub-goal within a 6-second
horizon each time a new checkpoint is requested. This corresponds to around 4-7 m. The robot is
considered to have reached the checkpoint if it is within 1 m of the checkpoint, and then a new
checkpoint is requested.

Pedestrian-unaware Baseline: We use the meta-planner described above as a baseline navigation
algorithm, which does not take into account pedestrians around it and show its performance on
the same set of navigation scenarios as the other three candidate algorithms. This planner can
take into account kinematic constraints, so we apply a 3D (position and heading) unicycle model
(Equation (1), Section 3.3.3). There is no kinematic constraint application on this planner when
used as a meta-planner.

4.2 Experimental Protocol

In our experiments, we used the default simulation settings, i.e., Synchronous and Schematic modes.
In evaluation of algorithms that assume no kinematic constraints, we turned the kinematic con-
straints off, leaving only the maximum linear speed constraint for the robot.

In total, we tested on the curated set of 33 episodes described in Section 3.2. For the sake of
easily comparing between different algorithms, we only consider those episodes in our analysis
in which candidate algorithms complete the curated episodes. This is because if some algorithms
terminate early due to pedestrian collisions, some metrics (such as path length or total energy
expended) are not comparable. Hence, we did not terminate episodes for a pedestrian collision and
instead counted all pedestrian collisions throughout the episode. Twenty-nine of 33 episodes were
completed by all four candidate algorithms, and all metrics were computed on those 29 completed
episodes unless explicitly mentioned.
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5 RESULTS AND DISCUSSION

We ran the aforementioned social navigation methods on the curated set of episodes described in
Section 3.2 and discuss the results below. Our focus is on how each metric reflects the overall navi-
gation style of the algorithm with a particular focus on the preferences inherent in the algorithms
with respect to the navigation efficiency versus pedestrian disruption trade-off. Figures 6-11 are
violin plots, which represent the shape of the distribution of each metric, with the mean of each dis-
tribution marked with a horizontal gray tick on the violin. This helps us see outliers and modalities
in addition to the information provided by error bars.

5.1 Experimental Results

5.1.1 Meta Statistics (Table 2). From Table 2, the Social Forces model is the most successful
social navigation method with the highest success rate 32/33 and no pedestrian collisions. Hence,
all completed episodes were also successful. It also has the fastest planning time, largely because
it does not require a meta-planner.
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Table 2. Average Meta Statistics for Candidate Algorithms Tested on SocNavBench

Candidate Overall Failure cases Total Planning wall
Algorithm success rate  (T/PC/EC) pedestrian time per
collisions* episode (s)*
Social Forces [19] 32/33 (1/0/0) 1 18.23 + 7.41
ORCA [57] 24/33 (1/8/0) 15 48.84 + 23.06
SA-CADRL [10] 18/33 (0/14/1) 40 46.78 + 21.38
Baseline (S. 4.1) 9/33 (1/23/0) 64 51.12 + 16.21

The metrics marked with + are evaluated only on episodes completed by all algorithms.

ORCA is the second most successful model with 24 successful cases of the total 33 and 15 pedes-
trian collisions across eight episodes. It completed 32/33 episodes. The planning time per step for
ORCA is close to the baseline (Table 2 and Figure 8), indicating that the computation bottleneck is
the meta-planner.

SA-CADRL, despite being relatively state-of-the-art, frequently runs into pedestrians with 40
collisions across 14 episodes. Its overall completion rate is, however, the same as ORCA. The test-
ing scenarios in the curated dataset are challenging, with sometimes more than three pedestrians
moving relatively close to the robot. It is very likely that the robot frequently runs into situations
unseen during training and causes collisions. Similar to ORCA, the planning time is close to the
baseline, indicating the same computation bottleneck.

Unsurprisingly, the pedestrian-unaware baseline performs the worst with respect to pedestrian
safety. While it did complete all but one episode by reaching the goal, it collided with a total of 60
pedestrians across 23 episodes.

Additionally, all candidate algorithms had one Incomplete episode each, which were all distinct
episodes. This illustrates the diversity and difficulty of our curated set of episodes, which test
different aspects of social navigation.

Meta-statistics reflect an overall reliability and computation time for each model. From Table 2,
the Social Forces model is computationally fastest and most reliable model, because it passes the
most test scenarios with the fewest pedestrian collisions.

5.1.2  Path Quality Metrics (Table 3). The Social Forces model takes very circuitous paths to goal,
as reflected in long path lengths (Figure 10) and high path length ratios (Figure 9). However, judging
by its high success rate, we can infer that it is being conservative about avoiding pedestrians. This
conservative behavior is further demonstrated by high path irregularity, as it tends to take large
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Table 3. Average Path Quality Metric Scores for Candidate Algorithms Tested on SocNavBench

Candidate Path Path Goal Path Path
Algorithm length (m) length traversal irregularity  traversal
ratio ratio” (radians) time (s)
Social Forces [19] 17.25 % 4.05 1.15+0.23 0.52 1.66 = 0.95 15.93 £ 4.17
ORCA [57] 17.66 + 5.22 1.17 £ 0.26 0.21 1.56 + 1.01 22.06 = 7.78
SA-CADRL [10] 15.70 + 3.72 1.04 + 0.05 0.51 1.68 + 1.04 15.14 + 4.21
Baseline (S. 4.1) 15.88 + 3.57 1.05 £ 0.11 0.09 1.65 + 1.02 16.08 £ 3.73

The metrics marked with — are evaluated only on incomplete episodes for each algorithm (T/EC).

curved paths. Despite having long path lengths, the Social Forces model has low path traversal
time, meaning it is consistently guiding the robot to move at full speed.

ORCA has the longest path lengths and the second highest success rate, which would seem
to imply that ORCA also makes a significant effort to avoid pedestrians by taking roundabout
paths. However, given that ORCA also has the lowest path irregularity, we can infer that it is
actually trying to take relatively direct paths to goal and using local deviations while trying to to
avoid pedestrians. ORCA’s longest path traversal times also imply that ORCA is taking a greedy
approach of heading toward the goal and using deviations while avoiding pedestrians along the
way. A qualitative analysis of the trajectories, paired with the metrics data, indicates that ORCA
tends to react late to pedestrians during avoidance maneuvers and then buy time for an avoidance
maneuver by starting to move in the opposite direction of the pedestrian (Figure 12). This greedy
approach often runs into problems when it is too late to react.

CADRL has the least path length and path traversal time, indicating aggressive goal-seeking
behavior.

The baseline method has low path lengths overall, just behind CADRL. This is explained by
the fact that the baseline method is subject to kinematic constraints via a unicycle model, which
limits its liner and angular acceleration capabilities. It has a larger turning radius than the other
candidate algorithms, which is indicated by its high path irregularity.

The path quality metrics mostly reflect a model’s efficiency while path irregularity and path
length ratio act as sanity checks for presence of large detours or frequent zigzagging patterns. We
can see that SA-CADRL is the fastest and the most efficient model overall. However, its aggressive
evasive maneuvers would mean a high path irregularity. ORCA produces paths that are direct with
less aggressive evasive maneuvers at the cost of efficiency. The navigation driven by Social Forces
tended to take large detours.

5.1.3  Motion Quality Metrics (Table 4). The inferences we made about the algorithms from the
previous sections are further confirmed by the results in Table 4.

Social Forces has the fastest average speed. This confirms that despite having long paths, it is
operating at almost maximum speeds, consistently leading to low path traversal times (Table 3).
The smoothness of motion is further illustrated by low robot acceleration and jerk. Due to its
behavior being conservative and its relatively longer paths traversed with high speeds, it also
happens to consume the highest amount of energy.

ORCA takes relatively direct approaches to the goal, as shown by consuming the least amount of
energy here. Low acceleration and jerk indicate that its motion is relatively smooth as well, albeit
at not as smooth as the Social Forces model. This implies that ORCA’s reactions to pedestrians are
not very sudden or unpredictable.
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Table 4. Average Motion Quality Metric Scores for Candidate Algorithms Tested on SocNavBench

Candidate Average Average energy Average Average

Algorithm speed (m/s) expenditure (J)  acceleration jerk (m/s®)
(max = 1.2m/s) (m/s?)

Social Forces [19]  1.09 + 0.27 398.33 £ 95.45 0.39 £ 1.43 2.70 + 28.23

ORCA [57] 0.80 £ 0.27 315.03 + 89.89 0.31 £ 1.26 6.28 + 28.85

SA-CADRL [10] 1.04 + 0.36 367.58 £ 87.24 0.93 +£ 2.91 31.68 + 87.71

Baseline (S. 4.1) 0.99 + 042 370.88 + 84.55 4.81 +9.07 180.86 + 303.88

CADRL also is very fast, which is again explained by its aggressiveness in goal seeking. This
aggressiveness is further shown by high acceleration and jerk, which indicate sudden movements
to dodge pedestrians. Despite being aggressive in proceeding toward the goal, it expends plenty
of energy, most of which is spent on accelerating and decelerating the robot.

The motion quality metrics reflect how predictable a model’s produced robot actions are. We
can see that SA-CADRL has large acceleration and jerk. Therefore, coupled with its highly direct
paths, it is recommended over the other models in situations where the robot has fewer energy
constraints such as small operating range. The Social Forces model produces the smoothest trajec-
tories, while ORCA closely follows.

5.1.4  Pedestrian Disruption Metrics (Figure 6). We can see again from Figure 6 that the So-
cial Forces model is the most conservative and safest model, because it has the furthest closest-
pedestrian distances with no collisions and longest times-to-collision. ORCA tends to avoid pedes-
trians locally and will run into clusters of pedestrians hoping to find gaps, so it has a smaller
closest distance and short times-to-collision. CADRL is very aggressive and only dodges pedestri-
ans at the last second. This is shown by the shortest closest distance and short times-to-collision.
This observation of CADRL’s aggressiveness was also made in prior work [9]. For CADRL and
ORCA, the closest-pedestrian distance has some negative values, because there are episodes with
collisions between the simulated robot and pedestrians. Pedestrian disruption metrics indicate the
navigational compliance of a robot by measuring how much it avoids or yields to pedestrians. We
can infer that Social Forces is the most compliant model, because of its high minimum distance
to pedestrians and large times to collision. Conversely, SA-CADRL is the most aggressive model,
with ORCA in between.

5.2 Summary of Candidate Algorithm Performance

Overall, the Social Forces model produces robot motion that errs on the side of caution. In our
testing, it produced long paths that take care to avoid pedestrians but also traversed them quickly.
It was also the computationally quickest planner amongst all tested algorithms, although this is
partly because it did not require a meta-level planner for obstacle avoidance. It also suffers from
an issue where a large cluster of pedestrians away from the goal can cause it to overshoot the
goal due a large repulsive force. This can be seen in the last frame for Social Forces in Figure 12,
where it overshoots and loops around the goal. It also had one failure due to Timeout in which it
was stuck in a local minimum because of the relative configuration of the goal position and the
environmental obstacles (it was unable to navigate around a corner to a goal).

ORCA tried to strike a middle ground between the Social Forces model and CADRL in terms of
goal-seeking aggressiveness. Its pedestrian avoidance was more locally focused than Social Forces
and similar to SA-CADRL in that it tried to deal with individual pedestrians closest to its path

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 3, Article 26. Publication date: July 2022.



A Grounded Simulation Testing Framework for Evaluating Social Navigation 26:19

Social Forces
t=6.0 | t=7.0 | t=9.0 |

t=5.

5.0 ]
o
\" b | LI >
‘ ‘\Q VM L
é
V%
4 A $, e,

ORCA
t=6.0 | t=7.0 | t=9.0 | t=43.0 [ i¥=

u\n’v

Fig. 12. Qualitative comparisons for candidate algorithms’ pedestrian crossing behavior tested on Soc-
NavBench. The leftmost image shows the simulated robots about to cross a dense pedestrian crowd to get to
their goal. The rightmost image shows the simulated robots just about to reach the goal. Pedestrians with
whom collisions occurred are indicated with a red border. A discussion of the algorithms’ behavior can be
found in Section 5.2.

rather than planning around pedestrians or groups of pedestrians as a whole. Most often, the
local avoidance behaviors amounted to the robot trying to escape pedestrians by straying from
its preferred trajectory. This behavior can be observed in Figure 12. At t = 5, the robot is still
proceeding toward the goal, but turns around and starts to move away from the approaching
pedestrians once they get too close. However, it reacts too late, and ends up with colliding with
multiple pedestrians. This behavior is repeated with subsequent groups of approaching pedestrians
as can be seen from the path history and long total time taken as indicated in the last frame. Once
the pedestrians had passed and were no longer on the robot’s subsequent path segments, it started
to plan toward the goal.

SA-CADRL was the most aggressive of the three social navigation models in terms of goal-
seeking behavior. It generated direct paths to goal and deals with pedestrians via local avoidance
behaviors. Most often, it would stop and turn away from pedestrians but would not move to accom-
modate them if they kept moving on their trajectory (Figure 12). Therefore, in situations where
the robot takes precedence over surrounding pedestrians while still trying to avoid them, such
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as when ferrying emergency supplies through a crowded environment, SA-CADRL would be an
appropriate choice due to its direct and efficient paths, which still have some pedestrian avoidance
capabilities. In contrast, if the robot takes less precedence than pedestrians who share space with
it (such as a laundry collecting robot in a hospital), Social Forces may be an appropriate model,
since it yields to other agents with higher priority (such as healthcare workers or patients with
limited mobility).

Our findings are partly corroborated by previous work. The experiments conducted by the au-
thors of SA-CADRL [10] showed, in agreement with our findings, that SA-CADRL is faster than
ORCA in terms of path traversal time. However, they showed that SA-CADRL has shorter mini-
mum separation distance to pedestrians (analogous to our Closest pedestrian distance), while we
observe similar measurements in this metric (see Figure 6(a)). One difference between our experi-
ment and theirs is that they used a fixed two or four-agent setting where every agent follows the
same policy whereas our agent is considered invisible to the real world pedestrians. Apart from
traversal time and minimum separation distance, no additional metrics are mentioned in this work.
In terms of the Social Forces policy, some works highlighted its fast computation time [48] and
high success rates [12] similar to what we observed, but to the best of our knowledge, no prior
work evaluated the Social Forces model in the same experimental setting as ORCA or CADRL. The
lack of a descriptive suite of metrics and comparisons across different policies in a formal setting
further highlights the importance of our benchmark.

5.3 Considerations Around Pedestrian Trajectory Replay

SocNavBench uses a replay style simulation, meaning that simulated pedestrians execute pre-
recorded trajectories and are not responsive to the robot’s actions. This replay style method in-
troduces some limitations to the benchmark that we believe are mitigated in many scenarios. In
this section, we describe our assumptions about scenarios where SocNavBench works well, and
we detail the limitations of our benchmark. Additionally, we contrast the tradeoff between our
approach and a reactive pedestrian simulation.

The key assumption that underlies SocNavBench metrics is that interrupting pedestrians by
inducing deviations from their preferred trajectory is a sign of poor social navigation. For example,
the distribution of the Time-to-collision metric (Figure 6(b)) quantifies how much the navigation
algorithm puts the robot in “close to collision” scenarios. Algorithms that produce consistently
small times-to-collision have a higher likelihood of inducing responsive humans to deviate from
their originally preferred trajectory, and thus rank less well.

We believe the aforementioned assumption holds for pedestrians in larger, densely crowded
areas where typically flows of pedestrians emerge, such as a large atrium or wide sidewalk. In
such a situation, it would be less socially appropriate for a single agent (robot or human) to disrupt
these emergent pedestrian flows by cutting off pedestrians or trying to “shoot the gap” and failing.
Since our benchmark and curated episodes involves large outdoor maps with an average of 44
pedestrians per episode, this assumption is appropriate for the scenarios described in SocNavBench.

In contrast, consider a scenario involving a single pedestrian in a supermarket aisle or hospital
hallway. This individual pedestrian may walk down the middle of the aisle in the absence of a
second agent, but it is still socially acceptable for them them to move closer to one side to allow
an opposing agent to pass. In this case, the robot inducing a deviation in the pedestrian’s motion
is not a sign of poor social navigation; on the contrary, it reflects effective negotiations of space.
In these scenarios, SocNavBench metrics do not capture the social aspects of navigation well.

Our non-reactive agent assumption can still be useful for some real-world situations in which
reactive modeling may seem imperative. Consider smaller environments, such as the aforemen-
tioned hospital scenario—if the other agents in the scene take much higher precedence over the
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robot, then our approach of minimizing deviations of others at the expense of the robot is still use-
ful. Such a precedence order would be common in a hospital where a robot such as the TUG [46]
ferries laundry and other non-critical supplies between locations. In this situation, it would be un-
desirable for the TUG bot to interrupt the paths of critical operations such as care providers [39], pa-
tients being moved, or even individuals for whom path changes are expensive, such as wheelchair
users and assisted walkers.

We chose not to include pedestrian reactivity in this version of SocNavBench, mainly because re-
activity adds a different set of limitations, mainly in the form of introducing biases. To incorporate
reactive pedestrians, we would need to use a pedestrian movement model that can react to a sim-
ulated robot. Since no perfect pedestrian model exists, any model will include assumptions about
the nature of pedestrian walking policies, introducing biases on various axes including preferred
speeds, accelerations, acceptable closeness to others, and so on. Mitigating these biases requires
considerable human data and analysis, which would require a full, independent research project.
Additionally, such a benchmark would be prescriptive of a particular type of pedestrian navigation
as extensible to all situations. Instead, SocNavBench is descriptive and the metrics herein can be
interpreted as appropriate for the particular navigation context of candidate algorithms.

Given the above considerations, we understand we cannot fully simulate the behavior of real
reactive humans, so real-world experiments will still be necessary to provide a complete picture of
social navigation performance. Hence, SocNavBench can serve as a complementary tool to assist
in the development of social navigation algorithms by providing an interpretable performance
benchmark that is cheaper to run and more consistent across algorithms than experiments in the
real world, while being representative of real world pedestrian behavior—which is a well accepted
paradigm in human-robot interaction [47]. This will also allow users to identify which parameters
and algorithms to select prior to a real-world evaluation.

Although navigation scenarios in which it is important to model pedestrian reactivity are not
well represented in SocNavBench as presently constructed, the benchmark is built to be exten-
sible to these scenarios. SocNavBench has an object-oriented structure, and we provide a base
Human class, which is extended by a PrerecordedHuman class to achieve our pedestrian replay.
The update methods of this class can be overridden to support reactive pedestrians, if researchers
concerned with a particular type of pedestrian behavior have a policy model for it.

5.4 Future Work

In the future, we plan to add an option to enable partial reactivity in the pre-recorded pedestrians
so that they can react to imminent collisions by switching to a situationally appropriate pedestrian
motion model with the same goal as the original pre-recorded pedestrian. This will allow us to add
metrics to our evaluation suite that measure the number of times a particular social navigation
algorithm causes pedestrian route changes as well as the amount of deviation caused. For added
flexibility and ease of use in robot simulation, we also plan to provide a direct ROS interface via
ROS messages (current sockets allow python and C++ ROS nodes to interact with SocNavBench
via native types) as well as support for custom robots through a URDF specification.

6 CONCLUSION

We present SocNavBench, an integrated testing and evaluation framework for social navigation
algorithms. SocNavBench comprises a photorealistic simulator and a curated set of social navi-
gation scenarios based on real-world pedestrian trajectory data on which social navigation al-
gorithms can be tested. We also provide an implementation of a suite of metrics that are useful
for evaluating the performance of these algorithms along various criteria including robot navi-
gation efficiency and pedestrian disruption. Finally, we demonstrate the use of SocNavBench by
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evaluating a set of three existing social navigation methods. SocNavBench is publicly available at
https://github.com/CMU-TBD/SocNavBench.
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