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This paper describes a methodology for designing the material distribution and orientation of three-
dimensional non-uniform (heterogeneous) lattice structures. Recent advances in additive manufacturing
enable fabrication across multiple length scales. Homogenization-based design optimization and the
subsequent projection of the optimized design facilitate the synthesis of large-scale microstructures
that form lightweight bionic designs. The main aspects of this research are (a) the construction,
homogenization-based optimization, and projection of two types of lattices with different degrees of
anisotropy and (b) the parallelization of the analysis, optimization, and projection framework in order to
handle large-scale meshes and obtain high-resolution, heterogeneous lattice structures. Cubic and octet-
truss lattices were selected to demonstrate the ability of the framework to design different types of
lattices. A quadcopter arm and an internal wing structure were designed using the optimization and
projection framework, verifying its capability to synthesize heterogeneous lattice structures for complex
design domains. The ability to change the complexity of optimized microlattices using the characteristic
parameters of the lattice is discussed. The relationship between the lattice anisotropy and the optimized,
smoothed orientation is investigated, and the optimized design for each lattice is compared with those
obtained using conventional design optimization procedures.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

The remarkable properties of lattice structures have been uti-
lized in various applications [1–5]. The response of the lattice 
structure depends highly on the layout of the lattice. Topology op-
timization is an efficient method for determining the lattice layout 
across multiple length scales under given boundary conditions for 
an objective function and a set of constraints. While early topology 
optimization methods [6] were based on the homogenized prop-
erties of microstructures, later the solid isotropic material with 
penalization (SIMP) method [7] became more popular. In the SIMP 
method, the design space is restricted to obtain the solid–void 
macrostructural layout, which is more feasible for fabrication using 
conventional manufacturing techniques. Recent advances in addi-
tive manufacturing (AM) have enabled the use of homogenization-
based topology optimization to design microlattices and enhance 
the performance of the macrostructure [8–10]. In homogenization-
based topology optimization, the effective properties of microlat-
tices for various material distributions are derived using numer-
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ical homogenization. The optimization is performed on a coarse 
mesh, whereas the projection of the homogenized design (de-
homogenization [11]) is performed on a fine mesh [12]. This is one 
of the most appealing features of homogenization-based topology 
optimization compared with other multiscale optimization meth-
ods. For example, while SIMP can be used to design large-scale 
details [13], more than one billion elements are required in the 
optimization process of a wing-box structure. In contrast, as will 
be shown in the current study, homogenization-based topology 
optimization requires several million elements to perform the opti-
mization procedure, and only the optimized designs are projected 
on large-scale meshes.

Recently, the SIMP method with the Non-Uniform Rational Ba-
sis Spline (NURBS) hyper-surfaces framework has been used to 
perform topology optimization [14,15]. By using the NURBS hyper-
surfaces, a pure geometrical (CAD-compatible) descriptor is uti-
lized to reconstruct the topology. Therefore, the optimized design 
no longer depends on the quality of the mesh, and this can sig-
nificantly reduce the computational cost required by the SIMP 
method. Also, due to the geometrical properties of NURBS hyper-
surfaces, various geometric requirements, such as the minimum or 
maximum length scale [16,17], can be implemented in this frame-
work. Recently, this method has been used to solve optimization 
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Nomenclature

A Cell domain
C Stiffness tensor of the lattice material
CH (h) Homogenized stiffness tensor
e(u) Strains
F Compliance objective function
f External load vector
g Reciprocal lattice vector
(h1,h2,h3) Lattice parameterizations
ni Corresponding orthonormal bases of the orientation 

(θ1, θ2, θ3)

p Linear combination of primitive vectors
Pθ (θ) Penalty function
Q(θ) Rotation matrix
R(θ) Transformation matrix
r Position vector
u Displacement vector

V Volume of the design domain
Vmax
f Allowed volume fraction

ψn Binary lattice for the nth distance function
bnpqk Amplitude of the pqkth harmonic

ε(0)kl Macroscopic unit strain
χkl Displacement fields
vi Virtual displacement field
ρ(h) Density function
(θ1, θ2, θ3) Three Euler angles
γc Weights assigned to the compliance
γθ Weights assigned to the penalty function
�e Volume of each element
max(le) Maximum length of the edge of the elements
�pqk Mapping function
γi Local dilation
problems that involved requirements concerning structural dis-
placements [18], eigen-frequencies [19], and local stresses [20], 
and the method also has been used to solve multi-scale topology 
optimization problems [21].

The two-dimensional (2D) de-homogenization process first 
was introduced by Pantz and Trabelsi [22] for rank-two lami-
nates. Later, the process was enhanced by Groen and Sigmund 
[23] and by Allaire, Geoffroy-Donders, & Pantz [24] for a square 
cell with a rectangular hole. The 2D de-homogenization process 
was extended to three-dimensional (3D) applications by Geoffroy-
Donders, Allaire, and Pantz [25] and Groen et al. [11]. Geoffroy-
Donders, Allaire, and Pantz [25] utilized a cubic lattice to perform 
homogenization-based topology optimization, with a variational 
formulation constructed in each iteration to regularize the whole 
orientation matrix instead of individual orientation angles. Groen 
et al. [11] used a rank-three laminate to perform the optimiza-
tion, and they implemented a penalty function in the optimization 
objective to control the changes in orientation in neighboring ele-
ments.

Homogenization-based approaches have shown promise in the 
optimization of microlattices in order to enhance the perfor-
mances of macrostructures, but to date, they have not been ap-
plied in complex applications. The main reason is that, while 
homogenization-based optimization is performed on a moder-
ate size mesh, it is still computationally expensive when ap-
plied to a complex design geometry. Previously, parallel comput-
ing has been utilized for topology optimization [26–35] to ad-
dress computational efficiency, but to the best of the authors’ 
knowledge, it has not been used for homogenization-based op-
timization and the de-homogenization process. The primary goal 
of this study is to develop a framework for the homogenization-
based optimization and subsequent de-homogenization of large-
scale, 3D lattice structures. To this end, we implemented a par-
allel analysis method and a parallel optimization algorithm. The 
optimization and de-homogenization framework was developed 
using FreeFem++, a high-level, finite element programming lan-
guage written in C++ [36]. An overlapping domain decomposition 
method, which already has been implemented in FreeFem++, was 
utilized to solve the Helmholtz-type filtering [37] and elasticity 
equations. The method of moving asymptotes (MMA) [38] was 
used for the homogenization-based optimization. While MMA is 
not available in FreeFem++, a PETSc-based parallel version of MMA 
has been created by Aage et al. [39]. This parallelized MMA is 
linked to FreeFem++ via a C++ header file. Note that the paral-
lelized MMA is based on the non-overlapping domain decomposi-
2

tion method. Therefore, a set of macros based on the FreeFem++ 
integrated message passing interface (MPI) functions was created 
to re-assemble the global array and create a non-overlapping input 
for MMA.

To maximize the stiffness of the macrostructure under a volume 
constraint, the projected optimized lattices have various sizes, ma-
terial distributions, and orientations. Lattices with spatially varying 
strut thicknesses are called heterogeneous periodic lattice struc-
tures [40]. The second goal of this research was to utilize two types 
of lattices to synthesize lattice structures. This was accomplished 
by representing the periodic lattice using spatial harmonics. As 
we have shown for 2D cases [41,42], the decomposition of the 
spatial harmonics can be adapted to different types of cells and 
lattices, thus allowing any types of lattices to be implemented in 
the optimization and de-homogenization process. The relationships 
between the orthotropic properties of the lattice and the optimized 
structural layout, lattice orientation, and structural performance 
are studied.

The third goal of this research was to investigate the complex-
ity of the optimized layout. Although the proposed framework is 
capable of designing large-scale details, a designer may choose to 
reduce the complexity and observe the evolution of the optimized 
lattice design toward conventional, optimized designs. Thus, the 
relationship between the complexity of the optimized microlattices 
and the constraints on the parameters used to represent the lattice 
geometry was investigated.

Finally, the use of the proposed framework in aerospace appli-
cations is discussed. A quadcopter arm and internal wing struc-
tures were designed using a cubic lattice and an octet-truss lattice. 
The optimized lattice designs are compared with those obtained 
using conventional optimization methods. The complexity of the 
optimized lattice structures and the improvement in stiffness com-
pared with other designs are presented, and the application of 
each lattice is discussed.

This article is organized as follows: In Section 2, the parameter-
ization and construction of the selected lattices are discussed. In 
Section 3, the homogenization-based topology optimization frame-
work and the optimized homogenized results for a test case are 
presented. The de-homogenization procedure to project the lattices 
from optimized homogenized results and the comparison between 
the homogenized and projected designs are discussed in Section 4. 
In Section 5, the use of the current framework to design an inter-
nal wing-box is discussed. The conclusions based on the current 
framework are discussed in Section 6.
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Fig. 1. Construction of a unit cell: (a) Cubic lattice and the corresponding walls to generate distance functions: (b) ψ1, (c) ψ2, (d) ψ3, and the intersection of truncated 
distance functions: (e) ψ1 ∩ ψ2; (f) ψ1 ∩ ψ3; (g) ψ2 ∩ ψ3. (h) Octet-truss lattice and the corresponding walls to generate distance functions: (i) ψ1, (j) ψ2, (k) ψ3, (l) ψ4, and 
combinations of intersection and union of various truncated distance functions: (m) (ψ1 ∩ ψ2) ∪ (ψ3 ∩ ψ4), (n) (ψ3 ∩ ψ1) ∪ (ψ2 ∩ ψ4), (o) (ψ1 ∩ ψ4) ∪ (ψ2 ∩ ψ3).
2. Three-dimensional periodic cellular microstructures

The first step in the process of optimizing the 3D cellular struc-
ture is choosing the type of lattice. In this research, two types 
of lattices from the cubic group were selected, i.e., a cubic lat-
tice (Fig. 1(a)) and an octet-truss lattice (Fig. 1(h)). The former 
is a simple cubic lattice, and the latter is a face-centered-cubic 
lattice. Cubic lattices often have been used in compliance-based 
homogenized topology optimization under a single load case due 
to their strong orthotropic properties for intermediate densities 
[25,44]. However, to the best of the authors’ knowledge, there is no 
record of octet-truss lattices being used in homogenization-based 
optimization, so the current research provides an innovative frame-
work and results for future investigations using this lattice.

Periodic lattices can be described by a linear combination of 
three primitive vectors as p = m1a1 + m2a2 + m3a3, where m1, 
m2, and m3 are any integers, and a1, a2, and a3 are three dif-
ferent primitive vectors. The primitive vectors for a cubic lattice 
and an octet-truss lattice are (a1 = αe1,a2 = αe2,a3 = αe3) and (
a1 = α

2 (e1 + e2) ,a2 = α
2 (e2 + e3) ,a3 = α

2 (e1 + e3)
)
, respectively, 

where ei are canonical basis vectors, and α is the cell length.
3

The second step in the construction of a unit cell is to param-
eterize the lattice to describe the lattice geometry. Three charac-
teristic parameters were assigned to each unit cell in this research. 
The three parameters (h1, h2, h3) of the cubic lattice are related to 
the dimension of the hole along vector ei (Fig. 1(b)-(d)). The three 
parameters of the octet-truss lattice are related to the thickness of 
the strut along vector ei , ti =

√
3
2 hi , where ti represents the thick-

ness of the strut (Fig. 1(i)-(l)).
After each cell’s parameters have been chosen, the next step is 

to construct the unit cell configuration using a distance function. 
Then, the distance function is decomposed into spatial harmonics 
and represented using a Fourier series [41,45], after which the bi-
nary lattice can be expressed by:

ψn = Re

(∑
p

∑
q

∑
k

bnpqke
jgpqk.(r+p)/	

)
≤ hi, (1)

where Re is the real part of the Fourier series, j is the imaginary 
unit, bnpqk is the amplitude of the pqkth harmonic, and r is the 
position vector. 	 is a scalar to control the periodicity of the lat-
tice, and gpqk is the reciprocal lattice vector of the pqkth harmonic 
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Fig. 2. Effective Young’s modulus (GPa) of (a); (b) cubic lattices with h = (0.5, 0.5, 0.5) and h = (0.5, 0.5, 0.7); (c), (d) octet-truss lattices with h = (0.33,0.33,0.33) and 
h = (0.33, 0.33, 0.1); 25% relative density of (e) cubic lattice with h = (0.67, 0.67, 0.67) and (f) octet-truss lattice with h = (0.174, 0.174, 0.174); 40% relative density of 
(g) cubic lattice with h = (0.57, 0.57, 0.57) and (h) octet-truss cell with h = (0.274, 0.274, 0.274); 50% relative density of (i) cubic lattice with h = (0.5, 0.5, 0.5) and (j) 
octet-truss lattice with h = (0.33, 0.33, 0.33). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
(gpqk = pg1 + qg2 + kg3). The reciprocal lattice vector can be writ-
ten as [43]:

Cubic lattice: g1 = 2π

α
e1; g2 = 2π

α
e2; g3 = 2π

α
e3,

Octet – truss lattice:

g1 = 4π

α

(
1

2
e1 + 1

2
e2 − 1

2
e3

)
;

g2 = 4π

α

(
−1

2
e1 + 1

2
e2 + 1

2
e3

)
;

g3 = 4π

α

(
1

2
e1 − 1

2
e2 + 1

2
e3

)
(2)

In Eq. (1), bnpqk is obtained from the Fourier transform of the 
distance function [45], and ψn represents the lattice obtained for 
the nth distance function. For the cubic lattice, three distance func-
tions are used to generate the three walls of the lattice (ψn for 
n ∈ {1,2,3}), as shown in Figs. 1(b) - (d). The intersections of the 
truncated distance functions are generated, as shown in Fig. 1(e)-
(g), and the cubic lattice is given by ψ(h) = ∪1≤i≤ j≤3ψi ∩ ψ j . This 
process of generating the cubic lattice geometry was established 
previously in [25].

For the octet-truss lattice, four distance functions are utilized 
to generate four wall lattices (ψn for n ∈ {1,2,3,4}), as shown 
in Fig. 1(i)-(l). Then, combinations of the intersection and union 
of various truncated distance functions are implemented to gener-
ate three groups of lattices, each corresponding to a thickness, as 
shown in Fig. 1(m)-(o).

After establishing the geometry of the lattice, the homogenized 
elasticity tensor is found by applying numerical homogenization 
[46] over a finite element mesh of cell domain A created by the 
parameter h = (h1, h2, h3):
4

∫
A

Ci jpq

(
∂χkl

p

dyq
− ε(0)kl

pq

)
∂vi

∂ y j
dA = 0,

CH
ijkl(r) = 1

|A|
∫
A

Cmspq(r, y)
(
ε(0)kl
pq − εpq(χ

kl)
)

×
(
ε(0)i j
ms − εms(χ

i j)
)
dA

(3)

where ε(0)kl are the three macroscopic unit strains, χkl are the 
displacement fields, vi is the virtual displacement field, and C
is the stiffness tensor of the lattice material. The density func-
tion ρ(h) for the cubic lattice is given analytically by ρ(h) =
(1 −h1h2 −h1h3 −h2h3 +2h1h2h3). To determine the density func-
tion for the octet-truss lattice, the summation of the elements’ 
densities over the cell domain is calculated and divided by the 
volume of the domain, Then, the homogenized properties are cal-
culated for different parameters to build the response surface of 
CH(h). Once the response surfaces have been generated, the sensi-
tivity of the homogenized stiffness tensor CH(h) and density ρ(h)

with respect to hi are computed.
To illustrate the orthotropic properties of the two lattices, dif-

ferent sets of parameters (i.e., h1, h2, h3) are selected to plot the 
effective Young’s modulus surfaces in Fig. 2. A point on the surface 
is given the coordinates (Y1, Y2, Y3). The magnitude of the vec-
tor Y = Y1e1 + Y2e2 + Y3e3 formed by the coordinate (Y1, Y2, Y3) 
and the origin (0,0,0) yields the effective Young’s modulus in the 
direction of vector Y. The material Young’s modulus is 15 GPa, 
and the Poisson’s ratio is 0.35. Fig. 2(a) and (b) show the sur-
face plots of the effective Young’s modulus with h = (0.5, 0.5, 0.5)
and h = (0.5, 0.5, 0.7) for the cubic lattice. Fig. 2(a) implies that 
the cubic lattice with the same thickness of bars gives orthotropic 
material properties, and the highest Young’s modulus (4.64 GPa) 
occurs in the axial directions (e1, e2, e3). As shown in Fig. 2(b), 
when the size of the hole in the e3 direction is increased, the 
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Fig. 2. (continued)
thickness of the bars in the e2 and e1 (Fig. 1(f) and (g)) directions 
decreases, and the highest Young’s modulus of 4.20 GPa occurs in 
the e3 direction.

The effective Young’s modulus surface plots with h = (0.33,
0.33, 0.33) and h = (0.33, 0.33, 0.1) for the octet-truss lattice are 
shown in Fig. 2(c) and (d). Fig. 2(c) shows that the octet-truss 
lattice has orthotropic material properties with equal Young’s mod-
ulus in the axial directions when all bars have the same thickness. 
The highest Young’s modulus occurs in the diagonal directions, 
which are not perpendicular, while the lowest Young’s modulus 
occurs in the axial directions. Fig. 2(d) implies that reducing the 
thickness of the bar in surface e1 × e2 (the surface formed by vec-
tor e1, e2, shown in Fig. 1(o)) shifts the direction of the highest 
Young’s modulus from the diagonal directions to the sub-diagonal 
directions of surface e1 × e3.

Fig. 2(e)-(j) show the effective surfaces of the Young’s modulus 
for both lattices with densities of 25%, 40%, and 50%. In general, 
the cubic lattice has a larger maximum Young’s modulus than the 
octet-truss lattice for the same relative density. The ratios of the 
maximum Young’s modulus in the cubic lattice and the octet-truss 
cell are 2.83, 1.56, and 1.38 for the 25%, 40%, and 50% relative den-
sities, respectively. Therefore, at a lower relative density, the cubic 
lattice provides more stiffness than the octet-truss lattice. As the 
5

density increases, the advantage of the cubic lattice in terms of the 
maximum Young’s modulus decreases. In addition, Fig. 2 indicates 
that the effective Young’s modulus surfaces of the octet-truss lat-
tice are closer to a sphere for intermediate densities than those of 
the cubic lattice. This implies that the octet-truss lattice provides 
weaker orthotropic properties, and the properties are less sensitive 
to the orientation of the cell than the cubic lattice.

3. Homogenization-based topology optimization

Homogenization-based topology optimization is applied with 
the aim of minimizing the compliance. This can be formulated as:

min
h1,h2,h3,θ1,θ2,θ3

F (h1,h2,h3, θ1, θ2, θ3,u)

s.t. : K (h1,h2,h3, θ1, θ2, θ3)u = f,

: 1

V

∫
�

ρ (h1,h2,h3)d� − Vmax
f ≤ 0,

: 0 ≤ h1,h2,h3 ≤ 1,

: −4π ≤ θ , θ , θ ≤ 4π,

(4)
1 2 3
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where F is the compliance objective function, V is the volume of 
the design domain, and Vmax

f is the allowed volume fraction. Vec-
tor f represents the load applied, u is the displacement vector, and 
K is the global stiffness matrix. The orientations θ = (θ1, θ2, θ3) are 
three Euler angles, and the homogenized properties for a different 
cell orientation are obtained using the transformation matrix, R(θ):

Cθ (h, θ) = R(θ)T C(h)R(θ) (5)

The transformation matrix, R(θ), for a symmetric matrix is ob-
tained from a rotation matrix Q(θ) = [n1, n2, n3], where n1, n2, n3

are the corresponding orthonormal bases of the orientation θ =
(θ1, θ2, θ3). A local penalty function, Pθ (θ), is added to penalize 
sudden changes in neighboring elements [11]. Thus, the optimiza-
tion scheme in Eq. (4) becomes:

min
h1,h2,h3,θ1,θ2,θ3

J (h1,h2,h3, θ1, θ2, θ3,u)

=
( γc

F0

)
F (h1,h2,h3, θ1, θ2, θ3,u) +

(
γθ

P0
θ

)
Pθ (θ1, θ2, θ3)

s.t. : K (h1,h2,h3, θ1, θ2, θ3)u = f,

: 1

V

∫
�

ρ (h1,h2,h3)d� − Vmax
f ≤ 0,

: 0 ≤ h1,h2,h3 ≤ 1,

: −4π ≤ θ1, θ2, θ3 ≤ 4π,

(6)

where F0 and P0
θ are the initial compliance and penalty, respec-

tively, and γc and γθ are the weights assigned to the compliance 
and penalty functions. Penalty function, Pθ (θ), is given by:

Pθ =
n f∑
f =1

3∑
i=1

(
1− (ni(x f ,1) · ni(x f ,2))

4
)

(7)

The penalty function, Pθ (θ), is looped over all three normal 
vectors, n1, n2, n3, and all of the faces, n f , that connect the two 
elements ni(x f ,1) and ni(x f ,2). Equation (7) shows that the highest 
penalty is applied when the difference between the orientations of 
neighboring elements is π

2 , and no penalty is applied when the 
difference between the orientations of neighboring elements is 0 
or π . The sensitivity of the objective function and constraint is 
provided in Appendix A.

The homogenization-based optimization scheme (6) is solved 
using MMA [38]. The optimization algorithm was developed using 
FreeFem++ [36]. The state variables, u, are discretized by P1 finite 
element functions, and the design variables, including the charac-
teristic parameters h = (h1, h2, h3) and orientations θ = (θ1, θ2, θ3), 
are discretized using P0 finite element functions. Due to the large-
scale design problem, a parallel homogenized-based topology opti-
mization was developed. The available libraries within FreeFem++ 
for parallelizing the topology optimization include PETSc [47], 
METIS [48], and MPI. The parallelization in FreeFem++ is based 
on MPI, and the parallelized algorithm in the current study is 
organized as follows: (1) The graph partitioner METIS is used to 
decompose the initial mesh and add several extra layers to obtain 
a set of overlapping subdomains. (2) Distributed linear systems 
of PDEs are created, including the 3D elasticity equation and the 
Helmholtz-type filtering equation for characteristic parameters and 
related sensitivities. The linear systems are solved using a multi-
grid preconditioner [49] via PETSc. (3) At each iteration, a paral-
lelized version of MMA [31] is used to update the design variables. 
The penalty function Pθ (θ) and its corresponding sensitivity infor-
mation are constructed based on neighboring information. Thus, 
6

the parallelized optimization algorithm is constructed such that 
the cells on the boundary of a subdomain exchange information 
with neighboring subdomains. A cantilever beam test case was se-
lected to compare the result of homogenization-based optimization 
with the results reported by Geoffroy-Donders, Allaire, and Pantz 
[25]. The discussion is provided in Appendix B.

The arm of a quadcopter is optimized based on the proposed 
framework. The arm is one of four on the quadcopter (Fig. 3(a)). 
The dimensions are provided in Fig. 3(b). The displacements in the 
x and z directions are fixed for the green surface, and the displace-
ment in the x direction is fixed for the red surface. The displace-
ments in the y and z directions are fixed for the yellow surface, 
and the displacement in the y direction is fixed for the blue sur-
face. There is a hole through which the airscrew is assembled. This 
hole does not penetrate the entire thickness of the quadcopter; it 
starts from the top surface and has a unit depth. The material dis-
tribution surrounding the hole is fixed as solid, and an upward 
pressure of 1.68 is applied on the hole surfaces. The volume frac-
tion constraint is 25%. The initial characteristic parameters, hi , are 
assigned according to the volume fraction. The initial orientations 
are set to zero and, after solving the elasticity systems and finding 
the stresses, the orientations are aligned with the principal stress 
directions in the first iteration. Then, the characteristic parameters 
h = (h1, h2, h3) and orientations θ = (θ1, θ2, θ3) are updated using 
MMA in the following iterations. The homogenized properties for 
both lattices (as obtained in section 2) are utilized in the optimiza-
tion process.

The quadcopter model is discretized by 1.89 million tetrahedral 
elements. The optimized design is obtained in five hours using 
108 cores of intel Xeon CPU E5-2697 v4 2.3 GHz. In the case of 
the drone, the suitable weights for the compliance and penalty 
functions are γc = 1 and γθ = 2, respectively. The filtering size 
for homogenization-based topology optimization is 2.5 × max(le), 
where max(le) is the maximum length of the edge of the elements. 
For the case study of the quadcopter with 1.89 million elements, 
max (le) = 0.15. In addition, the quadcopter model with 570,000 
elements is optimized using the same filtering size (2.5 × 0.15). 
Table 1 shows that the optimized compliance is similar for the 
two meshes. The SIMP design also is obtained for the quadcopter 
test case. If the homogenization-based filter size is used in SIMP, 
then some features are omitted, and higher compliance is ob-
tained. Therefore, the SIMP optimization with a smaller filter size 
of 1.5 × 0.15 is also considered. The optimized SIMP designs with 
both filter sizes are shown in Table 1. The optimized SIMP designs 
with both filter sizes are displayed in Table 1. It is apparent that 
the cubic lattice optimized design has the lowest compliance, i.e., 
1797.21. The SIMP design with the 1.5 × 0.15 filter size provides 
lower compliance than the octet-truss lattice design. When the 
homogenization-based and SIMP optimized results are compared 
under the same filter size, the homogenized designs achieve sig-
nificantly better compliance, i.e., 32% and 15% lower for the cubic 
and octet-truss lattice optimized designs, respectively. These im-
provements exceeded the 7% reported for the 3D cantilever beam 
problem in [25].

To visualize the SIMP and homogenization-based optimized de-
signs, the material distribution for each design is transferred to 
the open-source Paraview application [50]. The SIMP optimized de-
sign with the 1.5 × 0.15 filter size is shown in Fig. 3(c) and (d). 
The homogenization-based optimized material distributions using 
the cubic and octet-truss lattices are shown in Fig. 3(e) and (f), 
respectively. Fig. 4 shows the distributions of the characteristic pa-
rameters, h, for the cubic and octet-truss lattices.

As shown in Fig. 3(e), the cubic lattice has a higher density 
close to the surfaces with Dirichlet and Neumann boundary con-
ditions. Intermediate densities appear in the middle of the top 
and bottom surfaces (as shown in Fig. 3(e)) and inside the design 



Z. Wang and A.Y. Tamijani Aerospace Science and Technology 120 (2022) 107258

Table 1
Comparison of final compliance for each test case.
Optimized design Compliance

Cubic lattice using 1.89 million elements with 2.5× 0.15 filtering size 1797.21
Cubic lattice using 540,000 elements with 2.5× 0.15 filtering size 1795.58
Octet-truss lattice using 1.89 million elements with 2.5× 0.15 filtering size 2125.82
SIMP design using 1.89 million elements with 2.5× 0.15 filtering size 2650.57
SIMP design using 1.89 million elements with 1.5× 0.15 filtering size 2020.32

Fig. 3. (a) Entire quadcopter model; (b) dimensions for the quadcopter arm; optimized SIMP material distribution for (c) the quadcopter arm and (d) half of the quadcopter 
arm; homogenization-based optimized material distribution for (e) the cubic lattice and (f) the octet-truss lattice.
domain. (See Fig. 4(a)-(c).) The large areas with intermediate den-
sities demonstrate the efficient use of the orthotropic properties of 
cubic lattices. The octet-truss lattice has a narrower density distri-
bution on the top and bottom surfaces (Fig. 3(f)) compared with 
the cubic lattice. This is because the cubic lattice has a higher ef-
fective Young’s modulus for the intermediate densities, and it can 
be oriented toward the perpendicular principal stress directions. 
This property enables the cubic lattice optimized design to achieve 
a lower compliance than the octet-truss lattice.

The optimized orientation for the cubic lattice coincides with 
the principal stress direction. In contrast, the weakest material 
properties of the octet-truss lattice occur when the cell is oriented 
7

toward the principal stress direction. Fig. 5(a) and (b) show the 
convergence history of compliance for 25% and 50% volume frac-
tions for both lattices. As can be seen in Fig. 5(a), the homogenized 
cubic lattice design experiences a significant reduction in compli-
ance when it is oriented with the principal directions. However, 
the plot for the octet-truss lattice shows an increase in compli-
ance in the first iteration when the axial directions are aligned 
with the principal directions, which is its weakest orientation. To 
address this issue, the orientation optimization for the octet-truss 
lattice with fixed material distribution can be performed to iden-
tify the initial orientation. Fig. 5(a) also shows that the change in 
compliance for the octet-truss lattice is less than that of the cubic 
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Fig. 4. Optimized characteristic parameter distributions for the half-quadcopter model. (a) h1, (b) h2, and (c) h3 for the cubic lattice design; (d) h1, (e) h2, and (f) h3 for the 
octet-truss lattice design.
lattice in the first iteration. This is because the octet-truss lattice 
has a weaker orthotropic property, so it is less sensitive to the 
cell orientation than the cubic lattice is. After the first iteration, 
the orientation is optimized based on the sensitivity of compli-
ance, and the octet-truss lattice is oriented away from the principal 
stress directions.

Next, the changes in compliance for 25% and 50% volume frac-
tion constraints are compared. As can be seen in Fig. 5(a) and (b), 
when both cells are aligned with the principal directions in the 
first iteration, the change in compliance for the 25% volume frac-
tion is larger than for the 50% volume fraction. This is because both 
cells exhibit stronger orthotropic properties at the lower density. 
This can be seen clearly in Fig. 2, especially for the cubic lattice. 
In addition, the optimized compliance for the octet-truss lattice 
with the 50% volume fraction constraint is lower than that for the 
cubic lattice, unlike the case with the 25% volume fraction con-
straint. There are two reasons for this, i.e., (1) the difference in 
the maximum effective Young’s modulus between the two lattices 
is smaller for the higher density and (2) the orientation is reg-
ularized during optimization. The penalty function, Pθ (θ), that is 
implemented in the optimization scheme (6) results in the regu-
larization of the optimized orientations. Although the stronger or-
thotropic properties of the cubic lattice are advantageous when the 
lattice is aligned with the principal stress directions, the smoothed 
orientations (θ1, θ2, θ3) of the cubic lattice do not necessarily fol-
low the principal directions in the entire design domain, especially 
for complicated design geometries. Coupled with the smaller dif-
ference in effective properties results in the octet-truss lattice ex-
hibiting better performance, as shown in Fig. 5(b).

4. De-homogenization using Fourier series

After obtaining the optimized orientations, the next step is to 
determine the coherent orientations, θ∗ . A π jump is allowed for 
each direction during the optimization. Although the difference of 
π does not affect the orientation of the cell, it causes an issue 
with the construction of the mapping functions to generate con-
tinuous lattice structures. Thus, the sign of the direction for each 
element is evaluated to create a coherent direction in the design 
8

domain. Positive signs of nx, ny , or nz were selected as the ref-
erence direction, and the direction of each element was changed 
by π according to the reference direction. Then, the coherent di-
rection, n∗

i , is created. The reciprocal lattice vector is updated as 
g(θ∗) = Q(θ∗)g, where Q(θ∗) = [n∗

1, n
∗
2, n

∗
3]. Note that the regular-

ization method mentioned above does not address the problem 
of singularities. For the quadcopter test case, the material in the 
vicinity of the hole is considered to be solid. Thus, for the test 
cases studied in this research, no orientation singularities were 
encountered in the regions with intermediate densities. If a singu-
larity occurs, then the methods suggested in [51,52] can be used.

A mapping function, �pqk , is obtained based on the updated 
reciprocal lattice vector:

∇2�n
pqk (r) = ∇.gnpqk

(
θ∗)/	 on D,

∂�n
pqk

∂�
= gnpqk

(
θ∗) · η on ∂�,

(8)

where η is the normal vector to the boundary, ∂�. The condition 
∇�n

pqk × gnpqk = 0 is applied to ensure that the mapping function 
is unique. To preserve the original geometry of the cell, local dila-
tion factors [25] are used. A local dilation factor, γi , is calculated 
for each n∗

i , and the new direction n∗
i is calculated as n∗

i = eγin∗
i . 

Then, the new reciprocal lattice vector gnpqk(θ
∗
) is updated as 

gnpqk(θ
∗
) = Q(θ

∗
)gnpqk , where Q(θ

∗
) = [n∗

1, n
∗
2, n

∗
3]. The variational 

formulation used to calculate γi is [25]:∫
D

(∇γi ∧ n∗
i + ∇ ∧ n∗

i

) · (∇t ∧ n∗
i

)

+ α2
1

(∇γi · n∗
i

) (∇t · n∗
i

) + α2
2γit = 0, (9)

where α1 and α2 are penalty coefficients. Additional details for the 
development of Eq. (9) and related penalty coefficients are pro-
vided in [25]. For the quadcopter test case, α1 = 0.5 and α2 = 0.1. 
The next step is to create the binary lattices by using the mapping 
functions:
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Fig. 5. Convergence history of compliance for the quadcopter model: (a) with 25% volume fractions and (b) with 50% volume fractions.

Fig. 6. Regularized directions: (a) n∗
1, (b) n∗

2, (c) n∗
3 for the cubic lattice and (d) n∗

1, (e) n∗
2, (f) n∗

3 for the octet-truss lattice.
ψn = Re

⎧⎨
⎩

∑
pqk

bnpqk exp
(
j�n

pqk (r)
)⎫⎬
⎭ ≤ hi (10)

The parallelized de-homogenization algorithm is implemented 
in FreeFem++. All the calculations for solving PDEs are applied 
on the coarse mesh used for the optimization, while the de-
homogenization via Fourier series is applied on a fine mesh. The 
fine mesh for the quadcopter case has approximately one billion 
elements.

To display the diffeomorphism of each design, the three reg-
ularized directions, i.e., n∗

1, n
∗
2, n

∗
3, of the cubic lattice and octet-

truss lattice are displayed in Fig. 6(a)-(f). There is a singularity in 
the region that surrounds the hole. Fortunately, this is not an issue 
during the projection, as the density is solid near the hole.

To illustrate the morphology of each design, the projected de-
signs with the cubic lattice (	 = 0.5) and octet-truss lattice (	 =
1.0) with constant parameters h are plotted in Fig. 7(a) and (c), 
respectively. The lattice structures with optimized material distri-
butions for the cubic lattice and octet-truss lattice are shown in 
Fig. 7(b) and (d), respectively.

The displayed lattice structures have rough surfaces, which are 
inherited from the finite mesh. They also contain disconnected 
floating members. Therefore, additional post-processing steps are 
required to create a smooth lattice structure. The first step is to 
decide the smallest periodicity, t f , of each cell in Cartesian coordi-
nates. The minimum periodicity of the cubic lattice is equal to 	. 
The minimum periodicity of octet solids is 

√
3
8 	, as the octet-truss 

lattice has a thickness of ti =
√
3
2 hi , and four complete periodic-

ity points exist in one unit cell. Thus, the modified periodicities of 
9

the cubic lattice and octet-truss lattice are 	e−γ and 
√
3
8 	e−γ , re-

spectively. The second step of post-treatment is motivated by the 
process implemented in [24]. In this step, the design domain D
is divided into two subsets, i.e. D1 and D2. D1 is the subset of 
cells with sizes t f that are less than twice the manufacturable 
thicknesses hmin (t f < 2hmin). Voids and solids cannot coexist in 
subset D1. The parameter hi in subset D1 is modified to obtain h̃i , 
where h̃i = 0 if the cell density ρ ≥ 0.5 and h̃i = 1 if the corre-
sponding cell density is less than 0.5, i.e., ρ < 0.5. Subset D2 is 
the complementary set of D1 (t f ≥ 2hmin). The following steps are 
applied in this subset: (a) h̃i = hmin

t f
if ρ > ρth and t f hi < hmin; (b) 

h̃i = 0 if ρ < ρth . The final post-processing step is to smooth the 
surfaces and remove the floating members of the projected solids. 
These steps were accomplished in MeshLab [53], which is an open-
source tool used for mesh processing. Fig. 7(c) and (f) show the 
projected and post-processed cubic and octet-truss lattices.

5. Lattice structure designs for a generic supersonic fighter wing

The lattice design framework is applied to the more complex 
test case of a generic supersonic fighter wing. This wing was an-
alyzed previously, and its internal structures were optimized by 
Locatelli, Mulani, and Kapania [54]. The details of the geometry of 
the wing are provided in Fig. 8(a) and Table 2. The dimensions of 
the wing shown in Fig. 8(a) are different from the wing planform 
reported in [54], because (1) the model was scaled by a factor of 
5.2 and (2) a 2.59-mm thickness was attributed to the skin. The 
thickness of the skin was not shown in [54], and including it in 
the model resulted in extending the chord by 11.03 mm at the 
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Fig. 7. Projected lattice structures for (a) h = (0.8,0.8,0.8) and (b) optimized material distribution for cubic lattice with 	 = 0.5; (c) h = (0.1, 0.1, 0.1) and (d) optimized 
material distribution for octet-truss lattice with 	 = 1.0. Post-processed projected lattice structures for (e) cubic lattice and (f) octet-truss lattice.
Table 2
Geometry parameters of the generic supersonic fighter 
wing.

Dimension Value

Semi-span (mm) 459.33
Root chord (mm) 535.51
Tip chord (mm) 207.86
Root airfoil thickness (mm) 32.26
Tip airfoil thickness (mm) 12.64
Quarter chord sweep angle (◦) 24.03

leading edge and 35.44 mm at the trailing edge so that the top 
and bottom skins met along a single edge.

The topology and size of the internal structures of the wing-
box were designed previously using curvilinear spars and ribs 
[54], as shown in Fig. 8(b). Although the innovative idea of curvi-
linear supporting structures enhanced the structural performance 
(i.e., stiffness, strength, and buckling), the idea stemmed from the 
traditional design using spars and ribs as supporting structures. 
Since the fabrication of a wing-box with curvilinear spars and ribs 
10
requires an advanced manufacturing technique, such as additive 
manufacturing, a new lattice-based design paradigm may unlock 
the full potential of emerging manufacturing techniques. Recently, 
a computational morphogenesis framework based on SIMP was de-
veloped and tested for the design of a wing-box structure [13]. The 
framework can obtain structural details at various length scales, 
but it requires more than one billion elements during the opti-
mization process. In addition, while the complexity of the opti-
mized design can be controlled using the size of the filter in the 
SIMP optimization, the evolution of the optimized design from 
the spars and ribs-like design to a more complex bionic design 
is not straightforward. Homogenization-based topology optimiza-
tion addresses both issues. It requires fewer elements during the 
optimization process, and only the final design is projected on a 
fine mesh. As for the complexity, the design domain can be re-
stricted by changing the upper and lower limits of the characteris-
tic parameters to obtain a spars and ribs-like design, with a more 
complex lattice design emerging as the limits are relaxed. This ca-
pability allows the designer to obtain the optimized design in a 
reasonable computational time and with the desired complexity.
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Fig. 8. (a) Generic supersonic fighter wing dimensions (mm); (b) curvilinear design for spars and ribs [54]. Optimized design for cubic lattice for fixed h3 = 0.05: (c) optimized 
material distribution, (d) projected cubic lattice design with h = (0.9, 0.9) and 	 = 30, (e) post-processed projected cubic lattice design.
The wing model is discretized by 3.8 million tetrahedral ele-
ments. The wing root is clamped, and an upward uniform pres-
sure of 3.98 × 10−6 N/mm2 is applied on the top and bottom 
surfaces. The volume fraction constraint is 40%. To obtain a less 
complex design with fewer features, the parameter h3 in the z
direction (see Fig. 1(a) and (d)) is fixed at 0.05 during the opti-
mization process. This restriction provides continuous surfaces in 
the z direction, similar to the spars and ribs design. For the initial 
directions, two Euler angles of θ2 and θ3 are set to zero and θ1 is 
obtained from the principal directions. This restriction on the ini-
11
tial directions ensures that the initial lattices are along the global 
z axis. Then, during the optimization, the three Euler angles are 
freely rotated in space. The optimized material distributions for 
the cubic lattices with the abovementioned restrictions are shown 
in Fig. 8(c). It can be seen that the high density region exists only 
in the middle of the wing, and the width of this region decreases 
from the root to the tip of the wing. In addition, the density is 
higher near the top and bottom surfaces in the z direction. The 
projected optimized cubic lattice design on a 2.5-billion-element 
fine mesh with constant parameters h = (0.9, 0.9, 0.05) for 	 = 30
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Fig. 9. Optimized lattice design for wing-box structures. Cubic lattice design: (a) optimized material distribution, (b) projected design with h = (0.9, 0.9, 0.9) and 	 = 7, (c) 
post-processed projected design. Octet-truss lattice design: (d) optimized material distribution, (e) projected design with h = (0.1, 0.1, 0.1) and 	 = 15, (f) post-processed 
projected design.
is shown in Fig. 8(d). The constant projected solids have a similar 
morphology to the curvilinear spars and ribs design [54]. Further, 
the proposed lattice structure design framework is capable of ef-
ficient material utilization with the restricted lattice morphology. 
The post-processed projected design with the optimized material 
distribution is shown in Fig. 8(e). It should be noted that, while 
compliance is minimized subject to a volume constraint in the cur-
rent study, the minimum weight design under buckling and stress 
constraints are considered in [54].

Next, the design parameters were relaxed to obtain a more 
complex design with large-scale details. The optimized material 
12
distribution for the cubic lattice is shown in Fig. 9(a). A compari-
son of the restricted and relaxed cubic lattice designs in Fig. 8(c) 
and Fig. 9(a) shows that the density is distributed over a larger re-
gion in the relaxed design. This is because the cubic lattice with 
three parameters has greater freedom to distribute material more 
efficiently. The additional design freedom results in an 8% improve-
ment in compliance compared with the restricted design. (See 
Table 3.) In terms of orientation, Fig. 9(b) shows that the cubic 
lattice with three parameters has a more complicated morphology 
than the restricted cubic lattice design. The post-processed pro-
jected cubic lattice design with the optimized density is presented 
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Table 3
Comparison of compliance in optimized lattice designs for the wing test case.
Optimized design Compliance

Cubic lattice design with fixed h3 = 0.05 1.41
Cubic lattice design with three characteristic parameters 1.29
Octet-truss lattice design with three characteristic parameters 1.08

in Fig. 9(c). A smaller periodicity (	 = 7) compared with the re-
stricted lattice design (Fig. 8(c)) ensures the connectivity of the 
projected lattices.

Fig. 9(d) shows the optimized distribution of material with the 
octet-truss lattice. The comparison of the optimized material dis-
tributions of the cubic and octet-truss lattices showed that the 
latter has a smaller intermediate-density area. However, as can be 
seen in Table 3, the compliance of the optimized octet-truss lat-
tice design is lower than that of the cubic lattice. The same trend 
was observed for the quadcopter case with the 50% volume frac-
tion constraint. The wing-box design domain is complex, and the 
smoothed optimized directions deviate from the principal stress 
directions. When the orientation is regularized during optimiza-
tion, the lower sensitivity of the octet-truss lattice to the orienta-
tion results in 23% and 8% improvement in stiffness compared to 
the cubic lattice designs.

The projected octet-truss design with the optimized morphol-
ogy for a constant parameter h = (0.1, 0.1, 0.1) is illustrated in 
Fig. 9(e). Fig. 9(f) shows the post-processed projected design with 
the optimized material distribution.

It should be noted that the wing test case in the current study 
is an academic benchmark problem. The aerodynamic load, multi-
ple load cases, the fluid-structure interaction, and several impor-
tant constraints, such as stress, buckling, flutter, and divergence 
[54–57], are not considered in this study. Another important note 
is that, while the small features (solids and holes) that are less 
than certain thresholds as well as the floating members are re-
moved in the post-processed step, other additive manufacturing 
issues, such as sagging [58] and powder trapping [59], are not ad-
dressed here.

6. Conclusion

In this paper, we have described a framework for designing the 
topology and morphology of large-scale 3D heterogeneous lattice 
structures. The parallelization of the analysis, optimization, and 
projection framework provide the capability to design lattice struc-
tures for complex design geometries. The use of a Fourier series 
representation in the construction of the unit cells enables the 
framework to adapt to various types of lattices. The optimized 
designs for a quadcopter arm and internal wing structures using 
cubic and octet-truss lattices were compared. For the quadcopter 
arm, the cubic lattice provides better stiffness when the optimized 
directions are close to the principal stress directions and the de-
signed volume fraction is low. Increasing the relative density de-
creases the difference in the maximum effective Young’s modulus 
between the two lattices. Thus, increasing the volume constraint 
means that the octet-truss provides greater stiffness. Another im-
portant insight is that the regularization of orientations has less 
effect on the optimized directions for simple design domains be-
cause there are fewer irregularities in the optimized orientation. 
For a complex design domain, such as a wing-box, the regularized 
orientation is further away from the principal stress direction. The 
octet-truss lattice has weaker orthotropic properties than the cubic 
lattice, so it is less sensitive to the orientation of the cell. Thus, the 
octet-truss lattice provided better stiffness in the wing case study. 
In addition to implementing various lattices, the framework that 
was developed allows control of the complexity of the optimized 
design. The design domain can be restricted by changing the upper 
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and lower limits of the parameters of the lattice characteristic. This 
may be used, for example, to obtain a spars and ribs-like design 
for the internal structure of the wing and subsequently relax the 
limits to obtain a more complex lattice design. Although the quad-
copter arm included a hole, it was close to the boundary of the 
design domain, and the density of the region close to the hole was 
solid. Thus, there was no effect on the optimized lattice structures. 
In addition, no singularities were observed in the optimized direc-
tions for the test cases studied in this research. However, other test 
cases may include both non-simply connected domains and sin-
gularities [51,52], and so these issues must be considered in the 
future development of the proposed framework. The aeroelastic 
analysis and stress and buckling constraints were not considered 
in the optimization of the internal structure of the wing, and they 
are subjects for future studies.
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Appendix A. Sensitivity analysis

The sensitivity of the objective function and constraint is given 
as Eq. (11)

∂J
∂hi

= −
(

γc

F0
e (u)T R (θ)T

∂C (h)

∂hi
R (θ)e (u)

)
�e,

∂J
∂θi

= −2

(
γc

F0
e (u)T R (θ)T C (h)

∂R (θ)

∂θi
e (u)

)
�e

+
(

γθ

P0

( n f∑
f =1

3∑
i=1

(−4 · ((ni(χ f ,1)ni(χ f ,2))
3)

·
(

∂((ni(χ f ,1) · ni(χ f ,2))

∂θi

))
,

(11)

where e (u) is the strains vector, and �e is the volume of each 
element. The sensitivity of the volume fraction of the cubic lattice 
can be given analytically as:

∂

∂h1

∫
�

ρ (h1,h2,h3)d� = − (h2 + h3 − 2h2h3)�e,

∂

∂h2

∫
�

ρ (h1,h2,h3)d� = − (h1 + h3 − 2h1h3)�e,

∂

∂h3

∫
�

ρ (h1,h2,h3)d� = − (h1 + h2 − 2h1h2)�e.

(12)

The sensitivity of the volume fraction of the octet lattice is ob-
tained from the response surface ρ(h).

Appendix B. Cantilever beam test case

The cantilever beam test was optimized, and the results were 
compared with those reported by Geoffroy-Donders, Allaire, and 
Pantz [25]. The domain size is given as 15 × 10 × 5 and the upper 
bound of the volume fraction is 35%. A cubic lattice was selected, 
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Fig. 10. (a) Convergence history of the compliance; (b) homogenization-based optimized material distribution for the cantilever beam test.
Fig. 11. The projected cubic lattice for cantilever beam test case with 	 = 0.9.

Table 4
Initial and optimized compliance (F0 and F∗) and penalty (P0

θ

and P∗
θ ) for various weights (γc , γθ ).

(γc , γθ ) (F0,F∗) (P0
θ , P

∗
θ )

(γc = 1, γθ = 5) (64.81, 22.32) (48404, 3358)
(γc = 1, γθ = 0.5) (64.81, 19.24) (48404, 3996)
(γc = 1, γθ = 0.05) (64.81, 18.40) (48404, 5452)

Table 5
Compliance and volume fraction of the projected cubic lattice with various lattice 
periodicity parameters, 	.

Periodicity parameter, 	 Projected volume fraction Projected compliance

	 = 1.8 33.57% 43.7
	 = 1.35 33.79% 32.35
	 = 0.9 34.11% 23.996
	 = 0.5 34.02% 21.01
	 = 0.2 34.05% 19.89

and the homogenized properties reported in Section 2 were imple-
mented in the optimization process. Both the type of lattice (cubic 
lattice) and the properties of the cell material are similar to those 
utilized in [25]. The design domain was discretized by 39,600 and 
3,604 tetrahedral elements in this study and in [25], respectively. 
In order to investigate the effect of the weights assigned to the 
compliance and penalty functions (γc and γθ ) on the optimized 
design, three sets of weights were considered, and the initial and 
optimized values for compliance and penalty function are reported 
in Table 4. As can be seen, a large ratio of γc

γθ
yields discontinuous 

orientation vector fields and a large value for Pθ , while a small 
ratio of γc

γθ
makes the algorithm susceptible to finding local mini-

mums for compliance. The suitable ratio of γc
γθ

varies for different 
test cases. It is good practice to obtain the optimized designs for 
various ratios of γc

γθ
using a coarse mesh and determine the ap-

propriate weights. The appropriate weights for this test case were 
γc = 1 and γθ = 0.5, which resulted in an optimized compliance of 
14
19.24 and a penalty of 3996. The initial compliance of 64.62 and 
the optimized compliance of 20.93 were reported in [25], and the 
results of the current framework were close to those values.

The convergence history of the compliance and the homoge-
nized design of the cantilever beam test case are shown in Fig. 10. 
Fig. 10(b) shows a more uniform distribution of material compared 
to the results shown in [25], which could be due to the use of finer 
mesh in the current study.

The homogenized design is projected by using 9 million tetra-
hedral elements for various periodicity parameters (	). Fig. 11
shows the projected design for periodicity parameters 	 = 0.9. The 
projected designs were analyzed using 35 cores of Intel Xeon(R) 
CPU E5-2680 v4 with 2.40 GHz, and the results are reported in 
Table 5. The computational and communication time for each anal-
ysis was 25 minutes. Table 5 shows that the volume fraction of 
each case was close to the designed volume fraction, i.e., 35%. 
However, the projected compliance varied for different periodic-
ity parameters. Obviously, a smaller 	 results in the compliance of 
the projected design being closer to the homogenized design.
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