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A B S T R A C T   

Thousands of images and videos are collected from construction projects during construction. These contain 
valuable data that, if harnessed efficiently, can help automate or at least reduce human effort in diverse con
struction management activities such as progress monitoring, safety management, quality control and produc
tivity tracking. Extracting meaningful information from images requires the development of technology and 
algorithms that enable computers to understand digital images or videos, replicating the functionality of human 
visual systems. This is the goal of computer vision. This review aims at providing an updated and categorized 
overview of computer vision applications in construction by examining the recent developments in the field and 
identifying the opportunities and challenges that future research needs to address to fully leverage the potential 
benefits of Computer Vision. We restrict the focus to four areas that can benefit the most from computer vision - 
Safety Management, Progress Monitoring, Productivity Tracking and Quality Control.   

1. Introduction 

An image is said to be worth 1000 words. More than 400,000 images 
are captured from a typical construction project (~17,000 Sft.) during 
its construction phase [1]. This number is rising with the advancement 
of technology and the ever-increasing use of camera-equipped devices 
such as drones, ground robots, smartphones, and tablets on construction 
sites. This enormous volume of images and videos contains a treasure of 
valuable data, which can potentially be harnessed for a variety of project 
management activities such as surveillance, progress monitoring, safety 
management, quality inspections, resource utilization management and 
others. Traditionally, images and videos captured on construction sites 
have been used for documenting and tracking the status of the project 
[2], documenting the safety and quality inspections [3], keeping a visual 
timeline of site progress, providing evidence against damage claims [4], 
capturing workmanship, and providing field updates to the office. In 
addition, construction projects use surveillance cameras on the jobsite 
boundary for security purposes [5]. In most cases, the images and videos 
are manually examined, and their use has been largely been limited to 
documentation and record-keeping [6,7]. More importantly, only a 
limited amount of information is extracted and used from these images. 
For example, the images collected by surveillance cameras are pre
dominantly used to record any unauthorized intrusion to the site [5]. 

However, the visual data captured by surveillance cameras contains 
other useful information as well, such as the progress of work over time 
[8], safety compliance by workers [9], idle time of equipment, material 
usage and much more, which remains largely unused. To prevent this 
underutilization of data, there is a need for efficient technology to 
automatically extract and analyze valuable and meaningful information 
captured in images and videos. In recent years, there has been a para
digm shift in construction and the role of visual data is changing from 
being a passive instrument of documentation and record-keeping to an 
active tool in project management. For example, images and videos are 
used to detect defects and assess conditions of concrete and asphalt in 
civil infrastructures [10,11]. Similarly, data from images are processed 
to automatically detect whether or not workers are wearing their hard 
hats [12,13]. Such automated systems help construction managers make 
informed decisions for efficient safety, productivity, and quality man
agement. However, automated extraction of information from images 
and videos is a challenging task [14,15] and requires the development of 
technology that enables a computer to understand an image by detect
ing, identifying, and classifying various objects present in an image, just 
like a human vision system. This is the goal of computer vision (CV), 
which is an interdisciplinary field aimed at developing algorithms to 
enable computers to understand digital images or videos, replicating the 
functionality of human visual systems [16,17]. A typical computer 
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vision system accepts 2D images (or videos) as an input, transforms it 
into a mathematical form (using pixel values), analyzes this data to 
recognize meaningful patterns, distinctive features, spatial arrange
ment, among other things, and provide a description of the image as 
detailed as required by the problem [18]. Fig. 1 shows a typical pipeline 
of a computer vision-based system. 

Computer vision techniques are widely used in todays' world in 
almost every field. The most common example is perhaps the face 
detection ability of our smartphone cameras. Popular self-driving cars 
also use various vision-based techniques such as Simultaneous Locali
zation and Mapping (SLAM) and object recognition to make decisions 
while driving autonomously on roads [16]. The other examples include 
the detection of cancer cells from CT and PET scans [19], detection and 
classification of skin lesion [19] in medicine, prediction of traffic speed 
in transportation, quality inspection of packaging [20], identification of 
defective products and remote inspections of pipelines and equipment in 
manufacturing [21]. In the mars exploration mission, researchers used 
stereo vision and visual odometry for rover navigation and feature 
tracking for horizontal velocity estimation of the landers [22]. In con
struction, computer vision is increasingly being used for safety man
agement [10], quality inspections [23], productivity monitoring [24], 
and navigation of unmanned ground and aerial vehicles [6]. Some of the 
examples include estimation of worker's pose [25], detection of PPE 
[26,27], comparing actual vs planned work [28], and conducting the 
quality inspection of critical infrastructure [14]. 

1.1. Computer vision in construction 

Construction is on the path of increasing automation. Owing to the 
large amount of visual data it generates, the construction industry can 
greatly benefit from the automatic extraction and analysis of this useful 
data. Computer vision can help automate several construction man
agements tasks that currently require extensive human involvement for 
visual examination. This includes safety monitoring (E.g., detecting non- 
compliance to PPE requirement), quality inspections (E.g., detecting 
installation defects), progress monitoring (E.g., comparing as-built 3D 
geometry with as-planned 3D/4D model), navigation assistance (E.g., 
proximity alerts for construction vehicles), automated/ robotic con
struction (E.g., controlling robotic arms of painting or brick laying 
robot). Even though vision-based techniques are increasingly being used 
in construction, there is still significant untapped potential in this area 

that future research needs to explore. 

1.2. Goals and objectives 

This study aims at reviewing the current state of computer vision 
(CV) in construction from a holistic approach and identifying the op
portunities and challenges that future research needs to address to fully 
leverage the potential benefits of CV in construction. First, we discuss 
the most common and important computer vision tasks relevant to 
various construction management applications. Second, the study aims 
to provide an updated overview of computer vision applications in 
construction that captures the recent developments in this rapidly 
evolving area. To maintain a homogeneous set of contributions, we 
restrict the focus to the use of different computer vision techniques in 
four areas within construction that can most benefit from computer 
vision. These are progress monitoring, safety monitoring, quality control 
and automated construction. Third, the study aims to structure the ob
tained information in a way that computer vision research in different 
areas can easily be linked to each other and compared on multiple facets, 
which will facilitate future research works within a specific researcher's 
area of interest. The paper also identifies specific challenges and future 
research opportunities for the integration of computer vision in 
construction. 

1.3. Point of departure 

As of January 2021, there have been a few important reviews of 
computer vision research in construction. [29] conducted a compre
hensive review of computer vision applications in construction safety 
assurance. In addition, [30] conducted a scientometric review of com
puter vision research for construction applications and [31] mapped the 
computer vision research in construction in 2019. While all three works 
have made valuable contributions, the current work offers different 
contributions. For example [29] focused only on safety assurance, 
whereas this work takes a holistic approach to review computer vision 
applications for different construction management activities not 
limited to any one area. Secondly [30,31] predominantly focused on 
mapping the published work on computer vision in construction. The 
results provide trends of published work, author and co-other analysis to 
identify researchers involved in such research, geographic mapping of 
published work etc. In contrast, the current work focuses on the 

Fig. 1. Typical computer vision process.  
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application of different computer vision tasks in different areas of con
struction management. While studies [30,31] focused more on “who” 
and “where”, the current study focuses on “what” and “how” of the 
computer vision research in construction. Compiling literature in this 
manner enables the identification of issues, opportunities and challenges 
that are not currently well covered and examined. This study lays 
foundation work for future research aimed at approaching computer 
vision in construction from a holistic perspective or focusing on devel
oping computer vision applications in specific areas within construction. 

1.4. Contributions 

This paper provides the latest review of computer vision-based 
technology in construction to evaluate the current state of computer 
vision applications, identify challenges in implementation and future 
research opportunities. The paper categorizes the applications by 1) 
different areas of construction management (i.e. safety management, 
progress monitoring, quality control & productivity analysis) and 2) 
different computer vision tasks (such as classification, object recogni
tion, object tracking, action recognition). 

1.5. Organization 

The paper is organized as follows: We start with Section 1 that dis
cusses the goals of the review and its point of departure from similar past 
works. Section 2 defines and provides a concise explanation for various 
computer vision tasks that are commonly used in construction. Section 3 
presents the review methodology and discusses the inclusion and 
exclusion criteria used to filter the literature. Section 4 presents the 
review findings, and the subsections categorize the applications by 
different areas of construction management. This is followed by Section 
5 that highlights the challenges and opportunities of computer vision 
techniques in construction from the holistic perspective. Finally, Section 
6 presents the conclusion. 

2. Background 

Computer Vision (CV) is a broad field that encompasses several 
distinct vision techniques accomplished for different objectives and 
predictions. For example, it can be used to create a digital twin of a 
construction (3D Scene Reconstruction) or used to detect hazards on 
construction sites (object detection) or used to find an obstacle-free path 
for an autonomous ground vehicle (segmentation). Modern computer 
vision techniques can be traced back to an ambitious MIT summer 
project by Seymour Papert and Marvin Minsky in 1966 [18]. The goal of 
this project was to build a system that can analyze images and identify 
objects in these images. Even though the goal was not achieved, it is 
often said to have laid the foundation of modern-day computer vision 
[18]. In 1979, Fukushima [17] proposed the Neocognitron, which 
included a hierarchical, multilayered artificial neural network used for 
handwritten character recognition and other pattern recognition tasks. 
It served as the inspiration for convolutional neural networks (CNN) 
developed in 1980. A convolutional neural network consists of multiple 
layers of artificial neurons, which are mathematical components similar 
in functioning to biological neurons [18]. Unlike previous systems, 
where the image was processed holistically, each layer of a CNN extracts 
specific features from the pixels of the images. For example, the initial 
layers detect basic features, such as vertical and horizontal edges, deeper 
layers use these simple features to detect more complex features such as 
corners and basic geometric shapes, and the final layers use these 
complex features to detect specific entities or objects of our interest such 
as faces, doors, and cars [19,32,33]. While CNNs performed excep
tionally well compared to previous attempts, the amount of data and 
computational resources needed to tune and use CNNs was extremely 
high, limiting their use to banking and postal services only [34]. Hence, 
most computer vision problems used machine learning techniques such 

as support vector machines (SVM) and random forest [32]. These ma
chine learning approaches utilize “features,” (a measurable piece of data 
that is unique to this specific object such as distinct pattern, color etc.) 
and use a statistical learning algorithm to detect objects in images or 
classify images based on these features. However, identifying the fea
tures specific to objects requires enormous human and computational 
resources. In 2012 CNNs regained popularity with the development of 
ALEXNET [17,35], which demonstrated great potential. Since then, 
advances in deep learning have enabled computer vision to grow 
immensely and it has found applications in almost every field from 
medicine to defense, to transportation to manufacturing and of course, 
construction. Fig. 2 shows the evolution of computer vision in con
struction listing some of the notable works that represent important 
milestones in the path of computer vision integration in construction. 

Computer vision is a broad field that encompasses several techniques 
used to extract and process visual data from images and videos to draw 
meaningful inferences. Some of these techniques that are important to 
construction management tasks are detailed below. 

2.1. 3D scene reconstruction 

3D Scene Reconstruction is a process to create 3D models of a scene 
from a set of 2D images. By applying the 3D scene reconstruction pro
cess, 3D shapes of complex objects can be modelled provided the 2D 
images contain all the required information [36]. Early phases of 3D 
scene reconstruction research developed a mathematical process to 
understand 3D to 2D conversion process to develop algorithmic solu
tions, which later became the foundation for the development of 3D 
reconstruction. In construction, 3D reconstruction is used in construc
tion progress monitoring, structure inspection and post-disaster rescue. 
A typical process involves building an as-built 3D model from 2D images 
(or laser point clouds) captured on site. This model can be used for a 
variety of applications such as comparing progress over time, con
ducting quality inspections, inspecting mechanical structures 
(plumbing, electrical, HVAC systems) or visualization purposes. For 
example, Fig. 3 shows an interesting work by Han and Fard [28] 
demonstrating the use of 3D reconstruction to monitor the progress of 
work. As shown in the figure, a 3D model of the construction site is 
created by a set of 2D images obtained from the construction site and 
this as-built 3D model is compared with the as-planned BIM model to 
track progress. 

As sensors, such as a camera, can only capture visible information, 
perceiving 3D shapes of an object, its volumetric composition, and the 
overall information is daunting for machines, unlike a human who can 
perceive visible as well as invisible information while examining an 
image [37]. While capturing images, the 3D geometry is projected into 
the 2D image sensor and as a result, the depth information is lost. This 
makes estimation of the 3D structure of a scene from a set of 2D images 
very challenging [38]. However, methods such as structure from motion 
[39], have made 3D reconstruction possible using multiple images with 
overlapping views. The typical 3D reconstruction process involves 
inferring the geometrical structure of a scene captured by a collection of 
images. The camera position and internal parameters are either known 
or estimated from a set of images. Then the algorithms find the corre
sponding points in a set of images (i.e., the same point in multiple im
ages) using image features. Finally, using the location of corresponding 
points in images and their respective camera positions, 3D information 
can be recovered. Recent development in CNNs has enabled 3D scene 
reconstruction processes to demonstrate impressive performance in the 
creation of 3D models from the 2D images [40]. However, 3D recon
struction in construction environments is still a challenging task. This is 
mainly due to complicated construction environments characterized by 
poorly textured surfaces that are covered with uniform material, dy
namic and complex nature of jobsite, unwanted/obstructed background, 
repetitive patterns of building surfaces, and occlusion [39]. 
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2.2. Image and object classification 

Image classification is one of the fundamental computer-vision tasks 
of taking in an input image and identifying the ‘class’ the image falls 
under (Or a probability of the image being part of a ‘class’). For example, 
an image classification algorithm can take images of different equipment 
on a construction site as input and assign a class label such as ‘excavator’, 
‘dump truck’, ‘forklift’ etc. to each image (see Fig. 4). Or it can take a 
single image as an input and provide a probability that the image be
longs to a particular class of equipment (such as “there is a 90% proba
bility that this input is an excavator”). Sometimes, the image is first broken 
into discrete objects within them and then each object is classified 
separately. This type of classification mimics the type of analysis done 
by humans and is called object classification. It is the process of pre
dicting a specific class to which an object belongs based on object-level 
features. Object in the context of images is a set of pixels within the 

image that belongs to the same instance. The object classification 
technique involves the categorization of pixels based on their spectral 
characteristics, shape, texture, and spatial relationship with the sur
rounding pixels. By applying the classification technique, a computer 
can identify objects into one of the finite sets of classes defined in 
advance [41]. Classification is one of the core problems in computer 
vision that, despite its simplicity, has huge practical applications such as 
the classification of construction workers wearing hardhat, vests etc. 

Early image classification methods relied on raw pixel data. The 
process involved breaking an image into individual pixels and applying 
statistical methods to categorize images. This, however, is a challenging 
task as two images of the same class might look very different due to 
different backgrounds, angles, poses, etc. However, neural networks, 
particularly Convolutional Neural Networks or CNNs have enabled the 
development of classification algorithms that identify and extract fea
tures from images instead of relying only on pixel data or manual 

Fig. 2. Evolution of Computer vision in construction: Notable works over the years.  

Fig. 3. 3D Reconstruction used for construction progress monitoring by Han & Fard [28].  
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application of filters. This has made image /object classification tasks 
much robust and reliable to be used in a variety of applications. Despite 
enormous progress, there still exist some challenges to accurate classi
fication due to the object's variability in color, the angle at which the 
object is located, and speed at which images are taken and most 
importantly occlusions [42,43]. 

2.3. Object recognition 

As discussed above, Image Classification only provides information 
about whether (and with what probability) the object of interest is 
present in an image or not. In contrast, object recognition involves both 
classification and localization tasks, i.e., it identifies and locates objects 
in images or videos. It is often a more useful technique as it allows 
multiple objects to be identified and located within the same image. The 
object recognition technique recognizes object categories and the loca
tion of each object by providing a bounding box encapsulating different 
objects of interest in an image [41] (see Fig. 5a). An important task in 
object recognition is to identify what is in the image and with what level 
of confidence (classification task). Once the object is identified, the next 
step is to locate it in the image using the detection and segmentation 
techniques. Detection techniques usually output a rectangle around the 
recognized object called Bounding Box (BB) (Fig. 5a) generated by 
regression method [43]. Alternatively, instance segmentation identifies 
the objects in each pixel resulting in a precise map of the object in an 

image as shown in Fig. 5b below. 
Various machine learning algorithms used for object recognitions are 

Histogram of Oriented Gradients (HOG) feature extractor [44], Support 
Vector Machine (SVM) [45], Bag of Features model [46] among others. 
Advances in convolutional neural networks have made it possible to use 
object recognition techniques in applications like robotic, navigation, 
remote sensing autonomous driving, video surveillance, pedestrian 
detection and several others [47]. 

2.4. Object tracking 

Object tracking is a technique used to track objects as they move 
across a series of video frames while maintaining their identity and 
trajectory. The target objects are often people, but may also be animals, 
vehicles, or other objects of interest. The object tracking process starts 
with identifying objects and assigns them bounding boxes (i.e., object 
detection). Object tracking techniques assign an ID to each identified 
object in the image, and in subsequent frames tries to carry across this ID 
and identify the new position of the same object. Detection of moving 
objects and motion-based tracking are components for various real- 
world applications, including pedestrian tracking [48], human- 
computer interaction [49], autonomous vehicles, robotics, motion- 
based recognition, video indexing, surveillance and security [50]. 
Compared to static object detection, object tracking has challenges such 
as 

Fig. 4. Classification techniques used for classifying construction equipment and tasks.  

Fig. 5. Object Recognition output examples: a) Bounding Box b) Instance Segmentation.  
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i) Re-identification—connecting an object in one frame to the same 
object in the subsequent frames.  

ii) Appearance and disappearance—objects can move into or out of 
the frame unpredictably and we need to connect them to objects 
previously seen in the video.  

iii) Occlusion—objects are partially or completely occluded in some 
frames, as other objects appear in front of them and cover them 
up.  

iv) Identity switches—when two objects cross each other, we need to 
discern the two objects.  

v) Scale change—objects in a video can change scale dramatically, 
due to the camera zoom.  

vi) Illumination—lighting changes in a video can have a significant 
effect on how objects look, which can make it harder to consis
tently detect them. 

Some popular algorithms for object tracking that uses deep learning 
methods are SORT [51], GOTURN [52], and MDNet [53]. 

2.5. Segmentation 

Segmentation is a process of recognizing and understanding what is 
in the image at the pixel level. The goal of the segmentation task is to 
give each pixel a label based on what the pixel represents in an image. 
Thus, images are divided into different regions based on the character
istics of pixels that identify objects or boundaries to simplify an image 
and analyze it more efficiently. This process allows separating objects 
from the background. Segmentation tasks can further be categorized as 
a) Semantic segmentation b) Instance Segmentation. 

2.5.1. Semantic segmentation 
Semantic segmentation refers to the process of linking each pixel in 

an image to a class label. Semantic segmentation does not differentiate 
instances and only uses pixels while providing a richer understanding of 
an image [41]. Semantic segmentation can be considered as image 
classification at a pixel level. For example, in the image shown below 
that, segmentation labels all pixels covering reinforcement bars as 
green, the ground as purple and structural steel beams as blue without 
differentiating the individual instances. These computer vision tech
niques utilize other techniques like object classification (Object detec
tion and localization) to label pixels [54]. Fig. 6 shows an example of 
scene segmentation. 

2.5.2. Instance segmentation 
Instance segmentation refers to the process of labelling pixels in an 

image to the separate instances where an object appears in an image (see 
Fig. 7). This technique first includes object detection to extract bounding 

boxes around each object instance, followed by segmentation inside 
each bounding box to assigns a label to every pixel that corresponds to 
each instance. Instance segmentation is in a way a combination of object 
detection and segmentation [41]. The main purpose of instance seg
mentation is to distinctly represent each instance of the objects of the 
same class. 

2.6. Action recognition 

Action or activity recognition is another important computer vision 
task that aims to recognize the actions of one or more agents from a 
series of images/videos. Action recognition involves feature extractions 
from consecutive frames of a video, to identify and classify an action 
based on a set of predefined action classes, and action localization. The 
majority of existing action recognition frameworks consist of feature 
extraction, dictionary learning based on the extracted feature, and 
classification of video using representation [55]. Since this task requires 
analysis of a continuous stream of related images (or video), Recurrent 
Neural Networks (RNNs) are extremely useful in action recognition 
problems. Mainly there are three types of action recognition techniques 
as follows [56]. 1) Depth-based action recognition – popular due to the 
availability of cost-effective sensors. Most existing depth-based action 
recognition methods use global features such as space-time volume and 
silhouette information. 2) Skeleton-based action recognition – it uses 
positions and motion using the coordinates of the joints. 3) Action 
recognition via a combination of skeleton and depth features – It com
bines the depth of skeleton and depth features together and helps to 
overcome situations when there are interactions between human sub
jects and other objects or when the actions have very similar motion 
trajectories. 

Action recognition techniques are useful in various real-world ap
plications such as security, sports, construction, wildlife etc. In con
struction, it can be used to determine the actions of various equipment to 
compute productivity, actions of workers to ensure proper work posture, 
movement of vehicles and equipment for logistic planning and man
agement etc. 

3. Review framework 

The review process consisted of the following three steps. 

3.1. Identification of literary sources 

The first step in the review process was to identify relevant academic 
journals and databases that publish the latest developments in the field 
of computer vision in constriction. Journals were selected based on the 
various parameters such as impact factor, cite scope, Scientific Journal 

Fig. 6. Semantic scene segmentation.  
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Rankings (SJR) and popularity in the field of computer vision and 
construction. Databases such as Web of Science, ASCE, and Elsevier were 
used for the searching journals needed for the review. Table 1 below 
shows the distribution of articles used in this review. 

3.2. Relevant article search 

Once the top journals were selected, the relevant articles were 
searched using different keywords. Google Scholar, a powerful web 
search engine, was used as a complementary search tool to eliminate 
searching biases. To include a wide range of construction tasks including 
safety, quality, progress, and productivity monitoring, the keyword 
‘computer vision + construction’ was used for the primary search that 
identified most articles reviewed in this study. Further, specific keyword 
searches such as “computer vision + safety”, “computer vision + progress”, 
and “computer vision + quality” were also used to obtain relevant articles 
in each construction task. More than 550 articles were examined, and 
the relevant articles were selected using the following inclusion and 
exclusion criteria for a thorough review. 

Inclusion Criteria:  

• Work in the construction domain.  
• Use of images/ videos as the primary source of data.  
• Develop/ use one or more computer vision techniques for a 

construction-related task.  

• Work published in journals grouped in the first quartile of SJR 
rankings. 

Exclusion Criteria  

• Manuscripts focusing on areas other than construction.  
• Use of computer vision in design, asset management, real-estate sales 

and other non-construction activities within the construction field.  
• Manuscripts published before 2010.  
• Manuscripts from non-peer-reviewed conferences  
• Industry white paper 

The refinement resulted in 85 relevant articles. However, more 
relevant articles were identified from these papers by using reference 
chains. This helped identify important articles that were missed during 
the keyword search process. Finally, 101 articles were reviewed thor
oughly as shown in Table 1. 

3.3. Review and organization 

Refined papers were categorized based on different construction 
management tasks to conduct a focused systematic review. Fig. 8 below 
shows the number of articles reviewed for each construction task. 

Articles were also categorized based on different computer vision 
techniques as shown in Fig. 9 below. 

4. Review findings 

Computer vision has drawn attention in construction because of its 
applicability in automating different construction tasks, monitoring 
construction sites and automating safety and quality inspections [1,57]. 
Compared to other sensing techniques such as RFID, GPS and UWB, 
computer vision techniques have several operational and technical ad
vantages as they can provide information related to one's position and 
movement with limited sensory data [58,59]. As shown in Fig. 8, safety 
management and progress monitoring are two leading areas where 
different computer vision applications have been developed and used 
over the past decade. This is followed by productivity monitoring. One 
of the interesting findings was that even though quality control can 
greatly benefit from advances in computer vision, it is one of the areas 
that is lagging in the application of computer vision systems. Among 
different techniques, object recognition seems to be one of the most 
popular computer vision techniques in construction, closely followed by 
segmentation and object classification (Fig. 9). The major areas where 
computer vision has been used significantly and/or has the potential of 
being used in future: 

Fig. 7. Instance segmentation (Green masks represent individual instances of an object). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Table 1 
Journal title and articles.  

Publication Journal title Number of articles 
reviewed 

Elsevier Automation in Construction 34 
Advanced Engineering Informatics 21 
Engineering 1 

ASCE Journal of Computing in Civil Engineering 20 
Journal of Construction Engineering and 
Management 

13 

Hinwadi Journal of Construction Engineering 1 
MDPI Remote Sensing 2 
Sage Journal of Transportation Research 1 
Wiley online Computer Aided Civil and Infrastructure 

Engineering 
2 

Emerald 
insight 

Journal of Construction Engineering 2 

Springer Robotic Fabrication in Architecture 1  
International Symposium on Automation 
and Robotic in Construction 

3  

Conference on Computer Vision workshops 1  
Archives of Computational Methods in 
Engineering 

1  
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4.1. Safety monitoring 

With more than 900 fatal and over 200,000 non-fatal injuries [60], 
construction is one of the most dangerous industries to work for [61]. 
Globally more than 60,000 lives are lost on the construction site every 
year [62]. In addition to the loss of life, and the personal and social 
impact of injuries, the financial burden of accidents is also significant 
[63]. To prevent such accidents, it is important to detect unsafe actions 
and unsafe conditions and take prompt corrective action. The current 
practice of safety inspection is largely based on human involvement and 
manual inspections. As with any visual inspection task, computer vision 
has a huge potential to automate the tasks of detecting and recognizing 
unsafe actions and unsafe conditions, which is the first step towards 
eliminating them from the causal chain of accidents. 

In recent years, there has been a growing trend in the use of digital 
tools like Unmanned Aerial Vehicles, predictive analytics, wearable 
devices in construction sites, which help site safety managers to detect 
and manage the safety risks that arise during the execution of the 
project. Computer vision plays an important role in the development 
and use of these technologies. It can help in identifying and accessing the 

risk of fatalities and accidents using visual data obtained from the job
sites [26,27,29,64]. Various computer-vision based techniques are used 
in safety management either individually or in combination to 

Fig. 8. Articles reviewed- categorized by application area.  

Fig. 9. Articles reviewed- categorized by computer vision tasks.  

Table 2 
Various computer vision tasks used in safety management.  

Method Literature Objectives 

Object 
classification 

[65–72] Classifying workers, Risk 
zones, equipment, and other 
site hazards 

Object 
recognition 

[24,25,27,29,67,68,70,73–82] Detection of PPE, guardrail, 
structural supports, equipment, 
and cranes 

Object tracking [70,77,78,80,83–85] Tracking workers, equipment, 
and target 

Action 
recognition 

[64,71,85–87] Recognizing worker's posture, 
and ineffective human pose; 
Detecting motion of 
construction workers 

Segmentation [13,27,66,79,84,88] Segmenting visual features to 
detect and/or evaluate safety 
hazards or safety controls  
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automatically detect and manage safety hazards on the jobsite. Table 2 
shows various computer vision tasks that are predominantly used in 
safety monitoring, their objectives and a few examples of articles dis
cussing their development and/or use. 

4.1.1. Object classification 
It is a computer vision technique that has been used to classify ob

jects into predefined groups such as safety conformance and non- 
conformance, a worker wearing a hardhat and workers not wearing 
one, vest and no vest etc. Further, the object classification technique has 
been used to classify construction workers, risk zones, equipment [69], 
safety behaviors [65], and safety hazards [68] from images collected by 
surveillance cameras [5], drones [69], ground robots [89] and tablets 
[24] on construction site. CNNs are often used for such classification 
tasks. For example, CNN was used to classify workers wearing a hardhat 
and non-hardhat-wearing workers [72] using HOG features of the 
hardhats, which are capable of describing detailed shape information 
efficiently. Similarly, YOLO-V3 [71], which is a single convolutional 
network that simultaneously predicts multiple bounding boxes and class 
probabilities for those boxes, was used to measure proximities among 
construction entities to measure the actual distance of workers from the 
potential hazards. In addition, workers and non-workers are classified 
by analyzing spatiotemporal relevance between workers and non- 
workers. This was done by analyzing, comparing, and matching multi
ple images of each worker obtained from videos [67]. Finally, color 
based pixel method has also been used to classify safety vests with a 
comparative analysis of two colors paces (Lab and HSV [hue, saturation, 
and value])and three types of classifiers (a support vector machine 
[SVM], an artificial neural network [ANN], and a logistic regression 
[LR]) [25]. 

4.1.2. Object recognition 
Object recognition has been used in safety management to detect 

safety hazards or instances of non-compliance on the jobsite. This in
cludes detection of PPEs to ensure workers are using appropriate PPE 
[12], detection of guardrails [75] and structural supports [73] to ensure 
sufficient safety controls are in place detection of static and dynamic 
hazards such as equipment, vehicles, cranes etc. [24] to aid in safety 
management at construction job sites. Since it is not possible to elimi
nate all hazards at a job site, PPE compliance becomes very crucial. PPE 
protects workers from exposure to potential hazards that cannot be 
eliminated by engineering and administrative controls. Various object 
detection and recognition techniques have been used to help identify 
whether proper PPEs are being used by workers. For example, [25] used 
a background subtraction method and color pixel classification to detect 
safety vests on workers, which was subsequently used to identify 
workers not wearing an appropriate safety vest. Similarly, [12,74] 
developed a vision-based system to detect hard-hats on workers using 
pixel-based image classification. In addition, vision-based methods 
using CNNs have also been used to detect workers to obtain the posi
tional information of workers, and with the help of positional informa
tion, danger zones for the workers were detected [65]. Falls contribute 
to about one-third of all fatalities in construction and the use of a safety 
harness and appropriate PPE is critical to reducing the risk of falls [90]. 
Object recognition techniques can greatly help in monitoring compli
ance to appropriate fall protection systems. For example, [81] used 
Faster R-CNN to first detect the presence of workers on heights and then 
CNN based classification algorithm to determine whether or not workers 
are using the safety harness. Similarly, [73] used CNN based occlusion 
mitigation method to monitor PPE compliance by steeplejack workers 
working in the exterior wall. In addition to PPEs, barriers such as 
guardrails can minimize the workers' exposure to hazards. Computer 
vision can play an important role in ensuring that necessary guardrails 
are in place. For example, [75] developed a method to detect guardrails 
using Visual Geometry Group architecture (VGG-16). Further, R- CNN 
was used to detect structural supports present on construction sites 

[24,27]. This subsequently helped to reduce the fall hazards. Further
more, Improved Faster Regions with Convolutional Neural Network 
(IFaster R-CNN) approach was used to automatically detect the presence 
of excavators and workers on the site with a high level of accuracy (91% 
and 95%) [24]. These detections help in safety monitoring by auto
matically detecting the worker's unsafe proximity to a hazard. Finally, 
each construction trade has its own set of safety standards and codes to 
follow. So, identification of trades also becomes crucial for efficient 
safety management. Moreover, sometimes it becomes necessary to 
designate specific zones to trades to minimize exposure to hazards. 
Computer-vision can greatly help in ensuring compliance to such mea
sures. For example worker's certification checking system developed via 
video imaging based on R-CNN was used to identify types of trade 
working on the site [67]. 

4.1.3. Object tracking 
Object tracking is another computer-vision technique that is very 

helpful in tracking workers [77], equipment [78], site dynamics [85], 
and motion characteristics of onsite objects [70] to ensure sufficient 
safety measures are in place and workers are maintaining a safe distance 
from the potential hazards. Various algorithms such as mean shift, 
Bayesian segmentation, active contour, and graphs algorithm are used to 
track workers using moving cameras. For example, the Bayesian 
method, which uses the segmentation procedure, was used to track 
workers on the construction site [83]. This approach offers advantages 
over gradient-based methods as the segmentation process is global and 
pixelwise. Workers are also detected and tracked using pedestrian 
detection techniques [77] from jobsite's bird's eye view images. First, a 
decision forest algorithm is used to detect workers, then the soft 
cascading classifier is used to track workers [77]. Similarly, workers can 
be tracked from a video of the jobsite using a combination of detection 
and tracking algorithms. For example, [78] combined latent SVM 
detection algorithm to first detect workers and then used particle 
filtering to track the detected workers. Also, [80] used HOG template 
algorithm to detect workers then used template matching to track 
workers by using the region from the detection bounding box. Tracking 
equipment and its movement in the jobsite remain a challenging task on 
construction. A 3D spatial modeling algorithm and image matching al
gorithm was used to track equipment and its surrounding [70]. This 
helps in safe equipment operation by providing accurate information 
about objects surrounding the equipment. Since jobsite surveillance 
cameras are already in use on the most construction sites, a video-based 
tracking system can be implemented at low costs using these cameras. 

4.1.4. Action recognition 
Action recognition has been used in construction safety to identify an 

action or task that workers are engaged in, by recognizing workers 
motion, position, and body movement. Multiple computer vision algo
rithms are used to identify these actions. For example, to determine a 
worker's pose used a Linear discriminant analysis (LDA) classifier to 
classify workers pose from the images collected by a range camera [87]. 
This helped determine whether a worker is standing, bending, sitting, or 
crawling. Then OpenNI [91] middleware was used to get the joint angle 
and spatial locations. Finally, body posture information was used to 
categorize tasks as ergonomic or non-ergonomic [87]. In another study, 
motion capture data from Kinect was used to identify the unsafe actions 
of workers climbing a ladder (i.e. backward facing climbing, climbing 
with an object, and reaching far to a side) with an accuracy of over 90% 
[92]. In addition, 3D skeleton extraction and motion recognition tech
nique are used to detect unsafe actions such as reaching too far in ladder 
climbing [64]. Images taken from smartphones can also be used to 
capture human motion data for onsite motion sensing and analysis [85], 
which ultimately helps to detect the action performed by the worker. 
Worker's motion and position can also be analyzed from the video ob
tained from the jobsite to identify non-ergonomic postures and move
ments by acquiring 2D skeleton and 3D coordinates of joints by 
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extracting image sequences [86]. 

4.1.5. Segmentation 
Segmentation has been used in safety management to locate visual 

features from images including color, texture, compactness, contrast, 
and edges, which ultimately enables the identification of safety hazards. 
For example, the background subtraction algorithm extracts motion 
pixels from an image sequence or video, pixels are then grouped into 
regions to represent moving objects, and finally, the regions are 
segmented using classifiers [66]. The connected moving regions are 
used for object correspondence and classification. This technique pro
vides the benefit of site monitoring with reduced human intervention by 
using the video obtained from the site. In another study, the unsafe 
behavior of workers around structural supports in a deep-pit foundation 
was detected and segmented using Mask R-CNN [27]. The overlapping 
detection model was trained to determine the relative position of 
workers and structural supports [27]. Additionally, [88] used instance 
segmentation using MaskRCNN to develop a vision-based system that 
provides real-time alerts to workers if they are in proximity of hazards. 
Segmentation technique has also been used to detect hard hats of 
workers to check compliance [13]. In addition segmentation, feature 
representation, and classification technique can also be used to detect 
high-risk areas of a construction project such as roofs, edges etc. [79]. 

4.2. Progress monitoring 

Progress monitoring is one of the most important tasks in construc
tion management as it tracks the progress of the project and ensures that 
the project is constructed on schedule and within budget. An accurate 
assessment of progress allows managers to make better decisions to 
control the project's cost and schedule. Current practices of progress 
monitoring require significant manual intervention, are time-consuming 
and are prone to human errors. Therefore, efficient monitoring systems 
can help construction teams by automating progress inspections, which 
will help to reduce the risks of reworks and errors and prevent deviations 
of cost and schedule [14]. To reduce reworks and errors, construction 
companies often integrate their production schedule with the 3D BIM to 
create 4D BIM. However, this process involves manual manipulation to 
integrate real-time progress information with 4D BIM. To facilitate this 
integration process, construction researchers and practitioners have 
focused on collecting as-built visual data through hand-held cameras 
and video recorders, assigning field engineers to filter, annotate, orga
nize, and present the collected data in comparison to as planned date 
from 4D BIM. However, the cost and complexity associated with 
manually collecting, analyzing and reporting operations results in sparse 
and infrequent monitoring and a portion of the gains in efficiency are 
consumed by monitoring costs [6]. Therefore, construction researchers 
are working towards automating such manual processes. Advances in 
the field of computer vision have enabled the development of technol
ogy that has aided in automating various tasks involved in progress 
monitoring. 

Typically, progress monitoring using visual data requires capturing 
as-built data, which can be in the form of still images, videos or point 
clouds, and comparing this with the as-planned models from BIM, CAD 
etc. This work predominantly requires one or more of the following 
computer vision techniques as shown in Table 3 

4.2.1. Object recognition and classification 
This technique has been used to detect building elements to compare 

planned vs actual finished work [3] by analyzing the visual data ob
tained from the site via drones or other cameras to evaluate the progress 
of the project. For example, work packages were generated automati
cally by analyzing multiple images obtained from the site, which 
allowed project controls to be monitored effectively [93]. In another 
work, site photographs were compared with the BIM model to generate 
the status of interior construction by decomposing the as-built model 

[95]. Object detection was then used to detect interior construction el
ements and subsequently matched with interior construction images to 
identity progress schedule deviation. Similarly, in [98] the progress of 
interior construction was evaluated by using integrated shape and color- 
based modules, which detected studs, insulation, electrical outlets, and 
different states for drywall sheets (installed, plastered, and painted). 
Based on the results of the modules, images are classified into one of five 
states of construction i) framing, ii) insulation, iii) insulated drywall, iv) 
plastered drywall, and v) painted partition [98]. Moreover, object 
detection has been used to detect building elements and obstacles, and 
visual comparison with BIM model to assess progress. For example, 
appearance and geometrical based reasoning was used to evaluate 
construction progress using Earned Value Analysis (EVA) concepts from 
an integrated model of point cloud and BIM [6]. Similarly, a probability 
distribution algorithm was used to recognize material appearance by the 
filter bank and principal Hue- Saturation color vale with an accuracy of 
97% [7]. This helped to identify changes on jobsite based on the ma
terial appearance. In addition, 3D structural components can also be 
recognized using color data and stereo vision systems to automatically 
track structural progress in construction [97]. Furthermore, with the 
help of geometrical model matching and statistical analysis of template 
mask regions, progress can be monitored using image-based classifiers, 
which identify changes and detects construction processes [100]. In 
another work, [99] developed texture-based reasoning for image-based 
3D point clouds and color-based reasoning for laser-scanned point 
clouds [99]. In this work, geometry-based filtering detects the state of 
construction of BIM elements (e.g., in-progress, completed) and 
appearance-based reasoning captured operation-level activities by 
recognizing different material types [99]. 

4.2.2. Segmentation 
Scene segmentation can help to understand the contents of the image 

to determine the progress of the project. For example, the voxel coloring 
algorithm was used to monitor the progress of building elements by 
comparing 3D obtained from images of the site with the BIM model 
using the Bayesian machine learning model [8]. This comparison gen
erates construction progress deviation with a color code. The 
appearance-based method can also be used in image-based as-built 
models to extract image patches by back projecting RGB images [6]. 
Similarly, [4] developed an automated material tracking system to track 
the productivity of the project; whereas [93] used segmentation to 
automate the tracking of work packages. [98] have also developed 
techniques for automatically detecting building components such as 
studs, insulation, electrical outlets, and drywall sheets. 

4.2.3. Object tracking 
By tracking objects and their positions, the change in the task can be 

determined, which ultimately helps in evaluating progress. In addition, 
object tracking can help in autonomous data-collection useful for 
progress monitoring. For example, localization algorithms such as 
Simultaneous Localization and Mapping (SLAM) can be used to track 
and navigate robotic systems that autonomously collect visual data to 
compare as-built information with the as-planned work [101]. 

Table 3 
Various computer vision tasks used in progress monitoring.  

Method Literature Objectives 

Object 
classification 

[93–96] Compares planed vs actual work, tracks 
status of construction and progress 

Object 
recognition 

[6,7,97–100] Detects building elements and obstacles, 
visual comparison with BIM model to 
identify progress 

Object tracking [101,102] Track objects in real time 
Segmentation [4,6] 

[8,93,97,98,101] 
Segments visual features including color, 
texture, compactness, contrast, edges  
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4.3. Productivity tracking 

Productivity is defined as a total output per unit input and is usually 
expressed as the cost of labor or man-hours. Globally, labor productivity 
growth of construction lags behind that of manufacturing and the total 
economy [103]. As such, measuring productivity has become an ever 
more important task in construction. Labor and equipment productivity 
is a key indicator of project performance [104]. It helps to optimize 
resource planning, which is critical to counter the challenges of the 
decreasing supply of labor [103]. In addition, most construction projects 
have tight budgets with a very thin profit margin of around 5% [105] 
and, as such, require highly optimized resource utilization making 
productivity monitoring extremely vital. The monitoring of productivity 
for different construction processes remains a difficult and error-prone 
task as significant manual effort is often required to measure the 
output of labor, equipment or resources [106]. Therefore, automating 
the process of productivity monitoring can help the project team achieve 
optimum utilization of resources with minimal human intervention. 
Vision-based techniques can help automate and track productivity [106] 
by analyzing the workers' movements and interactions [106], action 
analysis [107,108], and location tracking [109]. For example, interior 
construction's productivity was improved by analyzing various quality 
checks and inspection reports [95,109,110] that track workers move
ments and interactions on site. Various computer-vision based tech
niques have been used in productivity monitoring either individually or 
combined as shown in Table 3 and Table 4 

4.3.1. Object classification 
Operational level deviation during the construction hinders pro

ductivity. To measure productivity at the operational level, construction 
managers use pictures, videos, and daily logs. Object classification has 
the potential to be used as an efficient tool to monitor such progress 
deviations. Image-based point clouds built from images and videos that 
are already collected from jobsites can be used to extract information 
about productivity without adding a new burden of requiring expertise 
for data collection and analysis [15]. For example, 3D point clouds 
generated from site images using Structure-from-Motion techniques 
were used to track project deviation by integrating the production 
schedule [111]. Also, improved CNN was used to monitor worker's ac
tivities in concrete construction [33]. This helped to measure man-hours 
and as well as the productivity of each worker. Progress status of con
struction can also be evaluated by comparing as-planned BIM models 
and 3D models obtained from as-built photographs, which helped to 
track productivity by action analysis [95]. Various algorithms such as 
Histograms of Oriented Gradients (HOG), Histograms of Optical Flow 
(HOF), Motion Boundary Histogram (MBH) can also be used for action 
learning and classification, which can also help in tracking productivity 
[112]. 

4.3.2. Object recognition 
Object recognition is another technique that has been used to eval

uate the performance of action analysis and detection of construction 
workers and equipment to assess productivity at various levels [104]. 
For example, high-resolution satellite images were used to extract fea
tures to detect various objects of interest. The detected objects, 

integrated with spatiotemporal database and baseline schedule, auto
matically provided the location-based progress data [115]. This helped 
to ensure that specific areas of the project are meeting the desired level 
of productivity. In addition, Bayesian learning and Bag-of-Video-Feature 
Words models were used to recognize worker's movement and machine 
movement to measure individual productivity levels [114]. In another 
interesting study, HOG was used for the pose estimation of excavators. 
Then a spatial-temporal reasoning model was used, which uses time and 
space constraints of the excavators' moving patterns to measure the 
productivity of excavators from videos [116]. Similarly, support vector 
machine (SVM) classifiers were used to recognize equipment movement 
actions using visual features such as space-time interest extracted using 
HOG algorithm [118]. Some other techniques used to track productivity 
include automated image-based reconstruction and modeling of the as- 
built project status using unordered daily construction photo collections 
through analysis of Structure from Motion (SfM) [109]. 

4.3.3. Object tracking 
Object tracking has been used to track the motion and movement of 

equipment in construction. By tracking the motion of objects, produc
tivity can be evaluated by analyzing its cycle time and working pro
cesses. For example, Histograms of Oriented Gradients and Colors 
(HOG+C) algorithms [117] were used to detect workers and equipment 
from the videos obtained from the construction site. Similarly, the video 
computing method was used to automatically detect and track the 
project resources, work state classifications, and production scenarios 
such as working processes, cycle times, and delays with an accuracy that 
of manual analysis [106,107,120]. The results indicated the promising 
effectiveness of the automatic video-based method to measure produc
tivity compared with manual processes. 

4.3.4. Action recognition 
Action recognition is an important computer vision task that helps in 

tracking productivity by recognizing the action of equipment or 
workers. Although this largely remains an unexplored area, there have 
been a few works that have used action recognition for productivity 
analysis. For example, the probability graph model was used to estimate 
the jib angle of a crane to analyze if the task is concrete pouring or other 
material movements [108]. Similarly, Bag-of-Words and Bayesian 
network models were used to learn and classify actions of construction 
workers and equipment to subsequently identify their work tasks [114]. 

4.3.5. Segmentation 
The segmentation technique is used to track productivity by 

analyzing the object's pixel value based on the color thresholds. For 
example, the background subtraction method was used for segmenting 
static background on a video sequence of a crew installing formwork and 
earthwork [119]. The helped to measure the productivity of formwork 
and earthwork activities. In addition, segmentation was used to detect 
pile caps by analyzing images obtained from the jobsite [115]. Haar- 
HOG was used to extract visual features from the time-lapse videos, to 
measure the productivity of dump trucks in the construction site [110]. 

Table 4 
Various computer vision tasks used in productivity tracking.  

Method Publication Objectives 

Object 
classification 

[15,33,95,111,112] Monitoring progress deviations at the operational level, 

Object recognition [11,104,106,107,109,110,112–117] 
[118] 

Progress tracking based on the location, Evaluating the performance of action analysis, Detection of construction 
workers and equipment 

Object tracking [104,108] Tracking motion and movement of equipment 
Action recognition [104,114] Detecting workers interactions between actions and related objects 
Segmentation [114], [110,115,119] Segmenting visual features of a construction element  
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4.4. Quality control 

Construction projects often experience cost and schedule overruns 
and rework is one of the factors that contribute to these overruns [121]. 
Reworks are the products of quality deviations, nonconformance, de
fects, and quality failures, and result in the unnecessary effort of redoing 
a process or activity that was incorrectly implemented the first time. The 
direct costs of rework are approximately 5% of the total construction 
costs [121]. To minimize the reworks, quality control (QC) managers 
have developed various QC programs; however, they are mostly manual 
and need a significant involvement of human resources. For example 
current method of dimensional analysis of construction, components are 
based on the use of remote-sensing instruments such as Total Stations 
[122], which needs several manhours for both field and office work to 
capture field information and to process it. Computer vision can capture 
not only dimensional information but also spatial information. Inte
gration of BIM and computer vision can thereby aid in QA/QC by 
evaluating dimensions, plumb, installations etc. However, current 
practices of quality control using BIM are still labor intensive. Therefore, 
computer vision techniques need to be explored to automate the pro
cesses that can increase the efficiency of quality control and reduce 
human effort. 

This area within construction has largely lagged in the adoption of 
computer vision techniques. However, there have been some pre
liminary explorations in this area that have been listed in Table 5 below. 
Mostly object recognition and segmentation techniques have been used 
to detect quality defects such as cracks, misalignment, and dimensional 
discrepancies using visual features, texture, color, and edges. For 
example, the alignment inspection of tile installation was improved by 
analyzing the geometric characteristics of the finishes of the tile surface 
[123]. In addition, geometric and relationship-based reasoning was used 
to check dimensional discrepancies by comparing with as-built and 
planned BIM to automatically identify dimensional discrepancies [124]. 
Segmentation of multi-scale feature detection was also used to detect the 
surface and curvature of objects [125]. Even though the use of computer 
-vision has been somewhat limited in quality control, there are 
numerous opportunities to explore different vision-based techniques to 
examine evaluate built structures for defects and non-compliance, which 
need to be explored in future. 

5. Challenges & opportunities 

In 2012, Forbes reported that jobs in the skilled trades were the most 
difficult to fill in the United States and as of now in 2021, the problem 
not only persists but is exasperated by a historically low economy-wide 
and construction-specific unemployment rate [126]. Therefore, there is 
an ever more critical need for automation in construction. Automated 
construction can help to fill the skill gap that exists in construction 
skilled trades. Although there has been slow progress in the develop
ment of technology required for automated construction, there is likely 
going to be a spike in research in this area in near future. Already 
automated robots have been used for the task of painting and brick
laying [127]. Several other tasks that are manually performed in the 
construction site can be automated and computer vision will have a huge 
role to play in this transition. Specifically, the sensing/actuation feed
back loop can be used to predict the construction environment where 
machines, materials and human being interact. For example, with the 

help of Scorpin, a robot control plugin, multiple layers of sensing pro
vided a feedback loop in a bricklaying robot [128]. In addition, a vision- 
based algorithm was used to assist the robotic system for the quality 
monitoring system [109]. The system can automatically adjust the 
extrusion rate based on the feedback from the algorithm and would be 
able to print layers of acceptable dimensions using a printable mixture, 
without the need for prior calibration and despite mixture rheology 
variations. The high precision and responsiveness of the developed 
system demonstrate the great potential for computer vision as a real- 
time quality monitoring and control tool for robotic construction [23]. 

In addition to autonomous or robotic construction, enormous op
portunities exist for computer vision to be explored for safety, progress, 
quality, and productivity monitoring. These opportunities include 
developing new and innovative platforms using various vision-based 
techniques to provide real-time and high accuracy tools that can auto
matically create information-rich digital twins of construction sites to 
provide useful insights about progress, quality, and safety. Most of the 
current studies that have used computer vision in these areas are 
exploratory and are not currently at the level where these systems can be 
deployed on real-construction sites efficiently and economically. Future 
research efforts need to build on these exploratory studies and invent 
ways to scale up these systems for practical implementation. For 
example, in safety management, research needs to focus on building 
computer-vision based techniques to efficiently locate workers and 
equipment in real-time using live images/videos to provide real-time 
proximity warnings. There are also opportunities to develop custom
ized network architecture for construction use and build a comprehen
sive visual database of hazards that can be used to train neural networks 
to detect different types of safety hazards on job sites. In progress 
monitoring, research needs to focus on building image processing or AI- 
based algorithms to efficiently compare as-built images with as-planned 
models. There is an immediate need to research an efficient way to align 
(in terms of scale, rotation, and translation) an image-based 3D model 
with as-planned BIM model. For productivity analysis, the latest de
velopments in recurrent Convolutional neural networks (RCNNs) must 
be exploited for action recognition and tracking of workers and equip
ment from live videos. This can help in developing an efficient system 
for autonomous progress monitoring. Among others, quality control 
offers the greatest number of opportunities for computer vision-based 
systems and ironically this is the area where the least studies have 
been published. The use of computer vision for quality control must be 
explored as it offers numerous advantages over traditional methods. It 
saves human effort (and subsequently cost) and prevents errors arising 
from human factors such as inattentiveness, exhaustion, or simple 
boredom. Furthermore, to develop techniques and algorithms for defect 
detection, future research should also adopt techniques and methods 
from the manufacturing industry and focus on developing vision-based 
quality control techniques that use live images collected during con
struction (instead of post-construction quality checks). This will help in 
minimizing the defects and reduce the need for rework. 

Although research has demonstrated huge potential for computer 
vision in various areas of construction and project management, this 
review also highlighted some challenges. Perhaps one of the biggest 
challenges in implementing computer vision is the lack of a visual 
dataset specific to construction environments needed to train different 
neural networks [129–131]. There have been multiple efforts to develop 
several benchmarking datasets such as ImageNet, KITTI, MOT, City
scapes etc. However, collecting a large amount of annotated data is not 
an easy endeavour. In addition, there are other challenges specific to the 
domains and the type of techniques used. Table 6 summarizes the key 
challenges of computer vision in construction progress monitoring, 
safety, and quality control. These challenges are explained further to 
illustrate how they affect the implementation of computer vision in 
construction. For example, [25] reported some of the important chal
lenges in implementing computer vision for action recognition of con
struction workers or equipment. These include (1) lack of datasets (2) 

Table 5 
Computer vision techniques used in quality monitoring in construction.  

Method Publication Objectives 

Object 
recognition 

[123–125] installation verification, as-built schedule, and 
dimensional discrepancies 

Segmentation [123–125] Segments visual features including color, texture, 
compactness, contrast, edges  
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complex actions of construction equipment and workers; (3) lack of 
knowledge to define a time-series of actions; (4) simultaneous action 
recognition of multiple project entities; and (5) lack of a holistic 
approach to benchmarking, monitoring, and visualization of perfor
mance information. Similarly, for progress monitoring, one of the most 
common challenges in implementing computer vision-based systems for 
progress monitoring reported in the literature is the missing information 
on the planned 3D model. 

5.1. Data challenges 

The lack of annotated dataset is one of the biggest challenges to 
implement deep-learning-based computer vision techniques in con
struction. Even though there are several publicly available datasets such 
as ImageNet [135] and Microsoft® Common Objects in Context (COCO) 
[136], datasets required for construction processes need to consider 
unique characteristics such as cluttered backgrounds, occlusions, 
various poses and scales and the dynamic nature of construction envi
ronment. Construction jobsites are often complex and dynamic, with 
every site uniquely different. This demands a comprehensive dataset 
that can address complexity, dynamics, and variations in our industry. 
Although different datasets have been created and used for various ap
plications, these have often been created individually, on a small scale 
with limited sharing capabilities. Efforts need to be made to create a 
combined and large comprehensive labelled visual dataset that can be 
used by construction researchers and developers for diverse 
applications. 

In addition to the lack of a visual dataset, implementation of com
puter vision in construction has also been hindered due to the unavail
ability or inorganization of other data needed for semantic 
understanding of visual data. These include: 

5.1.1. Collecting good quality data 
Computer-vision based applications rely on analyzing the collected 

visual data (i.e., images and videos). Therefore, the quality of that input 
data impacts the performance of the system the most. For example, an 
efficiently designed object detection architecture, pre-trained on good 
quality data can severely underperform if the input images are of poor 
quality (e.g., blurry or collected from awkward angles). Several factors 
can affect the quality of input data. While some can be controlled such as 
camera position, orientation, and stability; others are sometimes beyond 
our control such as poor lighting, cluttered backgrounds, occlusions etc. 
The upfront cost of the hardware infrastructure and the recurring costs 
of personnel required to ensure a good quality data collection is another 
challenge that hinders the implementation of computer-vision based 
systems for construction applications. 

5.1.2. Lack of detailed BIM model 
For automatic registration and accurate comparison of as-built 

images (or point clouds), planned BIM model needs to have significant 
details and should at least be at the Level of Development (LOD) 400/ 
500, which reflects operational details within the work break down 
structure (WBS) of the schedule [132]. Current BIM models often lack 
these important details. For example, scaffoldings or formworks do not 
feature in as-planned models, therefore comparison between as-built 
visual data (that contain these elements) with as-planned becomes 
challenging. Sometimes re-projecting the position of these elements 
using different machine learning techniques can overcome this chal
lenge to some extent [94]. In addition, daily operation-level tasks are 
also not reflected in the work breakdown structure (WBS). This lack of a 
detailed model prohibits accurate comparison between as-built and as- 
planned models using vision techniques. For example, when planned 
BIM model of basic geometrical details (LOD 200) is compared with the 
as-built model obtained from visual data from the site (LOD equivalent 
of 500), progress metrics (such as per cent complete) obtained using 
vision techniques may not accurately reflect the actual progress of work. 

5.1.3. Automatic integration with building information model (BIM) 
A progress tracking system uses the current work as a means of 

detecting the actual state and compares it with the 4D BIM. In other 
words, progress is detected by comparing as-built 3D models with as- 
planned BIM models. This requires the models to align perfectly (aka 
registration). Even slight inaccuracies in the registration process can 
compromise the accuracy of calculated progress. As we do not have a 
robust method to register models automatically and accurately, this step 
is commonly performed manually. This increasing the human inter
vention, thereby increasing the time, cost and error proneness in using 
CV for progress monitoring [102]. There have been some efforts to 
automate the process [124] but more work is required in this area. For 
example, the automatic registration of 3D data from BIM to a 3D model 
of the structure (as-built) the Levenberg-Marquardt algorithm has been 
used to automate the process with some success [96]. 

5.1.4. Lack of task-specific quantitative metrics to evaluate unsafe 
conditions and acts 

Construction projects use diverse metrics for quality and safety 
assessment which often vary between the projects. In addition, most of 
these metrics are qualitative and it is challenging to quantify these 
qualitative metrics [134], which is necessary to train a vision-based 
algorithm. This lack of well-defined and consistent metrics hinders the 
implementation of computer vision techniques for quality and safety 
monitoring. 

5.1.5. Lack of formalized construction sequences 
In several cases, construction projects lack formalized construction 

sequence that defines all the operational level details. Often only high- 
level activities are defined in the schedule, which limits the effective
ness of a vision-based technique. 

5.2. Occlusion and limited visibility 

Occlusion is the effect of one object in a 3-D space blocking another 
object in view due to the visual and lighting conditions of the environ
ment [39]. In construction, the visual environment is often cluttered 
with varied lighting conditions that exacerbate the problem of occlu
sion. The complexity of construction site, obstruction, lighting level, 
equipment size, color and shape of worker's clothing [12] add to the 
challenges of occlusion and limited visibility. In addition, construction 
sites also consist of objects involving shiny, reflective, or glossy surfaces, 
which also pose a challenge. There have been some research efforts to 
overcome these challenges. For example, [137] used Fermat paths of 
light between a known visible scene and an unknown object not in the 
line of sight of a transient camera to create a prediction of hidden sur
faces. However, occlusion and limited visibility issues have not been 
resolved completely and continue to be a challenging obstruction in 

Table 6 
Challenges of computer vision in construction.  

Construction task Challenges Publication 

Progress 
monitoring 

Lack of detailed BIM model [6,132] 
Automatic integration with building 
information model (BIM) 

[96,98,102] 

Occlusion & limited visibility [4,6,15] 
Lack of formalized construction sequences [132] 
Integrated cost-schedule control systems [133] 

Safety Lack of annotated dataset [6,27,29,134] 
Obstacles in the construction jobsite [12,24,134] 
Occlusion & Limited Visibility [134] 
Privacy concern to monitor the construction 
site 

[134] 

Workers with different body postures [134] 
Quality control Surface roughness [125] 

Curvature of surface [125]  
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implementing computer vision in construction. Efforts such as capturing 
images from different viewpoints – assisted by the UAVs– can overcome 
some of the challenges associated with limited visibility of construction 
elements, yet occlusion cannot be eliminated. Therefore, there is a need 
to account for occlusion and limited visibility in the design and devel
opment of vision-based systems [6]. 

5.3. Privacy issue in Jobsites 

Visual data in construction can be obtained via drones, ground ro
bots, and mobile devices. However, the privacy of data remains a 
concern for workers whose activities get captured by these visual sen
sors. The question of who owns data and how the data can be used re
mains unclear. Moreover, although the objective of visual data 
collection is not worker monitoring, their activities inevitably get 
recorded in the process of data collection. This may result in workers 
feeling under constant observation, causing levels of anxiety and stress 
that could have an adverse impact on their mental health. Future 
research efforts need to explore data privacy and worker health and 
safety issues related to the collection and use of visual data for different 
computer vision techniques. 

5.4. Variations 

In addition to the above challenges, variations in the appearance of 
objects or actions of interest in construction present an important 
challenge that limits the effectiveness of computer vision techniques. 
These variations include intra-class variation (E.g., same equipment 
from different brands can appear very different), scale variation (same 
construction elements such as walls can be of varying sizes), view-point 
variation (elements might look different depending on where the camera 
is located). These variations often result in misclassification. For 
example, a vision-based system designed to detect worker posture might 
misclassify the results as workers have different ergonomics and as a 
result, their body posture while crouching down, bending, and sitting, 
differs for individual workers. In addition, construction surfaces can 
vary as well. The surfaces can be flat, single curved, double curved, or 
have undulations at multiple scales, making boundaries hard to define. 
These variations in surface geometry also add to the complexity 
involved in different computer vision tasks. In addition to the geometry, 
the physical texture of common surfaces can range from smooth (steel, 
marble) to very irregular (grass, crushed stone), which also presents a 
challenge for computer-vision based techniques. 

5.5. Semantic gap 

Most of the applied computer-vision techniques learn from correla
tions and/or recurring patterns in the input data (specifically between 
the features extracted from images). Unlike humans, computer-vision 
algorithms can seldom draw causality or extract higher-level semantic 
understanding from images (or videos). While this semantic gap may not 
be an issue for some applications (e.g., detection of cracks in a column), 
it limits the application of automated computer-vision based systems in 
areas where context is important [31]. For example, safety management 
applications require a computer vision-based system to not only detect 
objects but also evaluate the interaction between objects (e.g., worker 
and hazards). This high-level semantic understanding is often chal
lenging as it requires significant domain knowledge to be encompassed 
in the system in addition to training it for detection and analysis of low- 
level image features. 

6. Conclusion 

The construction industry captures tremendous amounts of visual 
data daily to track and control project progress, safety, and productivity. 
However, extracting meaningful information from pictures and videos 

necessary to make decisions, is a difficult task and requires a high level 
of human involvement. Recent advances in computer vision have 
enabled the development of techniques and systems to automate infor
mation extraction and augment data-driven decisions. This review 
offered an updated and categorized overview of computer vision ap
plications in construction from a holistic approach and identified op
portunities and challenges that future research needs to address to fully 
leverage the potential benefits of Computer Vision in construction. The 
review indicated that safety management and progress monitoring are 
the most popular fields that use computer vision followed by produc
tivity tracking and quality control. Among different computer vision 
techniques, object recognition is the most used technique that has found 
several applications in construction management followed by segmen
tation and classification. Object tracking and action analysis have been 
quite popular in safety management but have not been explored much in 
other fields despite promising applications, especially in productivity 
monitoring. 

The review also resulted in the identification of various challenges 
that hinder the implementation of computer vision-based systems in 
construction. One of the most common challenges is the need for good 
quality input data for vision-based applications to work efficiently. 
Owing to the unique characteristics of construction environments (un
even ground, poor lighting, cluttered environments), maintaining this 
good quality of visual data is difficult. The second most common chal
lenge reported by several researchers is the lack of adequately sized 
labelled or annotated data needed to train AI-based systems. The liter
ature suggests that there is a lack of extensive databases of labelled 
images that can be used to train vision-based systems for construction 
applications. In addition, lack of detailed BIM models, complex, dy
namic and occlusion-prone environments and variations in appearance 
of objects (material, equipment, building elements), variation in task 
sequence and methods are some of the other challenges that are inhib
iting the development of computer vision in construction. These chal
lenges need to be addressed or accounted for when developing vision- 
based systems for construction applications. 
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