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Thousands of images and videos are collected from construction projects during construction. These contain
valuable data that, if harnessed efficiently, can help automate or at least reduce human effort in diverse con-
struction management activities such as progress monitoring, safety management, quality control and produc-
tivity tracking. Extracting meaningful information from images requires the development of technology and
algorithms that enable computers to understand digital images or videos, replicating the functionality of human
visual systems. This is the goal of computer vision. This review aims at providing an updated and categorized
overview of computer vision applications in construction by examining the recent developments in the field and
identifying the opportunities and challenges that future research needs to address to fully leverage the potential
benefits of Computer Vision. We restrict the focus to four areas that can benefit the most from computer vision -

Safety Management, Progress Monitoring, Productivity Tracking and Quality Control.

1. Introduction

An image is said to be worth 1000 words. More than 400,000 images
are captured from a typical construction project (~17,000 Sft.) during
its construction phase [1]. This number is rising with the advancement
of technology and the ever-increasing use of camera-equipped devices
such as drones, ground robots, smartphones, and tablets on construction
sites. This enormous volume of images and videos contains a treasure of
valuable data, which can potentially be harnessed for a variety of project
management activities such as surveillance, progress monitoring, safety
management, quality inspections, resource utilization management and
others. Traditionally, images and videos captured on construction sites
have been used for documenting and tracking the status of the project
[2], documenting the safety and quality inspections [3], keeping a visual
timeline of site progress, providing evidence against damage claims [4],
capturing workmanship, and providing field updates to the office. In
addition, construction projects use surveillance cameras on the jobsite
boundary for security purposes [5]. In most cases, the images and videos
are manually examined, and their use has been largely been limited to
documentation and record-keeping [6,7]. More importantly, only a
limited amount of information is extracted and used from these images.
For example, the images collected by surveillance cameras are pre-
dominantly used to record any unauthorized intrusion to the site [5].
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However, the visual data captured by surveillance cameras contains
other useful information as well, such as the progress of work over time
[8], safety compliance by workers [9], idle time of equipment, material
usage and much more, which remains largely unused. To prevent this
underutilization of data, there is a need for efficient technology to
automatically extract and analyze valuable and meaningful information
captured in images and videos. In recent years, there has been a para-
digm shift in construction and the role of visual data is changing from
being a passive instrument of documentation and record-keeping to an
active tool in project management. For example, images and videos are
used to detect defects and assess conditions of concrete and asphalt in
civil infrastructures [10,11]. Similarly, data from images are processed
to automatically detect whether or not workers are wearing their hard
hats [12,13]. Such automated systems help construction managers make
informed decisions for efficient safety, productivity, and quality man-
agement. However, automated extraction of information from images
and videos is a challenging task [14,15] and requires the development of
technology that enables a computer to understand an image by detect-
ing, identifying, and classifying various objects present in an image, just
like a human vision system. This is the goal of computer vision (CV),
which is an interdisciplinary field aimed at developing algorithms to
enable computers to understand digital images or videos, replicating the
functionality of human visual systems [16,17]. A typical computer
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vision system accepts 2D images (or videos) as an input, transforms it
into a mathematical form (using pixel values), analyzes this data to
recognize meaningful patterns, distinctive features, spatial arrange-
ment, among other things, and provide a description of the image as
detailed as required by the problem [18]. Fig. 1 shows a typical pipeline
of a computer vision-based system.

Computer vision techniques are widely used in todays' world in
almost every field. The most common example is perhaps the face
detection ability of our smartphone cameras. Popular self-driving cars
also use various vision-based techniques such as Simultaneous Locali-
zation and Mapping (SLAM) and object recognition to make decisions
while driving autonomously on roads [16]. The other examples include
the detection of cancer cells from CT and PET scans [19], detection and
classification of skin lesion [19] in medicine, prediction of traffic speed
in transportation, quality inspection of packaging [20], identification of
defective products and remote inspections of pipelines and equipment in
manufacturing [21]. In the mars exploration mission, researchers used
stereo vision and visual odometry for rover navigation and feature
tracking for horizontal velocity estimation of the landers [22]. In con-
struction, computer vision is increasingly being used for safety man-
agement [10], quality inspections [23], productivity monitoring [24],
and navigation of unmanned ground and aerial vehicles [6]. Some of the
examples include estimation of worker's pose [25], detection of PPE
[26,27], comparing actual vs planned work [28], and conducting the
quality inspection of critical infrastructure [14].

1.1. Computer vision in construction

Construction is on the path of increasing automation. Owing to the
large amount of visual data it generates, the construction industry can
greatly benefit from the automatic extraction and analysis of this useful
data. Computer vision can help automate several construction man-
agements tasks that currently require extensive human involvement for
visual examination. This includes safety monitoring (E.g., detecting non-
compliance to PPE requirement), quality inspections (E.g., detecting
installation defects), progress monitoring (E.g., comparing as-built 3D
geometry with as-planned 3D/4D model), navigation assistance (E.g.,
proximity alerts for construction vehicles), automated/ robotic con-
struction (E.g., controlling robotic arms of painting or brick laying
robot). Even though vision-based techniques are increasingly being used
in construction, there is still significant untapped potential in this area
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that future research needs to explore.

1.2. Goals and objectives

This study aims at reviewing the current state of computer vision
(CV) in construction from a holistic approach and identifying the op-
portunities and challenges that future research needs to address to fully
leverage the potential benefits of CV in construction. First, we discuss
the most common and important computer vision tasks relevant to
various construction management applications. Second, the study aims
to provide an updated overview of computer vision applications in
construction that captures the recent developments in this rapidly
evolving area. To maintain a homogeneous set of contributions, we
restrict the focus to the use of different computer vision techniques in
four areas within construction that can most benefit from computer
vision. These are progress monitoring, safety monitoring, quality control
and automated construction. Third, the study aims to structure the ob-
tained information in a way that computer vision research in different
areas can easily be linked to each other and compared on multiple facets,
which will facilitate future research works within a specific researcher's
area of interest. The paper also identifies specific challenges and future
research opportunities for the integration of computer vision in
construction.

1.3. Point of departure

As of January 2021, there have been a few important reviews of
computer vision research in construction. [29] conducted a compre-
hensive review of computer vision applications in construction safety
assurance. In addition, [30] conducted a scientometric review of com-
puter vision research for construction applications and [31] mapped the
computer vision research in construction in 2019. While all three works
have made valuable contributions, the current work offers different
contributions. For example [29] focused only on safety assurance,
whereas this work takes a holistic approach to review computer vision
applications for different construction management activities not
limited to any one area. Secondly [30,31] predominantly focused on
mapping the published work on computer vision in construction. The
results provide trends of published work, author and co-other analysis to
identify researchers involved in such research, geographic mapping of
published work etc. In contrast, the current work focuses on the
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Fig. 1. Typical computer vision process.
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application of different computer vision tasks in different areas of con-
struction management. While studies [30,31] focused more on “who”
and “where”, the current study focuses on “what” and “how” of the
computer vision research in construction. Compiling literature in this
manner enables the identification of issues, opportunities and challenges
that are not currently well covered and examined. This study lays
foundation work for future research aimed at approaching computer
vision in construction from a holistic perspective or focusing on devel-
oping computer vision applications in specific areas within construction.

1.4. Contributions

This paper provides the latest review of computer vision-based
technology in construction to evaluate the current state of computer
vision applications, identify challenges in implementation and future
research opportunities. The paper categorizes the applications by 1)
different areas of construction management (i.e. safety management,
progress monitoring, quality control & productivity analysis) and 2)
different computer vision tasks (such as classification, object recogni-
tion, object tracking, action recognition).

1.5. Organization

The paper is organized as follows: We start with Section 1 that dis-
cusses the goals of the review and its point of departure from similar past
works. Section 2 defines and provides a concise explanation for various
computer vision tasks that are commonly used in construction. Section 3
presents the review methodology and discusses the inclusion and
exclusion criteria used to filter the literature. Section 4 presents the
review findings, and the subsections categorize the applications by
different areas of construction management. This is followed by Section
5 that highlights the challenges and opportunities of computer vision
techniques in construction from the holistic perspective. Finally, Section
6 presents the conclusion.

2. Background

Computer Vision (CV) is a broad field that encompasses several
distinct vision techniques accomplished for different objectives and
predictions. For example, it can be used to create a digital twin of a
construction (3D Scene Reconstruction) or used to detect hazards on
construction sites (object detection) or used to find an obstacle-free path
for an autonomous ground vehicle (segmentation). Modern computer
vision techniques can be traced back to an ambitious MIT summer
project by Seymour Papert and Marvin Minsky in 1966 [18]. The goal of
this project was to build a system that can analyze images and identify
objects in these images. Even though the goal was not achieved, it is
often said to have laid the foundation of modern-day computer vision
[18]. In 1979, Fukushima [17] proposed the Neocognitron, which
included a hierarchical, multilayered artificial neural network used for
handwritten character recognition and other pattern recognition tasks.
It served as the inspiration for convolutional neural networks (CNN)
developed in 1980. A convolutional neural network consists of multiple
layers of artificial neurons, which are mathematical components similar
in functioning to biological neurons [18]. Unlike previous systems,
where the image was processed holistically, each layer of a CNN extracts
specific features from the pixels of the images. For example, the initial
layers detect basic features, such as vertical and horizontal edges, deeper
layers use these simple features to detect more complex features such as
corners and basic geometric shapes, and the final layers use these
complex features to detect specific entities or objects of our interest such
as faces, doors, and cars [19,32,33]. While CNNs performed excep-
tionally well compared to previous attempts, the amount of data and
computational resources needed to tune and use CNNs was extremely
high, limiting their use to banking and postal services only [34]. Hence,
most computer vision problems used machine learning techniques such
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as support vector machines (SVM) and random forest [32]. These ma-
chine learning approaches utilize “features,” (a measurable piece of data
that is unique to this specific object such as distinct pattern, color etc.)
and use a statistical learning algorithm to detect objects in images or
classify images based on these features. However, identifying the fea-
tures specific to objects requires enormous human and computational
resources. In 2012 CNNs regained popularity with the development of
ALEXNET [17,35], which demonstrated great potential. Since then,
advances in deep learning have enabled computer vision to grow
immensely and it has found applications in almost every field from
medicine to defense, to transportation to manufacturing and of course,
construction. Fig. 2 shows the evolution of computer vision in con-
struction listing some of the notable works that represent important
milestones in the path of computer vision integration in construction.

Computer vision is a broad field that encompasses several techniques
used to extract and process visual data from images and videos to draw
meaningful inferences. Some of these techniques that are important to
construction management tasks are detailed below.

2.1. 3D scene reconstruction

3D Scene Reconstruction is a process to create 3D models of a scene
from a set of 2D images. By applying the 3D scene reconstruction pro-
cess, 3D shapes of complex objects can be modelled provided the 2D
images contain all the required information [36]. Early phases of 3D
scene reconstruction research developed a mathematical process to
understand 3D to 2D conversion process to develop algorithmic solu-
tions, which later became the foundation for the development of 3D
reconstruction. In construction, 3D reconstruction is used in construc-
tion progress monitoring, structure inspection and post-disaster rescue.
A typical process involves building an as-built 3D model from 2D images
(or laser point clouds) captured on site. This model can be used for a
variety of applications such as comparing progress over time, con-
ducting quality inspections, inspecting mechanical structures
(plumbing, electrical, HVAC systems) or visualization purposes. For
example, Fig. 3 shows an interesting work by Han and Fard [28]
demonstrating the use of 3D reconstruction to monitor the progress of
work. As shown in the figure, a 3D model of the construction site is
created by a set of 2D images obtained from the construction site and
this as-built 3D model is compared with the as-planned BIM model to
track progress.

As sensors, such as a camera, can only capture visible information,
perceiving 3D shapes of an object, its volumetric composition, and the
overall information is daunting for machines, unlike a human who can
perceive visible as well as invisible information while examining an
image [37]. While capturing images, the 3D geometry is projected into
the 2D image sensor and as a result, the depth information is lost. This
makes estimation of the 3D structure of a scene from a set of 2D images
very challenging [38]. However, methods such as structure from motion
[39], have made 3D reconstruction possible using multiple images with
overlapping views. The typical 3D reconstruction process involves
inferring the geometrical structure of a scene captured by a collection of
images. The camera position and internal parameters are either known
or estimated from a set of images. Then the algorithms find the corre-
sponding points in a set of images (i.e., the same point in multiple im-
ages) using image features. Finally, using the location of corresponding
points in images and their respective camera positions, 3D information
can be recovered. Recent development in CNNs has enabled 3D scene
reconstruction processes to demonstrate impressive performance in the
creation of 3D models from the 2D images [40]. However, 3D recon-
struction in construction environments is still a challenging task. This is
mainly due to complicated construction environments characterized by
poorly textured surfaces that are covered with uniform material, dy-
namic and complex nature of jobsite, unwanted/obstructed background,
repetitive patterns of building surfaces, and occlusion [39].
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Fig. 2. Evolution of Computer vision in construction: Notable works over the years.
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Fig. 3. 3D Reconstruction used for construction progress monitoring by Han & Fard [28].

2.2. Image and object classification

Image classification is one of the fundamental computer-vision tasks
of taking in an input image and identifying the ‘class’ the image falls
under (Or a probability of the image being part of a ‘class’). For example,
an image classification algorithm can take images of different equipment
on a construction site as input and assign a class label such as ‘excavator’,
‘dump truck’, ‘forklift’ etc. to each image (see Fig. 4). Or it can take a
single image as an input and provide a probability that the image be-
longs to a particular class of equipment (such as “there is a 90% proba-
bility that this input is an excavator”’). Sometimes, the image is first broken
into discrete objects within them and then each object is classified
separately. This type of classification mimics the type of analysis done
by humans and is called object classification. It is the process of pre-
dicting a specific class to which an object belongs based on object-level
features. Object in the context of images is a set of pixels within the

image that belongs to the same instance. The object classification
technique involves the categorization of pixels based on their spectral
characteristics, shape, texture, and spatial relationship with the sur-
rounding pixels. By applying the classification technique, a computer
can identify objects into one of the finite sets of classes defined in
advance [41]. Classification is one of the core problems in computer
vision that, despite its simplicity, has huge practical applications such as
the classification of construction workers wearing hardhat, vests etc.
Early image classification methods relied on raw pixel data. The
process involved breaking an image into individual pixels and applying
statistical methods to categorize images. This, however, is a challenging
task as two images of the same class might look very different due to
different backgrounds, angles, poses, etc. However, neural networks,
particularly Convolutional Neural Networks or CNNs have enabled the
development of classification algorithms that identify and extract fea-
tures from images instead of relying only on pixel data or manual
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OUTPUT

Fig. 4. Classification techniques used for classifying construction equipment and tasks.

application of filters. This has made image /object classification tasks
much robust and reliable to be used in a variety of applications. Despite
enormous progress, there still exist some challenges to accurate classi-
fication due to the object's variability in color, the angle at which the
object is located, and speed at which images are taken and most
importantly occlusions [42,43].

2.3. Object recognition

As discussed above, Image Classification only provides information
about whether (and with what probability) the object of interest is
present in an image or not. In contrast, object recognition involves both
classification and localization tasks, i.e., it identifies and locates objects
in images or videos. It is often a more useful technique as it allows
multiple objects to be identified and located within the same image. The
object recognition technique recognizes object categories and the loca-
tion of each object by providing a bounding box encapsulating different
objects of interest in an image [41] (see Fig. 5a). An important task in
object recognition is to identify what is in the image and with what level
of confidence (classification task). Once the object is identified, the next
step is to locate it in the image using the detection and segmentation
techniques. Detection techniques usually output a rectangle around the
recognized object called Bounding Box (BB) (Fig. 5a) generated by
regression method [43]. Alternatively, instance segmentation identifies
the objects in each pixel resulting in a precise map of the object in an

image as shown in Fig. 5b below.

Various machine learning algorithms used for object recognitions are
Histogram of Oriented Gradients (HOG) feature extractor [44], Support
Vector Machine (SVM) [45], Bag of Features model [46] among others.
Advances in convolutional neural networks have made it possible to use
object recognition techniques in applications like robotic, navigation,
remote sensing autonomous driving, video surveillance, pedestrian
detection and several others [47].

2.4. Object tracking

Object tracking is a technique used to track objects as they move
across a series of video frames while maintaining their identity and
trajectory. The target objects are often people, but may also be animals,
vehicles, or other objects of interest. The object tracking process starts
with identifying objects and assigns them bounding boxes (i.e., object
detection). Object tracking techniques assign an ID to each identified
object in the image, and in subsequent frames tries to carry across this ID
and identify the new position of the same object. Detection of moving
objects and motion-based tracking are components for various real-
world applications, including pedestrian tracking [48], human-
computer interaction [49], autonomous vehicles, robotics, motion-
based recognition, video indexing, surveillance and security [50].
Compared to static object detection, object tracking has challenges such
as

Fig. 5. Object Recognition output examples: a) Bounding Box b) Instance Segmentation.
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i) Re-identification—connecting an object in one frame to the same
object in the subsequent frames.

ii) Appearance and disappearance—objects can move into or out of
the frame unpredictably and we need to connect them to objects
previously seen in the video.

iii) Occlusion—objects are partially or completely occluded in some
frames, as other objects appear in front of them and cover them
up.

iv) Identity switches—when two objects cross each other, we need to
discern the two objects.

v) Scale change—objects in a video can change scale dramatically,
due to the camera zoom.

vi) Illumination—lighting changes in a video can have a significant
effect on how objects look, which can make it harder to consis-
tently detect them.

Some popular algorithms for object tracking that uses deep learning
methods are SORT [51], GOTURN [52], and MDNet [53].

2.5. Segmentation

Segmentation is a process of recognizing and understanding what is
in the image at the pixel level. The goal of the segmentation task is to
give each pixel a label based on what the pixel represents in an image.
Thus, images are divided into different regions based on the character-
istics of pixels that identify objects or boundaries to simplify an image
and analyze it more efficiently. This process allows separating objects
from the background. Segmentation tasks can further be categorized as
a) Semantic segmentation b) Instance Segmentation.

2.5.1. Semantic segmentation

Semantic segmentation refers to the process of linking each pixel in
an image to a class label. Semantic segmentation does not differentiate
instances and only uses pixels while providing a richer understanding of
an image [41]. Semantic segmentation can be considered as image
classification at a pixel level. For example, in the image shown below
that, segmentation labels all pixels covering reinforcement bars as
green, the ground as purple and structural steel beams as blue without
differentiating the individual instances. These computer vision tech-
niques utilize other techniques like object classification (Object detec-
tion and localization) to label pixels [54]. Fig. 6 shows an example of
scene segmentation.

2.5.2. Instance segmentation

Instance segmentation refers to the process of labelling pixels in an
image to the separate instances where an object appears in an image (see
Fig. 7). This technique first includes object detection to extract bounding
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boxes around each object instance, followed by segmentation inside
each bounding box to assigns a label to every pixel that corresponds to
each instance. Instance segmentation is in a way a combination of object
detection and segmentation [41]. The main purpose of instance seg-
mentation is to distinctly represent each instance of the objects of the
same class.

2.6. Action recognition

Action or activity recognition is another important computer vision
task that aims to recognize the actions of one or more agents from a
series of images/videos. Action recognition involves feature extractions
from consecutive frames of a video, to identify and classify an action
based on a set of predefined action classes, and action localization. The
majority of existing action recognition frameworks consist of feature
extraction, dictionary learning based on the extracted feature, and
classification of video using representation [55]. Since this task requires
analysis of a continuous stream of related images (or video), Recurrent
Neural Networks (RNNs) are extremely useful in action recognition
problems. Mainly there are three types of action recognition techniques
as follows [56]. 1) Depth-based action recognition — popular due to the
availability of cost-effective sensors. Most existing depth-based action
recognition methods use global features such as space-time volume and
silhouette information. 2) Skeleton-based action recognition - it uses
positions and motion using the coordinates of the joints. 3) Action
recognition via a combination of skeleton and depth features — It com-
bines the depth of skeleton and depth features together and helps to
overcome situations when there are interactions between human sub-
jects and other objects or when the actions have very similar motion
trajectories.

Action recognition techniques are useful in various real-world ap-
plications such as security, sports, construction, wildlife etc. In con-
struction, it can be used to determine the actions of various equipment to
compute productivity, actions of workers to ensure proper work posture,
movement of vehicles and equipment for logistic planning and man-
agement etc.

3. Review framework

The review process consisted of the following three steps.

3.1. Identification of literary sources

The first step in the review process was to identify relevant academic
journals and databases that publish the latest developments in the field
of computer vision in constriction. Journals were selected based on the
various parameters such as impact factor, cite scope, Scientific Journal

Fig. 6. Semantic scene segmentation.
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Fig. 7. Instance segmentation (Green masks represent individual instances of an object). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Rankings (SJR) and popularity in the field of computer vision and
construction. Databases such as Web of Science, ASCE, and Elsevier were
used for the searching journals needed for the review. Table 1 below
shows the distribution of articles used in this review.

3.2. Relevant article search

Once the top journals were selected, the relevant articles were
searched using different keywords. Google Scholar, a powerful web
search engine, was used as a complementary search tool to eliminate
searching biases. To include a wide range of construction tasks including
safety, quality, progress, and productivity monitoring, the keyword
‘computer vision + construction’ was used for the primary search that
identified most articles reviewed in this study. Further, specific keyword
searches such as “computer vision + safety”, “computer vision + progress”,
and “computer vision + quality” were also used to obtain relevant articles
in each construction task. More than 550 articles were examined, and
the relevant articles were selected using the following inclusion and
exclusion criteria for a thorough review.

Inclusion Criteria:

e Work in the construction domain.

e Use of images/ videos as the primary source of data.

e Develop/ use one or more computer vision techniques for a
construction-related task.

Table 1
Journal title and articles.

Publication Journal title Number of articles
reviewed

Elsevier Automation in Construction 34
Advanced Engineering Informatics 21
Engineering 1

ASCE Journal of Computing in Civil Engineering 20
Journal of Construction Engineering and 13
Management

Hinwadi Journal of Construction Engineering 1

MDPI Remote Sensing 2

Sage Journal of Transportation Research 1

Wiley online Computer Aided Civil and Infrastructure 2
Engineering

Emerald Journal of Construction Engineering 2

insight
Springer Robotic Fabrication in Architecture 1

International Symposium on Automation

and Robotic in Construction

Conference on Computer Vision workshops 1
Archives of Computational Methods in 1
Engineering

e Work published in journals grouped in the first quartile of SJR
rankings.

Exclusion Criteria

Manuscripts focusing on areas other than construction.

Use of computer vision in design, asset management, real-estate sales
and other non-construction activities within the construction field.
Manuscripts published before 2010.

Manuscripts from non-peer-reviewed conferences

Industry white paper

The refinement resulted in 85 relevant articles. However, more
relevant articles were identified from these papers by using reference
chains. This helped identify important articles that were missed during
the keyword search process. Finally, 101 articles were reviewed thor-
oughly as shown in Table 1.

3.3. Review and organization

Refined papers were categorized based on different construction
management tasks to conduct a focused systematic review. Fig. 8 below
shows the number of articles reviewed for each construction task.

Articles were also categorized based on different computer vision
techniques as shown in Fig. 9 below.

4. Review findings

Computer vision has drawn attention in construction because of its
applicability in automating different construction tasks, monitoring
construction sites and automating safety and quality inspections [1,57].
Compared to other sensing techniques such as RFID, GPS and UWB,
computer vision techniques have several operational and technical ad-
vantages as they can provide information related to one's position and
movement with limited sensory data [58,59]. As shown in Fig. 8, safety
management and progress monitoring are two leading areas where
different computer vision applications have been developed and used
over the past decade. This is followed by productivity monitoring. One
of the interesting findings was that even though quality control can
greatly benefit from advances in computer vision, it is one of the areas
that is lagging in the application of computer vision systems. Among
different techniques, object recognition seems to be one of the most
popular computer vision techniques in construction, closely followed by
segmentation and object classification (Fig. 9). The major areas where
computer vision has been used significantly and/or has the potential of
being used in future:
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Fig. 9. Articles reviewed- categorized by computer vision tasks.

4.1. Safety monitoring

With more than 900 fatal and over 200,000 non-fatal injuries [60],
construction is one of the most dangerous industries to work for [61].
Globally more than 60,000 lives are lost on the construction site every
year [62]. In addition to the loss of life, and the personal and social
impact of injuries, the financial burden of accidents is also significant
[63]. To prevent such accidents, it is important to detect unsafe actions
and unsafe conditions and take prompt corrective action. The current
practice of safety inspection is largely based on human involvement and
manual inspections. As with any visual inspection task, computer vision
has a huge potential to automate the tasks of detecting and recognizing
unsafe actions and unsafe conditions, which is the first step towards
eliminating them from the causal chain of accidents.

In recent years, there has been a growing trend in the use of digital
tools like Unmanned Aerial Vehicles, predictive analytics, wearable
devices in construction sites, which help site safety managers to detect
and manage the safety risks that arise during the execution of the
project. Computer vision plays an important role in the development
and use of these technologies. It can help in identifying and accessing the

risk of fatalities and accidents using visual data obtained from the job-
sites [26,27,29,64]. Various computer-vision based techniques are used
in safety management either individually or in combination to

Table 2
Various computer vision tasks used in safety management.
Method Literature Objectives
Object [65-72] Classifying workers, Risk
classification zones, equipment, and other
site hazards
Object [24,25,27,29,67,68,70,73-82] Detection of PPE, guardrail,
recognition structural supports, equipment,
and cranes
Object tracking [70,77,78,80,83-85] Tracking workers, equipment,
and target
Action [64,71,85-87] Recognizing worker's posture,
recognition and ineffective human pose;
Detecting motion of
construction workers
Segmentation [13,27,66,79,84,88] Segmenting visual features to

detect and/or evaluate safety
hazards or safety controls




S. Paneru and I. Jeelani

automatically detect and manage safety hazards on the jobsite. Table 2
shows various computer vision tasks that are predominantly used in
safety monitoring, their objectives and a few examples of articles dis-
cussing their development and/or use.

4.1.1. Object classification

It is a computer vision technique that has been used to classify ob-
jects into predefined groups such as safety conformance and non-
conformance, a worker wearing a hardhat and workers not wearing
one, vest and no vest etc. Further, the object classification technique has
been used to classify construction workers, risk zones, equipment [69],
safety behaviors [65], and safety hazards [68] from images collected by
surveillance cameras [5], drones [69], ground robots [89] and tablets
[24] on construction site. CNNs are often used for such classification
tasks. For example, CNN was used to classify workers wearing a hardhat
and non-hardhat-wearing workers [72] using HOG features of the
hardhats, which are capable of describing detailed shape information
efficiently. Similarly, YOLO-V3 [71], which is a single convolutional
network that simultaneously predicts multiple bounding boxes and class
probabilities for those boxes, was used to measure proximities among
construction entities to measure the actual distance of workers from the
potential hazards. In addition, workers and non-workers are classified
by analyzing spatiotemporal relevance between workers and non-
workers. This was done by analyzing, comparing, and matching multi-
ple images of each worker obtained from videos [67]. Finally, color
based pixel method has also been used to classify safety vests with a
comparative analysis of two colors paces (Lab and HSV [hue, saturation,
and value])and three types of classifiers (a support vector machine
[SVM], an artificial neural network [ANN], and a logistic regression
[LR]D) [25].

4.1.2. Object recognition

Object recognition has been used in safety management to detect
safety hazards or instances of non-compliance on the jobsite. This in-
cludes detection of PPEs to ensure workers are using appropriate PPE
[12], detection of guardrails [75] and structural supports [73] to ensure
sufficient safety controls are in place detection of static and dynamic
hazards such as equipment, vehicles, cranes etc. [24] to aid in safety
management at construction job sites. Since it is not possible to elimi-
nate all hazards at a job site, PPE compliance becomes very crucial. PPE
protects workers from exposure to potential hazards that cannot be
eliminated by engineering and administrative controls. Various object
detection and recognition techniques have been used to help identify
whether proper PPEs are being used by workers. For example, [25] used
a background subtraction method and color pixel classification to detect
safety vests on workers, which was subsequently used to identify
workers not wearing an appropriate safety vest. Similarly, [12,74]
developed a vision-based system to detect hard-hats on workers using
pixel-based image classification. In addition, vision-based methods
using CNNs have also been used to detect workers to obtain the posi-
tional information of workers, and with the help of positional informa-
tion, danger zones for the workers were detected [65]. Falls contribute
to about one-third of all fatalities in construction and the use of a safety
harness and appropriate PPE is critical to reducing the risk of falls [90].
Object recognition techniques can greatly help in monitoring compli-
ance to appropriate fall protection systems. For example, [81] used
Faster R-CNN to first detect the presence of workers on heights and then
CNN based classification algorithm to determine whether or not workers
are using the safety harness. Similarly, [73] used CNN based occlusion
mitigation method to monitor PPE compliance by steeplejack workers
working in the exterior wall. In addition to PPEs, barriers such as
guardrails can minimize the workers' exposure to hazards. Computer
vision can play an important role in ensuring that necessary guardrails
are in place. For example, [75] developed a method to detect guardrails
using Visual Geometry Group architecture (VGG-16). Further, R- CNN
was used to detect structural supports present on construction sites
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[24,27]. This subsequently helped to reduce the fall hazards. Further-
more, Improved Faster Regions with Convolutional Neural Network
(IFaster R-CNN) approach was used to automatically detect the presence
of excavators and workers on the site with a high level of accuracy (91%
and 95%) [24]. These detections help in safety monitoring by auto-
matically detecting the worker's unsafe proximity to a hazard. Finally,
each construction trade has its own set of safety standards and codes to
follow. So, identification of trades also becomes crucial for efficient
safety management. Moreover, sometimes it becomes necessary to
designate specific zones to trades to minimize exposure to hazards.
Computer-vision can greatly help in ensuring compliance to such mea-
sures. For example worker's certification checking system developed via
video imaging based on R-CNN was used to identify types of trade
working on the site [67].

4.1.3. Object tracking

Object tracking is another computer-vision technique that is very
helpful in tracking workers [77], equipment [78], site dynamics [85],
and motion characteristics of onsite objects [70] to ensure sufficient
safety measures are in place and workers are maintaining a safe distance
from the potential hazards. Various algorithms such as mean shift,
Bayesian segmentation, active contour, and graphs algorithm are used to
track workers using moving cameras. For example, the Bayesian
method, which uses the segmentation procedure, was used to track
workers on the construction site [83]. This approach offers advantages
over gradient-based methods as the segmentation process is global and
pixelwise. Workers are also detected and tracked using pedestrian
detection techniques [77] from jobsite's bird's eye view images. First, a
decision forest algorithm is used to detect workers, then the soft
cascading classifier is used to track workers [77]. Similarly, workers can
be tracked from a video of the jobsite using a combination of detection
and tracking algorithms. For example, [78] combined latent SVM
detection algorithm to first detect workers and then used particle
filtering to track the detected workers. Also, [80] used HOG template
algorithm to detect workers then used template matching to track
workers by using the region from the detection bounding box. Tracking
equipment and its movement in the jobsite remain a challenging task on
construction. A 3D spatial modeling algorithm and image matching al-
gorithm was used to track equipment and its surrounding [70]. This
helps in safe equipment operation by providing accurate information
about objects surrounding the equipment. Since jobsite surveillance
cameras are already in use on the most construction sites, a video-based
tracking system can be implemented at low costs using these cameras.

4.1.4. Action recognition

Action recognition has been used in construction safety to identify an
action or task that workers are engaged in, by recognizing workers
motion, position, and body movement. Multiple computer vision algo-
rithms are used to identify these actions. For example, to determine a
worker's pose used a Linear discriminant analysis (LDA) classifier to
classify workers pose from the images collected by a range camera [87].
This helped determine whether a worker is standing, bending, sitting, or
crawling. Then OpenNI [91] middleware was used to get the joint angle
and spatial locations. Finally, body posture information was used to
categorize tasks as ergonomic or non-ergonomic [87]. In another study,
motion capture data from Kinect was used to identify the unsafe actions
of workers climbing a ladder (i.e. backward facing climbing, climbing
with an object, and reaching far to a side) with an accuracy of over 90%
[92]. In addition, 3D skeleton extraction and motion recognition tech-
nique are used to detect unsafe actions such as reaching too far in ladder
climbing [64]. Images taken from smartphones can also be used to
capture human motion data for onsite motion sensing and analysis [85],
which ultimately helps to detect the action performed by the worker.
Worker's motion and position can also be analyzed from the video ob-
tained from the jobsite to identify non-ergonomic postures and move-
ments by acquiring 2D skeleton and 3D coordinates of joints by
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extracting image sequences [86].

4.1.5. Segmentation

Segmentation has been used in safety management to locate visual
features from images including color, texture, compactness, contrast,
and edges, which ultimately enables the identification of safety hazards.
For example, the background subtraction algorithm extracts motion
pixels from an image sequence or video, pixels are then grouped into
regions to represent moving objects, and finally, the regions are
segmented using classifiers [66]. The connected moving regions are
used for object correspondence and classification. This technique pro-
vides the benefit of site monitoring with reduced human intervention by
using the video obtained from the site. In another study, the unsafe
behavior of workers around structural supports in a deep-pit foundation
was detected and segmented using Mask R-CNN [27]. The overlapping
detection model was trained to determine the relative position of
workers and structural supports [27]. Additionally, [88] used instance
segmentation using MaskRCNN to develop a vision-based system that
provides real-time alerts to workers if they are in proximity of hazards.
Segmentation technique has also been used to detect hard hats of
workers to check compliance [13]. In addition segmentation, feature
representation, and classification technique can also be used to detect
high-risk areas of a construction project such as roofs, edges etc. [79].

4.2. Progress monitoring

Progress monitoring is one of the most important tasks in construc-
tion management as it tracks the progress of the project and ensures that
the project is constructed on schedule and within budget. An accurate
assessment of progress allows managers to make better decisions to
control the project's cost and schedule. Current practices of progress
monitoring require significant manual intervention, are time-consuming
and are prone to human errors. Therefore, efficient monitoring systems
can help construction teams by automating progress inspections, which
will help to reduce the risks of reworks and errors and prevent deviations
of cost and schedule [14]. To reduce reworks and errors, construction
companies often integrate their production schedule with the 3D BIM to
create 4D BIM. However, this process involves manual manipulation to
integrate real-time progress information with 4D BIM. To facilitate this
integration process, construction researchers and practitioners have
focused on collecting as-built visual data through hand-held cameras
and video recorders, assigning field engineers to filter, annotate, orga-
nize, and present the collected data in comparison to as planned date
from 4D BIM. However, the cost and complexity associated with
manually collecting, analyzing and reporting operations results in sparse
and infrequent monitoring and a portion of the gains in efficiency are
consumed by monitoring costs [6]. Therefore, construction researchers
are working towards automating such manual processes. Advances in
the field of computer vision have enabled the development of technol-
ogy that has aided in automating various tasks involved in progress
monitoring.

Typically, progress monitoring using visual data requires capturing
as-built data, which can be in the form of still images, videos or point
clouds, and comparing this with the as-planned models from BIM, CAD
etc. This work predominantly requires one or more of the following
computer vision techniques as shown in Table 3

4.2.1. Object recognition and classification

This technique has been used to detect building elements to compare
planned vs actual finished work [3] by analyzing the visual data ob-
tained from the site via drones or other cameras to evaluate the progress
of the project. For example, work packages were generated automati-
cally by analyzing multiple images obtained from the site, which
allowed project controls to be monitored effectively [93]. In another
work, site photographs were compared with the BIM model to generate
the status of interior construction by decomposing the as-built model
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Table 3
Various computer vision tasks used in progress monitoring.
Method Literature Objectives
Object [93-96] Compares planed vs actual work, tracks
classification status of construction and progress
Object [6,7,97-100] Detects building elements and obstacles,
recognition visual comparison with BIM model to

identify progress

Track objects in real time

Segments visual features including color,
texture, compactness, contrast, edges

Object tracking
Segmentation

[101,102]
[4,6]
[8,93,97,98,101]

[95]. Object detection was then used to detect interior construction el-
ements and subsequently matched with interior construction images to
identity progress schedule deviation. Similarly, in [98] the progress of
interior construction was evaluated by using integrated shape and color-
based modules, which detected studs, insulation, electrical outlets, and
different states for drywall sheets (installed, plastered, and painted).
Based on the results of the modules, images are classified into one of five
states of construction i) framing, ii) insulation, iii) insulated drywall, iv)
plastered drywall, and v) painted partition [98]. Moreover, object
detection has been used to detect building elements and obstacles, and
visual comparison with BIM model to assess progress. For example,
appearance and geometrical based reasoning was used to evaluate
construction progress using Earned Value Analysis (EVA) concepts from
an integrated model of point cloud and BIM [6]. Similarly, a probability
distribution algorithm was used to recognize material appearance by the
filter bank and principal Hue- Saturation color vale with an accuracy of
97% [7]. This helped to identify changes on jobsite based on the ma-
terial appearance. In addition, 3D structural components can also be
recognized using color data and stereo vision systems to automatically
track structural progress in construction [97]. Furthermore, with the
help of geometrical model matching and statistical analysis of template
mask regions, progress can be monitored using image-based classifiers,
which identify changes and detects construction processes [100]. In
another work, [99] developed texture-based reasoning for image-based
3D point clouds and color-based reasoning for laser-scanned point
clouds [99]. In this work, geometry-based filtering detects the state of
construction of BIM elements (e.g., in-progress, completed) and
appearance-based reasoning captured operation-level activities by
recognizing different material types [99].

4.2.2. Segmentation

Scene segmentation can help to understand the contents of the image
to determine the progress of the project. For example, the voxel coloring
algorithm was used to monitor the progress of building elements by
comparing 3D obtained from images of the site with the BIM model
using the Bayesian machine learning model [8]. This comparison gen-
erates construction progress deviation with a color code. The
appearance-based method can also be used in image-based as-built
models to extract image patches by back projecting RGB images [6].
Similarly, [4] developed an automated material tracking system to track
the productivity of the project; whereas [93] used segmentation to
automate the tracking of work packages. [98] have also developed
techniques for automatically detecting building components such as
studs, insulation, electrical outlets, and drywall sheets.

4.2.3. Object tracking

By tracking objects and their positions, the change in the task can be
determined, which ultimately helps in evaluating progress. In addition,
object tracking can help in autonomous data-collection useful for
progress monitoring. For example, localization algorithms such as
Simultaneous Localization and Mapping (SLAM) can be used to track
and navigate robotic systems that autonomously collect visual data to
compare as-built information with the as-planned work [101].
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4.3. Productivity tracking

Productivity is defined as a total output per unit input and is usually
expressed as the cost of labor or man-hours. Globally, labor productivity
growth of construction lags behind that of manufacturing and the total
economy [103]. As such, measuring productivity has become an ever
more important task in construction. Labor and equipment productivity
is a key indicator of project performance [104]. It helps to optimize
resource planning, which is critical to counter the challenges of the
decreasing supply of labor [103]. In addition, most construction projects
have tight budgets with a very thin profit margin of around 5% [105]
and, as such, require highly optimized resource utilization making
productivity monitoring extremely vital. The monitoring of productivity
for different construction processes remains a difficult and error-prone
task as significant manual effort is often required to measure the
output of labor, equipment or resources [106]. Therefore, automating
the process of productivity monitoring can help the project team achieve
optimum utilization of resources with minimal human intervention.
Vision-based techniques can help automate and track productivity [106]
by analyzing the workers' movements and interactions [106], action
analysis [107,108], and location tracking [109]. For example, interior
construction's productivity was improved by analyzing various quality
checks and inspection reports [95,109,110] that track workers move-
ments and interactions on site. Various computer-vision based tech-
niques have been used in productivity monitoring either individually or
combined as shown in Table 3 and Table 4

4.3.1. Object classification

Operational level deviation during the construction hinders pro-
ductivity. To measure productivity at the operational level, construction
managers use pictures, videos, and daily logs. Object classification has
the potential to be used as an efficient tool to monitor such progress
deviations. Image-based point clouds built from images and videos that
are already collected from jobsites can be used to extract information
about productivity without adding a new burden of requiring expertise
for data collection and analysis [15]. For example, 3D point clouds
generated from site images using Structure-from-Motion techniques
were used to track project deviation by integrating the production
schedule [111]. Also, improved CNN was used to monitor worker's ac-
tivities in concrete construction [33]. This helped to measure man-hours
and as well as the productivity of each worker. Progress status of con-
struction can also be evaluated by comparing as-planned BIM models
and 3D models obtained from as-built photographs, which helped to
track productivity by action analysis [95]. Various algorithms such as
Histograms of Oriented Gradients (HOG), Histograms of Optical Flow
(HOF), Motion Boundary Histogram (MBH) can also be used for action
learning and classification, which can also help in tracking productivity
[112].

4.3.2. Object recognition

Object recognition is another technique that has been used to eval-
uate the performance of action analysis and detection of construction
workers and equipment to assess productivity at various levels [104].
For example, high-resolution satellite images were used to extract fea-
tures to detect various objects of interest. The detected objects,
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integrated with spatiotemporal database and baseline schedule, auto-
matically provided the location-based progress data [115]. This helped
to ensure that specific areas of the project are meeting the desired level
of productivity. In addition, Bayesian learning and Bag-of-Video-Feature
Words models were used to recognize worker's movement and machine
movement to measure individual productivity levels [114]. In another
interesting study, HOG was used for the pose estimation of excavators.
Then a spatial-temporal reasoning model was used, which uses time and
space constraints of the excavators' moving patterns to measure the
productivity of excavators from videos [116]. Similarly, support vector
machine (SVM) classifiers were used to recognize equipment movement
actions using visual features such as space-time interest extracted using
HOG algorithm [118]. Some other techniques used to track productivity
include automated image-based reconstruction and modeling of the as-
built project status using unordered daily construction photo collections
through analysis of Structure from Motion (SfM) [109].

4.3.3. Object tracking

Object tracking has been used to track the motion and movement of
equipment in construction. By tracking the motion of objects, produc-
tivity can be evaluated by analyzing its cycle time and working pro-
cesses. For example, Histograms of Oriented Gradients and Colors
(HOG+C) algorithms [117] were used to detect workers and equipment
from the videos obtained from the construction site. Similarly, the video
computing method was used to automatically detect and track the
project resources, work state classifications, and production scenarios
such as working processes, cycle times, and delays with an accuracy that
of manual analysis [106,107,120]. The results indicated the promising
effectiveness of the automatic video-based method to measure produc-
tivity compared with manual processes.

4.3.4. Action recognition

Action recognition is an important computer vision task that helps in
tracking productivity by recognizing the action of equipment or
workers. Although this largely remains an unexplored area, there have
been a few works that have used action recognition for productivity
analysis. For example, the probability graph model was used to estimate
the jib angle of a crane to analyze if the task is concrete pouring or other
material movements [108]. Similarly, Bag-of-Words and Bayesian
network models were used to learn and classify actions of construction
workers and equipment to subsequently identify their work tasks [114].

4.3.5. Segmentation

The segmentation technique is used to track productivity by
analyzing the object's pixel value based on the color thresholds. For
example, the background subtraction method was used for segmenting
static background on a video sequence of a crew installing formwork and
earthwork [119]. The helped to measure the productivity of formwork
and earthwork activities. In addition, segmentation was used to detect
pile caps by analyzing images obtained from the jobsite [115]. Haar-
HOG was used to extract visual features from the time-lapse videos, to
measure the productivity of dump trucks in the construction site [110].

Table 4
Various computer vision tasks used in productivity tracking.
Method Publication Objectives
Object [15,33,95,111,112] Monitoring progress deviations at the operational level,

classification
Object recognition [11,104,106,107,109,110,112-117]

[118]

Object tracking [104,108]
Action recognition [104,114]
Segmentation [114], [110,115,119]

Progress tracking based on the location, Evaluating the performance of action analysis, Detection of construction
workers and equipment

Tracking motion and movement of equipment

Detecting workers interactions between actions and related objects

Segmenting visual features of a construction element

11
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4.4. Quality control

Construction projects often experience cost and schedule overruns
and rework is one of the factors that contribute to these overruns [121].
Reworks are the products of quality deviations, nonconformance, de-
fects, and quality failures, and result in the unnecessary effort of redoing
a process or activity that was incorrectly implemented the first time. The
direct costs of rework are approximately 5% of the total construction
costs [121]. To minimize the reworks, quality control (QC) managers
have developed various QC programs; however, they are mostly manual
and need a significant involvement of human resources. For example
current method of dimensional analysis of construction, components are
based on the use of remote-sensing instruments such as Total Stations
[122], which needs several manhours for both field and office work to
capture field information and to process it. Computer vision can capture
not only dimensional information but also spatial information. Inte-
gration of BIM and computer vision can thereby aid in QA/QC by
evaluating dimensions, plumb, installations etc. However, current
practices of quality control using BIM are still labor intensive. Therefore,
computer vision techniques need to be explored to automate the pro-
cesses that can increase the efficiency of quality control and reduce
human effort.

This area within construction has largely lagged in the adoption of
computer vision techniques. However, there have been some pre-
liminary explorations in this area that have been listed in Table 5 below.
Mostly object recognition and segmentation techniques have been used
to detect quality defects such as cracks, misalignment, and dimensional
discrepancies using visual features, texture, color, and edges. For
example, the alignment inspection of tile installation was improved by
analyzing the geometric characteristics of the finishes of the tile surface
[123]. In addition, geometric and relationship-based reasoning was used
to check dimensional discrepancies by comparing with as-built and
planned BIM to automatically identify dimensional discrepancies [124].
Segmentation of multi-scale feature detection was also used to detect the
surface and curvature of objects [125]. Even though the use of computer
-vision has been somewhat limited in quality control, there are
numerous opportunities to explore different vision-based techniques to
examine evaluate built structures for defects and non-compliance, which
need to be explored in future.

5. Challenges & opportunities

In 2012, Forbes reported that jobs in the skilled trades were the most
difficult to fill in the United States and as of now in 2021, the problem
not only persists but is exasperated by a historically low economy-wide
and construction-specific unemployment rate [126]. Therefore, there is
an ever more critical need for automation in construction. Automated
construction can help to fill the skill gap that exists in construction
skilled trades. Although there has been slow progress in the develop-
ment of technology required for automated construction, there is likely
going to be a spike in research in this area in near future. Already
automated robots have been used for the task of painting and brick-
laying [127]. Several other tasks that are manually performed in the
construction site can be automated and computer vision will have a huge
role to play in this transition. Specifically, the sensing/actuation feed-
back loop can be used to predict the construction environment where
machines, materials and human being interact. For example, with the

Table 5
Computer vision techniques used in quality monitoring in construction.
Method Publication ~ Objectives
Object [123-125] installation verification, as-built schedule, and
recognition dimensional discrepancies
Segmentation [123-125] Segments visual features including color, texture,

compactness, contrast, edges
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help of Scorpin, a robot control plugin, multiple layers of sensing pro-
vided a feedback loop in a bricklaying robot [128]. In addition, a vision-
based algorithm was used to assist the robotic system for the quality
monitoring system [109]. The system can automatically adjust the
extrusion rate based on the feedback from the algorithm and would be
able to print layers of acceptable dimensions using a printable mixture,
without the need for prior calibration and despite mixture rheology
variations. The high precision and responsiveness of the developed
system demonstrate the great potential for computer vision as a real-
time quality monitoring and control tool for robotic construction [23].

In addition to autonomous or robotic construction, enormous op-
portunities exist for computer vision to be explored for safety, progress,
quality, and productivity monitoring. These opportunities include
developing new and innovative platforms using various vision-based
techniques to provide real-time and high accuracy tools that can auto-
matically create information-rich digital twins of construction sites to
provide useful insights about progress, quality, and safety. Most of the
current studies that have used computer vision in these areas are
exploratory and are not currently at the level where these systems can be
deployed on real-construction sites efficiently and economically. Future
research efforts need to build on these exploratory studies and invent
ways to scale up these systems for practical implementation. For
example, in safety management, research needs to focus on building
computer-vision based techniques to efficiently locate workers and
equipment in real-time using live images/videos to provide real-time
proximity warnings. There are also opportunities to develop custom-
ized network architecture for construction use and build a comprehen-
sive visual database of hazards that can be used to train neural networks
to detect different types of safety hazards on job sites. In progress
monitoring, research needs to focus on building image processing or Al-
based algorithms to efficiently compare as-built images with as-planned
models. There is an immediate need to research an efficient way to align
(in terms of scale, rotation, and translation) an image-based 3D model
with as-planned BIM model. For productivity analysis, the latest de-
velopments in recurrent Convolutional neural networks (RCNNs) must
be exploited for action recognition and tracking of workers and equip-
ment from live videos. This can help in developing an efficient system
for autonomous progress monitoring. Among others, quality control
offers the greatest number of opportunities for computer vision-based
systems and ironically this is the area where the least studies have
been published. The use of computer vision for quality control must be
explored as it offers numerous advantages over traditional methods. It
saves human effort (and subsequently cost) and prevents errors arising
from human factors such as inattentiveness, exhaustion, or simple
boredom. Furthermore, to develop techniques and algorithms for defect
detection, future research should also adopt techniques and methods
from the manufacturing industry and focus on developing vision-based
quality control techniques that use live images collected during con-
struction (instead of post-construction quality checks). This will help in
minimizing the defects and reduce the need for rework.

Although research has demonstrated huge potential for computer
vision in various areas of construction and project management, this
review also highlighted some challenges. Perhaps one of the biggest
challenges in implementing computer vision is the lack of a visual
dataset specific to construction environments needed to train different
neural networks [129-131]. There have been multiple efforts to develop
several benchmarking datasets such as ImageNet, KITTI, MOT, City-
scapes etc. However, collecting a large amount of annotated data is not
an easy endeavour. In addition, there are other challenges specific to the
domains and the type of techniques used. Table 6 summarizes the key
challenges of computer vision in construction progress monitoring,
safety, and quality control. These challenges are explained further to
illustrate how they affect the implementation of computer vision in
construction. For example, [25] reported some of the important chal-
lenges in implementing computer vision for action recognition of con-
struction workers or equipment. These include (1) lack of datasets (2)
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Table 6
Challenges of computer vision in construction.
Construction task Challenges Publication
Progress Lack of detailed BIM model [6,132]
monitoring Automatic integration with building [96,98,102]
information model (BIM)
Occlusion & limited visibility [4,6,15]
Lack of formalized construction sequences [132]
Integrated cost-schedule control systems [133]
Safety Lack of annotated dataset [6,27,29,134]

Obstacles in the construction jobsite [12,24,134]

Occlusion & Limited Visibility [134]
Privacy concern to monitor the construction [134]
site

Workers with different body postures [134]

[125]
[125]

Quality control Surface roughness

Curvature of surface

complex actions of construction equipment and workers; (3) lack of
knowledge to define a time-series of actions; (4) simultaneous action
recognition of multiple project entities; and (5) lack of a holistic
approach to benchmarking, monitoring, and visualization of perfor-
mance information. Similarly, for progress monitoring, one of the most
common challenges in implementing computer vision-based systems for
progress monitoring reported in the literature is the missing information
on the planned 3D model.

5.1. Data challenges

The lack of annotated dataset is one of the biggest challenges to
implement deep-learning-based computer vision techniques in con-
struction. Even though there are several publicly available datasets such
as ImageNet [135] and Microsoft® Common Objects in Context (COCO)
[136], datasets required for construction processes need to consider
unique characteristics such as cluttered backgrounds, occlusions,
various poses and scales and the dynamic nature of construction envi-
ronment. Construction jobsites are often complex and dynamic, with
every site uniquely different. This demands a comprehensive dataset
that can address complexity, dynamics, and variations in our industry.
Although different datasets have been created and used for various ap-
plications, these have often been created individually, on a small scale
with limited sharing capabilities. Efforts need to be made to create a
combined and large comprehensive labelled visual dataset that can be
used by construction researchers and developers for diverse
applications.

In addition to the lack of a visual dataset, implementation of com-
puter vision in construction has also been hindered due to the unavail-
ability or inorganization of other data needed for semantic
understanding of visual data. These include:

5.1.1. Collecting good quality data

Computer-vision based applications rely on analyzing the collected
visual data (i.e., images and videos). Therefore, the quality of that input
data impacts the performance of the system the most. For example, an
efficiently designed object detection architecture, pre-trained on good
quality data can severely underperform if the input images are of poor
quality (e.g., blurry or collected from awkward angles). Several factors
can affect the quality of input data. While some can be controlled such as
camera position, orientation, and stability; others are sometimes beyond
our control such as poor lighting, cluttered backgrounds, occlusions etc.
The upfront cost of the hardware infrastructure and the recurring costs
of personnel required to ensure a good quality data collection is another
challenge that hinders the implementation of computer-vision based
systems for construction applications.

5.1.2. Lack of detailed BIM model
For automatic registration and accurate comparison of as-built
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images (or point clouds), planned BIM model needs to have significant
details and should at least be at the Level of Development (LOD) 400/
500, which reflects operational details within the work break down
structure (WBS) of the schedule [132]. Current BIM models often lack
these important details. For example, scaffoldings or formworks do not
feature in as-planned models, therefore comparison between as-built
visual data (that contain these elements) with as-planned becomes
challenging. Sometimes re-projecting the position of these elements
using different machine learning techniques can overcome this chal-
lenge to some extent [94]. In addition, daily operation-level tasks are
also not reflected in the work breakdown structure (WBS). This lack of a
detailed model prohibits accurate comparison between as-built and as-
planned models using vision techniques. For example, when planned
BIM model of basic geometrical details (LOD 200) is compared with the
as-built model obtained from visual data from the site (LOD equivalent
of 500), progress metrics (such as per cent complete) obtained using
vision techniques may not accurately reflect the actual progress of work.

5.1.3. Automatic integration with building information model (BIM)

A progress tracking system uses the current work as a means of
detecting the actual state and compares it with the 4D BIM. In other
words, progress is detected by comparing as-built 3D models with as-
planned BIM models. This requires the models to align perfectly (aka
registration). Even slight inaccuracies in the registration process can
compromise the accuracy of calculated progress. As we do not have a
robust method to register models automatically and accurately, this step
is commonly performed manually. This increasing the human inter-
vention, thereby increasing the time, cost and error proneness in using
CV for progress monitoring [102]. There have been some efforts to
automate the process [124] but more work is required in this area. For
example, the automatic registration of 3D data from BIM to a 3D model
of the structure (as-built) the Levenberg-Marquardt algorithm has been
used to automate the process with some success [96].

5.1.4. Lack of task-specific quantitative metrics to evaluate unsafe
conditions and acts

Construction projects use diverse metrics for quality and safety
assessment which often vary between the projects. In addition, most of
these metrics are qualitative and it is challenging to quantify these
qualitative metrics [134], which is necessary to train a vision-based
algorithm. This lack of well-defined and consistent metrics hinders the
implementation of computer vision techniques for quality and safety
monitoring.

5.1.5. Lack of formalized construction sequences

In several cases, construction projects lack formalized construction
sequence that defines all the operational level details. Often only high-
level activities are defined in the schedule, which limits the effective-
ness of a vision-based technique.

5.2. Occlusion and limited visibility

Occlusion is the effect of one object in a 3-D space blocking another
object in view due to the visual and lighting conditions of the environ-
ment [39]. In construction, the visual environment is often cluttered
with varied lighting conditions that exacerbate the problem of occlu-
sion. The complexity of construction site, obstruction, lighting level,
equipment size, color and shape of worker's clothing [12] add to the
challenges of occlusion and limited visibility. In addition, construction
sites also consist of objects involving shiny, reflective, or glossy surfaces,
which also pose a challenge. There have been some research efforts to
overcome these challenges. For example, [137] used Fermat paths of
light between a known visible scene and an unknown object not in the
line of sight of a transient camera to create a prediction of hidden sur-
faces. However, occlusion and limited visibility issues have not been
resolved completely and continue to be a challenging obstruction in
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implementing computer vision in construction. Efforts such as capturing
images from different viewpoints — assisted by the UAVs- can overcome
some of the challenges associated with limited visibility of construction
elements, yet occlusion cannot be eliminated. Therefore, there is a need
to account for occlusion and limited visibility in the design and devel-
opment of vision-based systems [6].

5.3. Privacy issue in Jobsites

Visual data in construction can be obtained via drones, ground ro-
bots, and mobile devices. However, the privacy of data remains a
concern for workers whose activities get captured by these visual sen-
sors. The question of who owns data and how the data can be used re-
mains unclear. Moreover, although the objective of visual data
collection is not worker monitoring, their activities inevitably get
recorded in the process of data collection. This may result in workers
feeling under constant observation, causing levels of anxiety and stress
that could have an adverse impact on their mental health. Future
research efforts need to explore data privacy and worker health and
safety issues related to the collection and use of visual data for different
computer vision techniques.

5.4. Variations

In addition to the above challenges, variations in the appearance of
objects or actions of interest in construction present an important
challenge that limits the effectiveness of computer vision techniques.
These variations include intra-class variation (E.g., same equipment
from different brands can appear very different), scale variation (same
construction elements such as walls can be of varying sizes), view-point
variation (elements might look different depending on where the camera
is located). These variations often result in misclassification. For
example, a vision-based system designed to detect worker posture might
misclassify the results as workers have different ergonomics and as a
result, their body posture while crouching down, bending, and sitting,
differs for individual workers. In addition, construction surfaces can
vary as well. The surfaces can be flat, single curved, double curved, or
have undulations at multiple scales, making boundaries hard to define.
These variations in surface geometry also add to the complexity
involved in different computer vision tasks. In addition to the geometry,
the physical texture of common surfaces can range from smooth (steel,
marble) to very irregular (grass, crushed stone), which also presents a
challenge for computer-vision based techniques.

5.5. Semantic gap

Most of the applied computer-vision techniques learn from correla-
tions and/or recurring patterns in the input data (specifically between
the features extracted from images). Unlike humans, computer-vision
algorithms can seldom draw causality or extract higher-level semantic
understanding from images (or videos). While this semantic gap may not
be an issue for some applications (e.g., detection of cracks in a column),
it limits the application of automated computer-vision based systems in
areas where context is important [31]. For example, safety management
applications require a computer vision-based system to not only detect
objects but also evaluate the interaction between objects (e.g., worker
and hazards). This high-level semantic understanding is often chal-
lenging as it requires significant domain knowledge to be encompassed
in the system in addition to training it for detection and analysis of low-
level image features.

6. Conclusion
The construction industry captures tremendous amounts of visual

data daily to track and control project progress, safety, and productivity.
However, extracting meaningful information from pictures and videos
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necessary to make decisions, is a difficult task and requires a high level
of human involvement. Recent advances in computer vision have
enabled the development of techniques and systems to automate infor-
mation extraction and augment data-driven decisions. This review
offered an updated and categorized overview of computer vision ap-
plications in construction from a holistic approach and identified op-
portunities and challenges that future research needs to address to fully
leverage the potential benefits of Computer Vision in construction. The
review indicated that safety management and progress monitoring are
the most popular fields that use computer vision followed by produc-
tivity tracking and quality control. Among different computer vision
techniques, object recognition is the most used technique that has found
several applications in construction management followed by segmen-
tation and classification. Object tracking and action analysis have been
quite popular in safety management but have not been explored much in
other fields despite promising applications, especially in productivity
monitoring.

The review also resulted in the identification of various challenges
that hinder the implementation of computer vision-based systems in
construction. One of the most common challenges is the need for good
quality input data for vision-based applications to work efficiently.
Owing to the unique characteristics of construction environments (un-
even ground, poor lighting, cluttered environments), maintaining this
good quality of visual data is difficult. The second most common chal-
lenge reported by several researchers is the lack of adequately sized
labelled or annotated data needed to train Al-based systems. The liter-
ature suggests that there is a lack of extensive databases of labelled
images that can be used to train vision-based systems for construction
applications. In addition, lack of detailed BIM models, complex, dy-
namic and occlusion-prone environments and variations in appearance
of objects (material, equipment, building elements), variation in task
sequence and methods are some of the other challenges that are inhib-
iting the development of computer vision in construction. These chal-
lenges need to be addressed or accounted for when developing vision-
based systems for construction applications.
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