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1. Introduction

A triangle system is a pair (P,7) where P is a set of points in the plane in general
position, i.e., no three collinear, and 7 is a set of triangles with vertices from P. (A
triangle is a closed set, the convex hull of three points not on a line.) A convex triangle
system is a triangle system (P, 7)) where the elements of P are in strictly convex position.
It is convenient to treat P in this case as the vertex set 2, of a regular n-gon in the
plane, and to consider T to be a convex geometric hypergraph or cgh — the vertex set is
Q,, with the clockwise cyclic ordering, and 7T is a set of triples from €,, called triangles. In
this language, a cgh S is contained in a cgh T if there is an injection from the vertex set
of § to the vertex set of T preserving the cyclic ordering of the vertices and preserving
triangles, and we say that a cgh H is F'-free if H does not contain F'. In this paper, we
concentrate on extremal problems for pairs of triangles in triangle systems and convex
geometric hypergraphs. For the rich history of ordered and convex geometric graph
problems and their applications, see [10,18,21,23,25,26,32] and the surveys of Pach [30,31]
and Tardos [37], and for convex triangle systems and generalizations, see [7,17,34] and
the survey of Braf} [6]. On the other hand, the field of extremal hypergraph problems in
the convex or geometric setting has fewer results, and statements of general principles in
the area are lacking. A natural first step in building such a theory is to solve interesting
special cases, and this is one of the goals of this paper.

1.1. Intersecting triangle systems

An old theorem of Hopf and Pannwitz [21] and Sutherland [36] states that the maxi-
mum number of line segments between n points in the plane with no two line segments
disjoint is n. It is natural to ask for the maximum number of triangles between n points
in the plane with no two triangles disjoint. To this end, a triangle system (P, T) is in-
tersecting if any two triangles in 7 share at least one point, and strongly intersecting if
any two triangles in 7 share a point in their interior. Intersecting triangle systems are
motivated by the Erdés-Ko-Rado Theorem [12], and motivation for considering strong
intersection is the well-known theorem of Boros and the first author [5] concerning the
depth of points. They proved that for every set of n points in the plane, the complete
triangle system contains %(g) triangles with a common point in their interior (see also
Bukh [8], Bukh, Matousek and Nivasch [9], and Bardny [3], Gromov [20] and Karasev [22]
for the d-dimensional analogue). In particular, a strongly intersecting subfamily of size
at least %(g) exists. P. Frankl, Holmsen and Kupavskii [15] recently determined that the
maximum number of triangles in an n-point strongly intersecting convex triangle system

is

nn—1)(n+1)
24

n(n —2)(n + 2)
24

if n is odd

if n is even.
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In particular, A(n)/(3) — 1/4 as n — oco. The quantity A(n) is also equal to the
maximum depth of a point in sets of n points in the plane, which can be proved using
the upper bound theorem for convex polytopes — see Wagner and Welzl [39]. An n-
point strongly intersecting convex triangle system of size A(n) is obtained by taking all
triangles containing the centroid of €2,, when n is odd, together with all triangles on one
side of each diameter of €, when n is even (these constructions have size A(n), see [4]
for instance). For convenience, we let H*(n) denote the family of all such convex triangle
systems with n points. P. Frankl, Holmsen and Kupavskii posed the following problem

(see Problem 1 in [15]):

Problem 1.1. What is the maximum size, over all point sets of size n, of the largest
n

strongly intersecting triangle system? Is the mazximum always at most (i + 0(1)) (3

)as
n— oo?

Our first result solves this problem completely for point sets in general position, as
follows:

Theorem 1. Any n-point strongly intersecting triangle system has size at most A(n).

The short proof of Theorem 1 is given in Section 3. Note that Theorem 1 sharpens
and extends the main result of [15] cited above, as A(n) is exactly the size of every
convex triangle system in H*(n). P. Frankl, Holmsen and Kupavskii further posed the
problem of determining the maximum number of triangles in an n-point intersecting
convex triangle system if one allows triangles to intersect on the boundary (see Problem
2 in [15]):

Problem 1.2. What happens if one relaxes the intersecting condition and allows triangles
to intersect on the boundary?

There are a number of different intersection patterns of pairs of triangles in convex
triangle systems, depicted below.

Fig. 1. The eight types of triangle pairs in convex triangle systems.
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For all of these configurations, Braf [6] has shown the extremal function for convex
triangle systems is either ©(n?) or ©(n?); the latter arises precisely when the two trian-
gles have no common interior point. Aronov, Dujmovié¢, Morin, Ooms and da Silveira [2]
extensively studied cghs which avoid combinations of the configurations in Fig. 1, and
determined many of the order of magnitudes of the associated extremal numbers. An
intersecting convex triangle system is precisely a convex triangle system not containing
M, and a strongly intersecting convex triangle system is precisely a convex triangle
system containing none of Di1,S; and M;. If F is a set of convex triangle systems,
then we denote by exr(n,F) the maximum number of triangles in a convex triangle
system not containing any member of F. In this language, P. Frankl, Holmsen and Ku-
pavskii [15] proved ex¢ (n, {D1, S1, M1}) = A(n). Problem 1.2 asks for exq(n, F) where
F C{D1,S51, M} and we completely solve this problem using the following theorem:

Theorem 2. For alln > 3,

exp(n, F) = ¢ An) + [ 5 L”T*QJ if F =251
A(n) + ) if F = M.

Furthermore, the extremal constructions for this theorem are classified — see the con-
structions in Section 2. Using these extremal constructions and Theorem 2, we obtain
the exact value of exp (n, F) for each F C {D;,S1, M1}:

exp(n, F) = Iglelgl__ exy(n, F).

The extremal constructions above are characterized in our proofs in all cases except
F ={Dy, M;}.

We also answer Problem 1.2 in the more general context of triangle systems. In this
setting, D1 denotes two triangles on opposite sides of a line and sharing a side — tangent
triangles — and S7 denotes two triangles intersecting in exactly one vertex — touching
triangles — whereas M; denotes two triangles sharing no points — separated triangles.
Theorem 1 and the first two parts of Theorem 2 are an immediate consequence of the
following stronger theorem:

Theorem 3. Let F' € {D1, 51, M1}, and let T be an n-point triangle system of maximum
size not containing F. Then

TI=¢ A(n)+ | 2]|%52] fF=25



Z. Firedi et al. / Journal of Combinatorial Theory, Series B 155 (2022) 83-110 87

The additive term of order n? for the case of M; in Theorem 3 arises from a geometric
theorem of Valtr on avoiding line segments in the plane. We believe that the value of
exey(n, M7) should determine the maximum for n-point intersecting triangle systems:

Conjecture 1. For all n > 3, if T is an n-point intersecting triangle system, then
| T| < exey(n, My).

For the above configurations F' € {D1, Sy, M1}, the extremal functions exy(n, F')
and the maximum number of triangles in an F-free n-point triangle system are equal
(almost equal). This is quite exceptional. E.g., one can find a self-intersecting length
three path, Ps, in a convex geometric graph with Q(n) edges, while for the general not
necessarily convex case Pach, Pinchasi, Tardos, and Téth [33] showed that there exists
Ps-free geometric graphs with ©(nlogn) edges.

1.2. The five configurations in the ©(n?) range

Bra8 [6] has shown that the five configurations whose extremal function is in the ©(n?)
range are Sa, S3, My, M3 and Ds. In this section, we present our results for exq,(n, F)
when F' € {S5, My, M3} and our bounds for F' € {S3, D2}. The extremal function for
M3 was determined exactly in [16] and we repeat its proof from [16] for convenience. We
also determine the exact extremal function for My and S3 when n is even:

Theorem 4.

expy(n, F) = if F =My andn > 7.

if F =53 and n > 4 is even.

A~~~

)—(”53) if F = Ms and n > 3.
)—2

n
3
n
2

3

(n=2)
2

For S3 when n is odd, there are several constructions which obtain the lower bound
exp(n, S3) > % + 1 (see Construction 6 in Section 2), but we have not proved
that this bound is sharp. We leave the following open problem:

Problem 1.3. Prove exey(n, S3) = (n—1)(n—2)/24+1 whenn > 5 is odd, and characterize
the extremal Ss-free convex geometric hypergraphs.

The configurations Sy and Dy appear to be the most difficult to handle.
Theorem 5. Forn > 3,

2 23
VLZJ —1<exp(n,S) < ~“n2,

We believe that the lower bound in this theorem is tight.
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Conjecture 2. For all n > 5, ex¢y(n, S2) = [n?/4] — 1.

Theorem 6. Forn > 3,

2

3(”) —O0(n) <exp(n,De) <

2n2 — 3n

9

The lower bound is due to Damésdi and N. Frankl [11] who solved our conjecture

from an earlier draft of this paper and determined lim,,_, ex¢y(n, D2)/(5). Even more,

they showed that equality holds for all n = 6 mod 9 and gave an independent proof

for our upper bound. Beside the upper bound we present a lower bound %(g) —0(n) <

exo(n, Do) in Construction 8 using a quite different method.

1.8. Summary of results

We summarize the results for exe (n, F) in this paper in Table 1. For Sy and D,

we only have bounds on the extremal function, and write [a,b] in the table to denote
a < exp(n, F) < b. We conjecture ex¢,(n,S2) = [n?/4] — 1. The constructions refer to
those numbered 1 — 8 in Section 2.

Table 1
Summarized results for exq (n, F).
F exgp(n, F) Construction F Bounds on Construction
exg(n, F)
Q A(n) 4 20522 3 % A +13)1252) 2
M S
Qg (3)-2 5 @ %) -1, %) :
M> So
@ @ - (5% 4 @ A(n) )
M3 Dy
n(n — 2) 2n? — 3n
2 6 9 8
for n even

S3

forn =6 mod 9
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1.4. Organization

Constructions of F-free convex triangle systems which give lower bounds for the the-
orems in this paper are in Section 2, Constructions 1 — 8. Sections 3, 4, 5 contain the
proofs of our results for D, S; and Mj, respectively (i.e. the proofs of Theorems 2
and 3). Section 6 — 10 contain the proofs of our results concerning the configurations
So,S3, My, M3, Dy. Concluding remarks and further questions are in Section 11.

1.5. Notation

We refer to a set of triples from a set €2, of n vertices of a regular n-gon as a convez
triangle system. It is convenient also to refer to this as a convexr geometric hypergraph
or cgh, where the triangles are considered as triples in (%"), and the vertices of €, are
cyclically ordered in the clockwise direction, say vg < v1 < -+ < vp—1 < vg. In this
case, we consider the subscripts modulo n. A cgh F' is contained in a cgh H if there is an
injection from V' (F') to V(H) preserving the cyclic ordering of the vertices and preserving
triangles, and we say that H is F-free if H does not contain F' as a subhypergraph. The
extremal function exq,(n, F') denotes the maximum number of triangles in an F-free cgh
on Q,. Given H C (%”) and A C Q,, let dy(A) = |{e € H : A C e}| be the degree
of A in H; we write dy(u,v) when A = {u,v} and dg(v;) when A = {v;}. Further,
when A = {v;}, we may form an ordered graph from H by considering G; = {{u,w} :
{vi,u,w} € H} — this is the link graph of v; in H with vertex set {v;11,Vit2,...,Vi—1}
with the natural ordering. Let 0H = {{u,v} : Je € H,{u,v} C e} denote the shadow
of H. For functions f,g : N — Rt we write f = o(g) if lim,, o f(n)/g(n) = 0, and
f = O(g) if there is ¢ > 0 such that f(n) < cg(n) for all n € N. If f = O(g) and
g = O(f), we write f = O(g).

2. Constructions

Construction 1 (Dy,S; and M;-free cghs). For n > 3 odd, let the class of cghs H*(n)
comprise the single cgh consisting of triangles which contain in their interior the centroid
of ,,. For n > 4 even, each H € H*(n) consists of all triangles which contain the centroid
of 2, and, for each diameter {v;, v; 4y 2} of ,,, we either add all triangles {v;, v;, Vijn/2}
where v; < vj < vipn/2 < v;, or all triangles {v, v, Viyn/2} Where vy, 0 < v; < v; <
Vitn/2- It is not hard to show that each element H € H*(n) has size A(n) — see [4]. Each
H € H*(n) is strongly intersecting, so

expy(n, D1) > exey(n, {D1, 51, M1 }) > A(n). (1)

Construction 2 (S; and M;i-free cghs). For n > 3 odd, each cgh in H'(n) is ob-
tained by adding for some i < n to any cgh in H*(n) all triangles containing a pair
{Vitj, Vigjt(n—1)/2} for 0 < j < (n—3)/2 (left diagram in Fig. 2). For n > 4 even, each
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H € H™(n) consists of all triangles containing the centroid of (2, in their interior or on
their boundary (right diagram in Fig. 2).

Fig. 2. Construction of H¥(n).

By inspection, each H € H*(n) is Si-free and M;-free. Moreover, if n is odd, then
|H| = A(n) + (n — 1)(n — 3)/4 whereas if n is even, then |H| = A(n) + n(n —2)/4. We
obtain

exo(m, $1) 2 exc (m, {S1,M1}) > An) + [ 3] %52, 2)

Construction 3 (M -free cghs). For n > 3 odd, the unique cgh in H " (n) is obtained by
adding all triangles containing a pair {v;, v;4(n—1)/2} to the cgh in H*(n) (left diagram in
Fig. 3). For n > 4 even, H*+(n) is obtained by adding all triangles containing a diameter
of Q,, plus all triangles containing a pair from a set of n/2 pairwise intersecting pairs
of the form {v;,v;4n/2-1} to any cgh in H*(n) (right diagram in Fig. 3). Every cgh in
HTT(n) is M;-free, and has size A(n) + n(n — 3)/2.

Fig. 3. Construction of H1+(n).

Construction 4 (Ms-free cghs). An extremal M;s-free construction is simply to take all
n(n — 3) triangles which contain a pair of cyclically consecutive vertices of €, plus the
set, of all (";4) triangles without consecutive elements and containing a fixed vertex vy.
It turns out this is not the only Mj3-free construction with that many triangles: we may
remove any triangle {vg, vak41, Vak+3} and add {vag, vagt2, vart+a} when 2k +4 < n to
obtain many different M;3-free extremal constructions.
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Construction 5 (Ms-free cghs). An Ms-free construction on €, is obtained by taking
all triangles containing a fixed vertex, plus all n triangles of three cyclically consecutive
vertices.

The restriction n > 7 is necessary in Theorem 4, since for n = 6, the only copies of
M on Qg are the triangles {vg,v1,vs3}, {vo,ve2,v3}, {vo,v1,v4}, {vo,v3,v4}, {vo,v2,v5},
{vg, v3, v5} with their corresponding complements. As such, removing exactly one mem-
ber from each copy of Ms from the complete cgh on (¢ gives an Ms-free cgh H with
14 = (g) — 1 triangles. It is likely the case that the set of triangles containing vy plus
the set of triangles of consecutive vertices in €2, is the unique extremal Ms-free example
up to isomorphism for n > 8. For n = 7, we may take all seven cyclically consecutive
triangles, the triangle {v1,vs, vg}, and all triangles which contain vy besides the triangle
{vo, v4,v5}. Similarly, when n = 7, we may also take all seven cyclically consecutive
triangles, the triangles {v1,vs,vs} and {v1,v4,v6}, and all triangles which contain v
besides the triangles {vg, v4,vs} and {vg,ve, v3}.

Construction 6 (Ss-free cghs). For even n > 4, let

Q, )
Hy := {{0211,1)22',1)} € ( 3 ) 1<i<n/2ve Qn\{v%lv“?i}}'

By inspection, Hy is S3-free and has n(n — 2)/2 triangles. For n odd, let H; have ver-
tex set {vg,v1,...,v,—1} and add to a copy of Hy on {vy,va,...,v,—1} all triangles
{vo, v2i—1,v2;} where 1 <i < (n—1)/2 as well as {v,,_1,v0,v1}. Then H; is S3-free and
|Hi|=(n—-1)(n—2)/2+1.

Construction 7 (Sa-free cghs). A construction demonstrating the lower bound is to split
Q,, into two intervals A and B, and to take all triangles which contain a point from A and
a pair of consecutive points in B. We also add all triangles containing three consecutive
points in B. This configuration has |A|(|B|—1)+|B|—2 = (|A|+1)(|B|—1) —1 triangles
and does not contain Sy. If [A| = [n/2] — 1 and |B| = [n/2] + 1 then this configuration
has [n?/4] — 1 triangles.

Construction 8 (Ds-free cghs). For alower bound on exe (n, D), start with an S(n, 15, 2)
design — Wilson [40] proved these exist whenever n is large enough and satisfies the
requisite divisibility conditions, i.e., (3)/(}) is an integer, and n = 1 mod 14, i.e.,
n = 1,15,85,141 mod 210. The construction is as follows: decompose the E(K,,) into
(Z)/(125) complete Ki5’s. Each corresponds to a convex 15-gon with vertex set V =
{wy,wa, ..., wis}. Decompose each K15 into fifteen triangulations of a convex pentagon
{w;, Wiy1, Wite, Wits, wit11} with diagonals {w;, w; 6} and {w;, w;ys} (indices are mod
15). The lengths of the sides are 1,5,2,3,4 and the diagonals are 6 and 7, so this is
indeed a decomposition with 45 triangles. This construction has size exactly

> 4-10
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whenever n = 1,15,85,141 mod 210, and gives a construction of size %(g) — O(n) for

all n.
3. Proof of Theorem 3: tangent triangles, D,

A directed 3-cycle in a tournament is a triple {z,y, z} with x — y — z — z. Let T'(n)
be the maximum number of directed 3-cycles in an n-vertex tournament. It was shown
by Moon [29] (see also pages 42-44 in Erdds and Spencer [13]) that T'(n) = A(n) for
n > 3. To see this, every tournament with n vertices of outdegrees di, ..., d, has exactly
(7) — >, (%) directed 3-cycles. This is maximized (only) when the outdegrees are as
equal as possible. If n is odd, then all d; = (n — 1)/2 while if n is even, half of the d;
are (n — 2)/2 and the other half are n/2. These tournaments are called almost regular.
Tournaments with these outdegrees can easily be constructed and moreover there are

plenty of them when n is large. A short calculation gives the required

A directed 3-cycle {z,y, z} in the plane with x — y — z — x is oriented clockwise if z
is in the half plane to the right when traversing the segment [zy] from = to y. If {x,y, z}
is not oriented clockwise, then it is oriented counterclockwise.

Proof of Theorem 1. Let P be a set of n points in the plane with no three collinear, and
let 7 be a D;-free family of triangles on P, and let H be the corresponding 3-uniform
hypergraph with vertex set P. We will prove that | 7| < T'(n), which gives Theorem 1.

We define an orientation for each edge {z,y} € OH as follows. Consider any triangle
{z,y, 2z} € T.If the orientation of the 3-cycle {z,y, z} is clockwise then orient the edge
{z,y} as x — y, and y — x otherwise. The main observation is that the orientation of
{z,y} is uniquely determined. If {z,y} belongs to an {z,y, z} 3-cycle oriented clockwise
and to an {x,y,z'} 3-cycle oriented counterclockwise, then the two corresponding tri-
angles form D;. We conclude that |H| is at most the number of directed 3-cycles in an
orientation of a subgraph of K,, which is at most T'(n) as required. O

Eztremal families. The previous proof shows that |H| = A(n) is only possible if the
orientation of the 3-cycles of OH is an almost regular tournament. There is a one to one
correspondence between extremal Di-free cghs (or a Di-free triangle system in general)
and almost regular tournaments.

3.1. Extremal {D1, S1}-free cghs
Suppose that a cgh H is D;-free and also S;-free with |H| = A(n). Then 0H is an

almost regular tournament and H is obtained as the family of oriented three-cycles in
OH. We claim that more is true, H € H*(n) as described in Construction 1.
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First we show that all directed 3-cycles in the tournament have the same orientation.
As a first step, we prove that if two triangles in H have some common vertices then
their corresponding 3-cycles have the same orientation. This is obviously true when they
have a common edge because H is Di-free. Consider first the case when two triangles
T1,T5 € T share a vertex v; and have opposite orientations. Then they can form an S
(which we excluded), or an Ss, or an Ss.

If they form Ss, say v; < ve < -+ < vy < v; and the two 3-cycles are oriented as
v1 — Vg — v5 — v1 and v — vy — v3 — v1, then we proceed as follows. Consider the
edge {vg,v5}. Observe that vy — vy, otherwise the triangles {v1,v4,v5} and {vy,v3,v4}
form a D;. A similar argument shows vz — vo. Consider the edge {v2,v4}. Now vo — vy,
otherwise the triangles {v1, v2,vs} and {ve, vy, vs5} form a D;. But then we have found a
triangle {vy, v4, v3} which forms an S; with {v1,v9, v5}. So Ty and T cannot form an Ss.

If Ty and T5 form an S3, say v1 < -+ < vy < v; and the two 3-cycles are oriented as
v1 — v9 — v4 — v1 and v1 — vs — vs — v1 then we proceed the same way. Consider the
edge {vg,v5}. Observe that vg — v5, otherwise the triangles {v1,vs,v4} and {v1,v9,v4}
form a D;. A similar argument shows vs — vo. Consider the edge {vs,v4}. Then vs — vy,
otherwise the triangles {v1, v2, v4} and {vg, v4, v3} form a D;. But then we have found the
triangle {vs, v4, v5} which forms a D; with {v1,vs,v3}. So T1 and T cannot form an Ss.

The above argument implies that the vertex sets X := {z € e € H, e is oriented
clockwise} and Y := {y € e € H, e is oriented counterclockwise} are disjoint. So every
triangle e € H is contained entirely in X or in Y. This gives

[H| <T(X]) + T(Y]) <T(n),

a contradiction.

From now on, we may suppose that each directed 3-cycle of OH is oriented clockwise.
This implies that for v; < v; < vy < v; we have v, — v; if v; — v;. Indeed, each
orientation of a triangle comes from a directed 3-cycle, so in case of v; = v;, and v; — v;
we get two 3-cycles {v;, vg, vpr } and {v;,v;, v, } oriented clockwise so v; < vy < v; <
v < vgpr < v;, and these two triangles form an S7, a contradiction. Summarizing, each v;
has out-edges v; — v; for i < j <i+|(n—1/2)] and in-edges v; — v; for i—[(n—1/2)] <
j < i, in other words H € H*(n). O

4. Proof of Theorems 2 and 3: touching triangles, S;
4.1. Proof of Theorem 2 for Sy

We will prove that exe(n,S1) < exey(n, D1)+ [n/2]|(n —2)/2| which via Theorem 2
for D, gives the upper bound in Theorem 2 for S;. For any cgh H, define a graph

G := G(H) with G C 9H, called the Di-graph of H as the set of {u,v} for which there
are z,y € Q, with u < £ < v < y < u and triangles {u, z,v} and {u,v,y} in H. In other
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words, {u,v} has triangles on both sides. This definition can be naturally extended to
triangle systems (P, 7).

Let H C (%") be a cgh containing no copy of S;. We claim that the D;-graph G is a
matching. Otherwise, if there are {u,v} and {v,w} in G, then there are z,y € Q,, with
u<z<v<y<w<uand triangles {u,z,v} and {v,y,w} in H which form S;. We
obtain |G| < |n/2]. For each {u,v} € G, delete all triangles containing {u, v} on the side
that has fewer triangles (if both sides have the same number of triangles then pick a side
arbitrarily). Altogether we delete at most |G|[(n — 2)/2] < [n/2][(n — 2)/2] triangles.
Let H' C H be the set of triangles that remain. Since H' is Dy-free, |H'| < ex¢y(n, D1),
and we are done.

If H is an extremal Si-free cgh, then |G| = |n/2] and each edge {u,v} € G is
contained in at least |(n — 2)/2] triangles {u,v,w} with v < w < v < u and another
at least |(n — 2)/2] triangles {u,v, 2z} with u < v < z < w. This is only possible if the
segments representing the edges of G are pairwise crossing each other inside €,,. In case
of even n we have that G consists of the n/2 diameters {v;, v; 4y 2} of Qy, in case of
odd n we may suppose that G = {{vj,vj1(n-1y/2} : 0 < j < (n — 3)/2}. Since H’ is
an extremal {Dy, S1}-free cgh the results of subsection 3.1 yield that H € H*(n). The
triangles from H \ H' can be added to H' only as described in Construction 2, and this
yields H € Ht(n). O

4.2. A geometric lemma about D1-edges in Si-free triangle systems

Recall that a segment [ab] (with a,b € P) is a D;-edge in the triangle system (P, T)
if there are triangles from 7 on both sides, i.e., 3¢~,ct € P such that ¢~ and c¢T are
separated by the line ¢(ab) and {a,b,c™ },{a,b,cT} € T.

Lemma 4.1. Let T be a triangle system with point set P. Suppose that [ab], [bc], and
[cd] are distinct D1-segments in T (so a = d is not excluded). Then T contains an S;
configuration.

Proof. The lines ¢(ab), £(bc), and £(cd) cut the plane into seven open regions, unless
£(ab)||€(cd) when we get only six regions. Let T' be the triangle these lines enclose (in
the case of six regions T is one of the infinite three-sided strips). Let H(zy) denote the
open half plane with boundary line xy tangent to T but disjoint from its interior. Since
{a,b} is a Dj-edge there exists a triangle {a,b,c”} € T where ¢~ is in the open half
plane H (ab), and there exists a triangle {b, c,y} € T with y € H(bc). These two triangles
form an Sy configuration unless ¢—,y € B := (H(ab) U £(ab)) N H(bc). Consider a third
triangle {c,d, b~} € T where b~ € H(cd). Since this half plane is separated from {b, ¢, y}
by ¢(cd) (except both contain ¢ in their boundaries), so {¢,d, b~} and {b,¢c,y} form an
S1. O
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4.3. A removal lemma concerning S1-free triangle systems
We prove Theorem 3 for S7 in the following stronger form.

Theorem 7. Let n > 3, and let T be an n-point triangle system. If T is Si-free then
there exists a subfamily T' C T which is D1-free and

<T3]30

Since |T'| < A(n) by Theorem 1, one obtains the desired upper bound for |T|.

Recall that the Di-graph of 7T is a graph G with vertex set P and its edges are the
D;-segments. For e € G, let T(e) be the set of triangles from 7T containing e, and let
del ({e}) be the minimum number of triangles eU{z} € T on one side of ¢(e). Obviously,
del ({e}) < (1/2)|T (e)] < | (n—2)/2]. We extend this definition for any set of edges, T (F')
is the set of triangles from 7 containing an edge e € F, and del (E(F)) is the minimum
number of triangles e U {z} € T, e € F such that removing those triangles from 7 we
eliminate all Dj-edges of F. Our aim is to prove that del (E(G)) < |n/2]|(n —2)/2].
We also show that for n # 5 in case of equality G is either a matching of size |n/2], or a
matching of size (n — 3)/2 and a path of length two. We conjecture that the latter case
cannot happen for n sufficiently large.

Since T is Si-free, Lemma 4.1 implies that G contains no path of length three and in
particular G does not contain a cycle. Thus G is a starforest.

Claim 4.1. Suppose that {e, f} C G is a two-edge component of the Dy-graph G. Then

del ({e, f}) < [(n—2)/2].

Proof. Given the two-edge component {e, f} C G, there exists a w € P with w =en f.
Let  =1ifeU f €T, and § = 0 otherwise. We assume e, f are as shown in Fig. 4, i.e.,
the lines £(e) and £(f) cut the plane into four open regions A, B,C, D (B is disjoint to
eU f, the boundary of D contains both, etc.). If any of the dotted triangles are in 7, then
we get a copy of S7, as we have seen this in the proof of Lemma 4.1. More formally, we
get, e.g., if eU{z} € T, then either eU{z} = eUf or x € BUC. For X € {A, B,C, D}, let
ex be the number of x € X such that eU{z} € T and fx be the number of x € X such
that fU{x} € T. We have e4,ep = 0 and f¢, fp = 0. Observe that eU{z}, fU{z} € T
is not possible for x € B, else we get a Dy-edge {w, x}, contradicting the fact that {e, f}
is a component of G. We obtain

faten+fstec<|P|—|{eUf} <n-—3. (3)

There are four possibilities to delete triangles from 7 to make {e, f} non-D;-edges,
namely we can eliminate all triangles e U {x} with x € AU B or all such triangles from
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Fig. 4. A two-edge component of G as discussed in Claim 4.1.

the other side of ¢(e), and there are two sides of ¢(f) as well. We get four inequalities

for del ({e, f}).

o

el({e,f}) <ep+ s

del({e, f}) <ep + (fa +9)

del({e, f}) < (ec +0) + [
el({e, f}) < (ec +0) + fa.

IN

<
<

(oW

Summing these and using (3) we get 4del ({e, f}) < 2n — 6 + 36 < 2n — 3. This gives
del ({e, f}) < |(2n —3)/4] = [(n —2)/2] and we are done. O

Claim 4.2. Suppose that F' C G is a component of the D1-graph G, a star with s > 3
edges. Then del (E(F)) < [(n—1)/2].

Proof. We will prove the stronger statement |7 (F)] < n — 1. Suppose that the edges
of F are {w,v1}, {w,va},...,{w,vs}. We claim that for any vertex z € P\ {w} an
(open) half plane with boundary line ¢(wzx) can contain only at most one triangle from
T of the form {w,z,v;}. Indeed, if there is another such triangle {w,z,v;} and, say,
Z(zwv;) < Z(xwv;) then there is another vertex z € P such that {w,v;,z} € T and it
is separated from {w,x,v;} by the line £(wv;); however this means that {w,v;, 2z} and
{w,z,v;} form an S configuration. Even more, if x € P\ V(F), then {w,z} ¢ G implies
that this can happen on at most one side of {(wz). We get for such an x that |{{w,v;} :
{w,v;,z} € T} < 1, hence |{{w, v, z} : {w,v;, 2} € T, 1 <i<s,x ¢ V(F)}| <n—1-s.
To estimate |7 (F')| it remains to count the triangles from 7 of the form {w,v;,v;}. For
any given ¢ there are at most two such triangles, and each of them is counted that way
exactly twice, so their number is at most s. O

Proof of Theorem 7. Suppose that del (E(G)) > |n/2][(n — 2)/2]. Let the (nontriv-
ial) components of G be Fy, Fs,...,F,. Claims 4.1 and 4.2 imply that del (F(G)) =
> del (E(F;)) < r|(n—1)/2]. For n even this leads to r > n/2; equality holds, G is a
perfect matching. For n > 5 odd we get r > (n—3)/2 and in case of r = (n—3)/2 we have

del (E(F;)) = (n—1)/2 for each 1 <4 < r. In this latter case again Claim 4.1 implies
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that each F; has at least 4 vertices, r < n/4, a contradiction for n > 5. So in the odd case
(for n > 5) we must have r = (n —1)/2, each component is a single edge except perhaps
one is a two-path. Then Claim 4.1 implies that del (E(G)) < r|(n — 2)/2], completing
the proof. O

5. Proof of Theorems 2 and 3: two separated triangles, My
5.1. Proof of Theorem 2 for M;

We use a method similar to that in [15] to determine ex¢(n, My). We prove that if
H is an n-vertex M;-free cgh with |H| > A(n) + n(n — 3)/2, then H € Ht+(n). First
let n > 3 be odd. If H € H*T(n) then we are done, so we may assume H contains
a triangle T'(4,7,k) = {v;,vj, v} with v; < v; < vk < Vig(n-1)/2 < vi. Moreover, we
may assume that among all such triangles, T'(4,j, k) is the triangle where the longest
edge {v;, v} is as short as possible. Replace all triangles T'(4,j', k) € H with i < j' < k
with all triangles T'(i — 1,k + 1,1) where j and [ are on opposite sides of the edge
{vi, v} as shown in Fig. 5. Since T'(i,j,k) and T(i — 1,k + 1,1) form a copy of M,
T —1,k+1,1) ¢ H for all such [. Moreover, since v; < vx < Vip(n—1);2 < Vi, the
number of triangles T'(i —1, k+1,1) that we added is greater than the number of triangles
T(i,j,k) that we deleted. Consequently, this produces a cgh H' with |H’| > |H|. Since
H is extremal M;i-free, there exists a copy of M; in H’, which must contain a triangle
T(i—1,k+1,1) € H'. Since all triangles T'(¢ — 1,k + 1,1) intersect, the other triangle in
the copy of M; must be T'(f,g,h) € H. Since H is M;-free, T(f, g, h) intersects T'(, j, k),
which implies v; < vy < vy < v < v < v; and {vy,vn} # {v;, v }. However, then the
edge {vs,vp,} is shorter than the edge {v;,vx}, a contradiction.

Vk+1 Uk

Fig. 5. Replacing triangles in an Mj-free cgh.

Now let n > 4 be even and let H be an extremal n-vertex M;-free cgh. If H € Ht+(n)
we are done, so suppose H ¢ HT*(n). If H contains a triangle T'(i, j, k) where v; < v; <
Vg < Vigns2—1 < U, then we repeat the same proof as in the case n is odd to derive
a contradiction. Therefore all triangles in H contain the centroid or are T'(4, j, k) with
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v; < vj < Up = Vijpn/2—1 < v The pairs {v;,v;1,/2-1} for which there exists such a
triangle T'(4, j, k) must pairwise intersect (possibly at their endpoints) otherwise we find
a copy of M; in H. In particular, by Construction 3, H € H**(n). O

Let us note that we can give another proof using the D;-graph and Theorem 2 for D,
just as we did in subsection 4.1 to prove Theorem 2 for Si-free convex triangle systems
— specifically, the D;-graph does not contain two geometrically disjoint edges.

5.2. Proof of Theorem 3 for My

In this section, we will prove Theorem 3 for M; in a stronger form using a result on
geometric graphs due to Valtr [38]. A geometric graph (V, E) is a graph drawn in the
plane so that the vertex set V consists of points in general position and the edge set F
consists of straight-line segments between points of V. Two edges of a geometric graph
are said to be avoiding, if they are opposite sides of a convex quadrilateral.

Theorem 8 (Valtr [38]). There is a constant Cyv > 0 such that any geometric graph on
m vertices with no three pairwise avoiding edges has at most Cym edges.

Theorem 9. Let n > 3, Cy as above, and let T be an n-point triangle system. If T is
M -free then there exists a subfamily T' C T which is D1-free and

|T|§|T’+cv(;).

Since |T'| < A(n) by Theorem 3 for D1, one obtains the desired upper bound |7 <
A(n) + O0(n?).

Recall that a segment [ab] (with a,b € P, a # b) is a D;j-edge in the triangle system
(P, T) if there are triangles from 7 on both sides, i.e., 3¢, ¢t € P such that ¢~ and ¢
are separated by the line £(ab) and the triangles {a,b,c™} and {a,b,ct} € T. The set of
all such segments is the Di-graph G of 7. For v € P let G, be the D-link graph of T,
i.e., it consists of those edges e of G, v ¢ e, which are contained in a triangle eU{v} € T.
The vertex set of the geometric graph G, is P\ {v}, and for every edge e € G,, we can
choose a triangle e U {—v} € T which is separated from the triangle e U {v} by the line
¢(e), so the third vertex of e U {—v} and v lie on different sides of £(e).

Lemma 5.1. Let T be a triangle system with point set P, and let the three segments e,
f, and g of E(G,) be pairwise avoiding. Then T contains Mj.

Proof. Given a line £ and a set X # () with X N¢ = () we denote the open half plane
with boundary ¢ and containing X by H(¢, X), the other side is H(¢,—X). Suppose
that 7 contains no disjoint triangles. Since e and f are on opposite sides of a convex
quadrilateral, the triangle e U —f € T should meet f U {v}. This is only possible if
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v € H(l(e),—f). Similarly, v € H((f),—e), so v is in the open wedge H(¢(e), —f) N
H(L(f),—e), cf., Fig. 4. For later use denote this wedge by Bl(e, f). Since v € Ble, f),
this rules out that the lines ¢(e), £(f) are parallel.

The line ¢(f) avoids the other two segments, suppose that it separates them, i.e.,
e C HU(f),—g) (and g € H(U(f),—e)). Then B(e, f) € H(¢(f),—e) and B(f,g) C
H(f),—g) = H((f),e). This implies B(e, f) N B(f,g) = 0, contradicting to v €
B(e, f)N B(f,g) N B(g,e). Hence ¢(e) is a tangent line of R := conv ({e, f,g}), so this
convex hull is a hexagon.

There are two cases. If R is inscribed into the triangle T' formed by the lines ¢(e),
0(f), and £(g), then each region B(e, f), B(f,g), and B(g,e) is a digon (an infinite
wedge). These are pairwise disjoint, there is no place for v. Otherwise, one edge,
say e lies on a side of T" and f and g lie on the other two sides of the three-sided
infinite region H(¢(e),—T) N H(L(f),g) N H(¢(g), f). Then B(f,g) is a digon inside
H(¢(e),T), and v € B. Consider a triangle e U {z} € T where x € H({(e),—T). The
two digons in H({¢(e), —T) are disjoint, so we may suppose that © ¢ (H(¢(e),—T) N
H(¢(f),—T)). Then the triangle e U {z} is disjoint to f U {v}, completing the proof of
Lemma 5.1. O

Proof of Theorem 9. Recall that we denote the set of triangles from 7T containing an
edge e € F by T(F), and del (E(F)) is the minimum number of triangles e U {z} € T,
e € F such that removing those triangles from 7 we eliminate all D;-edges of F. Our
aim is to prove that del (E(G)) < Cy(4) if T is M-free. We will show the slightly
stronger statement: 7 (G) < Cyn(n —1). We have T(G) < >~ oy |Gy|. By Lemma 5.1
the geometric graph G, has no three pairwise avoiding edges. Theorem 8 gives |G,| <
Cy(n—1). Then del (E(G)) < (1/2)|T(G)| completes the proof. O

6. Proof of Theorem 4: crossing triangles, M3

For the proof of Theorem 4 for Ms, it is useful to consider ordered hypergraphs: the
vertex set is Q, = {vg,v1,...,v,—1} with the linear ordering vy < v1 < -+ < Vp_1.
Let ex_, (n, M3) denote the maximum number of triangles in an ordered hypergraph not
containing triangles {v;,v;,vr} and {vyr, v, v} with v; < vy < v; < vy < v < Vi —
this is the ordered analog of M3. The following theorem implies Theorem 4 for M3, since
exey(n, Ms3) = ex_, (n, M3):

Theorem 10. Let n > 7. Then ex_,(n, Ms) = (3) — ("g?’)

Proof. Let H be an Mj3-free ordered triangle system with n vertices. Let H; consist of
all e € H with vg,v; € e, and let Hy consist of all e € H with vy € e, v1 ¢ e and
(e \ {vo}) U{v1} € H. Let H3 be obtained from H\(H; U Hs) by merging the vertices
vo and v;. Note that Hj is a 3-cgh with n — 1 vertices. Clearly, |H;| < n — 2. Let
Go = {{u,v} : {vo,u,v} € Ha} be the link graph of vg in Hs. If two edges of G cross —
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say {u,v},{w,z} € Gy with u < w < v < z, then the triangles {u,v,v1} and {w,x,vo}
are in Ho, and form a copy of M3, a contradiction. Therefore no two edges of G cross,
which implies Gy is an outerplane graph with n— 2 vertices. Consequently |Go| < 2n—7,
by Euler’s Formula. Finally, it is also straightforward to check Hj3 is Mj3-free, so by
induction,

== o e+ (") - (75 = () (75)

This completes the proof of Theorem 10. 0O
7. Proof of Theorem 4: stabbing triangles, M5

We prove by induction on n that exe (n, Ms) = (5) — 2 for n > 7. When n = 7,
since cyclically consecutive triangles {v;,v;11,v;12} are never in Ms, we may assume
these seven triangles are in any Ms-free cgh. For the remaining twenty-eight triangles,
we create a graph with vertex set consisting of these triangles and form an edge if two
of the triangles form a copy of Ms. A computer aided calculation [35] then yields this
graph has independence number 12 and hence exq (7, My) =12+ 7 = (;) — 2.

For the induction step, we plan to find two consecutive u, v € ,, with degree at most
three and whose common link graph G,,NG,, has at most n—3 edges. Let H be a maximal
Ms-free cgh on Q,, and H' C H be the cgh after removing all consecutive triangles
{vi; Vit1, Vigy2}. Let d(vi,v;) be length of the path on the perimeter of the polygon
starting with v; and moving clockwise to v;. For a triangle e = {v;, vi41,v,} € H — we
only consider such triangles — let £(e) = min{d(v;y1,vx), d(vg, v;)}.

Lemma 7.1. Let H C (93") be a mazimal Ms-free cgh and H' be as above. Then
(1) For consecutive u,v € Qy,, |G, N Gy| < n— 3 with equality only if G, NG, is a star.
(2) There exists v; € Q,, such that the degree of {v;,viy1} is at most three in H.

Proof. We first prove (1) by showing G, , := G, NG, does not contain a pair of disjoint
edges. If {w,z},{y, 2} are disjoint edges in Gy, and v < w <z <y < z<u <v
orv<w<y<z<zr<u<ov - this means that {w,z},{y, 2z} do not cross — then
{u,w,z},{v,y, 2z} form M. If on the other hand v < w < y < x < z < u < v — this
means {w,z},{y, z} do cross — then {u,y, 2}, {v, w,z} form M,. So G, has no pair of
disjoint edges. It is a standard fact that the unique extremal graphs with at least four
vertices and no pair of disjoint edges are stars, and therefore G, , has at most n — 3
edges.

For (2), seeking a contradiction, suppose dg({vi,viy1}) > 4 (and hence
dr ({vi,vi41}) > 2) for every v; € Q,. We first show there exists e € H' with £(e) > 3.
If not, then {v;,vi11,viy3} € H' and {v;_9,v;,v;41} € H' for all i and there are no
other triangles in H'. However, then {vg,v1,v3} € H' and {va,v4,v5} € H' form My, a
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contradiction. So there exists e € H' with ¢(e) > 3. From all e € H' with £(e) > 3, pick e
so that ¢(e) = j > 3 is a minimum. Suppose e = {vo, v1,v;11}, so £(e) = d(v1,vj41) (the
proof for e of the form {v,_;, v, v1} with ¢(e) = j = d(v,—j,v9) > 3 will be symmetric).
Then dg({vj_1,v;}) > 2, so there are triangles f = {vp,v;_1,v;} and g = {vg,v;_1,v;}
inH. Ifj+1<k<n—-1lorj+1<h<n-—1,then f and e or g and e respectively
form My, a contradiction. So 0 < h, k < j — 3, recalling {v;_2,vj_1,v;} ¢ H'. Now

((f) = d(vn, vj-1) > d(v,vj-1) = 2
and so /(f) > 3. On the other hand, since 0 < h < j — 1,

0(f) = d(vn,vj—1) < d(vo, v;) = {(e)
contradicting the choice of e. This final contradiction proves (2). O

Let {v;,v;+1} have degree at most three in H, as guaranteed by Lemma 7.1 part (2).
We contract the edge {v;,v;11} to a vertex w to get a cgh Hy with n — 1 vertices. Let
G = {{u,v} : {u,v,v;},{u,v,v;41} € H} be the common link graph of v; and v;41.

Lemma 7.2. Let G be the common link graph of v; and v;11. Then |G| < n —4.

Proof. If neither of {v;_1,v;, vi42} or {v;_1, Vi11,vi12} isin H, then {v;_1,w,v;12} ¢ Hy
and |G| < n — 4 follows from Lemma 7.1 part (1). So we assume {v;_1,v;,v;42} € H or
{vi—1,vi41,viq2} € H.

Case 1. {v;_1,v;,v;42} € H. Suppose G is a star with n — 3 edges, with center vy.
If vy & {vi—1,vi42}, then letting v; & {vg, vi1, Vi, Vig1, vVigo}, it follows that {v;, v;, vk}
and {v;—1,vi41,Vit2} form a copy of Ms. Hence, we may assume that vy = v;—; or
v = v;+2. Both of these cases are similar, so consider only the case vy = v;12. We may
assume that {v;y3,v;+4} has degree at least three. Then there is at least one triangle
which contains {v;y3,v;+4} of the form {v, v;13,vi44}. If v € Q, and vipy <V < V41 <
Vit4, then {v, v;y3,v;44} and {041, V42, vigs} form My, If v = v; 41, then {v, v;y3,Vita}
and {v;_1,v;,vi12} form Ms. So G is not a star with n — 3 edges, and Lemma 7.1 part
(1) gives |G| <n —4.

Case 2. {v;_1,v;11,0;42} € H. In this case, a symmetric argument to that used for
{vi—1,vi, 0,42} € H applies by reversing the orientation of ,,. O

To complete the proof of |H| < (g) — 2, we note by inspection that Hy is also Ms-free.
By induction, |Hy| < (";1) — 2. By Lemma 7.2, and recalling dg (v;,vi+1) < 3,

-1
|H| = |Ho| + |G| + dp (v, viq1) < <n2 )2+n4+3 <Z> -2

This proves Theorem 4 for Ms. O
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8. Proof of Theorem 4: crossing triangles sharing a vertex, Ss

Let H C (QS”) be a Ss-free cgh and G; be the link graph of v; in H. Let G comprise
the edges of G; which consist of two consecutive vertices in ,,, and let G/ = G;\Gj.

Lemma 8.1. Let H C (%") be a Ss-free cgh. For 0 <i<n-—1, |G/| <n-—3.

Proof. The graph GY has no pair of crossing edges since H is S3-free. If we add to G all
the n edges {vj,vj41}, we obtain an outerplanar graph which has at most 2n — 3 edges.
Removing the n added edges gives |G/| <n—3. O

Lemma 8.2. Let H C (%”) be a Ss-free cgh. For each i, |Gi| + |G} || < n.

Proof. We may assume ¢ = 0. Let G denote the multigraph obtained by superimposing
the graphs G, and GY, so |G| = |G| + |G| As G} comprises the edges of G; which
consist of two consecutive vertices in §2,,, each component C' of G is a path P with some
edges of multiplicity two. If {v;_1,v;} € P NGy, then {vj,vj4+1} ¢ P NG}, otherwise
{vo,vj,vj41}, {v1,vj-1,v;} form S3 C H as in Fig. 6, a contradiction. If all edges of P
are from G’ only, then |C| = |P| = |V(C)| — 1. Otherwise, let {vj,vj11} be the first
edge of P in G in the clockwise direction. Then all edges of P preceding {v;,v;41}
are in G only, and all edges of P after {v;,v;11} are in G{, only, whereas {v;,v;41}
might be in both Gf and in G. Therefore at most one edge of P has multiplicity two,
and |C| < |P|+ 1 = |V(C)]. If C1,C4,...,C, are the components of G, we conclude
G| = C1| +[Co| + -+ |Cr| < [V(C| + [V(Co)[ 4 -+ [V(Cy)| = V(G)| =n. O

Fig. 6. Crossing triangles in the proof of Lemma 8.2.

We now complete the proof of exry(n, S5) < n(n — 2)/2, using the following identity:

1
3[H| =) (IGi| +1G7]) = > 5 (1Gi + G + D 1G],

K2 K3

We apply Lemmas 8.1 and 8.2 to each term in the sums to obtain:
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n—1 n—1
1 1 3
3|H| < E En—i—g (n—3):§n2+n(n—3):§n(n—2). O
i=0 i=0

9. Proof of Theorem 5: touching triangles with parallel sides, S5

Let H C (93") be an Sp-free cgh. We are going to show |H| < 23n2?/64. Consider a
triangle e = {v;, v, v} € H where v; < v; < v < v;. We call the edge {v;,v;} good for
e if there does not exist a k" such that v; < vy < v < vj and {v;,v;, v} € H, and bad
otherwise.

Lemma 9.1. Let H C (93") be an Sa-free cgh. Then
(1) Every triangle of H contains at least two good edges.
(2) Every edge in OH is good for either one or two triangles of H.

Proof. We first prove (1). Suppose e = {v;,v;,vx} € H and {v;,v;} and {v;, v} are
bad. Then there exist k' : v; < viy < vx < vj and 7' : v < vy < v; < vy such that
{vi,vj, v },{vj, vk, v} € H. However, the triangles {v;/,v;, v} and {v;,v;,vp } form
configuration S5, a contradiction.

For (2), given {v;,v;} € 0H, consider a triangle {v;,v;,vx} with v; < v; < v < v;
and vy, as close as possible to v;; this determines v, uniquely. Similarly, for {v;,v;} € 0H,
consider a triangle {v;, vy, vg } with v; < vy < v; < v; with vy as close as possible to vg;
this too determines vy uniquely. Therefore each edge in 9H is good for either one of two
triangles of H. O

Color an edge in 0H blue if it is good for exactly one triangle in H, and red if it
is good for exactly two triangles in H. Let R be the number of red edges and B the
number of blue edges — for a red edge {u, v}, there exist vertices w,x € €, on opposite
sides of {u, v} such that {u,v,w} € H and {u,v,2} € H, so red edges are what we have
referred to as edges in the Di-graph in this paper. If we map a triangle e € H to the
edges in e that are good for e, then each red edge is counted twice and each blue edge is
counted once. On the other hand, each triangle of H contains at least two good edges,
by Lemma 9.1, so 2|H| < 2R + B. In particular,

|H| < R+ B/2< R+ B =|0H|.
Lemma 9.2. If {v;,v;}, {vj,vr} and {vk,v;} are red edges, then {v;,v;,vx} € H.

Proof. Suppose {v;,vj, v} ¢ H and v; < v; < v < v;. Then by definition there exists
k' # k such that {v;, v, v} € H and vj < vpy < v; < vj. We consider two cases.

Case 1. v; < v < vg < vj. There exists ¢ # ¢ such that {vy,v;,vr} € H and
v < vy < v; < vg. We observe v; < vy < v; < vy, otherwise {v;, v} and {v;, vy} are
non-crossing, and {v;,v;, vk} and {vi,v;,v;} form Sy in H. Now there exists j' # j
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such that {v;,v;;,vp} € H and v; < vy < v < v;. If v; < vy < v; < v;, then the
edges {v;/, v} and {v;, vi } are non-crossing, and {v;, v, vy} and {v;, vj, vp } form Ss.
If v; < vjy < vy < vy, then {vy,v;} and {v;,v;} are “parallel”, and {v;/,v;, v} and
{vi,vj, v } form Sy in H.

Case 2. vy < vir < v; < vg. Consider the reverse ordering of €2, and apply the proof
of Case 1. O

By Lemma 9.2, every triangle of red edges is a triangle of H, so there are at most
|H| < |0H| < (3) such triangles. In particular, the number of red edges is at most
n?/4 4+ n/2 — one could use a precise result by Lovéasz-Simonovits [27] to deduce this.

Instead we give a direct proof: the number of triangles in any graph G is at least

Z (d(u) + d(v) — n).

{u,v}€E(G)

If G has average degree d, then this is precisely
> 1.9 2 L, 5
Zd(u) —§dn zdn—idn .

Since the graph G of red edges in OH has at most |H| < (%) triangles,

1 1
2 2
— <

which gives d < n/2 + 1 and therefore R = |G| < n?/4 + n/2. Therefore
9lH| < 2R+ B < (Z) (A=

To improve this bound to the desired |H| < 23n2/64, we may assume n is odd and
partition the complete graph on €2, into planar matchings My, M, ..., M,, where M; =
{{v;, vk} : j+k =i mod n}. Then there exists i < n such that at least R/n edgesin M =
M; are red. For each pair of red edges, say {u,v} and {w, z}, where u < w <z < v < u,
there exist triangles {u,v,y},{w,x,2} € H where u < w < z < < v < y < u. Now
by inspection, the edge {y, z} cannot be contained in any triangle of H without creating
configuration Sy — see Fig. 7. Furthermore, if {u/,v'}, {w’, 2’} € M, then {u',v’,y} and
{w',2',z} cannot both be triangles of H without creating So. Therefore for each pair
{{u,v},{w,x}} of red edges of M, we may associate a unique edge {y, z} which is not
contained in any triangle of H. Consequently

9|H| < 2R+ B < 2R+ (Z) - <R2/"> ~R<R+ (Z) - (Rén)
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Since R < n?/4+n/2, this implies |H| < 23n2?/64 —n/4 +3/8. As n > 3, this is at most
23n? /64, as required. 0O

Fig. 7. Edge {y, z} absent from OH. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

10. Proof of Theorem 6: triangles sharing a side, Do

We first observe some simple bounds on exey(n, D2). If G is a convex geometric graph
that is a triangulation of a convex polygon, then the family T'(G) of vertex sets of the
triangular regions in G form a Ds-free cgh. By Euler’s Formula, |T(G)| < 1|G|, so
if G1,Gs,...,G ) are edge-disjoint triangulations of polygons with vertices from €,
then H = T(G1) UT(G2) U --- UT(Gp) is a Da-free cgh on Q,,. Each Da-free cgh
H can be obtained in this way, so we get exe,(n, D2) < (1/2)(5). On the other hand,
every Steiner triple system induces a Dj-free cgh, we get exe(n, D2) > 1(5) — O(n).

Construction 8 improves this to 2(5) — O(n), and Daméasdi and N. Frankl [11] showed

7\2
exy(n, D) > 2”29’3" for all n = 6 mod 9 by a different method. Here we prove the
upper bound exy,(n, Dy) < 2"29_3" for all n.

For the calculation below we need a simple proposition which can be shown by stan-
dard high school calculus. If h,z > 0 are reals, n > 3 is an integer and h > (2n — 3)/9,
then

n+3

(h+2z)(h+2x+1)<2zn = x> TR 4)

Another elementary proposition is the following statement: Suppose that A is a mul-
tiset of positive integers such that the multiplicity of each entry is at most n, then

A|(]A
acA n

For the upper bound on exey(n, D2), let H C (%”) be a Ds-free cgh. The graph 0H

has a (unique) edge-disjoint decomposition into triangulations Gi,..., G as follows.

Make a graph C with vertex set H: two triangles of H are joined by an edge of C if they
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share a side. Consider the partition of C generated by the components C1, Co, . ..Chs of
G, where |C;| = k;. Each C; corresponds to a hypergraph H; C H of triangles. Since H;
is Do-free each G; := 0H; forms a triangulation of a convex (k; + 2)-gon P; with k; — 1
diagonals, T(G;) = H;, |E(G;)| = 2k; + 1. Let A; be the multiset of integers consisting
of the side lengths of P;, |A;| = k; + 2. We have

Za<n (6)

and here equality holds if the polygon P; contains the center of §2,,. Let A be the multiset
Ui<mA;. Since each edge of OH appears in exactly one G; and there are n (or n/2 or
0) diagonals of Q,, of a given length we obtain that A is a multiset with maximum
multiplicities at most n. Moreover, |A| = . (k; +2) = |H| 4+ 2M, so (5) and (6) yield

(|H| +2M)(|H| 4+ 2M +n) <N a=Y (3 o)< Mn (7)

2n .
ac€A <M a€A;

Suppose that |H| > (2n? — 3n)/9. Define h,x as h := |H|/n and z := M/n. Then
h > (2n—3)/9 and (7) and (4) imply = > (n + 3)/18. However

2AH|+ M = Y (2ki+1)=> |E(G; —|8H|<<2>.

1<i<M
Hence [H| < 3((3) —zn) < (2n? —3n)/9. O
11. Concluding remarks

e In this paper, we considered convex geometric configurations consisting of two trian-
gles. One may consider analogous problems for r-tuples: for instance, how many r-gons
can a convex geometric n-vertex r-graph have if it does not contain two r-gons which
are geometrically disjoint (this is the r-uniform analog of M;)? This problem was posed
explicitly by P. Frankl, Holmsen and Kupavskii [15]:

Problem 11.1. Find analogues of our results for other classes of sets such as convex
r-gons in R2.

A family of convex r-gons in the plane is strongly intersecting if any two of the members
share a point in their interior. The maximum size of a strongly intersecting family of
r-gons is obtained from the obvious extensions of Construction 1. Consider the family of
all r-gons containing the centroid of §2,, when n is odd, together with, for each diameter
£, all r-gons which have a side equal to ¢ and which lie on one side of £. Letting A,.(n)
denote the size of these families, it is not hard to see
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A (n) = (n) B n((n - 1)/2)
T r—1
if n is odd, and A, (n) can be computed similarly if n is even. In particular, A, (n) =
(1—r/21) (") + O(n"~1) for each r > 3.

Theorem 11. The mazimum size of a strongly intersecting family of r-gons from €, is
A, (n).

Proof. (Sketch). We proceed in a similar way to the proof of Theorem 2 for M;. Con-
sider any r-gon {v;,,Vi,,...,v; } in H with v;;, < v;, < -+ < v;, < v;; and where
the longest side {v;,,v; } is as short as possible, and replace all such r-gons with
{viy, Vjps ..., 0j,. 1,05, } where v;, < vj, < vj, < --- < v;_, < v;. Since the number
of choices of jo,7j3,...,Jr—1 is always at least the number of choices of is,%3,...,%,-1,
this new r-cgh H' has |H'| > |H|. So we repeat until H' consists of all r-gons containing
the centroid of €2, when n is odd, or n is even and H' consists of all r-gons containing
the centroid plus for each diameter ¢ all r-gons which have a side equal to £ and which
lie on one side of £. O

e Since there are many other possible configurations of two r-gons, we did not discuss
these problems in this paper. Some special cases were studied in [16]: for instance, if F'
consists of two r-gons {u1,ug,...,u,} and {v1,ve,..., v} where u; < v; < ug < V9 <
oo < up < v < up, then it was shown in [16] that for n > r > 1,

o= () - (")

This may be viewed as a geometric or ordered version of the Erdds-Ko-Rado Theo-
rem [12].

o In the cases of My, M3 and S5 (see Fig. 1), we obtained exact results for the extremal
functions in convex geometric hypergraphs / convex triangle systems (for n even in the
case of S3). Our proofs, with more work, should give a characterization of the extremal
examples as well. For My, one requires n > 8 for the extremal configuration to be unique,
as verified by computer. For S3, we believe that ex¢y(n,S3) = (n—1)(n—2)/2+1 when n
is odd, but do not have a proof, and we also do not know the characterization of extremal
S3-free convex triangle systems (this is the content of Problem 1.3).

e It is likely the case that most of our theorems hold equally for ordered hypergraphs,
where the vertex set is linearly ordered, but we did not work out the details except for
the obvious case M3 (see the first paragraph in Section 6). The case of Sy stands out,
since the ordered extremal number is not the same as the convex geometric extremal
number. The ordered construction would be to take all triangles {v;,v;41,v;} from an
ordered vertex set {vg,v1,...,vp—1} where i >0andi+1<j<n-—1.
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Extremal problems for matchings in ordered graphs connect to enumeration of per-
mutations [28] and these have also been extended to hypergraphs [24].

e A hypergraph H is linear if for distinct hyperedges e, f € E(H), |[en f| < 1. The
extremal functions for the configurations in this paper in the context of linear cghs were
determined in [2] up to constant factors for all the configurations except Sa. Specifically,
if ex?,(n, F) is the maximum number of triangles in an n-vertex F-free linear cgh, then
Aronov, Dujmovié¢, Morin, Ooms and da Silveira [2] proved ex},(n, M2) = ©(n), whereas
if F e {My,Ms, 51,55}, exty(n, F) = ©(n?). It would be interesting to determine the
exact extremal functions in each case. The problem of determining ex?,(n, Sz) appears
to be very difficult, as it is connected to monotone matrices, tripod packing, and 2-
comparable sets — see Aronov, Dujmovié¢, Morin, Ooms and da Silveira [2] for details. The

n1.546)

best bounds are ex,(n, S2) = €( due to Gowers and Long [19] and ex?,(n, S2) =

n?/exp(Q(log* n)) due to the best bounds on the removal lemma by Fox [14].

e By a result of Boros and Fiiredi [5], for every n-point set P (no three on a line) one
can find a point on the plane which is contained in at least n3/27 — O(n?) triangles with
these vertices; and Bukh, Matousek, and Nivasch [9] gave an example that the coefficient
1/27 is the best possible. It would be interesting to determine the largest subsystem of
pairwise intersecting triangles in this construction.

e One can further relax the conditions on the point sets to allow all planar n-point
sets. We conjecture that our upper bounds in Theorem 3 hold for all planar n-point
sets (when we only count the proper triangles with non-empty interiors). Surely in that
case one has to relax the definition of configurations (like, e.g., Ackerman, Nitzan, and
Pinchasi [1] did about avoiding pairs of edges).

e We have not considered F-free triangle systems (P, T) where the point set P is not
necessarily in convex position and F € {Ms, M3, S2, S3, Da}. The reason is, unlike in
the case F' € {Dy, 51, M}, there are many different ways to extend the definitions of
these configurations and these can lead to many different problems. E.g., if one insists
that no triangle in F' contains another vertex of F' then the answer is always at least
n?/27+ O(n?) as it is shown by the following example P := X UY UZ, T :={zyz:z €
XyeY,z€ Z}and X :={(5,107%) : 1 <i<n/3}, YV := {(107%,4) : 1 <i < n/3}, and
Z = {(—i,—i+107%) : 1 <i < n/3}. It is a rich area with full of problems, e.g., it would
be interesting to determine all configurations F satisfying that |7| < (14 (o(1))exey (n, F)
holds for F-free triangle systems.
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