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1. Introduction

A triangle system is a pair (P, T ) where P is a set of points in the plane in general 
position, i.e., no three collinear, and T is a set of triangles with vertices from P . (A 
triangle is a closed set, the convex hull of three points not on a line.) A convex triangle 
system is a triangle system (P, T ) where the elements of P are in strictly convex position. 
It is convenient to treat P in this case as the vertex set Ωn of a regular n-gon in the 
plane, and to consider T to be a convex geometric hypergraph or cgh – the vertex set is 
Ωn with the clockwise cyclic ordering, and T is a set of triples from Ωn called triangles. In 
this language, a cgh S is contained in a cgh T if there is an injection from the vertex set 
of S to the vertex set of T preserving the cyclic ordering of the vertices and preserving 
triangles, and we say that a cgh H is F -free if H does not contain F . In this paper, we 
concentrate on extremal problems for pairs of triangles in triangle systems and convex 
geometric hypergraphs. For the rich history of ordered and convex geometric graph 
problems and their applications, see [10,18,21,23,25,26,32] and the surveys of Pach [30,31]
and Tardos [37], and for convex triangle systems and generalizations, see [7,17,34] and 
the survey of Braß [6]. On the other hand, the field of extremal hypergraph problems in 
the convex or geometric setting has fewer results, and statements of general principles in 
the area are lacking. A natural first step in building such a theory is to solve interesting 
special cases, and this is one of the goals of this paper.

1.1. Intersecting triangle systems

An old theorem of Hopf and Pannwitz [21] and Sutherland [36] states that the maxi-
mum number of line segments between n points in the plane with no two line segments 
disjoint is n. It is natural to ask for the maximum number of triangles between n points 
in the plane with no two triangles disjoint. To this end, a triangle system (P, T ) is in-
tersecting if any two triangles in T share at least one point, and strongly intersecting if 
any two triangles in T share a point in their interior. Intersecting triangle systems are 
motivated by the Erdős-Ko-Rado Theorem [12], and motivation for considering strong 
intersection is the well-known theorem of Boros and the first author [5] concerning the 
depth of points. They proved that for every set of n points in the plane, the complete 
triangle system contains 2

9
(

n
3
)

triangles with a common point in their interior (see also 
Bukh [8], Bukh, Matoušek and Nivasch [9], and Bárány [3], Gromov [20] and Karasev [22]
for the d-dimensional analogue). In particular, a strongly intersecting subfamily of size 
at least 2

9
(

n
3
)

exists. P. Frankl, Holmsen and Kupavskii [15] recently determined that the 
maximum number of triangles in an n-point strongly intersecting convex triangle system 
is

·�(n) =

⎧⎪⎪⎨
⎪⎪⎩

n(n − 1)(n + 1)
24 if n is odd

n(n − 2)(n + 2) if n is even.
24
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In particular, ·�(n)/
(

n
3
)

→ 1/4 as n → ∞. The quantity ·�(n) is also equal to the 
maximum depth of a point in sets of n points in the plane, which can be proved using 
the upper bound theorem for convex polytopes – see Wagner and Welzl [39]. An n-
point strongly intersecting convex triangle system of size ·�(n) is obtained by taking all 
triangles containing the centroid of Ωn when n is odd, together with all triangles on one 
side of each diameter of Ωn when n is even (these constructions have size ·�(n), see [4]
for instance). For convenience, we let H�(n) denote the family of all such convex triangle 
systems with n points. P. Frankl, Holmsen and Kupavskii posed the following problem 
(see Problem 1 in [15]):

Problem 1.1. What is the maximum size, over all point sets of size n, of the largest 
strongly intersecting triangle system? Is the maximum always at most 

(1
4 + o(1)

) (
n
3
)

as 
n → ∞?

Our first result solves this problem completely for point sets in general position, as 
follows:

Theorem 1. Any n-point strongly intersecting triangle system has size at most ·�(n).

The short proof of Theorem 1 is given in Section 3. Note that Theorem 1 sharpens 
and extends the main result of [15] cited above, as ·�(n) is exactly the size of every 
convex triangle system in H�(n). P. Frankl, Holmsen and Kupavskii further posed the 
problem of determining the maximum number of triangles in an n-point intersecting 
convex triangle system if one allows triangles to intersect on the boundary (see Problem 
2 in [15]):

Problem 1.2. What happens if one relaxes the intersecting condition and allows triangles 
to intersect on the boundary?

There are a number of different intersection patterns of pairs of triangles in convex 
triangle systems, depicted below.

Fig. 1. The eight types of triangle pairs in convex triangle systems.
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For all of these configurations, Braß [6] has shown the extremal function for convex 
triangle systems is either Θ(n2) or Θ(n3); the latter arises precisely when the two trian-
gles have no common interior point. Aronov, Dujmović, Morin, Ooms and da Silveira [2]
extensively studied cghs which avoid combinations of the configurations in Fig. 1, and 
determined many of the order of magnitudes of the associated extremal numbers. An 
intersecting convex triangle system is precisely a convex triangle system not containing 
M1, and a strongly intersecting convex triangle system is precisely a convex triangle 
system containing none of D1, S1 and M1. If F is a set of convex triangle systems, 
then we denote by ex�(n, F) the maximum number of triangles in a convex triangle 
system not containing any member of F . In this language, P. Frankl, Holmsen and Ku-
pavskii [15] proved ex�(n, {D1, S1, M1}) = ·�(n). Problem 1.2 asks for ex�(n, F) where 
F ⊆ {D1, S1, M1} and we completely solve this problem using the following theorem:

Theorem 2. For all n ≥ 3,

ex�(n, F ) =

⎧⎪⎨
⎪⎩

·�(n) if F = D1
·�(n) + � n

2 �� n−2
2 � if F = S1

·�(n) + n(n−3)
2 if F = M1.

Furthermore, the extremal constructions for this theorem are classified – see the con-
structions in Section 2. Using these extremal constructions and Theorem 2, we obtain 
the exact value of ex�(n, F) for each F ⊆ {D1, S1, M1}:

ex�(n, F) = min
F ∈F

ex�(n, F ).

The extremal constructions above are characterized in our proofs in all cases except 
F = {D1, M1}.

We also answer Problem 1.2 in the more general context of triangle systems. In this 
setting, D1 denotes two triangles on opposite sides of a line and sharing a side – tangent 
triangles – and S1 denotes two triangles intersecting in exactly one vertex – touching 
triangles – whereas M1 denotes two triangles sharing no points – separated triangles. 
Theorem 1 and the first two parts of Theorem 2 are an immediate consequence of the 
following stronger theorem:

Theorem 3. Let F ∈ {D1, S1, M1}, and let T be an n-point triangle system of maximum 
size not containing F . Then

|T | =

⎧⎪⎨
⎪⎩

·�(n) if F = D1
·�(n) + � n

2 �� n−2
2 � if F = S1

·�(n) + Θ(n2) if F = M .
1
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The additive term of order n2 for the case of M1 in Theorem 3 arises from a geometric 
theorem of Valtr on avoiding line segments in the plane. We believe that the value of 
ex�(n, M1) should determine the maximum for n-point intersecting triangle systems:

Conjecture 1. For all n ≥ 3, if T is an n-point intersecting triangle system, then 
|T | ≤ ex�(n, M1).

For the above configurations F ∈ {D1, S1, M1}, the extremal functions ex�(n, F )
and the maximum number of triangles in an F -free n-point triangle system are equal 
(almost equal). This is quite exceptional. E.g., one can find a self-intersecting length 
three path, P3, in a convex geometric graph with Ω(n) edges, while for the general not 
necessarily convex case Pach, Pinchasi, Tardos, and Tóth [33] showed that there exists 
P3-free geometric graphs with Θ(n log n) edges.

1.2. The five configurations in the Θ(n2) range

Braß [6] has shown that the five configurations whose extremal function is in the Θ(n2)
range are S2, S3, M2, M3 and D2. In this section, we present our results for ex�(n, F )
when F ∈ {S3, M2, M3} and our bounds for F ∈ {S2, D2}. The extremal function for 
M3 was determined exactly in [16] and we repeat its proof from [16] for convenience. We 
also determine the exact extremal function for M2 and S3 when n is even:

Theorem 4.

ex�(n, F ) =

⎧⎪⎨
⎪⎩

(
n
3
)

−
(

n−3
3

)
if F = M3 and n ≥ 3.(

n
2
)

− 2 if F = M2 and n ≥ 7.
n(n−2)

2 if F = S3 and n ≥ 4 is even.

For S3 when n is odd, there are several constructions which obtain the lower bound 
ex�(n, S3) ≥ (n−1)(n−2)

2 + 1 (see Construction 6 in Section 2), but we have not proved 
that this bound is sharp. We leave the following open problem:

Problem 1.3. Prove ex�(n, S3) = (n −1)(n −2)/2 +1 when n ≥ 5 is odd, and characterize 
the extremal S3-free convex geometric hypergraphs.

The configurations S2 and D2 appear to be the most difficult to handle.

Theorem 5. For n ≥ 3,

⌊n2

4

⌋
− 1 ≤ ex�(n, S2) ≤ 23

64n2.

We believe that the lower bound in this theorem is tight.
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Conjecture 2. For all n ≥ 5, ex�(n, S2) = �n2/4� − 1.

Theorem 6. For n ≥ 3,

4
9

(
n

2

)
− O(n) ≤ ex�(n, D2) ≤ 2n2 − 3n

9 .

The lower bound is due to Damásdi and N. Frankl [11] who solved our conjecture 
from an earlier draft of this paper and determined limn→∞ ex�(n, D2)/

(
n
2
)
. Even more, 

they showed that equality holds for all n ≡ 6 mod 9 and gave an independent proof 
for our upper bound. Beside the upper bound we present a lower bound 3

7
(

n
2
)

− O(n) ≤
ex�(n, D2) in Construction 8 using a quite different method.

1.3. Summary of results

We summarize the results for ex�(n, F ) in this paper in Table 1. For S2 and D2, 
we only have bounds on the extremal function, and write [a, b] in the table to denote 
a ≤ ex�(n, F ) ≤ b. We conjecture ex�(n, S2) = �n2/4� − 1. The constructions refer to 
those numbered 1 – 8 in Section 2.

Table 1
Summarized results for ex�(n, F ).

F ex�(n, F ) Construction F Bounds on
ex�(n, F )

Construction

·�(n) + n(n−3)
2 3 ·�(n) + � n

2 �� n−2
2 � 2

(n
2
)

− 2 5 [� n2

4 � − 1, 23n2

64 ] 7

(n
3
)

−
(n−3

3
)

4 ·�(n) 1

n(n − 2)
2

for n even
6

2n2 − 3n

9
for n ≡ 6 mod 9

8
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1.4. Organization

Constructions of F -free convex triangle systems which give lower bounds for the the-
orems in this paper are in Section 2, Constructions 1 – 8. Sections 3, 4, 5 contain the 
proofs of our results for D1, S1 and M1, respectively (i.e. the proofs of Theorems 2
and 3). Section 6 – 10 contain the proofs of our results concerning the configurations 
S2, S3, M2, M3, D2. Concluding remarks and further questions are in Section 11.

1.5. Notation

We refer to a set of triples from a set Ωn of n vertices of a regular n-gon as a convex 
triangle system. It is convenient also to refer to this as a convex geometric hypergraph
or cgh, where the triangles are considered as triples in 

(Ωn

3
)
, and the vertices of Ωn are 

cyclically ordered in the clockwise direction, say v0 < v1 < · · · < vn−1 < v0. In this 
case, we consider the subscripts modulo n. A cgh F is contained in a cgh H if there is an 
injection from V (F ) to V (H) preserving the cyclic ordering of the vertices and preserving 
triangles, and we say that H is F -free if H does not contain F as a subhypergraph. The 
extremal function ex�(n, F ) denotes the maximum number of triangles in an F -free cgh 
on Ωn. Given H ⊂

(Ωn

3
)

and A ⊆ Ωn, let dH(A) = |{e ∈ H : A ⊂ e}| be the degree
of A in H; we write dH(u, v) when A = {u, v} and dH(vi) when A = {vi}. Further, 
when A = {vi}, we may form an ordered graph from H by considering Gi = {{u, w} :
{vi, u, w} ∈ H} – this is the link graph of vi in H with vertex set {vi+1, vi+2, . . . , vi−1}
with the natural ordering. Let ∂H = {{u, v} : ∃e ∈ H, {u, v} ⊂ e} denote the shadow
of H. For functions f, g : N → R+, we write f = o(g) if limn→∞ f(n)/g(n) = 0, and 
f = O(g) if there is c > 0 such that f(n) ≤ cg(n) for all n ∈ N. If f = O(g) and 
g = O(f), we write f = Θ(g).

2. Constructions

Construction 1 (D1, S1 and M1-free cghs). For n ≥ 3 odd, let the class of cghs H�(n)
comprise the single cgh consisting of triangles which contain in their interior the centroid 
of Ωn. For n ≥ 4 even, each H ∈ H�(n) consists of all triangles which contain the centroid 
of Ωn and, for each diameter {vi, vi+n/2} of Ωn, we either add all triangles {vi, vj , vi+n/2}
where vi < vj < vi+n/2 < vi, or all triangles {vi, vj , vi+n/2} where vi+n/2 < vj < vi <

vi+n/2. It is not hard to show that each element H ∈ H�(n) has size ·�(n) – see [4]. Each 
H ∈ H�(n) is strongly intersecting, so

ex�(n, D1) ≥ ex�(n, {D1, S1, M1}) ≥ ·�(n). (1)

Construction 2 (S1 and M1-free cghs). For n ≥ 3 odd, each cgh in H+(n) is ob-
tained by adding for some i < n to any cgh in H�(n) all triangles containing a pair 
{vi+j , vi+j+(n−1)/2} for 0 ≤ j ≤ (n − 3)/2 (left diagram in Fig. 2). For n ≥ 4 even, each 
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H ∈ H+(n) consists of all triangles containing the centroid of Ωn in their interior or on 
their boundary (right diagram in Fig. 2).

Fig. 2. Construction of H+(n).

By inspection, each H ∈ H+(n) is S1-free and M1-free. Moreover, if n is odd, then 
|H| = ·�(n) + (n − 1)(n − 3)/4 whereas if n is even, then |H| = ·�(n) + n(n − 2)/4. We 
obtain

ex�(n, S1) ≥ ex�(n, {S1, M1}) ≥ ·�(n) + � n
2 �� n−2

2 �. (2)

Construction 3 (M1-free cghs). For n ≥ 3 odd, the unique cgh in H++(n) is obtained by 
adding all triangles containing a pair {vi, vi+(n−1)/2} to the cgh in H�(n) (left diagram in 
Fig. 3). For n ≥ 4 even, H++(n) is obtained by adding all triangles containing a diameter 
of Ωn, plus all triangles containing a pair from a set of n/2 pairwise intersecting pairs 
of the form {vi, vi+n/2−1} to any cgh in H�(n) (right diagram in Fig. 3). Every cgh in 
H++(n) is M1-free, and has size ·�(n) + n(n − 3)/2.

Fig. 3. Construction of H++(n).

Construction 4 (M3-free cghs). An extremal M3-free construction is simply to take all 
n(n − 3) triangles which contain a pair of cyclically consecutive vertices of Ωn plus the 
set of all 

(
n−4

2
)

triangles without consecutive elements and containing a fixed vertex v0. 
It turns out this is not the only M3-free construction with that many triangles: we may 
remove any triangle {v0, v2k+1, v2k+3} and add {v2k, v2k+2, v2k+4} when 2k + 4 < n to 
obtain many different M3-free extremal constructions.
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Construction 5 (M2-free cghs). An M2-free construction on Ωn is obtained by taking 
all triangles containing a fixed vertex, plus all n triangles of three cyclically consecutive 
vertices.

The restriction n ≥ 7 is necessary in Theorem 4, since for n = 6, the only copies of 
M2 on Ω6 are the triangles {v0, v1, v3}, {v0, v2, v3}, {v0, v1, v4}, {v0, v3, v4}, {v0, v2, v5}, 
{v0, v3, v5} with their corresponding complements. As such, removing exactly one mem-
ber from each copy of M2 from the complete cgh on Ω6 gives an M2-free cgh H with 
14 =

(
n
2
)

− 1 triangles. It is likely the case that the set of triangles containing v0 plus 
the set of triangles of consecutive vertices in Ωn is the unique extremal M2-free example 
up to isomorphism for n ≥ 8. For n = 7, we may take all seven cyclically consecutive 
triangles, the triangle {v1, v3, v6}, and all triangles which contain v0 besides the triangle 
{v0, v4, v5}. Similarly, when n = 7, we may also take all seven cyclically consecutive 
triangles, the triangles {v1, v3, v6} and {v1, v4, v6}, and all triangles which contain v0
besides the triangles {v0, v4, v5} and {v0, v2, v3}.

Construction 6 (S3-free cghs). For even n ≥ 4, let

H0 :=
{

{v2i−1, v2i, v} ∈
(

Ωn

3

)
: 1 ≤ i ≤ n/2, v ∈ Ωn \ {v2i−1, v2i}

}
.

By inspection, H0 is S3-free and has n(n − 2)/2 triangles. For n odd, let H1 have ver-
tex set {v0, v1, . . . , vn−1} and add to a copy of H0 on {v1, v2, . . . , vn−1} all triangles 
{v0, v2i−1, v2i} where 1 ≤ i ≤ (n − 1)/2 as well as {vn−1, v0, v1}. Then H1 is S3-free and 
|H1| = (n − 1)(n − 2)/2 + 1.

Construction 7 (S2-free cghs). A construction demonstrating the lower bound is to split 
Ωn into two intervals A and B, and to take all triangles which contain a point from A and 
a pair of consecutive points in B. We also add all triangles containing three consecutive 
points in B. This configuration has |A|(|B| −1) + |B| −2 = (|A| +1)(|B| −1) −1 triangles 
and does not contain S2. If |A| = �n/2� − 1 and |B| = �n/2� + 1 then this configuration 
has �n2/4� − 1 triangles.

Construction 8 (D2-free cghs). For a lower bound on ex�(n, D2), start with an S(n, 15, 2)
design – Wilson [40] proved these exist whenever n is large enough and satisfies the 
requisite divisibility conditions, i.e., 

(
n
2
)
/
(15

2
)

is an integer, and n ≡ 1 mod 14, i.e., 
n ≡ 1, 15, 85, 141 mod 210. The construction is as follows: decompose the E(Kn) into (

n
2
)
/
(15

2
)

complete K15’s. Each corresponds to a convex 15-gon with vertex set V =
{w1, w2, . . . , w15}. Decompose each K15 into fifteen triangulations of a convex pentagon 
{wi, wi+1, wi+6, wi+8, wi+11} with diagonals {wi, wi+6} and {wi, wi+8} (indices are mod 
15). The lengths of the sides are 1, 5, 2, 3, 4 and the diagonals are 6 and 7, so this is 
indeed a decomposition with 45 triangles. This construction has size exactly

45 ·
(

n
2
)

(15) = 3
7

(
n

2

)

2



92 Z. Füredi et al. / Journal of Combinatorial Theory, Series B 155 (2022) 83–110
whenever n ≡ 1, 15, 85, 141 mod 210, and gives a construction of size 3
7
(

n
2
)

− O(n) for 
all n.

3. Proof of Theorem 3: tangent triangles, D1

A directed 3-cycle in a tournament is a triple {x, y, z} with x → y → z → x. Let T (n)
be the maximum number of directed 3-cycles in an n-vertex tournament. It was shown 
by Moon [29] (see also pages 42–44 in Erdős and Spencer [13]) that T (n) = ·�(n) for 
n ≥ 3. To see this, every tournament with n vertices of outdegrees d1, . . . , dn has exactly (

n
3
)

−
∑n

i=1
(

di

2
)

directed 3-cycles. This is maximized (only) when the outdegrees are as 
equal as possible. If n is odd, then all di = (n − 1)/2 while if n is even, half of the di

are (n − 2)/2 and the other half are n/2. These tournaments are called almost regular. 
Tournaments with these outdegrees can easily be constructed and moreover there are 
plenty of them when n is large. A short calculation gives the required

T (n) = ·�(n).

A directed 3-cycle {x, y, z} in the plane with x → y → z → x is oriented clockwise if z
is in the half plane to the right when traversing the segment [xy] from x to y. If {x, y, z}
is not oriented clockwise, then it is oriented counterclockwise.

Proof of Theorem 1. Let P be a set of n points in the plane with no three collinear, and 
let T be a D1-free family of triangles on P , and let H be the corresponding 3-uniform 
hypergraph with vertex set P . We will prove that |T | ≤ T (n), which gives Theorem 1.

We define an orientation for each edge {x, y} ∈ ∂H as follows. Consider any triangle 
{x, y, z} ∈ T . If the orientation of the 3-cycle {x, y, z} is clockwise then orient the edge 
{x, y} as x → y, and y → x otherwise. The main observation is that the orientation of 
{x, y} is uniquely determined. If {x, y} belongs to an {x, y, z} 3-cycle oriented clockwise 
and to an {x, y, z′} 3-cycle oriented counterclockwise, then the two corresponding tri-
angles form D1. We conclude that |H| is at most the number of directed 3-cycles in an 
orientation of a subgraph of Kn which is at most T (n) as required. �

Extremal families. The previous proof shows that |H| = ·�(n) is only possible if the 
orientation of the 3-cycles of ∂H is an almost regular tournament. There is a one to one 
correspondence between extremal D1-free cghs (or a D1-free triangle system in general) 
and almost regular tournaments.

3.1. Extremal {D1, S1}-free cghs

Suppose that a cgh H is D1-free and also S1-free with |H| = ·�(n). Then ∂H is an 
almost regular tournament and H is obtained as the family of oriented three-cycles in 
∂H. We claim that more is true, H ∈ H�(n) as described in Construction 1.
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First we show that all directed 3-cycles in the tournament have the same orientation. 
As a first step, we prove that if two triangles in H have some common vertices then 
their corresponding 3-cycles have the same orientation. This is obviously true when they 
have a common edge because H is D1-free. Consider first the case when two triangles 
T1, T2 ∈ T share a vertex v1 and have opposite orientations. Then they can form an S1

(which we excluded), or an S2, or an S3.
If they form S2, say v1 < v2 < · · · < v5 < v1 and the two 3-cycles are oriented as 

v1 → v2 → v5 → v1 and v1 → v4 → v3 → v1, then we proceed as follows. Consider the 
edge {v4, v5}. Observe that v5 → v4, otherwise the triangles {v1, v4, v5} and {v1, v3, v4}
form a D1. A similar argument shows v3 → v2. Consider the edge {v2, v4}. Now v2 → v4, 
otherwise the triangles {v1, v2, v5} and {v2, v4, v5} form a D1. But then we have found a 
triangle {v2, v4, v3} which forms an S1 with {v1, v2, v5}. So T1 and T2 cannot form an S2.

If T1 and T2 form an S3, say v1 < · · · < v5 < v1 and the two 3-cycles are oriented as 
v1 → v2 → v4 → v1 and v1 → v5 → v3 → v1 then we proceed the same way. Consider the 
edge {v4, v5}. Observe that v4 → v5, otherwise the triangles {v1, v5, v4} and {v1, v2, v4}
form a D1. A similar argument shows v3 → v2. Consider the edge {v3, v4}. Then v3 → v4, 
otherwise the triangles {v1, v2, v4} and {v2, v4, v3} form a D1. But then we have found the 
triangle {v3, v4, v5} which forms a D1 with {v1, v5, v3}. So T1 and T2 cannot form an S3.

The above argument implies that the vertex sets X := {x ∈ e ∈ H, e is oriented
clockwise} and Y := {y ∈ e ∈ H, e is oriented counterclockwise} are disjoint. So every 
triangle e ∈ H is contained entirely in X or in Y . This gives

|H| ≤ T (|X|) + T (|Y |) < T (n),

a contradiction.
From now on, we may suppose that each directed 3-cycle of ∂H is oriented clockwise. 

This implies that for vi < vj < vk < vi we have vk → vi if vj → vi. Indeed, each 
orientation of a triangle comes from a directed 3-cycle, so in case of vi → vk and vj → vi

we get two 3-cycles {vi, vk, vk′} and {vj , vi, vj′} oriented clockwise so vi < vj′ < vj <

vk < vk′ < vi, and these two triangles form an S1, a contradiction. Summarizing, each vi

has out-edges vi → vj for i < j ≤ i +�(n −1/2)� and in-edges vj → vi for i −�(n −1/2)� ≤
j < i, in other words H ∈ H�(n). �
4. Proof of Theorems 2 and 3: touching triangles, S1

4.1. Proof of Theorem 2 for S1

We will prove that ex�(n, S1) ≤ ex�(n, D1) + �n/2��(n − 2)/2� which via Theorem 2
for D1 gives the upper bound in Theorem 2 for S1. For any cgh H, define a graph 
G := G(H) with G ⊂ ∂H, called the D1-graph of H as the set of {u, v} for which there 
are x, y ∈ Ωn with u < x < v < y < u and triangles {u, x, v} and {u, v, y} in H. In other 
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words, {u, v} has triangles on both sides. This definition can be naturally extended to 
triangle systems (P, T ).

Let H ⊂
(Ωn

3
)

be a cgh containing no copy of S1. We claim that the D1-graph G is a 
matching. Otherwise, if there are {u, v} and {v, w} in G, then there are x, y ∈ Ωn with 
u < x < v < y < w < u and triangles {u, x, v} and {v, y, w} in H which form S1. We 
obtain |G| ≤ �n/2�. For each {u, v} ∈ G, delete all triangles containing {u, v} on the side 
that has fewer triangles (if both sides have the same number of triangles then pick a side 
arbitrarily). Altogether we delete at most |G|�(n − 2)/2� ≤ �n/2��(n − 2)/2� triangles. 
Let H ′ ⊂ H be the set of triangles that remain. Since H ′ is D1-free, |H ′| ≤ ex�(n, D1), 
and we are done.

If H is an extremal S1-free cgh, then |G| = �n/2� and each edge {u, v} ∈ G is 
contained in at least �(n − 2)/2� triangles {u, v, w} with u < w < v < u and another 
at least �(n − 2)/2� triangles {u, v, z} with u < v < z < u. This is only possible if the 
segments representing the edges of G are pairwise crossing each other inside Ωn. In case 
of even n we have that G consists of the n/2 diameters {vi, vi+n/2} of Ωn, in case of 
odd n we may suppose that G = {{vj , vj+(n−1)/2} : 0 ≤ j ≤ (n − 3)/2}. Since H ′ is 
an extremal {D1, S1}-free cgh the results of subsection 3.1 yield that H ′ ∈ H�(n). The 
triangles from H \ H ′ can be added to H ′ only as described in Construction 2, and this 
yields H ∈ H+(n). �

4.2. A geometric lemma about D1-edges in S1-free triangle systems

Recall that a segment [ab] (with a, b ∈ P ) is a D1-edge in the triangle system (P, T )
if there are triangles from T on both sides, i.e., ∃c−, c+ ∈ P such that c− and c+ are 
separated by the line �(ab) and {a, b, c−}, {a, b, c+} ∈ T .

Lemma 4.1. Let T be a triangle system with point set P . Suppose that [ab], [bc], and 
[cd] are distinct D1-segments in T (so a = d is not excluded). Then T contains an S1

configuration.

Proof. The lines �(ab), �(bc), and �(cd) cut the plane into seven open regions, unless 
�(ab)||�(cd) when we get only six regions. Let T be the triangle these lines enclose (in 
the case of six regions T is one of the infinite three-sided strips). Let H(xy) denote the 
open half plane with boundary line xy tangent to T but disjoint from its interior. Since 
{a, b} is a D1-edge there exists a triangle {a, b, c−} ∈ T where c− is in the open half 
plane H(ab), and there exists a triangle {b, c, y} ∈ T with y ∈ H(bc). These two triangles 
form an S1 configuration unless c−, y ∈ B := (H(ab) ∪ �(ab)) ∩ H(bc). Consider a third 
triangle {c, d, b−} ∈ T where b− ∈ H(cd). Since this half plane is separated from {b, c, y}
by �(cd) (except both contain c in their boundaries), so {c, d, b−} and {b, c, y} form an 
S1. �



Z. Füredi et al. / Journal of Combinatorial Theory, Series B 155 (2022) 83–110 95
4.3. A removal lemma concerning S1-free triangle systems

We prove Theorem 3 for S1 in the following stronger form.

Theorem 7. Let n ≥ 3, and let T be an n-point triangle system. If T is S1-free then 
there exists a subfamily T ′ ⊂ T which is D1-free and

|T | ≤ |T ′| +
⌊n

2

⌋⌊n − 2
2

⌋
.

Since |T ′| ≤ ·�(n) by Theorem 1, one obtains the desired upper bound for |T |.
Recall that the D1-graph of T is a graph G with vertex set P and its edges are the 

D1-segments. For e ∈ G, let T (e) be the set of triangles from T containing e, and let 
del ({e}) be the minimum number of triangles e ∪{x} ∈ T on one side of �(e). Obviously, 
del ({e}) ≤ (1/2)|T (e)| ≤ �(n −2)/2�. We extend this definition for any set of edges, T (F )
is the set of triangles from T containing an edge e ∈ F , and del (E(F )) is the minimum 
number of triangles e ∪ {x} ∈ T , e ∈ F such that removing those triangles from T we 
eliminate all D1-edges of F . Our aim is to prove that del (E(G)) ≤ �n/2��(n − 2)/2�. 
We also show that for n �= 5 in case of equality G is either a matching of size �n/2�, or a 
matching of size (n − 3)/2 and a path of length two. We conjecture that the latter case 
cannot happen for n sufficiently large.

Since T is S1-free, Lemma 4.1 implies that G contains no path of length three and in 
particular G does not contain a cycle. Thus G is a starforest.

Claim 4.1. Suppose that {e, f} ⊂ G is a two-edge component of the D1-graph G. Then 
del ({e, f}) ≤ �(n − 2)/2�.

Proof. Given the two-edge component {e, f} ⊂ G, there exists a w ∈ P with w = e ∩ f . 
Let δ = 1 if e ∪ f ∈ T , and δ = 0 otherwise. We assume e, f are as shown in Fig. 4, i.e., 
the lines �(e) and �(f) cut the plane into four open regions A, B, C, D (B is disjoint to 
e ∪f , the boundary of D contains both, etc.). If any of the dotted triangles are in T , then 
we get a copy of S1, as we have seen this in the proof of Lemma 4.1. More formally, we 
get, e.g., if e ∪{x} ∈ T , then either e ∪{x} = e ∪f or x ∈ B∪C. For X ∈ {A, B, C, D}, let 
eX be the number of x ∈ X such that e ∪ {x} ∈ T and fX be the number of x ∈ X such 
that f ∪{x} ∈ T . We have eA, eD = 0 and fC , fD = 0. Observe that e ∪{x}, f ∪{x} ∈ T
is not possible for x ∈ B, else we get a D1-edge {w, x}, contradicting the fact that {e, f}
is a component of G. We obtain

fA + eB + fB + eC ≤ |P | − |{e ∪ f}| ≤ n − 3. (3)

There are four possibilities to delete triangles from T to make {e, f} non-D1-edges, 
namely we can eliminate all triangles e ∪ {x} with x ∈ A ∪ B or all such triangles from 
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Fig. 4. A two-edge component of G as discussed in Claim 4.1.

the other side of �(e), and there are two sides of �(f) as well. We get four inequalities 
for del ({e, f}).

del ({e, f}) ≤ eB + fB

del ({e, f}) ≤ eB + (fA + δ)

del ({e, f}) ≤ (eC + δ) + fB

del ({e, f}) ≤ (eC + δ) + fA.

Summing these and using (3) we get 4 del ({e, f}) ≤ 2n − 6 + 3δ ≤ 2n − 3. This gives 
del ({e, f}) ≤ �(2n − 3)/4� = �(n − 2)/2� and we are done. �
Claim 4.2. Suppose that F ⊂ G is a component of the D1-graph G, a star with s ≥ 3
edges. Then del (E(F )) ≤ �(n − 1)/2�.

Proof. We will prove the stronger statement |T (F )| ≤ n − 1. Suppose that the edges 
of F are {w, v1}, {w, v2}, . . . , {w, vs}. We claim that for any vertex x ∈ P \ {w} an 
(open) half plane with boundary line �(wx) can contain only at most one triangle from 
T of the form {w, x, vi}. Indeed, if there is another such triangle {w, x, vj} and, say, 
∠(xwvi) < ∠(xwvj) then there is another vertex z ∈ P such that {w, vj , z} ∈ T and it 
is separated from {w, x, vi} by the line �(wvj); however this means that {w, vj , z} and 
{w, x, vi} form an S1 configuration. Even more, if x ∈ P \V (F ), then {w, x} /∈ G implies 
that this can happen on at most one side of �(wx). We get for such an x that |{{w, vi} :
{w, vi, x} ∈ T }| ≤ 1, hence |{{w, vi, x} : {w, vi, x} ∈ T , 1 ≤ i ≤ s, x /∈ V (F )}| ≤ n −1 −s. 
To estimate |T (F )| it remains to count the triangles from T of the form {w, vi, vj}. For 
any given i there are at most two such triangles, and each of them is counted that way 
exactly twice, so their number is at most s. �
Proof of Theorem 7. Suppose that del (E(G)) ≥ �n/2��(n − 2)/2�. Let the (nontriv-
ial) components of G be F1, F2, . . . , Fr. Claims 4.1 and 4.2 imply that del (E(G)) =∑

del (E(Fi)) ≤ r�(n − 1)/2�. For n even this leads to r ≥ n/2; equality holds, G is a 
perfect matching. For n ≥ 5 odd we get r ≥ (n −3)/2 and in case of r = (n −3)/2 we have 
del (E(Fi)) = (n − 1)/2 for each 1 ≤ i ≤ r. In this latter case again Claim 4.1 implies 
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that each Fi has at least 4 vertices, r ≤ n/4, a contradiction for n > 5. So in the odd case 
(for n > 5) we must have r = (n − 1)/2, each component is a single edge except perhaps 
one is a two-path. Then Claim 4.1 implies that del (E(G)) ≤ r�(n − 2)/2�, completing 
the proof. �
5. Proof of Theorems 2 and 3: two separated triangles, M1

5.1. Proof of Theorem 2 for M1

We use a method similar to that in [15] to determine ex�(n, M1). We prove that if 
H is an n-vertex M1-free cgh with |H| ≥ ·�(n) + n(n − 3)/2, then H ∈ H++(n). First 
let n ≥ 3 be odd. If H ∈ H++(n) then we are done, so we may assume H contains 
a triangle T (i, j, k) = {vi, vj , vk} with vi < vj < vk < vi+(n−1)/2 < vi. Moreover, we 
may assume that among all such triangles, T (i, j, k) is the triangle where the longest 
edge {vi, vk} is as short as possible. Replace all triangles T (i, j′, k) ∈ H with i < j′ < k

with all triangles T (i − 1, k + 1, l) where j and l are on opposite sides of the edge 
{vi, vk} as shown in Fig. 5. Since T (i, j, k) and T (i − 1, k + 1, l) form a copy of M1, 
T (i − 1, k + 1, l) /∈ H for all such l. Moreover, since vi < vk < vi+(n−1)/2 < vi, the 
number of triangles T (i −1, k+1, l) that we added is greater than the number of triangles 
T (i, j, k) that we deleted. Consequently, this produces a cgh H ′ with |H ′| > |H|. Since 
H is extremal M1-free, there exists a copy of M1 in H ′, which must contain a triangle 
T (i − 1, k + 1, l) ∈ H ′. Since all triangles T (i − 1, k + 1, l) intersect, the other triangle in 
the copy of M1 must be T (f, g, h) ∈ H. Since H is M1-free, T (f, g, h) intersects T (i, j, k), 
which implies vi ≤ vf < vg < vh ≤ vk < vi and {vf , vh} �= {vi, vk}. However, then the 
edge {vf , vh} is shorter than the edge {vi, vk}, a contradiction.

Fig. 5. Replacing triangles in an M1-free cgh.

Now let n ≥ 4 be even and let H be an extremal n-vertex M1-free cgh. If H ∈ H++(n)
we are done, so suppose H /∈ H++(n). If H contains a triangle T (i, j, k) where vi < vj <

vk < vi+n/2−1 < vi, then we repeat the same proof as in the case n is odd to derive 
a contradiction. Therefore all triangles in H contain the centroid or are T (i, j, k) with 
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vi < vj < vk = vi+n/2−1 < vi. The pairs {vi, vi+n/2−1} for which there exists such a 
triangle T (i, j, k) must pairwise intersect (possibly at their endpoints) otherwise we find 
a copy of M1 in H. In particular, by Construction 3, H ∈ H++(n). �

Let us note that we can give another proof using the D1-graph and Theorem 2 for D1
just as we did in subsection 4.1 to prove Theorem 2 for S1-free convex triangle systems 
– specifically, the D1-graph does not contain two geometrically disjoint edges.

5.2. Proof of Theorem 3 for M1

In this section, we will prove Theorem 3 for M1 in a stronger form using a result on 
geometric graphs due to Valtr [38]. A geometric graph (V, E) is a graph drawn in the 
plane so that the vertex set V consists of points in general position and the edge set E
consists of straight-line segments between points of V . Two edges of a geometric graph 
are said to be avoiding, if they are opposite sides of a convex quadrilateral.

Theorem 8 (Valtr [38]). There is a constant CV > 0 such that any geometric graph on 
m vertices with no three pairwise avoiding edges has at most CV m edges.

Theorem 9. Let n ≥ 3, CV as above, and let T be an n-point triangle system. If T is 
M1-free then there exists a subfamily T ′ ⊂ T which is D1-free and

|T | ≤ |T ′| + CV

(
n

2

)
.

Since |T ′| ≤ ·�(n) by Theorem 3 for D1, one obtains the desired upper bound |T | ≤
·�(n) + O(n2).

Recall that a segment [ab] (with a, b ∈ P , a �= b) is a D1-edge in the triangle system 
(P, T ) if there are triangles from T on both sides, i.e., ∃c−, c+ ∈ P such that c− and c+

are separated by the line �(ab) and the triangles {a, b, c−} and {a, b, c+} ∈ T . The set of 
all such segments is the D1-graph G of T . For v ∈ P let Gv be the D1-link graph of T , 
i.e., it consists of those edges e of G, v /∈ e, which are contained in a triangle e ∪{v} ∈ T . 
The vertex set of the geometric graph Gv is P \ {v}, and for every edge e ∈ Gv we can 
choose a triangle e ∪ {−v} ∈ T which is separated from the triangle e ∪ {v} by the line 
�(e), so the third vertex of e ∪ {−v} and v lie on different sides of �(e).

Lemma 5.1. Let T be a triangle system with point set P , and let the three segments e, 
f , and g of E(Gv) be pairwise avoiding. Then T contains M1.

Proof. Given a line � and a set X �= ∅ with X ∩ � = ∅ we denote the open half plane 
with boundary � and containing X by H(�, X), the other side is H(�, −X). Suppose 
that T contains no disjoint triangles. Since e and f are on opposite sides of a convex 
quadrilateral, the triangle e ∪ −f ∈ T should meet f ∪ {v}. This is only possible if 
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v ∈ H(�(e), −f). Similarly, v ∈ H(�(f), −e), so v is in the open wedge H(�(e), −f) ∩
H(�(f), −e), cf., Fig. 4. For later use denote this wedge by B(e, f). Since v ∈ B(e, f), 
this rules out that the lines �(e), �(f) are parallel.

The line �(f) avoids the other two segments, suppose that it separates them, i.e., 
e ⊂ H(�(f), −g) (and g ⊂ H(�(f), −e)). Then B(e, f) ⊂ H(�(f), −e) and B(f, g) ⊂
H(�(f), −g) = H(�(f), e). This implies B(e, f) ∩ B(f, g) = ∅, contradicting to v ∈
B(e, f) ∩ B(f, g) ∩ B(g, e). Hence �(e) is a tangent line of R := conv ({e, f, g}), so this 
convex hull is a hexagon.

There are two cases. If R is inscribed into the triangle T formed by the lines �(e), 
�(f), and �(g), then each region B(e, f), B(f, g), and B(g, e) is a digon (an infinite 
wedge). These are pairwise disjoint, there is no place for v. Otherwise, one edge, 
say e lies on a side of T and f and g lie on the other two sides of the three-sided 
infinite region H(�(e), −T ) ∩ H(�(f), g) ∩ H(�(g), f). Then B(f, g) is a digon inside 
H(�(e), T ), and v ∈ B. Consider a triangle e ∪ {x} ∈ T where x ∈ H(�(e), −T ). The 
two digons in H(�(e), −T ) are disjoint, so we may suppose that x /∈ (H(�(e), −T ) ∩
H(�(f), −T )). Then the triangle e ∪ {x} is disjoint to f ∪ {v}, completing the proof of 
Lemma 5.1. �
Proof of Theorem 9. Recall that we denote the set of triangles from T containing an 
edge e ∈ F by T (F ), and del (E(F )) is the minimum number of triangles e ∪ {x} ∈ T , 
e ∈ F such that removing those triangles from T we eliminate all D1-edges of F . Our 
aim is to prove that del (E(G)) ≤ CV

(
n
2
)

if T is M1-free. We will show the slightly 
stronger statement: T (G) ≤ CV n(n − 1). We have T (G) ≤

∑
v∈V |Gv|. By Lemma 5.1

the geometric graph Gv has no three pairwise avoiding edges. Theorem 8 gives |Gv| ≤
CV (n − 1). Then del (E(G)) ≤ (1/2)|T (G)| completes the proof. �
6. Proof of Theorem 4: crossing triangles, M3

For the proof of Theorem 4 for M3, it is useful to consider ordered hypergraphs: the 
vertex set is Ωn = {v0, v1, . . . , vn−1} with the linear ordering v0 < v1 < · · · < vn−1. 
Let ex→(n, M3) denote the maximum number of triangles in an ordered hypergraph not 
containing triangles {vi, vj , vk} and {vi′ , vj′ , vk′} with vi < vi′ < vj < vj′ < vk < vk′ – 
this is the ordered analog of M3. The following theorem implies Theorem 4 for M3, since 
ex�(n, M3) = ex→(n, M3):

Theorem 10. Let n ≥ 7. Then ex→(n, M3) =
(

n
3
)

−
(

n−3
3

)
.

Proof. Let H be an M3-free ordered triangle system with n vertices. Let H1 consist of
all e ∈ H with v0, v1 ∈ e, and let H2 consist of all e ∈ H with v0 ∈ e, v1 /∈ e and 
(e \ {v0}) ∪ {v1} ∈ H. Let H3 be obtained from H\(H1 ∪ H2) by merging the vertices 
v0 and v1. Note that H3 is a 3-cgh with n − 1 vertices. Clearly, |H1| ≤ n − 2. Let 
G0 = {{u, v} : {v0, u, v} ∈ H2} be the link graph of v0 in H2. If two edges of G0 cross – 
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say {u, v}, {w, x} ∈ G0 with u < w < v < x, then the triangles {u, v, v1} and {w, x, v0}
are in H2, and form a copy of M3, a contradiction. Therefore no two edges of G0 cross, 
which implies G0 is an outerplane graph with n −2 vertices. Consequently |G0| ≤ 2n −7, 
by Euler’s Formula. Finally, it is also straightforward to check H3 is M3-free, so by 
induction,

|H| = |H1| + |H2| + |H3| ≤ (n − 2) + (2n − 7) +
(

n − 1
3

)
−

(
n − 4

3

)
=

(
n

3

)
−

(
n − 3

3

)
.

This completes the proof of Theorem 10. �
7. Proof of Theorem 4: stabbing triangles, M2

We prove by induction on n that ex�(n, M2) =
(

n
2
)

− 2 for n ≥ 7. When n = 7, 
since cyclically consecutive triangles {vi, vi+1, vi+2} are never in M2, we may assume 
these seven triangles are in any M2-free cgh. For the remaining twenty-eight triangles, 
we create a graph with vertex set consisting of these triangles and form an edge if two 
of the triangles form a copy of M2. A computer aided calculation [35] then yields this 
graph has independence number 12 and hence ex�(7, M2) = 12 + 7 =

(7
2
)

− 2.

For the induction step, we plan to find two consecutive u, v ∈ Ωn with degree at most 
three and whose common link graph Gu∩Gv has at most n −3 edges. Let H be a maximal 
M2-free cgh on Ωn, and H ′ ⊂ H be the cgh after removing all consecutive triangles 
{vi, vi+1, vi+2}. Let d(vi, vj) be length of the path on the perimeter of the polygon 
starting with vi and moving clockwise to vj . For a triangle e = {vi, vi+1, vk} ∈ H ′ – we 
only consider such triangles – let �(e) = min{d(vi+1, vk), d(vk, vi)}.

Lemma 7.1. Let H ⊂
(Ωn

3
)

be a maximal M2-free cgh and H ′ be as above. Then
(1) For consecutive u, v ∈ Ωn, |Gu ∩ Gv| ≤ n − 3 with equality only if Gu ∩ Gv is a star.
(2) There exists vi ∈ Ωn such that the degree of {vi, vi+1} is at most three in H.

Proof. We first prove (1) by showing Gu,v := Gu ∩ Gv does not contain a pair of disjoint 
edges. If {w, x}, {y, z} are disjoint edges in Gu,v, and v < w < x < y < z < u < v

or v < w < y < z < x < u < v – this means that {w, x}, {y, z} do not cross – then 
{u, w, x}, {v, y, z} form M2. If on the other hand v < w < y < x < z < u < v – this 
means {w, x}, {y, z} do cross – then {u, y, z}, {v, w, x} form M2. So Gu,v has no pair of 
disjoint edges. It is a standard fact that the unique extremal graphs with at least four 
vertices and no pair of disjoint edges are stars, and therefore Gu,v has at most n − 3
edges.

For (2), seeking a contradiction, suppose dH({vi, vi+1}) ≥ 4 (and hence
dH′({vi, vi+1}) ≥ 2) for every vi ∈ Ωn. We first show there exists e ∈ H ′ with �(e) ≥ 3. 
If not, then {vi, vi+1, vi+3} ∈ H ′ and {vi−2, vi, vi+1} ∈ H ′ for all i and there are no 
other triangles in H ′. However, then {v0, v1, v3} ∈ H ′ and {v2, v4, v5} ∈ H ′ form M2, a 
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contradiction. So there exists e ∈ H ′ with �(e) ≥ 3. From all e ∈ H ′ with �(e) ≥ 3, pick e
so that �(e) = j ≥ 3 is a minimum. Suppose e = {v0, v1, vj+1}, so �(e) = d(v1, vj+1) (the 
proof for e of the form {vn−j , v0, v1} with �(e) = j = d(vn−j , v0) ≥ 3 will be symmetric). 
Then dH′({vj−1, vj}) ≥ 2, so there are triangles f = {vh, vj−1, vj} and g = {vk, vj−1, vj}
in H ′. If j + 1 < k ≤ n − 1 or j + 1 < h ≤ n − 1, then f and e or g and e respectively 
form M2, a contradiction. So 0 ≤ h, k ≤ j − 3, recalling {vj−2, vj−1, vj} /∈ H ′. Now

�(f) = d(vh, vj−1) > d(vk, vj−1) ≥ 2

and so �(f) ≥ 3. On the other hand, since 0 ≤ h < j − 1,

�(f) = d(vh, vj−1) < d(v0, vj) = �(e)

contradicting the choice of e. This final contradiction proves (2). �
Let {vi, vi+1} have degree at most three in H, as guaranteed by Lemma 7.1 part (2). 

We contract the edge {vi, vi+1} to a vertex w to get a cgh H0 with n − 1 vertices. Let 
G = {{u, v} : {u, v, vi}, {u, v, vi+1} ∈ H} be the common link graph of vi and vi+1.

Lemma 7.2. Let G be the common link graph of vi and vi+1. Then |G| ≤ n − 4.

Proof. If neither of {vi−1, vi, vi+2} or {vi−1, vi+1, vi+2} is in H, then {vi−1, w, vi+2} /∈ H0
and |G| ≤ n − 4 follows from Lemma 7.1 part (1). So we assume {vi−1, vi, vi+2} ∈ H or 
{vi−1, vi+1, vi+2} ∈ H.

Case 1. {vi−1, vi, vi+2} ∈ H. Suppose G is a star with n − 3 edges, with center vk. 
If vk /∈ {vi−1, vi+2}, then letting vj /∈ {vk, vi−1, vi, vi+1, vi+2}, it follows that {vi, vj , vk}
and {vi−1, vi+1, vi+2} form a copy of M2. Hence, we may assume that vk = vi−1 or 
vk = vi+2. Both of these cases are similar, so consider only the case vk = vi+2. We may 
assume that {vi+3, vi+4} has degree at least three. Then there is at least one triangle 
which contains {vi+3, vi+4} of the form {v, vi+3, vi+4}. If v ∈ Ωn and vi+4 < v < vi+1 <

vi+4, then {v, vi+3, vi+4} and {vi+1, vi+2, vi+5} form M2. If v = vi+1, then {v, vi+3, vi+4}
and {vi−1, vi, vi+2} form M2. So G is not a star with n − 3 edges, and Lemma 7.1 part 
(1) gives |G| ≤ n − 4.

Case 2. {vi−1, vi+1, vi+2} ∈ H. In this case, a symmetric argument to that used for 
{vi−1, vi, vi+2} ∈ H applies by reversing the orientation of Ωn. �

To complete the proof of |H| ≤
(

n
2
)

−2, we note by inspection that H0 is also M2-free. 
By induction, |H0| ≤

(
n−1

2
)

− 2. By Lemma 7.2, and recalling dH(vi, vi+1) ≤ 3,

|H| = |H0| + |G| + dH(vi, vi+1) ≤
(

n − 1
2

)
− 2 + n − 4 + 3 =

(
n

2

)
− 2.

This proves Theorem 4 for M2. �
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8. Proof of Theorem 4: crossing triangles sharing a vertex, S3

Let H ⊂
(Ωn

3
)

be a S3-free cgh and Gi be the link graph of vi in H. Let G′
i comprise 

the edges of Gi which consist of two consecutive vertices in Ωn, and let G′′
i = Gi\G′

i.

Lemma 8.1. Let H ⊂
(Ωn

3
)

be a S3-free cgh. For 0 ≤ i ≤ n − 1, |G′′
i | ≤ n − 3.

Proof. The graph G′′
i has no pair of crossing edges since H is S3-free. If we add to G′′

i all 
the n edges {vj , vj+1}, we obtain an outerplanar graph which has at most 2n − 3 edges. 
Removing the n added edges gives |G′′

i | ≤ n − 3. �
Lemma 8.2. Let H ⊂

(Ωn

3
)

be a S3-free cgh. For each i, |G′
i| + |G′

i+1| ≤ n.

Proof. We may assume i = 0. Let G denote the multigraph obtained by superimposing 
the graphs G′

0 and G′
1, so |G| = |G′

0| + |G′
1|. As G′

i comprises the edges of Gi which 
consist of two consecutive vertices in Ωn, each component C of G is a path P with some 
edges of multiplicity two. If {vj−1, vj} ∈ P ∩ G′

0, then {vj , vj+1} /∈ P ∩ G′
1, otherwise 

{v0, vj , vj+1}, {v1, vj−1, vj} form S3 ⊂ H as in Fig. 6, a contradiction. If all edges of P
are from G′

1 only, then |C| = |P | = |V (C)| − 1. Otherwise, let {vj , vj+1} be the first 
edge of P in G′

0 in the clockwise direction. Then all edges of P preceding {vj , vj+1}
are in G′

1 only, and all edges of P after {vj , vj+1} are in G′
0 only, whereas {vj , vj+1}

might be in both G′
0 and in G′

1. Therefore at most one edge of P has multiplicity two, 
and |C| ≤ |P | + 1 = |V (C)|. If C1, C2, . . . , Cr are the components of G, we conclude 
|G| = |C1| + |C2| + · · · + |Cr| ≤ |V (C1)| + |V (C2)| + · · · + |V (Cr)| = |V (G)| = n. �

Fig. 6. Crossing triangles in the proof of Lemma 8.2.

We now complete the proof of ex�(n, S3) ≤ n(n − 2)/2, using the following identity:

3|H| =
∑

i

(|G′
i| + |G′′

i |) =
∑

i

1
2(|G′

i| + |G′
i+1|) +

∑
i

|G′′
i |.

We apply Lemmas 8.1 and 8.2 to each term in the sums to obtain:



Z. Füredi et al. / Journal of Combinatorial Theory, Series B 155 (2022) 83–110 103
3|H| ≤
n−1∑
i=0

1
2

n +
n−1∑
i=0

(n − 3) = 1
2

n2 + n(n − 3) = 3
2

n(n − 2). �

9. Proof of Theorem 5: touching triangles with parallel sides, S2

Let H ⊂
(Ωn

3
)

be an S2-free cgh. We are going to show |H| ≤ 23n2/64. Consider a 
triangle e = {vi, vj , vk} ∈ H where vi < vj < vk < vi. We call the edge {vi, vj} good for 
e if there does not exist a k′ such that vj < vk′ < vk < vj and {vi, vj , vk′} ∈ H, and bad
otherwise.

Lemma 9.1. Let H ⊂
(Ωn

3
)

be an S2-free cgh. Then
(1) Every triangle of H contains at least two good edges.
(2) Every edge in ∂H is good for either one or two triangles of H.

Proof. We first prove (1). Suppose e = {vi, vj , vk} ∈ H and {vi, vj} and {vj , vk} are 
bad. Then there exist k′ : vj < vk′ < vk < vj and i′ : vk < vi′ < vi < vk such that 
{vi, vj , vk′}, {vj , vk, vi′} ∈ H. However, the triangles {vi′ , vj , vk} and {vi, vj , vk′} form 
configuration S2, a contradiction.

For (2), given {vi, vj} ∈ ∂H, consider a triangle {vi, vj , vk} with vi < vj < vk < vi

and vk as close as possible to vj ; this determines vk uniquely. Similarly, for {vi, vj} ∈ ∂H, 
consider a triangle {vi, vj , vk} with vi < vk < vj < vi with vk as close as possible to vi; 
this too determines vk uniquely. Therefore each edge in ∂H is good for either one of two 
triangles of H. �

Color an edge in ∂H blue if it is good for exactly one triangle in H, and red if it 
is good for exactly two triangles in H. Let R be the number of red edges and B the 
number of blue edges – for a red edge {u, v}, there exist vertices w, x ∈ Ωn on opposite 
sides of {u, v} such that {u, v, w} ∈ H and {u, v, x} ∈ H, so red edges are what we have 
referred to as edges in the D1-graph in this paper. If we map a triangle e ∈ H to the 
edges in e that are good for e, then each red edge is counted twice and each blue edge is 
counted once. On the other hand, each triangle of H contains at least two good edges, 
by Lemma 9.1, so 2|H| ≤ 2R + B. In particular,

|H| ≤ R + B/2 ≤ R + B = |∂H|.

Lemma 9.2. If {vi, vj}, {vj , vk} and {vk, vi} are red edges, then {vi, vj , vk} ∈ H.

Proof. Suppose {vi, vj , vk} /∈ H and vi < vj < vk < vi. Then by definition there exists 
k′ �= k such that {vi, vj , vk′} ∈ H and vj < vk′ < vi < vj . We consider two cases.

Case 1. vj < vk′ < vk < vj . There exists i′ �= i such that {vi′ , vj , vk} ∈ H and 
vk < vi′ < vj < vk. We observe vi < vi′ < vj < vi, otherwise {vj , vk′} and {vi, vi′} are 
non-crossing, and {vi, vj , vk′} and {vi′ , vj , vk} form S2 in H. Now there exists j′ �= j
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such that {vi, vj′ , vk} ∈ H and vi < vj′ < vk < vi. If vi < vj′ < vj < vi, then the 
edges {vj′ , vk} and {vj , vk′} are non-crossing, and {vi, vj , vk′} and {vi, vj , vk′} form S2. 
If vj < vj′ < vk < vj , then {vi′ , vj} and {vi, vj} are “parallel”, and {vi′ , vj , vk} and 
{vi, vj , vk′} form S2 in H.

Case 2. vk < vk′ < vi < vk. Consider the reverse ordering of Ωn and apply the proof 
of Case 1. �

By Lemma 9.2, every triangle of red edges is a triangle of H, so there are at most 
|H| ≤ |∂H| ≤

(
n
2
)

such triangles. In particular, the number of red edges is at most 
n2/4 + n/2 – one could use a precise result by Lovász-Simonovits [27] to deduce this. 
Instead we give a direct proof: the number of triangles in any graph G is at least

∑
{u,v}∈E(G)

(d(u) + d(v) − n).

If G has average degree d, then this is precisely

∑
u

d(u)2 − 1
2dn2 ≥ d2n − 1

2dn2.

Since the graph G of red edges in ∂H has at most |H| ≤
(

n
2
)

triangles,

d2n − 1
2dn2 ≤ 1

2n2

which gives d ≤ n/2 + 1 and therefore R = |G| ≤ n2/4 + n/2. Therefore

2|H| ≤ 2R + B ≤
(

n

2

)
+ (n2

4 + n

2 ) = 3n2

4 .

To improve this bound to the desired |H| ≤ 23n2/64, we may assume n is odd and 
partition the complete graph on Ωn into planar matchings M1, M2, . . . , Mn where Mi =
{{vj , vk} : j+k ≡ i mod n}. Then there exists i ≤ n such that at least R/n edges in M =
Mi are red. For each pair of red edges, say {u, v} and {w, x}, where u < w < x < v < u, 
there exist triangles {u, v, y}, {w, x, z} ∈ H where u < w < z < x < v < y < u. Now 
by inspection, the edge {y, z} cannot be contained in any triangle of H without creating 
configuration S2 – see Fig. 7. Furthermore, if {u′, v′}, {w′, x′} ∈ M , then {u′, v′, y} and 
{w′, x′, z} cannot both be triangles of H without creating S2. Therefore for each pair 
{{u, v}, {w, x}} of red edges of M , we may associate a unique edge {y, z} which is not 
contained in any triangle of H. Consequently

2|H| ≤ 2R + B ≤ 2R +
(

n
)

−
(

R/n
)

− R ≤ R +
(

n
)

−
(

R/n
)

.
2 2 2 2
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Since R ≤ n2/4 + n/2, this implies |H| ≤ 23n2/64 − n/4 + 3/8. As n ≥ 3, this is at most 
23n2/64, as required. �

Fig. 7. Edge {y, z} absent from ∂H. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

10. Proof of Theorem 6: triangles sharing a side, D2

We first observe some simple bounds on ex�(n, D2). If G is a convex geometric graph 
that is a triangulation of a convex polygon, then the family T (G) of vertex sets of the 
triangular regions in G form a D2-free cgh. By Euler’s Formula, |T (G)| < 1

2 |G|, so 
if G1, G2, . . . , GM are edge-disjoint triangulations of polygons with vertices from Ωn, 
then H = T (G1) ∪ T (G2) ∪ · · · ∪ T (GM ) is a D2-free cgh on Ωn. Each D2-free cgh 
H can be obtained in this way, so we get ex�(n, D2) < (1/2)

(
n
2
)
. On the other hand, 

every Steiner triple system induces a D2-free cgh, we get ex�(n, D2) ≥ 1
3
(

n
2
)

− O(n). 
Construction 8 improves this to 3

7
(

n
2
)

− O(n), and Damásdi and N. Frankl [11] showed 

ex�(n, D2) ≥ 2n2−3n
9 for all n ≡ 6 mod 9 by a different method. Here we prove the 

upper bound ex�(n, D2) ≤ 2n2−3n
9 for all n.

For the calculation below we need a simple proposition which can be shown by stan-
dard high school calculus. If h, x ≥ 0 are reals, n ≥ 3 is an integer and h ≥ (2n − 3)/9, 
then

(h + 2x)(h + 2x + 1) ≤ 2xn =⇒ x ≥ n + 3
18 . (4)

Another elementary proposition is the following statement: Suppose that A is a mul-
tiset of positive integers such that the multiplicity of each entry is at most n, then

∑
a∈A

a ≥ |A|(|A| + n)
2n

. (5)

For the upper bound on ex�(n, D2), let H ⊂
(Ωn

3
)

be a D2-free cgh. The graph ∂H

has a (unique) edge-disjoint decomposition into triangulations G1, . . . , GM as follows. 
Make a graph C with vertex set H: two triangles of H are joined by an edge of C if they 
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share a side. Consider the partition of C generated by the components C1, C2, . . . CM of 
G, where |Ci| = ki. Each Ci corresponds to a hypergraph Hi ⊂ H of triangles. Since Hi

is D2-free each Gi := ∂Hi forms a triangulation of a convex (ki + 2)-gon Pi with ki − 1
diagonals, T (Gi) = Hi, |E(Gi)| = 2ki + 1. Let Ai be the multiset of integers consisting 
of the side lengths of Pi, |Ai| = ki + 2. We have

∑
a∈Ai

a ≤ n (6)

and here equality holds if the polygon Pi contains the center of Ωn. Let A be the multiset 
∪i≤M Ai. Since each edge of ∂H appears in exactly one Gi and there are n (or n/2 or 
0) diagonals of Ωn of a given length we obtain that A is a multiset with maximum 
multiplicities at most n. Moreover, |A| =

∑
i(ki + 2) = |H| + 2M , so (5) and (6) yield

(|H| + 2M)(|H| + 2M + n)
2n

≤
∑
a∈A

a =
∑
i≤M

(
∑

a∈Ai

a) ≤ Mn. (7)

Suppose that |H| ≥ (2n2 − 3n)/9. Define h, x as h := |H|/n and x := M/n. Then 
h ≥ (2n − 3)/9 and (7) and (4) imply x ≥ (n + 3)/18. However

2|H| + M =
∑

1≤i≤M

(2ki + 1) =
∑

|E(Gi)| = |∂H| ≤
(

n

2

)
.

Hence |H| ≤ 1
2 (

(
n
2
)

− xn) ≤ (2n2 − 3n)/9. �
11. Concluding remarks

• In this paper, we considered convex geometric configurations consisting of two trian-
gles. One may consider analogous problems for r-tuples: for instance, how many r-gons 
can a convex geometric n-vertex r-graph have if it does not contain two r-gons which 
are geometrically disjoint (this is the r-uniform analog of M1)? This problem was posed 
explicitly by P. Frankl, Holmsen and Kupavskii [15]:

Problem 11.1. Find analogues of our results for other classes of sets such as convex 
r-gons in R2.

A family of convex r-gons in the plane is strongly intersecting if any two of the members 
share a point in their interior. The maximum size of a strongly intersecting family of 
r-gons is obtained from the obvious extensions of Construction 1. Consider the family of 
all r-gons containing the centroid of Ωn when n is odd, together with, for each diameter 
�, all r-gons which have a side equal to � and which lie on one side of �. Letting ·�r(n)
denote the size of these families, it is not hard to see
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·�r(n) =
(

n

r

)
− n

(
(n − 1)/2

r − 1

)

if n is odd, and ·�r(n) can be computed similarly if n is even. In particular, ·�r(n) =
(1 − r/2r−1)

(
n
r

)
+ O(nr−1) for each r ≥ 3.

Theorem 11. The maximum size of a strongly intersecting family of r-gons from Ωn is 
·�r(n).

Proof. (Sketch). We proceed in a similar way to the proof of Theorem 2 for M1. Con-
sider any r-gon {vi1 , vi2 , . . . , vir

} in H with vi1 < vi2 < · · · < vir
< vi1 and where 

the longest side {vi1 , vir
} is as short as possible, and replace all such r-gons with 

{vi1 , vj2 , . . . , vjr−1 , vir
} where vir

< vj2 < vj3 < · · · < vjr−1 < vi1 . Since the number 
of choices of j2, j3, . . . , jr−1 is always at least the number of choices of i2, i3, . . . , ir−1, 
this new r-cgh H ′ has |H ′| ≥ |H|. So we repeat until H ′ consists of all r-gons containing 
the centroid of Ωn when n is odd, or n is even and H ′ consists of all r-gons containing 
the centroid plus for each diameter � all r-gons which have a side equal to � and which 
lie on one side of �. �

• Since there are many other possible configurations of two r-gons, we did not discuss 
these problems in this paper. Some special cases were studied in [16]: for instance, if F
consists of two r-gons {u1, u2, . . . , ur} and {v1, v2, . . . , vr} where u1 < v1 < u2 < v2 <

· · · < ur < vr < u1, then it was shown in [16] that for n > r > 1,

ex�(n, F ) =
(

n

r

)
−

(
n − r

r

)
.

This may be viewed as a geometric or ordered version of the Erdős-Ko-Rado Theo-
rem [12].

• In the cases of M2, M3 and S3 (see Fig. 1), we obtained exact results for the extremal 
functions in convex geometric hypergraphs / convex triangle systems (for n even in the 
case of S3). Our proofs, with more work, should give a characterization of the extremal 
examples as well. For M2, one requires n ≥ 8 for the extremal configuration to be unique, 
as verified by computer. For S3, we believe that ex�(n, S3) = (n −1)(n −2)/2 +1 when n
is odd, but do not have a proof, and we also do not know the characterization of extremal 
S3-free convex triangle systems (this is the content of Problem 1.3).

• It is likely the case that most of our theorems hold equally for ordered hypergraphs, 
where the vertex set is linearly ordered, but we did not work out the details except for 
the obvious case M3 (see the first paragraph in Section 6). The case of S2 stands out, 
since the ordered extremal number is not the same as the convex geometric extremal 
number. The ordered construction would be to take all triangles {vi, vi+1, vj} from an 
ordered vertex set {v0, v1, . . . , vn−1} where i ≥ 0 and i + 1 < j ≤ n − 1.
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Extremal problems for matchings in ordered graphs connect to enumeration of per-
mutations [28] and these have also been extended to hypergraphs [24].

• A hypergraph H is linear if for distinct hyperedges e, f ∈ E(H), |e ∩ f | ≤ 1. The 
extremal functions for the configurations in this paper in the context of linear cghs were 
determined in [2] up to constant factors for all the configurations except S2. Specifically, 
if ex∗

�(n, F ) is the maximum number of triangles in an n-vertex F -free linear cgh, then 
Aronov, Dujmović, Morin, Ooms and da Silveira [2] proved ex∗

�(n, M2) = Θ(n), whereas 
if F ∈ {M1, M3, S1, S3}, ex∗

�(n, F ) = Θ(n2). It would be interesting to determine the 
exact extremal functions in each case. The problem of determining ex∗

�(n, S2) appears 
to be very difficult, as it is connected to monotone matrices, tripod packing, and 2-
comparable sets – see Aronov, Dujmović, Morin, Ooms and da Silveira [2] for details. The 
best bounds are ex∗

�(n, S2) = Ω(n1.546) due to Gowers and Long [19] and ex∗
�(n, S2) =

n2/ exp(Ω(log∗ n)) due to the best bounds on the removal lemma by Fox [14].

• By a result of Boros and Füredi [5], for every n-point set P (no three on a line) one 
can find a point on the plane which is contained in at least n3/27 − O(n2) triangles with 
these vertices; and Bukh, Matoušek, and Nivasch [9] gave an example that the coefficient 
1/27 is the best possible. It would be interesting to determine the largest subsystem of 
pairwise intersecting triangles in this construction.

• One can further relax the conditions on the point sets to allow all planar n-point 
sets. We conjecture that our upper bounds in Theorem 3 hold for all planar n-point 
sets (when we only count the proper triangles with non-empty interiors). Surely in that 
case one has to relax the definition of configurations (like, e.g., Ackerman, Nitzan, and 
Pinchasi [1] did about avoiding pairs of edges).

• We have not considered F -free triangle systems (P, T ) where the point set P is not 
necessarily in convex position and F ∈ {M2, M3, S2, S3, D2}. The reason is, unlike in 
the case F ∈ {D1, S1, M1}, there are many different ways to extend the definitions of 
these configurations and these can lead to many different problems. E.g., if one insists 
that no triangle in F contains another vertex of F then the answer is always at least 
n3/27 + O(n2) as it is shown by the following example P := X ∪ Y ∪ Z, T := {xyz : x ∈
X, y ∈ Y, z ∈ Z} and X := {(i, 10−i) : 1 ≤ i ≤ n/3}, Y := {(10−i, i) : 1 ≤ i ≤ n/3}, and 
Z := {(−i, −i +10−i) : 1 ≤ i ≤ n/3}. It is a rich area with full of problems, e.g., it would 
be interesting to determine all configurations F satisfying that |T | ≤ (1 +(o(1))ex�(n, F )
holds for F -free triangle systems.
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