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RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES*

JIAXI NIET AND JACQUES VERSTRAETE?

Abstract. In this paper, we consider an extension of cycle-complete graph Ramsey numbers to
Berge cycles in hypergraphs: for k > 2, a nontrivial Berge k-cycle is a family of sets e1, e2, .. ., ex such
that e1Nes, eaNes, ..., exNe1 has a system of distinct representatives and e; NeaN---Nej, = 0. In the
case that all the sets e; have size three, let By, denote the family of all nontrivial Berge k-cycles. The
Ramsey numbers R(t,B) denote the minimum n such that every n-vertex 3-uniform hypergraph
contains either a nontrivial Berge k-cycle or an independent set of size t. We prove R(t,Bay) <

t tor=Tt v , and moreover, we show that if a conjecture of Erdés and Simonovits [ Combinatorica,
2 (1982), pp. 275-288] on girth in graphs is true, then this is tight up to a factor to) as t — oo.
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1. Introduction. Let F be a family of r-graphs and ¢ > 1. The Ramsey num-
bers R(t,F) denote the minimum n such that every n-vertex r-graph contains either
a hypergraph in F or an independent set of size t. For k > 2, a Berge k-cycle is
a family of sets ey, eq,...,ex such that e; Neg,es Nes,...,ex MNep has a system of
distinct representatives, and a Berge cycle is nontrivial if e; Nea N ---Nep = (). Let
Bj, denote the family of nontrivial Berge k-cycles all of whose sets have size r. When
r =2, Bf = {Cy}, where Cj, denotes the graph cycle of length k. In this paper, we
let By, = B;.

It is a notoriously difficult problem to determine even the order of magnitude of
R(t,C)—the cycle-complete graph Ramsey numbers. Kim [16] proved R(t,C3) =
Q(t?/logt), which gives the order of magnitude of R(t,Cs) when combined with the
results of Ajtai, Komlds, and Szemerédi [2] and Shearer [27]. The current state-of-
the-art results on R(t,C3) are due to Fiz Pontiveros, Griffiths, and Morris [12] and
Bohman and Keevash [5], using the random triangle-free process, which determines
R(t,C3) up to a small constant factor:

(i - 0(1)) 15@ < R(t,Cs) < (1+ 0(1))153-

The case R(t,C4) is the subject of a notorious conjecture of Erdds [6], where he
conjectured that R(t,Cy) = o(t?>~¢) for some € > 0. The current best upper bound

on R(t,Cay) is
k/(k—1)
t
<logt> ’

which come from the work of Caro et al. [8]. For R(t,Cax+1), the best upper bound
is
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t(k+1) /K
° (Gog2)
log/ "t
due to Sudakov [28]. Recent results using pseudorandom graphs by Mubayi and
Verstraéte [23] give the best lower bounds on cycle-complete graph Ramsey numbers:

t(kl)/(ﬂ))

R(Cr,n) =9 (bgw—mt

In particular, via random block constructions, they show that

R(Cs,t) > (14 o(1))t*/8 R(C7,t) > (1 + o(1))t'1/°.

For k > 3, a loose k-cycle is a nontrivial Berge k-cycle, denoted Cj, with sets
€1,€,...,ex of size r such that |e; Nea| =1, lea Nes| =1,...,]ex Ney| =1, and for
any other pairs of edges e;,ej, e; Ne; = (. Ramsey type problems for loose cycles in
r-graphs have been studied extensively [4, 9, 10, 13, 14, 15, 16, 17, 18, 21, 23]. For
r-uniform hypergraphs with r» > 3, Kostochka, Mubayi, and Verstraéte [17] proved
for all » > 3, there exist constants a,b > 0 such that

at?
(log )

The following conjecture was proposed in [17].

(1) < R(t,C}) < bt?.

CONJECTURE 1. Forr,k > 3,
(2) R(t,C}) = teeto),

The conjecture is true for k¥ = 3 due to (1). It is shown in [25] that R(t,C3) <
t4/3+0() Méroueh [21] showed R(t,C}) = O(t'+1/LE+1D/2) for | > 3 and R(t, C}) =
O(t'*+/IF/2]) for 7 > 4 and every odd integers k > 5, improving earlier results of
Collier-Cartaino, Graber, and Jiang [9]. Conjecture I motivates our current study of
nontrivial Berge k-cycles. In support of the above conjecture, we prove the following
result for nontrivial Berge cycles of even length.

THEOREM 1. For k > 3, and t large enough,

2T T Vg
R(t, ng) <t logt |

Erdds and Simonovits [11] conjectured that there exists an n-vertex graph of girth
more than 2k with ©(n'*1/*) edges. This notoriously difficult conjecture remains
open, except when k € {2, 3,5}, largely due to the existence of generalized polygons [3,
29, 30]. Towards this conjecture, Lazebnik, Ustimenko, and Woldar [19] gave the
densest known construction, which has Q(nHz/ (3’“*2)) edges. We prove the following
theorem relating this conjecture to lower bounds on Ramsey numbers for nontrivial
Berge cycles.

THEOREM 2. Let k > 2, r > 3. Suppose there exists an n-vertex graph of girth
more than 2k with en'™/% edges for any integer n large enough and some positive
constant c. Then for t large enough and some positive constant ci , dependent on k
and r,

(3) R(L,B}) > cr (t) -

logt
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This shows that if the Erdés—Simonovits conjecture is true, then Theorem 1 is
tight up to a t°® factor. Indeed, following the proof of Theorem 2, the known
construction of Lazebnik, Ustimenko, and Woldar [19] would give a weaker lower
bound of Q((t/logt)(3k=2)/Bk=4)),

Let By be the family of 3-uniform Berge k-cycles without nontriviality. Ran-
dom graphs together with the Lovasz local lemma give R(t, By) > t(2k=2)/(2k=3)—o(1)
see [1] for similar computation. We prove the following theorem, which gives a sub-
stantially better lower bound for By if the Erdés—Simonovits conjecture is true.

3

THEOREM 3. Suppose there exists an n-vertex graph of girth more than 8 with
cin®* edges for any integer n large enough and some positive constant c1. Then for
t large enough and some positive constant co,

- 16/13
Vdogt

In fact, this is also a lower bound for R(t,{Bs,Bs, B4}). A natural 3-uniform
analog of the Erdds—Simovits conjecture is that there exist n-vertex { By, Bs, ..., Bi}-
free 3-graphs with n!'t1/k/21=0(1) edges. This is true for k¥ = 3 due to Ruzsa and
Szemeredi [26]. The proof of Theorem 3 makes use of the fact that there exist
n-vertex {By, Bs, By}-free 3-graphs with Q(n®/2) edges; that is, the conjecture is
true for k = 4, which is due to Lazebnik and Verstraéte [20]. More generally, fol-
lowing the proof of Theorem 3, if the 3-uniform analog of the Erdés—Simonovits
conjecture is true, then we have R(t,{Bs,Bs,...,Bag}) > {4k? /(4R —k—=1)—o(1) 44
R(t,{Ba, Bs,..., Bojy1}) > t@k+D2k/(4k*+k=1)=0(1) hich are substantially better
than the lower bounds obtained by random graphs.

We prove Theorem 1 in section 5, Theorem 2 in section 2, and Theorem 3 in
section 3. Theorem 2 is valid for all values of k£ > 2 and r > 3, while Theorem 1 only
works for even values of k and 7 = 3. We believe that Theorem 1 should extend to
odd values of k£ and all » > 3.

s (

CONJECTURE II. For all r,k > 3,
(4) R(t,By) < te=1to),

Notation and terminology. For a hypergraph H, let V(H) denote the vertex
set of H, v(H) = |V(H)|, and let |H| be the number of edges in H. If all edges of
H have size r, we say H is an r-uniform hypergraph, or an r-graph for short. For
v e V(H), let dg(v) = |[{e € H : v € e}| be the degree of v in H. We denote the
average degree of H by d(H), denote the minimum degree of H by 6(H), and denote
the maximum degree of H by A(H). For u,v € V(H), let dg(u,v) = [{w : vow € H}|
denote the codegree of the pair {u,v}. An independent set in a hypergraph is a set of
vertices containing no edge of the hypergraph. Let a(H) denote the largest size of an
independent set in a hypergraph H.

2. Proof of Theorem 2. We will use the following lemma to get a large bipartite
subgraph with large minimum degree and small maximum degree.

LEMMA 4. Letk > 3, ¢ > 0, and let G be an n-vertex graph of girth more than 2k

with more than 2en*t/% edges. Then there exists a bipartite subgraph G’ of G such
that 6(G") > en*, A(G") < n'/*/cF=1 and v(G') > cFn.

Proof. A maximum cut of G gives a bipartite subgraph with at least cn!*!/*
edges. A subgraph G’ of this bipartite subgraph of minimum degree at least en'/* 41
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may be obtained by repeatedly removing vertices of degree at most cn'/*. Let A :=
A(G") be the maximum degree of G’, and let v be a vertex of maximum degree; then
the number of vertices at distance k from v is at least Ac*~1n*=D/k since G has
girth larger than 2k. In particular, Ac*~n*=1/k < p and so A < nl/k/ck_l. The
number of vertices in G’ is at least ¢*n, since G’ has minimum degree at least en'/* +1
and girth larger than 2k. a

Let r > 2, a star with vertex set V is an r-graph on V consisting of all edges
containing a fixed vertex of V; i.e., the edge set of a star is {e C V : |e] = r,v € e} for
some vertex v € V. Let integers d > m, and let Sy, be a d-vertex r-graph consisting
of m vertex-disjoint stars of size |d/m] or [d/m].

LEMMA 5. Let integer v > 2, and let integers d > m. The probability that a
uniformly chosen set of s vertices of Sqm s independent is at most

o (1=

Proof. Let the vertex sets of these stars be V1, V5, ..., V,,. The probability that
a uniformly chosen set of s; vertices in V; is independent in Sy, is at most 1 —
si/[d/m] <1—ms;/2d if s; > r and is 1 if s; < r. Hence, this probability is at most
1 —m(s; —r)/2d for 0 < s; < d. Therefore a uniformly chosen set I C Sg., of s
vertices with |I N V;| = s; is independent with probability at most

ﬁ(l_W> < exp (—iW) :exp(_W).

i=1 i=1

d
Now we are ready to prove Theorem 2.

Proof of Theorem 2. It suffices to show that for n large enough, there exists an
n-vertex Bj-free r-graph with independence number O(n'~% logn). Let G be an n-
vertex graph of girth more than 2k with 2en!t1/% edges for some positive constant
c. By Lemma 4, there exists a bipartite subgraph G’ of G with at least N = ¢*n
vertices, minimum degree at least cn'/*F, and maximum degree at most n'/* JcFL.
Let X,Y be the parts of this bipartite graph where |Y| > |X|. Let m = 8logn/c".
We form an r-graph H with vertex set Y by placing a random copy of Sj(),,m on the
vertex set N/ (), the neighborhood of z in G, independently for each z € X. Since
G’ has girth more than 2k, it is straightforward to check that H does not contain
any nontrivial Berge k-cycles. We now compute the expected number of independent
sets of size t = rmn!'~V/*/c*+1 in H. Clearly, logt > (1 — 1/k)logn. If H has no
independent set of size ¢t with positive probability, then since v(H) > N/2, we find
that

k k

Ck 62]{)+1t k—1 t k—1
tB)>N/2> < > epn [ ——
R(t,B) > N/2 > 2 (8rlogn> = Ck, <1ogt)

for some positive constant c;, . This is enough to prove Theorem 2.
For an independent t-set I in H, INNg/ () is an independent set in Sy, for all

x € X. Since these events are independent, setting s(x) = |I N Ngv(x)|, and applying
Lemma 5 gives

P(I independent in H) < ] exp <_W>
rzeX

B ms(x) rm?
_eXp<_ZQd(a:)+Z2d(x)>'

reX zeX
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For every = € X, en'/® < d(z) <n'/*/cF~1, and therefore

HFImY o s(x) | X|rm?
2n1/k 2ent/k |-

P(I independent in H) < exp <

Now »_x s() is precisely the number of edges of G’ between X and I. Since every
vertex in I has degree at least cn'/*, this number of edges is at least en'/¥t = rmn /cF.
Consequently, using | X| < n/2,

k t k t k t
P(IindependentinH)5eXp<_C;n +CZL):eXp(_C;”>,

The expected number of independent sets of size t is at most

n cFmit cFmt
¢ exp | — 1 <exp | tlogn — 1 =exp (—tlogn).

This is vanishing as n — oo, and the proof of Theorem 2 is complete. ]

3. Proof of Theorem 3. Lazebnik and Verstraéte [20] showed that there exist
n-vertex By-free 3-graphs with (1/6 + o(1))n3/? triples. More specifically, for n large
enough, there exists a linear n-vertex By-free 3-graphs J,, with n®/2 /10 triples and
maximum degree at most n'/2. We want to find an upper bound for the probability
that a random s-set is independent in J,,. We make use of the following lemma, where
we make no effort to optimize the constants.

LEMMA 6. Let n, s be integers such that s < \/n/2. For n large enough, the
probability that a uniformly chosen set of s vertices of J,, is independent is at most

53 —216
exp Tyl

When s > /n/2, the probability is at most 639/640.

Proof. This is trivial when s < 6. When 6 < s < v/n/2, let X be the uniformly
chosen s-set. For any edge e € E(J,), let A, be the event that ¢ € X. Then by
the inclusion-exclusion principle, for n large enough, the probability that X is not
independent is at least

S OP(A) - D P(AcAAj)

e€E(J,) {e,f}YCE(Jn)
>L n3? (n -3 . n'/2\ (n—5 B n3/2/10\ (n — 6
)\ \s-3 2 J\s—5 2 s—6

53 453
> 1-—
- 40713/2 n3/2
83

> —.
~ 80n3/2
Therefore, for s > 6 and n large enough, the probability that X is independent is at

most
1 $3 < s3 $3 — 216
T 80n32 =P\ "oz ) SOP\ "oz )

When s > \/n/2, the probability is at most

(i/2)" _ 639

80n3/2 640" o
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let G be an n-vertex graph of girth more than 8 with
2¢1n°/* edges for some positive constant ¢;. By Lemma 4, there exists a bipartite
subgraph G’ of G with at least N = c}n vertices, minimum degree at least c;n'/*,
and maximum degree at most n'/* /c3. Let X, Y be the parts of this bipartite graph
where Y| > | X|. We form a 3-graph H with vertex set Y by placing a random copy
of Jy(,) on the vertex set Ng/(), the neighborhood of = in G, independently for each
x € X. Since G has girth more than 2k, it is straightforward to check that H does
not contain any Berge 4-cycles. Let m = 80}/4\/log n, and let t = mn'3/16. Clearly,
logt > 13logn/16. If H has no independent sets of size ¢ with positive probability,
then since v(H) > N/2, we conclude that

16/13
R(tB)>N/2>Cé11 t > ¢ ( )16/13
y D4) Z = 5 = €2
2 801/ Viogn Viogt

for some positive constant cp. This is enough to prove Theorem 3.

Let A be a t-set in Y, and let X4 = {x € X||Ng:(x) N A| > V1/2}, X4 = X\A.
We now evaluate the probability that A is independent in H in two cases.

Case 1. When |X4| < n°/®. Since the induced bipartite subgraph of G’ on
X4 U A has girth 8, the number of edges of G’ between X, and A is less than
(n®/6)5/4 = n25/24 1f A is independent in H, then Ng/(z) N A is also independent in
Ja(z) for all z € X. Since these events are independent, setting s(x) = [Ng/(x) N A
and applying Lemma 6 gives

3216
P(A independent in H) < 1;[ exp (_8(8?)31(33)3/2>
TEX A

s Z 80d$ Z 3/2

x€EX A eXa

For every z € X, e;n'/* < d(x) < n'/*/c3 and hence together with Jenson’s inequality
we have

9/2 3 _
¢ X, S\x 27| X
P(A independent in H) < exp <_ 1 Z:L’EXA () 7| X 4l )

80n3/8 106?/2,”3/8

9/2 —
coxp [ Coex, s@)? 271K
B 80n3/8[X 4 100§/2n3/8 .
Note that ), %, s(z) is exactly the number of edges of G’ between X 4 and A, which
is at least te;n'/*—n?5/24 = (1—0(1))eymn'7/16. Also note that |X 4| < N/2 = ¢in/2.
Consequently,

1 — of(1))m3nl3/16  97.5/2,,5/8
P(A independent in H) < exp —( o ))1/2 + G n
20c¢; 20

§ m3n13/16
exp| — 1.
321/
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Case 2. When | X 4| > n®/%. Applying Lemma 6 gives
m3p13/16
P(A independent in H) < (639/640)1%4] < exp(—n®/®/640) < exp |-
32¢;

man
32¢1/2
pected number of independent sets of size ¢ in H is at most

3,,13/16 3,,13/16
(n) exp fmnil/z < exp mn'3/16 logn — mnil/Z = exp (ﬂfnnl?’/16 log n) .
t 32¢, 32¢;

This is vanishing as n — oo, which completes the proof of Theorem 3. ]

13/16

In both cases we have P(A independent in H) < exp(— ). Therefore the ex-

4. Degrees, codegrees, and independent sets. We make use of the following
elementary lemma, whose proof is a standard probabilistic argument, included for
completeness.

LEMMA 7. Let d > 1, and let H be a 3-graph of average degree at most d. Then

2v(H)
H) > .
oH) 2 3d>
Proof. Let X be a subset of V(H) whose elements are chosen independently with
probability p = d=1/2. We can get an independent set by deleting a vertex for each

edge of H contained in X. Then the expected size of such independent set is at least
pPdv(H)  2v(H)

pu(H) = p°|H| = po(H) - B0 = 2

Hence, there must exist an independent set of size at least the desired lower bound,
which completes the proof. ]

LEMMA 8. Let H be a 3-graph on n vertices, and 0 < € < 1/2. Then there exists
an induced subgraph G of H satisfying the following properties:
2

1. v(G) > n1_1°g2<%>,
2. A(G) < 49

Proof. Let H = G©). We do the following for i > 0. If A(G®) < d(G™)/e, we
let G = G, Otherwise, iteratively delete vertices of G(*) with degree at least d(G®).
Each deleted vertex will result in the loss of at least d(G)) edges. So we can delete

at most ) , ] , ]
|G(l)| - U(g(l)) . d(g(z)) - U(g(l)) U(Gm)

dGD) T T 3.dGw) 3 S 2

vertices in this step. Let G+ be the subgraph induced by the remaining vertices.
Then we have v(GUH)) > o(G@W)/2. If A(GUHD) < d(GUHD) /e, then we let G =
GU+1D) | Otherwise, we have

d(GUHY) < eA(GUHY) < ed(GW).

Let K = 2log;; n. We must obtain an induced subgraph G with A(G) < d(G)/e
after at most K repetitions. Otherwise, after K repetitions, since the average degree
decreases by at least a factor of € after each repetition, the remaining graph G

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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will have no edge, which satisfies the condition A(G®)) < d(G¥))/e. Suppose after
m < K repetitions we have the desired induced subgraph G with A(G) < d(G)/e.
Since the number of vertices decreases by at most a factor of 2, we also have

This completes the proof. 0

We use the following slightly weaker version of a lemma due to Méroueh [21]; the
lemma is in fact valid for 3-graphs H with no loose k-cycles.

LEMMA 9. Let H be a By-free 3-graph. Then there exists a subgraph H* of H
such that |H*| > |H|/(3k?) and each edge of H* contains a pair of codegree 1.

Proof. Given a 3-graph G and a pair of vertices z, y, we say that {x,y} is G-light if
de(z,y) < k. Let Gy = H, and let Hy consist of all edges of G; containing a G-light
pair, and let Go = G1\H;. For i > 2, let H; consist of all edges of G; containing a G-
light pair, and let G;1+1 = G;\ H;. Suppose for contradiction that Gy, is not empty. Let
e1 = {v1,v2,v3} be an edge in Gy; then by definition, {ve, v3} is not a G_1-light pair,
and hence, there exists an edge ea = {va, vs, v} such that vy # v. For 2 <i <k—1,
let e; = {v;,vi11,vi42} be an edge in Giy1—;. By definition, {v;11,v;12} is not a
Gr—i-light pair, and hence, there exists an edge e;11 = {v; 41, Vit2, Vi+3} in Gg—; such
that v; 3 is distinct from all v;, 1 < j < i. Therefore, we have a tight path of length k
in G; = H, that is, a hypergraph consisting of k4 2 distinct vertices v;, 1 <i < k42,
and k edges e; = {v;,vi41,vi12}, 1 < ¢ < k. This is also a nontrivial Berge k-cycle.
Indeed, when k is even, {ve, vy, ..., Uk, Vk+1, Vk—1,...,v3} forms a system of distinct
representatives of {61 Neg,eaMNey,eq4Neg, ... _oMNeg, exMNep_1,€x—1MN€K—3,...,€30MN
e1}, and when k is odd, {va, v4, ..., Vk11, Vg, Vg—2,...,v3} forms a system of distinct
representatives of {61 Neg,eaMNeyg,eqNeg, ..., 6—3M€K—1,€k—1MN€EL, €MNEK—_2,...,€30
e1}. This results in a contradiction, since H is By-free. Therefore, Gy, must be empty,
and hence H can be partitioned into k£ — 1 subgraphs H;, 1 < i < k — 1, such that
each H; consists of edges containing a G;-light pair, which is also H;-light. Let H' be
a subgraph H; with the most edges; then by the pigeonhole principle,

0o ]
|H'| > e
Now consider a graph J whose vertex set is the set of 3-edges of H', and two 3-edges
of H' form an edge of J if they share an H’-light pair. It is easy to see that J has
maximum degree at most 3k — 6. Then we can greedily take an independent set of J
of size at least v(J)/(3k —5), and this independent set corresponds to a subgraph H*
of H' such that

||
3k—5" 3k%’

and each edge of H* contains a pair of codegree 1. ]

|H*| >

5. Proof of Theorem 1. A key ingredient of the proof of Theorem 1 is a
supersaturation theorem for cycles in graphs: we make use of the following result
proved by Simonovits [7] (see Morris and Saxton [22] for stronger supersaturation).

LEMMA 10. For everyn,k > 2, there exist constants vy,by > 0, such that for every
b > by, any n-vertex graph G with at least bn' /% edges contains at least vb**n? copies

Of Cgk.
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We next give a simple lemma which says that if a graph has many cycles of length
2k containing a fixed edge, then it has many edges.

LEMMA 11. Let G be a graph containing m cycles of length 2k, each containing
an edge e € G. Then |G| > m!'/(+=1) /2,

Proof. For each cycle C of length 2k containing e, let M (C') be the perfect match-
ing of C containing e. Fixing a matching M C G of size k containing e, at most
(k—1)12k=1 cycles C have M (C) = M. It follows that the number of distinct match-
ings M C G of size k containing e is at least m/(k — 1)!12¥~1, and therefore

|G| —1 m
(k;—l S UES =

We conclude |G|*~1 > m /2~ and therefore |G| > m!/(k=1) /2, 0
Now we are ready to prove Theorem 1.

Proof of Theorem 1. It suffices to show that for every large enough integer n, an
n-vertex Bop-free 3-graph H contains an independent set of size at least
n(2k=1)/(2k)=5/(2vIogn) * By Lemma 8 with ¢ = exp (—+/logy n), we find an induced
subgraph Hy of H with ng vertices, average degree dy, and maximum degree Dy such
that ng > n'~2/V1°&2" and D, < do/e. By Lemma 9, there is a subgraph H; of Hy
with at least |Hg|/(4k?) edges such that each edge of H; contains a pair of codegree
1in Hy. Let x : V(H1) — {1,2,3} be a random 3-coloring, and let Hs consist of all
triples in H; such that the pair of vertices of colors 1 and 2 has codegree 1 in H; and
the last vertex in the triple has color 3. The probability that an edge in H; is also an
edge in H is at least 1/27, and therefore the expected number of edges in Ho is at
least |Hy|/27 > |Ho|/(108k?). Fix a coloring so that |Hs| > |Hg|/(108k?). Consider
the bipartite graph G comprising all pairs of vertices of colors 1 and 2 contained in
an edge of Hy. Thus, |G| = |Hz| and G has average degree dg > do/(108k?). For
convenience, let b > 0 be defined by dg = 2bné/k so |G| = bnéﬂ/k. By Lemma 10,
there exist constants v, by > 0 such that if b > by, then G' must contain at least vb**n2
copies of Cy. Notice that we must have 1/¢ > by when n is large enough. The proof
is split into two cases.

Case 1. b > 1/e. By the pigeonhole principle, there exists an edge e such that
the number of C5 containing e in G is at least

2kyb*Fng 2%—1, 1—%
— = 2kyb*" k
q] g g
Let G’ be the union of all 2k-cycles in G containing e. Then by Lemma 11, for some
constant c,

1 1 1
G > b Fang = Seb' T RTd > e TR Tdy > Do

provided n is large enough. Let C' be a 2k-cycle in G containing e. Then there
exist edges e; U {v1},eq U {va},...,eax U{va} in Ho, where ey, e3,...,e9, € C and
V1,02, ...,V have color 3. Since Hs is Bog-free, for some vertex z we have v; = vy =
-++ = vg, = 2. Since each cycle C in G’ contain e, they must have the same z. Now
the degree of z in Hs is at least |G’| > Dy, which contradicts the fact that Hy has
maximum degree at most Dy.
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Case 2. b < 1/e. In this case, dg < Qné/k/e, and so dy < (216k2/e)né/k. By
Lemma 7 on Hy,

1

2\ "2 _1 2k—1__ _ 5k—2 k1 :

a(H) > a(Ho) > 220 > 2 <2l6k ) e LI LR
3d2 € 9v6k

2k 4
Now let n = ¢2+-171 vVieg?, Clearly, logn > %logt. Hence, an n-vertex Bagj-free

3-graph H contains an independent set of size

2k—=1_ __ 5 (52h 4+ 4 Y215
n 2k 2logn — ¢ 2k—1 " logt 2k 2Vlogn’ >t

k
provided n is large enough. Therefore, we have R(t, Bay) < $7ooT T Vhew ]

In fact, by more careful computation, we can obtain a slightly better upper bound
by oy 5k—2 (2k) log 2
R(t, BQk) < t logt’ Where C > %7_1 . %7_1

6. Concluding remarks.

e Notice that Theorem 2 is valid for odd values of k; we believe that Theorem
1 should extend to odd values of k. An obstacle to applying the same idea as
in the proof for even values of k is that we don’t have “good” supersaturation
for odd cycles. New ideas may be required to complete the proof for odd
values.

e It seems likely that Theorem 1 can be extended to r-uniform hypergraphs with
r > 4; however, when following the proof of Theorem 1, two obstacles arise.
The first is that one requires supersaturation for Berge cycles in r-uniform
hypergraphs for » > 3 (in other words, an r-uniform version of Lemma 8). A
second obstacle is that an r-uniform analog of Lemma 9 is not straightforward;
for instance, if an edge e in an r-graph is contained in m Berge cycles of length
2k, then the number of edges may be as low as m!/(2¥=1): take a graph 2k-
cycle, and replace one edge with the hyperedge e and each other edge with
m/ (%=1 hyperedges. We believe these technical obstacles may be overcome
(some of the ideas in the recent paper of Mubayi and Yepremyan [24] may

apply).
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