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RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES\ast 

JIAXI NIE\dagger AND JACQUES VERSTRA\"ETE\dagger 

Abstract. In this paper, we consider an extension of cycle-complete graph Ramsey numbers to
Berge cycles in hypergraphs: for k \geq 2, a nontrivial Berge k-cycle is a family of sets e1, e2, . . . , ek such
that e1\cap e2, e2\cap e3, . . . , ek\cap e1 has a system of distinct representatives and e1\cap e2\cap \cdot \cdot \cdot \cap ek = \emptyset . In the
case that all the sets ei have size three, let \scrB k denote the family of all nontrivial Berge k-cycles. The
Ramsey numbers R(t,\scrB k) denote the minimum n such that every n-vertex 3-uniform hypergraph
contains either a nontrivial Berge k-cycle or an independent set of size t. We prove R(t,\scrB 2k) \leq 

t
1+ 1

2k - 1
+ 2\surd 

log t , and moreover, we show that if a conjecture of Erd\H os and Simonovits [Combinatorica,

2 (1982), pp. 275--288] on girth in graphs is true, then this is tight up to a factor to(1) as t \rightarrow \infty .
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1. Introduction. Let \scrF be a family of r-graphs and t \geq 1. The Ramsey num-
bers R(t,\scrF ) denote the minimum n such that every n-vertex r-graph contains either
a hypergraph in \scrF or an independent set of size t. For k \geq 2, a Berge k-cycle is
a family of sets e1, e2, . . . , ek such that e1 \cap e2, e2 \cap e3, . . . , ek \cap e1 has a system of
distinct representatives, and a Berge cycle is nontrivial if e1 \cap e2 \cap \cdot \cdot \cdot \cap ek = \emptyset . Let
\scrB r
k denote the family of nontrivial Berge k-cycles all of whose sets have size r. When

r = 2, \scrB 2
k = \{ Ck\} , where Ck denotes the graph cycle of length k. In this paper, we

let \scrB k = \scrB 3
k.

It is a notoriously difficult problem to determine even the order of magnitude of
R(t, Ck)---the cycle-complete graph Ramsey numbers. Kim [16] proved R(t, C3) =
\Omega (t2/ log t), which gives the order of magnitude of R(t, C3) when combined with the
results of Ajtai, Koml\'os, and Szemer\'edi [2] and Shearer [27]. The current state-of-
the-art results on R(t, C3) are due to Fiz Pontiveros, Griffiths, and Morris [12] and
Bohman and Keevash [5], using the random triangle-free process, which determines
R(t, C3) up to a small constant factor:\biggl( 

1

4
 - o(1)

\biggr) 
t2

log t
\leq R(t, C3) \leq (1 + o(1))

t2

log t
.

The case R(t, C4) is the subject of a notorious conjecture of Erd\H os [6], where he
conjectured that R(t, C4) = o(t2 - \epsilon ) for some \epsilon > 0. The current best upper bound
on R(t, C2k) is

O

\Biggl( \biggl( 
t

log t

\biggr) k/(k - 1)
\Biggr) 
,

which come from the work of Caro et al. [8]. For R(t, C2k+1), the best upper bound
is
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104 JIAXI NIE AND JACQUES VERSTRA\"ETE

O

\biggl( 
t(k+1)/k

log1/k t

\biggr) 
due to Sudakov [28]. Recent results using pseudorandom graphs by Mubayi and
Verstra\"ete [23] give the best lower bounds on cycle-complete graph Ramsey numbers:

R(Ck, n) = \Omega 

\biggl( 
t(k - 1)/(k - 2)

log2/(k - 2) t

\biggr) 
.

In particular, via random block constructions, they show that

R(C5, t) \geq (1 + o(1))t11/8, R(C7, t) \geq (1 + o(1))t11/9.

For k \geq 3, a loose k-cycle is a nontrivial Berge k-cycle, denoted Cr
k , with sets

e1, e2, . . . , ek of size r such that | e1 \cap e2| = 1, | e2 \cap e3| = 1, . . . , | ek \cap e1| = 1, and for
any other pairs of edges ei,ej , ei \cap ej = \emptyset . Ramsey type problems for loose cycles in
r-graphs have been studied extensively [4, 9, 10, 13, 14, 15, 16, 17, 18, 21, 23]. For
r-uniform hypergraphs with r \geq 3, Kostochka, Mubayi, and Verstra\"ete [17] proved
for all r \geq 3, there exist constants a, b > 0 such that

(1)
at

3
2

(log t)
3
4

\leq R(t, Cr
3) \leq bt

3
2 .

The following conjecture was proposed in [17].

Conjecture I. For r, k \geq 3,

(2) R(t, Cr
k) = t

k
k - 1+o(1).

The conjecture is true for k = 3 due to (1). It is shown in [25] that R(t, C3
4 ) \leq 

t4/3+o(1). M\'eroueh [21] showed R(t, C3
k) = O(t1+1/\lfloor (k+1)/2\rfloor ) for k \geq 3 and R(t, Cr

k) =
O(t1+1/\lfloor k/2\rfloor ) for r \geq 4 and every odd integers k \geq 5, improving earlier results of
Collier-Cartaino, Graber, and Jiang [9]. Conjecture I motivates our current study of
nontrivial Berge k-cycles. In support of the above conjecture, we prove the following
result for nontrivial Berge cycles of even length.

Theorem 1. For k \geq 3, and t large enough,

R(t,\scrB 2k) \leq t
2k

2k - 1+
4\surd 
log t .

Erd\H os and Simonovits [11] conjectured that there exists an n-vertex graph of girth
more than 2k with \Theta (n1+1/k) edges. This notoriously difficult conjecture remains
open, except when k \in \{ 2, 3, 5\} , largely due to the existence of generalized polygons [3,
29, 30]. Towards this conjecture, Lazebnik, Ustimenko, and Woldar [19] gave the
densest known construction, which has \Omega (n1+2/(3k - 2)) edges. We prove the following
theorem relating this conjecture to lower bounds on Ramsey numbers for nontrivial
Berge cycles.

Theorem 2. Let k \geq 2, r \geq 3. Suppose there exists an n-vertex graph of girth
more than 2k with cn1+1/k edges for any integer n large enough and some positive
constant c. Then for t large enough and some positive constant ck,r dependent on k
and r,

(3) R(t,\scrB r
k) \geq ck,r

\biggl( 
t

log t

\biggr) k
k - 1

.
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This shows that if the Erd\H os--Simonovits conjecture is true, then Theorem 1 is
tight up to a to(1) factor. Indeed, following the proof of Theorem 2, the known
construction of Lazebnik, Ustimenko, and Woldar [19] would give a weaker lower
bound of \Omega ((t/ log t)(3k - 2)/(3k - 4)).

Let Bk be the family of 3-uniform Berge k-cycles without nontriviality. Ran-
dom graphs together with the Lov\'asz local lemma give R(t, Bk) \geq t(2k - 2)/(2k - 3) - o(1);
see [1] for similar computation. We prove the following theorem, which gives a sub-
stantially better lower bound for B4 if the Erd\H os--Simonovits conjecture is true.

Theorem 3. Suppose there exists an n-vertex graph of girth more than 8 with
c1n

5/4 edges for any integer n large enough and some positive constant c1. Then for
t large enough and some positive constant c2,

R(t, B4) \geq 
\biggl( 

c2t\surd 
log t

\biggr) 16/13

.

In fact, this is also a lower bound for R(t, \{ B2, B3, B4\} ). A natural 3-uniform
analog of the Erd\H os--Simovits conjecture is that there exist n-vertex \{ B2, B3, . . . , Bk\} -
free 3-graphs with n1+1/\lfloor k/2\rfloor  - o(1) edges. This is true for k = 3 due to Ruzsa and
Szemeredi [26]. The proof of Theorem 3 makes use of the fact that there exist
n-vertex \{ B2, B3, B4\} -free 3-graphs with \Omega (n3/2) edges; that is, the conjecture is
true for k = 4, which is due to Lazebnik and Verstra\"ete [20]. More generally, fol-
lowing the proof of Theorem 3, if the 3-uniform analog of the Erd\H os--Simonovits
conjecture is true, then we have R(t, \{ B2, B3, . . . , B2k\} ) \geq t4k

2/(4k2 - k - 1) - o(1) and

R(t, \{ B2, B3, . . . , B2k+1\} ) \geq t(2k+1)2k/(4k2+k - 1) - o(1), which are substantially better
than the lower bounds obtained by random graphs.

We prove Theorem 1 in section 5, Theorem 2 in section 2, and Theorem 3 in
section 3. Theorem 2 is valid for all values of k \geq 2 and r \geq 3, while Theorem 1 only
works for even values of k and r = 3. We believe that Theorem 1 should extend to
odd values of k and all r \geq 3.

Conjecture II. For all r, k \geq 3,

(4) R(t,\scrB r
k) \leq t

k
k - 1+o(1).

Notation and terminology. For a hypergraph H, let V (H) denote the vertex
set of H, v(H) = | V (H)| , and let | H| be the number of edges in H. If all edges of
H have size r, we say H is an r-uniform hypergraph, or an r-graph for short. For
v \in V (H), let dH(v) = | \{ e \in H : v \in e\} | be the degree of v in H. We denote the
average degree of H by d(H), denote the minimum degree of H by \delta (H), and denote
the maximum degree of H by \Delta (H). For u, v \in V (H), let dH(u, v) = | \{ w : uvw \in H\} | 
denote the codegree of the pair \{ u, v\} . An independent set in a hypergraph is a set of
vertices containing no edge of the hypergraph. Let \alpha (H) denote the largest size of an
independent set in a hypergraph H.

2. Proof of Theorem 2. We will use the following lemma to get a large bipartite
subgraph with large minimum degree and small maximum degree.

Lemma 4. Let k \geq 3, c > 0, and let G be an n-vertex graph of girth more than 2k
with more than 2cn1+1/k edges. Then there exists a bipartite subgraph G\prime of G such
that \delta (G\prime ) \geq cn1/k, \Delta (G\prime ) \leq n1/k/ck - 1, and v(G\prime ) \geq ckn.

Proof. A maximum cut of G gives a bipartite subgraph with at least cn1+1/k

edges. A subgraph G\prime of this bipartite subgraph of minimum degree at least cn1/k+1
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106 JIAXI NIE AND JACQUES VERSTRA\"ETE

may be obtained by repeatedly removing vertices of degree at most cn1/k. Let \Delta :=
\Delta (G\prime ) be the maximum degree of G\prime , and let v be a vertex of maximum degree; then
the number of vertices at distance k from v is at least \Delta ck - 1n(k - 1)/k, since G has
girth larger than 2k. In particular, \Delta ck - 1n(k - 1)/k \leq n and so \Delta \leq n1/k/ck - 1. The
number of vertices in G\prime is at least ckn, since G\prime has minimum degree at least cn1/k+1
and girth larger than 2k.

Let r \geq 2, a star with vertex set V is an r-graph on V consisting of all edges
containing a fixed vertex of V ; i.e., the edge set of a star is \{ e \subset V : | e| = r, v \in e\} for
some vertex v \in V . Let integers d \geq m, and let Sd,m be a d-vertex r-graph consisting
of m vertex-disjoint stars of size \lfloor d/m\rfloor or \lceil d/m\rceil .

Lemma 5. Let integer r \geq 2, and let integers d \geq m. The probability that a
uniformly chosen set of s vertices of Sd,m is independent is at most

exp

\biggl( 
 - m(s - rm)

2d

\biggr) 
.

Proof. Let the vertex sets of these stars be V1, V2, . . . , Vm. The probability that
a uniformly chosen set of si vertices in Vi is independent in Sd,m is at most 1  - 
si/\lceil d/m\rceil \leq 1 - msi/2d if si \geq r and is 1 if si < r. Hence, this probability is at most
1  - m(si  - r)/2d for 0 \leq si \leq d. Therefore a uniformly chosen set I \subset Sd,m of s
vertices with | I \cap Vi| = si is independent with probability at most

m\prod 
i=1

\biggl( 
1 - m(si  - r)

2d

\biggr) 
\leq exp

\Biggl( 
 - 

m\sum 
i=1

m(si  - r)

2d

\Biggr) 
= exp

\biggl( 
 - m(s - rm)

2d

\biggr) 
.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. It suffices to show that for n large enough, there exists an
n-vertex \scrB r

k-free r-graph with independence number O(n1 - 1
k log n). Let G be an n-

vertex graph of girth more than 2k with 2cn1+1/k edges for some positive constant
c. By Lemma 4, there exists a bipartite subgraph G\prime of G with at least N = ckn
vertices, minimum degree at least cn1/k, and maximum degree at most n1/k/ck - 1.
Let X,Y be the parts of this bipartite graph where | Y | \geq | X| . Let m = 8 log n/ck.
We form an r-graph H with vertex set Y by placing a random copy of Sd(x),m on the
vertex set NG\prime (x), the neighborhood of x in G\prime , independently for each x \in X. Since
G\prime has girth more than 2k, it is straightforward to check that H does not contain
any nontrivial Berge k-cycles. We now compute the expected number of independent
sets of size t = rmn1 - 1/k/ck+1 in H. Clearly, log t \geq (1  - 1/k) log n. If H has no
independent set of size t with positive probability, then since v(H) \geq N/2, we find
that

R(t,\scrB r
k) \geq N/2 \geq ck

2

\biggl( 
c2k+1t

8r log n

\biggr) k
k - 1

\geq ck,r

\biggl( 
t

log t

\biggr) k
k - 1

for some positive constant ck,r. This is enough to prove Theorem 2.
For an independent t-set I in H, I\cap NG\prime (x) is an independent set in Sd(x),m for all

x \in X. Since these events are independent, setting s(x) = | I \cap NG\prime (x)| , and applying
Lemma 5 gives

P(I independent in H) \leq 
\prod 
x\in X

exp

\biggl( 
 - m(s(x) - rm)

2d(x)

\biggr) 

= exp

\Biggl( 
 - 
\sum 
x\in X

ms(x)

2d(x)
+
\sum 
x\in X

rm2

2d(x)

\Biggr) 
.
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For every x \in X, cn1/k \leq d(x) \leq n1/k/ck - 1, and therefore

P(I independent in H) \leq exp

\Biggl( 
 - 
ck - 1m

\sum 
x\in X s(x)

2n1/k
+

| X| rm2

2cn1/k

\Biggr) 
.

Now
\sum 

x\in X s(x) is precisely the number of edges of G\prime between X and I. Since every

vertex in I has degree at least cn1/k, this number of edges is at least cn1/kt = rmn/ck.
Consequently, using | X| < n/2,

P(I independent in H) \leq exp

\biggl( 
 - ckmt

2
+

ckmt

4

\biggr) 
= exp

\biggl( 
 - ckmt

4

\biggr) 
.

The expected number of independent sets of size t is at most\biggl( 
n

t

\biggr) 
exp

\biggl( 
 - ckmt

4

\biggr) 
< exp

\biggl( 
t log n - ckmt

4

\biggr) 
= exp ( - t log n) .

This is vanishing as n \rightarrow \infty , and the proof of Theorem 2 is complete.

3. Proof of Theorem 3. Lazebnik and Verstra\"ete [20] showed that there exist
n-vertex B4-free 3-graphs with (1/6 + o(1))n3/2 triples. More specifically, for n large
enough, there exists a linear n-vertex B4-free 3-graphs Jn with n3/2/10 triples and
maximum degree at most n1/2. We want to find an upper bound for the probability
that a random s-set is independent in Jn. We make use of the following lemma, where
we make no effort to optimize the constants.

Lemma 6. Let n, s be integers such that s <
\surd 
n/2. For n large enough, the

probability that a uniformly chosen set of s vertices of Jn is independent is at most

exp

\biggl( 
 - s3  - 216

80n3/2

\biggr) 
.

When s \geq 
\surd 
n/2, the probability is at most 639/640.

Proof. This is trivial when s < 6. When 6 < s <
\surd 
n/2, let X be the uniformly

chosen s-set. For any edge e \in E(Jn), let Ae be the event that e \in X. Then by
the inclusion-exclusion principle, for n large enough, the probability that X is not
independent is at least\sum 

e\in E(Jn)

P(Ae) - 
\sum 

\{ e,f\} \subset E(Jn)

P(Ae \wedge Af )

\geq 1\bigl( 
n
s

\bigr) \biggl( n3/2

10

\biggl( 
n - 3

s - 3

\biggr) 
 - n

\biggl( 
n1/2

2

\biggr) \biggl( 
n - 5

s - 5

\biggr) 
 - 
\biggl( 
n3/2/10

2

\biggr) \biggl( 
n - 6

s - 6

\biggr) \biggr) 
\geq s3

40n3/2

\biggl( 
1 - 4s3

n3/2

\biggr) 
\geq s3

80n3/2
.

Therefore, for s > 6 and n large enough, the probability that X is independent is at
most

1 - s3

80n3/2
\leq exp

\biggl( 
 - s3

80n3/2

\biggr) 
< exp

\biggl( 
 - s3  - 216

80n3/2

\biggr) 
.

When s \geq 
\surd 
n/2, the probability is at most

1 - (
\surd 
n/2)3

80n3/2
=

639

640
.
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Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let G be an n-vertex graph of girth more than 8 with
2c1n

5/4 edges for some positive constant c1. By Lemma 4, there exists a bipartite
subgraph G\prime of G with at least N = c41n vertices, minimum degree at least c1n

1/4,
and maximum degree at most n1/4/c31. Let X, Y be the parts of this bipartite graph
where | Y | \geq | X| . We form a 3-graph H with vertex set Y by placing a random copy
of Jd(x) on the vertex set NG\prime (x), the neighborhood of x in G, independently for each
x \in X. Since G has girth more than 2k, it is straightforward to check that H does

not contain any Berge 4-cycles. Let m = 8c
1/4
1

\surd 
log n, and let t = mn13/16. Clearly,

log t > 13 log n/16. If H has no independent sets of size t with positive probability,
then since v(H) \geq N/2, we conclude that

R(t, B4) \geq N/2 \geq c41
2

\Biggl( 
t

8c
1/4
1

\surd 
log n

\Biggr) 16/13

\geq c2

\biggl( 
t\surd 
log t

\biggr) 16/13

for some positive constant c2. This is enough to prove Theorem 3.
Let A be a t-set in Y , and let XA = \{ x \in X| | NG\prime (x) \cap A| \geq 

\surd 
t/2\} , XA = X\setminus A.

We now evaluate the probability that A is independent in H in two cases.
Case 1. When | XA| < n5/6. Since the induced bipartite subgraph of G\prime on

XA \cup A has girth 8, the number of edges of G\prime between XA and A is less than
(n5/6)5/4 = n25/24. If A is independent in H, then NG\prime (x) \cap A is also independent in
Jd(x) for all x \in X. Since these events are independent, setting s(x) = | NG\prime (x) \cap A| 
and applying Lemma 6 gives

P(A independent in H) \leq 
\prod 

x\in XA

exp

\biggl( 
 - s(x)3  - 216

80d(x)3/2

\biggr) 

= exp

\left(   - 
\sum 

x\in XA

s(x)3

80d(x)3/2
+
\sum 

x\in XA

27

10d(x)3/2

\right)  .

For every x \in X, c1n
1/4 \leq d(x) \leq n1/4/c31 and hence together with Jenson's inequality

we have

P(A independent in H) \leq exp

\Biggl( 
 - 
c
9/2
1

\sum 
x\in XA

s(x)3

80n3/8
+

27| XA| 
10c

3/2
1 n3/8

\Biggr) 

\leq exp

\Biggl( 
 - 
c
9/2
1 (

\sum 
x\in XA

s(x))3

80n3/8| XA| 2
+

27| XA| 
10c

3/2
1 n3/8

\Biggr) 
.

Note that
\sum 

x\in XA
s(x) is exactly the number of edges of G\prime between XA and A, which

is at least tc1n
1/4 - n25/24 = (1 - o(1))c1mn17/16. Also note that | XA| < N/2 = c41n/2.

Consequently,

P(A independent in H) \leq exp

\Biggl( 
 - (1 - o(1))m3n13/16

20c
1/2
1

+
27c

5/2
1 n5/8

20

\Biggr) 

< exp

\Biggl( 
 - m3n13/16

32c
1/2
1

\Biggr) 
.
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Case 2. When | XA| \geq n5/6. Applying Lemma 6 gives

P(A independent in H) \leq (639/640)| XA| \leq exp( - n5/6/640) < exp

\Biggl( 
 - m3n13/16

32c
1/2
1

\Biggr) 
.

In both cases we have P(A independent in H) < exp( - m3n13/16

32c
1/2
1

). Therefore the ex-

pected number of independent sets of size t in H is at most\biggl( 
n

t

\biggr) 
exp

\Biggl( 
 - m3n13/16

32c
1/2
1

\Biggr) 
< exp

\Biggl( 
mn13/16 log n - m3n13/16

32c
1/2
1

\Biggr) 
= exp

\Bigl( 
 - mn13/16 log n

\Bigr) 
.

This is vanishing as n \rightarrow \infty , which completes the proof of Theorem 3.

4. Degrees, codegrees, and independent sets. We make use of the following
elementary lemma, whose proof is a standard probabilistic argument, included for
completeness.

Lemma 7. Let d \geq 1, and let H be a 3-graph of average degree at most d. Then

\alpha (H) \geq 2v(H)

3d
1
2

.

Proof. Let X be a subset of V (H) whose elements are chosen independently with
probability p = d - 1/2. We can get an independent set by deleting a vertex for each
edge of H contained in X. Then the expected size of such independent set is at least

pv(H) - p3| H| = pv(H) - p3dv(H)

3
=

2v(H)

3d
1
2

.

Hence, there must exist an independent set of size at least the desired lower bound,
which completes the proof.

Lemma 8. Let H be a 3-graph on n vertices, and 0 < \epsilon < 1/2. Then there exists
an induced subgraph G of H satisfying the following properties:

1. v(G) \geq n
1 - 2

log2( 1
\epsilon 
) ,

2. \Delta (G) \leq d(G)
\epsilon .

Proof. Let H = G(0). We do the following for i \geq 0. If \Delta (G(i)) \leq d(G(i))/\epsilon , we
let G = G(i). Otherwise, iteratively delete vertices of G(i) with degree at least d(G(i)).
Each deleted vertex will result in the loss of at least d(G(i)) edges. So we can delete
at most

| G(i)| 
d(G(i))

=
v(G(i)) \cdot d(G(i))

3 \cdot d(G(i))
=

v(G(i))

3
<

v(G(i))

2

vertices in this step. Let G(i+1) be the subgraph induced by the remaining vertices.
Then we have v(G(i+1)) > v(G(i))/2. If \Delta (G(i+1)) \leq d(G(i+1))/\epsilon , then we let G =
G(i+1). Otherwise, we have

d(G(i+1)) \leq \epsilon \Delta (G(i+1)) < \epsilon d(G(i)).

Let K = 2 log1/\epsilon n. We must obtain an induced subgraph G with \Delta (G) \leq d(G)/\epsilon 
after at most K repetitions. Otherwise, after K repetitions, since the average degree
decreases by at least a factor of \epsilon after each repetition, the remaining graph G(K)
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will have no edge, which satisfies the condition \Delta (G(K)) \leq d(G(K))/\epsilon . Suppose after
m \leq K repetitions we have the desired induced subgraph G with \Delta (G) < d(G)/\epsilon .
Since the number of vertices decreases by at most a factor of 2, we also have

v(G) >
n

2m
\geq n

1 - 2

log2( 1
\epsilon 
) .

This completes the proof.

We use the following slightly weaker version of a lemma due to M\'eroueh [21]; the
lemma is in fact valid for 3-graphs H with no loose k-cycles.

Lemma 9. Let H be a \scrB k-free 3-graph. Then there exists a subgraph H\ast of H
such that | H\ast | > | H| /(3k2) and each edge of H\ast contains a pair of codegree 1.

Proof. Given a 3-graph G and a pair of vertices x, y, we say that \{ x, y\} is G-light if
dG(x, y) < k. Let G1 = H, and let H1 consist of all edges of G1 containing a G1-light
pair, and let G2 = G1\setminus H1. For i \geq 2, let Hi consist of all edges of Gi containing a Gi-
light pair, and let Gi+1 = Gi\setminus Hi. Suppose for contradiction that Gk is not empty. Let
e1 = \{ v1, v2, v3\} be an edge in Gk; then by definition, \{ v2, v3\} is not a Gk - 1-light pair,
and hence, there exists an edge e2 = \{ v2, v3, v4\} such that v4 \not = v1. For 2 \leq i \leq k - 1,
let ei = \{ vi, vi+1, vi+2\} be an edge in Gk+1 - i. By definition, \{ vi+1, vi+2\} is not a
Gk - i-light pair, and hence, there exists an edge ei+1 = \{ vi+1, vi+2, vi+3\} in Gk - i such
that vi+3 is distinct from all vj , 1 \leq j \leq i. Therefore, we have a tight path of length k
in G1 = H, that is, a hypergraph consisting of k+2 distinct vertices vi, 1 \leq i \leq k+2,
and k edges ei = \{ vi, vi+1, vi+2\} , 1 \leq i \leq k. This is also a nontrivial Berge k-cycle.
Indeed, when k is even, \{ v2, v4, . . . , vk, vk+1, vk - 1, . . . , v3\} forms a system of distinct
representatives of \{ e1\cap e2, e2\cap e4, e4\cap e6, . . . , ek - 2\cap ek, ek\cap ek - 1, ek - 1\cap ek - 3, . . . , e3\cap 
e1\} , and when k is odd, \{ v2, v4, . . . , vk+1, vk, vk - 2, . . . , v3\} forms a system of distinct
representatives of \{ e1\cap e2, e2\cap e4, e4\cap e6, . . . , ek - 3\cap ek - 1, ek - 1\cap ek, ek\cap ek - 2, . . . , e3\cap 
e1\} . This results in a contradiction, since H is \scrB k-free. Therefore, Gk must be empty,
and hence H can be partitioned into k  - 1 subgraphs Hi, 1 \leq i \leq k  - 1, such that
each Hi consists of edges containing a Gi-light pair, which is also Hi-light. Let H

\prime be
a subgraph Hi with the most edges; then by the pigeonhole principle,

| H \prime | > | H| 
k

.

Now consider a graph J whose vertex set is the set of 3-edges of H \prime , and two 3-edges
of H \prime form an edge of J if they share an H \prime -light pair. It is easy to see that J has
maximum degree at most 3k  - 6. Then we can greedily take an independent set of J
of size at least v(J)/(3k - 5), and this independent set corresponds to a subgraph H\ast 

of H \prime such that

| H\ast | > | H \prime | 
3k  - 5

>
| H| 
3k2

,

and each edge of H\ast contains a pair of codegree 1.

5. Proof of Theorem 1. A key ingredient of the proof of Theorem 1 is a
supersaturation theorem for cycles in graphs: we make use of the following result
proved by Simonovits [7] (see Morris and Saxton [22] for stronger supersaturation).

Lemma 10. For every n, k \geq 2, there exist constants \gamma , b0 > 0, such that for every
b \geq b0, any n-vertex graph G with at least bn1+1/k edges contains at least \gamma b2kn2 copies
of C2k.
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We next give a simple lemma which says that if a graph has many cycles of length
2k containing a fixed edge, then it has many edges.

Lemma 11. Let G be a graph containing m cycles of length 2k, each containing
an edge e \in G. Then | G| \geq m1/(k - 1)/2.

Proof. For each cycle C of length 2k containing e, let M(C) be the perfect match-
ing of C containing e. Fixing a matching M \subset G of size k containing e, at most
(k - 1)!2k - 1 cycles C have M(C) = M . It follows that the number of distinct match-
ings M \subset G of size k containing e is at least m/(k  - 1)!2k - 1, and therefore\biggl( 

| G|  - 1

k  - 1

\biggr) 
\geq m

(k  - 1)!2k - 1
.

We conclude | G| k - 1 \geq m/2k - 1, and therefore | G| \geq m1/(k - 1)/2.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. It suffices to show that for every large enough integer n, an
n-vertex \scrB 2k-free 3-graph H contains an independent set of size at least
n(2k - 1)/(2k) - 5/(2

\surd 
logn). By Lemma 8 with \epsilon = exp ( - 

\sqrt{} 
log2 n), we find an induced

subgraph H0 of H with n0 vertices, average degree d0, and maximum degree D0 such

that n0 \geq n1 - 2/
\surd 

log2 n and D0 < d0/\epsilon . By Lemma 9, there is a subgraph H1 of H0

with at least | H0| /(4k2) edges such that each edge of H1 contains a pair of codegree
1 in H1. Let \chi : V (H1) \rightarrow \{ 1, 2, 3\} be a random 3-coloring, and let H2 consist of all
triples in H1 such that the pair of vertices of colors 1 and 2 has codegree 1 in H1 and
the last vertex in the triple has color 3. The probability that an edge in H1 is also an
edge in H2 is at least 1/27, and therefore the expected number of edges in H2 is at
least | H1| /27 \geq | H0| /(108k2). Fix a coloring so that | H2| \geq | H0| /(108k2). Consider
the bipartite graph G comprising all pairs of vertices of colors 1 and 2 contained in
an edge of H2. Thus, | G| = | H2| and G has average degree dG \geq d0/(108k

2). For

convenience, let b > 0 be defined by dG = 2bn
1/k
0 so | G| = bn

1+1/k
0 . By Lemma 10,

there exist constants \gamma , b0 > 0 such that if b > b0, then G must contain at least \gamma b2kn2
0

copies of C2k. Notice that we must have 1/\epsilon > b0 when n is large enough. The proof
is split into two cases.

Case 1. b \geq 1/\epsilon . By the pigeonhole principle, there exists an edge e such that
the number of C2k containing e in G is at least

2k\gamma b2kn2
0

| G| 
= 2k\gamma b2k - 1n

1 - 1
k

0 .

Let G\prime be the union of all 2k-cycles in G containing e. Then by Lemma 11, for some
constant c,

| G\prime | \geq cb2+
1

k - 1n
1
k
0 =

1

2
cb1+

1
k - 1 dG \geq 1

216k2
c\epsilon  - 1 - 1

k - 1 d0 > D0

provided n is large enough. Let C be a 2k-cycle in G containing e. Then there
exist edges e1 \cup \{ v1\} , e2 \cup \{ v2\} , . . . , e2k \cup \{ v2k\} in H2, where e1, e2, . . . , e2k \in C and
v1, v2, . . . , v2k have color 3. Since H2 is \scrB 2k-free, for some vertex z we have v1 = v2 =
\cdot \cdot \cdot = v2k = z. Since each cycle C in G\prime contain e, they must have the same z. Now
the degree of z in H2 is at least | G\prime | > D0, which contradicts the fact that H0 has
maximum degree at most D0.
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Case 2. b < 1/\epsilon . In this case, dG < 2n
1/k
0 /\epsilon , and so d0 < (216k2/\epsilon )n

1/k
0 . By

Lemma 7 on H0,

\alpha (H)\geq \alpha (H0)\geq 
2n0

3d
1
2
0

\geq 2

3

\biggl( 
216k2

\epsilon 

\biggr)  - 1
2

n
2k - 1
2k

0 \geq 1

9
\surd 
6k

n
2k - 1
2k  - 5k - 2

2k
\surd 

log2 n > n
2k - 1
2k  - 5

2
\surd 

log n .

Now let n = t
2k

2k - 1+
4\surd 
log t . Clearly, log n > 2k

2k - 1 log t. Hence, an n-vertex \scrB 2k-free
3-graph H contains an independent set of size

n
2k - 1
2k  - 5

2
\surd 

log n = t
( 2k
2k - 1+

4\surd 
log t

)( 2k - 1
2k  - 5

2
\surd 

log n
)
> t

provided n is large enough. Therefore, we have R(t,\scrB 2k) < t
2k

2k - 1+
4\surd 
log t .

In fact, by more careful computation, we can obtain a slightly better upper bound

R(t,\scrB 2k) < t
2k

2k - 1+
c\surd 
log t , where c > 5k - 2

2k - 1 \cdot 
\sqrt{} 

(2k) log 2
2k - 1 .

6. Concluding remarks.
\bullet Notice that Theorem 2 is valid for odd values of k; we believe that Theorem

1 should extend to odd values of k. An obstacle to applying the same idea as
in the proof for even values of k is that we don't have ``good"" supersaturation
for odd cycles. New ideas may be required to complete the proof for odd
values.

\bullet It seems likely that Theorem 1 can be extended to r-uniform hypergraphs with
r \geq 4; however, when following the proof of Theorem 1, two obstacles arise.
The first is that one requires supersaturation for Berge cycles in r-uniform
hypergraphs for r \geq 3 (in other words, an r-uniform version of Lemma 8). A
second obstacle is that an r-uniform analog of Lemma 9 is not straightforward;
for instance, if an edge e in an r-graph is contained in m Berge cycles of length
2k, then the number of edges may be as low as m1/(2k - 1): take a graph 2k-
cycle, and replace one edge with the hyperedge e and each other edge with
m1/(2k - 1) hyperedges. We believe these technical obstacles may be overcome
(some of the ideas in the recent paper of Mubayi and Yepremyan [24] may
apply).

Acknowledgments. We would like to thank the anonymous referees for their
careful reading of the paper and helpful suggestions. In particular, one of the referee's
comments on Berge cycles without nontriviality leads to Theorem 3.
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