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Extremal problems for convex geometric
hypergraphs and ordered hypergraphs
Zoltán Füredi, Tao Jiang, Alexandr Kostochka, Dhruv Mubayi, and
Jacques Verstraëte
Abstract. An ordered hypergraph is a hypergraph whose vertex set is linearly ordered, and a convex
geometric hypergraph is a hypergraph whose vertex set is cyclically ordered. Extremal problems for
ordered and convex geometric graphs have a rich history with applications to a variety of problems
in combinatorial geometry. In this paper, we consider analogous extremal problems for uniform
hypergraphs, and determine the order of magnitude of the extremal function for various ordered
and convex geometric paths and matchings. Our results generalize earlier works of Braß–Károlyi–
Valtr, Capoyleas–Pach, and Aronov–Dujmovič–Morin–Ooms-da Silveira. We also provide a new
variation of the Erdős-Ko-Rado theorem in the ordered setting.

1 Introduction

In this paper, we study extremal problems for ordered and convex geometric uniform
hypergraphs. Our focus is on determining the maximum number of edges in ordered
or convex geometric hypergraphs that contain no path or matching of a specified size.
We study extremal problems simultaneously in the ordered and convex geometric
settings to compare and contrast their behaviors.

An ordered graph is a graph together with a linear ordering of its vertex set.
Extremal problems for ordered graphs have a long history (see [12, 15, 19]). Given
ordered graphs F and G, say that F is an ordered subgraph of G if there is an order
preserving map f ∶ V(F) → V(G) such that f (e) ∈ E(G) for every e ∈ E(F). Let
ex→(n, F) denote the maximum number of edges in an n-vertex ordered graph that
does not contain the ordered graph F as an ordered subgraph. This extremal problem
can also be phrased in terms of pattern-avoiding matrices (see [12, 14] for more
background). An ordered graph has interval chromatic number 2 if it is bipartite with
bipartition A∪ B and A precedes B in the ordering of the vertices. Most of the theory
is concerned with such graphs. A central open problem in the area was posed by Pach
and Tardos [15].
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Conjecture A Let F be an ordered acyclic graph with interval chromatic number 2.
Then ex→(n, F) = O(n ⋅ polylog n).

In support of Conjecture A, Korándi et al., [12] proved for a wide class of forests
F that ex→(n, F) = n1+o(1). Some of our results are concerned with ordered graphs
F as in Conjecture A, although we only consider cases when ex→(n, F) has order of
magnitude n or n log n, andwe sometimes prove sharper bounds than those requested
by the conjecture.

A convex geometric (cg) graph or cgg is a graph together with a cyclic ordering of
its vertex set. Given a cgg F, let ex↻(n, F) denote the maximum number of edges in
an n-vertex cgg that does not contain F as a cgg (defined analogously to the linearly
ordered case). Extremal problems for geometric graphs have a long history, beginning
with theorems on disjoint line segments [11, 13, 17], to more recent results on crossing
matchings [3, 5]. In the vein of Conjecture A, Braß [2] asked for the determination of
all acyclic graphs F such that ex↻(n, F) is linear in n, and this problem remains open
(recently it was solved for trees [9]).

An ordered (convex geometric) r-graph is an r-uniform hypergraph whose vertex
set is linearly (cyclically) ordered.We denote by ex→(n, F) (ex↻(n, F)) themaximum
number of edges in an n-vertex ordered (cg) r-graph that does not contain F, and let
ex(n, F) denote the usual (unordered) extremal function. In all our results, F will be
an ordered or cg r-graph. We have chosen to omit the parameter r in the notation
ex→(n, F) and ex↻(n, F) but will indicate this parameter in the notation for F (as a
superscript).

Although the theory of cg (hyper)graphs can be studied independently of geomet-
ric context, extremal problems for both cg graphs and hypergraphs are frequently
motivated by problems in discrete geometry [1, 2, 4, 16]. In the opposite direction,
recently, we [8] determined ex↻(n, F) for a particular cg r-graph F , and this gives the
current best bound for the extremal problem for tight paths in uniform hypergraphs.
This shows that the solution to extremal hypergraph problems in the convex geometric
setting can have applications in more general contexts.

2 Results

Let P2
3 be the linearly ordered path with three edges with ordered vertex set 1 < 2 < 3 <

4 and edge set {13, 32, 24}. In the convex geometric setting, we use P2
3 to denote the

unique cg graph isomorphic to the path with three edges where the edges 13 and 24
cross. We then have

ex→(n, P2
3 ) = 2n − 3 = ex↻(n, P2

3 ) for n ≥ 3,(1)

where the former is a folklore result and the latter is due to Braß et al., [3]. To our
knowledge, equation (1) are the only known nontrivial exact results for connected
ordered or convex geometric graphs that have crossings in their embedding. These
two simple exact results, therefore, provide a good launchpad for further investigation
in the hypergraph case. This is the direction we take, extending equation (1) to longer
paths and to the hypergraph setting. In the process, we will also discover some subtle
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differences between the ordered and convex geometric cases which are not visible in
equation (1).

There are many ways to extend the definition of a path to hypergraphs and
we choose one of the most natural ones, namely tight paths. There are also many
possibilities for the ordering of the vertices of the path, and again we make a rather
natural choice, namely crossing paths which are defined below (a similar notion was
studied by Capoyleas and Pach [5] who considered the corresponding question for
matchings in a cg graph).

Notation For a positive integer n, we write [n] ∶= {1, . . . , n}. An r-uniform tight k-
path is an r-graph with vertex set {v1 , . . . , vk+r−1} and edge set {{v i , v i+1 , . . . , v i+r−1} ∶
i ∈ [k]}. We will often denote a tight k-path just by listing its vertices in the order
v1 . . . vk+r−1. We let < denote the underlying ordering of the vertices of an ordered
hypergraph. In the case of convex geometric hypergraphs, we slightly abuse the same
notation so that u1 < u2 < ⋯ < u� is shorthand for u1 < u2 < ⋯ < u� < u1 which means
that moving clockwise in the cyclic ordering of the vertices from u1 we first encounter
u2, then u3, and so on until we finally encounter u� and then u1 again. In other words,
u1 , . . . , u� is a cyclic interval where the vertices are listed in clockwise order. Moreover,
given disjoint sets X ,Y, we write X < Y to denote the fact all elements of X appear
in the linear or cyclic ordering followed by all elements of Y; in particular, we do not
have x < y < x′ < y′ for x , x′ ∈ X and y, y′ ∈ Y. When needed, we use the notation Ωn
to denote the vertex set of a generic n-vertex convex geometric hypergraph, with the
clockwise ordering of the vertices. We will use the notation e(H) = ∣E(H)∣ where H is
any hypergraph.

Definition 1 (Crossing paths in ordered and convex geometric hypergraphs) An r-
uniform crossing k-path Pr

k is an ordered or convex geometric tight k-path with vertex
set V = {v1 , . . . , vk+r−1} and edge set {{v i , . . . , v i+r−1} ∶ i ∈ [k]} and the following
ordering of V. First partition V into V1 ∪⋯∪ Vr such that for j ∈ [r],

Vj = {v i ∶ i ≡ jmod r} = {v j , v j+r , . . . , v j+tr} where t = 1 + ⌊ k − 1 − j
r
⌋ .

Next order the sets {Vj ∶ j ∈ [r]} as V1 < ⋅ ⋅ ⋅ < Vr . Finally, for j ∈ [r], order the
elements in each Vj as

v j < v j+r < ⋯ < v j+tr .

Example If r = 3 and k = 7, then Pr
k has vertex set V = {v1 , v2 , . . . , v9}

V1 = {v1 , v4 , v7}, V2 = {v2 , v5 , v8}, V3 = {v3 , v6 , v9}

and ordering

v1 < v4 < v7 < v2 < v5 < v8 < v3 < v6 < v9 .
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Figure 1: Convex geometric paths P2
8 and P3

7 .

Another way to view the ordering is to write the vertices in rows of size r, and then
the ordering of the vertices is given by reading the columns from left to right:

v1 v2 v3
v4 v5 v6
v7 v8 v9 .

This path P3
7 is illustrated in Figure 1 on the right, and P2

8 is drawn on the left:
Our first result generalizes ex→(n, P2

3 ) = 2n − 3 to larger k and r.

Theorem 2.1 Fix k ≥ 1, r ≥ 2 and let n ≥ r + k − 1. Then

ex→(n, Pr
k) =
⎧⎪⎪⎨⎪⎪⎩

(nr) − (
n−k+1

r ) for k ≤ r + 1
Θ(nr−1 log n) for k ≥ r + 2

where the asymptotics are taken as k, r are fixed and n →∞.

Our second theorem generalizes the result of Braß et al., [3] that ex↻(n, P2
3 ) =

2n − 3 to larger k and r.

Theorem 2.2 Fix k ≥ 1, r ≥ 2 and let n ≥ 2r + 1. Then

ex↻(n, Pr
k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θ(nr−1) for 2 ≤ k ≤ 2r − 1
(nr) − (

n−r
r ) for k = r + 1

Θ(nr−1 log n) for k ≥ 2r

where the asymptotics are taken as k, r are fixed and n →∞.
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For short paths, we have the following better bounds, which improve the previous
results on this problem by Aronov et al. [1] when k = 2.

Theorem 2.3 For fixed 2 ≤ k ≤ r and n →∞

(1 + o(1)) k − 1
3 ln 2r

( n
r − 1) < ex↻(n, P

r
k) ≤
(k − 1)(r − 1)

r
( n
r − 1).(2)

Furthermore, when k ∈ {2, r}, the following sharper bounds hold:

ex↻(n, Pr
2) ≤

1
2
( n
r − 1),(3)

ex↻(n, Pr
r ) ≥ (1 − o(1))(r − 2)(

n
r − 1).(4)

The lower bound in equation (4) is close to the upper bound in equation (2), since
the upper bound is (r − 2 + 1/r)( n

r−1). We remark that it remains open to prove or
disprove that for every r ≥ 2, there exists cr such that cr → 0 as r →∞ and

ex↻(n, Pr
2) ≤ cr(

n
r − 1) + o(n

r−1).

Theorems 2.1 and 2.2 reveal a discrepancy between the ordered setting and the
convex geometric setting: in the convex geometric setting, crossing paths of length
up to 2r − 1 have extremal function of order nr−1, whereas in the ordered setting, this
phenomenon only occurs for crossing paths of length up to r + 1. In fact, we know that
ex↻(n, Pr

k) = ex→(n, Pr
k) iff k ∈ {1, r + 1}.

2.1 Crossing matchings

LetM2
k denote the cgg consisting of k pairwise crossing line segments. In other words,

there is a labeling of the vertices such that the edges of the matching are v ivk+i for
1 ≤ i ≤ k, and v1 < v2 < ⋅ ⋅ ⋅ < v2k .

Capoyleas and Pach [5] proved the following theorem which extended a result of
Ruzsa (he proved the case k = 3) and settled a question of Gärtner and a conjecture of
Perles:

Theorem 2.4 (Capoyleas–Pach [5]) For all n ≥ 2k − 1, ex↻(n,M2
k) = 2(k − 1)n −

(2k−12 ).

Asmentioned earlier, a related open problem of Braß [2] is to determine all acyclic
graphs F such that ex↻(n, F) = O(n).

For r ≥ 2, an r-uniform crossing k-matching Mr
k has vertex set v1 , v2 , . . . , vrk on a

convex n-gon in clockwise order and consists of the edges {v i , v i+k , . . . , v i+(r−1)k} for
1 ≤ i ≤ k. Note that crossing paths have the property that if we take every rth edge of
the path, we obtain a crossing matching.

One can similarly define a crossing k-matching Mr
k in ordered r-graphs: it

has vertex set v1 , v2 , . . . , vrk with v1 < v2 < ⋯ < vrk and consists of the edges
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{v i , v i+k , . . . , v i+(r−1)k} for 1 ≤ i ≤ k. If we consider a cg r-graph G1 and an ordered
r-graph G2 with the same set of vertices and the same set of edges (only the ordering
in G1 is linear and in G2 is circular), then with our definitions, a set F of edges is a
crossing matching in G1 if and only if it is a crossing matching in G2. It follows that

ex↻(n,Mr
k) = ex→(n,Mr

k) for all k, r, n.

Aronov et al., [1] considered the case k = 2, r = 3 and determined the order of
magnitude in this case; our result below provides better bounds. Equation (5) could
be viewed as an ordered variation of the Erdős-Ko-RadoTheorem since the forbidden
configuration consists of two disjoint ordered r-sets with a particular interlacing
structure.

Theorem 2.5 For n > r > 1,

ex↻(n,Mr
2) = (

n
r
) − (n − r

r
),(5)

and for fixed k, r > 2 as n →∞,

(1 − o(1))(k − 1)r( n
r − 1) ≤ ex↻(n,M

r
k) ≤ 2(k − 1)(r − 1)(

n
r − 1).

Note that, unlike the results for paths, there are no extra log n factors in the formu-
las for crossing matchings. We were unable to determine the asymptotic behavior of
ex↻(n,Mr

k) for any pair (k, r) with k, r > 2.

3 Proof of Theorem 2.1

3.1 Upper bound for k ≤ r + 1

Observe that ex→(n, P1
2) = 1 for all n ≥ 1. We then have the following recurrence:

Proposition 3.1 Let 2 ≤ k ≤ r + 1 and n ≥ r + k. Then

ex→(n, Pr
k) ≤ (

n − 2
r − 2) + ex→(n − 2, P

r−1
k−1) + ex→(n − 1, Pr

k).(6)

Proof Let G be an n-vertex ordered r-graph not containing Pr
k with e(G) =

ex→(n, Pr
k). We may assume V(G) = [n] with the natural ordering. Let G1 = {e ∈

G ∶ {1, 2} ⊂ e} andG2 = {e ∈ G ∶ 1 ∈ e , 2 ∉ e , (e − {1}) ∪ {2} ∈ G}. LetG3 be obtained
from G − E(G1) − E(G2) by gluing vertex 1 with vertex 2 into a new vertex 2′.

Since we have deleted the edges of G1, our G3 is an r-graph, and since we have
deleted the edges of G2, G3 has no multiple edges. Thus e(G) = e(G1) + e(G2) +
e(G3).

We view G3 as an ordered r-graph with vertex set {2′ , 3, . . . , n}. If G3 contains a
crossing ordered path P with edges e′1 , e′2 , . . . , e′k , then only e′1 may contain 2′, and all
other edges are edges of G. Thus either P itself is in G or the path obtained from P
by replacing e′1 with (e′1 − {2′}) ∪ {1} or with e′1 − {2′} ∪ {2} is in G, a contradiction.
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Thus G3 contains no Pr
k and hence

e(G3) ≤ ex→(n − 1, Pr
k).

By definition, e(G1) ≤ (n−2r−2). We can construct an ordered (r − 1)-graph H2 with
vertex set {3, 4, . . . , n} from G2 by deleting from each edge vertex 1. If H2 contains a
crossing ordered path P′ with edges e′′1 , e′′2 , . . . , e′′k−1, then the set of edges {e1 , . . . , ek}
where e1 = e′′1 ∪ {1} and e i = e′′i−1 ∪ {2} for i = 2, . . . , k forms a Pr

k in G, a contradic-
tion. Summarizing, we get

ex→(n, Pr
k) = e(G) = e(G1) + e(G2) + e(G3)

≤ (n − 2
r − 2) + ex→(n − 2, P

r−1
k−1) + ex→(n − 1, Pr

k),

as claimed. ∎
We are now ready to prove the upper bound in Theorem 2.1 for k ≤ r + 1: we

are to show that ex→(n, Pr
k) ≤ (

n
r) − (

n−k+1
r ). We use induction on k + n. Since Pr

1 is
simply an edge, ex→(n, Pr

1 ) = 0 for any n and r, and the theorem holds for k = 1. Also
ex→(n, Pr

k) = (
n
r) − 1 for n = r + k − 1.

Suppose now the upper bound in the theoremholds for all (k′, n′ , r′)with k′ + n′ <
k + n and we want to prove it for (k, n, r). By the previous paragraph, it is enough to
consider the case k ≥ 2. Then by Proposition 3.1 and the induction assumption,

ex→(n, Pr
k) ≤ (

n − 2
r − 2) + [(

n − 2
r − 1) − (

n − k
r − 1 )] + [(

n − 1
r
) − (n − k

r
)]

= [(n − 2
r − 2) + (

n − 2
r − 1) + (

n − 1
r
)] − [(n − k

r
) + (n − k

r − 1 )]

= (n
r
) − (n − k + 1

r
),

as required. This proves the upper bound inTheorem 2.1 for k ≤ r + 1. ∎

3.2 Lower bound for k ≤ r + 1

For the lower bound in Theorem 2.1 for k ≤ r + 1, we provide the following construc-
tion. For 1 ≤ k ≤ r, let G(n, r, k) be the family of r-tuples (a1 , . . . , ar) of positive
integers such that
(a) 1 ≤ a1 < a2 < ⋯ < ar ≤ n and
(b) there is 1 ≤ i ≤ k − 1 such that a i+1 = a i + 1.
Also, let G(n, r, r + 1) = G(n, r, r) ∪ {(a1 , . . . , ar) ∶ a1 < a2 < . . . < ar = n}.

Suppose G(n, r, k) has a crossing Pr
k with edges e1 , . . . , ek . Let e1 = (a1 , . . . , ar)

where 1 ≤ a1 < a2 < ⋯ < ar ≤ n. By the definition of a crossing path, for each 2 ≤ j ≤
min{k, r}, e j has the form

e j =(a j,1 , . . . , a j,r) where a i < a j, i < a i+1 f or 1≤ i ≤ j − 1 and a j, i = a i f or j≤ i ≤ r,
(7)
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and when k = r + 1, er+1 has the form

er+1 = (ar+1,1 , . . . , ar+1,r) where a1 < ar+1,1 < a2 < ar+1,2 < ⋯ < ar < ar+1,r .(8)

By the definition ofG(n, r, k), either there is 1 ≤ i ≤ k − 1 such that a i+1 = a i + 1 or k =
r + 1 and ar = n. In the first case, we get a contradiction with equation (7) for j = i + 1.
In the second case, we get a contradiction with equation (8) for k = r + 1.

In order to calculate ∣G(n, r, k)∣, consider the following procedure Π(n, r, k) of
generating all r-tuples of elements of [n] not inG(n, r, k): for each r-tuple (a1 , . . . , ar)
of positive integers such that 1 ≤ a1 < a2 < . . . < ar ≤ n − k + 1, increase a j by j − 1 if 1 ≤
j ≤ k and by k − 1 if k ≤ j ≤ r. By definition, the number of outcomes of this procedure
is (n−k+1r ). Also Π(n, r, k) never generates a member ofG(n, r, k) and generates each
other r-subset of [n] exactly once. ∎

3.3 Upper bound for k ≥ r + 2

An r-graph is r-partite if it has a vertex partition (henceforth r-partition) into r sets
such that every edge has exactly one vertex in each set. An ordered r-graph has interval
chromatic number r if it is r-partite with r-partition A1 , . . . ,Ar and A i precedes A i+1
in the ordering of the vertices for all i ∈ [r − 1].

Let z→(n, F) denote themaximumnumber of edges in an n-vertex ordered r-graph
of interval chromatic number r that does not contain the ordered r-graph F. Pach and
Tardos [15] showed that every n-vertex ordered graph may be written as the union
of at most ⌈log2 n⌉ edge disjoint subgraphs each of whose components is a graph of
interval chromatic number 2, and deduced that ex→(n, F) = O(z→(n, F) log n) for
every ordered graph F. They also observed that the log factor is not present when
z→(n, F) = Ω(nc) and c > 1. This phenomenon also holds for ordered r-graphs when
r > 2. We will use the following result which is a rephrasing of Theorem 1.2 in [10].

Theorem 3.1 ([10], Theorem 1.2) Fix r ≥ c ≥ r − 1 ≥ 1 and an ordered r-graph F with
z→(n, F) = Ω(nc). Then

ex→(n, F) = {
O(z→(n, F) log n) if c = r − 1
O(z→(n, F)) if c > r − 1.

ByTheorem 3.1, the following claim yields ex→(n, Pr
k) = O(nr−1 log n) for all k ≥ 2,

i.e., the upper bound inTheorem 2.1 for k ≥ r + 2. Given an r-graph H, the shadow of
H is

∂H = {S ∶ ∣S∣ = r − 1, S ⊂ e for some e ∈ E(H)}.

Proposition 3.2 For k ≥ 1, r ≥ 2, z→(n, Pr
k) = O(nr−1).
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Proof We prove a stronger statement by induction on k: if H is an ordered r-graph
of interval chromatic number r with r-partition X1 , X2 , . . . , Xr of sizes n1 , n2 , . . . , nr ,
respectively, and H has no crossing k-path, then e(H) ≤ kP where

P =
r
∑
i=1
∏
j≠i

n j .

The base case k = 1 is trivial as e(H) = 0. For the induction step, assume the result
holds for k − 1, and suppose e(H) > kP. For each (r − 1)-set S ∈ ∂H, mark the edge
S ∪ {w}wherew =max{x ∶ S ∪ {x} ∈ E(H)}. In other words, if S has no vertex in X j ,
thenw is the largest vertex in X j for which S ∪ {w} ∈ E(H). Observe that the number
of marked edges is at most P.

Let H′ be the r-graph of unmarked edges. Then e(H′) ≥ e(H) − P > kP − P =
(k − 1)P. By the induction assumption, there exists a crossing Pr

k−1 = v1v2 . . . vk+r−2 ⊂
H′. Recall that the edges of this Pr

k−1 are {v i , . . . , v i+r−1} for i ∈ [k − 1]. Let S =
{vk , . . . , vk+r−2} and suppose that S ∩ X j = ∅. Since {vk−1 , . . . , vk+r−2} = S ∪ {vk−1}
is an edge of the Pr

k−1, we know that vk−1 ∈ X j and also that v i < vk−1 if i < k − 1 and
v i ∈ X j by the definition of crossing path.Thismeans that S ∈ ∂H, so it lies in amarked
edge S ∪ {w} where w ∈ X j . In order to extend this Pr

k−1 to a Pr
k in H we will use

the marked edge S ∪ {w}. By the definition of w, we have vk−1 < w and this implies
that v i < w for all v i ∈ X j . Consequently, v1 . . . vk+r−2w is a crossing k-path in H. This
proves the proposition. ∎

3.4 Lower bound for k ≥ r + 2

We now turn to the lower bound in Theorem 2.1. Let G(n, r, r + 2) be the family of
r-tuples (a1 , . . . , ar) of positive integers such that
(a) 1 ≤ a1 < a2 < ⋯ < ar ≤ n and
(b) a2 − a1 = 2p , where 0 ≤ p ≤ log2(n/4) is an integer.

For each choice of a1 ∈ {1, . . . , ⌊n/4⌋}, the number of choices of a2 is at
least ⌊log2(n/4)⌋, and the number of the choices of the remaining (r − 2)-tuple
(a3 , . . . , ar) is at least (n/2r−2). Thus if r ≥ 3 then, as n →∞,

∣G(n, r, r + 2)∣ ≥ Ω(nr−1 log n).(9)

Suppose G(n, r, r + 2) contains a Pr
r+2 with vertex set {a1 , . . . , a2r+1} and edge set

{a i . . . a i+r−1 ∶ 1 ≤ i ≤ r + 2}. By the definition of a crossing path, the vertices are in
the following order in [n]:

a1 < ar+1 < a2r+1 < a2 < ar+2 < a3 < ar+3 < ⋯ < ar < a2r .(10)

Hence the ordered tuples corresponding to the 2nd, r + 1st and r + 2nd edges are

(ar+1 , a2 , a3 . . . , ar), (ar+1 , ar+2 . . . , a2r), (a2r+1 , ar+2 , . . . , a2r).

The differences between the second and the first coordinates in these three tuples are

d1 = a2 − ar+1 , d2 = ar+2 − ar+1 , d3 = ar+2 − a2r+1 .
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By equation (10), we have d1 , d3 < d2 < d1 + d3 , so it is impossible that all the three
differences d1 , d2 , d3 are powers of two. This yields the lower bound in Theorem 2.1
for k ≥ r + 2. ∎

4 Proof of Theorem 2.2

We begin with the upper bounds when k ≤ 2r − 1.

Definition 2 An ordered r-graph F is a split hypergraph if there is a partition ofV(F)
into intervals X1 < X2 < ⋅ ⋅ ⋅ < Xr−1 and there exists i ∈ [r − 1] such that every edge of
F has two vertices in X i and one vertex in every X j for j ≠ i.

Every r-graph of interval chromatic number r is a split hypergraph (but not vice
versa). We write v(H) = ∣⋃e∈H e∣ for the number of vertices in a hypergraph H, and
d(H) = e(H)/v(H)r−1. The function d(H) could be viewed as a normalized average
degree of H. We require the following nontrivial result about split hypergraphs. This
result can be considered as an extension of the classical Erdős–Kleitman [7] theorem
about large r-partite subgraphs to ordered hypergraphs.

Theorem 4.1 ([10], Theorem 1.2) For r ≥ 3 there exists c = cr > 0 such that every
ordered r-graph H contains a split subgraph G with d(G) ≥ c d(H).

Proposition 4.1 For r ≥ 3 there exists C = Cr > 0 such that ex↻(n, Pr
2r−1) ≤ C nr−1.

Proof Let c = cr be the constant from Theorem 4.1 and let C = (2r − 1)/c. Given
an n-vertex cg r-graph H with e(H) > Cnr−1, we view H as a linearly ordered r-
graph (by “opening up” the circular ordering between any two vertices) and apply
Theorem 4.1 to obtain anm-vertex split subgraphG ⊂ H where e(G) ≥ c d(H)mr−1 >
c Cmr−1 = (2r − 1)mr−1. Now, viewing H (as well as G) once again as a cg r-graph,
let X1 < X2 < ⋅ ⋅ ⋅ < Xr−2 < X be cyclic intervals such that every edge of G contains
two vertices in X and one vertex in X i for each i ∈ [r − 2]. Our main assertion is the
following statement for each k ∈ [2r − 1] that we will prove by induction on k.The case
k = 2r − 1 will complete the proof of the theorem.

If G is a split r-graph with m vertices and parts X1 < X2 < ⋅ ⋅ ⋅ < Xr−2 < X and
e(G) > kmr , then G contains a crossing k-path v1v2 . . . vk+r−1 such that
● v i ∈ X i for i /≡ 0, r − 1 mod r and
● v i ∈ X for i ≡ 0, r − 1 mod r.
This means that when k = 2r − 1,

{vr−1 , vr , v2r−1 , v2r} ⊂ X and {v i , v i+r , v i+2r} ⊂ X i (i ∈ [r − 2]).

To prove this assertion, we proceed by induction on k, where the base case k = 1 is
easily verified since e(G) > 0. For the induction step, suppose that 1 ≤ k ≤ 2r − 2, and
we have proved the result for k and wish to prove it for k + 1. So e(G) > (k + 1)mr−1.

Case 1. k ≡ i /≡ 0, r − 1 (mod r), where 0 ≤ i < r.
For each f ∈ ∂G that has no vertex in X i , delete the edge f ∪ {v} ∈ E(G) where v

is the largest vertex in X i in clockwise order for which f ∪ {v} ∈ E(G). Let G′ be the
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subgraph that remains after deleting these edges. Then

e(G′) ≥ e(G) −mr−1 > (k + 1)mr−1 −mr−1 = kmr−1 ,

so by inductionG′ contains a Pr
k with vertices v1 , . . . , vk , . . . , vk+r−1, where v i ∈ X i for

i /≡ 0, r − 1 (mod r) and v i ∈ X for i ≡ 0, r − 1 (mod r). Our goal is to add a new vertex
v = vk+r ∈ Xk to the end of the path to create a copy of Pr

k+1. Let vk+r be the vertex in Xk
for which the edge ek+1 = {vk+1 , . . . , vk+r} was deleted in forming G′. Note that vk+r
exists as {vk , vk+1 , . . . , vk+r−1} ∈ E(G) and so {vk+1 , . . . , vk+r−1} ∈ ∂G . Adding vertex
vk+1 and edge ek+1 to our copy of Pr

k yields a copy of P
r
k+1 since by definition of vk+r ,

we have vk < vk+r .
Case 2. k ≡ 0, r − 1 (mod r).
Since 1 ≤ k ≤ 2r − 2, we conclude that k ∈ {r − 1, r}. If k = r, we choose v to be the

largest vertex in X in defining G′ and apply the following argument similar to Case
1. By induction, G′ contains a Pr

k with vertices v1 , . . . , vk , . . . , vk+r−1, where v i ∈ X i
for i /≡ 0, r − 1 (mod r) and v i ∈ X for i ≡ 0, r − 1 (mod r). Our goal is to add a new
vertex v = vk+r to the end of the path where vk+r = v2r ∈ X. Note that we already have
the three vertices vr−1 < v2r−1 < vr in X and we want to add v2r ∈ X satisfying vr−1 <
v2r−1 < vr < v2r . But vr satisfies this property by the way we definedG′. So wemay add
vertex v2r to our Pr

k to obtain a crossing Pr
k+1.

We now assume that k = r − 1. We modify the definition of G′ slightly as follows:
for every f ∈ ∂G which has exactly one vertex in each X i and in X, if w is the vertex
of f in X, then delete f ∪ {v} ∈ E(G) where v is the largest such vertex in X satisfying
v < w.

By induction, G′ contains a Pr
k with vertices v1 , . . . , vk , . . . , vk+r−1, where v i ∈ X i

for i /≡ 0, r − 1 (mod r) and v i ∈ X for i ≡ 0, r − 1 (mod r). Our goal is to add a new
vertex v = vk+r to the end of the path, where vk+r = v2r−1 ∈ X.

Note that we already have two vertices vr−1 < vr in X. So we want to add
v2r−1 satisfying vr−1 < v2r−1 < vr . Since {vr−1 , . . . , v2r−2} ∈ E(G′), the (r − 1)-set f =
{vr , . . . , v2r−2} has exactly one vertex vr ∈ X. Since f ∪ {vr−1} = {vr−1 , vr , . . . , v2r−2} ∈
E(G′), we have f ∈ ∂G and, moreover, f ∪ {vr−1} was not deleted in forming
G′. Hence there is a vertex v ∈ X with vr−1 < v < vr such that the edge f ∪ {v} =
{vr , . . . , v2r−2 , v} ∈ E(G) and the vertex v and edge f ∪ {v} can be used to extend
the Pr

k to a P
r
k+1. ∎

Next, we give lower bounds for k ≥ 2r.

Proposition 4.2 For k ≥ 2r ≥ 4 we have ex↻(n, Pr
k) = Ω(nr−1 log n).

We take the same familyG(n, r, r + 2) as used for ordered hypergraphs (see Section
3.4), but with the cyclic ordering of the vertex set. When we have a k-edge crossing
path P = w1w2 . . .wr+k−1, the vertex w1 does not need to be the leftmost in the first
edge {w1 , . . . ,wr}, so the argument in Section 3.4 does not go through for k = r + 2.
In fact, G(n, r, r + 2) does contain Pr

k for k ≤ 2r − 1.
However, suppose G(n, r, r + 2) has a crossing 2r-edge path P = w1 . . .w3r−1, and

the ith edge of the path is A i = {w i ,w i+1 , . . . ,w i+r−1}. Suppose, vertex wr+ j is the
leftmost in the set {wr ,wr+1 , . . . ,w2r−1} (here 0 ≤ j ≤ r − 1). There are two cases.
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Case 1: w2r+ j−1 is to the right of wr+ j−1. (This is always the case for j = 0). Then
writing the edges A j+1 ,A j+r and A j+r+1 as tuples with increasing coordinates, we have

A j+1 = (w j+r ,w j+1 ,w j+2 , . . . ,w j+r−1), A j+r = (w j+r ,w j+r+1 . . . ,w j+2r−1),
and A j+r+1 = (w j+2r ,w j+r+1 ,w j+r+2 , . . . ,w j+2r−1).

The differences between the second and the first coordinates in these three tuples are

d1 = w j+1 −w j+r , d2 = w j+r+1 −w j+r , d3 = w j+r+1 −w j+2r .

Using a similar argument to that used at the end of Section 3.4, we conclude that it is
impossible for all the differences d1 , d2 , d3 to be powers of two.

Case 2: w2r+ j−1 is to the left of wr+ j (so j ≥ 1). Then w2r+ j−1 < w j < wr+ j . We now
write down the four edges:

A j = (w j ,w j+1 ,w j+2 , . . . ,w j+r−1), A j+1 = (w j+r ,w j+1 ,w j+2 , . . . ,w j+r−1),
A j+r = (w2r+ j−1 ,w j+r ,w j+r+1 , . . . ,w j+2r−2), and

A j+r+1 = (w j+2r−1 ,w j+2r ,w j+r+1 , . . . ,w j+2r−2).

Now the four differences

d1 = w j+1 −w j , d2 = w j+1 −w j+r , d3 = wr+ j −w j+2r−1 , d4 = w j+2r −w j+2r−1

are powers of 2. Since w j+2r−1 < w j < w j+r < w j+2r < w j+1,

d4 > d3 and d1 > d2 .

Then d2 , d3 <max{d1 , d4} < d2 + d3 which could not happen for powers of 2.

Proof ofTheorem 2.2 By Proposition 4.1, there exists C = Cr such that

ex↻(n, Pr
2r−1) ≤ C nr−1

and hence ex↻(n, Pr
k) = O(nr−1) for all fixed k ∈ [2r − 1]. Since there exists a family

H of r-sets without edges covering the same (r − 1) subset twice and with size
e(H) = Ω(nr−1) (see, e.g., [6]) we have for k ≥ 2, r ≥ 2, ex(n, Pr

k) = Ω(nr−1). Since
ex↻(n, Pr

k) ≥ ex(n, Pr
k), we get ex↻(n, Pr

k) = Θ(nr−1) for 2 ≤ k ≤ 2r − 1. In the case
k = r + 1, Theorem 2.1 gives

ex↻(n, Pr
r+1) ≤ ex→(n, Pr

r+1) = (
n
r
) − (n − r

r
).

On the other hand, since Pr
r+1 ⊇ M2

r and G(n, r, r + 1) /⊇ M2
r ,

ex↻(n, Pr
r+1) ≥ ex↻(n,M2

r ) = ex→(n,M2
r ) ≥ ∣G(n, r, r + 1)∣ = (

n
r
) − (n − r

r
),

so the second statement in Theorem 2.2 follows. It remains to consider k ≥ 2r, and
here we have

ex↻(n, Pr
k) ≤ ex→(n, Pr

k) = O(nr−1 log n)

fromTheorem 2.1 and the lower bound in Proposition 4.2. ∎
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5 Proof of Theorem 2.3

5.1 Upper bound in Theorem 2.3 for r ≥ k ≥ 2

Let us first prove the upper bound

ex↻(n, Pr
k) ≤
(k − 1)(r − 1)

r
( n
r − 1) (2 ≤ k ≤ r).(11)

Recall that our notation for a crossing k-path Pr
k (k ≤ r) in a cg r-graph with vertex

setΩn is the following: the vertices v1 , v2 , . . . , vr+k−1 form a tight path with edges e i =
{v i , . . . , v i+r−1}, i ∈ [k] and the (clockwise) ordering of the vertices inΩn that belong
to the tight path is

v1 < v1+r < v2 < v2+r < ⋯ < vk−1 < vk−1+r < vk < vk+1 < ⋯ < vr (< v1).

We define Tk(H) to be the set of r-tuples (vk , . . . , vk+r−1) ∈ V(H)r for which there is
a Pr

k in H with vertices v1 , . . . , vk+r−1 as ordered above.

Theorem 5.1 Let r ≥ 2 and 1 ≤ k ≤ r. Then for any cg r-graph H on Ωn ,

∣Tk(H)∣ ≥ r ⋅ e(H) − (r − 1)(k − 1) ⋅ ∣∂H∣.

In particular, if H contains no Pr
k , then

e(H) ≤ (k − 1)(r − 1)
r

∣∂H∣ ≤ (k − 1)(r − 1)
r

( n
r − 1).

Proof We proceed by induction on k. For k = 1 and each edge e ∈ E(H), the number
of copies of Pr

1 with edge set {e} is r, since after choosingwhich vertex of e to label with
v1, the order of the remaining vertices of e is determined (they are cyclically ordered).
Therefore, ∣T1(H)∣ ≥ re(H). Suppose k ≥ 2 and assume by induction that ∣Tk−1(H)∣ ≥
re(H) − (r − 1)(k − 2)∣∂H∣. Let L be the following collection of r-tuples in Tk−1(H).
The underlying elements of L are edges e = {xk , . . . , xk+r−1} ∈ E(H) with clockwise
ordering

x1+r < x2+r < ⋯ < xk−1+r < xk < xk+1 < ⋯ < xr (< x1+r)

and there exist no vertices x such that xk < x < xk+1 and e − {xk} ∪ {x} ∈ E(H).
Observe that ∣L∣ ≤ (r − 1)∣∂H∣ since each element e ∈ L as above yields a unique

(r − 1)-set e − {xk} ∈ ∂H. Indeed, if e − {xk} = e − {x′k} with xk < x′k then xk < x′k <
xk+1 contradicting the definition of L. Each element of ∂H can be cyclically ordered
in r − 1 ways, giving the inequality ∣L∣ ≤ (r − 1)∣∂H∣.

Our goal is to prove that ∣Tk(H)∣ ≥ ∣Tk−1(H)/L∣ via an injection. Then, using the
fact that ∣L∣ ≤ (r − 1)∣∂H∣ and the induction hypothesis, we have

∣Tk(H)∣ ≥ ∣Tk−1(H)/L∣ ≥ r ⋅ e(H) − (k − 2)(r − 1) ⋅ ∣∂H∣ − ∣L∣
≥ r ⋅ e(H) − (k − 1)(r − 1) ⋅ ∣∂H∣.
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We must give an injection f ∶ Tk−1(H)/L → Tk(H). Suppose that e ∈ Tk−1(H)/L
and the elements of e have clockwise ordering

x1+r < x2+r < ⋯ < xk−1+r < xk < xk+1 < ⋯ < xr .

Then there exists a vertex x such that xk < x < xk+1 and e − {xk} ∪ {x} ∈ E(H). Let
A be the set of all such vertices x. Let y be the closest vertex to xk among all vertices
of A. In other words, xk < y < x for all x ∈ A. Let f (e) = e − {xk} ∪ {y}. Since k ≤ r,
we have f (e) ∈ Tk(H) as we obtain a Pr

k that ends in f (e) by taking the copy of Pr
k−1

that ends in e and just adding the edge f (e). Moreover, f is an injection, as if there is
an e′ = e − {x′k} ∪ {y′} such that f (e′) = f (e) then we have y = y′. Since xk ≠ x′k we
may assume that that xk < x′k < y. But then y would not have been the closest vertex
to xk in A. This contradiction shows that f is indeed an injection and the proof is
complete. ∎

5.2 Lower bound in Theorem 2.3 for r ≥ k ≥ 2

Our next goal is to prove the following lower bound inTheorem 2.3 for r ≥ k ≥ 2:

ex↻(n, Pr
k) ≥ (1 + o(1))

k − 1
3 ln 2r

( n
r − 1).(12)

A segment ofΩn is a sequence of consecutive vertices in the ordering ofΩn . A gap
of an r-element subset R ofΩn is a segment ofΩn between two clockwise consecutive
vertices of R that does not include the two vertices. The length of a gap is one more
than the number of elements of Ωn in the gap. For k ≥ 2, we say R has a (k,m)-gap if
some k − 1 consecutive gaps of R all have length more thanm—in other words, there
are at leastm vertices ofΩn in each gap. For example, if n = 8, r = 4, R = {v1 , v2 , v5 , v8}
and the ordering of vertices is

v1 < v2 < v3 < v4 < v5 < v6 < v7 < v8 ,

then R has a (3, 2)-gap due to the two consecutive gaps v3v4 and v6v7. For n > r, let
K r

n be the family of all r-element subsets of Ωn . For n > r ≥ k, let H(n, r, k,m) be the
family of the members of K r

n that have (k,m)-gaps, and H(n, r, k,m) be the family
of the members of K r

n that do not have (k,m)-gaps.
For a hypergraph H and v ∈ V(H), let H{v} denote the set of edges of H

containing v.

Lemma 5.2 If

m ≥ (n − 1) ln 2r(r − 1)(k − 1) ,(13)

then

∣H(n, r, k,m)∣ ≤ 1
2
(n
r
). Equivalently, ∣H(n, r, k,m)∣ ≥ 1

2
(n
r
).(14)
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Proof Instead of proving (14) directly, it will be easier to prove that

∀ j ∈ Ωn , ∣H(n, r, k,m){ j}∣ ≤
1
2
∣K r

n{ j}∣ =
1
2
(n − 1
r − 1);(15)

and equation (15) implies equation (14) because ∣H(n, r, k,m)∣ = n
r ∣H(n, r, k,m){ j}∣

and (nr) =
n
r ∣K

r
n{ j}∣.

LetΩn = [n]. By symmetry, it is enough to prove (15) for j = n. First, we show that

∣H(n, r, k,m){n}∣ ≤ r∣K r
n−(k−1)m{n − (k − 1)m}∣.(16)

Indeed, from each F ∈ H(n, r, k,m){n}, we can get an F′ ∈ K r
n−(k−1)m{n − (k − 1)m}

by deleting the first m vertices in k − 1 consecutive gaps of length at least m + 1, and
renumbering the remaining n − (k − 1)m vertices so that the vertex n of Ωn will be
n − (k − 1)m. On the other hand, each F′ ∈ K r

n−(k−1)m{n − (k − 1)m} can be obtained
this way from r distinct F ∈ H(n, r, k,m){n}. This proves equation (16).

Now, using 1 − x ≤ e−x , equations (16) and (13) yield

∣H(n, r, k,m){n}∣ ≤ r(n − 1 − (k − 1)m
r − 1 ) = r(n − 1

r − 1)
r−1
∏
i=1

n − (k − 1)m − i
n − i

≤ r(n − 1
r − 1) exp(−

(k − 1)m(r − 1)
n − 1 ) ≤ r(n − 1

r − 1)
1
2r

,

implying equation (15). ∎
We are ready to prove equation (12). Let

t = t(r, k) = ⌈(r − 1)(k − 1)
ln 2r

⌉ .

Suppose n > r ≥ k ≥ 2. If r = 2, then k = 2, and the bound is trivial; so let r ≥ 3.
Suppose first that t dividesn and letm = n/t.Thenm satisfies equation (13). By rotating
Ωn , we find a subgraph H′ of H(n, r, k,m) with at least ∣H(n, r, k,m)∣/m edges such
that every edge of H′ adds up to zero modulom. We claim that

H′ does not contain a crossing Pr
k .(17)

Indeed, assume H′ contains a crossing Pr
k with the vertices v0 , v1 , . . . , vk+r−2. By the

definition of crossing paths, v0 < vr < v1 < v1+r < ⋅ ⋅ ⋅ < vk−1 < vk−1+r < vk . Since the set
{v1 , v2 , . . . , vr−1} forms an edge together with both v0 and vr , vr ≡ v0 mod m. Simi-
larly, vr+i ≡ v i mod m for all i < k. But this means that the edge {v0 , v1 , . . . , vr−1} has
k − 1 consecutive gaps of lengthmore thanm, thus it does not belong toH(n, r, k,m).
This contradiction proves equation (17).

Thus, if r ≥ 3, 2 ≤ k ≤ r are fixed, n is a large number divisible by t and m = n/t,
then by (17) and (14), H′ is a cg r-graph not containing a crossing Pr

k with

∣H′∣ ≥ 1
2m
(n
r
) ≥ t

2r
(n − 1
r − 1) ≥

(k − 1)(r − 1)
2r ln 2r

(n − 1
r − 1) ≥ (1 + o(1))

k − 1
3 ln 2r

( n
r − 1).
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If n is not divisible by t, then let n′ be the largest positive integer divisible by t such
that n′ ≤ n. Then

ex↻(n, Pr
k) ≥ ex↻(n′ , Pr

k) ≥ (1 + o(1))
k − 1
3 ln 2r

( n′

r − 1) = (1 + o(1))
k − 1
3 ln 2r

( n
r − 1).

∎

5.3 The case k = 2

Here, we prove the upper bound equation (3), namely:

ex↻(n, Pr
2) ≤

1
2
( n
r − 1).

Recall that Pr
2 on Ωn has vertex set

v1 < v1+r < v2 < v3 < ⋯ < vr (< v1),

and edges {v1 , . . . , vr} and {v2 , . . . , vr+1}. Consider a Pr
2 -free cg r-graphH with vertex

set Ωn . Label the vertices of an e ∈ E(H) as

1 ≤ a1 < a2 < ⋯ < ar ≤ n,

and define T1(e) ∶= e/{a1} and T2(e) ∶= e/{ar}. Since H is Pr
2 -free, we have Tα(e) ≠

Tα(e′) for e ≠ e′ ∈ H (and α = 1, 2). Indeed, if we take (in case of α = 1) v2 , . . . , vr =
a2 , . . . , ar and {v1 , vr+1} = {a1 , a′1} then we obtain a Pr

2 .
We also have T1(e) ≠ T2(e′), otherwise, we define {v1 , vr+1} = {a1 , a′r} and again

obtain a forbidden path. This way we associated two (r − 1)-sets to each member of
H, yielding (3). ∎

5.4 The case k = r

Here, we prove equation (4), namely:

ex↻(n, Pr
r ) > (1 − o(1))(r − 2)(

n
r − 1).

Recall that Pr
r = v1v2 . . . v2r−1 with clockwise ordering

v1 < v1+r < v2 < v2+r < v3 < ⋯ < vr−1 < v2r−1 < vr (< v1),(18)

and edge set {e i = {v i , v i+1 , . . . , v i+r−1} ∶ i ∈ [r]}. Assume the underlying vertex set is
Ωn . By (18),

for every 1 ≤ i ≤ r, the only vertices in e i that can be consecutive
on Ωn are v i+r−1 and v i .(19)

Assume that the n vertices ofΩn are arranged in clockwise order as 1 < ⋅ ⋅ ⋅ < n. Let
G be the following cg r-graph with vertex set Ωn . An r-set e belongs to E(G) if its
elements are ordered as

1 ≤ a1 < a2 < ⋯ < ar ≤ n,(20)
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and there exists a unique 1 ≤ t ≤ r − 2 with at + 1 = at+1, and otherwise the a js are
separated. (This also means {a1 , ar} ≠ {1, n}). A quick calculation gives ∣E(G)∣ =
(r − 2)( n

r−1) + O(n
r−2).

We claim that G does not contain a Pr
r . Suppose, on the contrary, that F ⊂ G is a

copy of Pr
r as described in equation (18). Since each member of G (so each member of

F as well) contains a unique consecutive pair of Ωn , we get that the pairs in equation
(19) should be consecutive. If v i with i ∈ [r] is the smallest in {v1 , . . . , v2r−1}, then
v i+r−1 is the largest, so they are separated, they could not form a consecutive pair in e i
when we write e i in the form (a1 , . . . , ar) as in equation (20). If v i+r with i ∈ [r − 1] is
the smallest in {v1 , . . . , v2r−1}, then v i+r−1 and v i are the largest, so they could not be
consecutive in e i by the definition of G. ∎

6 Proof of Theorem 2.5

The upper bound for case k = 2 follows from Theorem 2.1 and the cg r-graph
G(n, r, r + 1) in Section 3.2 provides the matching lower bound.

We are to show that for k, r > 2,

(k − 1)r( n
r − 1) + O(n

r−2) ≤ ex↻(n,Mr
k) = ex→(n,Mr

k) < 2(k − 1)(r − 1)(
n

r − 1).

A simple construction demonstrating the lower bound in Theorem 2.5 is the
following cg r-graph: Fix a (k − 1)-set K ⊂ Ωn and let A be the set of r-sets of Ωn
that contain at least one vertex from K. Let B be the set of r-sets ofΩn for which some
two consecutive vertices have a gap of length at most k − 2 (this means that there
are at most k − 2 vertices between them in clockwise order, not including endpoints).
Note that ∣A∣ = (k − 1)( n

r−1) + O(n
r−2), ∣B∣ = (r − 1)(k − 1)( n

r−1) + O(n
r−2) and ∣A∩

B∣ = O(nr−2).The cg r-graphwith vertex setΩn and edge setA∪ B has (k − 1)r( n
r−1) +

O(nr−2) edges, and it is easy to see that it does not contain Mr
k .

For the upper bound, let H be a cg r-graph with the maximum number of edges
on vertex set Ωn with no Mr

k . A chord is a line segment joining two vertices of
Ωn , and its length is one more than the size of the (smallest) gap between the two
vertices. For each edge A, choose a shortest chord ch(A), say vrv1 and view the
vertices of A as v1 , v2 , . . . , vr in clockwise order. Define the type of A to be the vector
t(A) = (t1 , . . . , tr−1) where

t i = v i+1 − v i for i = 1, . . . , r − 2 and tr−1 = n − (t1 +⋯+ tr−2) = v1 − vr−1 .

The coordinates of each vector t(A) are positive integers, tr−1(A) ≥ 2, and t1(A) +
⋯ + tr−1(A) = n for each A by definition. The number of such vectors is exactly (n−2r−2)
(because this is equal to the number of ways to mark r − 2 out of the n − 1 separators
in an ordered set of n dots so that the last separator is not marked). For every given
type t = (t1 , . . . , tr−1), the family H(t) of the chords ch(A) of the edges A of type t
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does not contain k crossing chords. Thus, byTheorem 2.4, ∣H(t)∣ < 2(k − 1)n. Hence,
using r ≥ 3,

∣E(H)∣ < 2(k − 1)n(n − 2
r − 2) = 2(k − 1)

(r − 1)(n − r + 1)
n − 1 ( n

r − 1)

< 2(k − 1)(r − 1)( n
r − 1),

as claimed. ∎

7 Concluding remarks

• A hypergraph F is a forest if there is an ordering of the edges e1 , e2 , . . . , et of F such
that for all i ∈ {2, 3, . . . , t}, there exists h < i such that e i ∩⋃ j<i e j ⊆ eh . It is not
hard to show that ex(n, F) = O(nr−1) for each r-uniform forest F. It is therefore
natural to extend the Pach-Tardos Conjecture A to r-graphs as follows:

Conjecture B Let r ≥ 2. Then for any ordered r-uniform forest F with interval chro-
matic number r, ex→(n, F) = O(nr−1 ⋅ polylog n).

Theorem 3.1 shows that to prove Conjecture B, it is enough to consider the setting
of r-graphs of interval chromatic number r. Theorem 2.1 verifies this conjecture for
crossing paths, and also shows that the log n factor in Theorem 3.1 is necessary. It
would be interesting to find other general classes of ordered r-uniform forests for r ≥ 3
for which Conjecture B can be proved. A related problem is to determine for which
ordered forests F we have ex→(n, F) = O(nr−1)? This is a hypergraph generalization
of Braß’ question [2] which was solved recently for trees [9].
• It appears to be substantially more difficult to determine the exact value of the
extremal function for r-uniform crossing k-paths in the convex geometric setting
than in the ordered setting. It is possible to show that for k ≤ 2r − 1,

c(k, r) = lim
n→∞

ex↻(n, Pr
k)

( n
r−1)

exists. We do not as yet know the value of c(k, r) for any pair (k, r) with 2 ≤ k ≤ r,
even though in the ordered setting, Theorem 2.1 captures the exact value of the
extremal function for all k ≤ r + 1, and c(r + 1, r) = r.

• One can consider more general orderings of tight paths, namely instead of the
vertices whose subscripts are congruent to amodulo r increasingwithin an interval,
we can specify which congruence classes of vertices are increasing within their
interval and which are decreasing. Our methods can handle such situations as well.
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[7] P. Erdős and D. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges.
J. Combin. Theory 5(1968), 164–169.

[8] Z. Füredi, T. Jiang, A. Kostochka, D. Mubayi, and J. Verstraete, Tight paths in convex geometric
hypergraphs. Adv. Combinatorics 1(2020), no. 1, 14.

[9] Z. Füredi, A. Kostochka, D. Mubayi, and J. Verstraete, Ordered and convex geometric trees with
linear extremal function. Preprint, 2019. https://arxiv.org/abs/1812.05750

[10] Z. Füredi, T. Jiang, A. Kostochka, D. Mubayi, and J. Verstraëte, Partitioning ordered hypergraphs.
J. Combin. Theory Ser. A 177 (2021), 105300.

[11] H. Hopf and E. Pannwitz, Aufgabe Nr. 167. Jahresbericht d. Deutsch Math. Verein. 43(1934), 114.
[12] D. Korándi, G. Tardos, I. Tomon, and C. Weidert, On the Turán number of ordered forests.

Electron Notes Discret. Math. 61(2017), 773–779.
[13] Y. S. Kupitz and M. Perles, Extremal theory for convex matchings in convex geometric graphs.

Discrete Comput. Geom. 15(1996), 195–220.
[14] A. Marcus and G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture. J.

Combinatorial Theory Ser. A 107(2004), 153–160.
[15] J. Pach and G. Tardos, Forbidden paths and cycles in ordered graphs and matrices. Israel J. Math.

155(2006), 359–380.
[16] J. Pach and R. Pinchasi, How many unit equilateral triangles can be generated by n points in

general position? Am. Math. Mon. 110(2003), 100–106.
[17] J. W. Sutherland, Lösung der Aufgabe 167. Jahresbericht Deutsch. Math. Verein. 45(1935), 33–35.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, H-1053,
Budapest, Hungary
e-mail: zfuredi@gmail.com

Department of Mathematics, Miami University, Oxford, OH 45056, USA
e-mail: jiangt@miamioh.edu

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

and

Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
e-mail: kostochk@math.uiuc.edu

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago,
IL 60607, USA
e-mail: mubayi@uic.edu

Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA
92093-0112, USA
e-mail: jverstra@math.ucsd.edu

https://doi.org/10.4153/S0008414X20000632 Published online by Cambridge University Press

https://arxiv.org/abs/1812.05750
mailto:zfuredi@gmail.com
mailto:jiangt@miamioh.edu
mailto:kostochk@math.uiuc.edu
mailto:mubayi@uic.edu
mailto:jverstra@math.ucsd.edu
https://doi.org/10.4153/S0008414X20000632

	1 Introduction
	2 Results
	2.1 Crossing matchings

	3 Proof of Theorem theorem12.1
	3.1 Upper bound for k r + 1
	3.2 Lower bound for k r + 1
	3.3 Upper bound for k ≥r + 2
	3.4 Lower bound for k ≥r + 2

	4 Proof of Theorem theorem22.2
	5 Proof of Theorem theorem32.3
	5.1 Upper bound in Theorem theorem32.3 for r ≥k ≥2
	5.2 Lower bound in Theorem theorem32.3 for r ≥k ≥2
	5.3 The case k = 2
	5.4 The case k = r

	6 Proof of Theorem theorem52.5
	7 Concluding remarks

