Canad. J. Math. Vol. 73 (6), 2021 pp. 1648-1666 MS
http://dx.doi.org/10.4153/S0008414X20000632 SMC

© Canadian Mathematical Society 2020

Extremal problems for convex geometric
hypergraphs and ordered hypergraphs

Zoltan Firedi, Tao Jiang, Alexandr Kostochka, Dhruv Mubayi, and
Jacques Verstraéte

Abstract. An ordered hypergraph is a hypergraph whose vertex set is linearly ordered, and a convex
geometric hypergraph is a hypergraph whose vertex set is cyclically ordered. Extremal problems for
ordered and convex geometric graphs have a rich history with applications to a variety of problems
in combinatorial geometry. In this paper, we consider analogous extremal problems for uniform
hypergraphs, and determine the order of magnitude of the extremal function for various ordered
and convex geometric paths and matchings. Our results generalize earlier works of Braf3-Karolyi-
Valtr, Capoyleas-Pach, and Aronov-Dujmovic-Morin-Ooms-da Silveira. We also provide a new
variation of the Erd6s-Ko-Rado theorem in the ordered setting.

1 Introduction

In this paper, we study extremal problems for ordered and convex geometric uniform
hypergraphs. Our focus is on determining the maximum number of edges in ordered
or convex geometric hypergraphs that contain no path or matching of a specified size.
We study extremal problems simultaneously in the ordered and convex geometric
settings to compare and contrast their behaviors.

An ordered graph is a graph together with a linear ordering of its vertex set.
Extremal problems for ordered graphs have a long history (see [12, 15, 19]). Given
ordered graphs F and G, say that F is an ordered subgraph of G if there is an order
preserving map f: V(F) — V(G) such that f(e) € E(G) for every e € E(F). Let
ex_, (n, F) denote the maximum number of edges in an n-vertex ordered graph that
does not contain the ordered graph F as an ordered subgraph. This extremal problem
can also be phrased in terms of pattern-avoiding matrices (see [12, 14] for more
background). An ordered graph has interval chromatic number 2 if it is bipartite with
bipartition A U B and A precedes B in the ordering of the vertices. Most of the theory
is concerned with such graphs. A central open problem in the area was posed by Pach
and Tardos [15].
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Conjecture A Let F be an ordered acyclic graph with interval chromatic number 2.
Then ex_,(n, F) = O(n - polylogn).

In support of Conjecture A, Korandi et al., [12] proved for a wide class of forests
F that ex_, (1, F) = n'*°()_ Some of our results are concerned with ordered graphs
F as in Conjecture A, although we only consider cases when ex_, (n, F) has order of
magnitude # or nlog n, and we sometimes prove sharper bounds than those requested
by the conjecture.

A convex geometric (cg) graph or cgg is a graph together with a cyclic ordering of
its vertex set. Given a cgg F, let ex (#, F) denote the maximum number of edges in
an n-vertex cgg that does not contain F as a cgg (defined analogously to the linearly
ordered case). Extremal problems for geometric graphs have a long history, beginning
with theorems on disjoint line segments [11, 13, 17], to more recent results on crossing
matchings [3, 5]. In the vein of Conjecture A, Braf3 [2] asked for the determination of
all acyclic graphs F such that ex (11, F) is linear in #, and this problem remains open
(recently it was solved for trees [9]).

An ordered (convex geometric) r-graph is an r-uniform hypergraph whose vertex
setis linearly (cyclically) ordered. We denote by ex_. (n, F) (ex (1, F)) the maximum
number of edges in an n-vertex ordered (cg) r-graph that does not contain F, and let
ex(n, F) denote the usual (unordered) extremal function. In all our results, F will be
an ordered or cg r-graph. We have chosen to omit the parameter r in the notation
ex_,(n, F) and ex (n, F) but will indicate this parameter in the notation for F (as a
superscript).

Although the theory of cg (hyper)graphs can be studied independently of geomet-
ric context, extremal problems for both cg graphs and hypergraphs are frequently
motivated by problems in discrete geometry [1, 2, 4, 16]. In the opposite direction,
recently, we [8] determined ex (7, F) for a particular cg r-graph F, and this gives the
current best bound for the extremal problem for tight paths in uniform hypergraphs.
This shows that the solution to extremal hypergraph problems in the convex geometric
setting can have applications in more general contexts.

2 Results

Let P? be the linearly ordered path with three edges with ordered vertex set1< 2 < 3 <
4 and edge set {13,32,24}. In the convex geometric setting, we use P; to denote the
unique cg graph isomorphic to the path with three edges where the edges 13 and 24
cross. We then have

4)) ex.(n,P}) =2n -3 =exy (n,P3) for n > 3,

where the former is a folklore result and the latter is due to Braf$ et al., [3]. To our
knowledge, equation (1) are the only known nontrivial exact results for connected
ordered or convex geometric graphs that have crossings in their embedding. These
two simple exact results, therefore, provide a good launchpad for further investigation
in the hypergraph case. This is the direction we take, extending equation (1) to longer
paths and to the hypergraph setting. In the process, we will also discover some subtle
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differences between the ordered and convex geometric cases which are not visible in
equation (1).

There are many ways to extend the definition of a path to hypergraphs and
we choose one of the most natural ones, namely tight paths. There are also many
possibilities for the ordering of the vertices of the path, and again we make a rather
natural choice, namely crossing paths which are defined below (a similar notion was
studied by Capoyleas and Pach [5] who considered the corresponding question for
matchings in a cg graph).

Notation For a positive integer n, we write [n] :={1,...,n}. An r-uniform tight k-
path is an r-graph with vertex set {vy, ..., Vkyr_1 and edge set {{vi, vVii1, ..., Vier1}:
i€[k]}. We will often denote a tight k-path just by listing its vertices in the order
V1...Visr—1. We let < denote the underlying ordering of the vertices of an ordered
hypergraph. In the case of convex geometric hypergraphs, we slightly abuse the same
notation so that uy < uy < -+ < uy is shorthand for u; < up < --- < uy < u; which means
that moving clockwise in the cyclic ordering of the vertices from u; we first encounter
Uy, then us, and so on until we finally encounter uy and then u, again. In other words,
U, ..., uy is a cyclic interval where the vertices are listed in clockwise order. Moreover,
given disjoint sets X, Y, we write X <Y to denote the fact all elements of X appear
in the linear or cyclic ordering followed by all elements of Y; in particular, we do not
havex < y < x' < y' forx,x" € X and y, y' € Y. When needed, we use the notation Q,,
to denote the vertex set of a generic n-vertex convex geometric hypergraph, with the
clockwise ordering of the vertices. We will use the notation e(H) = |E(H)| where H is

any hypergraph.

Definition 1 (Crossing paths in ordered and convex geometric hypergraphs) An r-
uniform crossing k-path P] is an ordered or convex geometric tight k-path with vertex
set V.={vi,...,Vksr—1) and edge set {{vi,...,vis,_1} i €[k]} and the following
ordering of V. First partition V into V; U--- U V, such that for j € [r],

_1_ i
Vi={viti=jmodr} ={vjVisrs...,Vjstr} where t=1+ luJ
r

Next order the sets {V;:je[r]} as Vj <--- < V,. Finally, for je [r], order the
elements in each Vj as

Vi< Vier <o < Viggrs
Example Ifr=3and k =7, then P} has vertex set V = {vi,v5,...,vo}
Vi={vive,vr}, Va={va,vs,vs}, Vi={vs,vs,v9}
and ordering

V1 < Vg <Vy < VY <V5<vg < v3<Vg<Vg.
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Figure I: Convex geometric paths Pg and P;.

Another way to view the ordering is to write the vertices in rows of size r, and then
the ordering of the vertices is given by reading the columns from left to right:

Vi V2 V3
V4 V5 Vg
vy Vg Vo.

This path P; is illustrated in Figure 1 on the right, and P§ is drawn on the left:
Our first result generalizes ex_, (n, P?) = 2n — 3 to larger k and r.

Theorem 2.1 Fixk>1,r>2andletn>r+k —1. Then

(") - (”’k“) fork<r+1

r r

— )Pr =
ex-(m ) {@(n’llogn) fork>r+2

where the asymptotics are taken as k, r are fixed and n — co.

Our second theorem generalizes the result of Braf} et al., [3] that exy (n,P}) =
2n —3tolarger k and r.

Theorem 2.2 Fixk >1,r>2andlet n > 2r +1. Then

e(n™) for2<k<2r-1

exgy (n, Py) = (:’)—(";r) fork=r+1
@(n"'logn) fork>2r

where the asymptotics are taken as k, r are fixed and n — oo.
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For short paths, we have the following better bounds, which improve the previous
results on this problem by Aronov et al. [1] when k = 2.

Theorem 2.3 For fixed2 <k <randn — o

k-1( n . (k—l)(r—l)( n )
2 1 1) — ,Pp) < —————— .
@ (1+o ))31n2r(r—1)<exo(n ) < r r-1
Furthermore, when k € {2, r}, the following sharper bounds hold:

1( n
:pr = >
3) expy (n 2)<2(r—1)
@) exO(n,P:)z(l-o(l))(r-z)( ”1).
r—

The lower bound in equation (4) is close to the upper bound in equation (2), since
the upper bound is (r—2+1/ r)(rfl). We remark that it remains open to prove or

disprove that for every r > 2, there exists ¢, such that ¢, - 0 as r - oo and

n
ex» (n, Pl Sc( )+onr_1.
B <al " )rotr

Theorems 2.1 and 2.2 reveal a discrepancy between the ordered setting and the
convex geometric setting: in the convex geometric setting, crossing paths of length
up to 2r — 1 have extremal function of order n"~!, whereas in the ordered setting, this
phenomenon only occurs for crossing paths of length up to r + 1. In fact, we know that
exey (1, Pp) = ex.(n, Pp) iffk e {1, r +1}.

2.1 Crossing matchings

Let M} denote the cgg consisting of k pairwise crossing line segments. In other words,
there is a labeling of the vertices such that the edges of the matching are v;vy.; for
lSiSk,andV1<‘V2<"'<V2k.

Capoyleas and Pach [5] proved the following theorem which extended a result of
Ruzsa (he proved the case k = 3) and settled a question of Gartner and a conjecture of
Perles:

Theorem 2.4 (Capoyleas—Pach [5]) For all n>2k -1, exyy(n, M) =2(k—1)n -
2k-1
57

As mentioned earlier, a related open problem of Brafi [2] is to determine all acyclic
graphs F such that exy (1, F) = O(n).

For r > 2, an r-uniform crossing k-matching M has vertex set vy, v2,...,V, on a
convex n-gon in clockwise order and consists of the edges {vi, Viik, ... Vis(r-1)k } for
1< i < k. Note that crossing paths have the property that if we take every rth edge of
the path, we obtain a crossing matching.

One can similarly define a crossing k-matching M} in ordered r-graphs: it
has vertex set vi,vs,...,v,x with v <vy <---<v, and consists of the edges
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{VisVieks+ s Vig(r—1)k ) for 1< i < k. If we consider a cg r-graph G, and an ordered
r-graph G, with the same set of vertices and the same set of edges (only the ordering
in G is linear and in G; is circular), then with our definitions, a set F of edges is a
crossing matching in G, if and only if it is a crossing matching in G,. It follows that

Xy (1, My) = ex_.(n, My) for all k, r, n.

Aronov et al., [1] considered the case k =2, r =3 and determined the order of
magnitude in this case; our result below provides better bounds. Equation (5) could
be viewed as an ordered variation of the Erdés-Ko-Rado Theorem since the forbidden
configuration consists of two disjoint ordered r-sets with a particular interlacing
structure.

Theorem 2.5 Forn>r>1,

(5) exey (n, My) = (:z)_(n—r))

r

and for fixed k,r > 2 as n — oo,
(1-0(1))(k - 1)r(:1) < exy (m, ML) < 2(k - 1)(r - 1)(:1).

Note that, unlike the results for paths, there are no extra log # factors in the formu-
las for crossing matchings. We were unable to determine the asymptotic behavior of
Xy (1, My) for any pair (k, r) with k,r > 2.

3 Proof of Theorem 2.1
3.1 Upper bound for k< r+1

Observe that ex_, (1, P3) = 1for all n > 1. We then have the following recurrence:

Proposition 3.1 Let2<k<r+1landn>r+k. Then

-2
(6) ex.(n,Pp) < (:1_2) +ex,(n—2,P{}) +ex,(n—1,P).

Proof Let G be an n-vertex ordered r-graph not containing P; with e(G) =
ex.,(n, P}). We may assume V(G) = [n] with the natural ordering. Let G; = {e €
G:{l,2}ce}andG,={eecG:lee,2¢e,(e—{1})uU{2} € G}. Let G; be obtained
from G — E(G;) — E(G,) by gluing vertex 1 with vertex 2 into a new vertex 2.

Since we have deleted the edges of Gj, our Gj; is an r-graph, and since we have
deleted the edges of G,, G has no multiple edges. Thus e(G) = e(Gy) + e(Gz) +

e(G3).
We view Gj as an ordered r-graph with vertex set {2’,3,...,n}. If G; contains a
crossing ordered path P with edges ej, e), ..., e}, then only e{ may contain 2’, and all

other edges are edges of G. Thus either P itself is in G or the path obtained from P
by replacing e with (e] — {2'}) u {1} or with ] — {2’} U {2} is in G, a contradiction.
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Thus G3 contains no P{ and hence
e(Gs) <ex,(n—-1,Pp).

By definition, e(G;) < ('Zj) We can construct an ordered (r —1)-graph H, with

vertex set {3,4,...,n} from G, by deleting from each edge vertex 1. If H, contains a
crossing ordered path P’ with edges e{’, €5, ..., e}, then the set of edges {ey, ..., ex}
where e; = e’ U {1} and e; = e, U {2} fori =2,...,k forms a P in G, a contradic-

tion. Summarizing, we get
ex.,(n,P;) =e(G) =e(Gy) + e(Gz) + e(G3)

< (’: ‘27‘) rexo(n-2,P ) +ex.(n-1,P]),
as claimed. |

We are now ready to prove the upper bound in Theorem 2.1 for k <r+1: we
are to show that ex_, (1, P{) < (':) - ("_f“). We use induction on k + n. Since P] is
simply an edge, ex_, (1, P) = 0 for any n and r, and the theorem holds for k = 1. Also
ex,(mP))=(")-1forn=r+k-1

Suppose now the upper bound in the theorem holds for all (k’, n’, r') with k" + n” <
k + n and we want to prove it for (k, n, r). By the previous paragraph, it is enough to
consider the case k > 2. Then by Proposition 3.1 and the induction assumption,

, n-2 n-2 n-k n-1 n-k
et = () |C2)-C o)1 [0 ) (7))
r—2 r—1 r—1 r r
[ v G| o G R
= + + - +
r—2 r—1 r r r—1
_(n)_(n—k+1)
\r r ’
as required. This proves the upper bound in Theorem 2.1 for k < r + 1. [ ]

3.2 Lower bound for k<r+1

For the lower bound in Theorem 2.1 for k < r + 1, we provide the following construc-
tion. For 1< k <r, let G(n,r, k) be the family of r-tuples (ay,...,a,) of positive
integers such that
(@) 1<a;<ay<--<ar<nand
(b) thereis1<i<k-1suchthata;,; =a;+1.
Also,let G(n,r,r+1) = G(n,r,r)u{(ay,...,a,) a1 <ay <...<a,=n}.

Suppose G(n,7,k) has a crossing P; with edges ey, ..., ex. Let ey = (ay,...,a,)
where 1< a; < a; < - < a, < n. By the definition of a crossing path, for each 2 < j <
min{k, r}, e; has the form

7)

ej=(aji,...,aj,) wherea;<aj;<a;. forl<i<j-landaj;=a; for j<i<r,
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and when k = r + 1, e,,; has the form
(®)  eri1=(ars11s. -5 Arar,r) Where 4y < g1, < A3 < Grp1p <0 < Gp < Gryrre

By the definition of G(n, 1, k), either thereis1 < i < k — 1suchthata;,; = a; +lork =
r+land a, = n. In the first case, we get a contradiction with equation (7) for j = i + L
In the second case, we get a contradiction with equation (8) for k = r + 1.

In order to calculate |G(n,r, k)|, consider the following procedure I1(n,r, k) of
generating all r-tuples of elements of [ n] not in G(n, r, k): for each r-tuple (ay, . . ., a,)
of positive integers such that1< a; < a, <...<a, <n -k +1l,increasea; by j - 1if1 <
j<kandbyk —1ifk < j < r. By definition, the number of outcomes of this procedure
is ('“f“). Also I1(n, r, k) never generates a member of G(#, r, k) and generates each
other r-subset of [n] exactly once. ]

3.3 Upper bound for k > r +2

An r-graph is r-partite if it has a vertex partition (henceforth r-partition) into r sets
such that every edge has exactly one vertex in each set. An ordered r-graph has interval
chromatic number r if it is r-partite with r-partition A;,..., A, and A; precedes A4,
in the ordering of the vertices for all i € [r —1].

Letz_, (n, F) denote the maximum number of edges in an n-vertex ordered r-graph
of interval chromatic number r that does not contain the ordered r-graph F. Pach and
Tardos [15] showed that every n-vertex ordered graph may be written as the union
of at most [log, 1] edge disjoint subgraphs each of whose components is a graph of
interval chromatic number 2, and deduced that ex_,(n, F) = O(z_.(n, F)logn) for
every ordered graph F. They also observed that the log factor is not present when
z.,(n, F) = Q(n) and ¢ > 1. This phenomenon also holds for ordered r-graphs when
r > 2. We will use the following result which is a rephrasing of Theorem 1.2 in [10].

Theorem 3.1 ([10], Theorem 1.2) Fixr > ¢ >r—12>1 and an ordered r-graph F with
z_,(n,F) = Q(n°). Then

| O(z-(n,F)logn) ifc=r-1
‘”‘ﬁ(”’F)‘{ O R A

By Theorem 3.1, the following claim yields ex_, (n, P} ) = O(n"'logn) forall k > 2,
i.e., the upper bound in Theorem 2.1 for k > r + 2. Given an r-graph H, the shadow of
His

OH={S:|S|=r-1,SceforsomeecE(H)}.

Proposition 3.2 Fork>1,r>2,z,(n,P}) =0(n"").
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Proof We prove a stronger statement by induction on k: if H is an ordered r-graph
of interval chromatic number r with r-partition Xy, X, ..., X, of sizes ny, nz,..., ny,
respectively, and H has no crossing k-path, then e(H) < kP where

P:i Hnj.

i=1 j#i

The base case k =1 is trivial as e(H) = 0. For the induction step, assume the result
holds for k — 1, and suppose e(H) > kP. For each (r —1)-set S € 0H, mark the edge
Su{w} wherew = max{x : Su {x} € E(H)}.In other words, if S has no vertex in X ;,
then w is the largest vertex in X for which S U {w} € E(H). Observe that the number
of marked edges is at most P.

Let H' be the r-graph of unmarked edges. Then e(H') >e(H)-P>kP-P =
(k —1)P. By the induction assumption, there exists a crossing P{_; = v1V3 ... Vk4r—2 C
H'. Recall that the edges of this P]_, are {vi,...,vi;,1} for ie[k—1]. Let S =
{Vks+..»Vksr—2} and suppose that SN X; = &. Since {Vi—1,...,Vksr—2} = SU{vk_1}
is an edge of the P_,, we know that v;_; € X; and also that v; < v;_; if i <k —1and
vi € X by the definition of crossing path. This means that S € dH, so it lies in a marked
edge Su {w} where w € X;. In order to extend this P;_, to a P in H we will use
the marked edge S U {w}. By the definition of w, we have v;_; < w and this implies
that v; <w for all v; € X;. Consequently, v; ... v ,_,w is a crossing k-path in H. This
proves the proposition. [

3.4 Lower bound for k> r+2

We now turn to the lower bound in Theorem 2.1. Let G(n,7,r + 2) be the family of
r-tuples (ay, ..., a,) of positive integers such that
(@) 1<a1<ay<--<a, <nand
(b) a, — ay = 2P, where 0 < p <log,(n/4) is an integer.

For each choice of a;€{l,...,|n/4]|}, the number of choices of a, is at
least |log,(n/4)], and the number of the choices of the remaining (r - 2)-tuple

(as,...,a,)is at least (:’g) Thus if r > 3 then, as n — oo,
9) |G(n,r,r+2)| > Q(n" " logn).
Suppose G(n,r,r + 2) contains a P/, , with vertex set {aj, ..., dz,41} and edge set

{ai...ai1,-1:1<i <r+2}. By the definition of a crossing path, the vertices are in
the following order in [n]:

(10) a1 < Apy1 < A2p1 < A3 < Apyy < A3 < Apyz < -+ < ay < Az

Hence the ordered tuples corresponding to the 2nd, r + 1st and r + 2nd edges are
(ar+1,a2,a3...,a,), (a,+1,a,+2...,a2,), (612,41,61,—4.2,...,&2,).

The differences between the second and the first coordinates in these three tuples are

di=a; - a,, dr = ari2 = Arias ds3 = are2 = Azr41.
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By equation (10), we have d;, ds; < d, < d; + d3, so it is impossible that all the three
differences d;, d,, d; are powers of two. This yields the lower bound in Theorem 2.1
for k > r+2. [ |

4 Proof of Theorem 2.2

We begin with the upper bounds when k < 2r - 1.

Definition2  An ordered r-graph F is a split hypergraph if there is a partition of V (F)
into intervals Xj < X, < -+ < X,_; and there exists i € [r — 1] such that every edge of
F has two vertices in X; and one vertex in every X; for j # i.

Every r-graph of interval chromatic number r is a split hypergraph (but not vice
versa). We write v(H) = |Ue€H e| for the number of vertices in a hypergraph H, and
d(H) = e(H)/v(H)"". The function d(H) could be viewed as a normalized average
degree of H. We require the following nontrivial result about split hypergraphs. This
result can be considered as an extension of the classical Erdds—Kleitman [7] theorem
about large r-partite subgraphs to ordered hypergraphs.

Theorem 4.1 ([10], Theorem 1.2) For r > 3 there exists ¢ = ¢, > 0 such that every
ordered r-graph H contains a split subgraph G with d(G) > cd(H).

Proposition 4.1 For r > 3 there exists C = C, > 0 such that exyy (n, P}, ;) < Cn™™\.

Proof Let ¢ = ¢, be the constant from Theorem 4.1 and let C = (2r —1)/c. Given
an n-vertex cg r-graph H with e(H) > Cn"™!, we view H as a linearly ordered r-
graph (by “opening up” the circular ordering between any two vertices) and apply
Theorem 4.1 to obtain an m-vertex split subgraph G ¢ H where e(G) > cd(H)m"™' >
cCm™ = (2r —1)m"™. Now, viewing H (as well as G) once again as a cg r-graph,
let X; < X, <+ < X, <X be cyclic intervals such that every edge of G contains
two vertices in X and one vertex in X; for each i € [r — 2]. Our main assertion is the
following statement for each k € [2r — 1] that we will prove by induction on k. The case
k = 2r — 1 will complete the proof of the theorem.

If G is a split r-graph with m vertices and parts X; < X; <--- < X,_, <X and
e(G) > km', then G contains a crossing k-path v;v; ... vg,,_;1 such that

ev;eX;fori#0,r—1 mod rand

ev;eXfori=0,r—1 modr.

This means that when k = 2r -1,

v varva € X and  {vi,vier, visary € Xi o (i€ [r-2]).

To prove this assertion, we proceed by induction on k, where the base case k = 11is
easily verified since e(G) > 0. For the induction step, suppose that1 < k < 2r — 2, and
we have proved the result for k and wish to prove it for k + 1. So e(G) > (k +1)m"™".

Casel. k=i#0,r—1(modr), where0<i<r.

For each f € 0G that has no vertex in X;, delete the edge f U {v} € E(G) where v
is the largest vertex in X; in clockwise order for which f U {v} € E(G). Let G’ be the
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subgraph that remains after deleting these edges. Then
e(G2e(G)-m > (k+1)m™ —m"™ = km",

so by induction G contains a P with vertices v, ..., Vk, ..., Vksr—1, Where v; € X; for
i#0,r—1(modr)andv; € X for i = 0,7 — 1 (mod r). Our goal is to add a new vertex
v = Vi4r € Xi to the end of the path to create a copy of P, ;. Let v, be the vertex in X
for which the edge ex11 = {Vk+1, .. > Vksr } Was deleted in forming G’. Note that vy,
exists as {Vi, Vks1> - - > Vier—1} € E(G) and $0 {Vg41, ..., Vksro1} € 0G. Adding vertex
V41 and edge ey, to our copy of P} yields a copy of P[,, since by definition of v,
we have Vi < V.

Case2.k=0,r—1(modr).

Since 1 < k < 2r — 2, we conclude that k € {r — 1, r}. If k = r, we choose v to be the
largest vertex in X in defining G’ and apply the following argument similar to Case
1. By induction, G’ contains a P with vertices vy,...,Vk, ..., Vky,—1, Where v; € X;
for i#0,r—1 (mod r) and v; € X for i =0, -1 (mod r). Our goal is to add a new
vertex v = Vi, to the end of the path where vi,, = v,, € X. Note that we already have
the three vertices v,_; < v2,_1 < v, in X and we want to add v,, € X satisfying v,_; <
Var_1 < vy < Vo, But v, satisfies this property by the way we defined G’. So we may add
vertex v,, to our P} to obtain a crossing P} .

We now assume that k = r — 1. We modify the definition of G’ slightly as follows:
for every f € dG which has exactly one vertex in each X; and in X, if w is the vertex
of f in X, then delete f U {v} € E(G) where v is the largest such vertex in X satisfying
v <w.

By induction, G contains a P; with vertices vi,...,Vk, ..., Vksr—1, Where v; € X;
for i#0,r—1 (mod r) and v; € X for i =0, -1 (mod r). Our goal is to add a new
vertex v = Vi, to the end of the path, where vy, = v5,; € X.

Note that we already have two vertices v,_; <v, in X. So we want to add
Var-1 satisfying v,_y < va,_1 < V. Since {v,_1,...,v2,—2} € E(G’), the (r —1)-set f =
{Vs>...,v2r_2} hasexactly one vertex v, € X.Since f U{v,1} = {v,_1, Vs, ..., V2r2} €
E(G'), we have f € 0G and, moreover, fuU{v,_;} was not deleted in forming
G'. Hence there is a vertex v € X with v,_; <v <v, such that the edge fu {v} =
{Vs,...,v2r-2,v} € E(G) and the vertex v and edge f U {v} can be used to extend

the P{ toa P;_,. u

Next, we give lower bounds for k > 2r.
Proposition 4.2 For k > 2r > 4 we have exy (n, Py) = Q(n" ' logn).

We take the same family G(#, r, r + 2) as used for ordered hypergraphs (see Section
3.4), but with the cyclic ordering of the vertex set. When we have a k-edge crossing
path P = wyw, ... w1, the vertex w; does not need to be the leftmost in the first
edge {w1,...,w,}, so the argument in Section 3.4 does not go through for k = r + 2.
In fact, G(n, 7,7 + 2) does contain P} for k < 2r —1.

However, suppose G(#,r,r + 2) has a crossing 2r-edge path P = wy ... ws3,_;, and
the ith edge of the path is A; = {w;, wii1,...,Wii,_1}. Suppose, vertex w,,; is the
leftmost in the set {w,, Wy41,...,wa,_1} (here 0 < j < r —1). There are two cases.
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Case 1: Wy, is to the right of W, j_1. (This is always the case for j = 0). Then
writing the edges A j,1, Aj,, and A, ,,; as tuples with increasing coordinates, we have

Aji1= (Wisr Wis1s Witz o s Wisre1)s Ajir = (Wjsrs Wiire1 .o Wiiar1)s
and  Aji = (Wiszr Wikre Wisre2s - o> Wjt2r-1)-
The differences between the second and the first coordinates in these three tuples are
di = Wit1 = Wijsrs dr = Witr+1 = Witrs ds = Witr+1 = Wijs2r.

Using a similar argument to that used at the end of Section 3.4, we conclude that it is
impossible for all the differences d;, d,, d; to be powers of two.

Case 2: Wy, j_1 is to the left of w,,; (so j > 1). Then wy,\j_1 < wj < wyij. We now
write down the four edges:

Aj = (Wj>Wj+1>Wj+2)-~-aWj+r—1)> Aj+1 = (Wj+raWj+1)Wj+2a~--;Wj+r—1))
Aj+r = (W2r+j—1) Witrs Witr+l+++» Wj+2r—2), and
Ajirr = (Wj+2r—l’ Wisars Witrels -+ Wj+2r72)-

Now the four differences
di = Wit — Wj, dy = Wil = Wjtrs ds = Wrtj = Witar-1, dy = Witar = Wjt2r-1
are powers of 2. Since Wi2r-1 <Wj < Wiwr < Wity < Wiy,
dy > ds and d; > d,.
Then d,, d3 < max{d;,ds} < d, + d; which could not happen for powers of 2.
Proof of Theorem 2.2 By Proposition 4.1, there exists C = C, such that

exey(n, Py, ) <Cn™!

and hence exy (1, P;) = O(n"™") for all fixed k € [2r —1]. Since there exists a family
H of r-sets without edges covering the same (r—1) subset twice and with size
e(H) = Q(n"™") (see, e.g., [6]) we have for k >2, r > 2, ex(n, P}) = Q(n"™"). Since
expy (1, Py) > ex(n, P}), we get exy (n,P]) = @(n"™") for 2 < k < 2r - 1. In the case
k = r +1, Theorem 2.1 gives

n n-—-r

On the other hand, since P,

T 2 M?and G(n,r,r+1) 2 M2,
. N 2 _(n n-r
expy (1, Pyy) 2 exey (1, M) = exo(n, M) > [G(n, 1,1 +1)| = B el R

so the second statement in Theorem 2.2 follows. It remains to consider k > 2r, and
here we have

expy (1, Py) < ex.(n, Py) = O(n"'logn)

from Theorem 2.1 and the lower bound in Proposition 4.2. [ ]
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5 Proof of Theorem 2.3
5.1 Upper bound in Theorem 2.3 for r > k > 2

Let us first prove the upper bound

(k=1)(r-1)

(11) expy (1, Py) < .

( " ) (2<k<r).

r—1

Recall that our notation for a crossing k-path P; (k < r) in a cg r-graph with vertex

set 1, is the following: the vertices v1, V3, ..., V,.k-1 form a tight path with edges e; =
{Vis.. s Vizra1}, i € [k] and the (clockwise) ordering of the vertices in ©,, that belong
to the tight path is

VI < Vipr <V < Vopp < oov < Viog < Vioppr < Vi < Viap <o <V, (< vy).

We define Ty (H) to be the set of r-tuples (vi, ..., Vki,—1) € V(H)" for which there is
a P; in H with vertices v, ..., Vx4,—; as ordered above.

Theorem 5.1 Letr>2and1< k <r. Then for any cg r-graph H on Q,,,
|Tx(H)| 27 -e(H) - (r-1)(k-1) -|0H|.

In particular, if H contains no P[, then

oy < K000 (k—l)(r—l)( n )

r—1

Proof We proceed by induction on k. For k = 1and each edge e € E(H), the number
of copies of P with edge set {e} is , since after choosing which vertex of e to label with
v, the order of the remaining vertices of e is determined (they are cyclically ordered).
Therefore, | Ty (H)| > re(H). Suppose k > 2 and assume by induction that | T_;(H)| >
re(H) — (r —=1)(k — 2)|0H|. Let L be the following collection of r-tuples in Ty_;(H).
The underlying elements of L are edges e = {x, ..., xgsr—1} € E(H) with clockwise
ordering

Kigr < Xggr <0 < Xpopgr < X < Xpgp <0 <Xy (< Xpygr)

and there exist no vertices x such that x; < x < x;,; and e — {x;} U {x} € E(H).
Observe that |L| < (r — 1)|0H| since each element e € L as above yields a unique
(r—1)-sete — {x;} € 0H. Indeed, if e — {x;} = e — {x} } with x; < x then x) < x} <
X+1 contradicting the definition of L. Each element of 0H can be cyclically ordered
in r — 1 ways, giving the inequality |L| < (r - 1)|0H].
Our goal is to prove that | Ty (H)| > |Tx-1(H)\L| via an injection. Then, using the
fact that |L| < (r — 1)|0H| and the induction hypothesis, we have

| Tk (H)| > |Tx1(H)\L| 2 7+ e(H) - (k= 2)(r —1) - [0H| - |L|
>r-e(H) - (k-1)(r-1) - |oH].
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We must give an injection f : Tx_1(H)\L - Ty (H). Suppose that e € Ty_;(H)\L
and the elements of e have clockwise ordering

Xitr <Xogr <o < Xpopgr <X < Xfyp <0 < Xy

Then there exists a vertex x such that x; < x < x34; and e — {xx} U {x} € E(H). Let
A be the set of all such vertices x. Let y be the closest vertex to x; among all vertices
of A. In other words, x; < y < x forall x € A. Let f(e) = e — {xx} u{y}. Since k < r,
we have f(e) € Ti(H) as we obtain a P} that ends in f(e) by taking the copy of P;_,
that ends in e and just adding the edge f(e). Moreover, f is an injection, as if there is
ane’ =e—{x;} u{y'} such that f(e’) = f(e) then we have y = y'. Since x # x; we
may assume that that x; < x; < y. But then y would not have been the closest vertex
to xx in A. This contradiction shows that f is indeed an injection and the proof is
complete. [ ]

5.2 Lower bound in Theorem 2.3 for r > k > 2

Our next goal is to prove the following lower bound in Theorem 2.3 for r > k > 2:

-1
12) exey (m PL) > (1+ 0(1))ﬁ(£1).

A segment of Q,, is a sequence of consecutive vertices in the ordering of Q,,. A gap
of an r-element subset R of 0, is a segment of Q,, between two clockwise consecutive
vertices of R that does not include the two vertices. The length of a gap is one more
than the number of elements of ,, in the gap. For k > 2, we say R has a (k, m)-gap if
some k — 1 consecutive gaps of R all have length more than m—in other words, there
are at least m vertices of Q,, in each gap. For example, ifn = 8,7 = 4,R = {v},v2,vs, v}
and the ordering of vertices is

ﬁ<V72<V3<V4<E<V6<V7<B,

then R has a (3,2)-gap due to the two consecutive gaps v3v4 and vgv;. For n > r, let
K, be the family of all r-element subsets of Q,,. For n > r > k,let H(n, r, k, m) be the
family of the members of K, that have (k, m)-gaps, and H(n, r, k, m) be the family
of the members of KJ, that do not have (k, m)-gaps.

For a hypergraph H and v € V(H), let H{v} denote the set of edges of H
containing v.

Lemma 5.2 If
(n-1)In2r
13 >,
3) T (r=-1)(k-1)
then
1 — 1
(14) |H(n,r, k,m)| < E(H) Equivalently, |[H(n,r, k, m)| > 5(”)
r r
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Proof Instead of proving (14) directly, it will be easier to prove that

. . ... 1(n-1
15) vie@ [Homnkm{)l< k=50
r—1
and equation (15) implies equation (14) because |H(n, 1, k, m)| = Z|H(n, r, k, m){j}|

and () = 21K {j}.
Let Q, = [n]. By symmetry, it is enough to prove (15) for j = n. First, we show that

(16) [H(n, ks m){n}] < 1Ky = (K = D)}

Indeed, from each F € H(n,r,k,m){n}, wecan getan F’ ¢ K;_(k_l)m{n - (k-1)m}
by deleting the first m vertices in k — 1 consecutive gaps of length at least m + 1, and
renumbering the remaining n — (k —1)m vertices so that the vertex n of Q, will be
n = (k—1)m.Onthe otherhand, each F' € K7, ) {n - (k —1)m} canbe obtained
this way from r distinct F € H(n, r, k, m){n}. This proves equation (16).

Now, using 1 — x < e™*, equations (16) and (13) yield

n—l—(k—l)m):r(n—l)ﬁn—(k—l)m—i

-1 r—1/53 n—i
- - - -1\ 1
Sr(n 1)exp(—(k Dym(r 1))§r(n )7,
r—1 n-1 r—1)2r

implying equation (15). ]

|H(n,r, k,m){n}| < r(

We are ready to prove equation (12). Let

(r—l)(k—l)]'

In2r

t=t(r,k):[

Suppose n>r >k >2. If r =2, then k =2, and the bound is trivial; so let r > 3.
Suppose first that ¢ divides nand let m = n/t. Then m satisfies equation (13). By rotating
Q,,, we find a subgraph H' of H(n, r, k, m) with at least |[H(n, r, k, m)|/m edges such
that every edge of H' adds up to zero modulo m. We claim that

17) H' does not contain a crossing Py.

Indeed, assume H’ contains a crossing P] with the vertices vo, v1,..., Visr—2. By the
definition of crossing paths, vo < v, < ¥1 < Vi1 <+ < Vgy < Vk14r < Vk. Since the set
{v1,v2,...,v,_1} forms an edge together with both vy and v,, v, = vy mod m. Simi-
larly, v,4; = v; mod m forall i < k. But this means that the edge {v¢,v1,...,v,_1} has
k — 1 consecutive gaps of length more than m, thus it does not belong to H(n, r, k, m).
This contradiction proves equation (17).

Thus, if r > 3, 2 < k < r are fixed, n is a large number divisible by ¢ and m = n/t,
then by (17) and (14), H' is a cg r-graph not containing a crossing P, with

|H'|zi(”)zz—tr(”_1)zw(”‘l)z(1+o(1)) ko1 ( " )

2m\r r—1 2rin2r r-1 3ln2r\r-1
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If # is not divisible by t, then let n’ be the largest positive integer divisible by ¢ such
that n’ < n. Then

. ;o k-1(n"\ _ k-1( n
exo(n,Pk)ZexO(n,Pk)2(1+o(1))3ln2r(r_1)—(1+o(1))3ln2r(r_1).

5.3 The case k=2

Here, we prove the upper bound equation (3), namely:

1( n
exey (1, P] sf( )
olmP) <o\,
Recall that P; on Q, has vertex set
V1 <Vigr <V <V3 <<V, (< Vl),

and edges {vy,...,v,} and {vy,...,v,41 }. Consider a P-free cg r-graph H with vertex
set Q,,. Label the vertices of an e € E(H) as

1<a;<a,<--<a, <n,

and define Ti(e) := e\{a;} and T»(e) := e\{a,}. Since H is P}-free, we have T,(e) #
Ty (e') for e + ¢’ € H (and « = 1,2). Indeed, if we take (in case of @ =1) v,...,v, =
ay,...,a, and {v1,v,.1} = {a1, a]} then we obtain a P;.

We also have T (e) # Ty(e"), otherwise, we define {v;,v,+1} = {a1, a,} and again
obtain a forbidden path. This way we associated two (r —1)-sets to each member of
H, yielding (3). [ ]

54 Thecasek=r

Here, we prove equation (4), namely:

exey (1, Py) > (1~ o(l))(r—Z)(ril).

Recall that P} = v1v; ... v,,—; with clockwise ordering

(18) VI < Vigr V2 < Vapp <V3 <o <Vpl < Vo < ¥y (< V1),
and edge set {e; = {V;, Vis1, ..., Visr_1} 1 i € [r]}. Assume the underlying vertex set is
Q,. By (18),

forevery 1< i <r, the only vertices in e; that can be consecutive

19) on Q, are v ,_1 and v;.

Assume that the # vertices of Q,, are arranged in clockwise orderas1 < --- < n. Let
G be the following cg r-graph with vertex set Q,. An r-set e belongs to E(G) if its
elements are ordered as

(20) 1<a1<a,<--<a,<mn,
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and there exists a unique 1< t <r -2 with a; +1 = a,,,, and otherwise the a;s are
separated. (This also means {aj,a,} # {1,n}). A quick calculation gives |E(G)| =
(r-2)(,",) +0(n2).

We claim that G does not contain a P]. Suppose, on the contrary, that F c G is a
copy of P as described in equation (18). Since each member of G (so each member of
F as well) contains a unique consecutive pair of Q,, we get that the pairs in equation
(19) should be consecutive. If v; with i € [r] is the smallest in {v,...,v5,_1}, then
vi+r—1 is the largest, so they are separated, they could not form a consecutive pair in e;
when we write e; in the form (ay, ..., a,) as in equation (20). If v;,, with i € [r - 1] is
the smallest in {vy,...,v2,_1}, then v;,,_1 and v; are the largest, so they could not be
consecutive in e; by the definition of G. ]

6 Proof of Theorem 2.5

The upper bound for case k =2 follows from Theorem 2.1 and the cg r-graph
G(n,r,r+1) in Section 3.2 provides the matching lower bound.
We are to show that for k, r > 2,

(k- 1)r(:1) +O(n'?) < expy (m, ML) = exc (n, ML) < 2(k ~1)(r - 1)(:1).

A simple construction demonstrating the lower bound in Theorem 2.5 is the
following cg r-graph: Fix a (k —1)-set K c Q, and let A be the set of r-sets of Q,
that contain at least one vertex from K. Let B be the set of r-sets of Q,, for which some
two consecutive vertices have a gap of length at most k — 2 (this means that there
are at most k — 2 vertices between them in clockwise order, not including endpoints).
Note that |A] = (k - 1)(:1) +0(n2), Bl = (r-1)(k - 1)(:1) +0(n"?)and |[An
B| = O(n""?%). The cg r-graph with vertex set 0, and edge set A U Bhas (k - 1)r(rfl) +
O(n""?) edges, and it is easy to see that it does not contain M.

For the upper bound, let H be a cg r-graph with the maximum number of edges
on vertex set Q, with no Mj. A chord is a line segment joining two vertices of
Q,, and its length is one more than the size of the (smallest) gap between the two
vertices. For each edge A, choose a shortest chord ch(A), say v,v; and view the
vertices of A as vy, V2, ..., v, in clockwise order. Define the type of A to be the vector
t(A) = (#,..., t,1) where

ti=vig—vifori=1,...,r—=2and t,.;=n—-(f++t,2) =V —V,_1.

The coordinates of each vector t(A) are positive integers, t,_1(A) > 2, and #,(A) +
.-+ t,_1(A) = n for each A by definition. The number of such vectors is exactly (:’:; )
(because this is equal to the number of ways to mark r — 2 out of the n — 1 separators
in an ordered set of n dots so that the last separator is not marked). For every given

type t = (t1,...,t,-1), the family H(t) of the chords ch(A) of the edges A of type t
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does not contain k crossing chords. Thus, by Theorem 2.4, |H(t)| < 2(k —1)n. Hence,
using r > 3,

|E(H)|<2(k—1)”(:l:22):2(k—1)w( ")

n-1 r—1
<z(k-1)(r-1)(rfl),

as claimed. -

7 Concluding remarks

o A hypergraph F is a forest if there is an ordering of the edges ey, e, .. ., e; of F such
that for all i € {2,3,...,t}, there exists & < i such that e; " Uj<; ej S ey. It is not
hard to show that ex(n, F) = O(n"™!) for each r-uniform forest F. It is therefore
natural to extend the Pach-Tardos Conjecture A to r-graphs as follows:

Conjecture B Let r > 2. Then for any ordered r-uniform forest F with interval chro-
matic number r, ex_,(n, F) = O(n"™" - polylogn).

Theorem 3.1 shows that to prove Conjecture B, it is enough to consider the setting
of r-graphs of interval chromatic number r. Theorem 2.1 verifies this conjecture for
crossing paths, and also shows that the logn factor in Theorem 3.1 is necessary. It
would be interesting to find other general classes of ordered r-uniform forests for r > 3
for which Conjecture B can be proved. A related problem is to determine for which
ordered forests F we have ex_, (n, F) = O(n"™')? This is a hypergraph generalization
of Braf¥’ question [2] which was solved recently for trees [9].

« It appears to be substantially more difficult to determine the exact value of the
extremal function for r-uniform crossing k-paths in the convex geometric setting
than in the ordered setting. It is possible to show that for k < 2r -1,

exy (n, Py
c(k,r) = lim o(mP)

n—oo ( n )
r—1

exists. We do not as yet know the value of ¢(k, r) for any pair (k,r) with2 <k <r,
even though in the ordered setting, Theorem 2.1 captures the exact value of the
extremal function forall k < r+ 1L and c¢(r +1,7) = r.

» One can consider more general orderings of tight paths, namely instead of the
vertices whose subscripts are congruent to a modulo r increasing within an interval,
we can specify which congruence classes of vertices are increasing within their
interval and which are decreasing. Our methods can handle such situations as well.
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