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Abstract— Quadratic programming (QP)-based nonlinear
controllers have gained increasing popularity in the legged
locomotion community. This paper presents a formal foun-
dation to systematically decompose QP-based centralized
nonlinear controllers into a network of lower-dimensional
local QPs, with application to legged locomotion. The pro-
posed approach formulates a feedback structure between
the local QPs and assumes a one-step communication
delay protocol. The properties of local QPs are analyzed,
wherein it is established that their steady-state solutions
on periodic orbits (representing gaits) coincide with that
of the centralized QP. The asymptotic convergence of local
QPs’ solutions to the steady-state solution is studied via
Floquet theory. The effectiveness of the analytical results
is evaluated through rigorous numerical simulations and
various experiments on a quadrupedal robot, with the result
being robust locomotion on different terrains and in the
presence of external disturbances. The paper shows that
the proposed distributed QPs have considerably less com-
putation time and reduced noise propagation sensitivity
than the centralized QP.

Index Terms— Distributed Control, Robotics, Stability of
Nonlinear Systems

I. INTRODUCTION

QUADRATIC programming (QP)-based controllers have
received extensive consideration in recent years for the

real-time planning and control of legged robots. For example,
they have been used in the context of model predictive control
(MPC) for path planning of reduced-order locomotion models
(see e.g., [1]–[3]) and whole-body motion control of full-order
models (see e.g., [4]–[6]). The bedrock of these approaches
considers the centrality structure. Despite the superior perfor-
mance of centralized QP-based controllers, they may exhibit
a lack of scalability with the increasing complexity of modern
legged robots with higher degrees of freedom (DOFs). In
addition, centralized QP-based algorithms cannot be easily
transferred into the control of powered prosthetic legs and
lower-limb exoskeletons because of the presence of inherent
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decentralization in the human-robot structure. The curse of
dimensionality is a common problem in the field of large-scale
systems such as power networks and urban traffic networks
[7]. As a solution, a vast majority of work has focused on
developing distributed and decentralized control algorithms in
large-scale systems, see, e.g., [8]–[11].

In recent years, there have been significant theoretical
and numerical advances in developing efficient methods that
consider a distributed treatment of QPs. Examples include, but
are not limited to, active-set methods [12], [13], Lagrangian
decomposition or dual decomposition [14], and distributed
multiple shooting methods [15]. These methods, however,
depend upon the sparse nature of the equality constraints [16].
They translate very well to the problem of network systems or
distributed MPC [17] as the subsystems are weakly coupled,
hence preserving sparsity. On the contrary, legged robots
are underactuated, high-dimensional, and inherently unstable
hybrid dynamical systems. By nature, any morphological
consideration of subsystems will result in a strong coupling
amongst the local systems. This motivates the development
of distributed QPs for high-DOF legged robots with strong
coupling amongst their subsystems.

Steady-state dynamic gaits correspond to periodic trajec-
tories of the hybrid models of locomotion. Different nonlin-
ear control approaches have been developed to stabilize the
periodic gaits of these systems. These approaches include
but are not limited to hybrid zero dynamics (HZD) [18]–
[22], transverse linearization [23], and controlled symmetries
[24]. The HZD approach has been integrated with the control
Lyapunov functions (CLFs) [4], [5], [25], [26] and control
barrier functions (CBFs) [27] to formulate QP-based nonlinear
controllers for legged robots. The HZD approach has also been
used to synthesize distributed nonlinear controllers for bipedal
and quadrupedal robots [26], [28], prosthetic legs [29], [30],
and exoskeletons [31]. References [28], [32], [33] developed
decentralized controllers based on bilinear matrix inequalities
(BMIs) and decomposition for locomotion models. Reference
[26] presented stability guarantees, based on CLFs and input-
to-state-stability (ISS), for an interconnected system of bipeds.
It then developed model-free local QPs for quadrupedal loco-
motion.

The overarching goal of this paper is to present a formal
foundation to systematically decompose QP-based and central-
ized nonlinear controllers into a network of lower-dimensional
and local QPs for periodic behaviors in hybrid systems, with



application to robotic locomotion. The objectives and key
contributions of the paper are as follows. The paper develops a
network of distributed QPs with an inherent feedback structure
that preserves the steady-state solution of the centralized QP
on periodic orbits. The paper theoretically establishes a set
of sufficient conditions under which the solutions of the local
QPs asymptotically converge to the steady-state solution of
the centralized QP. The paper applies the proposed synthesis
approach utilizing local QPs to experimentally realize robust
locomotion on the 18-DOF A1 quadrupedal robot. In particu-
lar, the theoretical contributions are verified via an extensive
set of numerical and experimental studies for quadrupedal
locomotion at varying speeds and in the presence of different
uncertainties. It is shown that the proposed local QPs have
less sensitivity to noise propagation compared to the original
centralized QP. It is further shown that the total solve time of
the local QPs is reduced by 3.82 times in comparison to the
centralized QP.

II. PROBLEM FORMULATION

The objective of this section is to present the problem state-
ment to synthesize distributed QP-based nonlinear controllers
for periodic orbits of hybrid models of locomotion. Without
loss of generality, we consider single-domain hybrid systems
as follows:

Σ :

{
ẋ = f(x) + g(x)u, x ∈ X

x+ = ∆(x−), x− ∈ X ∩ S,
(1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm denote the states and
control inputs, respectively, for some positive integers n and
m. In addition, X and U represent the state manifold and a
convex polytope of admissible control inputs. The evolution
of the system during continuous-time domains is described
by the smooth (i.e., C∞) dynamics ẋ = f(x) + g(x)u. In
addition, S denotes the guard of the hybrid system on which
the evolution of the system is described by a smooth discrete-
time transition (i.e., reset law) as x+ = ∆(x−). Here, x− and
x+ denote the state of the system right before and after the
reset law, respectively.

In this paper, we consider the following class of real-time
centralized QPs for nonlinear control of legged locomotion
that can arise from input-output (I-O) linearization:

min
u

1

2

∑
i∈I

u⊤
i Pii ui (2)

s.t.
∑
j∈I

Aij(x)uj = bi(x), i ∈ I (3)

ui ∈ Ui, i ∈ I. (4)

Here, we assume that the nonlinear model is composed
of M ≥ 2 interconnected subsystems Σi for i ∈ I :=
{1, · · · ,M}. The local control inputs of the i-th subsystem
is given by ui ∈ Ui ⊂ Rmi . In particular, u := col(ui | i ∈ I)
and we assume that U = U1 × · · · × UM for some convex
polytopes Ui with

∑
i∈I mi = m. In addition, (3) represents

the corresponding decomposition for some state-dependent
coupled equality constraints given by A(x)u = b(x). Fur-
thermore, (4) denotes the decoupled inequality constraints

corresponding to feasibility conditions. Finally, Pii’s for i ∈ I
are positive definite matrices. Throughout this paper, we shall
assume that by employing the centralized QP-based controller
(2)-(4), there is an asymptotically stable periodic orbit (i.e.,
gait) O for the hybrid system model (1).

Assumption 1: (Periodic Solution): We suppose that there
is a unique and periodic optimal solution of the strictly convex
QP (2)-(4) on the orbit O. This solution, referred to as the
steady-state solution, is denoted by u⋆

s (t) := col(u⋆
i,s(t) | i ∈

I) for 0 ≤ t < T , where T represents the fundamental period
of the orbit. It is further assumed that the steady-state solution
belongs to the interior of the set Ui, that is, u⋆

i,s(t) ∈ int(Ui)
for all i ∈ I and every t ∈ [0, T ).

Assumption 1 is not restrictive in that one can enlarge the
admissible set of controls to satisfy the condition u⋆

i,s(t) ∈
int(Ui). Throughout this paper, we shall assume that the
steady-state solution is known for the proposed network of
local QPs. This is not a limited assumption as one can
consider u⋆

s (t) as the feedforward control inputs (e.g., joint-
level torques) that generate the orbit O (i.e., gait). For future
purposes, the steady-state Lagrange multipliers corresponding
to the equality constraints (3) on the periodic orbit are denoted
by α⋆

i,s(t) for i ∈ I . The steady-state solution and Lagrange
multipliers (u⋆

s (t) and α⋆
s (t)) will be used to construct the

proposed network of local QPs. Since the QPs will be solved
digitally, we will continue our analysis in discrete time. In our
notation, k ∈ Z≥0 := {0, 1, · · · } represents the discrete time,
Ts denotes the sampling time, and we assume that T

Ts
= N

for some positive integer N .
Assumption 2: (One-Step Communication Delay): Moti-

vated by the inherent limitation of the distributed structure,
at every time sample k, each local QP can have access to the
optimal solution of the other local QPs solved at time k − 1,
but not the current time sample. In particular, local QPs can
share their optimal solutions from the previous time sample.

Problem 1: (Synthesis of Local QPs): The synthesis prob-
lem of distributed controllers consists of designing M local
QPs whose optimal solutions asymptotically converge to the
steady-state optimal solutions of Assumption 1 while meeting
the communication protocol of Assumption 2.

III. NETWORK OF DISTRIBUTED QPS

The objective of this section is to propose a network of local
QPs that addresses Problem 1.

A. Synthesis of Local QPs

As discussed before, the local QPs can communicate and
share their previous optimal solutions. Let us denote the
optimal solutions of the QPi at time sample k−1 by ui[k−1].
We now propose the following structure for the local QPi,
i ∈ I

min
ui

1

2
u⊤
i Pii ui + η⊤i ui

s.t. Aii ui = bi − ζi

ui ∈ Ui, (5)



where ηi and ζi are feedback terms defined as follows:

ηi :=
∑

j∈I\{i}

A⊤
jiα

⋆
j,s[k]−

∑
j∈I

Lij

(
uj [k − 1]− u⋆

j,s[k − 1]
)

ζi :=
∑

j∈I\{i}

Aij u
⋆
j,s[k]

−
∑
j∈I

Aij Kij

(
uj [k − 1]− u⋆

j,s[k − 1]
)

(6)

with Kij and Lij for i, j ∈ I being proper gain matrices to
be determined. For future purposes, the elements of this set
of gain matrices can be embedded in a parameters vector Θ.
In (6), “\” represents the set minus. In the proposed structure,
the terms η⊤i ui and ζi are added to the cost function and
right-hand side of the equality constraints, respectively. These
functions consist of feedforward terms u⋆

j,s[k] and α⋆
j,s[k] for

j ∈ I \{i} as well as feedback terms to penalize the deviation
from the orbit. In Theorem 1, we will show that the proposed
network of local QPs preserves the steady-state solution u⋆

s [k].
Theorem 2 will show that the convergence to the steady-
state solution will be achieved via a proper selection of the
parameters vector Θ.

Theorem 1: (Steady-State Solutions for QPs): Under As-
sumptions 1-2, u⋆

i,s[k] for i ∈ I are unique optimal solutions
for the proposed local QPs in (5) on the desired orbit O.

Proof: Let us assume that at time k − 1, the solutions
for the local QPs coincide with u⋆

i,s[k − 1] for all i ∈ I. This
assumption reduces ηi and ζi to the feedforward terms, i.e.,
ηi =

∑
j∈I\{i} A

⊤
jiα

⋆
j,s[k] and ζi =

∑
j∈I\{i} Aij u

⋆
j,s[k]. We

then show that u⋆
i,s[k] is the unique solution for the local QPi

at time k. We remark that from Assumption 1, ui = u⋆
i,s[k]

satisfies the equality constraint Aii ui = bi − ζi and the
inequality constraint. Hence, it is a feasible solution. We next
show that the first and second-order Karush–Kuhn–Tucker
(KKT) optimality conditions are met at this point. Since from
Assumption 1 the inequality constraints are inactive (i.e.,
ui ∈ int(Ui)), the Lagrangian for the local QP (5) is reduced
to Li := 1

2u
⊤
i Pii ui + η⊤i ui + α⊤

i (Aii ui + ζi − bi), where
αi represents the Lagrange multipliers corresponding to the
equality constraints of the QPi with i ∈ I . The first-order
KKT optimality condition then implies that

∂Li

∂ui
= u⊤

i Pii +
∑

j∈I\{i}

α⋆⊤
j,s [k]Aji + α⊤

i Aii = 0. (7)

It can be shown that this latter equation coincides with the
one obtained from the first-order KKT condition for the La-
grangian of the centralized QP (2)-(4). In addition, ∂2Li

∂u2
i
= Pii

is positive definite, and hence, ui = u⋆
i,s[k] is indeed the unique

optimal solution.

B. Asymptotic Convergence Analysis

From Theorem 1, the local QPs preserve the steady-state so-
lution. We next study the properties and convergence behavior
for the solutions of the proposed local QPs. Let us assume that
the system’s state evolves on the periodic orbit. According to
the feedback structure, the optimal solutions of the local QPs
at time k + 1 depend on the ones from time k. In particular,

there is a nonlinear and time-varying function F that defines
the following discrete-time dynamics

u[k + 1] = F (k, u[k],Θ) , k = 0, 1, · · · . (8)

According to the construction procedure, F is periodic in k
with period N > 0. In addition, for every parameters vector
Θ, u⋆

s [k] = col(u⋆
i,s[k] | i ∈ I) is an N -periodic solution to

(8). Next, we make the following assumption.
Assumption 3: The matrices Aii, i ∈ I in (3) are full row

rank on the periodic orbit O.
Now, we are in a position to present the following result.
Theorem 2: (Local Asymptotic Stability): Under Assump-

tions 1-3, the following statements hold.

1) The function F(k, u,Θ) is continuously differentiable
(i.e., C1) with respect to u on u = u⋆

s [k].
2) The N -periodic solution u⋆

s [k] is locally asymptotically
stable for (8) if the eigenvalues of the monodromy matrix
lie inside the unit circle, where the monodromy matrix
is defined as follows:

Ψk(Θ) :=
N−1∏
ℓ=0

∂F
∂u

(k + ℓ, u⋆
s (k + ℓ),Θ), (9)

in which the matrices in the product are ordered from
right to left for increasing indices ℓ.

Proof: The QPs in (5) can be considered as optimization
problems whose cost and constraints are parameterized by
(ηi, ζi). We aim to show that the solutions of these QPs are
C1 with respect to (ηi, ζi) on u = u⋆

s [k]. From Theorem 1,
u⋆
i,s[k] is the unique optimal solution for the local QPs. The

cost and constraints are smooth (i.e., C∞) in (ui, ηi, ζi). Since
the inequality constraints are inactive at ui = u⋆

i,s[k], the active
constraints are reduced to the equality ones. From Assumption
3, the gradients of the equality constraints with respect to
the decision variables are full rank (i.e., regularity condition).
Hence, the sufficient conditions of Fiacco’s Theorem [34,
Theorem 2.1] are satisfied. This guarantees the existence,
uniqueness, and C1 continuity of the solutions with respect
to (ηi, ζi) on an open neighborhood of u = u⋆

s [k]. The fact
that (ηi, ζi) is smooth in terms of u completes the proof of
Part 1. Part 2 is an immediate result of Floquet stability theory
[35] for periodic and nonlinear discrete-time systems.

IV. APPLICATION TO QUADRUPEDAL LOCOMOTION

This section aims to numerically and experimentally vali-
date the distributed QP-based controllers for blind quadrupedal
locomotion. We consider the 12.45 (kg) A1 quadruped robot
(see Fig. 1). The evolution of the robot can be described
by 18 DOFs. Here, 6 unactuated DOFs are attributed to the
absolute position and orientation of the body. The other 12
DOFs are actuated and associated with the legs’ motions: 2-
DOFs capture the hip pitch and hip roll motions, and one
additional DOF captures the knee pitch motion for each leg.
In this paper, we study double-domain trotting gaits.



Fig. 1. Snapshots illustrating the performance of the distributed QP-based controllers for a series of blind locomotion experiments (indoor) on the
quadrupedal platform, A1. (a) Forward locomotion in a field of arbitrarily dispersed wooden blocks at 0.5 (m/s), (b) trotting on a compliant surface
(gym mat) scattered with wooden blocks at 0.4 (m/s), (c) forward locomotion with a payload of 4.54 (kg) (%36 uncertainty) at 0.5 (m/s), (d) tethered
pulling while trotting in-place, and (e) stabilization in the presence of external disturbances. Videos of all experiments are available online [36].

A. Hybrid Model of Locomotion
The evolution of the mechanical system during continuous-

time domains of locomotion can be described by

D(q) q̈ +H(q, q̇) = B τ + J⊤(q)λ, (10)

where q ∈ Q represents the generalized coordinates, Q ⊂ R18

denotes the configuration space, τ ∈ T denotes the joint-
level torques, T ⊂ R12 represents a closed and convex set
of admissible torques, λ := col{λℓ | ℓ ∈ G} ∈ R6 denotes a
vector including individual ground reaction fores (GRFs), and
G represents the set of contacting leg ends with the environ-
ment. In addition, D(q) ∈ R18×18 represents the mass-inertia
matrix, H(q, q̇) ∈ R18 includes the Coriolis, centrifugal, and
gravitational terms, and B ∈ R18×12 is the input matrix. We
remark that this model is valid if the GRFs at contacting leg
ends remain in the linearized friction cone, denoted by FC,
that is, λℓ ∈ FC for all ℓ ∈ G. By defining the state vector
as x := col(q, q̇) ∈ X := Q×R18, continuous-time dynamics
can be described by the following state equation

ẋ = f(x) + g(x) τ + w(x)λ. (11)

The continuous-time state equation (11) is different from the
one in (1). However, the decision variables for the control
problem in Section IV-B will contain τ and λ allowing us
to represent the QP in the form of (2)-(4). If a leg contacts
the ground, the system’s state then undergoes a discrete-time
transition as in (1) and according to rigid impact models [18].

B. QP-Based I-O Linearizing Controllers
We consider a set of holonomic output functions, referred to

as virtual constraints [18], to be regulated for the whole-body
motion control as follows:

y(t, q) := h0(q)− hd(t), (12)

where h0(q) encodes a set of controlled variables, and hd(t)
denotes the desired evolution of the controlled variables on the
gait O. In this work, we consider the front-hind decomposition
for the synthesis of distributed QPs (i.e., I = {1, 2}). The
output function y for the entire system is heuristically chosen
such that it is uniquely separable for two distinct subsystems.
We will show that this choice enables us to satisfy Assumption
3. In particular, we choose an 18-dimensional output function
for the centralized QP-based controller. More specifically, 6
outputs are designated for the Cartesian coordinates of the
center of masses (COMs) for the front and hind subsystems.
The remaining 6 outputs are redundant and reserved for the
absolute orientations of the COMs. The last 6 outputs are

reserved to control the Cartesian positions of two swing leg
ends. To address the redundancy in orientation and to ensure
the validity of Assumption 3, we introduce defect variables
v to be used later in (13). For each distributed QP, the local
output yi ∈ R9, i ∈ I has 3 components for the corresponding
swing leg end and 6 components associated with the position
and orientation of the COM. The local torques, τi ∈ R6, i ∈ I,
are similarly separated. Next, differentiating the output y along
the dynamics (11) gives

ÿ = LgLfy τ + LwLfy λ+ L2
fy − ḧd = −KP y −KD ẏ + v,

(13)
where “L” denotes the Lie derivative, LgLfy(t, x) and
LwLfy(t, x) represent the decoupling matrices with respect
to τ and λ, v ∈ R18 is the defect variable, and KP = 400
and KD = 40. The objective is to solve for (τ, λ, v) ∈
R36 that satisfies (13) and contact equations while having
feasible torques and GRFs. Contact equations are a set of
affine conditions in terms of (τ, λ) that represent the zero
acceleration for the stance leg ends. In particular, we have

p̈ = LgLfp τ + LwLfp λ+ L2
fp = 0, (14)

where p := col{pℓ | ℓ ∈ G} ∈ R6 represents a vector
containing the Cartesian coordinates of two stance leg ends.

To solve for a feasible (τ, λ, v), we set up the following
real-time and centralized convex QP (whole-body controller)

min
(τ,λ,v)

γ1
2
∥τ∥2 + γ2

2
∥λ∥2 + γ3

2
∥v∥2

s.t. LgLfy τ + LwLfy λ+ L2
fy − ḧd = −KP y −KD ẏ + v

LgLfp τ + LwLfp λ + L2
fp = 0

τ ∈ T , λℓ ∈ FC, ∀ℓ ∈ G, (15)

where γ1 = 100, γ2 = 1, and γ3 = 107. To minimize the
effect of the defect variable v in the output dynamics, we add
a penalty term to the cost function as γ3

2 ∥v∥2. We remark that
the cost function tries to minimize a weighted sum of 2-norms
of τ , λ, and v. Additionally, we note that the decision variables
are represented by u := col(τ, λ, v) ∈ R36 for the centralized
QP. Equivalently, the decision variables for the local QPs can
be denoted by ui := col(τi, λi, vi) ∈ R18 for i ∈ I. From (15),
we can extract the steady-state solution, u⋆

s (t), that satisfies
Assumption 1. We are now adequately equipped to decompose
the QP in (15) with 36 decision variables, 24 coupled equality
constraints and 70 decoupled inequality constraints into two
local QPs, as given in (5), with 18 decision variables, 12
equality constraints and 35 inequality constraints. It can be
shown that the gradient of the equality constraints with respect



Fig. 2. Phase plots of the unactuated DOFs (roll, pitch, and yaw) and the hip pitch and knee pitch, corresponding to the experiments with payloads
(see Fig. 1(c)), tethered pulling (see Fig. 1(d)), and external pushes (see Fig. 1(e)). An overlay of the nominal trot at 0.5 (m/s) is also provided.

to (τ, λ, v) is full rank as LwLfp is invertible. This, together
with the proper choice of local outputs, meets Assumption 3.

The gains in the structure (6) for local QPs are then tuned
as L11 = L22 = 10, L12 = L21 = 50, K11 = K22 = 0.08,
and K12 = K21 = 0.05. We employ the qpSWIFT solver [37]
at 1 kHz to solve both centralized and local QPs on an off-
board laptop equipped with an i7-1185G7 processor running
at 3.00 GHz. We note that the centralized and distributed QPs
take on average 0.130 (ms) and 0.034 (ms), respectively. In
particular, the total solve time for the proposed local QPs
is reduced by a factor of 3.82. The time-varying Jacobian
matrices in (9) are then numerically computed via finite
difference and their spectral radius approximately becomes
0.13. This makes the spectral radius of the monodromy matrix
over N = 400 samples almost zero which indicates the
asymptotic convergence to the steady-state solution. Finally,
these gains are validated numerically in a physics engine that
considers the hybrid nature of locomotion.

C. Numerical and Experimental Evaluation
The distributed QP-based controller (5) is first validated

through extensive numerical simulations in RaiSim [38]. Sub-
sequently, we experimentally evaluate the performance of the
local QPs on the A1 platform while subjecting the robot to
various uncertainties. Specifically, we consider (a) a terrain
arbitrarily dispersed with wooden blocks (see Fig. 1(a)), (b) a
compliant surface (gym mat) arbitrarily scattered with wooden
blocks (see Fig. 1(b)), and (c) locomotion with a payload
of 4.54 (kg) (36% uncertainty in the total mass) (see Fig.
1 (c)). We consider a speed of 0.5 (m/s) for experiments
in (a) and (c) and a speed of 0.4 (m/s) for the one in
(b). Additionally, we consider (d) tethered pulling (see Fig.
1(d)) and (e) external pushes (see Fig. 1(e)) for in-place
trot locomotion. The proposed local controllers can robustly
stabilize the gaits, as evident from the phase plots in Fig.
2. Especially, Fig. 2(c) illustrates the local controller’s far-
reaching capabilities by demonstrating convergence to the
nominal orbit even after experiencing aggressive pulls and
pushes. Videos of all experiments are available online [36].

Figure 3(a) depicts the experimental torque of the hip
roll from the distributed QP in contrast to the corresponding
steady-state torque (extracted from numerical simulations) and
highlights the close convergence of the local torque to the
prescribed one. The small error between the steady-state and
distributed torques can be attributed to the model uncertainty
and measurement noise from hardware experimentation. We

Fig. 3. (a) Comparison of the hip roll torque of the front right leg against
the corresponding steady-state torque during nominal trot experiment,
demonstrating close convergence. (b) Illustration of the simulated hip
roll torque of the hind right leg in the presence of noisy velocities in the
front subsystem. Here, the gray overlay indicates ground contact.

remark that as each QP knows the solutions from the other
QP with a one-step communication delay, the solution is sub-
optimal compared to the centralized QP. However, as observed
from Fig. 3(a), this solution ultimately converges to the
steady-state solution as shown theoretically. Furthermore, our
experiments indicate that the local solutions have almost the
same robustness as the centralized one for robot locomotion.
To compare the performance of centralized and distributed
QPs, we inject noise into the velocity components of the
front subsystem (in numerical simulations) with a signal-to-
noise ratio (SNR) of 1 (dB). As a result, we notice noisy
torques in the front subsystem under both the control schemes.
However, for the hind subsystem, noise propagates only with
the centralized QP-based controller. The distributed QP-based
controller significantly rejects the noise (see Fig. 3(b)). In
particular, the computed SNR of the torque signal for one
stance domain is increased from 18.35 (dB) in the centralized
QP to 37.37 (dB) in the distributed QP. This property can be
primarily related to the fact that each subsystem deals with
its own Lie derivatives and decoupling matrices arising from
(15) in the structure of (5).

V. CONCLUSION

This paper presented a formal foundation to decompose QP-
based nonlinear controllers into a network of low-dimensional
and distributed QP-based controllers with an inherent feedback
structure for the general class of legged locomotion models.



The proposed network of local QPs is developed based on
a one-step communication delay protocol and preserves the
steady-state solution of the centralized QP on periodic orbits.
Properties of the local QPs were studied to establish a set of
sufficient conditions under which the solutions of the local
QPs asymptotically converge to the steady-state solution of
the centralized QP. The theoretical results were then applied
for the synthesis of distributed I-O linearizing controllers
for realizing agile quadrupedal locomotion. In particular, the
analytical results’ effectiveness was verified via rigorous nu-
merical and experimental studies for the blind and robust
locomotion of the A1 quadrupedal robot in the presence of
disturbances and terrain uncertainties. It is shown that the
total solve time of the local QPs is reduced by 3.82 times
in comparison to the centralized QP. Additionally, a simulated
case study demonstrated that favoring the proposed distributed
QP structure presents better noise-rejection properties.

For future work, we will examine the performance of dis-
tributed QPs while considering a larger number of subsystems
(e.g., each leg of the robot). Evaluation of the proposed con-
troller beyond trot gaits will also be a topic of consideration.
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