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Received: 23 April 2020 / Revised: 13 March 2021 / Accepted: 13 July 2021 /
Published online: 28 July 2021
� The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021

Abstract
In this paper, we consider an analog of the well-studied extremal problem for

triangle-free subgraphs of graphs for uniform hypergraphs. A loose triangle is a

hypergraph T consisting of three edges e, f and g such that je \ f j ¼ jf \ gj ¼
jg \ ej ¼ 1 and e \ f \ g ¼ ;. We prove that if H is an n-vertex r-uniform hyper-

graph with maximum degree M, then as M ! 1, the number of edges in a densest

T-free subhypergraph of H is at least

eðHÞ
M

r�2
r�1

þoð1Þ :

For r ¼ 3, this is tight up to the o (1) term in the exponent. We also show that if H is

a random n-vertex triple system with edge-probability p such that pn3 ! 1 as

n ! 1, then with high probability as n ! 1, the number of edges in a densest T-

free subhypergraph is

min ð1 � oð1ÞÞp
n

3

� �
; p

1
3n2�oð1Þ

� �
:

We use the method of containers together with probabilistic methods and a con-

nection to the extremal problem for arithmetic progressions of length three due to

Ruzsa and Szemerédi.
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1 Introduction

The Turán numbers for a graph F are the quantities exðn;FÞ denoting the maximum

number of edges in an F-free n-vertex graph. The study of Turán numbers is a

cornerstone of extremal graph theory, going back to Mantel’s Theorem [22] and

Turán’s Theorem [29]. A more general problem involves studying exðG;FÞ, which

is the maximum number of edges in an F-free subgraph of a graph G. Some

celebrated open problems are instances of this problem, such as the case when G is

the n-dimensional hypercube—see Conlon [7] for recent results.

In the case that F is a triangle, exðG;FÞ� 1
2

eðGÞ for every graph G, which can be

seen by taking a maximum cut of G, which is essentially tight. In the case G ¼ Gn;p,

the Erd}os–Rényi random graph, exðG;FÞ� 1
2

p
n
2

� �
with high probability provided

p is not too small, and furthermore every maximum triangle-free subgraph is

bipartite—see di Marco and Kahn [10] and also Kohayakawa, Łuczak and Rödl [21]

and di Marco, Hamm and Kahn [9] for related stability results. The study of F-free

subgraphs of random graphs when F has chromatic number at least three is

undertaken in seminal papers of Friedgut, Rödl and Schacht [16], Conlon and

Gowers [8], and Schacht [28].

1.1 Triangle-Free Subgraphs of Hypergraphs

In this paper, we consider a generalization of the problem of determining exðG;FÞ
when F is a triangle to uniform hypergraphs. We write r-graph instead of r-uniform

hypergraph. If G and F are r-graphs, then exðG;FÞ denotes the maximum number of

edges in an F-free subgraph of G. A loose triangle is a hypergraph T consisting of

three edges e, f and g such that je \ f j ¼ jf \ gj ¼ jg \ ej ¼ 1 and e \ f \ g ¼ ;.

We write Tr for the loose r-uniform triangle. The Turán problem for loose triangles

in r-graphs was essentially solved by Frankl and Füredi [15], who showed for each

r � 3 that exðn; TrÞ ¼ n � 1

r � 1

� �
for n is large enough, with equality only for the r-

graph Sr
n of all r-sets containing a fixed vertex. We remark that the Turán problem

for r-graphs is notoriously difficult in general, and the asymptotic behavior of

exðn;Kr
t Þ is a well-known open problem of Erd}os [11]—the celebrated Turán

conjecture states exðn;K3
4Þ� 5

9

n
3

� �
.

The extremal problem for loose triangles is closely connected to the extremal

problem for three-term arithmetic progressions in sets of integers. Specifically,

Ruzsa and Szemerédi [26] made the connection that if C is an abelian group and

A � C has no three term arithmetic progression, then the tripartite linear triple

system HðA;CÞ whose parts are equal to C and where ðc; cþ a; cþ 2aÞ is an edge if

a 2 A—in other words, the edges are three-term progressions whose common

difference is in A—is triangle-free and has jAjjCj edges. Ruzsa and Szemerédi [26]

showed that every n-vertex triangle-free linear triple system has oðn2Þ edges, and

applying this to HðA;CÞ one obtains Roth’s Theorem [24] that jAj ¼ oðjCjÞ. A
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construction of Behrend [6] gives in Z=nZ a set A without three-term progressions

of size n= expðOð
ffiffiffiffiffiffiffiffiffiffi
log n

p
ÞÞ, and so HðA;Z=nZÞ has n2�oð1Þ edges in this case. We

make use of the following theorem:

Theorem 1.1 (Ruzsa and Szemerédi [26]; Erd}os, Frankl, and Rödl [12]) For all n
there exists an n-vertex r-graph which is linear, loose triangle-free, and which has

n2e�c
ffiffiffiffiffiffiffi
log n

p
edges for some positive constant c.

This theorem is an important ingredient for our first theorem, giving a general

lower bound on the number of edges in a densest triangle-free subgraphs of r-

graphs:

Theorem 1.2 Let r � 3 and let G be an r-graph with maximum degree M. Then as
M ! 1,

exðG; TrÞ�M
�r�2

r�1
�oð1ÞeðGÞ:

If a positive integer t is chosen so that
t � 1

r � 1

� �
\M� t

r � 1

� �
and t|n, then the

n-vertex r-graph G consisting of n/t disjoint copies of a clique Kr
t has maximum

degree at most M whereas

exðG; TrÞ ¼
t � 1

r � 1

� �
n

t
¼ r

t
eðGÞ ¼ OðM� 1

r�1Þ � eðGÞ:

Here we used the result of Frankl and Füredi [15] that Sr
t is the extremal Tr-free

subgraph of Kr
t for t large enough. Therefore for r ¼ 3, Theorem 1.2 is sharp up to

the o(1) term in the exponent of M. For r � 4, the best construction we have gives

the following proposition:

Proposition 1.3 For r � 4 there exists an r-graph G with maximum degree M such
that as M ! 1,

exðG; TrÞ ¼ OðM�1
2Þ � eðGÞ:

We leave it as an open problem to determine the smallest c such that

exðG; TrÞ�M
�c�oð1Þ � eðGÞ for every graph G of maximum degree M. We

conjecture the following for r ¼ 3:

Conjecture 1.4 For M� 1, there exists a triple system G with maximum degree M

such that as M ! 1, every T3-free subgraph of G has oðM�1=2Þ � eðGÞ edges.

1.2 Triangle-Free Subgraphs of Random Hypergraphs

Our next set of results concern random hosts. To this end, we say that a statement

depending on n holds asymptotically almost surely (abbreviated a.a.s.) if the
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probability that it holds tends to 1 as n tends to infinity. Let Gr
n;p denote random r-

graph where edges of Kr
n are sampled independently with probability p. For the

r ¼ 2 case we simply write Gn;p.

A central conjecture of Kohayakawa, Łuczak and Rödl [21] was resolved

independently by Conlon and Gowers [8] and by Schacht [28], and determines the

asymptotic value of exðGn;p;FÞ whenever F has chromatic number at least three.

The situation when F is bipartite is more complicated, partly due to the fact that the

order of magnitude of Turán numbers exðn;FÞ is not known in general—see Füredi

and Simonovits [17] for a survey of bipartite Turán problems. The case of even

cycles was studied by Kohayakawa, Kreuter and Steger [20] and Morris and Saxton

[23] and complete bipartite graphs were studied by Morris and Saxton [23] and by

Balogh and Samotij [5].

If F consists of two disjoint r-sets, then exðn;FÞ is given by the celebrated Erd}os–

Ko–Rado Theorem [13], and exðn;FÞ ¼ n � 1

r � 1

� �
. A number of researchers

studied exðGr
n;p;FÞ in this case [2], with the main question being the smallest value

of p such that an extremal F-free subgraph of Gr
n;p consists of all r-sets on a vertex

of maximum degree—ð1 þ oð1ÞÞp n � 1

r � 1

� �
edges. The same subgraphs are also

Tr-free, however the extremal subgraphs in that case are denser and appear to be

more difficult to describe. Our second main result is as follows:

Theorem 1.5 For all n� 2 and p ¼ pðnÞ� 1 with pn3 ! 1 as n ! 1, there exists
a constant c[ 0 such that asymptotically almost surely

min ð1 � oð1ÞÞp
n

3

� �
; p

1
3n2e�c

ffiffiffiffiffiffiffi
log n

p� �
� exðG3

n;p; T3Þ

�min ð1 þ oð1ÞÞp
n

3

� �
; p

1
3n2þoð1Þ

� �
;

and more accurately, for any constant d[ 0, when n�3=2þd � p� n�d, we have

exðG3
n;p; T3Þ� p

1
3n2ðlog nÞc:

We believe that perhaps the lower bound is closer to the truth.

Since G3
n;p for p[ n�2þoð1Þ has maximum degree M� p

n � 1

2

� �
asymptotically

almost surely, Theorem 1.2 only gives exðG3
n;p; T3Þ� p1=2�oð1Þn2 a.a.s. The upper

bound in Theorem 1.5 employs the method of containers developed by Balogh,

Morris and Samotij [3] and Saxton and Thomason [27].

We do not have tight bounds for exðGr
n;p; TrÞ in general for all p and r � 4. Partial

results and conjectures are discussed in the concluding remarks.
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1.3 Counting Triangle-Free Hypergraphs

Balogh, Narayanan and Skokan [4] showed that the number of triangle-free n-vertex

r-graphs is 2Hðnr�1Þ using the method of containers. Note that a lower bound follows

easily by counting all subgraphs of the r-graph Sr
n on n vertices consisting of all r-

sets containing a fixed vertex. In this section, we adapt the method to count triangle-

free hypergraphs with a specified number of edges. We let N(r, m) denote the

number of Tr-free r-graphs with n vertices and m edges. Analogs of Theorems 1.6

and 5.1 for graphs were proven by Balogh and Samotij [5].

Theorem 1.6 Let n� 2, �ðnÞ be a function such that �ðnÞ log n
log log n ! 1 as n ! 1. Let

d ¼ dðnÞ be a function such that �ðnÞ\d\1=2 � �ðnÞ and let m ¼ n2�d. Then

Nð3;mÞ� n2

m

� �3mþoðmÞ
:

The upper bound on exðG3
n;p; T3Þ in Theorem 1.5 will follow from the bound on

N(3, m) in Theorem 1.6 by taking m ¼ p1=3�oð1Þn2, see details in Sect. 4.

2 Proofs of Theorem 1.2 and Proposition 1.3

For graphs, Foucaud, Krivelevich and Perarnau [14] used certain random

homomorphisms to obtain good lower bounds on exðG;FÞ. We briefly summarize

these ideas. Let MðFÞ denote the family of graphs F0 such that there exists a graph

homomorphism / : VðFÞ ! VðF0Þ and such that / induces a bijection from E(F) to

EðF0Þ. Let H be an MðFÞ-free graph with many edges, which we will use as a

template for our subgraph of G. Specifically, we take a random mapping v :
VðGÞ ! VðHÞ and then constructs a subgraph G0 � G such that uv 2 EðG0Þ if and

only if vðuÞvðvÞ 2 EðHÞ and such that vðuÞvðvÞ 6¼ vðuÞvðwÞ for any other edge

uw 2 EðGÞ (that is, we do not keep edges which are incident and map to the same

edge). It is then proven in [14] that G0 will be F-free because H is MðFÞ-free, and

that in expectation G0 will have many edges provided H does.

For general r-graphs, it is not immediately clear how to extend these ideas in such

a way that we can both construct a subgraph with many edges and such that the

subgraph is F-free. Fortunately for Tr we are able to do this. In particular, for this

case it turns out we can avoid a hypergraph analog of the family MðFÞ provided our

template r-graph is linear. This is where the Ruzsa–Szemeredi construction of

Theorem 1.1 plays its crucial role.

Proof of Theorem 1.2 Let t be an integer to be determined later. Let v be a random

map from V(G) to [t] and Gt be the r-graph on [t] from Theorem 1.1. For ease of

notation define vðeÞ ¼ fvðv1Þ; . . .; vðvrÞg when e ¼ fv1; . . .; vrg. Let G0 be the

subgraph of G which contains the edge e if and only if

(1) vðeÞ is an edge of Gt, and
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(2) vðe0Þ 6� vðeÞ for any e0 2 EðGÞ with je \ e0j ¼ 1.

We claim that G0 is Tr-free. Indeed, let T be a Tr of G0, say with edges e1; e2; e3 and

ei \ ej ¼ fxijg for i 6¼ j. Because Gt is linear, if e; e0 are (possibly non-distinct)

edges of Gt, then je \ e0j is either 0, 1, or r. Note that vðeiÞ; vðejÞ are edges of Gt by

(1). Because ei \ ej ¼ fxijg for i 6¼ j, vðxijÞ 2 vðeiÞ \ vðejÞ, and by (2) the size of

this intersection is strictly less than r. Thus vðeiÞ \ vðejÞ ¼ fvðxijÞg. Further, we

must have, say, vðxijÞ 6¼ vðxikÞ for k 6¼ i; j. This is because (1) guarantees that vðxÞ is

a distinct element for each x 2 ei, so in particular this holds for xij; xik 2 ei. In total

this implies vðe1Þ; vðe2Þ; vðe3Þ forms a Tr in Gt, a contradiction.

We wish to compute how large eðG0Þ is in expectation. Fix some e 2 EðGÞ. The

probability that e satisfies (1) is exactly eðGtÞr!=tr. Let fe1; . . .; edg be the edges in

E(G) with jei \ ej ¼ 1. Given that e satisfies (1), the probability that vðe1Þ 6� vðeÞ is

exactly 1 � ðr=tÞr�1
. Note that for any v 62 e [ e1, the event vðvÞ 2 vðeÞ is

independent of the event vðe1Þ 6� vðeÞ, so we have

Pr½vðvÞ 2 vðeÞj e satisfies ð1Þ; vðe1Þ 6� vðeÞ	 ¼ r

t
:

On the other hand, if v 2 e1 n e, then

Pr½vðvÞ 2 vðeÞj e satisfies ð1Þ; vðe1Þ 6� vðeÞ	\ r

t
;

as knowing some subset containing vðvÞ is not contained in vðeÞ makes it less likely

that vðvÞ 2 vðeÞ. By applying these observations to each vertex of e2 n e, we con-

clude that

Pr½vðe2Þ 6� vðeÞj e satisfies ð1Þ; vðe1Þ 6� vðeÞ	 � 1 � r

t

� �r�1

:

By repeating this logic for each ei, and using that eðGtÞ ¼ t2�oð1Þ, we conclude that

Pr½e satisfies ð1Þ; ð2Þ	 � eðGtÞr!
tr

1 � r

t

� �r�1
� �rM

¼ t2�r�oð1Þ 1 � r

t

� �r�1
� �rM

:

By taking t ¼ rðrMÞ1=ðr�1Þ
and using that ð1 � x�1Þx

is a decreasing function in x,

we conclude by linearity of expectation that

E½eðG0Þ	 �M
�1þ 1

r�1
�oð1Þ � eðGÞ:

In particular, there exists some Tr-free subgraph of G with at least this many edges,

giving the desired result. h

We close this section with a proof of Proposition 1.3.

Proof of Proposition 1.3 According to Rödl and Thoma [25], there exists an r-graph

G with Hðn3Þ edges such that every three vertices is contained in at most one edge.

Let G0 be a Tr-free subgraph of G. Define G00 by deleting every edge of G0 which

contains two vertices that are contained in at most 2r edges. Note that

123

2560 Graphs and Combinatorics (2021) 37:2555–2570



eðG0Þ � eðG00Þ � 2r
n
2

� �
.

Assume G00 contains an edge e ¼ fv1; . . .; vrg. Because v1; v2 are contained in an

edge of G00, there exist a set E12 � EðG0Þ of at least 2r þ 1 many edges containing v1

and v2. As G contained at most one edge containing v1; v2, and v3, any e12 6¼ e in

E12 does not contain v3. Fix such e12. Because v2; v3 are contained in an edge of G00,
there exists a set E23 � EðG0Þ of at least 2r þ 1� r � 1 edges containing v2; v3.

Because G contains at most one edge containing v2; v3; ui for any ui 2 e12nfv2g, we

conclude that there exists some e23 2 E23 such that e12 \ e23 ¼ fv2g. Fix such e23.

Because v1; v3 are contained in an edge of G00, there exists a set E13 � EðG0Þ of at

least 2r þ 1� 2r � 3 edges containing v1; v3. Because G contains at most one edge

containing v1; v3; ui for any ui 2 e12 [ e23nfv1; v3g, we conclude that there exists

some e13 2 E13 such that e13 \ e12 ¼ fv1g and e13 \ e23 ¼ fv3g. These three edges

form a Tr in G0, a contradiction. We conclude that G00 contains no edges, and hence

eðG0Þ � 2r
n
2

� �
for any Tr-free subgraph G0 of G. As G has maximum degree

M ¼ Hðn2Þ, we conclude that exðG; TrÞ ¼ Oðn2Þ ¼ OðM�1=2Þ � eðGÞ. h

We note that one can replace the G used in the above proof with an appropriate

Steiner system to obtain a regular graph which serves as an upper bound. It has

recently been proven by Keevash [19] and Glock, Kühn, Lo, and Osthus [18] that

such Steiner systems exist whenever n satisfies certain divisibility conditions and is

sufficiently large.

3 Proof of Theorem 1.5: Lower Bound

As noted in the introduction, the bound of Theorem 1.2 is sharp for r ¼ 3 by

considering the disjoint union of cliques, so we can not improve upon this bound in

general. However, we are able to do better when G contains few copies of Tr by

using a deletion argument.

Proposition 3.1 Let R(G) denote the number of copies of Tr in the r-graph G. Then
for some positive constant c and any integer t� 1,

exðG; TrÞ� ðeðGÞt2�r � RðGÞr3rt5�3rÞe�c
ffiffiffiffiffiffi
log t

p
:

Proof Let v be a random map from V(G) to [t] and Gt the r-graph on [t] from

Theorem 1.1. For ease of notation, if e ¼ fv1; . . .; vrg we define

vðeÞ :¼ fvðv1Þ; . . .; vðvrÞg. Let G0 be the subgraph of G which contains the edge

e if and only if vðeÞ is an edge of Gt.

We claim that e1; e2; e3 2 EðG0Þ form a Tr in G0 if and only if e1; e2; e3 form a Tr

in G and vðe1Þ ¼ vðe2Þ ¼ vðe3Þ is an edge of Gt. Indeed, the backwards direction is

clear. Assume for contradiction that these edges form a Tr in G0 and that

vðe1Þ 6¼ vðe2Þ. Let xij for i 6¼ j be such that ei \ ej ¼ fxijg. Because Gt is linear, if
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e; e0 are (possibly non-distinct) edges of Gt, then je \ e0j is either 0, 1, or r. Because

each ei is in EðG0Þ, we have vðeiÞ 2 EðGtÞ by construction. In particular, as e1 \
e2 ¼ fx12g and vðe1Þ 6¼ vðe2Þ, we must have vðe1Þ \ vðe2Þ ¼ fvðx12Þg. As e3

contains an element in e1 (namely x13) and an element not in e1 (namely x23), we

must have vðe1Þ \ vðe3Þ ¼ fvðx13Þg. Similarly we have vðe2Þ \ vðe3Þ ¼ fvðx23Þg.

Because vðeiÞ is an r-set for each i, we have vðxijÞ 6¼ vðxikÞ for fi; j; kg ¼ f1; 2; 3g.

Thus vðe1Þ; vðe2Þ; vðe3Þ form a Tr in Gt, a contradiction.

The probability that a given Tr � G maps onto a given f 2 EðGtÞ is at most

ðr=tÞ3r�3
, since in particular each vertex of Tr must map onto one of the r vertices of

f. By the claim above this is the only way that a Tr can appear in G0, so by linearity

of expectation we find

E½RðG0Þ	 � eðGtÞr3r�3

t3r�3
RðGÞ:

Let G00 � G0 be a subgraph obtained by deleting an edge from each Tr of G0. By

construction G00 is Tr-free. Since eðGtÞ� t2e�c
ffiffiffiffiffiffi
log t

p
for some positive constant c, we

conclude by linearity of expectation that

exðG; TrÞ� E½eðG00Þ	 � E½eðG0Þ � RðG0Þ	

¼ eðGtÞr!
tr

eðGÞ � eðGtÞr3r�3

t3r�3
RðGÞ

� ðeðGÞt2�r � RðGÞr3rt5�3rÞe�c2

ffiffiffiffiffiffi
log t

p
:

h

Corollary 3.2 For any integer r � 3, and function p ¼ pðnÞ� 1 such that

p2=ð2r�3Þn� 2, we have

E½exðGr
n;p; TrÞ	 � p

1
2r�3n2e�c

ffiffiffiffiffiffiffi
log n

p
;

for some constant c[ 0.

Proof Note for n� 4 that E½eðGr
n;pÞ	 ¼ p

n
r

� �
� pnrr�r, and that E½RðGr

n;pÞ	

� p3n3r�3. Plugging these into the bound of Proposition 3.1 gives for some

positive constant c1

E½exðGr
n;p; TrÞ	� ðpnrr�rt2�r � p3n3r�3r3rt5�3rÞe�c1

ffiffiffiffiffiffi
log t

p
:

Taking t ¼ ð2r4rÞ
1

2r�3p2=ð2r�3Þn, we conclude for some positive constant c2 and

sufficiently large n that

E½exðGr
n;p; TrÞ	 � p

1
2r�3n2e�c2

ffiffiffiffiffiffiffi
log n

p
:

h
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To get the a.a.s. result of Theorem 1.5, we use Azuma’s inequality (see for

example in Alon and Spencer [1]) applied to the edge exposure martingale.

Lemma 3.3 Let f be a function on r-graphs such that jf ðGÞ � f ðHÞj � 1 whenever H
is obtained from G by adding or deleting one edge. Then for any k[ 0,

Pr jf ðGr
n;pÞ � E½f ðGr

n;pÞ	j[ k

ffiffiffiffiffiffiffiffiffiffiffi
n

r

� �s" #
\e�

k2

2 :

Proof of Theorem 1.5 (Lower bounds) Let �ðnÞ ¼ ek
ffiffiffiffiffiffiffi
log n

p
, where k [ 0 is some

large enough constant. For p� n�3=2=�ðnÞ, it is not difficult to show that a.a.s. G3
n;p

contains oðpn3Þ copies of T3, and by deleting an edge from each of these loose

cycles we see that exðG3
n;p; T3Þ� ð1 � oð1Þp n

3

� �
a.a.s..

For n�3=2=�ðnÞ� p� n�3=2�ðnÞ, we do an extra round of random sampling on the

edges of Gr
n;p and keep each edge with probability p0 :¼ �ðnÞ�2

. The r-graph we

obtained is equivalent to Gr
n;pp0 , with pp0 � n�3=2=�ðnÞ. Thus exðG3

n;p; T3Þ� ð1 �

oð1ÞÞpp0 n
3

� �
¼ ð1 � oð1ÞÞp n

3

� �
=�ðnÞ2

a.a.s.. Using p� n�3=2=�ðnÞ, we conclude

that exðG3
n;p; T3Þ� p1=3n2e�3k

ffiffiffiffiffiffiffi
log n

p
a.a.s. in this range.

We now consider p� n�3=2�ðnÞ. The bound in expectation follows from

Corollary 3.2. To show that this result holds a.a.s., we observe that f ðGÞ ¼
exðG; T3Þ satisfies the conditions of Lemma 3.3. For ease of notation let Xn;p ¼
exðG3

n;p; T3Þ and let Bn;p ¼ p1=3n2e�c2

ffiffiffiffiffiffiffi
log n

p
be the lower bound for E½Xn;p	 given in

Corollary 3.2. Setting k ¼ 1
2

Bn;p
n
3

� ��1=2

and applying Azuma’s inequality, we find

Pr Xn;p\
1

2
Bn;p

	 

� Pr Xn;p � E½Xn;p	\� k

n

3

� �1
2

" #

� Pr Xn;p � E½Xn;p	
�� ��[ k

n

3

� �1
2

" #
� exp � k2

2

� �
:

Note that for p� n�3=2�ðnÞ we have k� eðk=3�c2Þ
ffiffiffiffiffiffiffi
log n

p
! 1 as n ! 1. So we

conclude the a.a.s. result. h
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4 Containers

The method of containers developed by Balogh, Morris and Samotij [3] and Saxton

and Thomason [27] is a powerful technique that has been used to solve a number of

combinatorial problems. Roughly, the idea is for a suitable hypergraph H to find a

family of sets C which contain every independent set of H, and in such a way that jCj
is small and each C 2 C contains few edges. For example, by letting H be the 3-

uniform hypergraph where each edge is a K3 in some graph G, we see that

independent sets of H correspond to triangle-free subgraphs of G. The existence of

containers then allows us to better understand how these subgraphs of G behave.

We proceed with the technical details of this approach. Given an r-graph

H ¼ ðV;EÞ, let vðHÞ ¼ jV j, eðHÞ ¼ jEj, and let PðVÞ be the family of all subsets of

V. For a set A of vertices in H, let d(A) be the number of edges in H that contain A.

Let �dðHÞ be the average vertex degree of H, and let MjðHÞ ¼ maxjAj¼j dðAÞ. In order

to establish our upper bounds, we need to use the following container lemma for

hypergraphs:

Lemma 4.1 (Balogh, Morris and Samotij [3]) Let r; b; l 2 N, d ¼ 2�rðrþ1Þ, and
H ¼ ðV;EÞ an r-graph such that

MjðHÞ� b

vðHÞ

� �j�1eðHÞ
l

; j 2 f1; 2; . . .; rg:

Then there exists a collection C of subsets of V such that:

(1) For every independent set I of H, there exists C 2 C such that I � C.

(2) For every C 2 C, jCj � vðHÞ � dl.

(3) jCj�
Pðk�1Þb

s¼0

vðHÞ
s

� �
.

We will use this container lemma to give an upper bound for N(r, m). The idea is

to consider the 3-graph H with VðHÞ ¼ EðKr
nÞ and E(H) consisting of Tr in Kr

n.

Notice that the container lemma requires upper bounds for the maximum codegrees

of the hypergraph. In order to meet this requirement, we will use a balanced-

supersaturation lemma for Tr:

Lemma 4.2 (Balogh, Narayanan and Skokan [4]) For any integer r � 3, there
exists c ¼ cðrÞ such that the following hold for all n 2 N. Given any r-graph G on

[n] with eðGÞ ¼ tnr�1, t� 6ðr � 1Þ, let S ¼ tnr�4 if r � 4 and S ¼ 1 if r ¼ 3. Then
there exists a 3-graph H on E(G), where each edge of H is a copy of Tr in G,

such that:

(1) �dðHÞ� c�1t3S2.

(2) MjðHÞ� ct5�2jS3�j for each j ¼ 1; 2.
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Using the previous two lemmas, we derive the following container lemma for T3-

free hypergraphs. Similar result for Tr-free hypergraphs can also be obtained using

the same idea, and we omit the details.

Lemma 4.3 Let c1 ¼ cð3Þ be the constant obtained in Lemma 4.2 with r ¼ 3. For

any integer n and positive number t with maxð12; c1Þ� t � n
3

� �
=n2, there exists a

collection C of subgraphs of K3
n such that for some constant c2:

(1) For any T3-free subgraph J of K3
n , there exists C 2 C such that J � C.

(2) jCj� exp
c2ðlog tÞn2ffiffi

t
p

� �
.

(3) For every C 2 C, eðCÞ� tn2.

Proof By Lemma 4.2 with r ¼ 3, there exists a positive constant c1 such that for

any 3-graph G on [n] with eðGÞ ¼ t0n2, where t0 � t, there exists a 3-graph H on

E(G) such that each edge of H is a copy of T3 in G, such that:

(1) �dðHÞ� c�1
1 t3

0.

(2) MjðHÞ� c1t5�2j
0 ; j ¼ 1; 2. M3ðHÞ ¼ 1.

We can then use Lemma 4.1 on H with l ¼ t0n2=ð3c2
1Þ and b ¼ n2=

ffiffiffiffiffiffiffiffi
c1t0

p
to get a

collection C of subgraphs of G such that they contain all T3-free subgraphs of G, and

for each C 2 C, eðCÞ� ð1 � �Þt0n2 for some constant �[ 0. Also, we have

jCj �
X2b

s¼0

t0n2

s

� �
� exp

c2ðlog t0Þn2ffiffiffiffi
t0

p
� �

for some constant c2 [ 0.

We use the above argument on G ¼ K3
n to get a family of containers C1. Notice

that the containers of C1 are also 3-graph on [n], so we can repeat this argument on

each C 2 C1 with more than tn2 edges to get a new collection of containers C2. We

do this repeatedly until all containers have less than tn2 edges. Since in each step the

number of edges will decrease by a constant ð1 � �Þ, this process must stop after at

most log ðn=tÞ=� steps. Let t0 ¼ n
3

� �
=n2, tkþ1 ¼ ð1 � �Þtk for k� 0, and let M be

the largest integer such that tM [ t. By definition of tk, we have tM�i [ ð1 � �Þ�it,

and hence, there exists a constant d ¼ dð�Þ[ 0 such that log tM�iffiffiffiffiffiffi
tM�i

p \ð1 � dÞi log tffiffi
t

p .

Then in the worst case, the number of containers we have in the end is less than
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YM
i¼0

exp
c2ðlog tiÞn2ffiffiffi

ti
p

� �
¼ exp

XM
i¼0

c2ðlog tiÞn2ffiffiffi
ti

p
 !

\ exp c2n2
XM
i¼0

ð1 � dÞi log tffiffi
t

p
 !

\ exp
c2ðlog tÞn2

d
ffiffi
t

p
� �

:

This completes the proof. h

With the lemma above, we are ready to prove Theorem 1.6. The proof of

Theorem 5.1 is essentially the same and we omit the details.

Proof of Theorem 1.6 Let C be a collection of containers and c a constant as in

Lemma 4.3 with t ¼ n2dþ�1ðnÞ, where �1ðnÞ ¼ 2 log log n
log n . Since �ðnÞ\d\1=2 � �ðnÞ,

and �ðnÞ ¼ xð log n
log log nÞ, t must satisfies the condition in Lemma 4.3. By considering

all subgraphs of each C 2 C with m ¼ n2�d edges, we conclude that

Nð3;mÞ� exp
cðlog tÞn2ffiffi

t
p

� �
�

tn2

m

 !

� exp c log t � m

log n
þ 1 þ 3dþ �1ðnÞð Þ log nð Þm

� �

� exp d log n � m 3 þ 2 þ oð1Þð Þ log log n

d log n

� �� �

� n2

m

� � 3þ 2þoð1Þð Þlog log n
d log nð Þm

:

Since d[ �ðnÞ ¼ xð log n
log log nÞ, we have

Nð3;mÞ ¼ n2

m

� �3mþoðmÞ
:

h

We are now ready to prove the upper bound of Theorem 1.5.

Proof of Theorem 1.5 (Upper bound) We will only present the proof of

exðG3
n;p; T3Þ�min ð1 þ oð1ÞÞp

n

3

� �
; p

1
3n2þoð1Þ

� �

for p� 1. The proof of the more accurate upper bound in smaller range is essentially

the same, with more careful and explicit computation for the o(1) factor. For

p� n�3=2þoð1Þ, the proof for upper bound is exactly the same as that for lower bound
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when p� n�3=2�ðnÞ. We now consider n�3=2þ�ðnÞ � p� n��ðnÞ for some small func-

tion �ðnÞ ¼ oð1Þ to be determined. Our goal is to show

Pr½exðG3
n;p; T3Þ�m	 ! 0; as n ! 1;

for some m ¼ p1=3n2þoð1Þ. Let Xm be the expected number of T3-free subgraphs in

G3
n;p with m edges. By Theorem 1.6, when n3=2þ�1ðnÞ �m� n2��1ðnÞ for some func-

tion �1ðnÞ ¼ oð1Þ, there exists a function �2ðnÞ ¼ oð1Þ such that the expectation of

Xm satisfies

E½Xm	 ¼ Nð3;mÞ � pm

� n2

m

� �m 3þ�2ðnÞð Þ
pm

¼ n2

m

� � 3þ�2ðnÞð Þ
p

 !m

:

We can let m ¼ n2p1=3��3ðnÞ for some small function �3ðnÞ ¼ oð1Þ such that

n2

m

� � 3þ�2ðnÞð Þ
p\1:

Also we can pick some suitable �ðnÞ, so that n3=2þ�1ðnÞ �m� n2��1ðnÞ. Thus we have

E½Xm	 ! 0 as n ! 1. Then by Markov’s inequality, we have

Pr½exðG3
n;p; T3Þ�m	 ¼ Pr½Xm � 1	 � E½Xm	 ! 0; as n ! 1:

So a.a.s. we have

exðG3
n;p; T3Þ\m ¼ p

1
3n2þoð1Þ:

Finally for p� n�oð1Þ, we have exðG3
n;p; TÞ\exðK3

n ; TÞ ¼ Hðn2Þ ¼ p1=3n2þoð1Þ

a.a.s. h

5 Concluding Remarks

– We are able to generalize Theorem 1.6 to r-graphs as follows:

Theorem 5.1 Let r � 4, n� 1, 0\d\3=2 and m ¼ n3�d. Then

Nðr;mÞ� nr�1

m

� � 1þ 2d
3r�12þ3dð ÞmþoðmÞ

:

When r [ 4, let m ¼ n3þd with d some constant satisfying 0\d\r � 4. Then we
have
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Nðr;mÞ� nr�1

m

� �mþoðmÞ
:

This bound will also leads to an upper bound for exðGr
n;p; TrÞ when

n�rþ3=2þoð1Þ � p� 1, which is essentially tight for p ¼ pðnÞ with

n�rþ4þoð1Þ � p� 1. However, there is a gap between the lower bound and upper

bound in the range n�rþ3=2þoð1Þ � p� n�rþ4þoð1Þ.

– Using the same techniques for the r ¼ 3 case, we are able to show the following.

Theorem 5.2 For r � 4 and 0� x� r a constant, let p ¼ n�rþx and define

frðxÞ ¼ lim
n!1

logn E½exðGr
n;p; TrÞ	:

Then for 0� x� 3=2, frðxÞ ¼ x; for 4\x� r, frðxÞ ¼ x � 1; and for 3=2\x� 4, we
have

max
x þ 3r � 6

2r � 3
; x � 1

� �
� frðxÞ�

3x þ 3

5
:

The bounds for x� 3=2 come from deleting an edge from each triangle in Gr
n;p.

For x[ 3=2, the upper bound follow from Theorem 5.1, the first lower bound

follows from Corollary 3.2, and the second lower bound follows from taking every

edge containing a given vertex.

– We believe that the upper bound is perhaps closer to the truth and have the

following conjecture.

Conjecture 5.3 For r � 4 and 0� x� r a constant, let p ¼ n�rþx and frðxÞ as

defined in Theorem 5.2. Then for 3
2
\x� 4,

frðxÞ ¼
3x þ 3

5

– For the deterministic case, we note that one can extend the proof of Theorem 1.2

to other F by defining maps v : VðGÞ ! VðHÞ for suitable H. In this case a

second step must be done to effectively bound exðG;FÞ. We plan to do this in a

followup paper.
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12. Erd}os, P., Frankl, P., Rödl, V.: The asymptotic number of graphs not containing a fixed subgraph and

a problem for hypergraphs having no exponent. Graphs Combin. 2, 113–121 (1986)

13. Erd}os, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxf. Second

Ser. 12, 313–320 (1961)

14. Foucaud, F., Krivelevich, M., Perarnau, G.: Large subgraphs without short cycles. SIAM J. Discrete

Math. 29, 65–78 (2015)
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