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Abstract

In this paper, we consider an analog of the well-studied extremal problem for
triangle-free subgraphs of graphs for uniform hypergraphs. A loose triangle is a
hypergraph T consisting of three edges e, f and g such that |eNf| =|fNg| =
[gNel=1and enfNg=1(. We prove that if H is an n-vertex r-uniform hyper-
graph with maximum degree A, then as A — oo, the number of edges in a densest
T-free subhypergraph of H is at least

e(H)
ASTo(1)
For r = 3, this is tight up to the o (1) term in the exponent. We also show that if H is

a random n-vertex triple system with edge-probability p such that pn® — oo as
n — oo, then with high probability as n — oo, the number of edges in a densest 7-

free subhypergraph is
n
min{(l - c)(l))p(3 > pint o) }

We use the method of containers together with probabilistic methods and a con-
nection to the extremal problem for arithmetic progressions of length three due to
Ruzsa and Szemerédi.
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1 Introduction

The Turdn numbers for a graph F are the quantities ex(n, F) denoting the maximum
number of edges in an F-free n-vertex graph. The study of Turan numbers is a
cornerstone of extremal graph theory, going back to Mantel’s Theorem [22] and
Turan’s Theorem [29]. A more general problem involves studying ex(G, F), which
is the maximum number of edges in an F-free subgraph of a graph G. Some
celebrated open problems are instances of this problem, such as the case when G is
the n-dimensional hypercube—see Conlon [7] for recent results.

In the case that F is a triangle, ex(G, F) > 1 ¢(G) for every graph G, which can be
seen by taking a maximum cut of G, which is essentially tight. In the case G = G,, ,,
n
2
p is not too small, and furthermore every maximum triangle-free subgraph is
bipartite—see di Marco and Kahn [10] and also Kohayakawa, Luczak and Rodl [21]
and di Marco, Hamm and Kahn [9] for related stability results. The study of F-free
subgraphs of random graphs when F has chromatic number at least three is
undertaken in seminal papers of Friedgut, R6dl and Schacht [16], Conlon and
Gowers [8], and Schacht [28].

the Erdés—Renyi random graph, ex(G, F) ~ % p< > with high probability provided

1.1 Triangle-Free Subgraphs of Hypergraphs

In this paper, we consider a generalization of the problem of determining ex(G, F)
when F is a triangle to uniform hypergraphs. We write r-graph instead of r-uniform
hypergraph. If G and F are r-graphs, then ex(G, F') denotes the maximum number of
edges in an F-free subgraph of G. A loose triangle is a hypergraph T consisting of
three edges e, f and g such that [eNf|=|fNg|=|gNe|=1and enfng=0.
We write T" for the loose r-uniform triangle. The Turan problem for loose triangles
in r-graphs was essentially solved by Frankl and Fiiredi [15], who showed for each

r>3 that ex(n,T") = (’: : I ) for n is large enough, with equality only for the r-

graph S/, of all r-sets containing a fixed vertex. We remark that the Turan problem
for r-graphs is notoriously difficult in general, and the asymptotic behavior of
ex(n,K]) is a well-known open problem of Erdds [11]—the celebrated Turin
conjecture states ex(n,K3) ~ 3 (g)

The extremal problem for loose triangles is closely connected to the extremal
problem for three-term arithmetic progressions in sets of integers. Specifically,
Ruzsa and Szemerédi [26] made the connection that if I" is an abelian group and
A C T has no three term arithmetic progression, then the tripartite linear triple
system H(A, I') whose parts are equal to I" and where (y,y + a,7 + 2a) is an edge if
a € A—in other words, the edges are three-term progressions whose common
difference is in A—is triangle-free and has |A||I'| edges. Ruzsa and Szemerédi [26]
showed that every n-vertex triangle-free linear triple system has o(n?) edges, and
applying this to H(A,I') one obtains Roth’s Theorem [24] that |A| = o(|T]). A
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construction of Behrend [6] gives in Z/nZ a set A without three-term progressions
of size n/exp(O(y/logn)), and so H(A,Z/nZ) has n>~°() edges in this case. We
make use of the following theorem:

Theorem 1.1 (Ruzsa and Szemerédi [26]; Erdos, Frankl, and R6dl [12]) For all n
there exists an n-vertex r-graph which is linear, loose triangle-free, and which has

n*e VI¢" edges for some positive constant c.

This theorem is an important ingredient for our first theorem, giving a general
lower bound on the number of edges in a densest triangle-free subgraphs of r-
graphs:

Theorem 1.2 Let r >3 and let G be an r-graph with maximum degree A. Then as
A — 00,

ex(G,T") > a7 °We(G).

If a positive integer ¢ is chosen so that (i : i ) <A< ( - i ) and #ln, then the

1
n-vertex r-graph G consisting of n/t disjoint copies of a clique K; has maximum
degree at most A whereas

ex(G,T") = (;: 11 ) ; - ;e(G) = 0(677) - ¢(G).

Here we used the result of Frankl and Fiiredi [15] that S} is the extremal 7”-free
subgraph of K] for ¢ large enough. Therefore for r = 3, Theorem 1.2 is sharp up to
the o(1) term in the exponent of A. For r >4, the best construction we have gives
the following proposition:

Proposition 1.3  For r > 4 there exists an r-graph G with maximum degree A such
that as A — 00,

1

ex(G,T") = 0(272) - ¢(G).

We leave it as an open problem to determine the smallest ¢ such that
ex(G,T") > 21 .¢(G) for every graph G of maximum degree A. We
conjecture the following for » = 3:

Conjecture 1.4 For A > 1, there exists a triple system G with maximum degree A
such that as A — oo, every T>-free subgraph of G has o(A~'/?) - e(G) edges.

1.2 Triangle-Free Subgraphs of Random Hypergraphs

Our next set of results concern random hosts. To this end, we say that a statement
depending on n holds asymptotically almost surely (abbreviated a.a.s.) if the
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probability that it holds tends to 1 as n tends to infinity. Let G, , denote random r-
graph where edges of K] are sampled independently with probability p. For the
r =2 case we simply write G, .

A central conjecture of Kohayakawa, Luczak and Rodl [21] was resolved
independently by Conlon and Gowers [8] and by Schacht [28], and determines the
asymptotic value of ex(G,p, F) whenever F has chromatic number at least three.
The situation when F is bipartite is more complicated, partly due to the fact that the
order of magnitude of Turan numbers ex(n, F) is not known in general—see Fiiredi
and Simonovits [17] for a survey of bipartite Turdn problems. The case of even
cycles was studied by Kohayakawa, Kreuter and Steger [20] and Morris and Saxton
[23] and complete bipartite graphs were studied by Morris and Saxton [23] and by
Balogh and Samotij [5].

If F consists of two disjoint r-sets, then ex(n, F) is given by the celebrated Erd&s—
-1
-1
studied ex(GfLP7 F) in this case [2], with the main question being the smallest value

Ko-Rado Theorem [13], and ex(n,F) = (’Z ) A number of researchers

of p such that an extremal F-free subgraph of G, , consists of all r-sets on a vertex
of maximum degree—(1 —i—o(l))p(’: : }) edges. The same subgraphs are also
T"-free, however the extremal subgraphs in that case are denser and appear to be
more difficult to describe. Our second main result is as follows:

Theorem 1.5 Foralln>?2 and p = p(n) <1 with pn® — 0o as n — oo, there exists
a constant ¢ > 0 such that asymptotically almost surely

min{(] —o(1 ))p(;l) ,p%nze—f\/@} <ex(G2,,T?)

<mm{<1 +o<1))p(’3’ ),p%n”““},

and more accurately, for any constant o > 0, when p=3/2+0 <p< n%, we have

ex(G),, T°) < p'n*(logn)“.

We believe that perhaps the lower bound is closer to the truth.

Since G, , for p > n=2+°()

. n .
has maximum degree A ~ p( ) ) asymptotically

almost surely, Theorem 1.2 only gives ex(GZyp, 73) > p'/?=°Mp? a.as. The upper

bound in Theorem 1.5 employs the method of containers developed by Balogh,
Morris and Samotij [3] and Saxton and Thomason [27].

We do not have tight bounds for ex(Gfl’p, T") in general for all p and r > 4. Partial
results and conjectures are discussed in the concluding remarks.

@ Springer



Graphs and Combinatorics (2021) 37:2555-2570 2559

1.3 Counting Triangle-Free Hypergraphs

Balogh, Narayanan and Skokan [4] showed that the number of triangle-free n-vertex
r-graphs is 26""") using the method of containers. Note that a lower bound follows
easily by counting all subgraphs of the r-graph §; on n vertices consisting of all r-
sets containing a fixed vertex. In this section, we adapt the method to count triangle-
free hypergraphs with a specified number of edges. We let N(r, m) denote the
number of 7"-free r-graphs with n vertices and m edges. Analogs of Theorems 1.6
and 5.1 for graphs were proven by Balogh and Samotij [5].

Theorem 1.6 Let n>2, e(n) be a function such that ii)"g)lfgg:

5 = 6(n) be a function such that e(n)<5<1/2 — e(n) and let m = n*>~°. Then

N(3 )< <n2>3m+o(m)
,m)< | — .

m

— 00 as n — oo. Let

The upper bound on ex(G> , T*) in Theorem 1.5 will follow from the bound on

np?
N(3, m) in Theorem 1.6 by taking m = p'/3~°pn2, see details in Sect. 4.

2 Proofs of Theorem 1.2 and Proposition 1.3

For graphs, Foucaud, Krivelevich and Perarnau [14] used certain random
homomorphisms to obtain good lower bounds on ex(G, F). We briefly summarize
these ideas. Let M (F) denote the family of graphs F’ such that there exists a graph
homomorphism ¢ : V(F) — V(F') and such that ¢ induces a bijection from E(F) to
E(F'). Let H be an M(F)-free graph with many edges, which we will use as a
template for our subgraph of G. Specifically, we take a random mapping y :
V(G) — V(H) and then constructs a subgraph G’ C G such that uv € E(G’) if and
only if y(u)x(v) € E(H) and such that y(u)y(v) # y(u)x(w) for any other edge
uw € E(G) (that is, we do not keep edges which are incident and map to the same
edge). It is then proven in [14] that G’ will be F-free because H is M (F)-free, and
that in expectation G’ will have many edges provided H does.

For general r-graphs, it is not immediately clear how to extend these ideas in such
a way that we can both construct a subgraph with many edges and such that the
subgraph is F-free. Fortunately for 7" we are able to do this. In particular, for this
case it turns out we can avoid a hypergraph analog of the family M (F) provided our
template r-graph is linear. This is where the Ruzsa—Szemeredi construction of
Theorem 1.1 plays its crucial role.

Proof of Theorem 1.2 Let ¢t be an integer to be determined later. Let y be a random
map from V(G) to [f] and G, be the r-graph on [f] from Theorem 1.1. For ease of
notation define y(e) = {y(v1),...,x(v,)} when e={vy,...,v,}. Let G’ be the
subgraph of G which contains the edge e if and only if

(1) x(e) is an edge of G,, and
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(2) x(¢) ¢ x(e) for any ¢ € E(G) with [ene'| = 1.

We claim that G’ is T"-free. Indeed, let Tbe a T" of G', say with edges ey, >, e3 and
e;Nej = {x;} for i #j. Because G, is linear, if e,e’ are (possibly non-distinct)
edges of G,, then |e N ¢'| is either 0, 1, or r. Note that y(e;), x(e;) are edges of G, by
(1). Because e; Ne; = {x;} for i # j, x(x;j) € x(ei) N x(e;), and by (2) the size of
this intersection is strictly less than r. Thus yx(e;) Ny(e;) = {x(x;)}. Further, we
must have, say, y(x;) # x(xi) for k # i,j. This is because (1) guarantees that y(x) is
a distinct element for each x € e;, so in particular this holds for x;;, x; € e;. In total
this implies y(e1), y(e2), x(e3) forms a T” in G,, a contradiction.

We wish to compute how large ¢(G’) is in expectation. Fix some e € E(G). The
probability that e satisfies (1) is exactly e(G,)r!/t". Let {ey,...,eq} be the edges in
E(G) with |e; Ne| = 1. Given that e satisfies (1), the probability that y(e;) ¢ yx(e) is
exactly 1 — (r/t)"'. Note that for any v&eUe;, the event y(v) € y(e) is
independent of the event y(e;) ¢ y(e), so we have

,

Pr[x(v) € y(e)| e satisfies (1), y(e1) Z x(e)] = .

On the other hand, if v € ¢ \ e, then

Prlz(v) € 1(e)] e satisfies (1), z(e1) ¢ 1(e)] <.

as knowing some subset containing y(v) is not contained in y(e) makes it less likely
that y(v) € y(e). By applying these observations to each vertex of e, \ e, we con-
clude that

Prly(ez) ¢ x(e)| e satisfies (1), x(e1) & y(e)] >1— (;)ril.

By repeating this logic for each e;, and using that ¢(G;) = 2= we conclude that

Pre satisfies (1), (2)]> LG (1 - (f)’_1>m_ 2-r—o() <1 _ (Z)"l)m.

tr t t

By taking ¢ = r(r2)"""" and using that (1 — x~')* is a decreasing function in x,
we conclude by linearity of expectation that

E[e(G))] > a~ 700 . ¢(G).

In particular, there exists some 7"-free subgraph of G with at least this many edges,
giving the desired result. O

We close this section with a proof of Proposition 1.3.

Proof of Proposition 1.3 According to R6dl and Thoma [25], there exists an r-graph
G with ©(n?) edges such that every three vertices is contained in at most one edge.
Let G’ be a T"-free subgraph of G. Define G” by deleting every edge of G’ which
contains two vertices that are contained in at most 2r edges. Note that
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e(G') — e(G") <2r(’2’).

Assume G” contains an edge e = {vy,...,v,}. Because v;, v, are contained in an
edge of G”, there exist a set E;; C E(G’) of at least 2r + 1 many edges containing v,
and v,. As G contained at most one edge containing vy, v,, and v3, any e # e in
E1> does not contain v3. Fix such ejp. Because v,, v3 are contained in an edge of G”,
there exists a set E3 C E(G') of at least 2r +1>r — 1 edges containing vy, v3.
Because G contains at most one edge containing v,, v3, u; for any u; € ej2\{v2}, we
conclude that there exists some e,3 € Ep; such that e, Nes; = {v,}. Fix such ep;.
Because vy, v3 are contained in an edge of G”, there exists a set Ej3 C E(G’) of at
least 2r + 1 >2r — 3 edges containing vy, v3. Because G contains at most one edge
containing vy, vs,u; for any u; € ejp Uex\{vi,v3}, we conclude that there exists
some e3 € Ej3 such that ej3 Nejp = {v;} and e13 Ney3 = {v3}. These three edges
form a 7" in G', a contradiction. We conclude that G” contains no edges, and hence

e(G) §2r<;> for any T"-free subgraph G’ of G. As G has maximum degree
A = O(n?), we conclude that ex(G,T") = O(n?) = O(A~'/?) - ¢(G). O

We note that one can replace the G used in the above proof with an appropriate
Steiner system to obtain a regular graph which serves as an upper bound. It has
recently been proven by Keevash [19] and Glock, Kiihn, Lo, and Osthus [18] that
such Steiner systems exist whenever n satisfies certain divisibility conditions and is
sufficiently large.

3 Proof of Theorem 1.5: Lower Bound

As noted in the introduction, the bound of Theorem 1.2 is sharp for r =3 by
considering the disjoint union of cliques, so we can not improve upon this bound in
general. However, we are able to do better when G contains few copies of 7" by
using a deletion argument.

Proposition 3.1 Letr R(G) denote the number of copies of T" in the r-graph G. Then
for some positive constant ¢ and any integer t > 1,

ex(G,T7) > (e(G) ™" — R(G)r ¥ )e VIoer,

Proof Let y be a random map from V(G) to [f] and G, the r-graph on [f] from
Theorem 1.1.  For ease of notation, if e={v,...,v,} we define
1(e) :={x(vn),...,x(v»)}. Let G’ be the subgraph of G which contains the edge
e if and only if y(e) is an edge of G,.

We claim that e, e;,e3 € E(G') form a T" in G if and only if e, e, e3 form a T"
in G and y(e;) = yx(e2) = y(e3) is an edge of G;. Indeed, the backwards direction is
clear. Assume for contradiction that these edges form a 7" in G’ and that
1(e1) # x(e2). Let x;; for i # j be such that e; N e; = {x;}. Because G, is linear, if
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e, € are (possibly non-distinct) edges of G;, then |e N ¢'| is either 0, 1, or r. Because
each ¢; is in E(G’), we have y(e;) € E(G;) by construction. In particular, as e; N
ex ={xi2} and y(e1) # x(e2), we must have y(er) N y(e2) = {x(x12)}. As e3
contains an element in e; (namely x;3) and an element not in e; (namely x,3), we
must have 7(e1) N 7(es) = {7(x3)}. Similarly we have 7(e2) 1 z(es) = {x(x23)}.
Because y(e;) is an r-set for each i, we have y(x;) # y(xi) for {i,j,k} = {1,2,3}.
Thus y(e;), x(e2), x(e3) form a T” in G,, a contradiction.

The probability that a given 7" C G maps onto a given f € E(G;) is at most
(r/ t)3r_3, since in particular each vertex of 7" must map onto one of the r vertices of
/- By the claim above this is the only way that a T" can appear in G', so by linearity
of expectation we find

E[R(G)] <

Let G” C G’ be a subgraph obtained by deleting an edge from each 7" of G'. By
construction G” is T"-free. Since e(G,) > t?e “V log? for some positive constant ¢, we
conclude by linearity of expectation that

ex(G,T") > E[e(G")] > E[e(G") — R(G')]

e(Gy)r! e(G)r¥3
= t;f E(G) o t;r—3

> (E(G)IZ—r _ R(G)r3’t5_3’)e‘62\/@.

R(G)

O

Corollary 3.2 For any integer r>3, and function p=p(n)<1 such that
pz/(2’_3)n >2, we have

[E[GX(G:W, Tr)] ZpﬁnZe—c,/logn7

for some constant ¢ > 0.

Proof Note for n>4 that Ele(G )] :p(’:> >pn'r™’, and that E[R(G, )]

<p’n* 3. Plugging these into the bound of Proposition 3.1 gives for some
positive constant c;

[E[eX(G’ Tr)] Z (pnrrfrt27r _ p3n3r73r3rt573r)efc]\/logt.

np?

Taking ¢t = (2r4’)ﬁp2/ (27=3)p, we conclude for some positive constant ¢, and
sufficiently large n that

Elex(G. ,,T")] Zpﬁnze’”\/@,

np?
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To get the a.a.s. result of Theorem 1.5, we use Azuma’s inequality (see for
example in Alon and Spencer [1]) applied to the edge exposure martingale.

Lemma 3.3 Let f be a function on r-graphs such that |f (G) — f(H)| < 1 whenever H
is obtained from G by adding or deleting one edge. Then for any 4 > 0,

Pr|lf(G,,) — EIf(G, )| > i\/@

Proof of Theorem 1.5 (Lower bounds) Let €(n) = e"V!°¢" where k > 0 is some
large enough constant. For p < n~3/?/e(n), it is not difficult to show that a.a.s. Gz_p

2
<e 2.

contains o(pn®) copies of T°, and by deleting an edge from each of these loose

cycles we see that ex(wa7 T3)>(1 - 0(1)p<;l> a.a.s..

For n=3/? Je(n) < p <n~3?¢(n), we do an extra round of random sampling on the

edges of G, , and keep each edge with probability p’ := e(n)"2. The r-graph we

with pp’ <n=3?2/e(n). Thus ex(G> ,T3)> (1 —

obtained is equivalent to G, P

o(1))pp' (’31) =(1- 0(1))p<§>/e(n)2 a.a.s.. Using p >n~3/2/e(n), we conclude

that ex(Gfl’p, T3) 2p1/3nze_3k\/@ a.a.s. in this range.

We now consider p>n—3/%¢(n). The bound in expectation follows from
Corollary 3.2. To show that this result holds a.a.s., we observe that f(G) =
ex(G, T3) satisfies the conditions of Lemma 3.3. For ease of notation let X,,, =

ex(Gpr, 73) and let B, = p'/3n?e~2V1°¢" be the lower bound for E[X, ,] given in

-1/2
Corollary 3.2. Setting 1 = %Bn”,, (;) and applying Azuma’s inequality, we find

- > (1) | (2)

Note that for p>n—3/2¢(n) we have A>e*/3-2V1oen _, o0 a5 n — 00, So we
conclude the a.a.s. result. (]

1
Pr {Xn,p < EB’LP:| <Pr 3

(n
Xop — E[X,p) < — A( )

<Pr
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4 Containers

The method of containers developed by Balogh, Morris and Samotij [3] and Saxton
and Thomason [27] is a powerful technique that has been used to solve a number of
combinatorial problems. Roughly, the idea is for a suitable hypergraph H to find a
family of sets C which contain every independent set of H, and in such a way that |C|
is small and each C € C contains few edges. For example, by letting H be the 3-
uniform hypergraph where each edge is a K3 in some graph G, we see that
independent sets of H correspond to triangle-free subgraphs of G. The existence of
containers then allows us to better understand how these subgraphs of G behave.

We proceed with the technical details of this approach. Given an r-graph
H = (V,E),letv(H) = |V|,e(H) = |E|, and let P(V) be the family of all subsets of
V. For a set A of vertices in H, let d(A) be the number of edges in H that contain A.
Let d(H) be the average vertex degree of H, and let A;(H) = max|s_; d(A). In order
to establish our upper bounds, we need to use the following container lemma for
hypergraphs:

Lemma 4.1 (Balogh, Morris and Samotij [3]) Let r,b,l € N, § =27"0+D and
H = (V,E) an r-graph such that

A(H) < (V(2)>j_le(7)

Then there exists a collection C of subsets of V such that:

,J€{1,2,...,r}.

(1) For every independent set I of H, there exists C € C such that I C C.
(2) Forevery C€C, |C|<v(H)—dl

® le= (M),

N

We will use this container lemma to give an upper bound for N(r, m). The idea is
to consider the 3-graph H with V(H) = E(K) and E(H) consisting of T" in K.
Notice that the container lemma requires upper bounds for the maximum codegrees
of the hypergraph. In order to meet this requirement, we will use a balanced-
supersaturation lemma for 7":

Lemma 4.2 (Balogh, Narayanan and Skokan [4]) For any integer r >3, there
exists ¢ = c(r) such that the following hold for all n € N. Given any r-graph G on
[n] with e(G) =t ', t>6(r— 1), let S=tm"* ifr>4and S =1 if r = 3. Then
there exists a 3-graph H on E(G), where each edge of H is a copy of T" in G,
such that:

(1) d(H)>c's.
(2) A(H) <P ¥S* for each j=1,2.
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Using the previous two lemmas, we derive the following container lemma for 7°-
free hypergraphs. Similar result for 7”-free hypergraphs can also be obtained using
the same idea, and we omit the details.

Lemma 4.3 Let ¢; = ¢(3) be the constant obtained in Lemma 4.2 with r = 3. For
any integer n and positive number t with max(12,¢;) <t < (g)/nz, there exists a
collection C of subgraphs of Ks such that for some constant c;:

(1) For any T3-free subgraph J of KS, there exists C € C such that J C C.
@ €] < exp(2050).

t

(3) For every C € C, e(C) <tn?.

Proof By Lemma 4.2 with r = 3, there exists a positive constant ¢; such that for
any 3-graph G on [n] with e(G) = ton?, where ) > 1, there exists a 3-graph H on
E(G) such that each edge of H is a copy of T° in G, such that:

() dH)zei's.
Q) Aj(H)<cify Pj=1,2. A3(H) = 1.

We can then use Lemma 4.1 on H with [ = ton>/(3¢}) and b = n?/\/c11y to get a
collection C of subgraphs of G such that they contain all 73-free subgraphs of G, and
for each C € C, e(C) < (1 — €)ton* for some constant € > 0. Also, we have

2b 2 2
|C‘ < Z(l‘o:l ) < exp (Cz(log l‘o)fl )
s=0

fo

for some constant ¢, > 0.

We use the above argument on G = K to get a family of containers C;. Notice
that the containers of C; are also 3-graph on [n], so we can repeat this argument on
each C € C; with more than tm? edges to get a new collection of containers C,. We
do this repeatedly until all containers have less than tn? edges. Since in each step the
number of edges will decrease by a constant (1 — ¢), this process must stop after at

most log (n/t)/e steps. Let ty = (g)/nz trr1 = (1 — e)t for k>0, and let M be

the largest integer such that #); > ¢. By definition of #;, we have fy,_; > (1 — e)fit,
. _ log ty—i ilogt
and hence, there exists a constant 6 = d(e) > 0 such that e < (1-9) N

Then in the worst case, the number of containers we have in the end is less than
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< exp (czn2 Z(l — 5)ilo—\/g;>

i=0

1 2

This completes the proof. O

With the lemma above, we are ready to prove Theorem 1.6. The proof of
Theorem 5.1 is essentially the same and we omit the details.

Proof of Theorem 1.6 Let C be a collection of containers and ¢ a constant as in

Lemma 4.3 with t = n?+41()_ where ¢, (n) = %. Since e(n) <d<1/2 — e(n),

and €(n) = w(log’lgo '; -), t must satisfies the condition in Lemma 4.3. By considering

all subgraphs of each C € C with m = n>~? edges, we conclude that

o2 ()

clogt- —+( + (35+61(n))10gn)m)

(
(510gn m<3+(2+ (1))10glogn>>

Jlogn
( ) 3+ 2+o(1 k:ﬁl‘;i")m

Since & > €(n) = w(—2E%), we have

loglogn
) 3m+o(m)
N(3 =(— .
B = (%)

We are now ready to prove the upper bound of Theorem 1.5.

< exp

| /\

IA

Proof of Theorem 1.5 (Upper bound) We will only present the proof of

ex(G,,, T°) Smin{(l + 0(1))p<3) pin?rell >}

for p < 1. The proof of the more accurate upper bound in smaller range is essentially
the same, with more careful and explicit computation for the o(1) factor. For

p <n=3/2t°() the proof for upper bound is exactly the same as that for lower bound
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when p < n’3/26(n). We now consider n—3/2+¢() <p< n=<" for some small func-
tion e(n) = o(1) to be determined. Our goal is to show

Pr[ex(Gf;_’p, T3 >m] — 0, as n — oo,

for some m = p'/3n2t°(1 Let X,, be the expected number of T>-free subgraphs in
Gfl’p with m edges. By Theorem 1.6, when n3/2t¢ () <, < n?~4™ for some func-
tion €;(n) = o(1), there exists a function e;(n) = o(1) such that the expectation of
X, satisfies

E[X.] =N(3,m)-p™

n2 m(3+e€(n))
< <Z> p"

((nz) (3+ex(m) )
= — p .
m

We can let m = n?p'/3=%() for some small function e3(n) = o(1) such that

2\ Bre)
(—) p<l.
m

Also we can pick some suitable ¢(n), so that n*/>7¢1(") < < n?>=<1(") Thus we have
E[X.,] — 0 as n — oc. Then by Markov’s inequality, we have

Prlex(G> , T%) >m] = Pr[X,, > 1] <E[X,,] — 0, as n — oco.

n.p?

So a.a.s. we have
1
ex(G?Lp, %) <m = pin*tol,

Finally for p>n1, we have ex(Gzﬁp, T)<ex(K3,T) = O(n?) = p'/3p*+oll)

a.a.s. O

5 Concluding Remarks

— We are able to generalize Theorem 1.6 to r-graphs as follows:

Theorem 5.1 Let r>4,n>1,0<6<3/2 and m = n*°. Then

( ) (n,1> (l+ﬁg+35)m+o(m)
N(r,m) < .

m

When r > 4, let m = n>*° with & some constant satisfying 0<<r — 4. Then we
have

@ Springer



2568 Graphs and Combinatorics (2021) 37:2555-2570

r—1y m+o(m)
N(r,m) < <n ) .

m

This bound will also leads to an upper bound for ex(Gj,,T") when
nH32e() <p <1,  which is essentially tight for p=p(n) with
n—rt4te(l) < p < 1. However, there is a gap between the lower bound and upper

bound in the range n~"+3/2+0(1) < p < prtatell),

— Using the same techniques for the r = 3 case, we are able to show the following.

Theorem 5.2 For r>4 and 0 <x <r a constant, let p = n~"™ and define

fr(x) = lim log, E[ex(G, ,, T")].
n—oo b
Then for 0 <x<3/2, f,(x) = x; for 4<x <r, f,(x) = x — 1; and for 3/2 <x <4, we
have

3x+3

7x_1}Sf;’(x)§ 5 .

x+3r—=6
axq ——
2r—3

The bounds for x <3/2 come from deleting an edge from each triangle in G,
For x > 3/2, the upper bound follow from Theorem 5.1, the first lower bound
follows from Corollary 3.2, and the second lower bound follows from taking every
edge containing a given vertex.

— We believe that the upper bound is perhaps closer to the truth and have the
following conjecture.

Conjecture 5.3 For r>4 and 0<x<r a constant, let p=n"""" and f,(x) as
defined in Theorem 5.2. Then for % <x<4,

_ 3x+3

fl) ==

— For the deterministic case, we note that one can extend the proof of Theorem 1.2
to other F by defining maps y : V(G) — V(H) for suitable H. In this case a
second step must be done to effectively bound ex(G, F). We plan to do this in a
followup paper.
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