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Robust Predictive Control for Quadrupedal
Locomotion: Learning to Close the Gap between

Reduced- and Full-Order Models
Abhishek Pandala1, Randall T. Fawcett1, Ugo Rosolia2, Aaron D. Ames2, and Kaveh Akbari Hamed1

Abstract—Template-based reduced-order models have pro-
vided a popular methodology for real-time trajectory planning of
dynamic quadrupedal locomotion. However, the abstraction and
unmodeled dynamics in template models significantly increase the
gap between reduced- and full-order models. This letter presents
a computationally tractable robust model predictive control
(RMPC) formulation, based on convex quadratic programs (QP),
to bridge this gap. The RMPC framework considers the single
rigid body model subject to a set of unmodeled dynamics
and plans for the optimal reduced-order trajectory and ground
reaction forces (GRFs). The generated optimal GRFs of the high-
level RMPC are then mapped to the full-order model using a low-
level nonlinear controller based on virtual constraints and QP.
The proposed hierarchical control framework is employed for
locomotion over rough terrains. We leverage deep reinforcement
learning to train a neural network to compute the set of
unmodeled dynamics for the RMPC framework. The proposed
controller is finally validated via extensive numerical simulations
and experiments for robust and blind locomotion of the A1
quadrupedal robot on different terrains.

Index Terms—Legged Robots, Motion Control, Multi-Contact
Whole-Body Motion Planning and Control

I. INTRODUCTION

REAL-time trajectory planning and control algorithms
have been popular methods to realize versatile and dy-

namic motions in quadrupedal robots rivaling their biological
counterparts. Approaches along these lines can be sectioned
into two categories: the ones using full-order models and
the others using reduced-order (i.e., template-based) models.
Reduced-order models provide a low-dimensional realization
of the nonlinear full-order dynamics [1]. This makes the
planning algorithms computationally tractable and amenable
for real-time implementation. Furthermore, if the template
models are linear or linearized, the planning algorithms can
be transcribed as convex optimization problems. Planning
dynamic locomotion that accommodates the full-order models
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suffers from a computational bottleneck arising from high-
dimensionality. Owing to the low-dimensional approximation
of the full-order dynamics, reduced-order models inherently
ignore some of the rich full-order and nonlinear dynamics that
may limit the full potential of the robot. This motivates the
development of a planning and control framework that bridges
the gap between reduced- and full-order models.

Towards this goal, this paper presents a layered control
approach that learns to close the gap (see Fig. 1). At the
higher layer, we propose a computationally tractable robust
model predictive control (RMPC) framework that generates
optimal reduced-order trajectories subject to a set of modeling
uncertainties. This set of uncertainties may arise from abstrac-
tion and unmodeled dynamics, and is used to bridge the gap
between reduced and full-order models. At the lower layer, a
nonlinear controller, based on virtual constraints and quadratic
programming (QP), is then developed to map the optimal
reduced-order trajectories to the full-order locomotion model.
The proposed layered control architecture can be integrated
with deep reinforcement learning (RL) techniques to train a
neural network (NN) that computes the set of uncertainties
(a.k.a. the gap) for the RMPC algorithm. The robust control
framework is finally validated via an extensive collection of
numerical and experimental studies for the blind locomotion
of the A1 quadrupedal robot on different terrains.

A. Background, Motivation, and Related Work

Reduced-order models can be easily integrated with the
model predictive control (MPC) framework leading to more
dynamic behaviors. Some of the popular reduced-order mod-
els include the linear inverted pendulum (LIP) model [2],
centroidal dynamics [3], and single rigid body (SRB) dy-
namics [4]–[7] that have been employed for the real-time
trajectory planning and control of various bipedal [8]–[11] and
quadrupedal robots [4]–[6], [12]. Reduced-order models come
with their own set of challenges. First, they ignore some of
the full-order dynamics. For instance, the SRB model ignores
the dynamics of legs. This is a valid assumption when the
mass of the legs is insignificant compared to the total mass
of the robot. The SRB dynamics have been integrated with
the kinematics of the legs, but not the full-order dynamics in
[13]–[15]. Second, when employing a reduced-order model on
a legged robot, the optimal reduced-order trajectories have to
be translated into full-order joint position or torque commands.
In this regard, researchers have employed various techniques,
most of them involving a hierarchical control structure with a



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

Fig. 1. Overview of the proposed hierarchical control algorithm, based on RMPC, NN, and QP-based nonlinear controller. The real-time control loops and
signals are shown by the solid blocks and arrows, respectively. The offline training procedure is shown by the dashed blocks and signals.

high-level MPC and a low-level controller. For example, [4],
[6], [7] have used Jacobian mapping, [16], [17] have used
hybrid zero dynamics (HZD)-based controllers, [18] has used
control barrier functions, and [13], [15] have used joint space
whole-body controllers.

The problem of addressing uncertainties in legged loco-
motion has been predominantly approached at the low level.
These approaches rely on the inherent robustness of the tem-
plate dynamics integrated with a nominal MPC. Uncertainties
are then addressed by making modifications to the existing
low-level controller. For instance, the problem of addressing
external disturbances such as forces is done by estimating them
with conjugate momentum-based force observers [19], [20].
Input to state stability (ISS) has also been used to quantify
uncertainty in walking robots [21]. Few other approaches have
made use of frequency shaping [14], [22] to penalize high-
frequency terms in the cost function to address locomotion
on soft ground. However, these approaches do not directly
accommodate disturbances at the high level.

In the MPC community, various popular approaches exist
that consider uncertainties and robustness including closed-
loop (feedback) min-max MPC [23], [24], open-loop min-max
MPC [25], [26], and tube MPC [27], [28]. Open-loop MPC
approaches determine control actions at every time sample by
optimizing a performance criterion and addressing uncertainty
in both cost minimization and constraint satisfaction. This
leads to a small domain of feasibility and conservative control
actions. Feedback MPC approaches address these issues by
optimizing over a set of control policies rather than con-
trol actions. However, determining a suitable control policy
beforehand is often prohibitively difficult [27]. Tube-based
RMPC and stochastic MPC (SMPC) have been employed for
legged locomotion using LIP models to accommodate uncer-
tainties [29], [30]. Tube-based MPC involves the computation
of robust invariant (RI) tubes and pre-stabilizing feedback
controllers that can be computed offline for linear time-
invariant systems. SMPC also leverages offline computation
for the pre-stabilizing controller and chance constraints. For

high-dimensional and nonlinear template models like SRB or
even linear time-varying systems arising from their successive
linearizations, the computation of RI tubes and pre-stabilizing
linear feedback controllers should be done online, making
these strategies computationally expensive. Alternative tech-
niques [31] have used the Gaussian mixture model to learn
the constraints to mitigate the gap.

In this work, we aim to answer the following questions: 1)
How to develop a computationally tractable RMPC framework
to steer template models subject to a set of unmodeled dynam-
ics? 2) How to translate the optimal reduced-order trajectories
to full-order models to bridge the gap between reduced- and
full-order models? and 3) How to learn the set of unmodeled
dynamics to be used in the RMPC framework?

B. Objectives and Contributions

The objectives and contributions of this paper are as fol-
lows. The paper presents a computationally tractable RMPC
framework, based on convex QP, to steer template models
subject to a set of modeling and abstraction uncertainties. The
RMPC framework considers possible disturbances from the
uncertainty set and optimizes the sum of performance criteria.
We then present a hierarchical nonlinear control algorithm
for real-time planning and control of quadrupedal robots.
At the higher level, the RMPC framework is applied to the
SRB dynamics to generate optimal ground reaction forces
(GRFs) for the reduced-order model subject to a convex set of
uncertainties. The proposed robust control formulation allows
the integration of the RMPC framework with a fully-connected
multilayer perceptron (MLP) network, trained using RL, to
numerically compute the uncertainty set (see Fig. 1). At the
lower level, a nonlinear controller, developed based on virtual
constraints and QP, maps the generated desired GRFs to
the full-order dynamical model while regulating some output
functions for whole-body motion control. The use of virtual
constraints-based controller is motivated by the successful
hardware implementation on various bipedal [32]–[35] and
quadrupedal [36], [37] robots and powered prosthetic legs [38],
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[39]. The proposed robust control strategy can bridge the gap
between reduced- and full-order models while learning the
uncertainty at the trajectory planning level. The hierarchical
control algorithm is finally validated via a set of extensive
numerical simulations and experiments for the blind and robust
locomotion of the A1 quadrupedal robot on different terrains
and at different speeds.

The current work differs from our previous work [36]
in that it only considers low-level and QP-based nonlinear
controllers for quadrupedal locomotion while addressing their
continuous differentiability, but not the RMPC framework and
the proposed hierarchical control algorithm. The work is also
different from [16] in that it does not address the robust
planning subject to modeling uncertainties.

II. ROBUST MPC FORMULATION

The objective of this section is to present the high-level
RMPC framework for steering template models subject to a
set of uncertainties. In this paper, we consider the SRB model,
but the results we present can be extended to other template-
based models as well. The equations of motion for the SRB
dynamics can be expressed as follows:

Σ :


r̈ =

f net

m
− g0

Ṙ = RS(ω)

I ω̇ + S(ω) I ω = R⊤τ net,

(1)

where m is the total mass, g0 is the constant gravitational
vector, I is the body inertia, r ∈ R3 denotes the center of
mass (COM) position of the robot in an inertial world frame,
R ∈ SO(3) represents the rotation matrix of the body frame
with respect to the world frame, and ω denotes the angular
velocity in the body frame. In our notation, S : R3 → so(3)
is the skew-symmetric operator. In addition, f net and τ net

represent the net force and torque, generated by the legs,
acting on the COM, respectively, that is, f net :=

∑
j∈C fj and

τ net :=
∑

j∈C S(rj) fj , where j ∈ C denotes the foot index,
C is the set of contacting points with the ground, fj ∈ R3

represents the GRF at the foot j ∈ C, and rj ∈ R3 denotes
the distance between the foot j and the COM. The model is
valid if fj ∈ FC for every contacting leg j ∈ C, where FC
represents the linearized friction cone.

Linearizing the SRB dynamics (1) around the current states
at discrete time k via techniques such as the variational-based
linearization [7] results in

xk+1 = Ak xk +Bk uk + E wk, k = 0, 1, · · · , (2)

where x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , w ∈ W ⊂ Rnw

denote the reduced-order states, control inputs (i.e., GRFs),
and unknown uncertainties, respectively, for some positive
integers nx, nu, and nw. Here, wk represents the uncertainties
arising from abstraction and ignoring the full-order dynamics
such as leg dynamics or compliant elements at the leg ends.
The inclusion of wk in (2) can help us to have a better mapping
between the actual GRFs uk and the states xk in real world.
In (2), (Ak, Bk) represents the linearized dynamics around
the current state with E being the uncertainty distribution
matrix. In our notation, X , U , and W denote the state space,

admissible set of controls, and set of uncertainties, all taken
as compact and convex sets containing the origin. Similar to
[24], W is assumed to be chosen as the convex hull of some
known vertices, that is,

W := co
{
wℓ | ℓ ∈ I

}
(3)

for some finite set of vertices indexed by ℓ ∈ I. In particular,
wk in (2) is an unknown signal that can be represented as a
convex combination of the known vertices wℓ, ℓ ∈ I. Section
IV will show how to numerically compute the uncertainty set
W via a trained MLP.

The planning problem consists of designing an RMPC
algorithm to steer (2) from an initial state to a final one in the
presence of w ∈ W and subject to the feasibility conditions
x ∈ X and u ∈ U . To address this problem, we consider the
following set of predictions at time k

xℓ
k+i+1|k = Ak x

ℓ
k+i|k +Bk u

ℓ
k+i|k + E wℓ δ(i) (4)

for all future times i = 0, 1, ..., N − 1 and all realization
indices ℓ ∈ I , where N represents the control horizon. Here,
wℓ δ(i) denotes a possible realization of the uncertainty with
the index ℓ ∈ I, and δ(i) represents the discrete-time impulse
(i.e., sample) function. Further, xℓ

k+i|k and uℓ
k+i|k represent

the predicted state and control sequences associated with the
realization ℓ ∈ I and the initialization rule of xℓ

k|k = xk.
Remark 1: In the prediction model (4), the uncertainty is

considered as wℓ δ(i) which is nonzero at i = 0 and zero
for all i > 0. In particular, at every time sample k, the
RMPC algorithm is aware of possible uncertainties that can
happen at the actual time k, but it does not consider further
uncertainties for predicted future times k + i with i > 0.
This assumption will reduce the number of possible branches
to realize the predicted future states and control inputs in
the RMPC algorithm. Hence, it will reduce the associated
computational burden. This notion will be clarified more in
Section V-A.

We next present the following real-time and convex QP

min
u

∑
ℓ∈I

{
p
(
xℓ
k+N |k

)
+

N−1∑
i=0

L
(
xℓ
k+i|k, u

ℓ
k+i|k

)}
s.t. xℓ

k+i|k ∈ X , i = 1, · · · , N − 1, ∀ℓ ∈ I
uℓ
k+i|k ∈ U , i = 0, · · · , N − 1, ∀ℓ ∈ I

xℓ
k+N |k ∈ Xf , ∀ℓ ∈ I

uℓ1
k|k = uℓ2

k|k, ∀ℓ1, ℓ2 ∈ I, (5)

where u := col{uℓ | ℓ ∈ I} represents the sequence of
optimal control inputs over all realizations ℓ ∈ I and
uℓ := col{uℓ

k+i|k | i = 0, 1, · · · , N − 1} denotes the se-
quence of optimal controls for one particular realization ℓ.
In our notation, “col” represents the column operator. Here,
p(xℓ

k+N |k) and L(xℓ
k+i|k, u

ℓ
k+i|k) are the terminal and stage

costs, respectively, defined as p(x) := ∥x − xdes∥2P and
L(x, u) := ∥x − xdes∥2Q + ∥u∥2

R̂
for some positive definite

matrices P , Q, and R̂, and some desired trajectory xdes(k). In
addition, Xf ⊂ X is a convex and compact terminal region
containing the origin. The last constraint in (5) is referred to



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

as the “causality constraint” to restrict the freedom on the
control sequences uℓ at the first time sample. In particular,
the optimal value of the first control input to be applied to the
real-world system (i.e., uk = uℓ

k|k = π(xk)) will not depend
on the realization index ℓ. We remark that the optimal control
problem (5) optimizes over all possible sequences of control
inputs for different realizations while satisfying the feasibility
and causality conditions. Unlike [24] that uses a min-max
optimization problem, we robustify against disturbances that
happen only at the current time step. This will be clarified
more in Section V-A. In case the uncertainty set is taken as
the trivial set of W = {0}, the RMPC framework is reduced
to the nominal MPC.

III. LOW-LEVEL NONLINEAR CONTROLLER

The objective of this section is to present the low-level
nonlinear control algorithm, based on virtual constraints and
QPs. The low-level controller maps the desired GRFs, gen-
erated by the high-level RMPC, to the joint-level torques
while considering the nonlinear full-order model for output
regulation. The full-order and floating-based dynamical model
of the robot can be described as follows:

D(q) q̈ +H(q, q̇) = Υ τ +
∑
j∈C

J⊤
j (q) fj , (6)

where q ∈ Q ⊂ Rnq represents the generalized coordinates
for some nq , D(q) ∈ Rnq×nq denotes the mass-inertia
matrix, H(q, q̇) ∈ Rnq represents the Coriolis, centrifugal,
and gravitational terms, τ ∈ Rnτ denotes the joint-level
torques for some nτ < nq , and Υ ∈ Rnq×nτ represents
the input distribution matrix. Further, Jj(q) and fj denote the
contact Jacobian matrix and GRF at the contacting leg j ∈ C,
respectively. For future purposes, we define xf := col(q, q̇)
as the full-order state vector of the system. In addition,
f := col{fj | j ∈ C} represents the GRF vector containing
the individual GRFs at the contacting leg ends.

We next consider the following holonomic output functions,
referred to as virtual constraints [16], to be regulated

y(t, q) := ya(q)− ydes(t), (7)

where ya(q) represents a set of holonomic controlled variables,
and ydes(t) denotes their desired evolution on the gait in terms
of a time-based phase variable. In this paper, the controlled
variables are taken as the absolute position of the COM and
the base frame orientation with respect to the inertial world
frame together with the Cartesian coordinates of the swing
leg ends for foot placement. The desired evolution for the
Cartesian coordinates of the swing leg ends is parameterized
as Bézier polynomials that connect the current footholds to
the upcoming ones.

Differentiating the output (7) twice along the full-order
dynamics of the robot results in

ÿ = Ψ1(xf ) τ+Ψ2(xf ) f+ζ(xf ) = −KP y−KD ẏ+v, (8)

where Ψ1(xf ), Ψ2(xf ), and ζ(xf ) are nonlinear matrices and
vectors in xf computed based on Lie derivatives and input-
output (I-O) linearization [40]. Closed-form expressions for
Ψ1,Ψ2, ζ can be extracted similar to [17, Appendix 8.2] and

are not expressed here. Here, KP and KD are positive definite
matrices, and v is an additional variable, referred to as the
slack variable, to be used later. The objective is to solve
for (τ, f, v) to meet (8). For this purpose, we consider an
alternative set of algebraic equations that express zero accel-
erations for the stance leg ends. In particular, differentiating
the Cartesian coordinates of the stance leg ends results in

r̈st = Ω1(xf ) τ +Ω2(xf ) f + η(xf ) = 0, (9)

where rst represents a vector containing the Cartesian coordi-
nates of all stance legs, and Ω1(xf ), Ω2(xf ), and η(xf ) are
proper matrices and vectors.

We now aim to solve for (τ, f, v) to satisfy (8) and (9) while
(τ, f) being feasible, that is, fj ∈ FC for all j ∈ C and τ ∈ T ,
where T represents a convex and compact set of admissible
torques. For this purpose, we set up the following real-time
and strictly convex QP to be solved at 1kHz

min
(τ,f,v)

γ1
2
∥τ∥2 + γ2

2
∥f − fdes∥2 +

γ3
2
∥v∥2

s.t. Ψ1(xf ) τ +Ψ2(xf ) f + ζ(xf ) = −KP y −KD ẏ + v

Ω1(xf ) τ +Ω2(xf ) f + η(xf ) = 0

τ ∈ T , fj ∈ FC, ∀j ∈ C. (10)

Here, γ1, γ2, and γ3 are positive weighting factors. The slack
variable v is added to (8) to ensure the feasibility of the QP.
To minimize the effect of the slack variable on the output
dynamics (8), a penalty term γ3

2 ∥v∥2 is added to the cost
function via a large weighting factor γ3. The other two terms
in the cost function try to minimize the 2-norm of the force
tracking error f − fdes while having minimum-power torques.
This can help to bridge the gap between the planned (i.e.,
desired) GRFs (fdes), computed based on the template model
and RMPC, and the actual ones (f ). The optimal torques from
this low-level nonlinear controller are applied to the full-order
dynamics and are denoted by τ = Γ(t, xf ) (see Fig. 1).

IV. LEARNING TO CLOSE THE GAP

The objective of this section is to numerically compute the
vertices of the uncertainty set W in (3) to be used in the RMPC
framework (see Fig. 1 again). The problem of computing the
uncertainty set W is posed as a sequential decision-making
process that computes the mapping from the reduced-order
states xk to the vertices of the set W ⊂ Rnw . This can be
mathematically represented using a Markov Decision Process
(MDP). We then use a model-free RL technique [42] to train
a fully-connected MLP network that computes the vertices of
the uncertainty set.

We implement our hierarchical control algorithm in-the-loop
with the full-order simulation model of the quadrupedal robot
to train the MLP in an offline manner. Here, we consider the
problem of locomotion over rough terrains and represent the
sequential decision-making process in discrete time. At every
time t, the MDP obtains an observation and performs an action
while achieving a scalar reward Rt. The actions of the MDP
represent the vertices of uncertainty set W , that is,

wl
k = Φℓ(xk), ℓ ∈ I, (11)
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Fig. 2. Indoor and outdoor experiments to validate the proposed hierarchical control algorithm on different terrains. (a) Blind locomotion of the A1 robot
on uneven terrain with wooden blocks at the speed of 0.5 (m/s). (b) Locomotion on a compliant surface with unknown blocks. (c) Locomotion on a slippery
surface with a payload of 4.54 (kg) (36% of the robot’s weight). (d) Locomotion on blocks with a payload of 4.54 (kg). (e) Locomotion on uneven gravel
terrain. (f) Locomotion on mulch. (g) Locomotion on a slope. (h) Locomotion on the grass at the speed of 1 (m/s). Videos are available online [41].

where Φℓ(·) denotes the trained NN, and xk (reduced-order
states) represents the observables for the MDP. Here, we
consider one augmented MLP that computes all of the vertices,
that is, Φ(·) := col{Φℓ(·) | ℓ ∈ I}. For the SRB dynamics
expressed in (1), the observables for the MDP are taken as
the z-component of the COM position (rz), the base-frame
orientation (R), the linear and angular velocities (ṙ and ω),
and the relative positions of feet from the COM (rj). We aim
to find an optimal policy Φ⋆ that maximizes the following
expected sum of rewards over T samples

Φ⋆ = argmax
Φ

E

{
T−1∑
t=0

λt Rt

}
, (12)

where λ ∈ (0, 1) represents the discount factor.
In this paper, we employ the Proximal Policy Optimization

(PPO) algorithm [43] to solve (12) and use the A1 quadrupedal
robot, developed by Unitree, as our test-bed. Similar to [44],
the reward function at time t is chosen as

Rt = αv ∥ṙx∥2 − ατ ∥τ∥2, (13)

where ṙx and τ denote the forward velocity of the COM (i.e.,
along the x-axis) and torques, respectively, and αv and ατ

represent positive weighting factors. This work approximates
both the policy and value functions using MLPs, each with two
hidden layers of 128 neurons. We also choose the discounting
factor as λ = 0.998 with αv = 1 and ατ = 4× 10−5. Details
of the numerical simulations together with the controller and
training parameters will be presented in Section V.

V. NUMERICAL AND EXPERIMENTAL RESULTS

This section aims to numerically and experimentally vali-
date the proposed control algorithm for the robust and blind
locomotion of the A1 quadrupedal robot on different terrains
and at different speeds.

A. Controller Synthesis

The A1 robot is a torque-controlled robot with 18 Degrees
of Freedom (DOFs) and 12 actuators, weighing 12.45 (kg) and
standing up to 0.26 (m) (see Fig. 2). Six DOFs describe the

unactuated and absolute position and orientation (i.e., Euler
angles) of the robot’s body with respect to the inertial world
frame. The remaining 12 DOFs describe the actuated joints in
legs. In particular, each leg has a 2-DOF hip joint (hip roll and
hip pitch) and an additional 1-DOF knee joint (knee pitch). We
use RaiSim [45] and implement the RL framework outlined in
[44] for training of the MLP. The proposed high-level RMPC
and the low-level QP are solved online using qpSWIFT [46]
at 160Hz and 1kHz, respectively. In the RMPC framework,
we consider the linearized SRB dynamics (1) with 12 states
for trotting and subject to a set of unmodeled dynamics (i.e.,
E w) that appear as additional forces/torques in the velocity
dynamics (i.e., r̈ and ω̇) (see (2)). More specifically, the
uncertainty vector w is taken as 6-dimensional arising from
abstraction (e.g., ignoring the leg dynamics) to have a better
mapping from the actual GRFs to the SRB dynamics. We
then take E = [I6×6; I6×6] ∈ R12×6 as a selection matrix
composed of zeros and ones to distribute the vertices w across
the realization of the RMPC. We remark that one can alterna-
tively consider the dynamics as xk+1 = Ak xk +Bk uk +wk.
However, our choice of the selection matrix E reduces the
dimension of the vertices of W from 12 to 6, and hence, it
reduces the hyperparameters for training the MLP in (11).

To reduce the computational burden associated with the
RMPC algorithm (5), we consider the uncertainty set W ⊂ R6

as a convex hull of two vertices, that is, W = co{wℓ | ℓ ∈ I}
and I = {1, 2} (See Section V-C for a comparative study
on the effects of the number of vertices for W). The control
horizon for the RMPC problem is chosen as N = 7 discrete
sample times. The resultant RMPC and QP-based low-level
controller will be solved on an off-board laptop with i7-
1185G7 running at 3.00 GHz in experiments of Section
V-C. Under nominal conditions, the computation time for the
RMPC and low-level controller is approximately 4.2 (ms)
and 0.22 (ms), respectively. As discussed in Remark 1, we
only consider the branching in the state trajectories at the
first time sample. More specifically, 2 different sets of state
trajectories, referred to as realizations, are considered in the
RMPC framework (5). The min-max technique of [24], how-
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Fig. 3. The percentage of the success rate of RMPC with three and two
vertices and the nominal MPC over 550 randomly generated uneven terrains.
The dashed line represents the success rate across the length of the terrain.

ever, considers all possible branches that can happen at every
time sample within the control horizon and then minimizes
the worst-case scenario. This approach would then result in
27 = 128 different realizations, which is not computationally
tractable for real-time planning. Unlike [24], the proposed
RMPC approach does not guarantee the recursive feasibility.
In the rare events in which the QP becomes infeasible, we
terminate the QP solver at a maximum iteration number and
use the solution. The feasibility set X and the terminal set Xf

are chosen as hypercubes in R12 around the desired trajectory.
The feasibility set U is then chosen as the linearized friction
cone with the friction coefficient of µ = 0.6.

For the low-level controller, the weighting factors are taken
as γ1 = 1, γ2 = 103, and γ3 = 106 with the same friction
coefficient used for the high-level RMPC. In this work, we
make use of a time-based switching approach for impact
detection. In addition, we employ Raibert’s heuristic [47, Eq.
(2.4), pp. 46] for footstep planning.

B. Training of the MLP
The training of the MLP network is performed offline using

numerical simulations with the learning environment provided
by RaiSim [45]. The objective of training the MLP is to
learn the gap between reduced- and full-order models and
also to aid in the locomotion of the quadrupedal robot on
rough terrains by computing the appropriate uncertainty set W .
The simulation and training environments consist of a single
fixed rough terrain composed of rigid blocks placed at regular
intervals. The use of a single training environment is motivated
by the following justification. The QP-based virtual constraints
controller employed at the low level of the hierarchical control
algorithm can result in stable locomotion patterns on flat
terrains, as studied in our previous work [36]. The integration
of the low-level controller with the high-level RMPC algorithm
improves the robust stability of gaits over different sets of
terrains. Unlike other model-free techniques that use NNs to
learn the entire whole-body trajectory planning from scratch,
our proposed MLP layer only computes the appropriate set of
uncertainties to be used in the RMPC framework. Hence, the
combination of the MLP layer with the model-based RMPC
and the low-level nonlinear controller does not require training
on a large set of randomly generated terrains as indicated by
the experimental results in Section V-C.

Fig. 4. Phase portrait of the unactuated DOFs (roll and pitch). The figure
depicts robust stability in the phase portraits for two different experiments,
including outdoor locomotion on inclined terrain (Fig. 2(g)) and indoor
locomotion on a slippery surface with a payload of 4.54 (kg) (Fig. 2(c)).

Each block in the fixed terrain is 5 (cm) (20% of the robot’s
nominal height) tall and spaced at regular intervals of 5 (cm).
The robot is commanded by the MPC and low-level controller
to perform a symmetrical forward trot gait at 0.5 (m/s). Each
episode runs for four seconds or until it meets the termination
criterion. Termination is encountered when the rigid body links
connecting the knee with the toe hit the ground. The learning
rate is set to 5×10−4, and the entire training roughly takes 12
hours on a Desktop PC equipped with an Intel Xeon W-2125
processor. We use two hidden layers with 128 neurons in each
of the MLPs of the policy and value function approximations
with a Rectified Linear Unit (ReLU) as the activation function.

C. Numerical and Experimental Validation and Discussion

The objective of this section is to numerically and experi-
mentally validate the proposed control algorithm for the robust
and blind locomotion of the A1 robot on different sets of
terrains and at different speeds.

To study the effects of the number of vertices on the
uncertainty set W , we conduct two numerical experiments,
each with a different set of vertices. In particular, we choose
two and three vertices for the uncertainty set and train the
corresponding MLP. Each of the RMPC algorithms takes 12
and 18 hours to learn the uncertainty set. We then quantify the
performance of the two developed RMPC algorithms with the
nominal MPC. More specifically, we randomly generate 550
heightmaps, each with a different distribution of blocks. The
blocks, each 5 (cm) in height, are distributed asymmetrically
and randomly over a terrain of 30 (m) length (≈ 85 robot’s
body length). Figure 3 illustrates the percentage of the success
rate of each of the RMPC algorithms and the nominal MPC
on 550 randomly generated terrains over the traveled distance.
Here, failure is determined based on the termination criterion
outlined in Section V-B. As depicted in Fig. 3, the success rate
of RMPC with three and two vertices and the nominal MPC
across the entire length of the terrain is 43.58%, 37.79%, and
23.51%, respectively. We remark that for the experiments on
the real robot, we choose the RMPC with two vertices as the
difference in success rates between the two RMPC algorithms
is not significant. Furthermore, the computational time taken
by RMPC with three vertices (10.9 (ms)) is significantly
higher than the RMPC with two vertices (4.2 (ms)) and the
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Fig. 5. Comparison of the gaps between the GRFs generated based on
the reduced- and full-order models. Plot of desired and actual GRFs (the z
component) with the high-level RMPC algorithm and the low-level QP-based
nonlinear controller on flat terrain (a) and on a slope (c). (b) Plot of the desired
and actual GRFs with the hierarchical control algorithm in which the high-
level RMPC is replaced by a nominal MPC for experiments on flat terrain.

nominal MPC (1.24 (ms)), justifying our choice of W with
two vertices. The animations of the representative simulations
are available online [41].

As shown in Fig. 2, we consider four different subsets
of indoor investigations, including locomotion a) on uneven
terrain with a random configuration of wooden blocks, b) on
a compliant surface covered with wooden blocks, c) with a
payload of 4.54 (kg) (36% of the robot’s weight) on a slippery
surface, covered by a cooking spray, and d) with a payload of
4.54 (kg) on wooden blocks. The outdoor experiments then
include locomotion on e) uneven gravel terrain, f) mulch, g)
a slope, and h) the grass. For some of these experiments,
we consider locomotion at different speeds of 0.1 (m/s), 0.5
(m/s), 0.75 (m/s), and 1 (m/s). We observe that the proposed
hierarchical control algorithm can result in robustly stable
gaits on these different sets of terrains. Figure 4 shows the
phase portraits of the robot’s roll and pitch motions during two
experiments. The first experiment involves locomotion in an
outdoor environment on an inclined lawn with an approximate
inclination of (10◦ − 15◦) (Fig. 2(g)). The second experiment
involves locomotion in an indoor environment on a slippery
surface (Fig. 2(c)). The slippery environment is created with
the use of a cooking spray. For this experiment, the coefficient
of friction is reduced to 0.3 in both the MPC and the low-level
controller. Videos of all experiments can be found online [41].

Figure 5 studies the gap between the reduced- and full-order
models of locomotion with and without the proposed hierarchi-
cal control algorithm. Here, we plot the time evolution of the
desired and actual GRFs at the front left leg for experiments
on flat ground and trotting backward on a downhill slope. The
desired GRF is the optimal control input computed for the
SRB dynamics via the MPC algorithm. The actual GRF is
then computed according to the full-order dynamics via the
QP-based nonlinear controller in (10). Figures 5(a) and 5(c)
compare the vertical components of the desired and actual
GRFs with the proposed RMPC framework. In Fig. 5(b), the
RMPC framework at the higher level of the control algorithm
is replaced with a nominal MPC. It is clear that there is a
significant reduction between the GRFs computed based on

Fig. 6. Plot of the 2-norm for one of the vertices for the uncertainty set (i.e.,
∥wℓ

k∥) versus time. The plot depicts the contribution of the trained MLP for
locomotion on a flat ground and locomotion on an uneven terrain with two
blocks. The gray portions indicate the stepping on blocks.

the reduced- and full-order models compared to Fig. 5(b). In
addition, it can be seen from Fig. 5(c), that bridging the gap
occurs for experiments involving locomotion on a slope.

To study the contribution of the trained MLP in the RMPC
framework, we plot the 2-norm of the upper-bound vertex of
the uncertainty set versus time in Fig. 6. Here, we consider
two indoor experiments, including the nominal locomotion on
flat ground and the locomotion on two wooden blocks. From
Fig. 6, it can be observed that ∥wℓ

k∥ spikes during stepping on
blocks and decreases as the robot continues to step forward.
During the steady-state, ∥wℓ

k∥ reaches periodic behavior that
is smaller than the spikes for uneven terrains.

VI. CONCLUSION AND FUTURE WORK

This paper presented a hierarchical control algorithm for
the real-time motion planning and control of quadrupedal
robots while bridging the gap between reduced- and full-order
models. At the higher level, a computationally tractable RMPC
framework is developed based on QPs to steer reduced-order
locomotion models subject to a convex set of uncertainties
arising from abstraction and unmodeled dynamics. In partic-
ular, the RMPC algorithm is applied to the SRB dynamics
to generate optimal GRFs. At the lower level, a nonlinear
controller, based on I-O linearization and QPs, is developed to
map the optimal reduced-order GRFs to the full-order model
while imposing virtual constraints for whole-body motion
control. The proposed RMPC framework allows the integration
of the hierarchical controller with RL techniques to train an
MLP to compute the vertices of the uncertainty set numer-
ically. The proposed hierarchical control algorithm is finally
validated numerically and experimentally for robust and blind
locomotion of the A1 quadrupedal robot on different indoor
and outdoor terrains and at different speeds. The numerical
analysis of the RMPC suggests significant improvement in
the performance of the rough terrain locomotion compared
to the nominal MPC. Our experimental studies indicate a
significant reduction in the gap between the reduced- and
full-order models by comparing the desired and actual GRFs
computed by the proposed high- and low-level controllers.

The current work considered uncertainty in the template
model dynamics. For future research, we will investigate the
incorporation of uncertainties in kinematic constraints. We will
also explore alternative reward functions to mitigate the gap
between reduced- and full-order models.
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