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Toward a Data-Driven Template Model for
Quadrupedal Locomotion

Randall T. Fawcett1, Kereshmeh Afsari2, Aaron D. Ames3, and Kaveh Akbari Hamed1

Abstract—This work investigates a data-driven template model
for trajectory planning of dynamic quadrupedal robots. Many
state-of-the-art approaches involve using a reduced-order model,
primarily due to computational tractability. The spirit of the
trajectory planning approach in this work draws on recent
advancements in the area of behavioral systems theory. Here,
we aim to capitalize on the knowledge of well-known template
models to construct a data-driven model, enabling us to obtain an
information rich reduced-order model. In particular, this work
considers input-output states similar to that of the single rigid
body model and proceeds to develop a data-driven representation
of the system, which is then used in a predictive control
framework to plan a trajectory for quadrupeds. The optimal
trajectory is passed to a low-level and nonlinear model-based
controller to be tracked. Preliminary experimental results are
provided to establish the efficacy of this hierarchical control
approach for trotting and walking gaits of a high-dimensional
quadrupedal robot on unknown terrains and in the presence of
disturbances.

Index Terms—Legged Robots, Motion Control, Multi-Contact
Whole-Body Motion Planning and Control

I. INTRODUCTION

MANY of the current state-of-the-art approaches for
planning or controlling legged robots rely on a reduced-

order (i.e., template) model of the robot [1]. This is done
to gain real-time computational tractability while retaining
the dominant traits of the nonlinear dynamics by providing
a low-dimensional approximation of the full-order dynamics.
This work aims to construct a template model based on
data obtained during locomotion to provide a mapping from
some desired inputs to some desired outputs. This is intended
to allow one to construct a reduced-order model without
explicitly having access to model parameters while also po-
tentially encapsulating some of the rich nonlinear dynamics.
This additionally removes a layer of abstraction introduced by
linearizing a physics-based template model.
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A. Reduced-Order Models and Motivation

Many works consider the combination of reduced-order
models and model predictive control (MPC) frameworks for
trajectory planning of legged robots. Among the most well-
studied template models is the Linear Inverted Pendulum (LIP)
model [2]. In its most basic form, the LIP model is restrictive
since it considers the body as a point mass and requires
the center of pressure (COP) to remain within the convex
hull formed by the contacting legs. The LIP model has been
studied extensively, particularly on bipeds with non-trivial feet,
and has been validated on several platforms for quasi-static
locomotion of both bipeds and quadrupeds [2]–[6]. Largely
due to the quasi-static nature of LIP-based models, many
control approaches have shifted toward template models that
are more directly amenable to dynamic motions. For example,
the Spring-Loaded Inverted Pendulum (SLIP) model has been
used successfully to produce more dynamic motions [7], [8].
However, the SLIP model still treats the body as a point mass
and suffers from nonlinearity.

Another very popular method is to consider the torso as a
single rigid body (SRB) being propagated through space via
forces applied to the body [9]. The SRB model, combined with
standard linearization and MPC techniques, has proven to be a
powerful technique for stable locomotion and has been experi-
mentally validated on several quadrupedal platforms [9]–[12].
One of the primary flaws of the SRB model is the assumption
that the legs have negligible mass. While this is a reasonable
assumption for small quadrupeds, it does not readily extend
to robots with more massive legs. Reference [11] has used
quasi-static compensation for the mass of the legs during
balance control but does not consider the full-order dynamics.
In addition to neglecting the legs, the successive linearization
of the SRB dynamics introduces another undesirable layer of
abstraction. Centroidal dynamics have also been employed,
which is similar in nature to the SRB model but considers the
angular momentum of the torso. Centroidal dynamics have
been more intensely studied on bipeds [13], [14], but have
proven to be effective for quadrupeds as well [15]. However,
the centroidal model shares many of the same issues as the
SRB model. Namely, the leg dynamics and inertial effects are
generally neglected [16].

B. Data-Driven Approaches

Data-driven techniques are becoming increasingly important
as systems become more complex and applications demand
more rigorous controllers and have progressed substantially in
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Fig. 1. Overview of the proposed hierarchical control algorithm. At the high level, the data-driven predictive control generates optimal trajectories for
trajectory planning of the quadrupedal robot. The optimal trajectories are then passed to a low-level and QP-based nonlinear controller for the whole-body
motion control. The data-driven transition matrix is computed based on a set of offline experiments.

the last several decades [17]. Furthermore, increased dynam-
ical complexity can require considerable expertise to obtain
an accurate physics-based model. While the literature on
model-free control methodologies spans many areas, including
reinforcement learning [18], [19], here we focus on the use
of data-driven approaches for predictive control, generally
referred to as data-driven predictive control, or data-enabled
predictive control (DeePC) [20]–[25]. These works stem from
behavioral systems theory, used to parameterize a linear time-
invariant (LTI) system in terms of its observed trajectories as
opposed to physics-based dynamics [26]–[28]. Although the
original theory does not directly apply to complex nonlinear
systems, recent works have provided theoretical extensions
to certain classes of nonlinear systems [29], implementations
for stochastic and nonlinear systems [21]–[23], and linear
parameter varying systems [30]. However, to the best of the
authors’ knowledge, there has not been an implementation
for unstable hybrid dynamical models of legged robots with
underactuation and unilateral constraints, which is the focus
of this work. While rigorous theory has yet to be developed
extending to hybrid nonlinear systems, we have observed good
performance nonetheless.

C. Goals, Objectives, and Contributions

The overarching goal of this paper is to develop a layered
control approach based on data-driven template models for
real-time planning and control of dynamic quadrupedal robots.
More specifically, this paper’s objectives and key contributions
are as follows. 1) At the higher level of the control approach,
we provide a reduced-order model based on data by leveraging
information about state-of-the-art template models, specifically
the SRB model, which also potentially encapsulates important
nonlinear information while forgoing the need for successive
linearization (see Fig. 1). 2) A computationally tractable pre-
dictive controller is presented, based on a data-driven template
model, for the real-time trajectory planning of high degree
of freedom (DOF) quadrupeds. 3) The optimal trajectories
are then passed to a low-level nonlinear controller based on
virtual constraints [31] for whole-body motion control. 4)
Preliminary experimental validation of the proposed layered
control approach is provided on the 18-DOF quadrupedal robot

A1 for a walk and trot gait and differing gait parameters for
trotting. The experimental results also show robust locomotion
of the A1 robot on unknown terrains and in the presence of
disturbances.

II. PRELIMINARIES

This section provides an overview of some of the pertinent
components of behavioral systems theory. Behavioral systems
theory provides a formal manner in which an unknown LTI
system can be parameterized purely by measured trajectories
of the system.

Consider the model of an LTI system with the state vector
xk ∈ Rn, the input vector uk ∈ Rm, and the output vector
yk ∈ Rp for k ∈ Z≥0 := {0, 1, · · · }. The standard discrete-
time state-space representation is described by

xk+1 = Axk +B uk

yk = C xk +Duk, (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are
the state space matrices which are unknown. Here we denote
n, m, and p as the number of states, inputs, and outputs,
respectively. Consider some L, T ∈ N := {1, 2, · · · }, where T
is the total length of the data collected and T ≥ L, along with
some input trajectory ud ∈ RmT composed of a sequence
of collected data ud

k, i.e., ud := col(ud
0, . . . , u

d
T−1). In our

notation, “col” represents the column operator. As will be
discussed shortly, L represents the sum of the prediction and
estimation horizons. Using this trajectory, one can construct
the corresponding Hankel matrix [21] as follows:

HL(u
d) :=


ud
0 ud

1 · · · ud
T−L

ud
1 ud

2 · · · ud
T−L+1

...
...

. . .
...

ud
L−1 ud

L · · · ud
T−1

 ∈ RmL×(T−L+1).

(2)
Definition 1 ( [20]): The signal ud is said to be persistently

exciting of order L if HL(u
d) is full row rank, ensuring the

signal contains sufficiently rich information.
Definition 2 ( [20]): The sequence {(ud

k, y
d
k)}

T−1
k=0 is said to

be a trajectory of the LTI system (1) if there exists an initial
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condition x0 and a state sequence {xk}Tk=0 that meets the state
and output equations in (1).

Using Definitions 1 and 2, we are now in a position to
present a foundational theorem that is used to define an LTI
system in terms of its trajectories.

Theorem 1: [26, Theorem 1] Let a trajectory of an LTI
system, referred to as data, be denoted by {(ud

k, y
d
k)}

T−1
k=0 . If ud

is persistently exciting of order L+n, then {(ūk, ȳk)}L−1
k=0 is a

trajectory of the system if and only if there exists g ∈ RT−L+1

such that [
HL(u

d)
HL(y

d)

]
g =

[
ū
ȳ

]
. (3)

Theorem 1 presents a data-driven approach for characteriz-
ing trajectories of an unknown LTI system without requiring
explicit system identification. This theorem will be used to
synthesize a data-driven predictive control approach for real-
time motion planning of legged robots in Section III.

In order to formulate the trajectory planning problem as a
closed-loop data-driven predictive control approach, we will
consider two different horizons as the estimation horizon Tini
and the prediction (i.e., control) horizon N . In particular, we
assume that L = Tini + N . Here, the estimation horizon Tini
can be viewed as the number of input-output (I-O) pairs used
to uniquely determine the initial condition from the given
sequence {(ūk, ȳk)}L−1

k=0 in (3). In addition, N can be viewed
as the prediction horizon in traditional MPC. Using collected
I-O data, denoted by (ud, yd), we can decompose the Hankel
matrices of (3) as follows:

HL(u
d) =

[
Up

Uf

]
, HL(y

d) =

[
Yp

Yf

]
, (4)

where Up ∈ RmTini×(T−L+1) and Yp ∈ RpTini×(T−L+1) are
the portions of the Hankel matrices used for estimating the
initial condition (i.e., past), and Uf ∈ RmN×(T−L+1) and
Yf ∈ RpN×(T−L+1) are the portions used for prediction (i.e.,
future). A necessary condition for ensuring the information
in the Hankel matrices is sufficiently rich is that T much be
chosen such that T ≥ (m+ 1)(Tini +N + n)− 1.

III. DATA-DRIVEN MOTION PLANNER

This section provides a brief overview of data-driven predic-
tive control and outlines the application to trajectory planning
for a quadruped. We further discuss similarities between the
SRB template model and the data-driven model.

A. Data-Driven Predictive Control
This section outlines an approach to address predictive con-

trol without a physics-based model. In particular, we consider
the DeePC methodology provided in [21], [22] as follows:

min
(g,u,y,σ)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)
+ λg∥g∥2 + λσ∥σ∥2

s.t.


Up

Yp

Uf

Yf

 g +


0
σ
0
0

 =


uini
yini
u
y


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1 (5)

where Q ∈ Rp×p and R ∈ Rm×m are positive definite
weighting matrices, ∥y∥2Q := y⊤Qy, {ydes

k }N−1
k=0 represents a

desired trajectory, and U and Y are feasible sets. In addition,
λg and λσ are positive weighting factors meant to regularize
g and penalize the defect variable σ, respectively. Here, the
defect variable σ allows (5) to remain feasible in the wake
of noisy measurements. If no noise is present, then Theorem
1 applies directly. In our notation, (uini, yini) denotes the past
measured trajectory (i.e., feedback) over the estimation horizon
Tini to be used to indirectly estimate the initial condition in
(5). In addition, (u, y) represents the predicted trajectory over
the control horizon N . We remark if the standard system
identification approach is applied to compute the realization
matrices in (1) optimally, the state vector may not correspond
to a physically measurable variable. Hence, one would need
to integrate the MPC approach with observer techniques
to asymptotically estimate the states. However, the DeePC
approach does not require any estimation beyond what was
required during data collection.

While effective, the size of the optimization problem (5)
is prohibitive for real-time implementation on a quadruped.
Lengthening the prediction horizon by one results in an in-
crease of 2(m+p) decision variables, and adds corresponding
constraints. Furthermore, the majority of results in behavioral
systems theory are applicable only to LTI systems. Extend-
ing these methods to nonlinear and underactuated dynamical
models of legged robots requires larger sets of data (i.e., larger
T ). This introduces considerably more decision variables since
the size of g is directly proportional to the size of T . For
this reason, we consider a least-squares approximation of (5),
which reduces the problem by (p Tini + T − L + 1) decision
variables. In particular, a least-squares approximation is used
to find g such that it can be removed from the problem,
resulting in a constant linear mapping between the inputs
u and the outputs y based solely on experimental data. We
remark that using this approach with sufficiently large amounts
of data precludes the need for σ in (5). Analogous to [22],
finding an approximation of g reduces to the following offline
optimization problem

min
g

∥g∥2

s.t.

Up

Yp

Uf

 g =

uini
yini
u

 . (6)

The closed-form expression of (6) can be described by

g =

Up

Yp

Uf

† uini
yini
u

 , (7)

where (·)† represents the pseudo inverse. Using the fact that
y = Yf g from (5), we have

y = G

uini
yini
u

 , G : = Yf

Up

Yp

Uf

†

, (8)

where G denotes the data-driven state transition matrix over
N -steps. Using (8), we are now in position to present the gen-
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eral form of a computationally tractable predictive controller
based on data for trajectory planning

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk∥2R
)

s.t. y = G

uini
yini
u


uk ∈ U , yk ∈ Y , k = 0, . . . , N − 1. (9)

Remark 1: Careful consideration is required when per-
forming this approximation. In particular, we remark that g in
(5) seeks to find a linear combination of the previous I-O pairs
that can uniquely predict the future I-O pairs. The variables
u and y are, in turn, directly determined by the choice of
g and the data in the Hankel matrices. From Theorem 1, if
properly constructed, all possible trajectories of (1) are in the
range space of the Hankel matrices. However, this places no
restriction on the norm of g. Suppose that we are interested in
maintaining a constant non-zero velocity of a rigid body. In
this case, position changes monotonically and ∥g∥2 → ∞ as
t → ∞. Therefore, this restricts us to outputs that will remain
in a neighborhood of zero.

B. Trajectory Planning for Quadrupedal Robots

In this section, we discuss the application of the data-
driven predictive control of (9) to the real-time planning of
quadrupeds and draw relations to the common SRB template
model. The nonlinear SRB model is described by [9], [11],
[12]

d
dt


pc
ṗc
R
ω

 =


ṗc

1
mnet f

net − g0 ez
R ω̂

I−1
r (R⊤τ net − ω̂ Ir ω)

 , (10)

where mnet is the total mass, g0 is the gravitational constant,
ez := col(0, 0, 1) is the unit vector along the z-axis, Ir is the
body inertia, pc ∈ R3 is the position of the COM of the robot
in an inertial world frame, ω ∈ R3 is the angular velocity in
the body frame, R ∈ SO(3) is the rotation matrix with respect
to the inertial world frame, f net is the net force acting on the
COM, and τ net is the net torque induced by the forces at the
leg ends acting about the COM. Furthermore, we denote the
skew symmetric operator by (̂·) : R3 → so(3). The net forces
and torques in (10) can be described by[

f net

τ net

]
=

∑
ℓ∈C

[
I3×3

d̂ℓ

]
fℓ, (11)

where ℓ ∈ C represents the index of the contacting leg with
the ground, C is the set of contacting points, fℓ ∈ R3 is the
ground reaction force (GRF) at leg ℓ, and dℓ is the vector from
the COM to leg ℓ. The equations are nonlinear and typically
linearized before being used with traditional MPC approaches.
Due to the accuracy degradation over long prediction hori-
zons induced by linearization and computational issues, the
prediction horizon in these approaches is usually small. Since
the horizon is small, many implementations for nominal gaits
such as trotting assume the number of contact points with the

environment remains constant for the duration of the MPC.
However, multiple domains have also been considered for
more dynamic gaits [32].

In the data-driven approach, we aim to draw on knowledge
of the well-studied SRB model to pick suitable inputs and
outputs while considering some of the potential pitfalls listed.
In particular, the inputs and outputs used to construct the
Hankel matrices are chosen to be u := f ∈ R12 (i.e., GRFs)
and y := col(z, ẋ, ẏ, ż, α, ω) ∈ R10, where α ∈ R3 denotes
the Euler angles of the trunk. In other words, the inputs and
outputs for the data-driven model are identical to those used
in the SRB model (10), with the exception of the position in
the transverse plane, i.e., the x and y position of the COM.
These states are removed in light of Remark 1.

Remark 2: Contrary to the SRB model, the data-driven
model does not directly consider the mapping between the
forces and the torques acting about the COM as in (11). It is
assumed that the data-driven model encapsulates this mapping.
While one could consider the relative foot positions directly
in the model, the increase in the size makes this prohibitive
for real-time computation.

The data-driven trajectory planner is then defined by

min
(u,y)

N−1∑
k=0

(
∥yk − ydes

k ∥2Q + ∥uk − udes
k ∥2R

)

s.t. y = G

uini
yini
u


uk ∈ FC, yk ∈ Y , k ∈ 0, . . . , N − 1, (12)

where udes
k represents the desired force at time k ∈ Z≥0 and

FC := {col(fx, fy, fz)|fz > 0, ±fx ≤ µ√
2
fz, ±fy ≤ µ√

2
fz}

denotes the linearized friction cone with µ being the friction
coefficient. In order to address the fact that we are predicting
over a larger horizon compared to many traditional SRB-based
MPC approaches due to the lack of terminal cost, the desired
force and the constraints on the forces should be considered
carefully. In particular, the prediction horizon considered in
this work is 1.25 times longer than the nominal stance time of
200 (ms), which guarantees the prediction will span multiple
continuous-time domains (i.e., different stance leg configura-
tions). Therefore, the desired force trajectory changes in a
step-like manner at anticipated domain changes. The desired
forces in the x, y, and z direction for leg ℓ are defined as
udes
k,ℓ := col(0, 0, mnetg0

Nc,k
), ∀ℓ ∈ Ck and zero otherwise. In this

notation, Ck is the anticipated set of contacting legs with the
ground at time k and Nc,k represents the number of contacting
legs at time k. The force constraints also change in a similar
manner such that the forces on anticipated swing legs are
restricted to zero, while the stance leg forces must abide
by the linearized friction cone FC. By altering the desired
contact sequence, one could parameterize different gaits such
as walking and trotting. Although mnetg0 may not be strictly
known, one could use the average net force obtained during
the data collection procedure.

This data-driven predictive controller embodies many of the
same principles as the SRB-based MPC. However, in the data-
driven approach, we explicitly consider domain changes in
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Fig. 2. Overview of the process used to construct the data-driven template mode. The data is collected by directly using the QP-based low-level controller
(17), and that data is then used to construct a template model on which a predictive trajectory planner can be based.

the prediction and do not consider the x and y position of
the COM. In addition, no assumptions are made about the
dynamics of the legs, enabling this approach to potentially
capture some of the rich nonlinear dynamics indirectly through
the GRF. Finally, this approach uses a constant mapping that
does not require successive linearization as done in [9], [11],
[12].

IV. NONLINEAR LOW-LEVEL CONTROLLER

This section aims to present the low-level controller used
to track the trajectories produced by the trajectory planner.

A. Full-Order Nonlinear Dynamics

Here we provide an overview of the full-order model used
for the synthesis of the low-level controller. The model of the
robot is constructed as a floating base, where q ∈ Q ⊂ Rnq

represents the generalized coordinates, Q is the configuration
space, and nq denotes the number of DOFs. We then define
the state vector to be xf := col(q, q̇) ∈ X ⊂ R2nq with
X := Q × Rnq . The motor torques are then described by
τ ∈ T ⊂ Rmτ where T is the set of admissible torques and
mτ is the number of inputs. The equations of motions are
described by

D(q) q̈ +H(q, q̇) = Υ τ + J⊤(q) f, (13)

where D(q) ∈ Rnq×nq represents the mass-inertia matrix,
H(q, q̇) ∈ Rnq denotes the Coriolis, centrifugal, and gravi-
tational terms, Υ ∈ Rnq×mτ represents the input matrix, J(q)
denotes the contact Jacobian matrix, and f := col{fℓ| ℓ ∈ C}
represents the vector GRFs of the contacting leg ends. We
further impose the holonomic constraint r̈ = 0 on (13), where
r := col{pℓ| ℓ ∈ C} represents the position of the contacting
leg ends with the environment. This constraint implies rigid
contact with the ground and is valid if fℓ ∈ FC, ∀ℓ ∈ C.

B. Virtual Constraints Controller

This section provides the formulation of a QP-based vir-
tual constraints controller used for tracking both the forces
and COM trajectory provided by the trajectory planner. We
consider a set of holonomic virtual constraints [31] as

h(xf , t) := h0(q)− hdes(t), (14)

where h(xf , t) ∈ Rnvc , with nvc representing the number of
virtual constraints, and is imposed by I-O linearization [33].

The term h0(q) denotes the variables that we are interested
in controlling, and hdes(t) describes the desired evolution
of h0(q). In this work, h0(q) consists of the position and
orientation of the COM, and the Cartesian position of the
swing feet. In particular, a Bézier polynomial is constructed
to move the foot from its initial position to the target position,
wherein the target position is determined using the Raibert
heuristic [34, Eq. (4), pp. 46]. Differentiating h(xf , t) twice
along the dynamics (13), we have

ḧ = Θ1(xf ) τ+Θ2(xf ) f+θ(xf ) = −KP h−KD ḣ+δ, (15)

where Θ1, Θ2, and θ are of proper dimension and obtained
using a standard I-O linearization procedure. We refer the
reader to [35, Appendix A.2] for more details on the derivation
of these terms. In addition, KP and KD are positive definite
gain matrices, and δ ∈ Rnvc is a defect variable used in
the formulation of the QP. In a similar manner, we define
the holonomic constraint placed on the stance legs to enforce
rigid contact by differentiating the Cartesian coordinates at the
stance leg ends twice and setting them to zero as follows:

r̈ = Φ1(xf ) τ +Φ2(xf ) f + ϕ(xf ) = 0, (16)

for some proper Φ1, Φ2, and ϕ. We are now in a position
to present the QP-based nonlinear controller. The goal is to
solve for the minimum 2-norm torques while imposing the
virtual constraints and tracking the desired forces, as well as
abiding by the feasible torques and friction cone. To this end,
the following strictly convex QP is employed [36]

min
(τ,f,δ)

γ1
2
∥τ∥2 + γ2

2
∥f − f des∥2 + γ3

2
∥δ∥2

s.t. Θ1(xf ) τ +Θ2(xf ) f + θ(xf ) = −KP h−KD ḣ+ δ

Φ1(xf ) τ +Φ2(xf ) f + ϕ(xf ) = 0

τ ∈ T , fℓ ∈ FC, ∀ℓ ∈ C, (17)

where γ1, γ2, and γ3 are positive weighting factors. In addi-
tion, the desired force profile f des(t) represents the optimal
GRFs (i.e., inputs u) prescribed by the high-level data-driven
planner in (12). The defect variable δ is included such that
the QP remains feasible if the I-O linearization cannot be
met exactly. The weighting factor on δ is chosen to be much
larger than the other weights to make the defect variable as
small as possible. The low-level controller can be used without
a planner if the virtual constraints are chosen heuristically,
i.e., hdes(t) can be hand-tuned to produce stable locomotion.
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Fig. 3. Snapshots from experiments with the proposed hierarchical control algorithm: (a) external push disturbances, (b) external tethered pull disturbances,
(c) unknown rough terrain covered with wooden blocks, and (d) unstructured and unknown outdoor environment.
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Fig. 4. Phase portraits of the robot’s body orientation (i.e., roll and pitch)
during different experiments. The quadruped is able to robustly trot over flat
ground (nominal), unknown rough terrain covered with wooden blocks, and
subject to external disturbances (pulls). For each experiment, the robot is
commanded to walk forward at 0.5 (m/s). The reason for the slight pitch
offset is unknown, but is attributed to tracking error at the low-level.

However, we aim to provide an optimal trajectory produced by
a trajectory planner to reduce the required expertise necessary
to enable stable locomotion.

V. EXPERIMENTAL RESULTS

This section seeks to demonstrate the efficacy of the pro-
posed approach for quadrupedal locomotion through a variety
of hardware experiments. We consider the quadrupedal plat-
form A1 made by Unitree. This robot consists of nq = 18
DOFs. We consider a floating-base model of the robot, wherein
the absolute position and orientation of the floating base com-
prise the first 6 DOFs, which are unactuated. The remaining
DOFs are composed of the actuated leg joints. Each leg has
a 2-DOF hip joint followed by a 1-DOF knee joint (i.e.,
mτ = 12). The robot weighs approximately 12.45 (kg) and
stands roughly 28 (cm) off the ground.

A. Data Collection and Trajectory Planner

This section describes the procedure and parameters used
for constructing the data-driven model. An overview of this
procedure can be found in Fig. 2. The data for the Hankel
matrices were collected at 100 (Hz) by moving the robot
around a lab environment using a trot gait, commanded via
a joystick, utilizing only the low-level controller presented
in Section IV-B. From the low-level QP (17), we obtain
estimates of the GRFs and these estimates are then utilized
during the construction of the data-driven model as inputs
ud. Although we consider the use of the controller presented
in Section IV-B, a different low-level controller can be used

as long as the outputs can be properly estimated. As men-
tioned in Section III-B, the proposed outputs are taken as
yd = col(z, ẋ, ẏ, ż, α, ω) ∈ R10. We opt to use a joystick
as opposed to a random input trajectory which may require
more data due to the requirement of persistency of excitation
but does not pose an issue in the current formulation due to
the removal of g from the predictive controller. Namely, the
size of the high-level QP remains constant, regardless of the
amount of data used. The parameters used are Tini = 10 for
the estimation horizon, N = 25 for the prediction horizon,
and T = 4284 collected I-O data points, which is much
greater than the minimum number of data points required
by the general theory. The use of a large amount of data
is highly beneficial here because the system is nonlinear. By
using more data, the model better encapsulates information
from various configurations and is less sensitive to noise from
the collected data, providing a better approximation of the
system. This is inline with the promising results of [21], [22]
for control of nonlinear systems. In particular, [21] considers
drone dynamics that are similar to the SRB model.

Although the size of the problem is reduced considerably
by using (9) as opposed to (5), it is still large with 550
decision variables and 800 constraints. The planner is solved
using OSQP [37] and takes upwards of approximately 25
(ms) to solve on an external laptop with an Intel® Core™

i7-1185G7 running at 3.00 GHz and 16 GB of RAM. We
therefore run the planner every 30 (ms) and use the first
three steps of the predicted COM trajectory and GRFs as
inputs passed to the low-level controller. Finally, the pa-
rameters in the predictive controller are taken to be Q =
diag(8e6, 5e5, 5e5, 5e3, 8e6, 8e5, 8e5, 5e3, 5e3, 5e5) and R =
0.5I , where I is the identity of appropriate size.

Remark 3: If good force estimates are not available, the
chosen I-O pair seems restrictive. To alleviate this, one could
also consider using u := col(zdes, ẋdes, ẏdes, żdes, αdes, ωdes),
y := col(z, ẋ, ẏ, ż, α, ω) as the I-O pair for (12), which is
less restrictive in terms of readily available measurements.

B. Data-Driven Experimental Results

The purpose of this section is to provide the parameters
for the QP-based low-level controller (17) used in tandem
with the trajectory planner and further provide experimental
results of the proposed hierarchical control scheme. In order
to track the provided trajectory, the weights in the low-level
QP are chosen to be γ1 = 102, γ2 = 103, and γ3 = 106. The
low-level controller is solved at 1kHz using qpSWIFT [38]
and takes approximately 0.22 (ms) using the same external
laptop as the planner. Snapshots of various experiments using
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Fig. 5. The prescribed trajectory from the planner while trotting subject to (a)
rough terrain consisting of unstructured wooden blocks and (b) tethered pulls.
The robot is commanded to walk forward at 0.5 (m/s), the height command
is 0.28 (m), and all other states are commanded to be zero. Pulls occur for
the first 4 seconds.

the trajectory planner in tandem with the low-level controller
can be found in Fig. 3. In these experiments, the robot is
commanded to blindly walk forward at 0.5 (m/s) and was
subject to pushes (Fig. 3(a)), pulls (Fig. 3(b)), unknown rough
terrain (Fig. 3(c)), and unstructured outdoor environments
(Fig. 3(d)). In all scenarios, the quadruped was able to robustly
maneuver. Videos of the experiments can be found online
at [39]. Phase portraits for these stable gaits can be found
in Fig. 4. The phase portraits remain small and bounded,
which demonstrates the overall stability of the system. Using
the data from the same experiments found in Fig. 4, Fig. 5
displays the time response of the trajectories resulting from
the planner. While the disturbances are unknown, the planner
remains stable showing the robustness of the planner against
unknown external influences.

Extension to Other Gaits: The controller was additionally
evaluated in terms of its ability to track a time-varying
reference, and to consider an additional gait without collecting
new data. In order to test this, the robot was maneuvered
across flat ground using a joystick for velocity commands.
The comparison between the output of the planner and the
commanded velocities for a trot gait can be found in Fig.
6(a), and for a walk gait in Fig. 6(b). Additional experiments
also evaluated the efficacy of the planner when using a stance
time that is 25% shorter (150 (ms)) and longer (250 (ms))
than that which was used during the initial data collection.
While omitted due to space constraints, the videos of these
experiments can be found online at [39]. Our results suggest
that the same data can be used even in situations that were not
exactly represented during the data collection procedure. This
includes being robust to external disturbances and handling
gaits with different footfall patterns and step frequencies than
that which was used during collection. However, dynamic gaits
like bounding may require additional data collection.

C. Comparison to Physics-Based Reduced-Order Model

This section aims to briefly provide insight into how the pro-
posed data-driven methodology compares to linearized SRB.
A comparison of the trajectories of the proposed approach
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1
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0
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Fig. 6. The figure shows the stable output tracking of the planner compared
to the time-varying reference provided by a user through a joystick and the
robot’s actual states while using (a) a trot gait and (b) a walk gait. Each
domain lasts 200 (ms).

Fig. 7. Hardware experiments showing the evolution of the trajectory
produced by the data-driven planner (a) and a MPC planner using a linearized
SRB model (b). The robot aims to follow a velocity profile that results in a
circular path.

versus the linearized SRB can be found in Fig. 7. The proposed
approach, using only data to construct a model, performs
comparably to a moderately tuned linearized SRB-based MPC.
The slightly attenuated noise profile in the proposed approach
is likely due to the estimation that is inherently contained
within the model through (uini, yini). This could also be due
to the longer time horizon of the proposed approach and
the fact that the horizon spans multiple domains. While the
two methods perform very similarly, the primary advantage
of the proposed approach is that no knowledge of the system
dynamics is required to create a reduced-order model and fore-
goes the need for explicit system identification. Improvements
could potentially be obtained by considering a Page matrix
representation [23] or singular value truncation [40], but we
leave this to future investigation. Videos of the comparison
can be found in [39].

VI. CONCLUSION
This paper presented a hierarchical control algorithm based

on data-driven template models for real-time planning and
control of dynamic quadrupedal robots. At the higher level,
we provide a reduced-order model, based purely on data,
which is used in a computationally tractable predictive control
framework for real-time trajectory planning. The data-driven
model leverages the information about the SRB model while
forgoing the need for successive linearization. The optimal
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trajectories are then passed to a QP-based and low-level
nonlinear controller for whole-body motion control. The ef-
ficacy of the proposed layered control approach is validated
via extensive experiments for robustly stable locomotion of
the A1 quadrupedal robot on different unknown terrains, in
the presence of disturbances, and considering different gaits
and gait parameters without collecting additional data. Future
work should explore the use of data-driven template models
with more complex systems such as collaborative systems. In
particular, the scalability to large-scale complex systems will
be a major challenge. Exploring how the data-driven approach
compares analytically to the linearized SRB model would also
provide valuable insight into the dynamics captured by the
proposed method.
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