

1 **Paleointensity Estimates from the Pleistocene of**
2 **Northern Israel: Implications for hemispheric**
3 **asymmetry in the time-averaged field**

4 **L. Tauxe¹, H. Asefaw¹, N. Behar², A.A.P. Koppers³, R. Shaar²**

5 ¹Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego,
6 La Jolla, CA, USA

7 ²The Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

8 ³College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

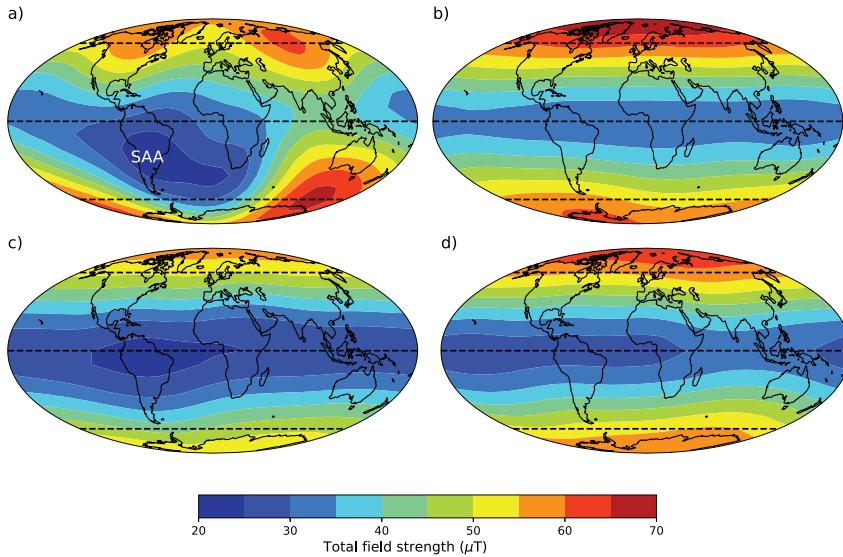
9 **Key Points:**

10 • We present 26 $^{40}\text{Ar}/^{39}\text{Ar}$ ages from volcanic rocks from Northern Israel (90 ka to
11 3.3 Ma)

12 • Twenty-two Pleistocene intensity estimates have a mean paleomagnetic dipole mo-
13 ment of $62.24 \pm 30.6 \text{ ZAm}^2$

14 • The northern hemisphere had persistently higher fields than the southern during
15 the Pleistocene

16 **Abstract**


17 Twenty-two sites, subjected to an IZZI-modified Thellier-Thellier experiment and
 18 strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of $62.24 \pm$
 19 30.6 ZAm^2 in Northern Israel over the Pleistocene (0.012 - 2.58 Ma). Pleistocene data
 20 from comparable studies from Antarctica, Iceland, and Hawaii, re-analyzed using the same
 21 criteria and age range, show that the Northern Israeli data are on average slightly higher
 22 than those from Iceland (PADM = $53.8 \pm 23 \text{ ZAm}^2$, n = 51 sites) and even higher than
 23 the Antarctica average (PADM = $40.3 \pm 17.3 \text{ ZAm}^2$, n = 42 sites). Also, the data from
 24 the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = $76.7 \pm$
 25 21.3 ZAm^2 , n = 59 sites) are higher than those from Northern Israel. These results, when
 26 compared to Pleistocene results filtered from the PINT database (www.pintdb.org) sug-
 27 gest that data from the Northern hemisphere mid-latitudes are on average higher than
 28 those from the southern hemisphere and than those from latitudes higher than 60°N . The
 29 weaker intensities found at high (northern and southern) latitudes therefore, cannot be
 30 attributed to inadequate spatio-temporal sampling of a time-varying dipole moment or
 31 low quality data. The high fields in mid-latitude Northern hemisphere could result from
 32 long-lived non-axial dipole terms in the geomagnetic field with episodes of high field in-
 33 tensities occurring at different times in different longitudes. This hypothesis is supported
 34 by an asymmetry predicted from the Holocene, 100 kyr, and five million year time-averaged
 35 geomagnetic field models.

36 **Plain Language Summary**

37 According to the Geocentric Axial Dipole hypothesis, the geomagnetic field may
 38 be approximated by a dipole that is aligned with the spin axis and positioned in the cen-
 39 ter of Earth. Such a field would produce field strengths that vary with respect to lat-
 40 itude with high latitudes associated with high intensities, or, converted to equivalent ‘vir-
 41 tual’ dipole moments, would be essentially independent of latitude. It has long been sug-
 42 gested that high latitudes have had lower field strengths than predicted by such a model,
 43 when compared to data from mid-latitudes, but these claims have always been accom-
 44 panied by caveats regarding differences in temporal coverage or methodological approaches.
 45 Here we present new data from Pleistocene aged rapidly cooled cinder cones and lava
 46 flow tops from Israel. We compare these data to other recent data sets obtained from
 47 rapidly cooled materials collected in Hawaii, Iceland and Antarctica. These confirm that
 48 virtual dipole moments from mid northern hemisphere latitudes are higher than those
 49 from high latitudes and from the southern hemisphere. Global compilations spanning
 50 the Pleistocene, when filtered for quality also shows this behavior as do time averaged
 51 field models. Therefore, field strengths over even millions of years can have persistent
 52 non-dipole field contributions.

53 **1 Introduction**

54 The geomagnetic field changes through time, a phenomenon known as secular vari-
 55 ation, or paleosecular variation (PSV) when extended to the more ancient past. The spa-
 56 tial variability is evident in the present field (2022) as represented by predictions of field
 57 strength over the globe from the International Geomagnetic Reference Field (IGRF, Alken
 58 et al., 2021, see Figure 1a). While the present field is quite variable along lines of lat-
 59 itude, models of the time-averaged field are much smoother and when averaged over suf-
 60 ficient time, the geometry of the field can be represented by that generated by a mag-
 61 netic dipole centered in the Earth and aligned along the spin axis (Hospers, 1955). This
 62 is basis of the ‘geocentric axial dipole’ (GAD) hypothesis that is fundamental to plate
 63 tectonic reconstructions that extend back to the Archean. Yet significant non-dipole con-
 64 tributions to the global field have long been known from directional data (e.g., Wilson,
 65 1970) and more recently suspected from intensity data (e.g., Cromwell et al., 2013).

Figure 1. Intensity (in μT) of the geomagnetic field from global field models. a) International Geomagnetic Reference Field (IGRF) for the year 2022 (Alken et al., 2021). b) Average of the Holocene field from CALS10k.2 (Constable et al., 2016). c) Average field for the last 100 ka (Panovska et al., 2018). d) LN3 time averaged field model for the last 5 Ma (Cromwell et al., 2018).

Time-varying field models extend the IGRF like models back to 10 kyr ago (e.g., CALS10k.2 Constable et al., 2016) or even 100 kyr (GGF100k, Panovska et al., 2018). These, when averaged over their entire time span, produce ever smoother models (see Figure 1b-c). Numerous studies over the past decades recovered directions from lava flows over the past 10 million years. Cromwell et al. (2018) compiled these data sets and produced a five million year time averaged geomagnetic field model, LN3. The LN3 field model, although based on directional data alone, can also be used to predict field intensity variations over the Earth (Figure 1d). While the prominent low intensity bulge labeled ‘SAA’ for South Atlantic Anomaly in Figure 1a may not have persisted over long periods of time, it is interesting that the time averaged models all have an asymmetry between field strengths in the northern and southern hemispheres as suspected by Cromwell et al. (2013). Compare for example the 60°N latitude band with an average of some $65\ \mu\text{T}$ with its southern hemisphere sister, whose average field is $\sim 55\ \mu\text{T}$. There are, therefore, hemispheric differences in predicted field strength that apparently persisted over millions of years.

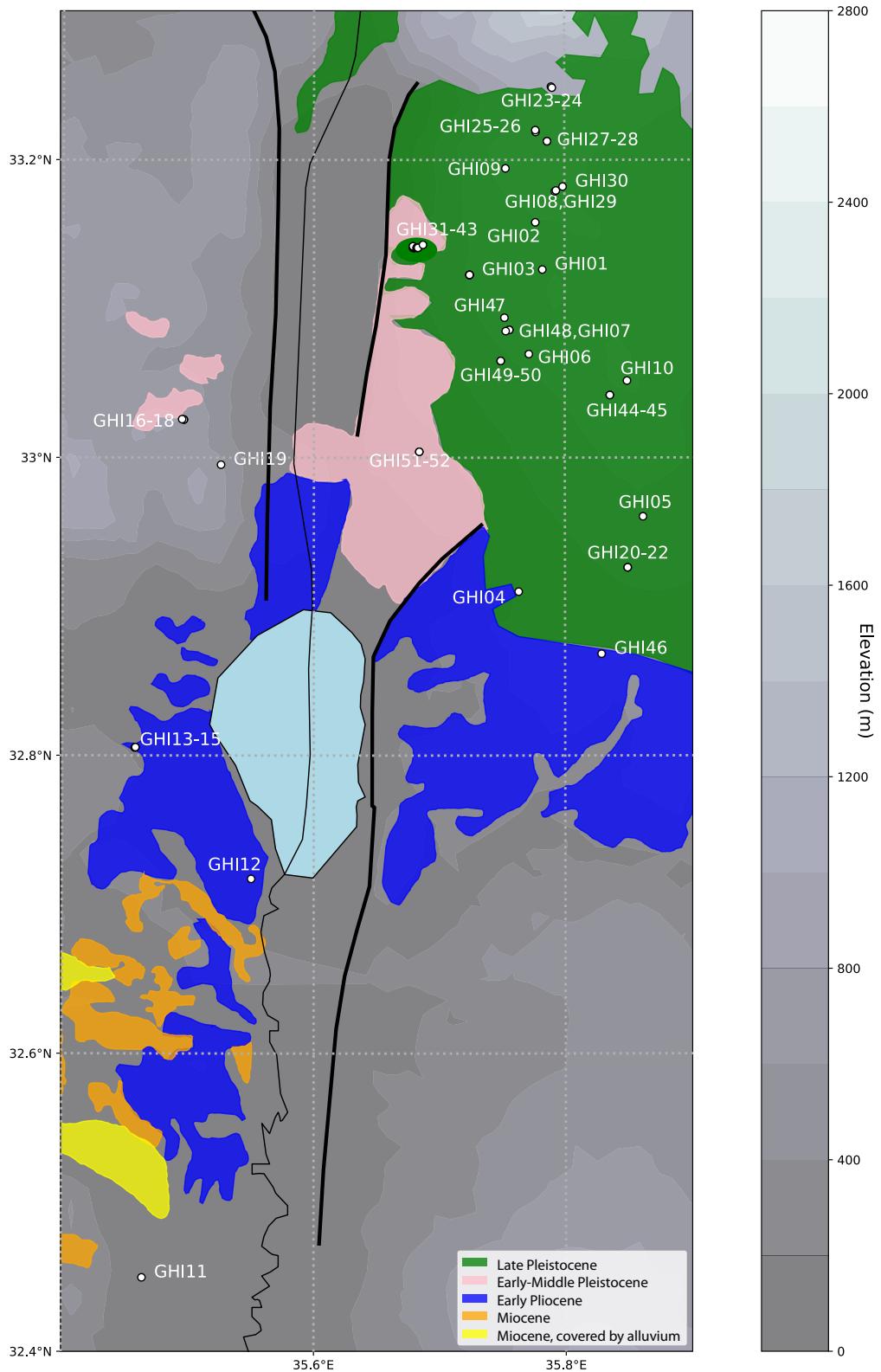
To test the idea of persistent hemispheric asymmetry, we need high quality paleointensity data from around the globe. Although there are databases that compile published data (e.g., the PINT, and MagIC databases; Bono et al., 2022 and Tauxe et al., 2016 respectively), these contain data derived from very different sampling, laboratory and data analysis approaches and may not reflect the magnetic field strength in an unbiased way. In this study, we present new paleointensity data from the Pleistocene volcanic units in Northern Israel ($32.9^\circ\text{-}33.2^\circ\text{N}$, $35.5^\circ\text{-}35.8^\circ\text{E}$) from rapidly cooled cinder cones and lava flow tops. We compare these new results with those re-interpreted from studies conducted in a similar fashion in Antarctica (Asefaw et al., 2021), Hawaii (Cai et al., 2017; Tauxe & Love, 2003) and Iceland (Cromwell et al., 2015b), and then to those filtered from the PINT database of Bono et al. (2022), attempting to choose the most reliable results in a consistent fashion. In Section 2 we describe the geological setting for the present study. In Section 3 we lay out our sampling, and laboratory procedures. Re-

93 sults are presented in Section 4 and the implications are discussed in Section 5. Finally,
94 we summarize our conclusions in Section 6.

95 **2 Geological Setting**

96 Our study area is a volcanic province in Northern Israel (Figure 2) located at the
97 western edge of the extensive NW-SE trending Harrat ash Shaam volcanic field which
98 developed during the late Cenozoic. The volcanic activity in the study area occurred in
99 several phases beginning in the Miocene and continuing through the late Pleistocene. The
100 most recent volcanic phase began about 5.3 Ma (Heimann et al., 1996) and continued
101 until 0.1 Ma (Behar et al., 2019; Weinstein et al., 2020). The Plio-Pleistocene volcanism
102 includes basaltic flows and cinder cones, with compositions ranging between alkali
103 basalt, hawaiite, and basanite (Weinstein et al., 2006a; Weinstein, 2006b). The geological
104 and geomorphological processes that shaped the existing landscape includes a pro-
105 gressive migration of the volcanic activity to the northeast and tectonic activity along
106 the Dead Sea Transform (DST) plate boundary. The Golan Heights plateau, east of the
107 DST, is a largely un-faulted area where we collected many samples. The topographic re-
108 lief led to the development of canyons toward the valley that cut through the geological
109 units and revealed excellent exposures of the entire Plio-Pleistocene volcanic sequences.

110 **3 Methods**


111 **3.1 Sample Collection**

112 Samples were collected from cinder cones and lava flows (Figure 2 and Table S1)
113 during two field expeditions. On our first trip in 2015, we drilled oriented cores from 52
114 lava flows (the GH series of Behar et al., 2019) and took unoriented hand samples from
115 ten cinder cones (GHI sites 01-10 in Figure 2). Behar et al. (2019) demagnetized spec-
116 iments from the drill cores using alternating field and thermal demagnetization techniques
117 and obtained paleodirections for characterizing the behavior of PSV over the Plio-Pleistocene
118 from Israel. We performed paleointensity experiments on these drilled specimens, but,
119 as is common with lava flows, the data failed our selection criteria. However, six of the
120 ten cinder cones performed well and we therefore returned for a second field trip and tar-
121 geted cinder cones and quickly cooled lava flow tops, as these seem to perform better in
122 our paleointensity experiments (Cromwell et al., 2015a). In total, we collected 52 sites
123 from the quickly cooled contexts in Northern Israel, spanning the Plio-Pleistocene. Forty-
124 three were from the Golan Heights Plateau itself and nine were from the Eastern Galilee,
125 west of the Dead Sea Transform.

126 **3.2 ^{40}Ar - ^{39}Ar Geochronology**

127 Sites that were deemed promising for paleointensity results were selected for dat-
128 ing using the ^{40}Ar / ^{39}Ar dating method. We sent a total of 29 samples to the Argon Geochronol-
129 ogy lab at Oregon State University (OSU). There we conducted ^{40}Ar / ^{39}Ar incremen-
130 tal heating experiments on groundmass samples. Samples ranging from 200 - 300 μm were
131 prepared, and leached in acid with 1N and 6 N HCl and 1N and 3N HNO₃ in an ultra-
132 sonic bath (Koppers et al., 2000). The samples were then irradiated for six hours in a
133 TRIGA CLICIT nuclear reactor at OSU. After irradiation, samples were scanned with
134 a defocused, continuous CO₂ laser beam to incrementally heat the samples. The released
135 argon gas fractions were then purified using ST101 and AP10 SAES getters for 3 - 6 min-
136 utes. All gas fractions released were analyzed on an ARGUS-VI multi-collector mass spec-
137 trometer.

138 The ages are interpreted as eruption ages including a consecutive set of incremen-
139 tal heating steps with ages falling within $1.96\sqrt{\sigma_1^2 + \sigma_2^2}$. σ_1 (σ_2) is the standard devi-
140 ation of the lowest (highest) age in the plateau. Plateaus were subjected to the follow-

Figure 2. A map of the study region. White circles mark sites that were hand sampled for paleointensity. Volcanic units after Weinstein et al. (2006a) and Heimann et al. (1996) and this paper. Faults are shown as heavy black lines.

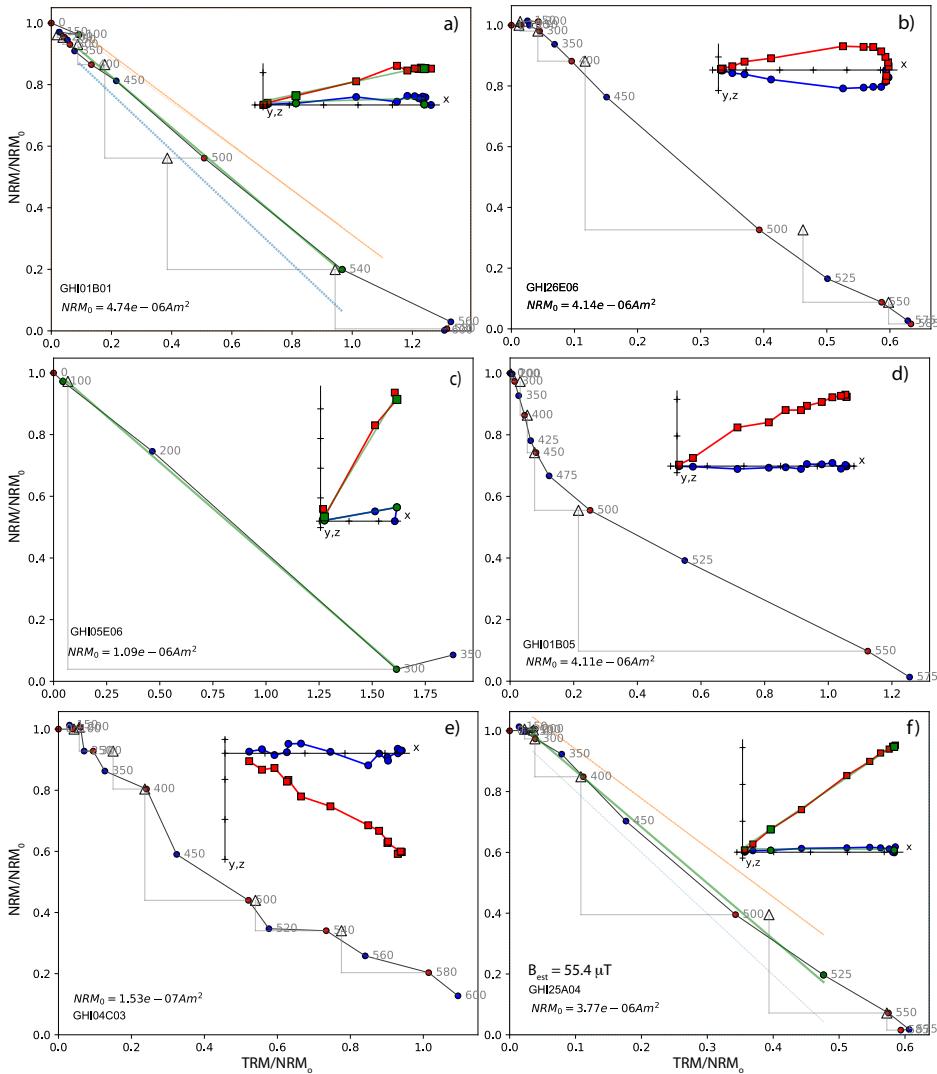
141 ing quality criteria: they must include at least three heating steps and at least 50% of
 142 the total ^{39}Ar released and they must be concordant at the 95% confidence level with
 143 the isochron and total fusion ages (Koppers et al., 2008).

144 In addition to the new ages presented here, we use additional age information from
 145 Weinstein et al. (2020) for Mt. Bar-On and Tel Sheivan (sites GHI02 and GHI03 respec-
 146 tively in this paper). For the former, we take the arithmetic mean of the two plateau ages
 147 and their uncertainties for an age estimate of 0.130 ± 0.012 Ma (2σ). Of the 29 samples
 148 analyzed, 26 resulted in robust plateau ages (Figure S1, Table 1).

149 3.3 Paleointensity experiment

150 Samples were gently crushed with a ceramic mortar. The fragments were then ex-
 151 amined under a binocular microscope to select the finest grained and freshest material.
 152 We chose the finest grained material as it likely retains a primary thermal remanent mag-
 153 netization (TRM) carried by mostly single-domain grains of magnetite as these conform
 154 to the assumptions of the Thellier-Thellier experiment (Thellier & Thellier, 1959). In-
 155 dividual specimens up to 0.5 gm were encased in glass microfiber filter paper and affixed
 156 inside a borosilicate glass vial with K_2SiO_3 . Specimens were kept in the shielded room
 157 in the Paleomagnetic Laboratory at Scripps Institution of Oceanography while the ex-
 158 periments were underway.

159 The specimens were then subjected to the IZZI paleointensity experiment of Yu
 160 et al. (2004). A total of 498 specimens from the cinder cones or lava flow tops (GHI se-
 161 ries) were subjected to the IZZI experiment in the Scripps Paleomagnetic Laboratory.
 162 In this experiment, specimens were heated in a step-wise fashion, cooling either in an
 163 applied laboratory field (I steps) or in zero field (Z steps) at each temperature. Temper-
 164 ature steps were at 100°C intervals between 0 and 300°C , 50°C intervals between 300
 165 and 400°C , 25°C intervals between 400 and 575°C and then at 10°C intervals until at
 166 least 90% of the natural remanent magnetization (NRM) of each specimen was removed
 167 in the zero field steps. Zero-field cooling followed by in-field (ZI) or in-field cooling fol-
 168 lowed by zero field (IZ) alternate at every subsequent temperature step. In addition, we
 169 repeated an in-field step at a lower temperature after every IZ step to monitor for changes
 170 in the capacity of the specimens to acquire a partial thermal remanence (pTRM checks
 171 of Coe, 1967a).


172 The ratio of the natural remanence remaining compared to the pTRM gained over
 173 the experiment can be assumed to be quasi-linearly related to the strength of the field
 174 in which the specimen acquired its NRM (Néel, 1949). This ratio, when multiplied by
 175 the laboratory field B_{lab} is taken as an estimate of the ancient field strength, B_{anc} .

176 4 Results

177 There are many causes of failure of paleointensity experiments. Here we adopt the
 178 approach of Cromwell et al. (2015a) who chose selection criteria (Table 2), called CCRIT
 179 by Tauxe et al. (2016). These criteria are designed to test the assumptions of the IZZI
 180 experiment. Cromwell et al. (2015a) applied the criteria to specimens taken from his-
 181 torical lava flow tops that cooled quickly in fields known from historical measurements
 182 and tabulated in the International Geomagnetic Reference Field models (e.g., Alken et
 183 al., 2021). The Cromwell et al. (2015a) study recovered the field strength to within a few
 184 μT of the known field. CCRIT has specified threshold values for parameters at the spec-
 185 imen and at the site levels. At the former, CCRIT criteria are meant to test whether the
 186 demagnetization direction decays toward the origin using the deviation angle (DANG)
 187 and maximum angle of deviation (MAD) parameters (see definitions and original refer-
 188 ences in Paterson et al., 2014). DANG estimates the angle between the best fit line and
 189 the origin for the demagnetization direction. MAD measures the scatter in the NRM di-

Site	Location	Latitude (°N)	Longitude (°E)	Age (Ma)	±2σ (Ma)	³⁹ Ar%	K/Ca	±2σ	MSWD	n
GHI01	Mt. Bental	33.12635	35.78227	0.1177	0.0358	89	0.175	0.069	0.62	23
GHI05	Nahal Yehudiya, Rd 87	32.96051	35.86224	0.1679	0.0255	100	0.022	0.012	0.63	21
GHI06	Mt. Shifon	33.06958	35.77143	0.1145	0.0085	100	0.063	0.026	0.63	21
GHI07	Ortal	33.08581	35.75589	0.6805	0.0183	46	0.182	0.022	0.37	5
GHI08	Mt. Hermonit	33.17882	35.79236	0.7676	0.0179	56	0.116	0.032	1.11	14
GHI09	Mt. Odem	33.19430	35.75293	0.0894	0.0251	75	0.006	0.006	0.47	8
GHI10	Bashanit	33.05168	35.84968	0.6149	0.0349	100	0.029	0.012	0.97	26
GHI18	Dalton	33.02583	35.49491	1.6700	0.0400	100	0.320	0.070	1.12	25
GHI19	Amuka	32.99528	35.52599	2.4500	0.0226	65	0.656	0.036	0.43	20
GHI20	Givat Orcha	32.92629	35.84994	1.6500	0.0200	66	0.339	0.020	1.50	12
GHI21	Givat Orcha	32.92629	35.84994	1.6765	0.0302	92	0.054	0.015	0.59	22
GHI24	Mt. Ram	33.24848	35.79011	3.3300	0.0200	76	0.145	0.049	0.65	17
GHI25	Mt. Kramin	33.21873	35.77706	0.8723	0.0053	84	0.530	0.058	0.64	7
GHI26	Mt. Kramin	33.22000	35.77683	0.8704	0.0169	97	0.121	0.071	0.75	13
GHI27	Mt. Varda	33.21250	35.78616	1.1498	0.0348	81	0.511	0.036	0.39	18
GHI28	Mt. Varda	33.21250	35.78616	1.1912	0.0152	91	0.130	0.028	1.37	19
GHI29	Mt. Hermonit	33.17944	35.79322	0.7496	0.0945	87	0.272	0.050	0.89	18
GHI30*	Mt. Hermonit	33.18206	35.79858	1.2317	0.0757	80	0.054	0.022	2.93	20
GHI39	Nahal Orvim	33.14100	35.68200	0.8476	0.1165	100	0.320	0.076	0.04	24
GHI40	Nahal Orvim	33.14100	35.68200	0.7736	0.1949	100	0.290	0.053	0.22	23
GHI41	Nahal Orvim	33.14100	35.68300	0.7902	0.0058	70	0.212	0.014	1.01	12
GHI44*	Alonei Habashan	33.04200	35.83600	1.4369	0.0195	85	0.354	0.048	0.67	18
GHI46	Tel Saki	32.86829	35.82905	2.7442	0.0475	100	0.010	0.005	0.86	31
GHI47	Dalawe	33.09400	35.75200	0.9699	0.0636	100	0.038	0.015	0.45	21
GHI48	Dalawe	33.08500	35.75300	0.7231	0.0324	62	0.064	0.019	0.58	5
GHI49	Hashirion Junction	33.06500	35.74900	0.1162	0.0088	97	0.038	0.019	1.34	16

Table 1. Ar-Ar ages from this study. MSWD: mean squared weighted deviation, n: the number of steps in the plateau. * age based on 'mini-plateau' and all others are plateau ages.

Figure 3. Examples of Arai plots of IZZI experiments and the effect of the CCRIT criteria. Circle color indicates the sequence of treatment steps- ZI (blue) or IZ (red). NRM remaining versus pTRM gained as a function of temperatures (circles). Triangles are pTRM checks. Insets are Zijderveld diagrams for the zero field steps with the magnetization vector projected onto the xz-plane (red) and the xy-plane (blue) for each specimen. The declinations have been rotated to the 'X' axis as these are all unoriented specimens. a) Failed the SCAT criterion because the 500° pTRM step falls outside the SCAT box shown as the blue and red lines. b) Failed the MAD criterion with MAD of 12.4. c) Failed the Gap Max criterion with G_{max} of 0.76. d) Failed the curvature criterion with $\vec{k}' = 0.728$. e) Failed the curvature criterion with $\vec{k}' = 0.618$. f) Passed all criteria.

rections during the experiment. The ratio relating the remanence remaining against that acquired is estimated by the best fitting line through a selection of the data. We use the 'Auto Interpreter' function of the Thellier GUI program of (Shaar & Tauxe, 2013), part of the PmagPy software package of (Tauxe et al., 2016) to find the portion of the data that passes CCRIT criteria in an objective way. PmagPy is freely available at:

195 <https://github.com/PmagPy/PmagPy>.

196 The fraction of remanence used in the fit (quantified by FRAC) must be large for
 197 the intensity estimate to be meaningful and we add an additional constraint, n , the min-
 198 imum number of measurements used to fit the line. CCRIT also sets G_{max} , the max-
 199 imum amount of fractional remanence removed between consecutive temperature steps,
 200 to 0.6. SCAT is a boolean value that indicates whether the data fall within $2\sigma_{threshold}$
 201 of the best fit slope. Finally, CCRIT screens for non-linearity by applying a parameter
 202 that quantifies the curvature of the NRM/pTRM data, \vec{k} , as suggested by Paterson (2011);
 203 curvature is associated with biased intensity estimates (Krásá et al., 2003; Tauxe et al.,
 204 2021; Cych et al., 2021). In the CCRIT criteria, we use $|\vec{k}'|$ which calculates curvature
 205 over the portion of remanence used in the calculation (hence the requirement of a large
 206 FRAC).

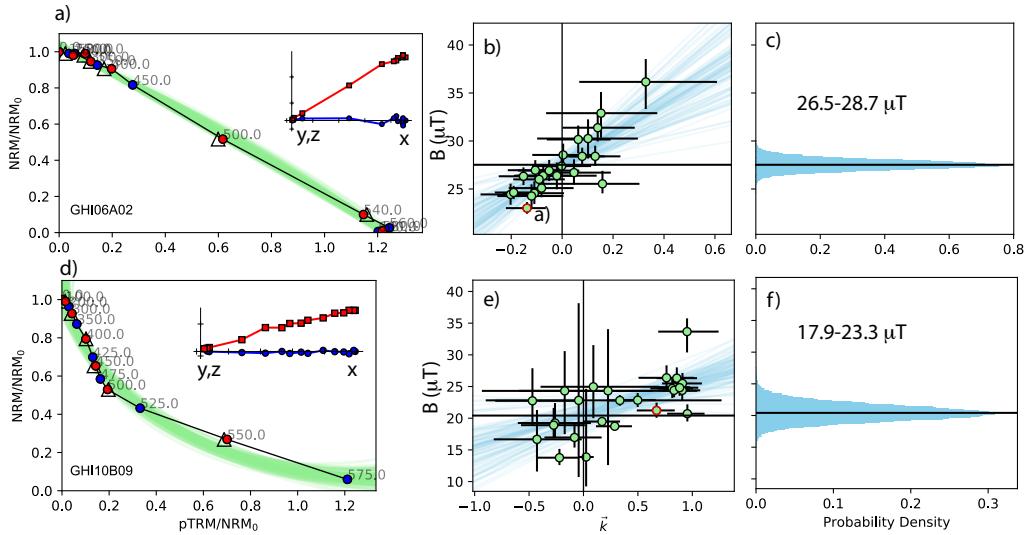

n	DANG	MAD	β	SCAT	FRAC	G_{max}	$ \vec{k}' $	N	B%	B σ
4	$\leq 10^\circ$	$\leq 5^\circ$	0.1	TRUE	0.78	≥ 0.6	0.164	3	10	4 μT

Table 2. The CCRIT Cromwell et al. (2015a); Tauxe et al. (2016) selection criteria applied to the data from the IZZI experiment. See Paterson et al. (2014) for expanded definitions. n: minimum number of consecutive demagnetization steps, DANG: deviation angle, MAD: maximum angle of deviation, β = the maximum ratio of the standard error to the best fit slope, SCAT: a boolean value that indicates whether the data fall within $2\sigma_{threshold}$ of the best fit slope, FRAC: fractional remanence, G_{max} : maximum fractional remanence removed between consecutive temperature steps, \vec{k}' : maximum curvature statistic, N: minimum number of specimens per site, B%: maximum percentage deviation from the site average intensity, B σ : maximum intensity (μT) deviation from the site average intensity.

207 We observed a wide range of behaviors in our study (Figure 3). A change in the
 208 ability to acquire pTRM results in failure to reproduce the original pTRM step and a
 209 SCAT value of False (Figure 3a). Some specimens appear to have rotated during cool-
 210 ing resulting in multi-component behavior in the zero field steps. This behavior often
 211 results in a failure of the MAD criterion (see inset to Figure 3b). In several specimens,
 212 the NRM was entirely unblocked between two consecutive steps (e.g., Figure 3c) violat-
 213 ing our G_{max} criterion. In others the Arai plots were excessively curved (Figure 3d, ex-
 214 ceeding the k' criterion. Others varied as a function of treatment steps (IZ or ZI) (e.g.,
 215 Figure 3e) resulting in a zig-zagging pattern (Yu et al., 2004). These failed the curva-
 216 ture criterion (and also frequently the MAD threshold). DANG fails when the demag-
 217 netization vector bi-passes the origin. In our experiments, no specimens failed DANG
 218 that did not also fail MAD. Such behavior suggests the presence of non-ideal magnetic
 219 recorders and results from these specimens failed the CCRIT criteria. Of the 498 spec-
 220 iments from the GHI collection that underwent the IZZI experiment, 117 passed our spec-
 221 iment level criteria (see Table S3 and example in Figure 3f).

222 At the site level, CCRIT tests for consistency between intensity estimates (B% or
 223 B σ). B σ is the standard deviation of the intensity estimates from a given site and B%
 224 is the standard deviation of intensity estimates at the site level expressed as a percent-
 225 age of the mean intensity. A maximum threshold is set for B% and B σ and sites must
 226 meet at least one of the two thresholds to pass the CCRIT criteria. After we applied our
 227 site-level criteria, 18 high quality site estimates of paleointensity remained (Table 3).

228 Sites with specimens showing a range of curvatures such as those shown in Figures 3d
 229 and 4d might contain useful information for constraining paleointensity estimates, par-

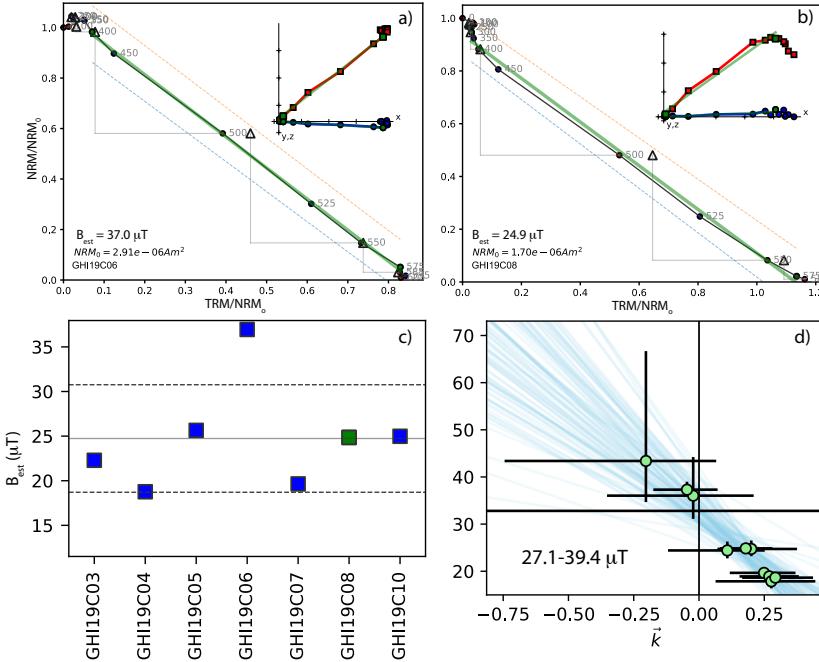


Figure 4. Examples of IZZI experiments and the effect of the BiCEP method. a) Example of Arai plot for specimen GHI06A02. Symbols same as in Figure 3. Green lines are Monte Carlo circle fits from the BiCEP method. b) Plots of intensity estimates from the circle fits against curvature (\vec{k}) and Monte Carlo line fits (shown in blue). c) Density plots of estimated intensities from the y-intercepts of the Monte Carlo line fits to the data shown in b). The Bayesian 95% credibility interval on the intensity estimates is $26.5\text{--}28.7\text{ }\mu\text{T}$. d) Same as a) but for specimen GHI10B09. e) same as b) but for site GHI10. f) same as c) but for data shown in e).

ticularly if there are many specimens at the site level. For such sites we used the recently developed Bias-Corrected Estimation of Paleointensity (BiCEP) method of Cych et al. (2021). This method uses a Bayesian statistical approach. It makes the assumption that curved results ($|\vec{k}| > 0.164$) are linearly biased with respect to the true value as suggested by Santos and Tauxe (2019) and Tauxe et al. (2021). As an example of how BiCEP works, we use the data from site GHI06, which passed the CCRIT criteria with 20 specimens, yielding an average intensity value of $27.3 \pm 1.8\text{ }\mu\text{T}$ (see Table 3). When subjected to BiCEP, we get an example of curvature fits to the data from one specimen in Figure 4a as green lines and the collection of estimates at the site level in Figure 4b. The Bayesian probability density plot (Figure 4c) gives a range in estimates of $26.5\text{--}28.7\text{ }\mu\text{T}$, in excellent agreement with the CCRIT results. These bounds are minimum and maximum estimates which are analogous to 95% confidence bounds (so four times the width of our 1σ uncertainties with CCRIT).

The BiCEP method is most appropriate for sites that fail owing to curvature or multi-component behavior and have at least five specimens. In general, low-temperature components can be removed as well as high temperature steps after the onset of alteration. An example of a site that failed CCRIT (because of a lack of sufficient specimens with low enough curvature) is shown in Figure 4d-f. This site yields a paleointensity estimate ranging from 17.9 to $23.3\text{ }\mu\text{T}$. All of the BiCEP results are listed in Table 4. Where both CCRIT and BiCEP were successful (GHI06, GHI20 and GHI25), the two methods yielded very similar results and we use the CCRIT results.

Another example of how BiCEP can enhance interpretations at the site level when the CCRIT method fails is shown in Figure 5. This site had seven specimens that passed the CCRIT criteria but the within site scatter exceeded the CCRIT thresholds for both

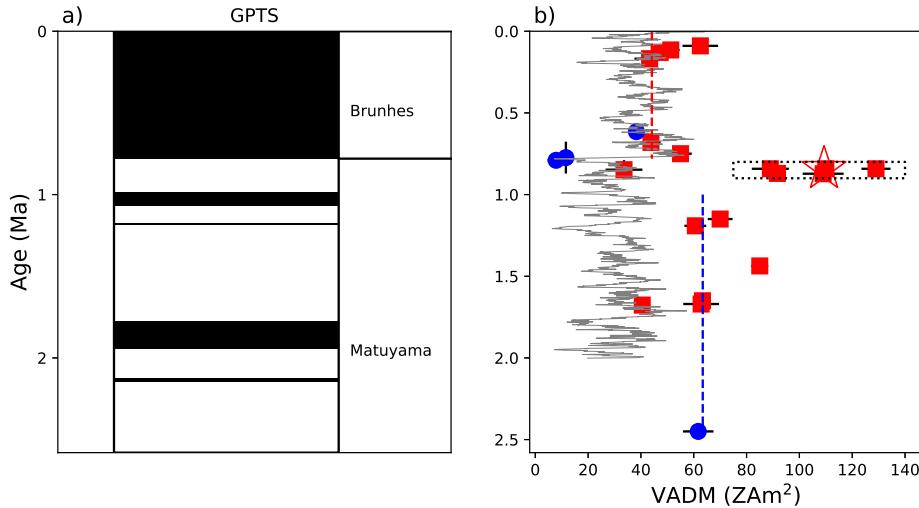


Figure 5. Examples BiCEP on a site with specimens that passed CCRIT but failed at the site level for being too scattered (GHI19). a) Data for specimen GHI19C06. Symbols same as in Figure 3. b) Same as a) but for sister specimen GHI19C08. c) Estimated intensities for all specimens passing CCRIT from site GHI19. d) Data from GHI19C treated using the BiCEP method. Symbols same as in Figure 4.

B_σ and $B\%$ (see Figure 5c), hence was rejected by CCRIT. Of course we could arbitrarily exclude results deemed to be ‘outliers’, for example, the specimen shown in Figure 5a, which has the best specimen level statistics of the entire site. Arbitrary exclusion of specimens in this fashion well lead to misleading conclusions as we would be relying on data from specimens like that shown in Figure 5b, which is more curved than the ‘outlier’ and has a low temperature overprint. Instead of arbitrary data selection, we consider all the experimental data from the site using the BiCEP method (Figure 5d).

By standard paleomagnetic convention, a ‘site’ is a unit that forms over a short period or time and so records a uniform paleointensity and paleodirection. We would expect, for example, all specimens from a single lava flow to record the same paleomagnetic field. However, a cinder cone may have erupted over a period of time so, while we treat most cinder cones as a ‘site’, averaging all specimens together, there are two exceptions. GHI03 is composed of separate bombs scattered across the outcrop, so it may have erupted over a period of time. Samples from three of the bombs gave excellent, yet distinct, results so GHI03B, GHI03C and GHI03D could be treated as different sites. We also calculate the average of these three samples for a GHI03 average (star in Figure 6). This average has a standard deviation which fails the site level CCRIT criteria, however. In addition, specimens from GHI07C behaved consistently so we exclude the few specimens from GHI07A and GHI07E (which were distinct), but too few to pass at the site level criteria. All other cinder cones were treated as sites and all specimens were averaged at the cone (site) level.

Figure 6 shows the site mean data in equivalent virtual axial dipole moments (VADMs) in ZAm^2 . Most of the data have intensities well below the present axial dipole field value

Figure 6. a) The Geomagnetic Polarity Timescale (Gradstein et al., 2012) for the Pleistocene. b) The VADM estimates and uncertainties from successful sites in this study along with their age constraints. Red (blue) squares (dots) are the CCRIT (BiCEP) site means and 1σ uncertainties. The grey line is PADM2M record of Ziegler et al. (2011). The box encloses five sites, three from the GHI03 cinder cone and GHI25, and GHI26. The average of the GHI03 sites is shown as a star. The red dashed line is the average value of the VADMs for the Brunhes Chron (44 ZAm^2) and the blue dashed line is that for the period 1-2.5 Ma (63 ZAm^2).

of $\sim 80 \text{ ZAm}^2$, but there is a cluster of values just before the Brunhes/Matuyama boundary (surrounded by a dotted line box) with values higher than 80 ZAm^2 . Three sites are from the GHI03 cinder cone, all assigned to the same age (0.842 Ma) but with distinct paleointensities. We have treated these three data points as separate sites because of their distinct paleointensity values, but they were erupted very close in time and it is likely that we have over-sampled a very brief interval of rapidly changing and high field values, similar to the so-called Levantine ‘spikes’ that occurred some 3000 years ago (e.g. Ben Yosef et al., 2009; Shaar et al., 2011, 2016) in the same part of the world. For this reason, we also averaged together the three sites from the GHI03 cinder cone (star in Figure 6). The mean paleointensity is $33.1 \mu\text{T}$ and the mean PADM is 62.2 ZAm^2 using the 22 sites that passed CCRIT or BiCEP criteria. Although one of our sites, GHI24, has an age of 3.3 Ma, all successful sites were from the Pleistocene (maximum age of 2.58 Ma, Gradstein et al., 2012).

Selkin & Tauxe, 2000, suggested that there may be a change in the average PADM sometime in the Brunhes Chron whereby data preceding about 0.3 Ma had an average of some 50 ZAm^2 , while younger data had a higher average. This notion of a change in average moment was amplified by the work of Ziegler et al., 2011 who suggested a step-change in PADM at the Brunhes/Matuyama boundary in their PADM2M record (gray line in Figure 6b). Therefore, we calculate a Brunhes age (0-0.78 Ma) average (44 ZAm^2 , red dashed line in the figure), which is in close agreement with the PADM2M curve. The average from 1-2.5 Ma (dashed blue line in Figure 6b) is 63 ZAm^2 , or higher than the Brunhes average. These averages exclude the extrema just prior to and coincident with the Brunhes/Matuyama boundary (sites GHI03, GHI25, GHI26 and GHI39). The PADM2M curve was based on stacking of many marine sediment cores from around the world, calibrating the relative paleointensity stack with absolute ages from lava flows of known age.

Site	n	Intensity (μ T)	B_σ (μ T)	B% (%)	VADM (ZAm ²)	Age (Ma)	(1 σ) (Ma)	Latitude (°N)	Longitude (°E)
GHI02	3	25.2	2.2	8.8	47.3	0.1296	0.0006	33.1580	35.7767
GHI03B	7	68.7	2.9	4.3	129.0	0.842	0.01165	33.1228	35.7242
GHI03C	4	47.4	3.7	7.9	89.0	0.842	0.01165	33.1228	35.7242
GHI03D	3	58.8	0.3	0.4	110.4	0.842	0.01165	33.1228	35.7242
GHI03*	3	58.0	0.1	18.3	109.3	0.842	0.01165	33.1228	35.7242
GHI05	8	23.0	3.0	13.2	43.3	0.1679	0.01275	32.9605	35.8622
GHI06	20	27.3	1.8	6.6	51.3	0.1145	0.00425	33.0696	35.7714
GHI07C	6	23.3	1.9	8.3	43.8	0.6805	0.00915	33.0858	35.7559
GHI09	4	33.3	3.6	10.8	62.5	0.0894	0.00125	33.1943	35.7529
GHI18	3	33.4	3.6	10.8	62.8	1.67	0.02	33.0258	35.4949
GHI20	7	33.6	1.6	4.9	63.3	1.65	0.01	32.9263	35.8499
GHI21	4	21.5	1.4	6.3	40.5	1.6765	0.0151	32.9263	35.8499
GHI25	4	58.2	4.1	7.1	109.2	0.8723	0.00265	33.2187	35.7771
GHI26	6	48.9	1.4	2.9	91.7	0.8704	0.00845	33.2200	35.7768
GHI27	6	37.3	2.5	6.7	70.0	1.1498	0.0174	33.2125	35.7862
GHI28	5	32.3	2.2	6.8	60.6	1.1912	0.0076	33.2125	35.7862
GHI29	6	29.3	2.3	7.7	55.0	0.7496	0.04725	33.1794	35.7932
GHI39	3	17.9	3.7	20.7	33.6	0.8476	0.05825	33.1410	35.6820
GHI44	4	45.2	1.7	3.8	85.0	1.4369	0.00975	33.0420	35.8360

Table 3. Paleointensity results from this study that passed the CCRIT criteria. n: number of specimens per site, Intensity: site average intensity, B_σ : standard deviation , B%: percent error, VADM: site average VADM. GHI03* is the average of the three individual layers within the GHI03 cinder cone.

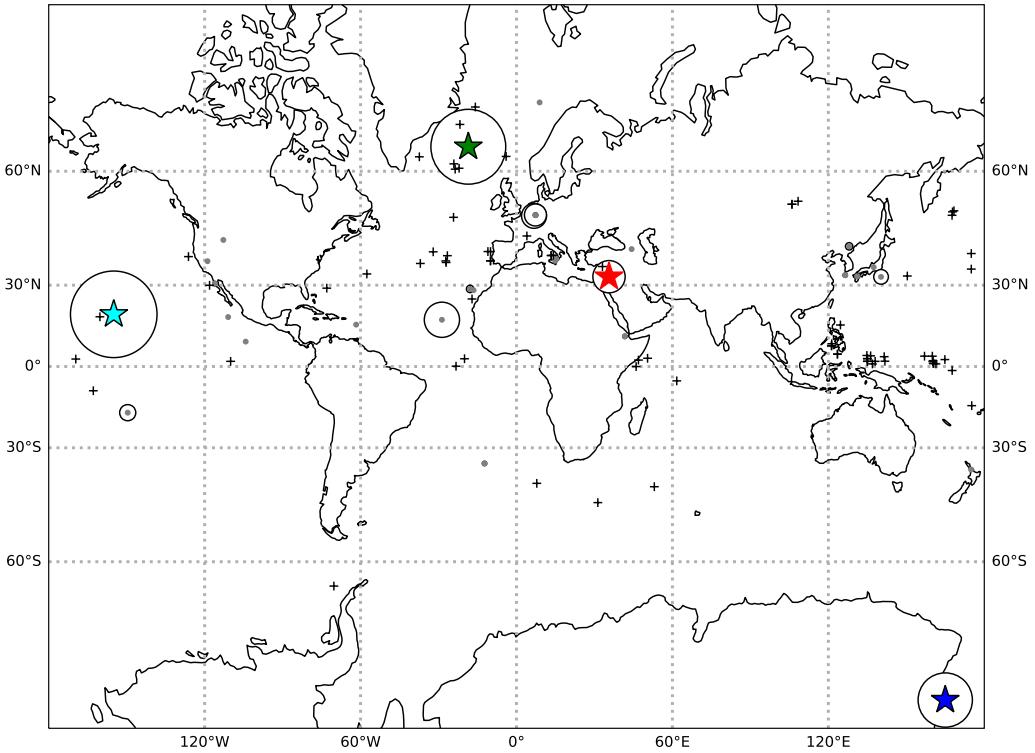
The curve is therefore thought to be a reflection of the dipole (global) strength while our data from Northern Israel are limited in geographic extent and represent spot readings of the field in a restricted area.

5 Discussion

5.1 Age of the Brunhes/Matuyama boundary

Two sites (GHI40, GHI41) shown in Figure 6 have very low intensities of 11.6 and 7.9 ZAm² with ages of 0.7736 and 0.7902 Ma, respectively. The age for the Brunhes/Matuyama boundary is 0.781 Ma in the Gradstein et al. (2012) time scale used here. Singer et al. (2019) suggested a younger age for the global reversal of $0.773 \pm .002$ Ma but with a long low intensity period prior to the actual reversal. Our new data are therefore consistent with revised age estimates of Singer et al. (2019).

5.2 Geologic map of the Golan Heights


With the new ages presented here, we have an opportunity to examine the generalized geological map for the Golan Heights region shown in Figure 2. The current age estimates for the Plio/Pleistocene boundary are 2.54 Ma of Gradstein et al. (2020) or 2.58 Ma from Gradstein et al. (2012). We are using the latter for consistency with our earlier studies as the differences for our purposes are negligible. Two locations in the Eastern Galilee (Dalton, GHI18, 1.67 Ma; Amuka, GHI19, 2.45 Ma), which were previously estimated to be between 2.7-1.7 Ma based on K-Ar dating (Mor, 1993; Heimann, 1990), late Pliocene using the earlier Pliocene/Pleistocene age boundary, yielded a similar age

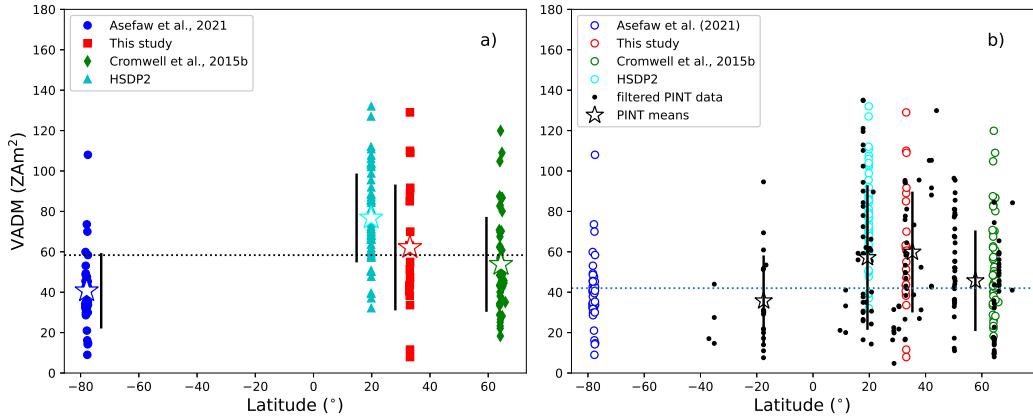
Site	n	Intensity (μ T)	B_{min} (μ T)	B_{max} (μ T)	VADM (ZAm 2)	Age (Ma)	1σ (Ma)	Latitude ($^{\circ}$ N)	Longitude ($^{\circ}$ E)
*GHI06	43	27.5	26.5	28.7	51.7	0.1145	0.00425	33.0696	35.7714
GHI10	28	20.4	17.9	23.3	38.3	0.6149	0.01745	33.0517	35.8497
GHI19	18	32.8	27.1	39.4	61.7	2.45	0.0113	32.9953	35.5260
*GHI20	15	35.7	33.5	39.2	67.2	1.65	0.01	32.9263	35.8499
*GHI25	14	52.3	43.9	60.5	98.1	0.8723	0.00265	33.2187	35.7771
GHI40	16	6.2	3.8	8.6	11.6	0.7736	0.09745	33.1410	35.6820
GHI41	8	4.2	1.1	8.0	7.9	0.7902	0.0029	33.1410	35.6830

Table 4. Paleointensity results from this study subjected to BiCEP intensity estimation of Cych et al. (2021). n: number of specimens per site, Intensity: site average intensity, B_{min} , B_{max} : minimum and maximum intensity values from BiCEP. VADM: site VADM. Starred sites also passed CCRIT and we use those results in the rest of the paper.

Study	Specimen n	Site n	Intensity (μ T)	1σ (μ T)	VADM (ZAm 2)	1σ (ZAm 2)	Latitude ($^{\circ}$)
This Study	173	22	33.1	16.3	62.2	30.6	33
Asefaw et al. 2021	158	43	30.3	12.8	39.8	16.8	-78
Cromwell et al. 2015b	232	51	38.6	16.4	53.8	22.9	64
HSDP2 combined	199	56	34.1	9.2	76.1	20.4	20

Table 5. Paleointensity results from similar studies that investigate the paleomagnetic field over the Pleistocene. Specimen n: number of specimen that pass our specimen-level selection criteria, Site n: number of sites that pass our specimen and site-level selection criteria, Intensity: average intensity of all the successful sites in the study, σ : standard deviation, VADM: PADM of all the successful sites from the study. HSDP2 combined is the composite record of both the subaerial (Cai et al., 2017) and submarine (Tauxe & Love, 2003) portions of the Hawaii Scientific Drilling Project core HSDP2. See Figure 7 for locations.

Figure 7. Map of site locations from the studies used here. PINT locations are plotted in grey and the size of the surrounding circles is proportional to the number of sites in each reference. The locations of the studies with measurement level data available that passed the CCRIT/BiCEP criteria are plotted as stars (Northern Israel: red; Antarctica: blue; Iceland: green, HSDP2: cyan). Plus signs are locations of cores included in PADM2M (Ziegler et al., 2011).


range to that found here. We therefore mark these basalts in Figure 2 as Early to Middle-Pleistocene. Also, we confirm here that all Nahal Orvim sites (GHI39-41), previously dated with K-Ar (Mor, 1986; Heimann & Ron, 1993) are Late Pleistocene. Site GHI46 (Tel Saki), which appears at the boundary between the Early Pliocene (> 3.5 Ma) and the Pleistocene (< 1.76 Ma) basalts, gave a similar age as in Behar et al. (2019) of 2.74 Ma (see Figure S1) and therefore associated with an unrecognized Late Pliocene volcanic phase. Our youngest age (GHI09, 0.089 Ma from Mount Odem) provides new constraints to the age of the latest volcanic phase in the area (~ 0.1 Ma; Weinstein et al., 2013; Shaanan et al., 2011; Behar et al., 2019).

331 **5.3 Comparison of intensities with similar studies from elsewhere**

332 Paleointensity studies conducted at different latitudes and over the same time in-
 333 terval should recover similar average VADMs (here called PADM), if the field structure
 334 is a GAD field. To compare PADM estimates with different latitudes, we identified stud-
 335 ies that span the Pleistocene and focussed on ‘ordinary’ PSV, avoiding targeting abnor-
 336 mal field behavior such as excursions or reversals. We selected studies that applied a Thellier-
 337 Thellier variant (Thellier & Thellier, 1959; Coe, 1967b) to measure paleointensity and
 338 included a pTRM check to monitor lack of reproducibility. Cromwell et al. (2015a), among
 339 others, suggested that different paleointensity methods applied to the same lava flow can
 340 produce a large range in paleointensities. And, applying ‘looser’ or ‘stricter’ selection cri-
 341 teria to calculate paleointensity can also result in different paleointensity estimates for
 342 the same specimen. Therefore, we focused on studies for which the measurement level
 343 data were available, and applied the same selection criteria. Seven studies met these re-
 344 quirements (Leonhardt et al., 2003; Wang et al., 2015; Cromwell et al., 2015b; Asefaw
 345 et al., 2021; Cai et al., 2017; Tauxe & Love, 2003; Biasi et al., 2021). The data were ei-
 346 ther in the Magic database (earthref.org/MagIC) already, or the authors agreed to share
 347 their measurement level data.

348 The study of Leonhardt et al. (2003) presented data from volcanic units in Brazil
 349 (3.85° S) that span 1.8 – 3.3 Myr. They published a 75 ZAm^2 PADM based on data from
 350 nine discrete units. No sites passed the CCRIT criteria. Cromwell et al. (2015b) reported
 351 on paleointensity estimates from Iceland (64.4° N). They found a $78.1 \pm 22 \text{ ZAm}^2$ PADM
 352 from four sites that formed 0 - 11 ka and a $47 \pm 11.6 \text{ ZAm}^2$ PADM from 37 sites that
 353 span 11 ka - 3.35 Ma. Thirty-nine of these sites from Pleistocene units of Iceland met
 354 our CCRIT selection criteria (Table S3) and an additional 12 were successfully analyzed
 355 with BiCEP (Table S4). The new Pleistocene PADM for Iceland is $53.8 \pm 22.9 \text{ ZAm}^2$.
 356 Asefaw et al. (2021) investigated paleointensities in Antarctica that range in age from
 357 the Miocene to the Late Pleistocene. The authors applied a modified CCRIT criteria and
 358 recovered a 44 ZAm^2 PADM from 26 sites. We re-interpreted their data using the same
 359 CCRIT parameters as for this study as well as BiCEP (Tables S5 and S6 respectively).
 360 The Pleistocene mean PADM from the 42 sites is $40.3 \pm 17 \text{ ZAm}^2$. There are two stud-
 361 ies that analyzed quenched horizons from the Hawaii Scientific Drilling Project HSDP2
 362 core, one targeting the submarine sequence (Tauxe & Love, 2003) and a second study
 363 focused on quenched margins of the subaerial sequence (Cai et al., 2017). These were
 364 re-analyzed here. The sites from Tauxe and Love (2003) that passed CCRIT are listed
 365 in Table S7. No sites had a sufficient number of specimens for the BiCEP method. The
 366 sites from Cai et al. (2017) that passed CCRIT are listed in Table S8 and BiCEP are
 367 in Table S9. The results from the two studies were combined together and the mean PADM
 368 from the resulting 59 sites from the Pleistocene (spanning from 0.03 to 0.553 Ma) is 76.7
 369 ± 21 . Wang et al. (2015) published paleointensities from the Galapagos Islands (1° S)
 370 with ages ranging between 0 – 3 Myr. In their study, the authors used a new approach
 371 known as the Multi-Domain Correction method (Wang & Kent, 2013) to their data. This
 372 was intended to correct for non-ideal magnetic recorders. They produced a PADM of 55.9
 373 $\pm 2.9 \text{ ZAm}^2$ based on 27 independent lava flows. We found that only two sites met our
 374 CCRIT selection criteria (see Table S10). The two successful sites from the Galapagos
 375 are insufficient for a meaningful average. Biasi et al. (2021) sampled 31 sites from the
 376 James Ross Island in the Antarctic Peninsula and subjected them to the IZZI protocol
 377 (Yu et al., 2004), Tsunakawa-Shaw (Yamamoto & Yamaoka, 2018) and the pseudo-Thellier
 378 method (Tauxe et al., 1995) ‘calibrated’ using the approach of de Groot et al. (2013).
 379 None of these data passed the CCRIT or BiCEP criteria used here, so we proceed with
 380 the data from Iceland, Hawaii and Antarctica (see Figure 7 for locations).

381 Figure 8a displays the new and re-analyzed results from the four locations against
 382 their mean latitudes (see also Table 5 and Figure 7 for locations). In order to ensure that
 383 we are considering only Pleistocene data, all data sets have been filtered to include only

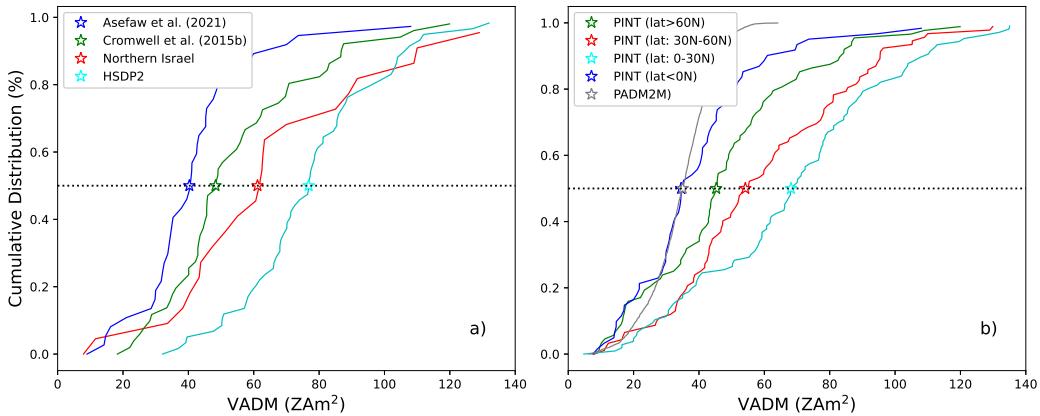


Figure 8. a) VADM estimates from four similar studies: Asefaw et al. (2021) (blue circles), this study (red squares), Cromwell et al. (2015b) (green diamonds) and Cai et al. (2017); Tauxe and Love (2003) (HSDP2 combined: cyan triangles). Only Pleistocene sites that passed our CCRIT set of selection criteria or BiCEP are included. The stars mark the average VADM in each study. Error bars are one standard deviation. Dotted line is the grand mean of the four locations. b) Filtered data from the PINT database of Bono et al. (2022) (black dots). Stars are averages from 10° latitudinal bins along with the standard deviations (black lines). Colored circles are from a). Data from (Lawrence et al., 2009), (Cromwell et al., 2015b) and HSDP2 from Cai et al. (2017); Tauxe and Love (2003) are superseded by the Antarctic, Icelandic and HSDP2 data re-analyzed here. They were replaced in the PINT data plotted here.

384 those with ages with standard deviations less than 0.2 Ma. All four study means are within
 385 one standard deviation of the grand mean of the four. To consider whether or not the
 386 data sets were drawn from a single distribution of dipole moments, we plot the cumu-
 387 lative distributions of the VADMs from the four studies in Figure 9a. In this plot, it ap-
 388 pears that each of the data sets and latitude bands are distinct from each other.

389 We need some statistical test for the null hypothesis that the four data sets are the
 390 same or different, for example, the Student's t-test. The p-values from a two-sided Stu-
 391 dent's t-test for the Northern Israel data versus the Icelandic data is 0.2, which does not
 392 allow us to reject the null-hypothesis that they were drawn from the same distribution.
 393 All other comparisons gave p-values less than 0.05. However, there is an inherent assump-
 394 tion in the t-test that the data are normally distributed, which may not be true. So we
 395 examined the four data sets with the non-parametric approach of using Kolmogorov-Smirnov
 396 (KS) tests on the cumulative distributions. Here we use a two-sample Kolmogorov-Smirnov
 397 (K-S) test. These gave similar results. Therefore, each of these data sets performed the
 398 same experiment and were subjected to an identical set of selection criteria (including
 399 age) but recover different distributions, with Antarctica being lower and Hawaii being
 400 higher.

401 A key assumption here is that the data sets span the same time interval. We plot
 402 the data against age in Figure 10. Of course the exact same ages cannot be identified
 403 in separate studies because the field can change very fast within the uncertainty of the
 404 dating method, so any two lava flows with identical ages could very well yield very dif-
 405 ferent results (see for example the GHI03 cinder cone considered in Section 4). Despite
 406 the fact that these data sets are the largest available in the public record that have the
 407 original measurements available, it is still possible that they are under-sampled with re-
 408 spect to the variation in field strength with time and that more data will sharpen regional

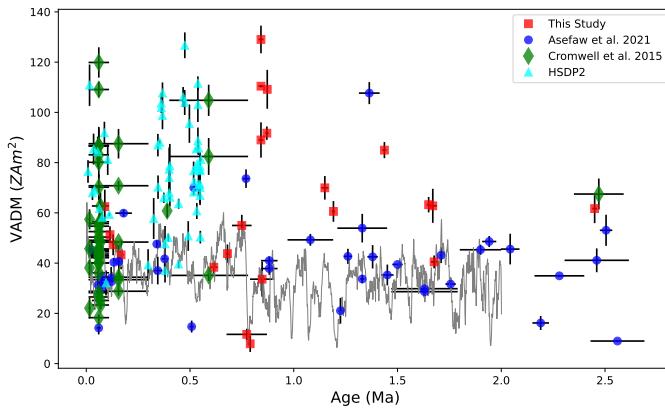


Figure 9. Cumulative distribution functions of VADMs from Pleistocene paleointensity data. a) Data sets (re-)analyzed here. Red line: Northern Israel (this study), Blue line: Antarctica (Asefaw et al., 2021); Green line: Iceland (Cromwell et al., 2015b); Cyan line HSDP2 (Cai et al., 2017; Tauxe & Love, 2003). b) Data from the PINT database and PADM2M (Ziegler et al., 2011) (grey line). Data in PINT from Antarctica (Lawrence et al., 2009), from HSDP2 (Cai et al., 2017; Tauxe & Love, 2003), and from Iceland (Cromwell et al., 2015b) were replaced with the re-analyzed data from this study. Red line: mid-latitude data ($30\text{--}60^\circ\text{N}$), green line: high-latitude data ($\geq 60^\circ\text{N}$); cyan line: low latitude northern hemisphere data ($0\text{--}30^\circ\text{N}$), blue line: data from southern hemisphere (latitudes $< 0^\circ\text{N}$). Stars are median values for each subset of the data.

409 differences. Support for this view comes with a comparison of the paleointensity estimates
 410 considered here with estimates of the globally averaged data set.

411 5.4 Comparison with the PINT database

412 So far we have focused our attention on studies that applied a similar, proven,
 413 experimental technique and subjected the data to the same analysis. However, the re-
 414 sulting dataset is limited to those studies with measurement level data available. To in-
 415 crease the number of sites, we use the paleointensities in the PINT database (Bono et
 416 al., 2022) (available at <http://www.pintdb.org/> Database). As of January, 2022, the PINT
 417 database archived results from 4353 absolute paleointensity sites from 296 unique ref-
 418 erences. The studies included in the PINT database applied a variety of techniques (e.g.,
 419 Thellier & Thellier, 1959; Hill & Shaw, 1999; van Zijl, Graham, & Hales, 1962), correc-
 420 tions, and quality criteria to estimate paleointensity and range in age from 4.2 Ga to 50,000
 421 years ago. The database does not, however, include measurement level data, so we can-
 422 not subject the data to a uniform set of selection criteria as done in the foregoing. The
 423 quality of the paleointensity estimates may therefore vary widely between different stud-
 424 ies making a direct comparison between different studies challenging. Some authors (e.g.,
 425 Biggin & Paterson, 2014; Kulakov et al., 2019) address this challenge by creating a qual-
 426 ity scale and assigning each site a quality score while others (Bono et al., 2020) apply
 427 additional filters to the dataset. In this study, we first filtered the data for the Thellier-
 428 Thellier method (Thellier & Thellier, 1959) (T+), the microwave method (Hill & Shaw,
 429 1999) M+, the low-temperature demagnetization with Thellier (Yamamoto & Tsunakawa,
 430 2005) LTD-T+, and the low-temperature demagnetization variation of the Shaw method
 431 (Yamamoto et al., 2003) LTD-DHT-S. The addition of a '+' indicates that p-TRM checks
 432 were included in the experiment. We then chose only results based on at least three spec-
 433 imens that had a standard deviation of $\leq 4 \mu\text{T}$ or $\leq 10\%$ at the site level, as in CCRIT.

Figure 10. VADM estimates for Pleistocene aged data from the studies re-analyzed here along with the globally averaged estimates from PADM2M of Ziegler et al. (2011) (gray line). All absolute paleointensity studies performed an IZZI-modified Thellier-Thellier experiment and were re-interpreted with a uniform set of selection criteria to estimate paleointensity. Paleointensities were recovered from 42 sites (blue circles) from Antarctica (Asefaw et al., 2021), 22 sites (red squares) from Northern Israel, 51 sites (green diamonds) from Iceland (Cromwell et al., 2015b) and 59 sites from HSDP2 (Cai et al., 2017; Tauxe & Love, 2003). Only data from sites with age uncertainties <0.2 are shown.

Furthermore, we filtered for those studies whose ages had a standard deviation of less than 0.2 Ma and were Pleistocene in age. Finally, we replaced the studies re-analyzed here with the re-interpreted data (REF numbers 639, 663, 707, 210, and 719) to avoid over-weighting those results. The resulting dataset includes 352 results from 35 unique references. The locations of the resulting filtered PINT sites are shown in Figure 7 and the VADMs of the data (recalculated here for consistency) are plotted against latitude in Figure 8b.

Lawrence et al. (2009), in their study of Antarctic paleointensities from the Erebus Volcanic Province in Antarctica (superceded by Asefaw et al., 2021), plotted data from the PINT08 database at the time (Biggin et al., 2009) against latitude. They folded southern latitudes onto the northern equivalent as there were too few southern hemisphere data points for a meaningful comparison. They concluded that the Antarctic data were anomalously low compared to lower (absolute) latitudes for the last five million years. They suggested several possible causes for this departure from a GAD field, including differences in temporal coverage, experimental design and the effect of the ‘tangent cylinder’ surrounding the inner core on field generation. Asefaw et al. (2021) re-analyzed the data of Lawrence et al. (2009) using stricter criteria which eliminated many sites from consideration, but added many new sites that were sampled targeting rapidly cooled parts of the lava flows, similar to the approach taken here and by Cromwell et al. (2015b) in Iceland. The Asefaw et al. (2021) study supported the contention that Antarctic VADMs were lower on average than lower latitude sites, but they also found that the data were close to those from Iceland published by Cromwell et al. (2015b).

Having discounted experimental design as a probable cause for the ‘low’ paleointensities in the polar data, one of the motivations for the present study was to assess whether the paleointensity values found in Antarctica and Iceland over the last few million years appeared ‘low’ because the data from lower latitudes were biased in some way owing to

460 inadequate temporal sampling or experimental design. Here we have found that the data
 461 from Northern Israel (mid latitude Northern Hemisphere) appear to be likely higher on
 462 average than those from Antarctica. If we include all the data of comparable quality from
 463 the PINT database (to the extent that it is possible to assess that), we see from Figure 8b
 464 that data from mid-latitudes (northern hemisphere) are in general higher than those from
 465 the southern hemisphere or from high northerly latitudes.

466 Turning again to the plots of cumulative distributions of VADMs (Figure 9b), we
 467 see that the data from mid-latitudes (between 30° and 60°N) are higher than those from
 468 the low latitude band of 0-30°N. This suspicion is supported by the Student's t-test on
 469 subsets of the PINT database (with replacement of re-analyzed studies as described in
 470 the foregoing). The p-values for the mid-latitude subset (30-60°N) versus high northerly
 471 latitudes ($>60^{\circ}$ N) is $< 10^{-3}$ allowing us to reject the hypothesis that they are drawn
 472 from the same distribution at the 95% level of confidence. Similarly, the p-value for mid-
 473 latitudes versus the southern hemisphere data is $< 10^{-5}$. Moreover, the p-value for data
 474 from mid-latitudes compared to low latitudes (0-30°N) is 0.03, which also allows us to
 475 reject the hypothesis that the two data sets are drawn from the same distribution. There-
 476 fore, it appears that VADMs from the Pleistocene from the northern hemisphere lati-
 477 tudes less than 30°N are higher than elsewhere. It is also worth pointing out that (Wang
 478 et al., 2015) found VADMs from the equatorial sites in Galapagos that were compara-
 479 ble to those from Antarctica. That dataset did not survive our filtering process but meth-
 480 ods are being developed which may provide high quality paleointensity estimates from
 481 lava flows in the near future (Wang & Kent, 2021). Further support for low intensities
 482 from the southern hemisphere came from Engbers et al. (2022), who found low inten-
 483 sities from their Miocene sites from Saint Helena. There also appears to also be a large
 484 amount of variability with respect to longitude in the timings of the periods of high in-
 485 tensity (see Figure 8).

486 Each of the paleointensity data points considered here are 'spot' readings of field
 487 strength. The data set we have compiled here is also strongly biased to the northern hemi-
 488 sphere. It is therefore worthwhile considering the so-called paleointensity axial dipole mo-
 489 ment (PADM) data set for the last 2 million years (PADM2M of Ziegler et al., 2011; plus
 490 signs in Figure 7). Relative paleointensity records from seventy-six cores taken around
 491 the globe were placed on a common time scale by Tauxe and Yamazaki (2007). These
 492 were combined with absolute paleointensity (API) records from the Geomagia50.v2 database
 493 of Donadini et al. (2009) and the PINT08 database of Biggin et al. (2009). The API and
 494 RPI data were stacked to create a globally averaged estimate of the PADM. This record
 495 is an interesting comparison with the absolute paleointensity data considered here as there
 496 is much better representation of the southern hemisphere by using marine sediment cores
 497 than available from absolute paleointensity alone.

498 The generally lower estimates for the dipole moment in PADM2M than those for
 499 our low and mid-latitude data from the northern hemisphere, could well be caused by
 500 a real difference between northern and southern latitude field strengths. It seems that
 501 in the northern hemisphere data sets plotted in Figure 10, there are extended periods
 502 of time with high field strengths that persist over periods of time of some 50 kyr, but
 503 that these periods of high field strength do not occur at the same time globally. A pos-
 504 sible explanation would be to use the so-called South Atlantic Anomaly in the recent ge-
 505 omagnetic field (SAA in Figure 1a) as an example of a strong non-dipolar field struc-
 506 ture. While this low intensity dimple does not appear to persist over long periods of time
 507 as it is not apparent in a field model calculated by taking the average of the Holocene
 508 field models in the CALS10k.2 model of Constable et al. (2016) (Figure 1b), or any oth-
 509 ers we examined, it is interesting that this model does have an asymmetry between field
 510 strengths in the northern and southern hemispheres. It seems likely that a low intensity
 511 dimple did exist, perhaps fleetingly, in the southern hemisphere and that would account
 512 for the asymmetry observed. Compare for example the 60°N latitude band with an av-

513 erage of some $65 \mu\text{T}$ with its southern hemisphere sister, whose average field is $\sim 55 \mu\text{T}$.
 514 This same persistent asymmetry is also seen in the time averaged field model of, for ex-
 515 ample, Cromwell et al. (2018) who compiled a global database of paleomagnetic dire-
 516 ctional data and produced a time averaged field model for the past five million years. We
 517 show intensities predicted from their LN3 model in Figure 1d. In this model, there are
 518 hemispheric differences in predicted field strength that apparently persisted for millions
 519 of years.

520 6 Conclusions

521 Forty-four sites (out of 52 sampled) from Northern Israel were subjected to
 522 an IZZI Thellier-Thellier experiment. Eighteen sites passed the strict selection criteria
 523 (CCRIT) of Tauxe et al. (2016) and a further four gave acceptable results using the Bi-
 524 CEP method of Cych et al. (2021). Taken together, the study yields a $33.1 \pm 16.3 \mu\text{T}$
 525 mean intensity or $62.2 \pm 30.6 \text{ ZAm}^2$ paleomagnetic axial dipole moment (PADM) for
 526 the Pleistocene. We re-analyzed data from four other comparable studies using the same
 527 selection criteria and filtering for the same Pleistocene age range. Data from the Hawaii
 528 Scientific Drilling Project's HSDP2 of Cai et al. (2017) and Tauxe and Love (2003) yielded
 529 59 sites with a higher PADM of $76.7 \pm 21.3 \text{ ZAm}^2$. In contrast, those from Cromwell
 530 et al. (2015b) for Iceland recovered a lower PADM of $53.8 \pm 22.9 \text{ ZAm}^2$ ($n=51$). That
 531 average is higher than results from Antarctica (Asefaw et al., 2021), which when re-analyzed
 532 here resulted in 42 sites with a mean of PADM, $40.3 \pm 17.3 \text{ ZAm}^2$.

533 We compared the results from our new and re-analyzed data sets with those from
 534 the paleointensity (PINT) database Bono et al. (2022) and found that in general, low
 535 to mid latitude northern hemisphere field strengths are higher than southern hemisphere
 536 (mostly Antarctica) and high northerly latitudes (mostly Iceland). The globally aver-
 537 aged PADMs predicted from the PADM2M record of Ziegler et al. (2011) are also much
 538 lower than those found here. The PADM2M record, unlike the absolute paleointensity
 539 data considered in this paper incorporates a large number of relative paleointensity records,
 540 including many from mid-southerly latitudes, suggesting the possibility of a persistent
 541 asymmetry in field strengths between the northern and southern hemispheres. This is
 542 supported by analysis of field models from the present (2022) field, the Holocene and five
 543 million year time averaged fields, which all show an asymmetry between northern and
 544 southern hemispheres, with the northern hemisphere predicted to be on average some
 545 $10 \mu\text{T}$ stronger than the same latitude band in the southern hemisphere.

546 Acknowledgments

547 This study was funded by the National Science Foundation. H.A. acknowledges support
 548 from the National Science Foundation Graduate Research Fellowship Grant No. DGE-
 549 1650112 and L.T. acknowledges funding from the National Science Foundation Grants
 550 EAR1345003 and EAR1827263. We thank Christeanne Santos and Malana Tabak for
 551 their assistance in the lab. We thank Huapei Wang and an anonymous reviewer for their
 552 thorough and insightful reviews which greatly improved the manuscript. We also thank
 553 Yael Ebert for her hard work in the field and Shuhui Cai for her helpful discussions and
 554 guidance. We thank Jeff Gee for his helpful comments on the manuscript. We also thank
 555 Huapei Wang and Roman Leonhardt for sharing their measurement level data, which
 556 have now been made available in the MagIC database. We thank Brendan Cych for ad-
 557 vice on the use of the BiCEP code. All other data referenced in the paper are in the MagIC
 558 database (<https://earthref.org/MagIC>) and PINT database (<http://www.pintdb.org>).
 559 The new and re-analyzed dataset is temporarily available here:
 560 <https://earthref.org/MagIC/19491/b161c048-ff5e-4981-a75b-99ee50a32fa5> for the pur-
 561 poses of review, and will be publicly available upon acceptance of this manuscript at this
 562 link: <https://earthref.org/MagIC/19491>. Code used to perform calculations are in the
 563 PmagPy software distribution (Tauxe et al., 2016) (<https://github.com/PmagPy/PmagPy>)

564 and the BiCEP software package (Cych et al., 2021) (https://github.com/bcych/BiCEP_GUI).
 565 A fully functional Jupyter notebook used to make the calculations and plots is available
 566 through
 567 <https://github.com/ltauxe/Pleistocene-paleointensity-notebook> as a supplement
 568 to this paper. Thanks to Rupert Minnett for assistance with Binder.

569 References

570 Alken, P., Thébault, E., Beggan, C., Amit, H., Aubert, J., Baerenzung, J., ... Zhou,
 571 B. (2021). 2021 International Geomagnetic Reference Field: the thirteenth
 572 generation. *Earth, Planets and Space*, 73. doi: 10.1186/s40623-020-01288-x

573 Asefaw, H., Tauxe, L., Koppers, A., & Staudigel, H. (2021). Four-dimensional
 574 paleomagnetic dataset: Plio-Pleistocene paleodirection and paleointensity re-
 575 sults from the Erebus Volcanic Province, Antarctica. *Journal of Geophysical
 576 Research: Solid Earth*, 126, e2020JB020834 doi: 10.1029/2020JB020834.

577 Behar, N., Shaar, R., Tauxe, L., Asefaw, H., Ebert, Y., Heimann, A., ... Hagai, R.
 578 (2019). Paleomagnetism and paleosecular variations from the Plio-Pleistocene
 579 Golan Heights Volcanic Plateau, Israel. *Geochemistry, Geophysics, Geosys-
 580 tems*, 20, 4319-4334 doi:10.1029/2019GC008479.

581 Ben Yosef, E., Tauxe, L., Levy, T., Shaar, R., Ron, H., & Najjar, M. (2009). Ar-
 582 chaeomagnetic intensity spike recorded in high resolution slag deposit from
 583 historical biblical archaeology site in southern Jordan. *Earth and Planetary
 584 Science Letters*, 287, 529-539.

585 Biasi, J., Kirschvink, J., & Fu, R. (2021). Characterizing the geomagnetic field
 586 at high southern latitudes: Evidence from the Antarctic Peninsula. *Journal of
 587 Geophysical Research*, 126, e2021JB023273. doi: 10.1029/2021JB023273

588 Biggin, A., & Paterson, G. (2014). A new set of qualititation reliability criteria to aid
 589 inferences on paleomagnetic dipole moment variations through geological time.
 590 *Frontiers in Earth Science*, 2, doi: 10.3389/feart.2014.00024.

591 Biggin, A., Strik, G., & Langereis, C. (2009). The intensity of the geomag-
 592 netic field in the late-Archean: new measurements and analysis of the up-
 593 dated IAGA palaeointensity database. *Earth Planets and Space*, 61, 9-22
 594 doi:10.1186/BF03352881.

595 Bono, R., Biggin, A., Holme, R., Davies, C., Meduri, D., & Bestard, J. (2020).
 596 Covariant giant Gaussian process models with improved reproduction of pale-
 597 osecular variation. *Geochemistry Geophysics Geosystems.*, 21, e2020GC008960
 598 doi: 10.1029/2020GC008960.

599 Bono, R., Paterson, G., van der Boon, A., Engbers, Y., Grappone, J., Handford, B.,
 600 ... Biggin, A. (2022). The PINT database: a definitive compilation of absolute
 601 palaeomagnetic intensity determinations since 4 billion years ago. *Geophysical
 602 Journal International*, 229, 522-545. doi: doi:10.1093/gji/ggab490

603 Cai, S., Tauxe, L., & Cromwell, G. (2017). Paleointensity from subaerial basaltic
 604 glasses from the second Hawaii Scientific Drilling Project (HSDP2) core and
 605 implications for possible bias in data from lava flow interiors. *J. Geophys. Res.*,
 606 122, 8664-8674. doi: 10.1002/2017JB014683

607 Coe, R. (1967a). The determination of paleo-intensities of the Earth's magnetic
 608 field with emphasis on mechanisms which could cause non-ideal behavior in
 609 thellier's method. *Journal of Geomagnetism and Geoelectricity*, 19, 157- 179
 610 doi:10.5636/jgg.19.157.

611 Coe, R. (1967b). Paleointensities of the Earth's magnetic field determined from Ter-
 612 tiary and Quaternary rocks. *Journal of Geophysical Research*, 72, 3247-3262
 613 doi:10.1029/JZ072i012p03247.

614 Constable, C., Korte, M., & Panovska, S. (2016). Persistent high paleosecular
 615 variation activity in southern hemisphere for at least 10,000 years. *Earth and
 616 Planet. Sci. Lett.*, 453, 78-86.

617 Cromwell, G., Tauxe, L., & Halldorsson, S. (2015b). New paleointensity results
 618 from rapidly cooled Icelandic lavas: Implications for Arctic geomagnetic field
 619 strength. *Journal of Geophysical Research: Solid Earth*, *120*, 2913 - 2934
 620 doi:10.1002/2014JB011828.

621 Cromwell, G., Tauxe, L., Staudigel, H., Constable, C., Koppers, A., & Pedersen, R.
 622 (2013). In search of long-term hemispheric asymmetry in the geomagnetic field:
 623 Results from high northern latitudes. *Geochemistry Geophysics Geosystems*,
 624 *14*, 3234-3249 doi:10.1002/ggge.20174.

625 Cromwell, G., Tauxe, L., Staudigel, H., & Ron, H. (2015a). Paleointensity estimates
 626 from historic and modern Hawaiian lava flows using glassy basalt as a primary
 627 source material. *Physics of the Earth and Planetary Interiors*, *241*, 44-56
 628 doi:10.1016/j.pepi.2014.12.007.

629 Cromwell, G., Trusdell, F., Tauxe, L., Staudigel, H., & Ron, H. (2018). Holocene pa-
 630 leointensity of the island of Hawai'i from glassy volcanics. *Geochemistry Geo-
 631 physics Geosystems*, *19*, 3224-3245 doi:10.1002/2017GC006927.

632 Cych, B., Morzfeld, M., & Tauxe, L. (2021). Bias corrected estimation of pale-
 633 ointensity (BiCEP): An improved methodology for obtaining paleointensity
 634 estimates. *Geochemistry Geophysics Geosystems*, *22*, e2021GC009755. doi:
 635 10.1002/2021GC009755

636 de Groot, L., Biggin, A., Dekkers, M., Langereis, C., & Herrero-Bervera, E. (2013).
 637 Rapid regional perturbations to the recent global decay revealed by a new
 638 Hawaiian record. *Nature Communications*, *4*, 1-7. doi: 10.1038/ncomms37

639 Donadini, F., Korte, M., & Constable, C. (2009). Geomagnetic field for 0-3ka: 1.
 640 New data sets for global modeling. *Geochemistry Geophysics Geosystems*,
 641 *10*(6). doi: 10.1029-2008GC002295

642 Engbers, Y., Grappone, J., Mark, D., & Biggin, A. (2022). Low paleointensi-
 643 ties and Ar/Ar ages from St Helena provide evidence for recurring magnetic
 644 field weaknesses in the south atlantic. *Journal of Geophysical Research*, *127*,
 645 e2021JB023358. doi: 10.1029/2021JB023358

646 Gradstein, F., Ogg, J., Schmitz, M., & Ogg, G. (2012). *Geologic Time Scale 2012*.
 647 Elsevier.

648 Gradstein, F., Ogg, J., Schmitz, M., & Ogg, G. (2020). *Geologic Time Scale 2020*.
 649 Elsevier.

650 Heimann, A. (1990). *The development of the Dead Sea Rift and its margins in*
 651 *northern Israel during the Pliocene and the Pleistocene* (PhD).

652 Heimann, A., & Ron, H. (1993). Geometric changes of plate boundaries along
 653 part of the northern dead-sea transform - geochronological and paleomagnetic
 654 evidence. *Tectonics*, *12*(2), 477-491. doi: Doi10.1029/92tc01789

655 Heimann, A., Steinitz, G., Mor, D., & Shaliv, G. (1996). The Cover Basalt Forma-
 656 tion, its age and its regional and tectonic setting: Implications from K-Ar and
 657 $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology. *Israel Journal of Earth Sciences*, *45*, 55 - 71.

658 Hill, M., & Shaw, J. (1999). Paleointensity results for historic lavas from Mt. Etna
 659 using microwave demagnetization/remagnetization in a modified Thellier-
 660 type experiment. *Geophysical Journal International*, *139*, 583-590. doi:
 661 doi:10.1046/j.1365-246x.1999.00980.x

662 Hospers, J. (1955). Rock magnetism and polar wandering. *The Journal of Geology*,
 663 *63*, 59 - 74 doi: 10.1038/1731183a0.

664 Koppers, A., Russell, J., Jackson, M., Konter, J., Staudigel, H., & Hart, S. (2008).
 665 Samoa reinstated as a primary hotspot trail. *Geology*, *36*, 435 - 438
 666 doi:10.1130/G24630A.1.

667 Koppers, A., Staudigel, H., & Wijbrans, J. (2000). Dating crystalline groundmass
 668 separates of altered Cretaceous seamount basalts by the $^{40}\text{Ar}/^{39}\text{Ar}$ incremen-
 669 tal heating technique. *Chemical Geology*, *166*, 139-158 doi:10.1016/S0009-
 670 2541(99)00188-6.

671 Krásá, D., Heunemann, C., Leonhardt, R., & Petersen, N. (2003). Experimen-

727 mentary, and ice core records of earth's last magnetic polarity reversal. *Science*
 728 *Advances*, 5, eaaw4621. doi: 10.1126/sciadv.aaw4621

729 Tauxe, L., & Love, J. (2003). Paleointensity in Hawaiian Scientific Drilling project
 730 Hole (HSDP2): results from submarine basaltic glass. *Geochemistry Geophysics
 731 Geosystems*, 4, doi: 10.1029/2001 GC000276.

732 Tauxe, L., Pick, T., & Kok, Y. S. (1995). Relative paleointensity in sediments; a
 733 pseudo-thellier approach. *Geophysical Research Letters*, 22, 2885-2888.

734 Tauxe, L., Santos, C., Cych, B., Zhao, X., Roberts, A., Nagy, L., & Williams, W.
 735 (2021). Understanding non-ideal paleointensity recording in igneous rocks: In-
 736 sights from aging experiments on lava samples and the causes and consequences
 737 of 'fragile' curvature in Arai plots. *Geochemistry Geophysics Geosystems*, 22,
 738 e2020GC009423. doi: 10.1029/2020GC009423

739 Tauxe, L., Shaar, R., Jonestrask, L., Swanson-Hysell, N., Minnett, R., Kop-
 740 pers, A. A. P., ... Fairchild, L. (2016). Pmagpy: Software package for
 741 paleomagnetic data analysis and a bridge to the magnetics information
 742 consortium (magic) database. *Geochem. Geophys. Geosys.*, 17. doi:
 743 10.1002/2016GC006307

744 Tauxe, L., & Yamazaki, T. (2007). Paleointensities. In M. Kono (Ed.), *Geomag-
 745 netism* (Vol. 5, pp. 509-563, doi:10.1016/B978-044452748-6/00098-5). Elsevier.

746 Thellier, E., & Thellier, O. (1959). Sur l'intensité du champ magnétique terrestre
 747 dans le passé historique et géologique. *Annals of Geophysics*, 15, 285-378.

748 van Zijl, J., Graham, K., & Hales, A. (1962). The paleomagnetism of the Storm-
 749 berg Lavas, II. The behaviour of the magnetic field during a reversal. *Geophys-
 750 ical Journal International*, 7, 169-182 doi:10.1111/j.1365-246X.1962.tb00366.x.

751 Wang, H., & Kent, D. (2013). A paleointensity technique for multidomain igneous
 752 rocks. *Geochemistry Geophysics Geosystems*, 14. doi: 10.1002/ggge.20248

753 Wang, H., & Kent, D. (2021). RESET: A method to monitor thermoremanent alter-
 754 ation in Thellier-series paleointensity experiments. *Geophysical Research Let-
 755 ters*, 48, e2020GL091617. doi: 10.1029/2020GL091617

756 Wang, H., Kent, D., & Rochette, P. (2015). Weaker axially dipolar time-averaged
 757 paleomagnetic field based on multidomain-corrected paleointensities from Gal-
 758 pagos Lavas. *Proceedings of the National Academy of Sciences, U.S.A.*, 112,
 759 15,036 – 15,041 doi:10.1073/pnas.1505450112.

760 Weinstein, Y. (2006b). A transition from strombolian to phreatomagmatic activity
 761 induced by a lava flow damming water in a valley. *Journal of Volcanology and
 762 Geothermal Research*, 159, 267-284 doi: 10.1016/j.volgeores.2006.06.015.

763 Weinstein, Y., Navon, O., Altherr, R., & Stein, M. (2006a). The role of lithospheric
 764 mantle heterogeneity in the generation of Plio-Pleistocene alkali basaltic suites
 765 from NW Harat Ash Shaam (Israel). *Journal of Petrology*, 47, 1017-1050
 766 doi:10.1093/petrology/egl003.

767 Weinstein, Y., Nuriel, P., Inbar, M., Jicha, B., & Weinberger, R. (2020). Impact of
 768 the dead sea transform kinematics on adjacent volcanic activity. *Tectonics*, 39,
 769 e2019TC005645. doi: 10.1029/2019TC005645

770 Weinstein, Y., Weinberger, R., & Calvert, A. (2013). High-resolution $^{40}\text{Ar}/^{39}\text{Ar}$
 771 study of Mount Avital, northern Golan: reconstructing the interaction between
 772 volcanism and a drainage system and their impact on eruptive styles. *Bulletin
 773 of Volcanology*, 75(5), 1-12.

774 Wilson, R. L. (1970). Permanent aspects of the Earth's non-dipole magnetic field
 775 over upper tertiary times. *Geophysical Journal of the Royal Astronomical Soci-
 776 ety*, 19, 417-437.

777 Yamamoto, Y., & Tsunakawa, H. (2005). Geomagnetic field intensity during the last
 778 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society
 779 Islands, French Polynesia. *Geophysical Journal International*, 162(1), 79-114.

780 Yamamoto, Y., Tsunakawa, H., & Shibuya, H. (2003). Palaeointensity study of
 781 the hawaiian 1960 lava: implications for possible causes of erroneously high

782 intensities. *Geophys J Int*, 153(1), 263-276.

783 Yamamoto, Y., & Yamaoka, R. (2018). Paleointensity study on the Holocene surface
784 lavas on the Island of Hawaii using the Tsunakawa-Shaw method. *Frontiers in*
785 *Earth Science*, 6. doi: 10.3389/feart.2018.00048

786 Yu, Y., Tauxe, L., & Genevey, A. (2004). Toward an optimal geomagnetic field in-
787 tensity determination technique. *Geochemistry Geophysics Geosystems*, 5, 1-18
788 doi:10.1029/2003GC000630.

789 Ziegler, L., Constable, C., Johnson, C., & Tauxe, L. (2011). PADM2M: a pe-
790 neralized maximum likelihood model of the 0-2 ma paleomagnetic axial dipole
791 moment. *Geophysical Journal International*, 184, 1069-1089 doi:10.111/j.1365-
792 246X.2010.04905.x.