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Abstract. We propose a systematic procedure called the Clebsch canoniza-

tion for obtaining a canonical Hamiltonian system that is related to a given
Lie–Poisson equation via a momentum map. We describe both coordinate

and geometric versions of the procedure, the latter apparently for the first

time. We also find another momentum map so that the pair of momentum
maps constitute a dual pair under a certain condition. The dual pair gives

a concrete realization of what is commonly referred to as collectivization of

Lie–Poisson systems. It also implies that solving the canonized system by
symplectic Runge–Kutta methods yields so-called collective Lie–Poisson inte-

grators that preserve the coadjoint orbits and hence the Casimirs exactly. We

give a couple of examples, including the Kida vortex and the heavy top on a
movable base with controls, which are Lie–Poisson systems on so(2, 1)∗ and

(se(3) n R3)∗, respectively.

1. Introduction.

1.1. The Lie–Poisson dynamics. The formalization of mechanics by Lagrange
and Hamilton evolved in the 19th century into the description of dynamical systems
where the equations of motion are generated by canonical Poisson brackets, writ-
ten in terms of canonical coordinates, position and momenta, with a Hamiltonian
function. More modern differential geometric descriptions of Hamiltonian systems
occurred well into the 20th century by, e.g., [29] and [22], motivating present day
symplectic geometry.

Less well-known is Poisson geometry. Its origins date back to [27] in 1890, but it
was brought into modern geometric form with contributions from [60] and others in-
cluding the seminal paper of [67]. Like the canonical Poisson brackets of symplectic
geometry, noncanonical Poisson brackets of Poisson geometry are binary operations
on smooth phase space functions constituting a Lie algebra realization, but explicit
reference to canonical coordinates is removed and degeneracy is allowed. A man-
ifold with such a Poisson bracket is a generalization of the symplectic manifold
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called a Poisson manifold. Noncanonical Poisson brackets, including the present
day coordinate-free axioms, were present in the theoretical physics community in
the mid 20th century in e.g. the works of [10, 56, 37, 62].

A special kind of noncanonical Poisson bracket, the Lie–Poisson bracket, has ex-
plicit linear dependence on the phase space coordinates and is intimately related to a
Lie algebra. Lie–Poisson dynamics—dynamics generated by Lie–Poisson brackets—
is ubiquitous as basic equations of physics. It is this kind of dynamics that is the
subject of the present paper.

An important example of Lie–Poisson dynamics is given by Euler’s equations for
rigid body dynamics with a Lie–Poisson bracket based on the Lie algebra of infin-
itesimal rotations [37] (see also [62, 61]). This example often serves as inspiration
for generalization and exploration of new concepts. The Lie–Poisson bracket for
the full ideal fluid including magnetohydrodynamics was given in [51]; see also [66].
This example was followed by the Lie–Poisson formulation of the Maxwell–Vlasov
system of equations in [45], with a correction given in [68] and [32] and a limitation
to the correction pointed out in [47], which was followed up more recently in [50, 19]
and then in [25]. Another example from the mid 1980s is that given in [34], where
the Lie–Poisson bracket for general moment closures of the kinetic hierarchy were
given. There is now a large literature with very many subsequent publications that
can be found, e.g., in [48, 49] and [3].

Given the ubiquity of the Lie–Poisson form, it is natural to inquire about its
origin. One thread extends back to the quasi-coordinate description of [57] (see
also [18]), where Euler’s equations for rigid body dynamics, and its Lagrangian
counterpart—the Euler–Poincaré equation—was first formulated on a general Lie
algebra. This idea was applied to fluid dynamics in [1, 2] where Euler’s equations
for the incompressible fluid are seen to be the Euler–Poincaré equation on the Lie
algebra of a diffeomorphism group, putting the work of [24] into modern language.
(See [54] for commentary.) Although these works did not explicitly give the Lie–
Poisson bracket, the equations of motion for a reduced dynamics were obtained.

The main geometrical idea behind the Lie–Poisson brackets for the dynamics of
rigid body, fluids, and plasmas is now understood as a process of reduction from
canonical to noncanonical Hamiltonian form as follows (see, e.g., [31, Chapter 13]):
The configuration space of the systems is a Lie group G, and the basic equation of
the system is a canonical Hamiltonian system defined on the cotangent bundle T ∗G.
However, the Hamiltonian has G-symmetry, and thus one may reduce the system to
the dual g∗ of the Lie algebra g of G. The resulting equation on g∗ has Lie–Poisson
form.

There are also examples where the system is defined on a Lie group G, but the
symmetry of the system is broken. A well-known example is the heavy top, where
the symmetry is broken by the gravity; another is the compressible fluid, where
density plays a role similar to gravity for the heavy top case. In either case, it is
known that one can still recover the full symmetry by extending the configuration
space to a semidirect product G n V using a G-representation on a vector space
V ; see, e.g., [35, 36, 20]. As a result, one again obtains a Lie–Poisson system on
the dual of the semidirect product Lie algebra g n V , which is a special case of
Lie–Poisson brackets based on Lie algebra extensions [64] that occur in a variety of
physical systems including magnetohydrodynamics (see [30]).

1.2. Collectivization. Another class of Lie–Poisson systems arises as a result of
so-called collectivization in the sense of [14] (see also [21] and [15, Section 28]). Given
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a Poisson manifold P and an equivariant momentum map M : P → g∗ associated
with an action of a Lie group G on P , one can show that M is a Poisson map with
respect to the Poisson bracket on P and the Lie–Poisson bracket on g∗; see, e.g., [31,
Theorem 12.4.1]. This implies the following: Given that Hamiltonian H : P → R
is collective in the sense that there exists h : g∗ → R such that H = h ◦M, the
flow Φt of the Hamiltonian vector field on P defined by H and the flow φt of the
Lie–Poisson dynamics on g∗ defined by h are related by M as M ◦ Φt = φt ◦M.

The term “collective” comes from the motivating examples of [14, 15]) such as
the liquid drop model in nuclear physics, where one seeks a set of equations that
describe aggregate motions of a number of particles “as if it were a rigid body or
liquid drop”; the idea behind this dates back to [58] (see also [59] and [53]).

1.3. Clebsch canonization and collectivization. What we refer to as Clebsch
canonization or just “canonization” for short is the opposite of the collectivization
described above: One first has a Lie–Poisson equation on g∗, and then constructs a
cotangent bundle T ∗Q and an equivariant momentum map M : T ∗Q → g∗ so that
solutions of the new canonical Hamiltonian dynamics on T ∗Q can be mapped by
M to those of the Lie–Poisson dynamics on g∗.

This theoretical concept is motivated by the early use of potentials for describing
the velocity field of fluid mechanics: long before the introduction of the vector
potential for representing a magnetic field, researchers considered various potential
representations of velocity fields, the most famous of which is due to Clebsch [7,
8]. The connection between the Lie–Poisson brackets for fluid dynamics and the
canonical Hamiltonian description in terms of the Clebsch representation was first
given in [46, 47, 52], while two-dimensional vortex dynamics was considered later
in [33]. See also [55] for the Clebsch representation of the heavy top dynamics. A
general theory for Lie–Poisson brackets, motivated by [46] was given in [48] and the
present work places this in the geometric setting described above.

1.4. Lie–Poisson integrators. Compared to symplectic integrators for canonical
Hamiltonian systems (see, e.g., [17] and [26]), integrators for Lie–Poisson equations
seem to be studied less extensively. Some earlier works include [13] and [6], and are
based on generating functions. [12] used Lie group methods by exploiting the prop-
erty that Lie–Poisson dynamics evolves on coadjoint orbits on g∗. More recently,
[28] developed a variational integrator for the Lie–Poisson equation by discretizing
the corresponding variational principle. See also [38] for a more recent survey of
Lie–Poisson integrators.

Our work gives a concrete realization of the general theory of collective integrators
developed by [39]; see also [40, 41]. The main advantage of collective integrators
is that one can construct Lie–Poisson integrators that preserve the coadjoint orbits
out of existing symplectic integrators. On the other hand, the main disadvantage
is that it is not always clear how one can find a suitable cotangent bundle T ∗Q and
momentum map M.

It is important that the symplectic integrator “descends” [39] to a Lie–Poisson
integrator that preserves the coadjoint orbits. One can show that this is the case
with the symplectic Runge–Kutta method if, for example, one can find another
momentum map J on T ∗Q so that the pair of momentum maps M and J constitute
a dual pair, as discussed in [39, Theorem 7]. Existing constructions (see, e.g., [39,
40, 41]) of such momentum maps M and J are rather ad-hoc, and thus are limited
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to Lie–Poisson equations on relatively simple spaces such as o(p, q,F), sp(2k, F ),
gl(n,F), u(p, q) with F = R,C,H, and some semi-direct products.

1.5. Main result and outline. We propose a systematic canonization that poten-
tially works for a wider class of Lie–Poisson equations by constructing a momentum
map M : T ∗g → g∗; hence the Lie–Poisson equation on g∗ is “canonized” to a
canonical Hamiltonian system T ∗g ∼= T ∗Rn with n := dim g. We first show how
this works in coordinate calculations in Section 2.

In Section 3, we give a geometric interpretation of this setting. We also find
a Lie subalgebra h of sp(2n,R) that characterizes the intrinsic symmetry of the
canonized Hamiltonian system (or the canonized system for short). Its action on
T ∗g gives rise to another momentum map J : T ∗g→ h∗ that becomes invariants of
the canonized system. We then prove in Theorem 3.2 that the momentum maps M
and J constitute a dual pair (in the sense of [67]) under a certain condition.

Section 4 addresses the invariants of the canonized system. For any (real) Lie
algebra g, the momentum map J has at least two components including an invariant
associated with the Killing form on g. Additionally, if g is semisimple, then there
is another invariant associated with the Killing form. Furthermore, we show that
if the Lie–Poisson bracket on g∗ possesses a Casimir then there is a corresponding
Noether-type invariant (momentum map) in the canonized system as well.

In Section 5, we first briefly review the idea of the collective integrators, and
then show some numerical results. Assuming the dual pair from Theorem 3.2, sym-
plectic Runge–Kutta methods applied to our canonized system yields Lie–Poisson
integrators that preserve the coadjoint orbits and hence the Casimirs exactly. We
demonstrate it using a couple of examples: the Kida vortex [23] (see also [42]) and
the heavy top on a movable base with a stabilizing control [9].

2. Clebsch canonization.

2.1. Lie–Poisson bracket. Let g be an n-dimensional Lie algebra, and {Ei}ni=1 be
a basis for it with the structure constants {ckij}1≤i,j,k≤n, i.e., [Ei, Ej ] = ckijEk; note
that we use Einstein’s summation convention throughout the paper. We may then
define the dual basis {Ei∗}ni=1 for g∗ by setting

〈
Ei∗, Ej

〉
= δij under the standard

dual pairing 〈 · , · 〉 : g∗ × g→ R.
For any smooth f : g∗ → R, we define the derivative Df(µ) ∈ g evaluated at

µ ∈ g∗ so that, for any δµ ∈ g∗,

〈δµ,Df(µ)〉 =
d

ds
f(µ+ sδµ)

∣∣∣∣
s=0

.

This results in the coordinate expression

Df(µ) =
∂f

∂µi
(µ)Ei.

Then one defines the (+)-Lie–Poisson bracket (see Section 3.3 for the (−)-Lie–
Poisson bracket) on g∗ as follows: For any f, g : g∗ → R,

{f, g}+ (µ) := 〈µ, [Df(µ), Dg(µ)]〉 = µkc
k
ij

∂f

∂µi

∂g

∂µj
. (1)
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The Lie–Poisson equation for a Hamiltonian h : g∗ → R is the Hamiltonian system
defined using the above Poisson bracket, i.e.,

µ̇i = {µi, h}+ = µkc
k
ij

∂h

∂µj
, (2a)

or equivalently,

µ̇ = − ad∗
Dh(µ) µ. (2b)

2.2. Clebsch canonization in coordinates. The main idea of the Clebsch can-
onization (see [46, 48]) is the following: Given an n-dimensional Lie–Poisson bracket
(2), we would like to find a corresponding 2n-dimensional canonical Hamiltonian
system. In other words, we would like to find a relationship between the Poisson
bracket (1) and the canonical Poisson bracket of the form

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi
, (3)

where F,G : T ∗Rn → R.
Suppose that µ = µiE

i
∗ ∈ g∗ and (q, p) ∈ T ∗Rn are related as follows:

µi = ckijq
jpk. (4)

For any smooth f, g : g∗ → R, we may define F,G : T ∗Rn → R by setting F (q, p) :=
f(µ) where µ and (q, p) are related as above; similarly for G as well. Then, by the
chain rule, we have

∂F

∂qi
=

∂f

∂µj

∂µj
∂qi

=
∂f

∂µj
ckjipk,

∂F

∂pi
=

∂f

∂µj

∂µj
∂pi

=
∂f

∂µj
cijkq

k.

As a result,

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi

= qlpm
(
ciklc

m
ji − cijlcmki

) ∂f
∂µj

∂g

∂µk

= qlpm
(
−ciklcmij − ciljcmik

) ∂f
∂µj

∂g

∂µk

= qlpmc
i
jkc

m
il

∂f

∂µj

∂g

∂µk

= µic
i
jk

∂f

∂µj

∂g

∂µk

= {f, g}+ (µ),

where the fourth equality follows from the Jacobi identity for the structure con-
stants.

Therefore, given any Lie–Poisson bracket in terms of µ, one can obtain an canon-
ized canonical bracket via (4). The Hamiltonian of the canonized system will have
the form H(q, p) = h(µ) with µ given as in (4). If the resulting equations of the
canonical system are solved for t 7→ (q(t), p(t)), then t 7→ µ(t) constructed according
to (4) solves the Lie–Poisson equation (2).
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3. Geometry of Clebsch canonization. This section gives a geometric interpre-
tation of the canonization presented in Section 2.2. Particularly, we show that the
map (4) is the momentum map associated with a natural g-action on the cotangent
bundle T ∗g.

3.1. Left g-action on T ∗g. Let T ∗g = g × g∗ be the cotangent bundle of g and
define

g× T ∗g→ T ∗g; (ξ, (q, p)) 7→ (adξ q,− ad∗
ξ p) =: ξT∗g(q, p).

In coordinates, we can write it as follows:

ξT∗g(q, p) = ξickijq
j ∂

∂qk
− ξickijpk

∂

∂pj

= ξickij

(
qj

∂

∂qk
− pk

∂

∂pj

)
.

Let us show that it is a left Lie algebra action, i.e., for any ξ, η ∈ g,

[ξ, η]T∗g = −[ξT∗g, ηT∗g],

where the bracket on the left-hand side is the commutator in g whereas the one on
the right is the Jacobi–Lie bracket of vector fields on T ∗g. In fact, in the coordinate
representation with respect to the standard basis {∂/∂qi, ∂/∂pi}ni=1, we have,

DηT∗g · ξT∗g =

(
∂

∂q
(adη q) · adξ q, −

∂

∂p
(ad∗

η p) · (− ad∗
ξ p)

)
=
(
adη ◦ adξ q, ad∗

η ◦ ad∗
ξ p
)

=
(
[η, [ξ, q]], ad∗

η ◦ ad∗
ξ p
)
,

where the second line follows because q 7→ adη q and p 7→ ad∗
η p are linear. Therefore,

we obtain

[ξT∗g, ηT∗g] = DηT∗g · ξT∗g −DξT∗g · ηT∗g

=
(
[η, [ξ, q]]− [ξ, [η, q]], ad∗

η ◦ ad∗
ξ p− ad∗

ξ ◦ ad∗
η p
)

=
(

[q, [ξ, η]], ad∗
[ξ,η] p

)
=
(
− ad[ξ,η] q, ad∗

[ξ,η] p
)

= −[ξ, η]T∗g,

where we used the Jacobi identity of the commutator on g and the following dual
version of it: for any ξ, η ∈ g,

ad∗
η ◦ ad∗

ξ − ad∗
ξ ◦ ad∗

η = ad∗
[ξ,η] . (5)

If g is the Lie algebra of a Lie group G, then we may first consider the left G-action
on T ∗g as follows:

Φ: G× T ∗g→ T ∗g; (g, (q, p)) 7→ (Adg q,Ad∗
g−1 p) := Φg(q, p).

Clearly this is the cotangent lift of the adjoint action of G on g. Then its infinitesimal
generator gives the above Lie algebra action:

d

ds
Φexp(sξ)(q, p)

∣∣∣∣
s=0

= (adξ q,− ad∗
ξ p) = ξT∗g(q, p).
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3.2. Momentum map M+. Let us find the momentum map associated with the
above Lie algebra action. For any ξ ∈ g, define Mξ : T ∗g→ R by setting

XMξ
= ξT∗g,

where XMξ
is the Hamiltonian vector field for Mξ with respect to the canonical

symplectic form on T ∗g, i.e.,

XMξ
=
∂Mξ

∂pi

∂

∂qi
− ∂Mξ

∂qj
∂

∂pj
.

It is a straightforward calculation to find

Mξ(q, p) = 〈p, adξ q〉 = −
〈
ad∗
q p, ξ

〉
.

The momentum map M+ : T ∗g→ g∗ is then defined so that〈
M+(q, p), ξ

〉
= Mξ(q, p),

which yields

M+(q, p) = − ad∗
q p. (6)

We can obtain a coordinate expression for M+ using the dual basis {Ei∗}ni=1 for g∗

as follows:

M+(q, p) = −qjckjipk Ei∗ = ckijq
jpk E

i
∗, (7)

which is nothing but (4) obtained earlier.
The above momentum map is infinitesimally equivariant: For any η ∈ g and any

(q, p) ∈ T ∗g,

T(q,p)M
+ · ηT∗g(q, p) = − ad∗

[η,q] p+ ad∗
q ad∗

η p

= ad∗
η ad∗

q p

= − ad∗
η M+(q, p),

where we again used the dual version (5) of the Jacobi identity. The infinitesimal
equivariance implies (see, e.g., [31, Theorem 12.4.1]) that M+ is a Poisson map
with respect to the canonical Poisson bracket (3) on T ∗g ∼= T ∗Rn and the (+)-Lie–
Poisson bracket (1) on g∗, i.e., for any smooth f, g : g∗ → R,{

f ◦M+, g ◦M+
}

= {f, g}+ ◦M+. (8)

3.3. Right action and (−)-Lie–Poisson bracket. In order to find a Poisson
map M− with respect to the (−)-Lie–Poisson bracket

{f, g}− (µ) = −〈µ, [Df(µ), Dg(µ)]〉 = −µkckij
∂f

∂µi

∂g

∂µj
(9)

on g∗, one starts instead with the following right Lie algebra action:

g× T ∗g→ T ∗g; (ξ, (q, p)) 7→ (− adξ q, ad∗
ξ p) =: ξT∗g(q, p),

which satisfies [ξ, η]T∗g = [ξT∗g, ηT∗g].
If g is the Lie algebra of a Lie group G, then we may consider the following right

G-action on T ∗g:

Φ: G× T ∗g→ T ∗g; (g, (q, p)) 7→ (Adg−1 q,Ad∗
g p) := Φg(q, p).

Then we have

d

dt
Φexp(tξ)(q, p)

∣∣∣∣
t=0

= (− adξ q, ad∗
ξ p) = ξT∗g(q, p).
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The associated momentum map is

M−(q, p) = ad∗
q p = −ckijqjpk Ei∗, (10)

and satisfies, for any f, g : g∗ → R,{
f ◦M−, g ◦M−} = {f, g}− ◦M−. (11)

3.4. Clebsch canonization. Summarizing the above arguments, we have the fol-
lowing special class of symplectic realization or Clebsch variables (see, e.g., [33]):

Theorem 3.1 (Clebsch canonization of Lie–Poisson equations). Given a smooth
function h : g∗ → R, define H : T ∗g ∼= T ∗Rn → R as

H(q, p) := h ◦M±(q, p) = h
(
∓ ad∗

q p
)
,

using M± : T ∗g → g∗ defined in (6) or (10), respectively. Let t 7→ (q(t), p(t)) be a
solution to the canonical Hamiltonian system (referred to as the canonized system)

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(12)

on T ∗g ∼= T ∗Rn. Then t 7→ µ(t) := M±(q(t), p(t)) gives a solution to the Lie–
Poisson equation

µ̇ = ∓ ad∗
Dh(µ) µ,

defined in terms of the (±)-Lie–Poisson bracket, (1) or (9), respectively.

Proof. It easily follows from the property that M± is Poisson (see (8) and (11)) with
respect to the canonical Poisson bracket on T ∗g and the (±)-Lie–Poisson bracket
on g∗, respectively.

3.5. Dual pair. Moreover, there exists a dual pair of momentum maps in the
sense of [67] associated with the above canonization. In order to define the other
momentum map, let us first write M+ from (7) (the case with M− is virtually the
same) using its components as follows: Writing z = (q, p) for short,

M+(z) = Mi(z)Ei∗, Mi(z) := qT Cip,

where {Ci}ni=1 are the n× n matrices defined in terms of the structure constants as

(Ci)jk := ckij .

However, we may also write Mi(z) as a bilinear form on T ∗g as follows:

Mi(z) =
1

2
zTMiz, (13)

where {Mi}ni=1 are the 2n× 2n symmetric matrices defined as

Mi :=

[
0 Ci
CTi 0

]
.

Consider the symplectic algebra

sp(2n,R) :=
{
ξ̃ ∈ R2n×2n | ξ̃T J + Jξ̃ = 0

}
where J :=

[
0 In
−In 0

]
.

It is well known that sp(2n,R) can be identified with the set sym(2n,R) of 2n× 2n
real symmetric matrices equipped with the Lie bracket

[ξ, η]J := ξJη − ηJξ
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via the following map:

sym(2n,R)→ sp(2n,R); ξ 7→ ξ̃ := Jξ.

Now, let us define a subalgebra h of sp(2n,R) as follows:

h :=
{
σ̃ ∈ sp(2n,R) | σ̃TMi +Miσ̃ = 0 ∀i ∈ {1, . . . , n}

}
∼= {σ ∈ sym(2n,R) | [σ,Mi]J = 0 ∀i ∈ {1, . . . , n}}
=
{
σ ∈ sym(2n,R) | (σJMi)

T = −σJMi ∀i ∈ {1, . . . , n}
}
.

(14)

More concretely, we may write

σ =

[
σ11 σ12

σT12 σ22

]
∈ sym(2n,R),

and see the following characterization of h:

σ ∈ h ⇐⇒


Ciσ11 = −σ11CTi ,
Ciσ12 = σ12Ci,
σ22Ci = −CTi σ22

∀i ∈ {1, . . . , n}. (15)

One can show that h is non-trivial for any Lie algebra g:

Proposition 1. Let κ be the n× n symmetric matrix defining the Killing form on
g, i.e.,

κ(x, y) := tr(adx ◦ ady) = κijx
iyj ,

or, in terms of the structure constants, κij := clikc
k
jl. Then, the following elements

of sym(2n,R) are contained in h:

σ0 :=

[
0 In
In 0

]
, κ :=

[
κ 0
0 0

]
.

Furthermore, if g is semisimple, then

κ∗ :=

[
0 0
0 κ−1

]
is also contained in h as well.

Proof. See Appendix A.

Using the above subalgebra h, we can construct the following dual pair in the
sense of [67] with some additional assumptions:

Theorem 3.2 (Dual pair associated with Clebsch canonization). Let h be the sub-
algebra of sp(2n,R) ∼= sym(2n,R) defined in (14), and consider the h-action on T ∗g
defined by

h→ X(T ∗g); σ 7→ σT∗g(z) := σ̃z = Jσz,

and let J : T ∗g→ h∗ be its associated momentum map. Then:

(i) Jσ(z) := 〈J(z), σ〉 = 1
2z
Tσz for any z ∈ T ∗g and any σ ∈ h.

(ii) There exists a (possibly empty) open subset U ⊂ T ∗g such that M+ (or M−)
and J are both submersions.
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(iii) If U is non-empty and dim h = dim g, then

h∗ U g∗J M+

is a dual pair with respect to the standard symplectic form Ω on T ∗g (restricted
to U), i.e., (

kerTzM
+
)Ω

= kerTzJ ∀z ∈ U,
and similarly with M− in place of M+, where ( · )Ω stands for the symplecti-
cally orthogonal complement.

Proof. See Appendix B.

4. Properties of canonization.

4.1. Subalgebra h and momentum map J. The dual pair constructed in The-
orem 3.2 implies that the momentum map J is an invariant of the canonized sys-
tem (12). For example, for σ0,κ,κ∗ ∈ h from Proposition 1, the corresponding
invariants are, writing z = (q, p) for short,

J0(z) := Jσ0
(z) = p · q, (16)

and
Jκ(z) = qTκq = κ(q, q), Jκ∗(z) = pTκ−1p = κ−1(p, p), (17)

where we abused the notation by using κ and κ−1 for both the bilinear forms and
the associated matrices.

Note that, depending on the Lie algebra g, the subalgebra h ⊂ sym(2n,R) may
be larger than span{κ0,κ} or span{κ0,κ,κ∗}, and so there may be more invariants,
as we shall see in the example presented in Section 5.3, where dim h = 9.

4.2. Casimirs and momentum maps. If the Lie–Poisson bracket possesses a
Casimir, then there must be a corresponding invariant for the canonical Hamiltonian
system (12). We would like to show that the invariant is indeed a Noether invariant
(momentum map) of the canonized system:

Proposition 2. Suppose that f : g∗ → R is a Casimir of the Lie–Poisson bracket (1)
or (9), and define F : T ∗g→ R by setting F := f ◦M±, i.e.,

F (q, p) := f
(
∓ ad∗

q p
)
.

Let us also define

γ : T ∗g→ g; γ(q, p) := Df(M±(q, p)) = Df
(
∓ ad∗

q p
)
,

and consider the following R (Lie algebra) action

R× T ∗g→ X(T ∗g); (s, (q, p)) 7→ (adsγ(q,p) q,− ad∗
sγ(q,p) p) := sT∗g(q, p),

where X(T ∗g) stands for the space of vector fields on T ∗g. Then the momentum map
corresponding to the action is F . Furthermore, the Hamiltonian H is infinitesimally
invariant under the action, and thus F is an invariant of the canonized system (12).

Proof. Notice first that

XF (q, p) =

(
∂F

∂p
, −∂F

∂q

)
= ±

(
adγ(q,p) q, − ad∗

γ(q,p) p
)
,

and so, for any s ∈ R,
XsF = sT∗g.
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This shows that F is the momentum map corresponding to the above symmetry.
Let us show that M± is infinitesimally invariant under the above R-action: First

note that, since f is a Casimir, its derivative Df satisfies ad∗
Df(µ) µ = 0 for any

µ ∈ g∗; see, e.g., [31, Corollary 14.4.3]. Therefore, setting µ = − ad∗
q p in particular,

we have

− ad∗
γ(q,p) ad∗

q p = ad∗
Df(− ad∗

q p)
(− ad∗

q p) = 0

for any (q, p) ∈ T ∗g. Then, for any s ∈ R, the directional derivative of M± along
the vector field sT∗g yields

sT∗g[M±](q, p) = ∓s
(

ad∗
[γ(q,p),q] p− ad∗

q ad∗
γ(q,p) p

)
= ∓s

(
ad∗
γ(q,p) ad∗

q p− ad∗
q ad∗

γ(q,p) p+ ad∗
q ad∗

γ(q,p) p
)

= ∓s
(

ad∗
γ(q,p) ad∗

q p
)

= 0,

where we used the dual version (5) of the Jacobi identity in the second equality.
This implies that the Hamiltonian H := h◦M± is infinitesimally invariant under

the R-action as well. That F is an invariant of (12) follows easily from either that
M± is Poisson or Noether’s Theorem (see, e.g., [31, Theorem 11.4.1]).

5. Collective integrators via Clebsch canonization.

5.1. Collective Lie–Poisson integrators via Clebsch canonization. Let

Ψ∆t : T
∗g→ T ∗g

be an integrator with time step ∆t for the canonized system (12). In order for the
resulting Lie–Poisson integrator to be collective in the sense of [39, 40], the method
Ψ∆t must “descend” to a Lie–Poisson integrator ψ∆t on g∗ such that ψ∆t ◦M± =
M± ◦ Ψ∆t and also that preserves coadjoint orbits in g∗ (and hence its Casimirs)
exactly.

According to [39, Theorem 7], one of the possible realizations of collective inte-
grators is to have a dual pair of momentum maps M± and J where J is quadratic,
and use any symplectic Runge–Kutta method for Ψ∆t. Since Theorem 3.2 gives
the desired form of dual pair, the symplectic Runge–Kutta methods applied to our
setting gives a collective integrators on M±(U) ⊂ g∗.

We use the Gauss–Legendre methods—a family of implicit Runge–Kutta methods
based on the points of Gauss–Legendre quadrature—as the symplectic integrator
Ψ∆t for the canonized system (12). The order of a Gauss–Legendre method is 2s
if it is based on s points [16, Theorem 5.2]; the simplest is of order 2 and is the
Implicit Midpoint Method. In this paper, we will use the 4th order Gauss–Legendre
method; see, e.g., [26, Table 6.4 on p. 154].

5.2. Example 1: Kida vortex. The Kida vortex [23] is an elliptical vortex patch
of constant vorticity in a two-dimensional flow. The equations of motion obtained
by [23] describe the time evolution of the semi-major axis a and semi-minor axis b
and of the angle φ of orientation of the ellipse in a steady shear background flow:

ȧ =
ε

2
a sin(2φ), ḃ = − ε

2
b sin(2φ), φ̇ =

ab

(a+ b)2
+
ω

2
+
ε

2

a2 + b2

a2 − b2
cos(2φ),
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where ε > 0 is the constant rate of strain of the background shear flow. Defining
the aspect ratio λ := b/a, the equations reduce to

λ̇ = −ελ sin(2φ), φ̇ =
λ

(1 + λ)2
+
ω

2
+
ε

2

1 + λ2

1− λ2
cos(2φ). (18)

It is then not difficult to see that the above system of equations is Hamiltonian [43,
44].

Furthermore, [42] showed that (18) follows from a Lie–Poisson equation on
so(2, 1)∗ obtained by projecting the Lie–Poisson structure for the 2D incompressible
Euler equation onto quadratic moments of the vorticity. Specifically, let so(2, 1) be
the Lie algebra of the Lie group

SO(2, 1) :=
{
R ∈ R3×3 | RTKR = K

}
with K :=

1 0 0
0 1 0
0 0 −1

 .
A basis for so(2, 1) is given by {E1 =

[
0 0 0
0 0 1
0 1 0

]
, E2 =

[
0 0 1
0 0 0
1 0 0

]
, E3 =

[
0 −1 0
1 0 0
0 0 0

]
}, for

which the structure constants {ckij}1≤i,j,k≤3 satisfy, for any µ ∈ so(2, 1)∗ ∼= R3,

µkc
k
ij =

 0 µ3 µ2

−µ3 0 −µ1

−µ2 µ1 0

 .
This is the (class A) type VIII Lie algebra of the Bianchi classification [11, 69]. The
Casimir of the corresponding Lie–Poisson bracket (1) is then

f1(µ) := µ2
1 + µ2

2 − µ2
3, (19)

which is essentially the area of the ellipse.
The Killing form in this case is

κ(x, y) = 2(x1y1 + x2y2 − x3y3).

It is clearly non-degenerate, and thus there are two additional invariants (see (17)):

J1(q, p) :=
1

2
κ(q, q) = q2

1 + q2
2 − q2

3 , J2(q, p) :=
1

2
κ−1(p, p) = p2

1 + p2
2 − p2

3. (20)

It is also easy to show that h = span{σ0,κ,κ∗} using (15) (see also Proposition 1);
hence J0 from (16) along with these two invariants are the components of the
momentum map J.

The variables (µ1, µ2, µ3) are related to the original variables (λ, φ) as follows:

µ2 =
π

16

(
λ− 1

λ

)
cos(2φ), µ3 = − π

16

(
λ+

1

λ

)
cos(2φ), µ2

1 + µ2
2 − µ2

3 = −π
2

64
.

(21)
With the Hamiltonian (the “excess energy” of the elliptical vortex patch [42])
h : so(2, 1)∗ ∼= R3 → R defined as

h(µ) := εµ2 + ωµ3 −
π

8
ln
(π

8
− µ3

)
, (22)

the Lie–Poisson equation µ̇ = − ad∗
Dh(µ) µ from (2) yields

µ̇1 = ωµ2 + εµ3 +
πµ2

π − 8µ3
, µ̇2 = −µ1

(
ω +

π

π − 8µ3

)
, µ̇3 = εµ1. (23)

One can then show that, using (21), the above Lie–Poisson equation gives rise to
the original equation (18) of [23].
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The map (6) yields (lowering the indices for q for simplicity),

M+(q, p) = (q2p3 + q3p2, −q3p1 − q1p3, −q1p2 + q2p1). (24)

Following the proof (in Appendix B) of Theorem 3.2, we can show that there exists
an open set U that is dense in T ∗g on which M+ and J are submersions. We also
saw above that dim h = 3 = dim g. Hence we have a dual pair as described in
Theorem 3.2.

We then have the Hamiltonian

H(q, p) := h(M+(q, p))

= −ε(q3p1 + q1p3)− ω(q1p2 − q2p1)− π

8
ln
(π

8
+ q1p2 − q2p1

)
.

The canonized system (12) is therefore

q̇1 = ωq2 − εq3 +
π

8

q2

q1p2 − q2p1 + π/8
, ṗ1 = ωp2 + εp3 +

π

8

p2

q1p2 − q2p1 + π/8
,

q̇2 = −ωq1 −
π

8

q1

q1p2 − q2p1 + π/8
, ṗ2 = −ωp1 −

π

8

p1

q1p2 − q2p1 + π/8
,

q̇3 = −εq1, ṗ3 = εp1.
(25)

Figure 1 shows numerical results with parameters ε = 1/2 and ω = −1 with initial
condition determined by µ1(0) = 1, f1(µ(0)) = −1/4 and h(µ(0)) = 1; this is a case
from [42, Fig. 2]. It shows the time evolution of the solution to (23) computed by
the collective integrator as well as the trajectory of the solution in so(2, 1)∗ plotted
with the level sets of the Hamiltonian h and the Casimir f1; see (22) and (19).
We used the 4th order Gauss–Legendre method to solve the canonized system (25)
with the initial condition (q(0), p(0)) obtained by solving M+(q(0), p(0)) = µ(0); we
additionally imposed q(0) = (1, 0, 0) and p1(0) = 0 to obtain the unique solution.

20 40 60 80 100

-3

-2

-1

1

(a) Time evolution (b) Lie–Poisson dynamics and in-

variants

Figure 1. (a) Time evolution of µ computed using the canonized system (25).
The solutions are shown for the time interval 0 ≤ t ≤ 100 with time step
∆t = 0.1. (b) The red curve is the Lie–Poisson dynamics of the Kida vortex in
g∗ = so(2, 1)∗ ∼= R3 computed using the canonized system (25) and mapped by
M+ in (24). The green and orange surfaces are the level sets of the Hamiltonian
h and the Casimir f1 from (22) and (19), respectively.

For comparison, we also solved the Lie–Poisson equation (23) directly using the
4th order explicit Runge–Kutta method. Figure 2 compares the time evolutions of
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the relative errors in the Hamiltonian h and the Casimir f1 along these numerical
solutions. The explicit Runge–Kutta solution exhibits a drift that seems to be
detrimental in the long run. Notice also that it exhibits a more significant drift
in the Casimir. On the other hand, the solution of the collective integrator does
not exhibit drifts in either the Hamiltonian or the Casimir; note that the latter is
preserved exactly in theory.

Lie-Poisson (Runge-Kutta)

Canonized (Gauss-Legendre)

200 400 600 800 1000

-1.2×10-7

-1.×10-7

-8.×10-8

-6.×10-8

-4.×10-8

-2.×10-8

2.×10-8

(a) Hamiltonian h from (22)

200 400 600 800 1000

0.00002

0.00004

0.00006

0.00008

0.00010

(b) Casimir f1 from (19)

Figure 2. Time evolutions of relative errors in Hamiltonian h and Casimir f1

from the Kida system. The dashed blue curve is the 4th order explicit Runge–
Kutta method directly applied to Lie–Poisson equation (23) whereas the solid
red curve is the 4th order Gauss–Legendre method applied to the canonized
system (25). The solutions are shown for the time interval 0 ≤ t ≤ 1000 with
time step ∆t = 0.1. Note that, in (b), the red line is made thicker to make it
visible; the actual variation is so small that it is barely visible if plotted with
the same thickness as the blue line or as in (a).

Figure 3 shows how well the collective integrator preserves the components of
the momentum map J. This is because the Gauss–Legendre methods preserve these
invariants exactly in theory. However, being an implicit method, it introduces an
error in each step when solving nonlinear equations—the likely culprit of the small
errors observed in the figures.

200 400 600 800 1000

-4.×10-15

-2.×10-15

2.×10-15

(a) Component J0

200 400 600 800 1000

-4.×10-14

-3.×10-14

-2.×10-14

-1.×10-14

1.×10-14

(b) Component J1

200 400 600 800 1000

-4.×10-14

-3.×10-14

-2.×10-14

-1.×10-14

1.×10-14

(c) Component J2

Figure 3. Time evolutions of absolute or relative errors in components of mo-
mentum map J from (16) and (20) computed by the 4th order Gauss–Legendre
method applied to the canonized Kida system (25). The solutions are shown
for the time interval 0 ≤ t ≤ 1000 with time step ∆t = 0.1.
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5.3. Example 2: Heavy top on a movable base. As a higher-dimensional and
more practical example, consider the system shown in Figure 4 from [9]: It is a heavy
top with mass m placed on a movable base—point mass M for simplicity—under
gravity g.

As the base is free to move, the system is defined by the rotational motion of the
heavy top and the linear motion of the base. Hence the natural configuration space
is the matrix Lie group

SE(3) =

{
(R,x) :=

[
R x
0 1

]
| R ∈ SO(3),x ∈ R3

}
,

where R ∈ SO(3) gives the orientation of the top and x is the position of the base.

The left translation of the tangent vector (Ṙ, ẋ) ∈ T(R,x)SE(3) to the identity yields[
Ω̂ v
0 0

]
:=

[
R x
0 1

]−1 [
Ṙ ẋ
0 0

]
=

[
R−1Ṙ R−1ẋ

0 0

]
∈ se(3),

which are the angular velocity of the top and the base velocity with respect to the
body frame of the top. Note that we identify se(3) = so(3) n R3 with R3 × R3 via

the hat map ˆ( · ) : R3 → so(3); see, e.g., [31, Eq. (9.2.7) on p. 289].

m

M

lχ

e3

e1

e2
x

E1

E2

E3

u

Figure 4. Heavy top on a movable base.

Let m̄ := m+M be the total mass of the system, l the distance from the junction
point of the top and the base to the center of mass of the heavy top, χ the unit
vector in that direction in the body frame, and I0 := diag(I1, I2, I3) the inertia
mass matrix of the top with respect to the junction point (we assume I1 = I2); see
Figure 4.

Using the body angular momentum Π and the linear impulse P related to Ω and
v as

Π = I0Ω +mlχ× v, P = −mlχ×Ω + m̄v,

the Hamiltonian of the system is

h(Π,P,Γ, x3) :=
1

2

(
Π · (I−1Π) + 2kmlΠ · (P × χ) + P · (M−1P)

)
+ mglχ · Γ + m̄gx3

with

I := diag

(
I1 −

m2l2

m̄
, I1 −

m2l2

m̄
, I3

)
, M := diag

(
m̄− m2l2

I1
, m̄− m2l2

I1
, m̄

)
.
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Then the equations of motion are written as the Lie–Poisson equation on (se(3) n
R4)∗:

Π̇ = Π× ∂h

∂Π
+ P× ∂h

∂P
+ Γ× ∂h

∂Γ
, Ṗ = P× ∂h

∂Π
− ∂h

∂x3
Γ,

Γ̇ = Γ× ∂h

∂Π
, ẋ3 = Γ · ∂h

∂P
.

(26)

The main goal of [9] is to stabilize the upright position of the heavy top by applying
control u to the base, i.e., the second equation of (26) is replaced by

Ṗ = P× ∂h

∂Π
− ∂h

∂x3
Γ + u,

Specifically, the control u was broken into two as u = up +uk, corresponding to the
potential and kinetic shaping, with the potential part being up = ∂h

∂x3
Γ = m̄gΓ, so

that the Lie–Poisson equation (26) now becomes

Π̇ = Π× ∂h

∂Π
+P× ∂h

∂P
+Γ× ∂h

∂Γ
, Ṗ = P× ∂h

∂Π
+uk, Γ̇ = Γ× ∂h

∂Π
, (27)

where we dropped the equation for x3 because it is now decoupled from the rest. In
[9], it is found, via the method of controlled Lagrangians [5, 4], applying the control

uk = (ρ− m̄)(v̇ − v ×Ω) where v :=
∂h

∂P

with ρ ∈ R renders the system (27) the Lie–Poisson equation on
(
se(3) nR3

)∗
with

a new control Hamiltonian hc : (se(3) nR3)∗ → R given by

hc(Π,P,Γ) =
1

2

(
Π · (I−1

c Π) + 2kcmlΠ · (P× χ) + P · (M−1
c P)

)
+mglχ · Γ (28)

with

Ic := diag

(
I1 −

m2l2

ρ
, I1 −

m2l2

ρ
, I3

)
, Mc := diag

(
ρ− m2l2

I1
, ρ− m2l2

I1
, ρ

)
Then the equations of motion are given by the Lie–Poisson equation

µ̇ = {µ, hc}−

with µ = (Π,P,Γ) ∈
(
se(3) nR3

)∗
and the following (−)-Lie–Poisson bracket on(

se(3) nR3
)∗

: For any smooth f, g : (se(3) nR3)∗ → R,

{f, g}− (Π,P,Γ) = −
〈

Π,
∂f

∂Π
× ∂g

∂Π

〉
−
〈

P,
∂f

∂Π
× ∂g

∂P
− ∂g

∂Π
× ∂f

∂P

〉
−
〈

Γ,
∂f

∂Π
× ∂g

∂Γ
− ∂g

∂Π
× ∂f

∂Γ

〉
,

(29)

which, incidentally, is identical to the Lie–Poisson bracket given in [63] for a rigid
body insulator that is acted on by an electric field as well as gravity (see also
[64, 65]). More explicitly, we have

Π̇ = Π× ∂hc

∂Π
+ P× ∂hc

∂P
+ Γ× ∂hc

∂Γ
, Ṗ = P× ∂hc

∂Π
, Γ̇ = Γ× ∂hc

∂Π
. (30)
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Noting that (29) is a (−)-Lie–Poisson bracket (9), we find that the corresponding
structure constants {ckij}1≤i,j,k≤9 satisfy

µkc
k
ij = −

Π̂ P̂ Γ̂

P̂ 0 0

Γ̂ 0 0

 .
One can also show that the Lie–Poisson bracket (29) possesses the following Casimirs:

f1 = ‖P‖2, f2 = P · Γ, f3 = ‖Γ‖2. (31)

Furthermore, we can write the momentum map M− as

M−(q, p) = −(q1 × p1 + q2 × p2 + q3 × p3, q1 × p2, q1 × p3),

where we used the identification g = se(3) n R3 ∼= R3 × R3 × R3 and wrote
q = (q1,q2,q3) ∈ g ∼= R9 and p = (p1,p2,p3) ∈ g∗ ∼= R9 with qi,pi ∈ R3

for i ∈ {1, 2, 3}. Defining the Hamiltonian H : T ∗(se(3) n R3) → R as H(q, p) =
hc(M−(q, p)), we have the canonized system (12).

Let us find the other momentum map (invariant) J. Using (15), we find that h
is the 9-dimensional subalgebra of sym(18,R) consisting of matrices of the form

σ =

[
σ11 σ12

σT12 σ22

]
∈ sym(18,R)

with

σ12 ∈ span

I9,
0 I3 0

0 0 0
0 0 0

 ,
0 0 I3

0 0 0
0 0 0

 ,

σ11 ∈ span


I3 0 0

0 0 0
0 0 0

 ,
 0 I3 0
I3 0 0
0 0 0

 ,
 0 0 I3

0 0 0
I3 0 0

 ,

σ22 ∈ span


0 0 0

0 I3 0
0 0 0

 ,
0 0 0

0 0 I3
0 I3 0

 ,
0 0 0

0 0 0
0 0 I3

 .

Hence the components of the momentum map J are

J0 := p · q, J1 := q1p4 + q2p5 + q3p6, J2 := q1p7 + q2p8 + q3p9,

J3 := q2
1 + q2

2 + q2
3 , J4 := q1q4 + q2q5 + q3q6, J5 := q1q7 + q2q8 + q3q9,

J6 := p2
4 + p2

5 + p2
6, J7 := p4p7 + p5p8 + p6p9, J8 := p2

7 + p2
8 + p2

9.
(32)

We may now follow the proof of Theorem 3.2 in Appendix B to show that there
exists an open set U that is dense in T ∗g on which M− and J are submersions. We
also saw above that dim h = 9 = dim g. Hence we have a dual pair as described in
Theorem 3.2.

Following [9], the parameters are chosen as follows: M = 0.44 [kg], m = 0.7 [kg],
I1 = I2 = 0.2 kg ·m2, I3 = 0.24 kg ·m2, l = 0.215 [m], g = 9.8 [m/s2]. The pa-
rameter ρ was chosen such that ρ = 0.9m2l2/I1 to ensure stability of the upright
position. The initial condition is Ω(0) = (0.1, 0.2, 0.1),v(0) = 0, and Γ(0) =
(cos θ0 sinϕ0, sin θ0 sinϕ0, cosϕ0) with θ0 = π/3 and ϕ0 = π/20.

To get the initial conditions for the canonized system, we set q1(0) = Γ(0) ×
P(0),p1(0) = (0, 0, 0) and solved M−(q(0), p(0)) = (Π(0),P(0),Γ(0)) for the re-
maining values q2(0), q3(0), p2(0), p3(0) of (q(0), p(0)).
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We solved the canonized system using the 4th order Gauss–Legendre method,
and also solved the Lie–Poisson system (30) directly using the 4th order explicit
Runge–Kutta method for comparison.

Figure 5 shows the time evolutions of the relative errors of the Hamiltonian hc

and the Casimirs f1, f2, f3. Just as in the Kida vortex case, we observe drifts in
addition to oscillations in all the invariants for the explicit Runge–Kutta solution,
whereas we see that the proposed collective integrator preserves these invariants: the
Hamiltonian oscillates in a thin band, whereas the Casimirs are preserved exactly
in theory.

The errors for the components of the momentum map J are shown in Figure 6.
Since all of them are quadratic in (q, p), they are invariants of the Gauss–Legendre
method, any error must be due to roundoff and/or the nonlinear solver used in each
step.

Lie-Poisson (Runge-Kutta)

Canonized (Gauss-Legendre)
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(a) Controlled Hamiltonian hc from (28)
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Figure 5. Time evolutions of relative errors in Hamiltonian h and three
Casimirs f1, f2, f3 from the heavy top on a movable base system. The dashed
blue curve is the Runge–Kutta method directly applied to Lie–Poisson equa-
tion (30) whereas the solid red curve is the 4th order Gauss–Legendre method
applied to the canonized system. The solutions are shown for the time interval
0 ≤ t ≤ 30 with time step ∆t = 0.01. Note that, in (b)–(d), the red line is
made thicker to make it visible; the actual variation is so small that it is barely
visible if plotted with the same thickness as the blue line or as in (a).

Acknowledgments. We would like to thank Paul Skerritt for helpful comments,
and the reviewers for their comments and suggestions, particularly the suggestion to



CLEBSCH CANONIZATION OF LIE–POISSON SYSTEMS 19

5 10 15 20 25 30

-5.×10-14

-4.×10-14

-3.×10-14

-2.×10-14

-1.×10-14

1.×10-14

(a) Component J0

5 10 15 20 25 30

-2.×10-15

-1.×10-15

1.×10-15

2.×10-15

3.×10-15

(b) Component J1

5 10 15 20 25 30

-4.×10-15

-2.×10-15

2.×10-15

(c) Component J2

5 10 15 20 25 30

-2.×10-15

-1.×10-15

1.×10-15

2.×10-15

3.×10-15

(d) Component J3

5 10 15 20 25 30

-1.×10-14

-5.×10-15

5.×10-15

(e) Component J4

5 10 15 20 25 30

1.×10-13

2.×10-13

3.×10-13

(f) Component J5

5 10 15 20 25 30

-2.×10-15

-1.×10-15

1.×10-15

2.×10-15

3.×10-15

(g) Component J6

5 10 15 20 25 30

-4.×10-15

-3.×10-15

-2.×10-15

-1.×10-15

1.×10-15

2.×10-15

3.×10-15

(h) Component J7

5 10 15 20 25 30

-1.×10-15

1.×10-15

2.×10-15

3.×10-15

(i) Component J8

Figure 6. Time evolutions of errors in components of momentum map J from
(32) computed by the 4th order Gauss–Legendre method applied to the canon-
ized system for heavy top on a movable base. Note that we used the absolute
error for J0 because J0(0) = 0, whereas all the others use relative errors. The
solutions are shown for the time interval 0 ≤ t ≤ 30 with time step ∆t = 0.01.
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Appendix A. Proof of Proposition 1. Clearly σ0 satisfies the condition in (15),
and so σ0 ∈ h.

Let us next show that κ ∈ h. According to (15), it suffices to show Ciκ = −κCTi
for any i ∈ {1, . . . , n}. To that end, first recall that the Jacobi identity for the Lie
bracket in g is equivalent to the following relationship for the structure constants:

cmil c
l
jk + cmjl c

l
ki + cmklc

l
ij = 0.

Using this identity, we see that, for any i, j, l ∈ {1, . . . , n},

(Ciκ)jl = (Ci)jkκkl = ckijc
r
kmc

m
lr

= (−crmkckij)cmlr
= (crikc

k
jm + crjkc

k
mi)c

m
lr

= crikc
k
jmc

m
lr + crjk(−ckimcmlr )

= cmirc
r
jkc

k
lm + crjk(cklmc

m
ri + ckrmc

m
il )
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= −(crjkc
k
mr)c

m
il

= −κjmcmil
= −κjm(Ci)lm
= −(κCTi )jl.

Finally, suppose that g is semisimple. Then the Killing form is non-degenerate,
i.e., κ is invertible, and so κ∗ is defined. Now, according to (15), it suffices to show
κ−1Ci = −CTi κ−1 for any i ∈ {1, . . . , n}. But then this is equivalent to Ciκ = −κCTi
that we have shown above. Hence κ∗ ∈ h as well.

Appendix B. Proof of Theorem 3.2. We prove it only for M+ because the
same argument applies to M− as well. We break down the proof into a couple
of lemmas on the properties of the momentum maps M+ and J. Note also that,
throughout the proof, we identify T ∗g with T ∗Rn ∼= R2n using the standard bases
{Ei}ni=1 and {Ei∗}ni=1 for g and g∗, respectively.

Lemma B.1. Define subspace

W (z) := span{JMiz}ni=1 ⊂ TzT ∗g. ∀z ∈ T ∗g. (B.1)

Then, kerTzM
+ and W (z) are symplectically orthogonal complements to each other,

i.e., (
kerTzM

+
)Ω

= W (z) ∀z ∈ T ∗g.

Proof. Let us first show that W (z) and kerTzM
+ are complementary in dimen-

sions. To that end, let us write the tangent map of M+ : T ∗g → g∗ using the
components (13) for M+:

TzM
+(ż) =

〈dM1(z), ż〉
...

〈dMn(z), ż〉

 =

z
TM1ż

...
zTMnż

 = A(z)ż (B.2)

with

A(z) :=

z
TM1

...
zTMn

 ∈ Rn×2n

for any z = (q, p) ∈ Tg∗ and any ż = (q̇, ṗ) ∈ TzT ∗g. Therefore, we find

kerTzM
+ = kerA(z).

Now, by the fundamental theorem of linear algebra, we see that

im
(
A(z)T

)
= span{Miz}ni=1 ⊂ TzT ∗g ∼= R2n

gives a complementary subspace to ker TzM
+ in TzT

∗g ∼= R2n, i.e.,

dim
(
im
(
A(z)T

))
+ dim

(
kerTzM

+
)

= 2n.

But then, since J is non-degenerate, we see that dimW (z) = dim
(
im
(
A(z)T

))
.

Therefore,
dimW (z) + dim

(
kerTzM

+
)

= 2n ∀z ∈ T ∗g.

It remains to show that W (z) is symplectically orthogonal to ker TzM
+. Let

ż ∈ kerTzM
+ = kerA(z) be arbitrary. Then zTMiż = 0 for any i ∈ {1, . . . , n},

but then this implies

Ω(JMiz, ż) = (JMiz)T Jż
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= zTMiż

= 0.

Let us next prove some properties of the other momentum map J in the pair.

Lemma B.2. The momentum map J : T ∗g → h∗ satisfies the following for any
z ∈ T ∗g:

(i) Jσ(z) := 〈J(z), σ〉 = 1
2z
Tσz for any σ ∈ h;

(ii) W (z) ⊂ kerTzJ,

where W (z) is the subspace of TzT
∗g defined in (B.1).

Proof. Let us first show (i). By the definition of momentum map, we seek Jσ( · ) :=
〈J( · ), σ〉 : T ∗g→ R satisfying, for any σ ∈ h and any z ∈ T ∗g,

σT∗g(z) = XJσ (z),

where XJσ (z) is the Hamiltonian vector field defined by Jσ, i.e.,

XJσ (z) = J∇Jσ(z).

Therefore, we have σz = ∇Jσ(z), and thus Jσ(z) = 1
2z
Tσz.

For (ii), it suffices to show that W (z) ⊂ ker dJσ(z) for any z ∈ T ∗g and any
σ ∈ h. First recall from (14) that σ ∈ h if and only if σJMi is skew-symmetric for
any i ∈ {1, . . . , n}. Therefore, we see that, for any i ∈ {1, . . . , n},

〈dJσ(z), JMiz〉 = zTσJMiz = 0.

Since W (z) is spanned by {JMiz}ni=1, we have W (z) ⊂ ker dJσ(z).

We are now ready to prove Theorem 3.2.

(i) This is Lemma B.2 (i).
(ii) In order to find the open subset U ⊂ T ∗g, notice first that TzM

+ = A(z) (see
(B.2)) is full-rank if and only if A(z)A(z)T is non-singular. However,

A(z)A(z)T =

z
TM1

...
zTMn

 [M1z . . .Mnz
]

=

 ‖M1z‖2 . . . zTM1Mnz
...

. . .
...

zTMnM1z . . . ‖Mnz‖2

 .
Since each entry is quadratic in z, the function dA(z) := det

(
A(z)A(z)T

)
is a

polynomial of z as well. Hence the pre-image U1 := d−1
A (R\{0}) ⊂ T ∗g is an

open set on which TM+ is full-rank. Let {σj}m−1
j=0 be a basis for h, and define

B(z) :=

 zTσ0

...
zTσm−1

 .
Then, running the same argument with B(z) in place of A(z), one can find
U2 := d−1

B (R\{0}) on which TJ is full-rank. Then U := U1 ∩ U2 gives the
desired open set (which is possibly empty).
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(iii) Note first that M+ and J being submersions imply that they are submersions
onto open sets M+(U) ⊂ g∗ and J(U) ⊂ h∗, respectively. Therefore, we have,
for any z ∈ U ,

dim
(
kerTzM

+
)

= 2n− dim
(
imTzM

+
)

= 2n− dim g,

and

dim(kerTzJ) = 2n− dim(imTzJ) = 2n− dim h.

Thus the assumption dim h = dim g = n implies that dim(ker TzM
+) =

dim(kerTzJ) = n for any z ∈ U . However, using Lemma B.1 and
Lemma B.2 (ii), we have(

kerTzM
+
)Ω ⊂ kerTzJ ∀z ∈ T ∗g.

But then dim (kerTzM
+)

Ω
= n = dim(kerTzJ) for any z ∈ U , and thus we

obtain (
kerTzM

+
)Ω

= kerTzJ ∀z ∈ U.
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