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Abstract

This paper concerns an approximation of the expectation values of the position and
momentum of the solution to the semiclassical Schrodinger equation with a Gaus-
sian as the initial condition. Of particular interest is the approximation obtained by
our symplectic/Hamiltonian formulation of the Gaussian wave packet dynamics that
introduces a correction term to the conventional formulation using the classical Hamil-
tonian system by Hagedorn and others. The main result is a proof that our formulation
gives a higher-order approximation than the classical formulation does to the expecta-
tion value dynamics under certain conditions on the potential function. Specifically, as
the semiclassical parameter & approaches 0, our dynamics gives an O (g3/%) approx-
imation of the expectation value dynamics, whereas the classical one gives an O (¢)
approximation.
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1 Introduction
1.1 Semiclassical Schrodinger equation and Gaussian wave packet

Consider the following initial value problem of the semiclassical Schrodinger equation
on R:

~2

a A N
fe vt = A, H=2 4V, (1)
¥ (0, x) = ¢o(q(0), p(0), Q(0), P(0), S(0); x), (1b)
where ¢ > 0 is the semiclassical parameter, p := —ied/dx is the momentum operator,
and ¢y is the Gaussian wave function
. det)”!?
#o(q, p, Q. P, S;x) := W
i/l T po-1
expro(F =) PO x =)+ p k=) + S ).

@)

The parameters (g, p) live in the cotangent bundle 7*R? = R? x R?, whereas Q, P €
Mg (C) (the set of d x d complex matrices) satisfy

o'P—PTQ=0 and Q*P - P*Q =2il,

and S € R is a phase factor. It is worth noting that the imaginary part of PQ~! is
given by (QQ*)_l; see, e.g., [17, Lemma V.1.1].

The seminal works by [6,9] (see also [12—-14], [2], [31]) showed that one may
approximate the solution ¥ (¢, x) of the above initial value problem (1) in the semi-
classical limit ¢ — 0 by the time-dependent Gaussian wave packet

$o(t, x) := ¢o(q (1), p(1), Qt), P(1), S(1); x) 3)

whose parameters evolve in time according to the ordinary differential equations

g=p, p=-DV(@, Q=P, P=-D*V(Q,
2

g P _
S= 3 Vig), “4)

where DV and D?V stand for the gradient and Hessian of the potential V. Note that the
equations for (g, p) are the classical Hamiltonian system. Specifically, [6,9] proved,
under certain conditions on the potential V/, that the error in terms of the L2-norm || - |
in L2(R%) is O(£'/?) in the sense that there exists a function € (¢) such that

I (2, x) — go(t, x)|| < C(r) /2. Q)
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1.2 Symplectic Gaussian wave packet dynamics

In a series of works [23,25,26], we proposed the following symplectic/Hamiltonian
alternative to the evolution Eq. (4):

i=p. p=-0(V@+evPq Q) 0=P P=-DV@O,

(6a)
where 9, is a shorthand for d/d¢ and
1
V(g )= ;1 (00" D?V(9)). )

The only difference from (4) of Hagedorn is the O (¢) correction term in the potential.
The correction term renders the coupled system (6a) for (¢, p, Q, P) a Hamiltonian
system on T*R? x My (C) x My (C) with a natural symplectic structure and the fol-
lowing Hamiltonian [23]:

2

H(q, p, O, P) := % +V@Q) + Z(tr(P*P) tu (QQ* DZV(q))). )

Note also that (6b) is decoupled and ¢ +— S(¢) is obtained by a quadrature
using the solution to (6a). In what follows, the time-dependent functions ¢ >
(g@®), p(t), O(t), P(t), S(¢)) refer to the solution to (6) with the initial condition
(g(0), p(0), Q(0), P(0), S(0)) at t = 0, unless otherwise stated.

This is in contrast to (4), which is Hamiltonian in the decoupled classical dynamics
of (¢, p) in the classical phase space T*R? but not as a system for (¢, p, Q, P).
We also note in passing that [33] obtained (6) from a different perspective, and also
that a correction term of the above form was proposed earlier by [27] for the one-
dimensional case, and also by [29,30] and [28] in a different manner. Our formulation
gave a symplectic-geometric account of the variational formulation of [4] (see also
[Sect. 2.4][17]), and yielded the correction term as a result of an asymptotic expansion
of the resulting potential term [23,25].

1.3 Mainresult

The main question we would like to address is how the O(¢) correction term in (6)
contributes to the accuracy of the approximation by the Gaussian wave packet dynam-
ics. We are particularly interested in approximating the dynamics of the expectation
values of the position and momentum operators

J
= (. p) = (x —ie—),
ox
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that is, the dynamics defined as:
t (20 = (v, ), 2y, ), 9

where (-, -) is the standard (right-linear) inner product on L2(RY), and 1 > y(t, )
is the solution of the initial value problem (1).

Numerical experiments [26] suggest that our dynamics (6) gives a better approxi-
mation than the classical dynamics (4) does to the exact expectation value dynamics.
We note that the comparisons were made with respect to the expectation value dynam-
ics obtained by Egorov’s method [2,15,16] or the initial value representation (IVR)
method [19-21,32], which is known to give an 0(&?) approximation to the exact
dynamics (9); see, e.g., [3], [1], and [34, Chapter 11].

Our main result gives a rigorous account of this observation:

Theorem 1.1 Suppose that V. e C*(R?) is bounded from below, i.e., C; < V (x) for
some Cy € Rforanyx € R, and also that x Dizj V(x),i.e,the(i, j)-component of
the Hessian DZV(x), is boundedforanyi, j € {1,...,d}. Lett — (z(t), Q(¢t), P(1))
with z(t) := (¢(t), p(t)) be the solution to (6a), t — z°(t) = (¢°(t), p°(¢)) be that to
the classical Hamiltonian system in (4) with the initial condition z°(0) = z(0), and let
t— (2)(t) be the exact expectation value dynamics (9). Then, foranyi € {1, ..., 2d},
zi(t) — <2i>(t) = 0(&>?) in the sense that there exists a function €;(t) such that

|z () = (Z)(0)] < G /2,

whereas z?(t) — (Ei)(t) = O (&) in the same sense.

Several remarks are in order. This paper is not about improving the accuracy of
an ansatz for the wave function itself. In fact, replacing (4) by (6) does not improve
the estimate (5) in terms of ¢, as we shall show in Corollary 3.5 (with n = 0). The
focus of the paper is rather on improving the approximation of the expectation value
dynamics without having any additional time evolution equations other than (4) nor
assuming any ansatz other than the Gaussian (3): We achieve it by simply introducing
a correction term to (4).

We also would like to stress that as shown in [23,25], the derivation of (6) also
involves only the Gaussian (2). In other words, the O (¢) correction term does not come
from any higher-order ansatz as one might expect. This is in contrast to assuming a
higher-order ansatz than just the Gaussian (3) as is done in [7-11] and [2, Theorem 24
on p. 109]. One can certainly improve the accuracy of the ansatz that way, but needs
additional evolution equations in addition to those for (¢, p, O, P, S).

Note also that our approximation involves only a single initial value problem of (6)
as opposed to averaging solutions over numerous initial conditions like the Egorov/IVR
method mentioned above.

Throughout the paper, we will carry out asymptotic analysis as ¢ — 0 of time-
dependent functions, and will employ the same notation used in the statement of the
above theorem for brevity. Specifically, when we write f(z,&) = O(g") for some
time-dependent function f with some r € R, it means that there exists a function
€ (t) such that | f(z,e)] <€ (t)e" ase — 0.
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1.4 Approximation of other observables

One also naturally wonders whether Theorem 1.1 extends to the expectation values of
general observables as well. We defer this question to future work. However, itis easy to
see that the result holds for the Hamiltonian with an even better approximation: As we
mentioned above, our dynamics (6) is a Hamiltonian system with the Hamiltonian H?®
given in (8). But then this Hamiltonian is an O (£2) approximation to the expectation
value of the Hamiltonian operator H from (1a) with respect to the Gaussian:

(¢0(q. p. Q. P.$). Hdo(q. p. Q. P.S)) = H'(q. p. Q. P) + O(c?).

This follows from Laplace’s method (see, e.g., Sect. 3.7 of [18]) applied to the integral
on the left. Now, note that ¢ +— (I:I>(t) = <1// (1), I:Iw (t)) along the exact solution to (1)
and t — HE(q(t), p(t), Q(t), P(t)) along (6) are both constant. So their difference
is constant at the initial value—where 1 (0) is the initial Gaussian (1b):

(A)t) = HE (q(1). p(1). Q). P(1)) = (H)(0) — H(q(0), p(0), Q(0), P(0)) = O(e?).

On the other hand, with the classical system (4) and the classical Hamiltonian
H'(q, p) == p*/2+ V(q),

(H)®) — H(¢° (1), p°(0)) = (A)(0) — H%(q(0), p(0)) = O(e),

because Hé(q, p, Q, P) = H(q, p) + O(¢).

A similar argument works for, e.g., the angular momentum J (g, p) = g ¢ p—
where g ¢ p denotes the d x d skew-symmetric matrix defined by (g ¢ p)ij :=q;p; —
qi pj—when the potential V has SO(d)-symmetry by approximating the expectation
value (j ) by the semiclassical angular momentum [22,23]:

£
J(q,p, Q. P)=qop+ ERC(PQ* - QP"),
because both <f ) and J¥¢ are invariants.

1.5 Outline

We prove Theorem 1.1 in the rest of the paper. The main part of the proof'is in Sect. 4,
whereas Sects. 2 and 3 are devoted to some lemmas and propositions needed in Sect. 4.
Therefore, the reader might want to first skim through Sect. 4 to have an overview of
the proof.

Much of what we do is a detailed analysis of the error Z¢(¢; x) := ¥ (¢, x)—¢o(t, x),
i.e., the difference between the exact solution to (1) and the Gaussian wave packet (3).
In fact, the difference between the exact expectation value ()E)(t) of the position and
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the position variable ¢ (¢) in (6a) is, dropping the spatial variables x for brevity,

(&) —q@) = (¥ @), & —qg@)¥ @)
= (po(), (X — g0 (D)) + (po(1), (X — q (1)) Z0(1))
+(Z20(), (& — q(1))o (1))
+{Z0(0). (& — q(1))Z0(1))
=2Re(Z9(1). (X — q(1)po(D)) + (Z0(1)., (X — q (1)) Z0(2)).

Therefore, our analysis boils down to estimates of the above two terms involving the
error Zy. Those lemmas and propositions in Sects. 2 and 3 mainly concern those key
properties of Zj that are pertinent to our analysis.

2 Hagedorn wave packets

2.1 Overview

We first give a brief review of the Hagedorn wave packets [6-9] (see also [2] and
[24]) and then derive the evolution equation satisfied by the Gaussian wave packet (3)
where the parameters evolve in time according to our Eq. (6). The evolution equation
resembles the Schrodinger Eq. (1a) but differs by a residual term. We then prove

several key properties of the residual term. Later, in Sect. 3, we will find an expression
for the error Zy(¢, x) in terms of the residual term analyzed here.

2.2 The Hagedorn wave packets

Following [9], let us define the lowering operator

A4 p 0. P) === (PTG~ - 0" p)

as well as its adjoint or the raising operator

*(q, p, Q, P) = J%(P*(a%—cn— 0*(p — p)). (10)

We refer to the lowering and raising operators collectively as the ladder operators.
Note that both are operators on the Schwartz space . (R?). It is straightforward to
see that they satisfy the following relationship for any j, k € {1, ..., d}:

[%(CI,P’ QvP)’JZ{k*(qvp’ QvP)]ZSJk (11)
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It also turns out to be convenient to write the position and momentum operators in
terms of the ladder operators as follows:

f—q=\/§(@zf(q,p, Q.P)+ Q" (q. p. Q. P)), (12)
ﬁ—p=\/§@%(q,p, Q,P)+ P/*(q, p, Q, P)). (13)

Let Ny be the set of integers greater than or equal to zero. Then, one can generate a
set of functions {¢n(q, p, O, P, S}, eNd by recursively defining, for any multi-index

n=n,...,ng) eNdand j efl,...,d},

¢n+ej(Qa P, Qs Ps Sv -x) = %*(q1 D, Q» P)¢n(qs D, Q» P» Sa .X), (14)

nj—f—l

where e; is the unit vector in R? whose j-th entry is 1; then they also satisfy
1
¢n—ej(q’ P Qs Ps Sv -x) = —437/(6]» P Qv P)¢n(¢]» P Qv Pv Sv )C).
V1

[6-9] showed that the set {¢n(q, p, O, P, )}, end then forms an orthonormal basis
for L(R?), where ¢y is the “ground state” here in the sense that

(q, p, Q, P)po(q, p, Q, P, S;x) =0. (15)

In fact, one may think of them as a generalization of the Hermite functions, and also
can find a unitary operator on L?(R?) that relates each element of the Hagedorn wave
packet with the Hermite function of the same index [24]. Because of this correspon-
dence, we refer to ¢, as an |n|-th excited state with |n| := Zflzl n; for any multi-index
ne Ng.

We note in passing that [9] actually constructed an orthonormal basis {Q"n}neNg
without the phase factor starting with the Gaussian

(det Q)~1/2 i/l oo

po(q, p, Q, P x) i= ————exp {—(—(x -9 PO (x—q)+p-x —q)>}

(me)d/ e\2
instead of ¢ from (2). It is just a matter of convenience that we use the basis {¢n}, eNd
with the phase factor instead of {¢n}, end-

2.3 Evolution equation of the Gaussian wave packet
[6-9] and [10,11] have proved error estimates of various approximations to the solution

to the Schrodinger Eq. (1a) constructed by taking linear combinations of the Hagedorn
wave packets. In their works, each wave packet evolves in time according to (4), and
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one of the key ideas of these estimates is to find the Schrodinger-type equation satisfied
by those wave packets and identify the residual term that accounts for the difference
from the Schrodinger Eq. (1a).

Following their approach, we would like to first find the Schrodinger-type equation
satisfied by the time-dependent Gaussian wave packet (3). The resulting residual term
slightly differs from Hagedorn’s because of the O (¢) correction term:

Lemma 2.1 Consider the Gaussian ¢o(t, x) from (3) whose time-dependent parame-
ters satisfy (6). Then, it satisfies the Schrodinger-type equation

ie%m(r,x) = Heo(t, x) + &40 (t, x), (16)
where we defined the residual term
Go(t, x) == alg (1), Q(1); x) do(t, x) (17)
with
(g, Q:x) ==¢""3,v (g, Q) (x — q)

2
1
+83/2<ZEDkV(q> S(x—q)f - V<x))~ (18)

k=0

Furthermore, we may split « as

alg, 0;x) =a (g, 0;x) +&2aW(g; x) (19a)
with
£=3/2
(g, ;) =670,V Vg, 0) - (x =) = 5~ DV(g) - (x — )’
=9,V (g, 0 & - éD3V(q> -8, (19b)
3
aV(g;x) =677 (Z %D"V(q) S —g)f - V(x))
k=0~
2

= %D“V(ol(x, ) - x—g)*

[ 4
= ﬂD V(oi(x,q)) - §". (19¢)

Note that we set £ = e V2 — q) and DV =V, and that oy (x, q) is a point in
the segment joining x and q; we also used the shorthand §™ with m € Ny for the
m-tensor defined as &, =&, ---§&, aswell as

D"V(q)-&"™ := D" . V(Q)Slr:ltm

i1eim
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with Einstein’s summation convention on repeated indices.

Remark 2.2 Those terms with D3V in @© and ™) cancel with each other in o, but
as we shall see below, splitting the terms in « in this manner is crucial for us as we
shall see in the next subsection.

Proof of Lemma 2.1 It follows from tedious but straightforward calculations: Dropping
the time variable ¢ for brevity in the calculations, we have, using (6),

e %a(q (), Q(1); x) = (is%m(r, x) — Heo(t, x)) / ¢o(t, x)
=@¢-p'PO'x—q
@ (PO = PO 00T + (PO — )
—p-C—+p-G—p) V) + V()
+ (”—2 ~ V(@) - S) — 2e(w0 0~ w0 )
2 2
=9,V (q, 0 - (x—q)
+V(@) +DV(@) (x —q) + %Dzwq) C(x—q)’ = V),

which gives (18). We may then split « as follows:

-3/2
w(g, 05x) =23,V (g, 0) - (x — ) - TPV @ -
3
1
+e7 2 (lg GPV@ - - V(x)>

=a%(q, ;1) +6'"2aW(g; ).

The second expression for a1 follows from Taylor’s Theorem because V is of class
c*. O

2.4 Properties of the residual term

Let us prove some key properties of the residual term ¢y as lemmas. These lemmas
show why we split o into &) and «!) as shown in (19).

Lemma 2.3 Under the assumptions on the potential V from Theorem 1.1, we have the
Jfollowing estimates for the residual term ¢y defined in (17):

(i) |«@q), Q(0); Ho(t, )| = O1);
(i) [P (q@): o, || = 01);
(iii) [|o(z, )l = O(D).
(iv) Héi(r) oo, )H — O() foranyi € {1,...,dy with&(t) := 12} — q(t)).
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W) |fi@) o, )| = 0Q) foranyi e {1,....d}ywithi(t) := e 12(p — p(t)).

Proof To prove (i), notice that it is the square root of the integral with respect to x of

d -1 1
o (1, x)|* = Mexp (—;(x — g QOom*H)  (x - q(t)))

(T[g)d/Z

multiplied by a polynomial of ¢ ~!/2(x — ¢(r)). It is straightforward to see that by
performing the integral using the change of variables from x to & := ¢~1/2(x — ¢(¢1)),
the integral does not depend on €. More specifically, foranym = (my, ..., my) € Nd,

l&m .. &7 o, )| = 0(D),

and hence, it follows that ”a(o) (g@®), Q@); Hpo(t, -) || = O0(l); see, e.g., [9,
Eq. (3.30)] for an equivalent statement.

For (ii), we mimic the proof of Theorem 2.9 of [9]. Take an arbitrarily small r > 0
and let B, (¢ (1)) C R? be the closed ball with radius r centered at g(). Then,

aP(g(@); x) = 15, (41 ) V(g (@); 0) + 1, (1) () 2P (g (1); ),

where 1, stands for the characteristic function for a subset A ¢ R?. Since V is of
class C 4,_there exists a 4-tensor-valued time-dependent function F;(¢) such that for

any x € Br(q(1)),

1
eV q: 0| = | 5DV g ) - £

! < ‘Fr(t)’§4‘-

On tl_1e other hand, there exist C»(¢#) > 0 and a polynomial P(x) such that for any
x € B (q(1)",

0V 0)| < e C20P)

because the boundedness assumption on the Hessian D?V implies that the potential
V is dominated by a quadratic function on B, (¢ (#))¢, and also the rest of aD (g(®); x)
is cubic in x. Therefore,

@D (g(1); 0t )| =15, 4y @) [« Vg0 0001, )|
15, (g0 |« D g 1) o1, )|
= 15, 0y @) [ (0§90 (2, )|
+ 72 CaD15, (41 () P ) o2, x)).
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However, the norm of the first term is O(1) following the same argument as in (i),
whereas the norm of the second term is o(g") for any real r effectively canceling ¢ =2
in the coefficient. Hence, ||« (g (1); -)¢o(t, )| = O(D).

The estimate in (iii) follows easily from (i) and (ii):

150, I < [e@@®), Q@) Hgot, )| + e[V g o, )] = O).
The estimate in (iv) holds similarly because the above estimates do not change upon
multiplying ¢o(7, x) by & (1) := &~ '/2(F — q(1));.

The estimate in (v) holds because straightforward calculations (see Appendix A.1)
show that

A (D50(1, x) = Bi(q(1), Q(1); X)o(t, x) + (P() Q1) ™ )ij&; (¢0(t, ), (20)

where 8 (q, 0; x) == 8"(q, 0; x) + &'/28" (¢; x) with

1
0 .
BV, 0:x) == —l(aq,.v<“<q, 0) - ED?jkV(q>s}k>,

BV (g x) 1= —ie @D

1
(DiV(q) + DGV @ =) + 5DV (@& = q)j — Diwx)).

For the first term on the right-hand side of (20), notice the similarity between §; and
«; so we can obtain the estimate of the first term essentially the same way we did for

o, 1.e., its norm is O(1). We also know from (iv) that the norm of the second term in
(20) is O(1) as well. m]

Furthermore, the first part a©¢g of the residual term ¢y satisfies the following
orthogonality property that later turns out to be crucial:

Lemma 2.4 For any multi-index k € Ng with 0 < |k| < 2, we have

(0@, 0 ) 9o(a. p. 0. P.S: ). dua. p, Q. P, S5 )} =0.

More specifically, a© (g, Q; ) dolq, p, Q, P, S; -) is a linear combination of the
third excited states

[n(a. p. 0. P, S ) I m e NG within = 3.

Proof Substituting (7) in the expression (19b) for «®, we have, suppressing the vari-
ables in «© and ¢o for brevity,

12 5 e32 X
Qi1 QuDigV (@ = @) = — =D V(g)x - q);jk)qso.

&
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Using (12) and noting (15), the first term becomes

—1/2

4

&

— 1
Qi 0uDii; V(@) (x — @)igo = NG

/2
1
NG

Di3kj V(@) Qi Qi Qinyy o

Tijk Qi1 Q j1 QknPe, (22)

where we used the shorthand 7;j; := Dl-3j «V(q) and its symmetry with respect to
permutations of the indices as well as (14). On the other hand, after similar but more
tedious calculations (see Appendix A.2), the second term becomes

— %Dﬁjkvm)(x — Q)b = — 4—;57,-ij,~1 Q jm Qiner 1o, e,
- ﬁ%‘k@z Qi1 QknPe, - (23)
As a result,
D¢y = L ijk Qi1 Q jm QknPe;+em+ey»
43
which is a linear combination of the third excited states. O

Notice the role played by the first term in @ in canceling the term with the first
excited states, and recall that this term (22) came from the O (&) correction term in the
potential in our dynamics (6a).

Remark 2.5 What if one uses the classical Hamiltonian system for ¢ — (g (t), p(t))
as in (4) of Hagedorn? Then, the function « in the residual term ¢y becomes

2

1

alg. Qix) =2 (Z GV @ - — ) - v<x)>
k=0

= —5_3/2(%D3V(6]) (x—q)P + %D“V(Gl (x,q) - (x — q)“),
24)

where o7 (x, ¢g) is defined in Lemma 2.1. The absence of the term coming from the
correction term indicates that there is no cancellation of those terms involving the first
excited states. Indeed, as we shall see in Remark 4.1 of Sect. 4.2, this residual term
does not enjoy the same property as ours does; it turns out to be detrimental in the
error estimate.
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3 Time evolution of the Hagedorn wave packets

3.1 Overview

While the main focus of the paper is the Gaussian (2) and its associated Eq. (6) for
the parameters, it turns out that the proof of the main result requires some analysis on
the time evolution of some other Hagedorn wave packets as well. Therefore, in this

section, we derive the Schrodinger-type evolution equation for the Hagedorn wave
packets as opposed to just the Gaussian.

3.2 Evolution equation of the Hagedorn wave packets

Lemma 2.1 applies only to the Gaussian wave packet ¢9. However, it turns out that
Lemma 2.1 generalizes to ¢, with any n € Ng:

Proposition 3.1 Ler us define, forn € N¢,
$n(t, x) = ¢nlgq(t), p(t), Q), P(1), S(); x),

where t +— (q(t), p(t), Q(t), P(t), S(t)) satisfies (6). Then, ¢n(t, x) satisfies the
Schrodinger-type equation

188 ¢Il(l"x) 11¢n(l,§f) & / él’l(l’x)’ (25)
where

En(t, x) == algq(t), Q(1); X)Pn(r, x) (26)

with the same « defined in (18).

This result follows easily from the following lemma regarding the time evolution
of the raising operator:

Lemma 3.2 Suppose thatt — (q(t), p(t), Q(t), P(t), S(t)) satisfies (6) and let us
write

() = A" (q (1), p(t), Q1), P(1)).
Then, its time evolution is governed by

. d * * 3 82 *
ie () + [o/7(), H] = 75 & 0%, 00; )

as operators with domain . (R?).
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Proof 1t is straightforward to see, in view of (6) and (10), that

i (1) = \@(—P*m(x —q(O) + P*0d(0) + 0" (p — p(1) — QO p(1)
= \E (e D V@) =g + P
+0° 0 (DV ) + 2,V Vg0, Q1))
whereas, for j € {1, ..., d)},

i

. 1 . . T n
[JZ{]*((], P, Q’ P)v H] = E(EP;]([JC](’ P2] - ij[pk’ V(X)])
e A L OV
= _\/;<R/kpk + ija_xk(x))
and so
[0, ) =~ [5(P*@p + 0" 0DV ).
Therefore,
i i;zf*(t) (), H
wdt +[ , ]
= \/g 0* 1DV @) = g(1) + DV(G®) +29,VV(g(1), 00) = DV ()
& . d )
=3 0 (t)ﬁ(g 3V (q), Q1) - (x —q(1))

1
+ V@) + DY) - (x = 1) + 3DV (g(0) - (x = q(1)? = V(x))
2
&

V2

0" ()9 (q(1), Q(1); x).

O

Proof of proposition 3.1 By induction on n € Ng. Lemma 2.1 shows that the assertion
holds for n = 0. Let us suppose that the assertion holds for n € Ng and show that it
holds forn +e; forany j € {1, ..., d}. Using (14) and the above lemma,

a N
n; + 1<i85¢n+ej (tvx) - H¢n+e_,-(tax))
.0 * T %
= ie () gult.1)) = At (1) du(t. )
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. d * * 'y

* .0 y
+ 0 (wﬂn(r, x) — Hon(, x))

82

N il
= ﬁij(t)Ea(q(t), Q(1): X)¢n(z, x)

+ &2 (1) (g (1), Q(1); X)n(t, X)).

However, since every term in .27* (see (10)) except the one with p is a multiplication
operator,

J%*(qv P, Q’ P)(Ol(q, Q’ x)ﬁbn(Qa p’ Qs P, S, -x))
- a(q’ Qv .x)%*(q, p’ Qv P)‘pn(CIa p’ Qv Pv Sv )C)
- \/%Q*ﬁ(a(q, 0 ¥))én(q, p, O, P, S; x)
=nj+lalg, Q; X)¢nie; (g, p. O, P, S; x)

&
- \/;Q*axa(Q’ Q; x)¢n(q7 pﬂ Q7 Pa S; x)'
Therefore, we obtain

ad o
ie—fnre; (1, %) = Honie, (1,5) = e¥2a(q(1), Q) V)gnie; (1, X).

3.3 Errors in wave functions

Let us first note that, in what follows, we will suppress the spatial variables x for
brevity. We also note that the assumption that the potential V is bounded from below
guarantees that there exists a self-adjoint extension of the Schrodinger operator H so
—iHt /e

that the unitary operators of the form e with ¢ € R would make sense.

Now we would like to compare the exact solution ¢ +—> e‘iﬁ (t=s)/ €¢n(s) of the
Schrodinger Eq. (1a) and the wave packet t — ¢y (7), both with the initial wave
function being ¢n(s) with any n € Ng at time s € R. To that end, let us define the

difference between them (i.e., error in wave functions): For any n € N4, and any
s, t € R (for which both ¢y (s) and ¢y, (7) are defined),

Za(t,5) 1= G (s) — ga(1). Zn(0) 1= Zn(1.0) = e Gn(0) — gn(0).
27
The following lemma is critical in finding an estimate of these errors:
Lemma3.3 Foranyn € N, len ()] = O(1).
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Proof The proof is almost identical to that of Lemma 2.3. In fact, one can show that
forany m, n € Nd,

J&m .. &7 n(n] = 0(1)

because ¢y, is ¢ multiplied by an |n|-th order polynomial of £ = e~ V2(x — q(1)); see

also [9, Eq. (3.30)]. It implies that those arguments with ¢ from Lemma 2.3 still apply

upon replacing ¢y by ¢n. Hence, it follows that | @ (g(1), Q(1)¢ga(®)| = O(1) as

well as that |V (g(1))gn (1) = O(1) as well. o
As aresult, we have an expression and an estimate for Z, as follows:

Proposition 3.4 The errors defined in (27) can be written in terms of the residual term
Cn from (26) as follows: For any n € Ng and any s, t € R for which ¢y (s) and ¢y (t)
are defined

N t .
Za(t.s) = e MGy () — (1) =i/ / e Gty de, (28)

and hence || Zy(t, s)|| = 0(81/ 2) in the sense that there exists some Sfunction € such
that || Zu(t, s)|| < €(t, s)e'/2.

Proof This is essentially the same as the proof of [9, Lemma 2.8], but we briefly
reproduce it here for completeness. Using the Schrodinger-type Eq. (25) satisfied by
T — ¢n(7), we have

3i (efiﬁ(’*f)/*?d)n(l’)) =i 8]/2671mt%)/55n(7)'
T

Integrating both sides with respect to T over the time interval between s and ¢ yields
. ro
(1) — e HOT oy (s) = —ie!/2 / e gy (0
N

The left-hand side is —Z, (¢, s), and so (28) follows. The estimate in norm follows by
taking the norm of both sides of (28):

t
I Za(t, )|l < 81/2/ g (D)l dT = O(e'/?).

—il-}(t—s)/s

due to the unitarity of e as well as Lemma 3.3. O

Particularly, setting s = 0, we have the following:

Corollary 3.5 Lett +—> v (t) be the solution to the Schridinger Eq. (1a) with the initial
condition Y (0) = ¢n(0) withn € Nd. Then,

t N
Zn(t) = Y (1) — dn(1) = ie'/? / e HU=/E e (5) ds, (29)
0
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and hence |y (t) — ¢ ()| = O(e!/?).

The above result reproduces those estimates obtained by [6,9] using our Eq. (6), and
also indicates that using (6) in place of Hagedorn’s (4) does not improve the errors in
wave function in terms of L?-norm—at least not with the above method of estimation.
The reason why there is still a difference in the error estimates of the observables as
stated in Theorem 1.1 is that our estimates involve a more detailed analysis of the
residual term &g as opposed to just having an LZ-norm estimate of it.

4 Proof of main result
4.1 Error terms in observables
Lett — 1 (¢) be the exact solution of the initial value problem (1) of the Schrodinger

equation. From the definition of Z in (27) withn = 0, we have ¥ () = ¢o(¢) + 2o (),
and so, as we have shown in Sect. 1.5,

(£)) = q(1) =2Re(Z0(1), (& — q(0))o(®)) + (Z20(1), (X — q(1)Z0(1)),
and similarly,
(B)(0) = p(1) = 2Re(Z0(1), (p — p(1)do(1)) +(Z0(1), (p — p(1) Z0(1)).

In the remaining subsections, we finish the proof of Theorem 1.1 by showing that
the two terms on the right-hand side of each of the above equations are both O (¢3/2).

4.2 Estimates for first error term

First we see that using the expression (29) for Zy and Fubini’s theorem,
t A
(Z0(0). (& = g)go(0)) = —ie'? fo (e 50(5), (& = g ()0 (n)) ds.
(30)

However, we can rewrite the inner product inside the integral as follows using the
relationship (12) between the operator X — ¢ and the ladder operators: For any i €
{1,...,d},

<efil§(tﬂ‘)/8€0(s)7 (X —q(0) ¢o(t)>
- \@(e—im,_w%(s), (OEACERNMOEAGY0)

= \/g 0i ({250 5), e, 1)
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= \/g Qij () ((60(s), pe; (5)) + (G0 (s), Ze; (5, 1))

where 7*(t) is defined in Lemma 3.2 and similarly for o7 (¢); we used (14) for the
second equality, and (28) (s and ¢ swapped) with n = e; for the last equality, i.e., for

any j € {1,....d}, e HOD/Ge (1) = e, (5) + Ze, (5. 1).
Let us evaluate the above two terms: First, recalling the formulas (17) and (19) for
o and exploiting the orthogonality in Lemma 2.4, we have, forany j € {1, ...,d},

(60(5). e, ) = (@ @ (), Q)P0 (5), be; ) + &' D g ()90 (s), b, ()
= ¢! 2D gD (s). 9, (),
and thus by the Cauchy—Schwarz inequality and Lemma 2.3 (ii),

(20(5). de; ()] < &'V (g(s)po() || e, ()| = O(&'?).

On the other hand, again by the Cauchy—Schwarz inequality, Lemma 2.3 (iii), and
Proposition 3.4, we have, for any j € {1,...,d},

(£0(s). Ze; (5. D) < NIco ]| Ze, (5. 0] = O'?).

Hence, we see that
(772 506), (& = gigo )| = Oce).

and therefore, (30) yields, for any i € {1, ..., d},

ds

<e_iﬁ(t—s)/8;o(s), x — q(t))fﬁo(f))

t
[{Z0(). (& — q(1))igo(1))] < 81/2/0
= 0(83/2).

Using the relationship (13) between the operator p — p and the ladder operators,
we can proceed in the same way to obtain

[(Z0(), (B — p@))igo(D))] = 0%

foranyi € {l,...,d} as well.

Remark 4.1 What if one uses the classical Hamiltonian system for (¢, p) as in (4) of
Hagedorn? As discussed in Remark 2.5, we have « as shown in (24). Then, as shown
in Appendix A.3, we have

{c0(9), @e; (5)) = O(1)
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in this case as opposed to 0(¢'/?). Indeed, the leading O (1) term (see (33) in
Appendix A.3) is exactly the term canceled due to the first term in (18) coming from
the correction term in our case. This underscores the importance of the correction term
alluded in Remark 2.5. As a result, the above estimates become

(Z0(). & = q()igo))| = O(e),  [[Z0(t). (h — p(1)igo(®))| = O(e).
as opposed to O (¢3/?).
4.3 Estimates for second error term
It now remains to show that, for any i € {1, ..., d},
(Z0(). & = q(1))i Z200))] = 0. |[Z0(). (p — p1))iZo(1))] = O(¥/).
From (1la) and (16), we see that
Zo(t) =Y (1) — do(t) = —éﬁzom +ie' 5.

Therefore,

d .
E(()? —q@)2Z0(1) = —q(1) Zo(t) + (¥ — g (1)) Z0(1)

= —p(t) Z0(t) — é(a% — q(0))H Zo(1)
+ie'2(GE — q)o()
I P
= —p() 20(0) — = ([#. A ]+ AG = q1)) Z0(0)
+ie'2& — g1
= (p— p()Zo(t) — gb?()% — (1) Z0(t)
+ie€()co(),

where the last equality follows from

)
A D ~ D . A
x,H]: X, — | =1¢€p,

and also setting é(t) = V2% — q(1)). Applying e”f”/s to both sides, we have

1L (&~ qe) Z0(0) + 1 LA — g1 Zo(1)

_ eiI:It/&‘(ﬁ — p()Z0(t) +ie eifir/e E(1)Zo(1)
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or

d /.5 A A A
(7 = g 20(0) = €2 (p = p) Zo(r) +ie T E DG,

Integrating both sides on the interval [0, ¢] and using Z((0) = 0, we have
< ¥y t Ty t Ty A
MNP — q() Z0(t) = / M (p— p(s)Zo(s)ds +ie / e1E & (5)¢0(s) ds.
0 0

Taking the L2-norm of the i-th component of both sides withi € {1, ..., d},

t
)éi ($)¢o(s) H ds
0

t
|G — ()i 20| < /O [ — p(s))i Zo(s)] ds + ¢ /

t
= /0 |(p = p(s)iZo(s)| ds + O(e), 31)

where we used the estimate é‘i ($)¢o(s) H = O(1) from Lemma 2.3 (iv).

Similarly,

(6 = POIZo)) = ~H(D) Z0) + (p ~ p1) Zo(0)
= (V@) +20,V VG0, 00))Z0(0) ~  (h— pan AZo(0)
+ie'2(p = p0))co()
= (V@) +¢2,y Vw0, 00) 200 ~ - ([ 4] + A~ pa») 2000
+ie'2(p — p))to()
= (V@) ~ DY) + 63,V Vg0, 0)) Z0) ~ LA~ pa)Zo(0)
+ie2(p = pa)do(t)
= (-DV (@2, g = q0) +£3,V V((0), 01)) Z0(0)
- éﬁ(ﬁ — p()Zo(t) +ien(t)o(t),
where the second last equality follows from

(5. 8] =[p. V)] = —ie DV (),

and o2 (x, ¢(7)) is a point in the segment joining x and ¢ (¢) in R?; we also set 7(z) :=
e~ 12(p — p(1r)). Applying ¢'*'/¢ to both sides,

d /.4
(5= pn 2o
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= 10 (< D2V (02, qON G — g(1)) + 2 0,V V(g (1), Q1)) Zo(t)

tie (020 ().

Integrating both sides on [0, 7], we have

.y t s
elHt/s(ﬁ —p)2p(t) = /O oiHs/e (—DZV(oz(x, NG — g(s))
+e0,V P (q(s), Q(S))> Zo(s)ds

o
+i8/0 e85 (s)20(s) ds.

Taking the L?-norm of the i-th component of both sides forany i € {1, ..., d},

QU

t
|5 = p)iZo®| < /0 Y DLV (02(x, g()))(E — q(5))j Z0(s) | ds

" 8/ (o0 V). 06012000 + [in6)6005)]) s
/ Z | D2V @2, g0 G — 450, 20) | ds + O (@)
< C; / Z |G = a6, 20| ds + 0@, (32)
where we used the following bound of the second derivative of V

C3 = max sup
I<i,j=<d ,cpd

D%V(x)‘

as well as the following: || Zp(s)|| = 0(e'/?) from Corollary 3.5 and ”ﬁl ($)¢o(s) || =
O(1) from Lemma 2.3 (v).
Now, let us set

d
F@ =" (&= q@)iZo0]| + | (B — p@))iZo®)]).

i=1

Then, using (31) and (32), we have
t d t d
f@) < /0 SN = ps)iZo(s)| ds +d C3 /O D |G = qs));Z0)| ds + O(e)
i=1 j=1
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(P = p($)iZo) | + [|(& = q(s))iZo(s)|) ds + O(e)

. d
§C4/ Z(’
(U
t
=c4f F(s)ds + 0(e),
0

where we defined C4 := max{l, d C3}. Therefore, by Gronwall’s inequality [5], we
obtain

f() < O(e) exp(Cyt),

that is, f () = O(¢), and so we have, forany i € {1,...,d},

|G —qizom| =0, |G- pt)iZo®)| = 0.

As aresult, by the Cauchy—Schwarz inequality, we obtain

(Z0(), G = q(®))iZ0)| < 1200l || & — q(1)i 20| = O (%),

and similarly

[(Z0(t), (p — p()i Zo())] = O

as well.
Therefore, we conclude that forany i € {1, ..., d},

(&) —aqi)y = 0@E,  (pi)©) — pi(t) = 0.

Remark 4.2 1f one uses the classical Hamiltonian system for (¢, p) as in (4) of Hage-
dorn, then the estimate of the second error term proceeds similarly and hence it is
still O (e3/%)—the difference is the expression of the residual term ¢y as well as the
absence of the term with V(1. These do not affect the estimate of the second error
term—it is still 0(83/ 2). However, as discussed in Remark 4.1, the estimate of the
first error term now becomes O (¢) and hence the total error is O (g).
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Appendix A. Additional details
A.1 Details of proof of Lemma 2.3 (v)

We suppress the time dependence of ¢y, ¢g, and (g, p, Q, P) for brevity here. First
we have

(Pi — Pi)¢o(x) = (Pia(q, Qs X))o(x) + (g, Q; x)(Pido(x)) — pigo(x).

However,

A .0
pialq, Q5 x) = —ieo—alg, Q5 x)
Xi

=¢'2Bi(q. Qi)
=2(8(q. 0:0) + 28V (g: ).

where we defined

Bi(q, Q; x) := BV (q, 0; x) + 281 (¢; x),
. 0 . B
B (q, 0;x) = —ie'?—aO(q, 0:x), BV (g;x) = —ieP—aD(g; x),
3)6,‘ 3)6,'

which yield the expressions in (21). On the other hand, using the expression (2) for

o,
poox) = (PO (x = )+ p)do o).

Therefore,
(P = pto@) = (£281(q. Qi) +a(q. Q) (PO (x =), ) o),
and thus
o) = (Bilg. Qi) +a(@, 03 )(PO™)ij6; )do(o),
which gives (20).

A.2 Details of proof of Lemma 2.4

Let us show the detailed derivation of (23). We first have, using (12),

-3/2

1 — _
3 D}y V(@) x — @)t = —=Tijw(Qui + Q1) (Q jm i + Q jmyy)

1242
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(OQinn + Qin ) ho.

Notice that, applying lowering operator(s) twice and a raising operator once—
regardless of the order—to ¢ results in zero, and the same goes with lowering
operator(s) thrice as well. Therefore, we have

Qi + Qi) Q jmm + Qjm T ) (Qien @ + Qkn )0
= Qi1 Q jm Qrn )" s ;" Po
+ (011 Q jim Qun ity + Qi1 Q jum Qkn " iy + Qi1 Q jm Qen ;g ) b0
= Qi1Qjm Qun " ;o + (011 Q jim Qien sty + Qi1 Q ju Qkn ¥} o ) o,

where we used (15).
However, we may use (11) and (15) to simplify the second and last terms as follows:

A A A o = Sim + Ay ), Do
= Sim A, o + Ay (810 + A, <))o

= (S, + Sin ) o,
and
G G B b0 = A Smn + A, ) o
= Smn )" ¢o.
Therefore,

Qi + Qi) (Q ji i + Qjm ) (Qpn i + Qin Vo
= Qi1Qjm Qun " Ay, o + (011 Q ji Qrn ) + 011 Qjim Qr1py + Qi1 Q jm Qkm ") o,
and so

-3/2
3!

D}y V(@) (x — @)} x0 = Tijk Qi1 Q jm Qin A" A,y 1, b0

1
122
1 — _ . _
+ m’];jk(Qilel Ony + 01y Q jm Qi + Qi1 Q jum Qkm ) o

1 1 _
= m’];jk Qi1 0 jm QknDej+epte, + m’];jk 0101 Qkne,

where we used (14) to rewrite <7, * o7, <7, ¢ as V6 @e,+e,+e, s well as the permutation
symmetry of 7 in its indices. Hence, we obtain (23).
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A.3 Details on remark 4.1

We drop the time and spatial dependence for brevity here. Just as we have done in the
above subsection, rewriting the cubic term in (24) for « using (12), we obtain

1 1 —
to=ualg, Q)¢ = _m%bc Qal Obm an¢e1+em+en - m%bc QuQnl and’en

1
—el/2 ED4V(01 x, ) - E*0,

where 7,p. := ngCV(q) and £ := ¢~ /2 (x — ¢). Therefore,

1 — 1 S
<c09 ‘Pe,—) = _mlfabc Qal Qbm an(¢el+em+en ’ ¢e_,-) - m’]—abc Qul le an<¢en ’ ¢e_,->

1
— 81/2 4—!<D4V(Ul (X, Q)) . 54(’50’ ¢ej>

1 .
= —mmcgaz 0,10 + 0('?)

_ _% “ 0,V (g, Q) + 01, (33)

because we can obtain the estimate

1
DV @) £ 0. ge,) = 0D

just as we did in the proof of Lemma 2.3 (ii). We also used the expression (7) for v
in the last equality. As a result, we have (¢o, ¢e;) = O(1).
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