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Abstract
This paper concerns an approximation of the expectation values of the position and
momentum of the solution to the semiclassical Schrödinger equation with a Gaus-
sian as the initial condition. Of particular interest is the approximation obtained by
our symplectic/Hamiltonian formulation of the Gaussian wave packet dynamics that
introduces a correction term to the conventional formulation using the classical Hamil-
tonian system by Hagedorn and others. The main result is a proof that our formulation
gives a higher-order approximation than the classical formulation does to the expecta-
tion value dynamics under certain conditions on the potential function. Specifically, as
the semiclassical parameter ε approaches 0, our dynamics gives an O(ε3/2) approx-
imation of the expectation value dynamics, whereas the classical one gives an O(ε)

approximation.
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1 Introduction

1.1 Semiclassical Schrödinger equation and Gaussian wave packet

Consider the following initial value problem of the semiclassical Schrödinger equation
on R

d :

i ε
∂

∂t
ψ(t, x) = Ĥψ(t, x), Ĥ = p̂2

2
+ V (x), (1a)

ψ(0, x) = φ0(q(0), p(0), Q(0), P(0), S(0); x), (1b)

where ε > 0 is the semiclassical parameter, p̂ := −iε∂/∂x is the momentum operator,
and φ0 is the Gaussian wave function

φ0(q, p, Q, P, S; x) := (det Q)−1/2

(πε)d/4

exp

{
i

ε

(
1

2
(x − q)T PQ−1(x − q) + p · (x − q) + S

)}
.

(2)

The parameters (q, p) live in the cotangent bundle T ∗
R
d ∼= R

d ×R
d , whereas Q, P ∈

Md(C) (the set of d × d complex matrices) satisfy

QT P − PT Q = 0 and Q∗P − P∗Q = 2iI ,

and S ∈ R is a phase factor. It is worth noting that the imaginary part of PQ−1 is
given by (QQ∗)−1; see, e.g., [17, Lemma V.1.1].

The seminal works by [6,9] (see also [12–14], [2], [31]) showed that one may
approximate the solution ψ(t, x) of the above initial value problem (1) in the semi-
classical limit ε → 0 by the time-dependent Gaussian wave packet

φ0(t, x) := φ0(q(t), p(t), Q(t), P(t), S(t); x) (3)

whose parameters evolve in time according to the ordinary differential equations

q̇ = p, ṗ = −DV (q), Q̇ = P, Ṗ = −D2V (q) Q,

Ṡ = p2

2
− V (q), (4)

where DV and D2V stand for the gradient andHessian of the potential V . Note that the
equations for (q, p) are the classical Hamiltonian system. Specifically, [6,9] proved,
under certain conditions on the potential V , that the error in terms of the L2-norm ‖ · ‖
in L2(Rd) is O(ε1/2) in the sense that there exists a function C (t) such that

‖ψ(t, x) − φ0(t, x)‖ ≤ C (t) ε1/2. (5)
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1.2 Symplectic Gaussian wave packet dynamics

In a series of works [23,25,26], we proposed the following symplectic/Hamiltonian
alternative to the evolution Eq. (4):

q̇ = p, ṗ = −∂q

(
V (q) + ε V (1)(q, Q)

)
, Q̇ = P, Ṗ = −D2V (q) Q,

(6a)

Ṡ = p2

2
− V (q), (6b)

where ∂q is a shorthand for ∂/∂q and

V (1)(q, Q) := 1

4
tr

(
QQ∗D2V (q)

)
. (7)

The only difference from (4) of Hagedorn is the O(ε) correction term in the potential.
The correction term renders the coupled system (6a) for (q, p, Q, P) a Hamiltonian
system on T ∗

R
d × Md(C) × Md(C) with a natural symplectic structure and the fol-

lowing Hamiltonian [23]:

H ε(q, p, Q, P) := p2

2
+ V (q) + ε

4

(
tr(P∗P) + tr

(
QQ∗ D2V (q)

))
. (8)

Note also that (6b) is decoupled and t �→ S(t) is obtained by a quadrature
using the solution to (6a). In what follows, the time-dependent functions t �→
(q(t), p(t), Q(t), P(t), S(t)) refer to the solution to (6) with the initial condition
(q(0), p(0), Q(0), P(0), S(0)) at t = 0, unless otherwise stated.

This is in contrast to (4), which is Hamiltonian in the decoupled classical dynamics
of (q, p) in the classical phase space T ∗

R
d but not as a system for (q, p, Q, P).

We also note in passing that [33] obtained (6) from a different perspective, and also
that a correction term of the above form was proposed earlier by [27] for the one-
dimensional case, and also by [29,30] and [28] in a different manner. Our formulation
gave a symplectic-geometric account of the variational formulation of [4] (see also
[Sect. 2.4][17]), and yielded the correction term as a result of an asymptotic expansion
of the resulting potential term [23,25].

1.3 Main result

The main question we would like to address is how the O(ε) correction term in (6)
contributes to the accuracy of the approximation by the Gaussian wave packet dynam-
ics. We are particularly interested in approximating the dynamics of the expectation
values of the position and momentum operators

ẑ := (x̂, p̂) =
(
x̂,−iε

∂

∂x

)
,
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that is, the dynamics defined as:

t �→ 〈
ẑ
〉
(t) = 〈

ψ(t, · ), ẑ ψ(t, · )〉, (9)

where 〈 · , · 〉 is the standard (right-linear) inner product on L2(Rd), and t �→ ψ(t, · )
is the solution of the initial value problem (1).

Numerical experiments [26] suggest that our dynamics (6) gives a better approxi-
mation than the classical dynamics (4) does to the exact expectation value dynamics.
We note that the comparisons were made with respect to the expectation value dynam-
ics obtained by Egorov’s method [2,15,16] or the initial value representation (IVR)
method [19–21,32], which is known to give an O(ε2) approximation to the exact
dynamics (9); see, e.g., [3], [1], and [34, Chapter 11].

Our main result gives a rigorous account of this observation:

Theorem 1.1 Suppose that V ∈ C4(Rd) is bounded from below, i.e., C1 ≤ V (x) for
someC1 ∈ R for any x ∈ R

d , and also that x �→ D2
i j V (x), i.e., the (i, j)-component of

the Hessian D2V (x), is bounded for any i, j ∈ {1, . . . , d}. Let t �→ (z(t), Q(t), P(t))
with z(t) := (q(t), p(t)) be the solution to (6a), t �→ z0(t) = (q0(t), p0(t)) be that to
the classical Hamiltonian system in (4) with the initial condition z0(0) = z(0), and let
t �→ 〈

ẑ
〉
(t) be the exact expectation value dynamics (9). Then, for any i ∈ {1, . . . , 2d},

zi (t) − 〈
ẑi

〉
(t) = O(ε3/2) in the sense that there exists a function Ci (t) such that

∣∣zi (t) − 〈
ẑi

〉
(t)

∣∣ ≤ Ci (t) ε3/2,

whereas z0i (t) − 〈
ẑi

〉
(t) = O(ε) in the same sense.

Several remarks are in order. This paper is not about improving the accuracy of
an ansatz for the wave function itself. In fact, replacing (4) by (6) does not improve
the estimate (5) in terms of ε, as we shall show in Corollary 3.5 (with n = 0). The
focus of the paper is rather on improving the approximation of the expectation value
dynamics without having any additional time evolution equations other than (4) nor
assuming any ansatz other than the Gaussian (3): We achieve it by simply introducing
a correction term to (4).

We also would like to stress that as shown in [23,25], the derivation of (6) also
involves only theGaussian (2). In other words, the O(ε) correction term does not come
from any higher-order ansatz as one might expect. This is in contrast to assuming a
higher-order ansatz than just the Gaussian (3) as is done in [7–11] and [2, Theorem 24
on p. 109]. One can certainly improve the accuracy of the ansatz that way, but needs
additional evolution equations in addition to those for (q, p, Q, P, S).

Note also that our approximation involves only a single initial value problem of (6)
as opposed to averaging solutions over numerous initial conditions like theEgorov/IVR
method mentioned above.

Throughout the paper, we will carry out asymptotic analysis as ε → 0 of time-
dependent functions, and will employ the same notation used in the statement of the
above theorem for brevity. Specifically, when we write f (t, ε) = O(εr ) for some
time-dependent function f with some r ∈ R, it means that there exists a function
C (t) such that | f (t, ε)| ≤ C (t) εr as ε → 0.
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1.4 Approximation of other observables

One also naturally wonders whether Theorem 1.1 extends to the expectation values of
general observables aswell.Wedefer this question to futurework.However, it is easy to
see that the result holds for the Hamiltonian with an even better approximation: As we
mentioned above, our dynamics (6) is a Hamiltonian system with the Hamiltonian H ε

given in (8). But then this Hamiltonian is an O(ε2) approximation to the expectation
value of the Hamiltonian operator Ĥ from (1a) with respect to the Gaussian:

〈
φ0(q, p, Q, P, S), Ĥφ0(q, p, Q, P, S)

〉
= H ε(q, p, Q, P) + O(ε2).

This follows from Laplace’s method (see, e.g., Sect. 3.7 of [18]) applied to the integral
on the left. Now, note that t �→ 〈

Ĥ
〉
(t) := 〈

ψ(t), Ĥψ(t)
〉
along the exact solution to (1)

and t �→ H ε(q(t), p(t), Q(t), P(t)) along (6) are both constant. So their difference
is constant at the initial value—where ψ(0) is the initial Gaussian (1b):

〈
Ĥ

〉
(t) − Hε(q(t), p(t), Q(t), P(t)) = 〈

Ĥ
〉
(0) − Hε(q(0), p(0), Q(0), P(0)) = O(ε2).

On the other hand, with the classical system (4) and the classical Hamiltonian
H0(q, p) := p2/2 + V (q),

〈
Ĥ

〉
(t) − H0(q0(t), p0(t)) = 〈

Ĥ
〉
(0) − H0(q(0), p(0)) = O(ε),

because H ε(q, p, Q, P) = H0(q, p) + O(ε).
A similar argument works for, e.g., the angular momentum J (q, p) := q � p—

where q � p denotes the d ×d skew-symmetric matrix defined by (q � p)i j := q j pi −
qi p j—when the potential V has SO(d)-symmetry by approximating the expectation
value

〈
Ĵ
〉
by the semiclassical angular momentum [22,23]:

J ε(q, p, Q, P) = q � p + ε

2
Re(PQ∗ − QP∗),

because both
〈
Ĵ
〉
and J ε are invariants.

1.5 Outline

We prove Theorem 1.1 in the rest of the paper. The main part of the proof is in Sect. 4,
whereas Sects. 2 and 3 are devoted to some lemmas and propositions needed in Sect. 4.
Therefore, the reader might want to first skim through Sect. 4 to have an overview of
the proof.

Muchofwhatwedo is a detailed analysis of the errorZ0(t; x) := ψ(t, x)−φ0(t, x),
i.e., the difference between the exact solution to (1) and the Gaussian wave packet (3).
In fact, the difference between the exact expectation value

〈
x̂
〉
(t) of the position and
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the position variable q(t) in (6a) is, dropping the spatial variables x for brevity,

〈
x̂
〉
(t) − q(t) = 〈

ψ(t), (x̂ − q(t))ψ(t)
〉

= 〈
φ0(t), (x̂ − q(t))φ0(t)

〉 + 〈
φ0(t), (x̂ − q(t))Z0(t)

〉
+ 〈

Z0(t), (x̂ − q(t))φ0(t)
〉

+ 〈
Z0(t), (x̂ − q(t))Z0(t)

〉
= 2Re

〈
Z0(t), (x̂ − q(t))φ0(t)

〉 + 〈
Z0(t), (x̂ − q(t))Z0(t)

〉
.

Therefore, our analysis boils down to estimates of the above two terms involving the
error Z0. Those lemmas and propositions in Sects. 2 and 3 mainly concern those key
properties of Z0 that are pertinent to our analysis.

2 Hagedorn wave packets

2.1 Overview

We first give a brief review of the Hagedorn wave packets [6–9] (see also [2] and
[24]) and then derive the evolution equation satisfied by the Gaussian wave packet (3)
where the parameters evolve in time according to our Eq. (6). The evolution equation
resembles the Schrödinger Eq. (1a) but differs by a residual term. We then prove
several key properties of the residual term. Later, in Sect. 3, we will find an expression
for the error Z0(t, x) in terms of the residual term analyzed here.

2.2 The Hagedorn wave packets

Following [9], let us define the lowering operator

A (q, p, Q, P) := − i√
2ε

(
PT (x̂ − q) − QT ( p̂ − p)

)

as well as its adjoint or the raising operator

A ∗(q, p, Q, P) := i√
2ε

(
P∗(x̂ − q) − Q∗( p̂ − p)

)
. (10)

We refer to the lowering and raising operators collectively as the ladder operators.
Note that both are operators on the Schwartz space S (Rd). It is straightforward to
see that they satisfy the following relationship for any j, k ∈ {1, . . . , d}:

[A j (q, p, Q, P),A ∗
k (q, p, Q, P)] = δ jk . (11)
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It also turns out to be convenient to write the position and momentum operators in
terms of the ladder operators as follows:

x̂ − q =
√

ε

2

(
QA (q, p, Q, P) + QA ∗(q, p, Q, P)

)
, (12)

p̂ − p =
√

ε

2

(
PA (q, p, Q, P) + PA ∗(q, p, Q, P)

)
. (13)

Let N0 be the set of integers greater than or equal to zero. Then, one can generate a
set of functions {φn(q, p, Q, P, S)}n∈Nd

0
by recursively defining, for any multi-index

n = (n1, . . . , nd) ∈ N
d
0 and j ∈ {1, . . . , d},

φn+e j (q, p, Q, P, S; x) := 1√
n j + 1

A ∗
j (q, p, Q, P)φn(q, p, Q, P, S; x), (14)

where e j is the unit vector in R
d whose j-th entry is 1; then they also satisfy

φn−e j (q, p, Q, P, S; x) := 1√
n j

A j (q, p, Q, P)φn(q, p, Q, P, S; x).

[6–9] showed that the set {φn(q, p, Q, P, S)}n∈Nd
0
then forms an orthonormal basis

for L2(Rd), where φ0 is the “ground state” here in the sense that

A (q, p, Q, P)φ0(q, p, Q, P, S; x) = 0. (15)

In fact, one may think of them as a generalization of the Hermite functions, and also
can find a unitary operator on L2(Rd) that relates each element of the Hagedorn wave
packet with the Hermite function of the same index [24]. Because of this correspon-
dence, we refer to φn as an |n|-th excited statewith |n| := ∑d

i=1 ni for anymulti-index
n ∈ N

d
0 .

We note in passing that [9] actually constructed an orthonormal basis {ϕn}n∈Nd
0

without the phase factor starting with the Gaussian

ϕ0(q, p, Q, P; x) := (det Q)−1/2

(πε)d/4 exp

{
i

ε

(
1

2
(x − q)T PQ−1(x − q) + p · (x − q)

)}

instead of φ0 from (2). It is just a matter of convenience that we use the basis {φn}n∈Nd
0

with the phase factor instead of {ϕn}n∈Nd
0
.

2.3 Evolution equation of the Gaussian wave packet

[6–9] and [10,11] have proved error estimates of various approximations to the solution
to the Schrödinger Eq. (1a) constructed by taking linear combinations of the Hagedorn
wave packets. In their works, each wave packet evolves in time according to (4), and
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one of the key ideas of these estimates is to find the Schrödinger-type equation satisfied
by those wave packets and identify the residual term that accounts for the difference
from the Schrödinger Eq. (1a).

Following their approach, we would like to first find the Schrödinger-type equation
satisfied by the time-dependent Gaussian wave packet (3). The resulting residual term
slightly differs from Hagedorn’s because of the O(ε) correction term:

Lemma 2.1 Consider the Gaussian φ0(t, x) from (3) whose time-dependent parame-
ters satisfy (6). Then, it satisfies the Schrödinger-type equation

i ε
∂

∂t
φ0(t, x) = Ĥφ0(t, x) + ε3/2ζ0(t, x), (16)

where we defined the residual term

ζ0(t, x) := α(q(t), Q(t); x) φ0(t, x) (17)

with

α(q, Q; x) := ε−1/2∂qV
(1)(q, Q) · (x − q)

+ε−3/2

(
2∑

k=0

1

k!D
kV (q) · (x − q)k − V (x)

)
. (18)

Furthermore, we may split α as

α(q, Q; x) = α(0)(q, Q; x) + ε1/2α(1)(q; x) (19a)

with

α(0)(q, Q; x) := ε−1/2∂qV
(1)(q, Q) · (x − q) − ε−3/2

3! D3V (q) · (x − q)3

= ∂qV
(1)(q, Q) · ξ − 1

6
D3V (q) · ξ3, (19b)

α(1)(q; x) := ε−2

(
3∑

k=0

1

k!D
kV (q) · (x − q)k − V (x)

)

= ε−2

4! D4V (σ1(x, q)) · (x − q)4

= 1

4!D
4V (σ1(x, q)) · ξ4. (19c)

Note that we set ξ := ε−1/2(x̂ − q) and D0V := V , and that σ1(x, q) is a point in
the segment joining x and q; we also used the shorthand ξm with m ∈ N0 for the
m-tensor defined as ξmi1...im

:= ξi1 · · · ξim as well as

DmV (q) · ξm := Dm
i1...im V (q)ξmi1...im
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with Einstein’s summation convention on repeated indices.

Remark 2.2 Those terms with D3V in α(0) and α(1) cancel with each other in α, but
as we shall see below, splitting the terms in α in this manner is crucial for us as we
shall see in the next subsection.

Proof of Lemma 2.1 It follows from tedious but straightforward calculations: Dropping
the time variable t for brevity in the calculations, we have, using (6),

ε3/2α(q(t), Q(t); x) =
(
i ε

∂

∂t
φ0(t, x) − Ĥφ0(t, x)

)/
φ0(t, x)

= (q̇ − p)T PQ−1(x − q)

− 1

2
(x − q)T

(
ṖQ−1 − PQ−1 Q̇Q−1 + (PQ−1)2

)
(x − q)

− ṗ · (x − q) + p · (q̇ − p) − V (x) + V (q)

+
(
p2

2
− V (q) − Ṡ

)
− i

2
ε
(
tr(Q−1 Q̇) − tr(PQ−1)

)

= ε ∂qV
(1)(q, Q) · (x − q)

+ V (q) + DV (q) · (x − q) + 1

2
D2V (q) · (x − q)2 − V (x),

which gives (18). We may then split α as follows:

α(q, Q; x) = ε−1/2 ∂qV
(1)(q, Q) · (x − q) − ε−3/2

3! D3V (q) · (x − q)3

+ ε−3/2

(
3∑

k=0

1

k!D
kV (q) · (x − q)k − V (x)

)

= α(0)(q, Q; x) + ε1/2α(1)(q; x).

The second expression for α(1) follows from Taylor’s Theorem because V is of class
C4. 
�

2.4 Properties of the residual term

Let us prove some key properties of the residual term ζ0 as lemmas. These lemmas
show why we split α into α(0) and α(1) as shown in (19).

Lemma 2.3 Under the assumptions on the potential V from Theorem 1.1, we have the
following estimates for the residual term ζ0 defined in (17):

(i)
∥∥α(0)(q(t), Q(t); · )φ0(t, · )∥∥ = O(1);

(ii)
∥∥α(1)(q(t); · )φ0(t, · )∥∥ = O(1);

(iii) ‖ζ0(t, · )‖ = O(1).

(iv)
∥∥∥ξ̂i (t) ζ0(t, · )

∥∥∥ = O(1) for any i ∈ {1, . . . , d} with ξ̂ (t) := ε−1/2(x̂ − q(t)).
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(v)
∥∥η̂i (t) ζ0(t, · )∥∥ = O(1) for any i ∈ {1, . . . , d} with η̂(t) := ε−1/2( p̂ − p(t)).

Proof To prove (i), notice that it is the square root of the integral with respect to x of

|φ0(t, x)|2 = | det Q(t)|−1

(πε)d/2 exp

(
−1

ε
(x − q(t))T (Q(t)Q(t)∗)−1(x − q(t))

)

multiplied by a polynomial of ε−1/2(x − q(t)). It is straightforward to see that by
performing the integral using the change of variables from x to ξ := ε−1/2(x − q(t)),
the integral does not depend on ε.More specifically, for anym = (m1, . . . ,md) ∈ N

d
0 ,

∥∥ξ
m1
1 . . . ξ

md
d φ0(t, · )∥∥ = O(1),

and hence, it follows that
∥∥α(0)(q(t), Q(t); · )φ0(t, · )∥∥ = O(1); see, e.g., [9,

Eq. (3.30)] for an equivalent statement.
For (ii), we mimic the proof of Theorem 2.9 of [9]. Take an arbitrarily small r > 0

and let B̄r (q(t)) ⊂ R
d be the closed ball with radius r centered at q(t). Then,

α(1)(q(t); x) = 1
B̄r (q(t))(x) α(1)(q(t); x) + 1

B̄r (q(t))c(x) α(1)(q(t); x),

where 1A stands for the characteristic function for a subset A ⊂ R
d . Since V is of

class C4, there exists a 4-tensor-valued time-dependent function Fr (t) such that for
any x ∈ B̄r (q(t)),

∣∣∣α(1)(q(t); x)
∣∣∣ =

∣∣∣∣ 14!D4V (σ1(x, q(t))) · ξ4
∣∣∣∣ ≤

∣∣∣Fr (t) · ξ4
∣∣∣.

On the other hand, there exist C2(t) > 0 and a polynomial P(x) such that for any
x ∈ B̄r (q(t))c,

∣∣∣α(1)(q(t); x)
∣∣∣ ≤ ε−2C2(t)P(x)

because the boundedness assumption on the Hessian D2V implies that the potential
V is dominated by a quadratic function on B̄r (q(t))c, and also the rest of α(1)(q(t); x)
is cubic in x . Therefore,

∣∣∣α(1)(q(t); x)φ0(t, x)
∣∣∣ = 1

B̄r (q(t))(x)
∣∣∣α(1)(q(t); x)φ0(t, x)

∣∣∣
+ 1

B̄r (q(t))c(x)
∣∣∣α(1)(q(t); x)φ0(t, x)

∣∣∣
≤ 1

B̄r (q(t))(x)
∣∣∣Fr (t) · ξ4φ0(t, x)

∣∣∣
+ ε−2C2(t)1B̄r (q(t))c(x)P(x) |φ0(t, x)|.
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However, the norm of the first term is O(1) following the same argument as in (i),
whereas the norm of the second term is o(εr ) for any real r effectively canceling ε−2

in the coefficient. Hence,
∥∥α(1)(q(t); · )φ0(t, · )∥∥ = O(1).

The estimate in (iii) follows easily from (i) and (ii):

‖ζ0(t, · )‖ ≤ ∥∥α(0)(q(t), Q(t); · )φ0(t, · )∥∥ + ε1/2
∥∥α(1)(q(t); · )φ0(t, · )∥∥ = O(1).

The estimate in (iv) holds similarly because the above estimates do not change upon
multiplying φ0(t, x) by ξ̂i (t) := ε−1/2(x̂ − q(t))i .

The estimate in (v) holds because straightforward calculations (see Appendix A.1)
show that

η̂i (t)ζ0(t, x) = βi (q(t), Q(t); x)φ0(t, x) + (P(t)Q(t)−1)i jξ j (t)ζ0(t, x), (20)

where βi (q, Q; x) := β
(0)
i (q, Q; x) + ε1/2β

(1)
i (q; x) with

β
(0)
i (q, Q; x) := −i

(
∂qi V

(1)(q, Q) − 1

2
D3
i jkV (q)ξ2jk

)
,

β
(1)
i (q; x) := −i ε−3/2

(
DiV (q) + D2

i j V (q)(x − q) j + 1

2
D3
i jkV (q)(x − q)2jk − DiV (x)

)
.

(21)

For the first term on the right-hand side of (20), notice the similarity between βi and
α; so we can obtain the estimate of the first term essentially the same way we did for
ζ0, i.e., its norm is O(1). We also know from (iv) that the norm of the second term in
(20) is O(1) as well. 
�

Furthermore, the first part α(0)φ0 of the residual term ζ0 satisfies the following
orthogonality property that later turns out to be crucial:

Lemma 2.4 For any multi-index k ∈ N
d
0 with 0 ≤ |k| ≤ 2, we have

〈
α(0)(q, Q; · ) φ0(q, p, Q, P, S; · ), φk(q, p, Q, P, S; · )

〉
= 0.

More specifically, α(0)(q, Q; · ) φ0(q, p, Q, P, S; · ) is a linear combination of the
third excited states

{
φn(q, p, Q, P, S; · ) | n ∈ N

d
0 with |n| = 3

}
.

Proof Substituting (7) in the expression (19b) for α(0), we have, suppressing the vari-
ables in α(0) and φ0 for brevity,

α(0)φ0 =
(

ε−1/2

4
Q jl Qkl D

3
ik j V (q)(x − q)i − ε−3/2

3! D3
i jkV (q)(x − q)3i jk

)
φ0.
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Using (12) and noting (15), the first term becomes

ε−1/2

4
Q jl Qkl D

3
ik j V (q)(x − q)iφ0 = 1

4
√
2
D3
ik j V (q)Q jl Qkl QinA

∗
n φ0

= 1

4
√
2
Ti jk Qil Q jl Qknφen , (22)

where we used the shorthand Ti jk := D3
i jkV (q) and its symmetry with respect to

permutations of the indices as well as (14). On the other hand, after similar but more
tedious calculations (see Appendix A.2), the second term becomes

− ε−3/2

3! D3
i jkV (q)(x − q)3i jkφ0 = − 1

4
√
3
Ti jk Qil Q jmQknφel+em+en

− 1

4
√
2
Ti jk Qil Q jl Qknφen . (23)

As a result,

α(0)φ0 = − 1

4
√
3
Ti jk Qil Q jmQknφel+em+en ,

which is a linear combination of the third excited states. 
�

Notice the role played by the first term in α(0) in canceling the term with the first
excited states, and recall that this term (22) came from the O(ε) correction term in the
potential in our dynamics (6a).

Remark 2.5 What if one uses the classical Hamiltonian system for t �→ (q(t), p(t))
as in (4) of Hagedorn? Then, the function α in the residual term ζ0 becomes

α(q, Q; x) = ε−3/2

(
2∑

k=0

1

k!D
kV (q) · (x − q)k − V (x)

)

= −ε−3/2
(
1

3!D
3V (q) · (x − q)3 + 1

4!D
4V (σ1(x, q)) · (x − q)4

)
,

(24)

where σ1(x, q) is defined in Lemma 2.1. The absence of the term coming from the
correction term indicates that there is no cancellation of those terms involving the first
excited states. Indeed, as we shall see in Remark 4.1 of Sect. 4.2, this residual term
does not enjoy the same property as ours does; it turns out to be detrimental in the
error estimate.
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3 Time evolution of the Hagedorn wave packets

3.1 Overview

While the main focus of the paper is the Gaussian (2) and its associated Eq. (6) for
the parameters, it turns out that the proof of the main result requires some analysis on
the time evolution of some other Hagedorn wave packets as well. Therefore, in this
section, we derive the Schrödinger-type evolution equation for the Hagedorn wave
packets as opposed to just the Gaussian.

3.2 Evolution equation of the Hagedorn wave packets

Lemma 2.1 applies only to the Gaussian wave packet φ0. However, it turns out that
Lemma 2.1 generalizes to φn with any n ∈ N

d
0 :

Proposition 3.1 Let us define, for n ∈ N
d
0 ,

φn(t, x) := φn(q(t), p(t), Q(t), P(t), S(t); x),

where t �→ (q(t), p(t), Q(t), P(t), S(t)) satisfies (6). Then, φn(t, x) satisfies the
Schrödinger-type equation

i ε
∂

∂t
φn(t, x) = Ĥφn(t, x) + ε3/2ζn(t, x), (25)

where

ζn(t, x) := α(q(t), Q(t); x)φn(t, x) (26)

with the same α defined in (18).

This result follows easily from the following lemma regarding the time evolution
of the raising operator:

Lemma 3.2 Suppose that t �→ (q(t), p(t), Q(t), P(t), S(t)) satisfies (6) and let us
write

A ∗(t) := A ∗(q(t), p(t), Q(t), P(t)).

Then, its time evolution is governed by

i ε
d

dt
A ∗(t) + [

A ∗(t), Ĥ
] = ε2√

2
Q∗(t)∂xα(q(t), Q(t); x)

as operators with domain S (Rd).
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Proof It is straightforward to see, in view of (6) and (10), that

i ε
d

dt
A ∗(t) =

√
ε

2

(−Ṗ∗(t)(x − q(t)) + P∗(t)q̇(t) + Q̇∗(t)( p̂ − p(t)) − Q∗(t) ṗ(t)
)

=
√

ε

2

(
Q∗(t)D2V (q(t))(x − q(t)) + P∗(t) p̂

+Q∗(t)
(
DV (q(t)) + ε ∂qV

(1)(q(t), Q(t))
))

,

whereas, for j ∈ {1, . . . , d},
[
A ∗

j (q, p, Q, P), Ĥ
] = i√

2ε

(
1

2
P∗
jk

[
xk, p̂

2
]

− Q∗
jk

[
p̂k, V (x)

])

= −
√

ε

2

(
P∗
jk p̂k + Q∗

jk
∂V

∂xk
(x)

)

and so

[
A ∗(t), Ĥ

] = −
√

ε

2

(
P∗(t) p̂ + Q∗(t)DV (x)

)
.

Therefore,

i ε
d

dt
A ∗(t) + [

A ∗(t), Ĥ
]

=
√

ε

2
Q∗(t)

(
D2V (q(t))(x − q(t)) + DV (q(t)) + ε ∂qV

(1)(q(t), Q(t)) − DV (x)
)

=
√

ε

2
Q∗(t) ∂

∂x

(
ε ∂qV

(1)(q(t), Q(t)) · (x − q(t))

+ V (q(t)) + DV (q(t)) · (x − q(t)) + 1

2
D2V (q(t)) · (x − q(t))2 − V (x)

)

= ε2√
2
Q∗(t)∂xα(q(t), Q(t); x).


�
Proof of proposition 3.1 By induction on n ∈ N

d
0 . Lemma 2.1 shows that the assertion

holds for n = 0. Let us suppose that the assertion holds for n ∈ N
d
0 and show that it

holds for n + e j for any j ∈ {1, . . . , d}. Using (14) and the above lemma,

√
n j + 1

(
i ε

∂

∂t
φn+e j (t, x) − Ĥφn+e j (t, x)

)

= i ε
∂

∂t

(
A ∗

j (t) φn(t, x)
)

− ĤA ∗
j (t) φn(t, x)

123



Approximation of semiclassical expectation... Page 15 of 26   121 

=
(
i ε

d

dt
A ∗

j (t) + [
A ∗

j (t), Ĥ
])

φn(t, x)

+ A ∗
j (t)

(
i ε

∂

∂t
φn(t, x) − Ĥφn(t, x)

)

= ε2√
2
Q∗

jk(t)
∂

∂xk
α(q(t), Q(t); x)φn(t, x)

+ ε3/2A ∗
j (t)(α(q(t), Q(t); x)φn(t, x)).

However, since every term in A ∗ (see (10)) except the one with p̂ is a multiplication
operator,

A ∗(q, p, Q, P)(α(q, Q; x)φn(q, p, Q, P, S; x))
= α(q, Q; x)A ∗(q, p, Q, P)φn(q, p, Q, P, S; x)

− i√
2ε

Q∗ p̂(α(q, Q; x))φn(q, p, Q, P, S; x)
= √

n j + 1α(q, Q; x)φn+e j (q, p, Q, P, S; x)

−
√

ε

2
Q∗∂xα(q, Q; x)φn(q, p, Q, P, S; x).

Therefore, we obtain

i ε
∂

∂t
φn+e j (t, x) − Ĥφn+e j (t, x) = ε3/2α(q(t), Q(t); x)φn+e j (t, x).


�

3.3 Errors in wave functions

Let us first note that, in what follows, we will suppress the spatial variables x for
brevity. We also note that the assumption that the potential V is bounded from below
guarantees that there exists a self-adjoint extension of the Schrödinger operator Ĥ so

that the unitary operators of the form e−iĤ t/ε with t ∈ R would make sense.

Now we would like to compare the exact solution t �→ e−iĤ(t−s)/εφn(s) of the
Schrödinger Eq. (1a) and the wave packet t �→ φn(t), both with the initial wave
function being φn(s) with any n ∈ N

d
0 at time s ∈ R. To that end, let us define the

difference between them (i.e., error in wave functions): For any n ∈ N
d
0 , and any

s, t ∈ R (for which both φn(s) and φn(t) are defined),

Zn(t, s) := e−iĤ(t−s)/εφn(s) − φn(t), Zn(t) := Zn(t, 0) = e−iĤ t/εφn(0) − φn(t).

(27)

The following lemma is critical in finding an estimate of these errors:

Lemma 3.3 For any n ∈ N
d
0 , ‖ζn(t)‖ = O(1).
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Proof The proof is almost identical to that of Lemma 2.3. In fact, one can show that
for any m,n ∈ N

d
0 , ∥∥ξ

m1
1 . . . ξ

md
d φn(t)

∥∥ = O(1)

because φn is φ0 multiplied by an |n|-th order polynomial of ξ = ε−1/2(x −q(t)); see
also [9, Eq. (3.30)]. It implies that those arguments with φ0 fromLemma 2.3 still apply
upon replacing φ0 by φn. Hence, it follows that

∥∥α(0)(q(t), Q(t))φn(t)
∥∥ = O(1) as

well as that
∥∥α(1)(q(t))φn(t)

∥∥ = O(1) as well. 
�
As a result, we have an expression and an estimate for Zn as follows:

Proposition 3.4 The errors defined in (27) can be written in terms of the residual term
ζn from (26) as follows: For any n ∈ N

d
0 and any s, t ∈ R for which φn(s) and φn(t)

are defined

Zn(t, s) := e−iĤ(t−s)/εφn(s) − φn(t) = i ε1/2
∫ t

s
e−iĤ(t−τ)/εζn(τ ) dτ, (28)

and hence ‖Zn(t, s)‖ = O(ε1/2) in the sense that there exists some function C such
that ‖Zn(t, s)‖ ≤ C (t, s)ε1/2.

Proof This is essentially the same as the proof of [9, Lemma 2.8], but we briefly
reproduce it here for completeness. Using the Schrödinger-type Eq. (25) satisfied by
τ �→ φn(τ ), we have

∂

∂τ

(
e−iĤ(t−τ)/εφn(τ )

)
= −i ε1/2e−iĤ(t−τ)/εζn(τ ).

Integrating both sides with respect to τ over the time interval between s and t yields

φn(t) − e−iĤ(t−s)/εφn(s) = −i ε1/2
∫ t

s
e− ˆiH(t−τ)/εζn(τ ) dτ.

The left-hand side is −Zn(t, s), and so (28) follows. The estimate in norm follows by
taking the norm of both sides of (28):

‖Zn(t, s)‖ ≤ ε1/2
∫ t

s
‖ζn(τ )‖ dτ = O(ε1/2).

due to the unitarity of e−iĤ(t−s)/ε as well as Lemma 3.3. 
�
Particularly, setting s = 0, we have the following:

Corollary 3.5 Let t �→ ψ(t) be the solution to the Schrödinger Eq. (1a) with the initial
condition ψ(0) = φn(0) with n ∈ N

d
0 . Then,

Zn(t) = ψ(t) − φn(t) = i ε1/2
∫ t

0
e−iĤ(t−s)/εζn(s) ds, (29)
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and hence ‖ψ(t) − φn(t)‖ = O(ε1/2).

The above result reproduces those estimates obtained by [6,9] using our Eq. (6), and
also indicates that using (6) in place of Hagedorn’s (4) does not improve the errors in
wave function in terms of L2-norm—at least not with the above method of estimation.
The reason why there is still a difference in the error estimates of the observables as
stated in Theorem 1.1 is that our estimates involve a more detailed analysis of the
residual term ζ0 as opposed to just having an L2-norm estimate of it.

4 Proof of main result

4.1 Error terms in observables

Let t �→ ψ(t) be the exact solution of the initial value problem (1) of the Schrödinger
equation. From the definition ofZ0 in (27) with n = 0, we haveψ(t) = φ0(t)+Z0(t),
and so, as we have shown in Sect. 1.5,

〈
x̂
〉
(t) − q(t) = 2Re

〈
Z0(t), (x̂ − q(t))φ0(t)

〉 + 〈
Z0(t), (x̂ − q(t))Z0(t)

〉
,

and similarly,

〈
p̂
〉
(t) − p(t) = 2Re

〈
Z0(t), ( p̂ − p(t))φ0(t)

〉 + 〈
Z0(t), ( p̂ − p(t))Z0(t)

〉
.

In the remaining subsections, we finish the proof of Theorem 1.1 by showing that
the two terms on the right-hand side of each of the above equations are both O(ε3/2).

4.2 Estimates for first error term

First we see that using the expression (29) for Z0 and Fubini’s theorem,

〈
Z0(t), (x̂ − q(t))φ0(t)

〉 = −i ε1/2
∫ t

0

〈
e−iĤ(t−s)/εζ0(s), (x̂ − q(t))φ0(t)

〉
ds.

(30)

However, we can rewrite the inner product inside the integral as follows using the
relationship (12) between the operator x̂ − q and the ladder operators: For any i ∈
{1, . . . , d},

〈
e−iĤ(t−s)/εζ0(s), (x̂ − q(t))i φ0(t)

〉

=
√

ε

2

〈
e−iĤ(t−s)/εζ0(s),

(
Qi j (t)A j (t) + Qi j (t)A

∗
j (t)

)
φ0(t)

〉

=
√

ε

2
Qi j (t)

〈
e−iĤ(t−s)/εζ0(s), φe j (t)

〉
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=
√

ε

2
Qi j (t)

〈
ζ0(s), e

−iĤ(s−t)/εφe j (t)
〉

=
√

ε

2
Qi j (t)

(〈
ζ0(s), φe j (s)

〉 + 〈
ζ0(s),Ze j (s, t)

〉)

whereA ∗(t) is defined in Lemma 3.2 and similarly forA (t); we used (14) for the
second equality, and (28) (s and t swapped) with n = e j for the last equality, i.e., for

any j ∈ {1, . . . , d}, e−iĤ(s−t)/εφe j (t) = φe j (s) + Ze j (s, t).
Let us evaluate the above two terms: First, recalling the formulas (17) and (19) for

ζ0 and exploiting the orthogonality in Lemma 2.4, we have, for any j ∈ {1, . . . , d},
〈
ζ0(s), φe j (s)

〉 =
〈
α(0)(q(s), Q(s))φ0(s), φe j (s)

〉
+ ε1/2

〈
α(1)(q(s))φ0(s), φe j (s)

〉

= ε1/2
〈
α(1)(q(s))φ0(s), φe j (s)

〉
,

and thus by the Cauchy–Schwarz inequality and Lemma 2.3 (ii),

∣∣〈ζ0(s), φe j (s)
〉∣∣ ≤ ε1/2

∥∥α(1)(q(s))φ0(s)
∥∥∥∥φe j (s)

∥∥ = O(ε1/2).

On the other hand, again by the Cauchy–Schwarz inequality, Lemma 2.3 (iii), and
Proposition 3.4, we have, for any j ∈ {1, . . . , d},

∣∣〈ζ0(s),Ze j (s, t)
〉∣∣ ≤ ‖ζ0(s)‖

∥∥Ze j (s, t)
∥∥ = O(ε1/2).

Hence, we see that
∣∣∣〈e−iĤ(t−s)/εζ0(s), (x̂ − q(t))iφ0(t)

〉∣∣∣ = O(ε),

and therefore, (30) yields, for any i ∈ {1, . . . , d},
∣∣〈Z0(t), (x̂ − q(t))iφ0(t)

〉∣∣ ≤ ε1/2
∫ t

0

∣∣∣〈e−iĤ(t−s)/εζ0(s), (x̂ − q(t))φ0(t)
〉∣∣∣ ds

= O(ε3/2).

Using the relationship (13) between the operator p̂ − p and the ladder operators,
we can proceed in the same way to obtain

∣∣〈Z0(t), ( p̂ − p(t))iφ0(t)
〉∣∣ = O(ε3/2)

for any i ∈ {1, . . . , d} as well.
Remark 4.1 What if one uses the classical Hamiltonian system for (q, p) as in (4) of
Hagedorn? As discussed in Remark 2.5, we have α as shown in (24). Then, as shown
in Appendix A.3, we have

〈
ζ0(s), φe j (s)

〉 = O(1)
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in this case as opposed to O(ε1/2). Indeed, the leading O(1) term (see (33) in
Appendix A.3) is exactly the term canceled due to the first term in (18) coming from
the correction term in our case. This underscores the importance of the correction term
alluded in Remark 2.5. As a result, the above estimates become

∣∣〈Z0(t), (x̂ − q(t))iφ0(t)
〉∣∣ = O(ε),

∣∣〈Z0(t), ( p̂ − p(t))iφ0(t)
〉∣∣ = O(ε).

as opposed to O(ε3/2).

4.3 Estimates for second error term

It now remains to show that, for any i ∈ {1, . . . , d},
∣∣〈Z0(t), (x̂ − q(t))iZ0(t)

〉∣∣ = O(ε3/2),
∣∣〈Z0(t), ( p̂ − p(t))iZ0(t)

〉∣∣ = O(ε3/2).

From (1a) and (16), we see that

Ż0(t) = ψ̇(t) − φ̇0(t) = − i

ε
ĤZ0(t) + i ε1/2ζ0(t).

Therefore,

d

dt

(
(x̂ − q(t))Z0(t)

) = −q̇(t)Z0(t) + (x̂ − q(t))Ż0(t)

= −p(t)Z0(t) − i

ε
(x̂ − q(t))ĤZ0(t)

+ i ε1/2(x̂ − q(t))ζ0(t)

= −p(t)Z0(t) − i

ε

([
x̂, Ĥ

]
+ Ĥ(x̂ − q(t))

)
Z0(t)

+ i ε1/2(x̂ − q(t))ζ0(t)

= ( p̂ − p(t))Z0(t) − i

ε
Ĥ(x̂ − q(t))Z0(t)

+ i ε ξ̂ (t)ζ0(t),

where the last equality follows from

[
x̂, Ĥ

]
=

[
x̂,

p̂2

2

]
= i ε p̂,

and also setting ξ̂ (t) := ε−1/2(x̂ − q(t)). Applying eiĤ t/ε to both sides, we have

eiĤ t/ε d

dt

(
(x̂ − q(t))Z0(t)

) + eiĤ t/ε i

ε
Ĥ(x̂ − q(t))Z0(t)

= eiĤ t/ε( p̂ − p(t))Z0(t) + i ε eiĤ t/ε ξ̂ (t)ζ0(t)
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or

d

dt

(
eiĤ t/ε(x̂ − q(t))Z0(t)

)
= eiĤ t/ε( p̂ − p(t))Z0(t) + i ε eiĤ t/εξ̂ (t)ζ0(t).

Integrating both sides on the interval [0, t] and using Z0(0) = 0, we have

eiĤ t/ε(x̂ − q(t))Z0(t) =
∫ t

0
eiĤs/ε( p̂ − p(s))Z0(s) ds + i ε

∫ t

0
eiĤs/ε ξ̂ (s)ζ0(s) ds.

Taking the L2-norm of the i-th component of both sides with i ∈ {1, . . . , d},
∥∥(x̂ − q(t))iZ0(t)

∥∥ ≤
∫ t

0

∥∥( p̂ − p(s))iZ0(s)
∥∥ ds + ε

∫ t

0

∥∥∥ξ̂i (s)ζ0(s)
∥∥∥ ds

=
∫ t

0

∥∥( p̂ − p(s))iZ0(s)
∥∥ ds + O(ε), (31)

where we used the estimate
∥∥∥ξ̂i (s)ζ0(s)

∥∥∥ = O(1) from Lemma 2.3 (iv).

Similarly,

d

dt

(
( p̂ − p(t))Z0(t)

) = − ṗ(t)Z0(t) + ( p̂ − p(t))Ż0(t)

=
(
DV (q(t)) + ε ∂qV

(1)(q(t), Q(t))
)
Z0(t) − i

ε
( p̂ − p(t))ĤZ0(t)

+ i ε1/2( p̂ − p(t))ζ0(t)

=
(
DV (q(t)) + ε ∂qV

(1)(q(t), Q(t))
)
Z0(t) − i

ε

([
p̂, Ĥ

]
+ Ĥ( p̂ − p(t))

)
Z0(t)

+ i ε1/2( p̂ − p(t))ζ0(t)

=
(
DV (q(t)) − DV (x) + ε ∂qV

(1)(q(t), Q(t))
)
Z0(t) − i

ε
Ĥ( p̂ − p(t))Z0(t)

+ i ε1/2( p̂ − p(t))ζ0(t)

=
(
−D2V (σ2(x, q(t)))(x̂ − q(t)) + ε ∂qV

(1)(q(t), Q(t))
)
Z0(t)

− i

ε
Ĥ( p̂ − p(t))Z0(t) + i ε η̂(t)ζ0(t),

where the second last equality follows from

[
p̂, Ĥ

]
= [

p̂, V (x)
] = −i ε DV (x),

and σ2(x, q(t)) is a point in the segment joining x and q(t) in R
d ; we also set η̂(t) :=

ε−1/2( p̂ − p(t)). Applying eiĤ t/ε to both sides,

d

dt

(
eiĤ t/ε( p̂ − p(t))Z0(t)

)
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= eiĤ t/ε
(
−D2V (σ2(x, q(t)))(x̂ − q(t)) + ε ∂qV

(1)(q(t), Q(t))
)
Z0(t)

+i ε eiĤ t/εη̂(t)ζ0(t).

Integrating both sides on [0, t], we have

eiĤ t/ε( p̂ − p(t))Z0(t) =
∫ t

0
eiĤs/ε

(
−D2V (σ2(x, q(s)))(x̂ − q(s))

+ε ∂qV
(1)(q(s), Q(s))

)
Z0(s) ds

+ i ε
∫ t

0
eiĤs/εη̂(s)ζ0(s) ds.

Taking the L2-norm of the i-th component of both sides for any i ∈ {1, . . . , d},

∥∥( p̂ − p(t))iZ0(t)
∥∥ ≤

∫ t

0

∥∥∥∥∥∥
d∑
j=1

D2
i j V (σ2(x, q(s)))(x̂ − q(s)) jZ0(s)

∥∥∥∥∥∥ ds

+ ε

∫ t

0

(∣∣∣∂qi V (1)(q(s), Q(s))
∣∣∣ ‖Z0(s)‖ + ∥∥η̂i (s)ζ0(s)

∥∥)
ds

≤
∫ t

0

d∑
j=1

∥∥∥D2
i j V (σ2(x, q(s)))(x̂ − q(s)) jZ0(s)

∥∥∥ ds + O(ε)

≤ C3

∫ t

0

d∑
j=1

∥∥(x̂ − q(s)) jZ0(s)
∥∥ ds + O(ε), (32)

where we used the following bound of the second derivative of V

C3 := max
1≤i, j≤d

sup
x∈Rd

∣∣∣D2
i j V (x)

∣∣∣

as well as the following: ‖Z0(s)‖ = O(ε1/2) from Corollary 3.5 and
∥∥η̂i (s)ζ0(s)

∥∥ =
O(1) from Lemma 2.3 (v).

Now, let us set

f (t) :=
d∑

i=1

(∥∥(x̂ − q(t))iZ0(t)
∥∥ + ∥∥( p̂ − p(t))iZ0(t)

∥∥)
.

Then, using (31) and (32), we have

f (t) ≤
∫ t

0

d∑
i=1

∥∥( p̂ − p(s))iZ0(s)
∥∥ ds + d C3

∫ t

0

d∑
j=1

∥∥(x̂ − q(s)) jZ0(s)
∥∥ ds + O(ε)
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≤ C4

∫ t

0

d∑
i=1

(∥∥( p̂ − p(s))iZ0(s)
∥∥ + ∥∥(x̂ − q(s))iZ0(s)

∥∥)
ds + O(ε)

= C4

∫ t

0
f (s) ds + O(ε),

where we defined C4 := max{1, d C3}. Therefore, by Gronwall’s inequality [5], we
obtain

f (t) ≤ O(ε) exp(C4t),

that is, f (t) = O(ε), and so we have, for any i ∈ {1, . . . , d},
∥∥(x̂ − q(t))iZ0(t)

∥∥ = O(ε),
∥∥( p̂ − p(t))iZ0(t)

∥∥ = O(ε).

As a result, by the Cauchy–Schwarz inequality, we obtain

∣∣〈Z0(t), (x̂ − q(t))iZ0(t)
〉∣∣ ≤ ‖Z0(t)‖

∥∥(x̂ − q(t))iZ0(t)
∥∥ = O(ε3/2),

and similarly

∣∣〈Z0(t), ( p̂ − p(t))iZ0(t)
〉∣∣ = O(ε3/2)

as well.
Therefore, we conclude that for any i ∈ {1, . . . , d},

〈
x̂i

〉
(t) − qi (t) = O(ε3/2),

〈
p̂i

〉
(t) − pi (t) = O(ε3/2).

Remark 4.2 If one uses the classical Hamiltonian system for (q, p) as in (4) of Hage-
dorn, then the estimate of the second error term proceeds similarly and hence it is
still O(ε3/2)—the difference is the expression of the residual term ζ0 as well as the
absence of the term with V (1). These do not affect the estimate of the second error
term—it is still O(ε3/2). However, as discussed in Remark 4.1, the estimate of the
first error term now becomes O(ε) and hence the total error is O(ε).
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Appendix A. Additional details

A.1 Details of proof of Lemma 2.3 (v)

We suppress the time dependence of ζ0, φ0, and (q, p, Q, P) for brevity here. First
we have

( p̂i − pi )ζ0(x) = (
p̂iα(q, Q; x))φ0(x) + α(q, Q; x)( p̂iφ0(x)

) − piζ0(x).

However,

p̂iα(q, Q; x) = −i ε
∂

∂xi
α(q, Q; x)

= ε1/2βi (q, Q; x)
= ε1/2

(
β

(0)
i (q, Q; x) + ε1/2β

(1)
i (q; x)

)
,

where we defined

βi (q, Q; x) := β
(0)
i (q, Q; x) + ε1/2β

(1)
i (q; x),

β
(0)
i (q, Q; x) := −i ε1/2

∂

∂xi
α(0)(q, Q; x), β

(1)
i (q; x) := −i ε1/2

∂

∂xi
α(1)(q; x),

which yield the expressions in (21). On the other hand, using the expression (2) for
φ0,

p̂φ0(x) =
(
PQ−1(x − q) + p

)
φ0(x).

Therefore,

( p̂i − pi )ζ0(x) =
(
ε1/2βi (q, Q; x) + α(q, Q; x)(PQ−1)i j (x − q) j

)
φ0(x),

and thus

η̂iζ0(x) =
(
βi (q, Q; x) + α(q, Q; x)(PQ−1)i jξ j

)
φ0(x),

which gives (20).

A.2 Details of proof of Lemma 2.4

Let us show the detailed derivation of (23). We first have, using (12),

ε−3/2

3! D3
i jkV (q)(x − q)3i jkφ0 = 1

12
√
2
Ti jk(QilAl + QilA

∗
l )(Q jmAm + Q jmA

∗
m )
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(QknAn + QknA
∗
n )φ0.

Notice that, applying lowering operator(s) twice and a raising operator once—
regardless of the order—to φ0 results in zero, and the same goes with lowering
operator(s) thrice as well. Therefore, we have

(QilAl + QilA
∗
l )(Q jmAm + Q jmA

∗
m )(QknAn + QknA

∗
n )φ0

= Qil Q jmQknA
∗
l A ∗

mA
∗
n φ0

+ (
Qil Q jmQknAlA

∗
mA

∗
n + Qil Q jmQknA

∗
l AmA

∗
n + Qil Q jmQknA

∗
l A ∗

mAn
)
φ0

= Qil Q jmQknA
∗
l A ∗

mA
∗
n φ0 + (

Qil Q jmQknAlA
∗
mA

∗
n + Qil Q jmQknA

∗
l AmA

∗
n

)
φ0,

where we used (15).
However, wemay use (11) and (15) to simplify the second and last terms as follows:

AlA
∗
mA

∗
n φ0 = (δlm + A ∗

mAl)A
∗
n φ0

= δlmA
∗
n φ0 + A ∗

m (δln + A ∗
n Al)φ0

= (δlmA
∗
n + δlnA

∗
m )φ0,

and

A ∗
l AmA

∗
n φ0 = A ∗

l (δmn + A ∗
n Am)φ0

= δmnA
∗
l φ0.

Therefore,

(QilAl + QilA
∗
l )(Q jmAm + Q jmA

∗
m )(QknAn + QknA

∗
n )φ0

= Qil Q jmQknA
∗
l A ∗

mA
∗
n φ0 + (

Qil Q jl QknA
∗
n + Qil Q jmQklA

∗
m + Qil Q jmQkmA

∗
l

)
φ0,

and so

ε−3/2

3! D3
i jkV (q)(x − q)3i jkφ0 = 1

12
√
2
Ti jk Qil Q jmQknA

∗
l A

∗
mA

∗
n φ0

+ 1

12
√
2
Ti jk

(
Qil Q jl QknA

∗
n + Qil Q jmQklA

∗
m + Qil Q jmQkmA

∗
l

)
φ0

= 1

4
√
3
Ti jk Qil Q jmQknφel+em+en + 1

4
√
2
Ti jk Qil Q jl Qknφen ,

whereweused (14) to rewriteA ∗
l A

∗
mA

∗
n φ0 as

√
6φel+em+en aswell as the permutation

symmetry of T in its indices. Hence, we obtain (23).
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A.3 Details on remark 4.1

We drop the time and spatial dependence for brevity here. Just as we have done in the
above subsection, rewriting the cubic term in (24) for α using (12), we obtain

ζ0 = α(q, Q) φ0 = − 1

4
√
3
TabcQal QbmQcnφel+em+en − 1

4
√
2
TabcQal Qbl Qcnφen

− ε1/2
1

4!D
4V (σ1(x, q)) · ξ4φ0,

where Tabc := D3
abcV (q) and ξ := ε−1/2(x − q). Therefore,

〈
ζ0, φe j

〉 = − 1

4
√
3
TabcQal QbmQcn

〈
φel+em+en , φe j

〉 − 1

4
√
2
TabcQal Qbl Qcn

〈
φen , φe j

〉

− ε1/2
1

4!
〈
D4V (σ1(x, q)) · ξ4φ0, φe j

〉

= − 1

4
√
2
TabcQal Qbl Qcj + O(ε1/2)

= − 1√
2
Q∗

jc∂qcV
(1)(q, Q) + O(ε1/2), (33)

because we can obtain the estimate

1

4!
〈
D4V (σ1(x, q)) · ξ4φ0, φe j

〉
= O(1)

just as we did in the proof of Lemma 2.3 (ii). We also used the expression (7) for V (1)

in the last equality. As a result, we have
〈
ζ0, φe j

〉 = O(1).
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