
Geometry and dynamics on Riemann and K3 surfaces
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Surfaces are some of the simplest yet geometrically rich manifolds.

Geometric structures on surfaces illuminate their topology and are

useful for studying dynamical systems on surfaces. We illustrate

below how some of these concepts blend together, and relate

them to algebraic geometry.

1 Geometry of surfaces

In this section we give a brief overview of some geometric facts re-

garding Riemann surfaces and K3 surfaces. Although both are

called “surfaces”, Riemann surfaces are examples of algebraic

curves, while K3 surfaces are genuine algebraic surfaces. This

means that considering the complex points, Riemann surfaces

are complex 1-dimensional while K3 surfaces are complex 2-

dimensional. We will give some explicit examples and then describe

geometric structures that live on these surfaces. In the Riemann

case we are concerned with flat geometry (with singularities) while

in the K3 case we consider Ricci-flat Kähler metrics. Moduli spaces

of these geometric structures play an important role in the results

of Section 2 below.

Riemann surfaces. One can describe a compact Riemann surface

by giving the algebraic equations that cut it out in some ambient

space. For example, consider

X ∶ y2 = x(x5 − 1), Ω =
dx
y
. (1)

The locus X(ℂ) of points satisfying this equation in ℂ2 is a real

2-dimensional surface of genus 2 (with two points at infinity added

to X). The 1-formΩ from (1) is the unique (up to scale) holomorphic

1-form vanishing at the two points at infinity.

Flat geometry. There is an alternative way to describe the pair

(X,Ω). Take the regular decagon in the plane and glue its opposite

and parallel edges to form a surface of genus 2, with two marked

points given by the vertices. If we identify the plane with ℂ, then

the 1-form Ω̃ = dz will be invariant under the translations used

to glue opposite edges and will descend to a 1-form Ω on the

new surface. This construction gives back the same pair (X,Ω) as
described in (1), although this is by no means obvious. For more

on the algebraic curve in (1), see [26, §5]. (A question for experts:

what is the area of the decagon under this identification?)

This construction is quite general: starting from a pair (X,Ω)
consisting of a compact Riemann surface and a holomorphic

1-form, one can associate to it a polygon in the plane by cut-

ting the surface X and mapping it to the plane in such a way that

in local charts the 1-formΩ becomes dz. Equivalently, one can give

charts to ℂ near a point p0 ∈ X by p ↦ ∫p
p0
Ω, and the transition

maps between charts are translations in ℂ. Conversely, given a

polygon in the plane (possibly disconnected), with side identifica-

tions given by translations, one can reconstruct a Riemann surface

with a holomorphic 1-form using the converse to the above recipe.

Action of GL2(ℝ). A polygon is determined by its sides, which

are vectors in ℝ2⟶̃ℂ. The group GL2(ℝ) acts on polygons, keep-

ing parallel sides parallel, so if we have a polygonal description of

(X,Ω) then we obtain a new pair g ⋅ (X,Ω) = (X ′,Ω′). One can
also express the action intrinsically on the surface, by letting a ma-

trix act on the real and imaginary parts of Ω, viewed as differential

1-forms on X:

[ReΩ′

ImΩ′] = [a b

c d
] ⋅ [ReΩ

ImΩ
].

Note that the holomorphic structure on X ′ is usually different from

the one on X. Furthermore, even if explicit algebraic equations are

given for X, it is typically not possible to describe the equations

cutting out X ′. The sides of the polygons describing the surfaces are

computed by taking integrals of Ω on paths in X, and the passage

from algebraic equations to integrals and back is by no means

explicit.

Moduli spaces of Riemann surfaces. Because algebraic equations

have finitely many coefficients, one can consider full parameter

spaces, or moduli spaces, of algebraic manifolds defined by the

same type of equations. For Riemann surfaces we will be inter-

ested in the space ℋ(𝜅) of pairs (X,Ω) where X is a compact
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Figure 2. The real solutions of (2), intersected
with the plane x = 1 to obtain an elliptic curve

Dynamics on moduli spaces of flat surfaces. The action of the

group GL2(ℝ) on the moduli space ℋ(𝜅) of Riemann surfaces

with a holomorphic 1-form satisfies rigidity properties akin to those

for unipotent flows in homogeneous dynamics developed by Rat-

ner [30, 31], Margulis [24] and many others. The following results

were established by Eskin, Mirzakhani, and Mohammadi:

Theorem 1 ([10, 11]). For any pair (X,Ω) ∈ ℋ(𝜅), the orbit clo-
sure ℳ ∶= GL2(ℝ) ⋅ (X,Ω) is a submanifold of ℋ(𝜅), described
in local coordinates by linear relations among the sides of the

polygons used to parametrize surfaces. Furthermore,1 any SL2(ℝ)-
invariant ergodic probability measure must be Lebesgue supported

on such a manifold.

Going back to the algebraic description of Riemann surfaces,

we saw that except in special symmetric situations, it is not pos-

sible in general to relate the algebraic equations to the polygonal

description of the surface. In the case of GL2(ℝ)-orbit closures,
it is possible to give an alternative, purely algebraic description

of their geometry. Specifically, recall that the Jacobian Jac(X) as-
sociated to a genus g Riemann surface X is the complex torus

defined as H0(X; KX)∨/H1(X;ℤ), where H0(X; KX) denotes the

complex g-dimensional space of holomorphic 1-forms on X, ∨
denotes the dual, and the first homology group H1(X;ℤ) em-

beds in the dual by integration along cycles. Alternatively, the

Jacobian is the moduli space of holomorphic degree 0 line bun-

dles on X and this description provides a link between the al-

gebraic and analytic structures on a Riemann surface. Although

the automorphism group of a genus g ≥ 2 Riemann surface

is finite, the endomorphism group of its Jacobian can be much

larger (real or complex multiplication give examples of such sym-

metries).

Theorem 2 ([14, 13]). Orbit closures ℳ as in Theorem 1

parametrize Riemann surfaces whose Jacobians have additional

endomorphisms a specific kind (such as real multiplication). Fur-

thermore, specific combinations of the zeros of the distinguished

1-form yield torsion points on the Jacobian.

These conditions characterize ℳ as a locus inside ℋ(𝜅).
Additional finiteness results for orbit closures are established

in [6], jointly with Eskin and Wright.

The relation between the GL2(ℝ)-action and real multiplica-

tion on Jacobians was discovered by McMullen [25], who also

established most of the above-mentioned results in the case of

genus 2 Riemann surfaces [27]. Möller introduced the tools of

Hodge theory to the subject [29, 28] which were used to con-

nect the algebraic and combinatorial descriptions of holomorphic

1-forms on Riemann surfaces.

Billiards. Fix a polygon and consider the dynamical system con-

sisting of a billiard ball bouncing off the sides in the customary

way, with the angle of incidence equal to the angle of reflection.

By studying billiards in regular n-gons, Veech discovered the first

instances of nontrivial orbit closures for the GL2(ℝ)-action and

established along the way:

Theorem 3 ([32, Thm. 1.5]). For a regular n-gon, the number of

closed billiard trajectories of length at most L grows like cnL
2 for

a constant cn.

1 The switch from GL2 to SL2 is done to exclude the scaling action.

EMS MAGAZINE 119 (2021) 19



This is in analogy with the Gauss circle problem of counting

lattice points in the plane, which corresponds to playing billiards on

a square. The deeper study of the dynamics of billiards on surfaces,

and polygons with rational angles, ties in with the study of the

GL2(ℝ)-action on the moduli space ℋ(𝜅), and this is the key to

Veech’s result and many others.

An analogue for K3 surfaces. Billiard trajectories are locally given

by straight lines. Besides the characterization of straight lines as

giving the shortest path between points, they have the following

alternative description. Take the 1-form Ω = dz = dx +√−1dy in

the plane. A straight line is a curve 𝛾 such that l(𝛾) = ||
|∫𝛾Ω

||
| where

l(𝛾) is the Euclidean length of 𝛾. Note that for an arbitrary curve 𝛾

we have the inequality

l(𝛾) ≥
||||
|
∫
𝛾
Ω

||||
|

which, in differential-geometric language, says that the 1-form Ω

calibrates the straight lines.

This last point of view generalizes to K3 surfaces, where the

analogue of closed billiard trajectories are special Lagrangian tori.

These are real 2-dimensional tori inside a K3 surface with a Ricci-

flat Kähler metric which, among many other properties, minimize

volume in their homology class.

Theorem 4 ([17, Thm. C]). Under appropriate assumptions on

the Ricci-flat metric on a K3 surface, the number of such special

Lagrangian tori, of volume bounded by V, is asymptotic to cV20,

for an explicit constant c > 0.

It is possible to make the above counting effective and give an

error term of order V20−𝜀, for 𝜀 > 0, which was estimated effec-

tively by Bergeron–Matheus in the appendix to [17]. Analogously

to the counting result for Riemann surfaces, this one is established

by studying the dynamics in the full moduli space 𝒦ℰ of Ricci-flat

metrics. Although we are asking a question about a specific one, it

proves useful to study the space of all possible metrics. The idea of

using dynamics on homogeneous spaces for counting results goes

back to Eskin and McMullen [9].

3 Dynamics on K3 surfaces

In this section we describe some results on individual automor-

phisms of K3 surfaces. Again, a key role in the proofs is played by

Ricci-flat metrics and their moduli space on a fixed K3 surface.

Entropy. Suppose for a moment that (X, d) is a compact metric

space and f ∶ X → X is a continuous map. Define a new distance

function by dn(x, y) ∶= max0≤ i≤ n d(f i(x), f i(y)), so two points

are at dn-distance at least 𝜀 if along their f -orbits, they have sepa-

rated at some time at distance 𝜀. Let now S(dn, 𝜀) be the maximal

number of 𝜀-separated points in X, i.e., any two are at dn-distance

at least 𝜀. This is the number of essentially distinct trajectories,

up to time n, when observing the system with accuracy 𝜀. The

topological entropy htop(f) is the exponential growth rate in n of

S(dn, 𝜀):
htop(f) ∶= lim

𝜀→ 0
lim sup
n→+∞

1

n
log S(dn, 𝜀).

There is also an associated notion of measure-theoretic entropy.

Recall that an f -invariant measure 𝜇must satisfy 𝜇(f−1(A)) = 𝜇(A)
for any measurable subset A ⊂ X. To define the entropy of 𝜇, par-

tition X into disjoint measurable sets X1,…,Xk. Then an orbit of a

point gives rise to a sequence of elements that it visits, encoded as

a sequence in {1,…, k}ℕ. The number of such distinct sequences,

weighted appropriately by 𝜇, grows exponentially, and the expo-

nential growth rate is called the entropy (after taking a supremum

over all finite partitions of X).

Yomdin and Gromov theorems. Suppose now that X is a smooth

manifold and f is a smooth diffeomorphism. Then the pullback f ∗

acts on the cohomology groups H•(X;ℝ) and we consider its

spectral radius 𝜌(f) (viewed as a linear transformation). Settling a

conjecture of Shub, Yomdin proved the following:

Theorem 5 ([35]). The topological entropy of f satisfies

htop(f) ≥ log 𝜌(f).
Thus topological complexity implies dynamical complexity.

When X is a complex manifold admitting a Kähler metric, and

f is a holomorphic automorphism, Gromov [21] established the

reverse upper bound

htop(f) ≤ 𝜌(f) and so htop(f) = 𝜌(f).
Gromov’s proof is based on the special feature of Kähler metrics

that the Riemannian volume of complex submanifolds is deter-

mined by their homology class (they are calibrated submanifolds,

just like the special Lagrangians in Theorem 4).

Measures on K3 surfaces. Suppose now that X is a K3 surface

and f is an automorphism of positive topological entropy. The sur-

face in (2) works, and a composition of automorphisms like the

one in (4), one for each coordinate, gives an example. Cantat [4]

showed that there exists a unique f -invariant measure 𝜇 which

maximizes entropy, i.e., h𝜇(f) = log 𝜌(f). But the holomorphic

2-form Ω induces another measure Ω∧Ω on X, which is canonical

and invariant under the dynamics. It is then natural to ask: what is

the relationship between the two measures? This was answered

by Cantat–Dupont [5] and later, using different techniques, in [19]:
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Theorem 6. With notation as above, suppose that the measure

of maximal entropy 𝜇 is absolutely continuous with respect to

Lebesgue measure on X. Then X is a “Kummer surface”, i.e., ob-

tained from a complex torus A = ℂ2/Λ by a quotient A → A/± 1

and desingularization, and the automorphism f comes by the same

construction from a linear automorphism of the torus.

The proof in [19] uses Ricci-flat metrics on K3 surfaces and

their compatibility with the volume form Ω ∧Ω. Indeed, the Käh-

ler form 𝜔 associated to a Ricci-flat metric satisfies the identity

𝜔 ∧ 𝜔 = Ω ∧Ω (as volume forms on X) and this poses constraints

on the dynamical invariants, such as Lyapunov exponents.

Rough currents. A pseudo-Anosov homeomorphism of a real

2-dimensional surface expands/contracts a pair of measured folia-

tions on the surface. This is a basic result of Thurston’s analysis of

mapping class group elements. Analogous objects, called closed

positive currents, have been constructed by Cantat on K3 sur-

faces [4], and earlier for polynomial maps of the plane by Bedford–

Lyubich–Smillie [3]. Theorem 6 implies that if a K3 surface is not

Kummer and admits a positive entropy automorphism, then the

measure of maximal entropy is singular for Lebesgue measure. Gen-

eral dynamical considerations imply that its Hausdorff dimension is

strictly below the maximal one, and thus the closed positive cur-

rents defined above must also have less than maximal Hausdorff

dimension, see [18].

4 An overview

The geometry and topology of surfaces is a subject with a long his-

tory. Many fundamental topics have been omitted in the above dis-

cussion, yet they all play a role in motivating constructions and for-

mulating questions in the subject. For example, although Riemann

surfaces do not admit infinite-order holomorphic automorphisms

in genus at least two, the study of topological automorphisms

(homeomorphism and diffeomorphisms) is essential for much of

low-dimensional topology in the form of the Nielsen–Thurston the-

ory of the classification of mapping class group elements (see the

monographs of Farb–Margalit [12] and the collection of articles [1]).

This leads to the study of measured foliations on surfaces, and their

analogues on algebraic surfaces that become closed positive cur-

rents. The geometry of these last objects is far less understood

than that of surface foliations.

In all instances, moduli spaces of geometric structures play a

crucial role. The Teichmüller and moduli spaces of Riemann sur-

faces are essential for understanding the topology of surfaces, and

in the case of algebraic surfaces, moduli spaces of metrics play a

similar role. In the case of K3 surfaces, the moduli spaces turn out

to be locally homogeneous, and this makes available all the tools

of homogeneous dynamics.

Finally, understanding the dynamics in moduli spaces requires

one to understand dynamical invariants called Lyapunov exponents,

which play a role similar to entropy. The tools of complex geometry

and Hodge theory turned out to be crucial in gaining control over

these otherwise elusive dynamical invariants, and these techniques

Table 1. Parallels between the geometry of Riemann and K3 surfaces

Riemann surfaces K3 surfaces

Mapping classes of diffeomorphisms:

pseudo-Anosov, reducible, periodic

Holomorphic automorphisms:

hyperbolic, parabolic, elliptic

Entropy, action on curves Entropy, action on H2

Stable and unstable foliations Stable and unstable currents

Teichmüller space Period Domain(s)

Flat metrics Ricci-flat metrics

Holomorphic 1-form Holomorphic 2-form

Straight lines for flat metric Special Lagrangians

Periodic trajectories Special Lagrangian tori

Completely Periodic Foliations Torus Fibrations

𝕊1: directions for straight lines 𝕊2: twistor rotation

Lyapunov exponents for families
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are behind many of the theorems described above. This connection

was originally made by Kontsevich [23], see also [8, 7, 16, 15] for

further developments related to Lyapunov exponents and Hodge

theory.

We end with a summary of the above parallels between the

geometry of Riemann and K3 surfaces in Table 1.
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