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ABSTRACT
We investigate the rate-distortion (R-D) characteristics of full ultra
high definition (UHD) 360◦ videos and capture corresponding head
movement navigation data of virtual reality (VR) headsets. We use
the navigation data to analyze how users explore the 360◦ look-
around panorama for such content and formulate related statistical
models. The developed R-D characteristics and modeling capture
the spatiotemporal encoding efficiency of the content at multiple
scales and can be exploited to enable higher operational efficiency
in key use cases. The high quality expectations for next generation
immersive media necessitate the understanding of these intrinsic
navigation and content characteristics of full UHD 360◦ videos.
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• Information systems → Multimedia streaming; • Human-
centered computing → Virtual reality; • Networks;
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1 INTRODUCTION
Advances in VR augment the perceived immersion fidelity and
quality of experience (QoE) of the user. Wearing a VR headset, a
user can experience a 360◦ video for remote scene immersion and
virtual teleportation. Present use cases include education and train-
ing, telepresence and telecommuting, healthcare, environmental
monitoring, entertainment, and first responders [9].

360◦ video is a new video format that has emerged recently and is
captured by an omnidirectional camera that records incoming light
rays from every direction (see Figure 1, top left). It enables a 3D 360◦
look-around of the surrounding scene for a remote user, virtually
placed at the camera location, on his/her VR headset (see Figure 1,
right). After capture, the raw spherical or 360◦ video frames are
first mapped to a wide equirectangular panorama (illustrated in
Figure 1, bottom left) and then compressed using state-of-the-art
(planar) video compression such as HEVC. The former intermediate
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step is introduced, as compression techniques operating directly
on spherical data are much less mature and performing relative to
traditional video compression operating on 2D video frames.

Relative to traditional video, 360◦ video is only partially experi-
enced by a viewer. In particular, at any point of time, the viewer
observes only a small portion of the entire 360◦ view sphere de-
noted as viewport 𝑉𝑐 (see Figure 1, right). The viewport is selected
according to the user’s head orientation, as detected by the headset.
To achieve a high level of immersion, very high pixel quality should
be provided due to the close proximity of the headset to the user’s
eyes. Otherwise, any visual artifact could easily be recognized by
the user and degrade the user’s QoE. MPEG suggests a 12K resolu-
tion for the entire 360◦ panorama, 40 pixels/degree of pixel density,
100 fps video frame rate, 360◦ surround sound, and a maximum
latency of 20 ms [13]. Full UHD (8K) 360◦ video represents one
relevant advance towards meeting these objectives.

Due to their doubled horizontal/vertical resolution, the data rate
and network bandwidth requirements of full UHD 360◦ videos are
at least 4-fold bigger relative to their more common 4K counter-
parts. Simultaneously, the larger spatial resolution of 8K videos
enables exploiting broader R-D coding/streaming efficiency trade-
offs. Having such knowledge, together with statistical knowledge
of user navigation, can play a critical role towards optimizing the
delivered quality of immersion in VR systems. In particular, instead
of uniform spatial compression/streaming rate allocation, optimal
360◦ video quality distribution can be enabled by exploiting the
uneven spatial R-D characteristics of the 360◦ panorama and respec-
tive user navigation patterns, as shown later. Moreover, the higher
resolution and broad panoramic aspect of full UHD 360◦ videos
can facilitate easier resource provisioning in upcoming temporal
instances, by enabling a more accurate near-future content and
navigation action prediction. These benefits motivate even further
exploring the spatiotemporal R-D and navigation characteristics of
full UHD 360◦ content to facilitate such advanced operations.

Figure 1: 360◦ streaming setup: [Top left] 360◦ camera; [Bottom left] Equirect-
angular 360◦ panorama; [Bottom right] User viewport𝑉𝑐 on the 360◦ sphere.

Viewport adaptive streaming has been proposed to overcome the
inefficiencies of present monolithic 360◦ video streaming practices
[12, 15, 19]. As a user only experiences the viewport region of the
content, streaming the entire 360◦ panorama in high quality is not
only unnecessary, but also unfeasible for present end-user and back-
bone network capabilities [6]. Streaming strictly the user viewport
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is an ideal approach that cannot be deployed in practice, however,
due to inter-frame prediction used in video compression and the
inherent round-trip latency of traditional server-client architec-
tures that dramatically exceeds the response time requirement of
VR applications. Predicting the user viewport and delivering its
content ahead of time helps overcome this major challenge. To facil-
itate developing an accurate user navigation prediction model and
carrying out effective resource allocation, having user navigation
datasets and related modeling for full UHD 360◦ videos is critical.

The rest of the paper is organized as follows. Section 2 discusses
the literature on 360◦ video datasets made publicly available. Our
methodologies for developing data comprising R-D and head navi-
gation characteristics of full UHD 360◦ video are discussed in Sec-
tion 3. We then analyze the developed data with respect to various
properties and formulate related models in Section 4. Subsequently,
we discuss important use cases of the developed data and modeling
in Section 5. Finally, we conclude in Section 6.

2 RELATED WORK
Despite the recent popularity of 360◦ video, only low quality 4K
360◦ videos are widely available and have been considered in re-
search studies. Corbillon et al. [14] and Fremerey et al. [18] have
published 360◦ video navigation datasets and open source record-
ing software. David et al. [17] supplied gaze movements in addi-
tion to head navigation movements. A few studies have consid-
ered the R-D characteristics of monolithic 360◦ videos. Sun et al.
study the quality-rate dependency of two-layer scalable encoding
of 360◦ videos [27]. Li et al. study spherical R-D optimization and
related quality metrics for 360◦ content. Yu et al. analyze the R-D
dependency of compressed 360◦ videos under diverse sphere-to-
planar-shape projection methods [28]. Chakareski et al. explore the
spatiotemporal R-D trade-offs of tiled 360◦ video for end-to-end
optimized streaming [4, 12]. Presently, there are no publicly avail-
able datasets and modeling of the spatiotemporal R-D and head
movement navigation characteristics of tiled full UHD 360◦ videos.

3 DATA ACQUISITION METHODOLOGY
3.1 Full UHD 360◦ Sequences and Encoding
For our analysis, we have gathered 15 raw 360◦ video sequences,
recorded at 30 frames per second. The first nine sequences stem
from SJTU [21, 25] (Fig. 2 shows a snapshot of Runner). Each of
these sequences is 36 seconds long with a pixel depth of 8 bits. The
remaining six sequences stem from GoPro [10] (two) and InterDigi-
tal [20] (four), each of duration 10 seconds. The pixel depth of these
sequences is 10 bits (GoPro) and 8 bits (InterDigital).

We opted not to include the raw 360◦ video sequences and their
compressed instances as part of the contributed dataset. First, they
are very voluminous in terms of data size and this would make
publicly sharing the dataset challenging. Second, our focus is on
developing spatiotemporal R-D/navigation characteristics and mod-
eling for full UHD 360◦ video. Still, we have included here online
links to all raw video sequences we studied. By facilitating them
and the material presented therein, researchers can then reproduce
all our findings and even go beyond in their investigations.

The gathered data comprise diverse content covering different
use cases of 360◦ video. The sequences from SJTU and InterDigital

are mostly static in nature, showing multiple objects moving in
the background with no particular foreground object. Their static
nature induces diverse head navigationmovements across users and
a slow temporal variation of spatial R-D characteristics. The GoPro
sequences on the other hand are mostly action oriented and more
dynamic in nature. They include a primary object moving with the
camera and a dynamically changing background. Due to having a
primary object, these sequences indicate higher correlation among
users’ head movements. Alike, the dynamic background suggests
more sudden temporal changes of spatial R-D characteristics.

The gathered sequences are recorded as equirectangular panora-
mas, onto which the original spherical video data have been pro-
jected (see Figure 1, left bottom). Here, the viewport’s azimuth and
polar angles (𝜑, 𝜃 ) on the sphere correspond to respective horizon-
tal and vertical positions on the equirectangle.

We compressed each sequence using a fast application library
of HEVC [3, 26], using its tiling option and an 8 × 8 layout. The
latter has been empirically shown to provide good performance in
terms of compression efficiency and processing complexity. Figure 2
shows this tiling for a video frame of the Runner sequence from
the SJTU dataset. The tiles are indexed left-to-right, top-to-bottom,
in a raster scan fashion. Tiling has been originally introduced to fa-
cilitate parallel processing of the video data in multi-core processor
systems. Here, we use tiling to facilitate analysis of the spatiotem-
poral rate-distortion and head navigation characteristics of a 360◦
video and development of related models. These advances can then
enable diverse key application use cases, as described in Sect. 5.

Figure 2: 8 × 8 tiling of the Runner sequence (#5).

Let a GOP-tile denote the set of tiles across the consecutive
panoramic 360◦ video frames of a GOP at the same location in the
tiling layout. Using HEVC, we compressed each GOP-tile indepen-
dently from each other, across the duration of a video sequence.
We used the Quantization Parameter (QP) of the video encoder to
control the level of compression induced upon the data. To enable
multiple qualities, we compress each 360◦ video multiple times,
setting QP to a progressively increasing value, in each subsequent
encoding run. The set of QP values is selected such that it results in
a well sampled range of low-high video quality. We set the Group
of Pictures (GOP) size to 30 in all our encodings.

3.2 Head Movement Recording
Table 1 shows the step by step procedure for recording a user’s
head movement navigation actions. We used the Oculus Rift VR
headset and the Whirligig player [2] to enable navigation of a 360◦
video and display of the user’s viewport during a recording session.
We used the OpenTrack software to record the navigation actions
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in real time on the computer to which the headset was linked [1].
OpenTrack captures the rotation angles yaw, pitch, and roll around
three canonical axes centered on the user’s head. They uniquely
identify the user’s head orientation at that time.

Table 1: Procedure for recording user head movement navigation data.
A user’s demographic information is collected
Test sequence is shown to the user for familiarity and adjustment
Videos are selected in a random fashion
Attending researcher manually starts playback and recording
⇒ Capture (yaw, pitch, roll) for each 360◦ video frame displayed
After each playback the user is asked for any discomfort
To familiarize a user with the headset, prior to a recording ses-

sion, we showed to the user a one minute test sequence. During
this training phase, the user is asked to find a comfortable posture,
calibrate the headset, and familiarize himself with the 360◦ look-
around. During a session, a user is shown a number of the full UHD
sequences. Each recording run is started manually by the attending
researcher. A user is asked if he/she feels comfortable after expe-
riencing each sequence and the recording process is terminated if
the user experiences a simulator sickness [22].

3.3 Dataset Formatting
The dataset comprises five multidimensional structure arrays in
Matlab. For each user and 360◦ video pair, the first array comprises
a temporally ordered sequence of triplets of values of head rotation
angles yaw, pitch, and raw, recorded at time instance 𝑡 𝑗 of every
video frame 𝑗 comprising the 360◦ video sequence, indicating the
navigation actions of the user. For each 360◦ video and QP value
pair, the second and third arrays comprise the respective encod-
ing distortion and data rate values, for the 64 tiles of each GOP
comprising that 360◦ video. Finally, for each 360◦ video, the fourth
and fifth arrays comprise the exponential and power law models
(the two coefficients of each model) for the 64 tiles of each GOP
comprising that 360◦ video, for the respective rate-distortion and
rate-QP dependencies. A full description of the contributed data
arrays is provided in the included Readme file [11].

4 DATASET ANALYSIS AND MODELING
4.1 Head Movement Traces Analysis
We recorded a total of 121 head navigation traces with 5-12 traces
per 360◦ video. We performed a brief demographic analysis of the
users. 25% were female. In terms of VR familiarity, 17% of users
have never tried it before, 66% have had little experience, and the
rest were experienced users. 50% of the subjects were standing up
during a session, while the rest were sitting on a rotating chair. 8%
experienced a simulator sickness and terminated the recording.

In Figure 3, we examine the CDF of the Yaw, Pitch, and Roll angles
recorded across the users, for the Runner and Basketball sequences.
Similar trends are observed in each case. Yaw has a wider variation
than both Pitch and Roll, due to the extended range of Yaw (−180◦,
180◦), relative to the latter two angles (−90◦, 90◦), as recorded
by OpenTrack. This is also induced by the tendency of users to
navigate the content by rotating their heads/bodies to the right/left
instead of looking up or down. This characteristic, together with
the observed low variation of the Pitch angle, indicates that the
equatorial regions of the two 360◦ videos are strictly more viewed
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(a) Runner sequence.
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(b) Basketball sequence.

Figure 3: Cumulative Distribution Function (CDF) of head navigation data.

than the polar regions. Moreover, the low variation of Roll indicates
that users tend to make very minimal head tilting movements.
Finally, comparing the Yaw CDF across the two 360◦ videos shows
that users tend to navigate around few angles for Basketball (0◦,
90◦, 180◦), while for Runner users tend to explore all angles evenly.

4.2 Head Navigation Likelihood Modeling
Let {(𝜑 𝑗 , 𝜃 𝑗 )} denote a navigation trace for a given 360◦ video
and user. For notational convenience, we use here the spherical
coordinate system counterparts to yaw and pitch, and disregard roll,
since users rarely and only marginally tilt their heads sideways, as
captured by the respective CDF in Figure 3. Let 𝑆𝑉𝑐

𝑗
denote the set

of pixels in the 360◦ panorama occupied by 𝑉𝑐 at time instance 𝑡 𝑗
(temporal video frame 𝑗 ). Similarly, let 𝑆𝑛𝑚

𝑗
denote the set of pixels

in the 360◦ panorama associated with tile (𝑛,𝑚), for 𝑛 = 1, . . . , 𝑁 ,
and 𝑚 = 1, . . . , 𝑀 . Now, let 𝑆𝑛𝑚,𝑉𝑐

𝑗
= 𝑆

𝑉𝑐
𝑗

∩ 𝑆𝑛𝑚
𝑗

denote the set
of pixels in tile (𝑛,𝑚) present in the user’s viewport at that time
instance. That is, 𝑆𝑛𝑚,𝑉𝑐

𝑗
represents the spatial area in the 360◦

panorama shared by tile (𝑛,𝑚) and 𝑉𝑐 at time 𝑡 𝑗 .
To account for the unequal shape and size of 𝑉𝑐 on the 360◦

panorama, depending on its latitude (the viewport’s polar angle),
we formulate next the fractions of the spatial areas of every tile,

present in the user viewport 𝑉𝑐 at 𝑡 𝑗 , as𝑤𝑛𝑚
𝑗

=
|𝑆𝑛𝑚,𝑉𝑐

𝑗
|∑

𝑛,𝑚 |𝑆𝑛𝑚,𝑉𝑐
𝑗

|
. Here,

|𝑆 | denotes the size of a set 𝑆 , in this case in number of pixels. Thus,
{𝑤𝑛𝑚

𝑗
} represents the normalized distribution of the spatial area

of the user viewport across every tile in the 360◦ panorama, at
time instance 𝑡 𝑗 . Given the above, we can formulate the probability
(likelihood) of the user navigating tile (𝑛,𝑚) over a time interval

spanned by the time instances [𝑡𝑖 , 𝑡 𝑗 ], as 𝑃
(𝑡𝑖 ,𝑡 𝑗 )
𝑛𝑚 =

∑𝑗

𝑘=𝑖
𝑤𝑛𝑚
𝑘

𝑗−𝑖+1 . In

other words, 𝑃 (𝑡𝑖 ,𝑡 𝑗 )
𝑛𝑚 indicates how often tile (𝑛,𝑚) appears (at least

in part) in the user viewport during navigation of the 360◦ video
from its temporal instance 𝑡𝑖 to 𝑡 𝑗 .
4.3 Tile Rate-Distortion Analysis
As the R-D dependency of a 360◦ video is convex, examining ex-
tremely high or extremely low QP values, does not lead to insightful
observations. Thus, we empirically selected the QP range of 15-35
as suitable for the gathered full UHD 360◦ video sequences. Table 2
compiles bitrate and distortion statistics for the collected 360◦ video
corpus, for 2 QP values. We measured distortion as the MSE of the
luminance (Y) component of the 360◦ video frames. The reported
values pertain to the first GOP and all 64 tiles of a 360◦ panorama.
We observed consistent relative outcomes across the two QP values
(quality levels) examined in Table 2, for each GOP of a 360◦ video.

269



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Jacob Chakareski, Ridvan Aksu, Viswanathan Swaminathan, and Michael Zink

Table 2: Raw bitrate and distortion statistics of compressed tiles.

Bitrate (Mbps) Y-MSE
Video 20 QP 35 QP 20 QP 35 QP

# name avg var avg var avg var avg var
1 Academic 0.47 0.24 0.06 0.02 0.65 0.37 4.28 3.08
2 Basketball 1.37 2.06 0.19 0.29 0.62 0.52 4.27 5.52
3 Bridge 1.01 0.39 0.04 7.9e-3 0.50 0.20 1.18 0.63
4 Gate Night 0.90 0.41 0.04 0.01 0.48 0.22 1.46 0.96
5 Runner 0.85 0.63 0.07 0.06 0.61 0.36 2.92 2.90
6 Siyuan 0.37 0.20 0.05 0.02 0.50 0.31 2.46 1.80
7 South Gate 0.56 0.38 0.09 0.05 0.77 0.54 6.22 5.49
8 Studyroom 0.29 0.14 0.05 0.02 0.43 0.23 1.92 1.62
9 Sward 1.59 1.26 0.22 0.15 1.27 0.54 12.7 6.04
10 Chairlift 1.87 1.26 0.21 0.21 4.65 2.32 17.5 8.33
11 Skateboard 2.87 2.13 0.41 0.37 4.36 2.41 14.5 8.59
12 Gaslamp 0.51 0.31 0.06 0.04 0.59 0.24 2.91 1.86
13 Harbor 0.83 0.84 0.10 0.13 0.60 0.26 3.07 2.36
14 KiteFlite 1.95 1.33 0.26 0.23 0.83 0.37 5.51 3.49
15 Trolley 0.88 0.55 0.11 0.07 0.90 0.49 6.18 4.43

In terms of bitrate, between the two quality levels, a 10-20 times
ratio is observed. A generally lower bitrate variance value is ob-
served for the lower quality level (QP=35), yet, across the two
quality levels a similar variance ratio is observed across the differ-
ent videos. We observed that a full UHD 360◦ video is expected to
be compressed on average at 30-120 Mbps bitrate for QP=20. For
the lower quality level in Table 2, this range reduces to 3-15 Mbps.
We also observed that depending on its content complexity, a tile
compressed at QP=35 can still exhibit a higher bitrate relative to
another tile compressed at QP=20.

Whenwe examine the tile distortion values, we observe a smoother
distribution for the higher quality level. This indicates that using
QP=20 enables good visual quality across the video corpus. We note
here that the higher bit-depth of the GoPro sequences induces a
broader range of pixel intensity values, which in turn increases
the range of prospective distortion values, as evident from Table 2.
Moreover, the average and variance of tile distortion values increase
for the lower quality level, as expected. We observed that in this
case these quantities are impacted by multiple factors, indicating
that a tile’s R-D characteristics can more dramatically vary here,
depending on its content complexity.

According to the statistics above, we selected an average example
to analyze the impact of the content on bitrate and distortion. We
opted for the Runner sequence (Figure 2) as such an example, as its
bitrate and distortion variances are close to the median values for
all four cases (columns) examined in Table 2.

The top portion of Figure 4 compares the bitrates of various
tiles for the two QP cases. In the high quality case (Fig. 4, upper
left), the majority of tiles with high bitrate are the tiles comprising
the most distinct views. In particular, the pixel intensity diversity
of Tiles 33, 39, and 40 (cf. tile indices in Figure 2) results in the
highest bitrate values. In the low quality case (Fig. 4 upper right),
high bitrates are observed in areas with highest content complexity.
Tiles 25, 26, and 27 have the highest bitrate values and their content
comprises complex shapes of trees that result in low encoding
efficiency relative to other tiles, thus leading to high bitrate values.

When we observe the respective distortion values in the bottom
portion of Figure 4, we can observe that the tiles with high bitrate
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Figure 4: Comparison of tile bitrate and distortion values for Runner.

in the low quality case also demonstrate high distortion values (Fig.
4 lower right), as expected. While a similar trend can be observed in
the high quality case, we observe here a smaller distortion variance
among the tiles due to the low overall distortion (Fig. 4 lower left).
Especially the tiles centered around tile 38 have similar distortion
levels while having a smaller data volume, as well, and overall a
better encoding efficiency. Still, even here, the content complexity
considerably impacts the encoding quality, which motivates the
advantage of using unequal QP values across the 360◦ panorama.

4.4 Tile Rate-Distortion Modeling
We accurately model the rate-distortion dependency of compressed
GOP tiles to enable the envisioned use cases and beyond. We fo-
cus on two key dependencies here: (i) Video bitrate (𝑅) vs. video
distortion (𝐷), and (ii) Video bitrate (𝑅) vs. quantization parameter
(𝑄𝑃 ). We explore two models, exponential (𝑦 = 𝑐1𝑒−𝑑1𝑥 ) and power
law (𝑦 = 𝑐2𝑥𝑑2 ), to capture these two dependencies. Moreover, we
analyze which model provides the best fit for each relationship.

Figure 5(a)-(c) show QP-R graphs for three compressed GOP-
tiles of the Runner sequence. These tiles are selected to capture the
entire range of R-D values exhibited by the respective 64 GOP-tile
set examined earlier in Table 2. Concretely, Tile 5 (recall Figure 2 for
the indexing of tiles and their location in the tiling layout) captures
the low-end of R-D values, Tile 38 captures the mid-range, and
Tile 27 the high-end. It should be noted that in all three figures
the exponential model accurately fits the data. Occasional small
differences are observed infrequently, yet relative to the power law
model, they are negligible. In Table 3, we provide a comprehensive
assessment of the accuracy of these models across the entire video
corpus. These outcomes highlight the accuracy of the exponential
model in capturing the QP-R dependency for compressed GOP-tiles.

Figure 6(a)-(c) show R-D graphs for these three GOP-tiles. We
observe three cases here for the studied models: (i) low rate, low
accuracy, (ii) medium rate, high accuracy, and (iii) high rate, high
accuracy. Concretely, as the exhibited empirical R-D range for Tile 5
is very small, it is challenging to capture its R-D dependency accu-
rately using either of the two models. For Tile 38, we observe the
medium rate, high accuracy case. We can see that the power law
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Table 3: Average absolute and relative prediction errors for the R-D and QP-R models.

Rate-Distortion QP-Rate
Video Power law Exponential Power law Exponential
Name 20 QP 35 QP 20 QP 35 QP 20 QP 35 QP 20 QP 35 QP

avg rel(%) avg rel(%) avg rel(%) avg rel(%) avg rel(%) avg rel(%) avg rel(%) avg rel(%)
Academic 0.08 12.9 0.06 3.45 0.49 64.9 0.19 8.39 0.45 97.2 0.24 363 0.11 25.6 0.05 78.7
Basketball 0.08 10.5 0.07 3.37 0.35 47.4 0.17 8.59 0.39 75.8 0.63 394 0.09 17.1 0.09 62.2
Bridge 0.04 6.46 0.05 4.39 0.08 15.8 0.17 12.6 0.73 71.3 0.62 1522 0.12 12.7 0.03 82.5
Gate Night 0.04 7.25 0.05 4.19 0.13 25.8 0.19 13.0 0.72 82.0 0.55 1297 0.13 15.8 0.03 68.7
Runner 0.04 6.52 0.04 2.95 0.36 48.8 0.22 12.0 0.72 100 0.57 921 0.19 21.5 0.04 66.0
Siyuan 0.05 10.0 0.06 4.97 0.32 52.7 0.17 11.3 0.39 118 0.19 395 0.08 28.4 0.04 82.2
South Gate 0.11 17.5 0.07 5.01 0.61 67.2 0.21 9.47 0.56 95.6 0.36 331 0.10 18.7 0.05 68.1
Studyroom 0.09 15.9 0.12 8.39 0.31 60.5 0.17 14.0 0.50 156 0.22 435 0.11 34.2 0.04 77.1
Sward 0.12 10.1 0.05 0.61 1.00 80.3 0.28 3.03 0.64 45.9 0.72 338 0.21 18.2 0.09 46.4
Chairlift 0.36 7.48 0.55 2.69 0.88 20.4 1.47 9.36 0.73 45.3 1.08 655 0.29 17.8 0.11 70.4
Skateboard 0.28 7.52 0.53 3.88 0.46 13.2 1.03 9.71 0.52 45.8 1.36 613 0.21 20.6 0.20 73.8
Gaslamp 0.10 16.2 0.10 4.88 0.44 67.3 0.20 9.44 0.70 161 0.39 670 0.18 42.2 0.03 46.4
Harbor 0.10 16.2 0.09 5.45 0.42 59.2 0.19 8.34 0.72 130 0.54 783 0.20 39.3 0.03 44.1
KiteFlite 0.07 9.81 0.06 2.24 0.65 76.6 0.25 6.67 0.71 59.9 0.89 548 0.17 14.3 0.06 28.2
Trolley 0.14 14.5 0.09 3.68 0.70 68.4 0.26 8.53 0.69 102 0.65 517 0.19 30.7 0.05 38.6

model accurately captures the actual R-D values for most of the
distortion levels exhibited in the graph, and relative to the exponen-
tial model, has a smaller error margin. Finally, Tile 27 exhibits the
high rate, high accuracy case. We observe here that the power law
model again exhibits a much higher accuracy. Moreover, though
the actual R-D points in the graph are closer to each other, relative
to those in Figure 6(c), a slightly lower accuracy of the power law
model is observed in this setting relative to Figure 6(c). This is due
to the higher range of actual R-D values observed here.

Next, in Figure 5d (QP-R) and Figure 6d (R-D), we examine the
cumulative distribution function (CDF) of the relative prediction
(model) error, for the twomodels and empirical dependencies, in the
case of three select 360◦ videos. In both figures, the solid line indi-
cates the Runner sequence, the dashed line indicates the Basketball
sequence, and the dotted line indicates the GateNight sequence.

We can see from Figure 5d that the exponential and power law
QP-R models perform very distinctly. These outcomes align well
with the earlier analysis of the graphs from Figure 5(a)-(c). Con-
cretely, we observe from Figure 5d that two out of three CDF graphs
for the power law model’s relative prediction error in the case of
QP=35 lie outside the considered x-axis range. We also observe that
all three videos show very similar trends here in the case of the
exponential model, though their actual QP-R values are distinct.
We can see from Figure 6d that the relative performance of the two
models has been reversed in the case of the R-D dependency, with
the power law model providing a much more accurate prediction
now, as also supported by our earlier analysis of the graphs from
Figure 6(a)-(c). Moreover, an opposite trend is consistently observed
here with respect to the two QP values examined, across both mod-
els and three videos considered. Concretely, the relative prediction
error appears smaller and features a steeper CDF for the low quality
level now. Finally, a much higher divergence is observed among
the three CDF graphs for the exponential model and QP=20.

In Table 3, we examine the average absolute and relative predic-
tion errors for the two models across the entire video corpus. We
can see from the left half of the table that the power law model
consistently outperforms the exponential model in the case of the
R-D dependency. For instance, for Runner and QP=25, the power

law model exhibits an average absolute error of 0.04 Y-MSE. This
quantity is 0.36 for the exponential model (nine times higher). On
the other hand, we can see from the right half of Table 3 that the
exponential model consistently fits the data more accurately in the
case of the QP-R dependency. All the outcomes observed in Table 3
are consistent with our earlier analysis.

5 KEY USE CASES
5.1 Streaming System Rate Allocation
The developed rate-distortion and navigation modeling can be used
to enable effective resource allocation in future streaming systems
delivering full UHD 360◦ video content. Concretely, let 𝑃𝑖 𝑗 denote
the likelihood that tile (𝑖, 𝑗) will appear in the viewport of a user
over the next GOP of the content to be streamed to the user. Sim-
ilarly, let 𝐷𝑖 𝑗 (𝑅𝑖 𝑗 ) denote the rate-distortion dependency that en-
coding the content associated with this GOP-tile exhibits. These
modeling concepts were introduced and formulated in Section 4.

Let
∑
𝑖 𝑗 𝑃𝑖 𝑗𝐷𝑖 𝑗 (𝑅𝑖 𝑗 ) denote the expected user viewport distortion,

given that the streaming system allocated data rates {𝑅𝑖 𝑗 } to the
compressed tiles of that GOP. Let 𝐶 denote the available streaming
data rate that the server can use to deliver the content to the user.
The server can aim to find the allocation {𝑅𝑖 𝑗 } that will minimize
the expected viewport distortion such that the aggregate streaming
rate does not exceed 𝐶 . We formally write this optimization as:

min
{𝑅𝑖 𝑗 }

∑
𝑖 𝑗

𝑃𝑖 𝑗𝐷𝑖 𝑗 (𝑅𝑖 𝑗 ), subject to:
∑
𝑖 𝑗

𝑅𝑖 𝑗 ≤ 𝐶. (1)

This problem is convex, as its objective and constraint are con-
cave functions. In particular, the dependencies𝐷𝑖 𝑗 (𝑅𝑖 𝑗 ) are concave
functions and the multipliers 𝑃𝑖 𝑗 are smaller than one. Thus, the
objective function is also concave and the linear constraint is con-
vex/concave at the same time. Hence, (1) can be solved effectively
using convex optimization methods to produce the optimal alloca-
tion {𝑅∗

𝑖 𝑗
} [8] that will maximize the delivered immersion quality.

Similarly, in receiver-driven DASH streaming, HTTP/2 Push
techniques have been explored towards low-latency operation [23].
Here, the server can benefit from the navigation likelihoods {𝑃𝑖 𝑗 }
to anticipate accurately which GOP-tiles the user is likely to re-
quest next, and preemptively push them to the client, to save the
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Figure 5: (a), (b), and (c): Comparison of QP-R models for Runner. (d): CDF of the relative error for the two models (Runner, Basketball, GateNight).
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Figure 6: (a), (b), and (c): Comparison of R-D models for Runner. (d): CDF of the relative error for the two models (Runner, Basketball, GateNight).

round-trip latency induced by the respective client request, other-
wise. Moreover, in recent neural adaptive streaming [16], a client
employs a deep learning super-resolution model to generate higher
resolution video from a streamed lower-resolution version. The
respective server can employ the same model to anticipate the
client’s behavior and prospectively improve the delivered video
quality by allocating the remaining available network bandwidth
towards minimizing the residual error after the super-resolution
process at the client. Our dataset can be employed to train, simulate,
and improve such neural streaming approaches.

5.2 Distribution System Caching/Transcoding
To meet the growing popularity, caching and prefetching mecha-
nisms will have to be deployed in distribution systems to ensure
scalable streaming of full UHD 360◦ video. Also, DASH-compliance
of such streaming methods would enable interoperability between
the different components (server, caches, clients) of such systems.
Our dataset and modeling can contribute to both aspects.

Concretely, the developed tile navigation likelihoods {𝑃𝑖 𝑗 } cap-
ture the likeliness that a user will direct his viewport towards a
specific set of tiles during a given time interval. This can be used to
enable preprocessing and prefetching of tiles that are very likely to
be navigated by the viewer. In a distribution system where a cache
is serving a large number of users, this information can be used to
prefetch to the cache highly popular tiles for the users. Moreover,
benefiting from the developed R-D modeling and analysis in (1),
the cache can then transcode these tiles to minimize the delivered
viewport distortion for each user. These two strategies advance also
the scalability of the system, as dynamic encoding can be carried
out at the cache for a subset of clients, thus avoiding the need for
central operation at the back-end server for all clients.

Similarly, the R-Dmodeling can benefit aDASH streamingmethod
with minor adaptations. In DASH, a client already determines its
download bitrate for the most recent GOP-tile set it has requested.
Using its most recent download bitrate values and a prediction

method [7], the client can then predict the expected download bi-
trate 𝐶 for the set of tiles T requested for the next GOP/segment.
This information can be signaled back to the server that can then
employ an equivalent analysis to (1) (summation is carried out
only over tiles in T and the respective 𝑃𝑖 𝑗 values are set to one) to
determine the optimal compression rates {𝑅∗

𝑖 𝑗
} for each such tile.

5.3 Perceptual Studies and Immersion Saliency
The developed dataset and modeling can benefit diverse studies
that explore the perceptual interaction and quality of experience
of users in immersive environments. For instance, the navigation
information and R-D characteristics can help understand the view-
ing behavior of users of full UHD 360◦ video content and develop
related behavioral models of viewing navigation and fixation points
in the immersive environment [24]. Similarly, salient aspects of the
content can be identified to investigate saliency prediction meth-
ods and facilitate diverse applications such as 360◦ video synopsis,
compression, and streaming [5].

6 CONCLUSION
We studied the R-D characteristics of full UHD 360◦ videos and
captured corresponding head movement navigation data of VR
headsets. We used the navigation data to analyze how users explore
the 360◦ look-around panorama for such content and formulated
related statistical models. The developed R-D characteristics and
modeling capture the spatiotemporal encoding efficiency of the
content at multiple scales and can be exploited to enable higher
operational efficiency in key use cases, in synergy with the formu-
lated navigation models. The high-quality expectations of future
immersive media motivate the understanding of these intrinsic
navigation and content characteristics of full UHD 360◦ videos.
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