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The availability of citizen science data has resulted in growing applications in biodiversity science. One widely used platform, iNaturalist,
provides millions of digitally vouchered observations submitted by a global user base. These observation records include a date and a location
but otherwise do not contain any information about the sampling process. As a result, sampling biases must be inferred from the data themselves.
In the present article, we examine spatial and temporal biases in iNaturalist observations from the platform’s launch in 2008 through the end
of 2019. We also characterize user behavior on the platform in terms of individual activity level and taxonomic specialization. We found that,
at the level of taxonomic class, the users typically specialized on a particular group, especially plants or insects, and rarely made observations
of the same species twice. Biodiversity scientists should consider whether user behavior results in systematic biases in their analyses before using

iNaturalist data.
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We are currently in a period of unprecedented
growth in the global availability of species occurrence
records as a result of data collected through citizen science
projects (sometimes known as community science or par-
ticipatory science; Bonney et al. 2014, Brown and Williams
2019). Although many of these records come from struc-
tured or semistructured surveys that include information on
the sampling effort (these records are particularly numerous
for birds), the vast majority of observations for other taxo-
nomic groups are from unstructured, opportunistic obser-
vations that simply link a taxonomic entity to a particular
point in time and space (Welvaert and Caley 2016, Pocock
et al. 2017, Kelling et al. 2019). The lack of formal survey
procedures for contributing unstructured observations has
meant a low barrier of entry for participation and has
facilitated the accumulation of large amounts of data. These
opportunistic biodiversity observations have been applied to
a variety of ecological questions across taxonomic groups,
including terrestrial vertebrates, invertebrates, and plants, as
well as marine organisms (Follett and Strezov 2015).

One of the largest unstructured biodiversity survey
projects spanning the globe is iNaturalist (www.inaturalist.

org/), a joint initiative of the California Academy of Sciences
and the National Geographic Society, which provides an
online platform for recording and identifying observations
of any species. Users upload an observation of an organism
(typically a photo, although sound recordings are now
permitted) and can propose an identification or receive
suggestions from community members. iNaturalist also
shares records that meet certain quality thresholds through
the Global Biodiversity Information Facility (GBIF;
www.gbif.org). The platform provides an online forum
for individuals interested in documenting the organisms
they encounter, providing taxonomic identifications of the
observations of others, and participating in a community of
fellow naturalists while producing data that can be used by
scientists (www.inaturalist.org/pages/about).

The massive scale of data available on iNaturalist, over
56 million observations at the time of writing and roughly
doubling each year, has led to a surge in research, making
use of these data to address a variety of research questions.
iNaturalist observations have been used to assess phenology,
such as using photographs associated with observations
to identify flowering duration (Li et al. 2020) and unusual
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flowering events (Barve et al. 2020). For these applications,
iNaturalist data enabled analyses at a broader spatial extent
and provided clearer separation of cultivated and wild
organisms than other commonly used phenology-monitoring
data. In addition to phenological state, photographs of
organisms may also contain useful information about
organismal phenotype. Drury and colleagues (2019) used
iNaturalist data to document geographic variation in wing
phenotypes of two species of damselflies, testing previously
suggested hypotheses regarding character displacement and
the processes influencing trait evolution across landscapes.

iNaturalist observations also have increasingly useful
applications in research focused on monitoring biodiversity,
especially for species that are readily detectable and
identifiable via photograph. For example, iNaturalist
observations have been used to identify a threatened species
of bumblebee that had not been reported in several decades
in the Philippines (Wilson et al. 2020) and to track invasions
of a mantis species in France (Moulin 2020) and ladybird
beetles in Argentina (Werenkraut et al. 2020). Images
including multiple organisms (e.g., flowers in pictures of
bumblebees) may also be used to examine interactions
between species (Gazdic and Groom 2019).

One of the most common research uses of iNaturalist
data is the development of species distribution models,
especially records that are included in GBIF (Heberling et al.
2021). iNaturalist records have been used to build species
distribution models of plants (Chapman et al. 2019), reptiles
and amphibians (Fourcade 2016), and other vertebrates and
invertebrates (Heberling et al. 2021). iNaturalist records
have also been used to characterize climatic tolerances
of species in studies of shifting range limits (Chardon
et al. 2015) and to supplement observations to evaluate
the conservation status of a species of poison dart frog
(Balaguera-Reina et al. 2019). Other biodiversity research
applications include characterizing community composition
over time (Rappaciuolo et al. 2021) and describing species
tolerances of urban habitats (Callaghan et al. 2020). Because
data from unstructured, opportunistic observations lack
information about the sampling or reporting process, an
understanding of user behavior and the data collection
process must be inferred from the data themselves in order
to mitigate any potential biases.

Understanding biases in citizen science data

Fundamental to the success of platforms such as iNaturalist
is an engaged and growing user base willing to volunteer
their time to collect and identify biodiversity records. User
observation patterns are critical to examine because they
effectively determine how spatial, temporal, and taxonomic
biases are structured. For example, because observations
tend to be made in the volunteers’ free time, a strong bias
toward increased observations on weekends has been docu-
mented in bird citizen science observations (Courter et al.
2013). Some have argued for categorical grouping of users
on the basis of behavior (Boakes et al. 2016), whereas others
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have suggested that the participants can be more appropri-
ately viewed on a continuum of frequency and intensity of
platform use (August et al. 2020). Efforts to measure user
behavior and the associated sampling biases have often been
focused on a few well-studied taxonomic groups. However,
the power of augmenting traditional, structured sources of
biodiversity data with unstructured observations is greatest
in groups that are not well sampled, making it particularly
useful and needed to investigate spatial and taxonomic
biases and user behavior across a broad taxonomic scope.
Such an empirical description of how users record observa-
tions on iNaturalist will better inform the usage of opportu-
nistic data for biodiversity research.

We examined the full set of iNaturalist observations
that had been uploaded since its founding in 2008 through
the end of 2019 (over 31 million observations) to better
understand how observers make use of iNaturalist. In this
study, we describe spatial and temporal biases in where
and when observations are collected. We also investigated
the extent to which users specialize taxonomically in their
observations and describe the most common types of
taxonomic specialization. Our results have implications for
biodiversity scientists seeking to use iNaturalist occurrence
data in a way that accounts for biases in observation
distribution and user behavior.

The iNaturalist data set

iNaturalist data were downloaded using iNaturalist’s web
API via the R package “rinat” (Barve et al. 2020). The web-
site started operations in March of 2008, and the data was
downloaded for all years from 2008 to 2019 for a total of
31 million observations. Custom scripts were used to down-
load the higher taxonomy data for each taxon included in
the iNaturalist occurrence data. For all observations, we
used the date of observation rather than the date of upload
for analyses and the species identification associated with
the observation at the time of download.

In each year from 2008 through 2019, we counted the
total number of iNaturalist observations, as well as the
number of unique iNaturalist users who made at least one
observation (hereafter, “users”) during that year. We also
characterized intra-annual variation in the number of users
and observations per week within a single year, 2018. To
examine spatial patterns in iNaturalist observations, we
calculated the number of observations per country and
for observations within the conterminous United States,
we used land-cover classification from the National Land
Cover Database (NLCD) 2016 version (Yang et al. 2018) to
calculate the density of sampling within land cover types.

We examined the completeness of iNaturalist’s species-level
coverage by comparing the number of species represented by
iNaturalist observations for a given taxonomic class with
the total number of described species within the taxonomic
class as estimated by the Catalog of Life (COL; Roskov et al.
2020). We obtained species-per-class counts from the 1
September 2020 monthly edition of COL. We counted only
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Figure 1. Spatial and temporal patterns in iNaturalist observations submitted through 31 December 2019. (a) Growth in
unique users making observations and observations over time. (b) Weekly number of observations submitted and unique
users from 1 January 2018 to 31 December 2018. (c) Total number of observations submitted and user days per day of week
from 1 January 2018 to 31 December 2018. (d) Global distribution of observations by country. (e) Land cover classification
of observations made in the coterminous United States from the National Land Cover Database 2016 version; solid bars
showing number of observations per land cover class, outlined empty bars showing expected percentage of pixels in that

class across the coterminous United States.

COL records with “taxonomicStatus” equal to “accepted
name” or “provisionally accepted name” (e.g., synonyms
were ignored). In addition, COL records were only counted
if they had “taxonRank” equal to “species” (i.e., subspecies
were not counted) and “isExtinct” equal to “false”

iNaturalist classifies verifiable observations with photos,
locations, and the date the observed species was identified
to its species as either “needs ID” or “research grade,” with
“research grade” status requiring identification agreement
among at least two-thirds of the identifiers (inaturalist.
org/pages/help). Through the end of 2019, 68% of the
records were identified to species, and 55% were classified
as research grade. Although the iNaturalist platform
shifted to include computer vision image recognition to
aid in identification of species in 2017 (www.inaturalist.
org/pages/computer_vision_demo), the proportion of
observations that were research grade had not changed
over time, with 55%-61% of observations reaching that
quality threshold consistently over time (see supplemental
tigure S1).

https://academic.oup.com/bioscience

Allofouranalyses were conducted in R version 3.6.1 (R Core
Team 2019). All of the data used in this article are publicly
available, and the code and data to replicate the analyses and
reproduce the figures are available through GitHub (https://
github.com/hurlbertlab/inat-user-behavior).

Spatiotemporal and taxonomic patterns in iNaturalist
observations

iNaturalist has been growing exponentially in both users
and observations (figure la), with over 74 million total
observations, 1.7 million observers, and 342,000 species
documented as of July 2021 (www.inaturalist.org/observa-
tions). User activity is highest from May to September but
with an increase in activity through the month of April and
substantial spikes in total observations and unique users
during organized events, such as the City Nature Challenge
in late April, during which organizers in cities hold global
events to encourage participants to record as many obser-
vations as they can in a single weekend (see https://cityna-
turechallenge.org; figure 1b). City Nature Challenges are a
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specific instance of a wider effort by iNaturalist to encour-
age and provide infrastructure to support bioblitzes, which
are communal efforts to record as many species in a given
location and time period as possible (www.inaturalist.org/
pages/bioblitz+guide). These uneven, intense concentra-
tions of observer effort are a feature of iNaturalist and may
be beneficial for some research questions (e.g., inventories of
biodiversity) but detrimental to others (e.g., characterizing
phenology).

iNaturalist activity varied substantially by the day of the
week as well, with the total number of observations per day
37% higher on weekends than on weekdays, and the total
number of user days (sum of unique users per day) was 22%
higher on weekends (figure 1c). Globally, the observations
were concentrated in North America, especially in the
United States. Countries in South America, Europe, and
Australia also have relatively high numbers of observations,
although there are fewer observations in Western and
Central Africa, Central America, and Southeast Asia (figure
1d). iNaturalist observations in the conterminous United
States were disproportionately from developed areas and
mixed and deciduous forests in which people live or might
spend recreational time outdoors. Conversely, there were
proportionally fewer observations in grasslands, shrublands,
and agricultural areas, which may disproportionately
be rural and privately owned and, therefore, difficult to
access for citizen scientists in general (figure le). Notably,
the overrepresentation of developed areas becomes even
greater when examining only observations made by casual
users (fewer than five observations total), with 58% of the
observations from this group coming from developed areas
compared with 38% of the observations by all users, although
the true percentage of land area of the coterminous United
States that is developed is 5% (see supplemental figure S2).

Do iNaturalist users specialize taxonomically?

To examine taxonomic specialization of iNaturalist observ-
ers, we used hierarchical agglomerative clustering (HAC)
with complete link (Lance and Williams 1967) to group
users by the proportion of observations identified to spe-
cies in different taxonomic groups. We performed two HAC
analyses based on Euclidean distance matrices of each user’s
proportion of observations across taxonomic classes or
insect orders. We clustered users with at least 50 observa-
tions identified to species on the basis of the proportion of
their observations that fell into the top 10 classes on iNatu-
ralist by the number of records: Agaricomycetes, Amphibia,
Arachnida, Aves, Insecta, Liliopsida, Magnoliopsida,
Mammalia, Polypodiopsida, and Reptilia. We retained the
top 10 largest clusters identified by the HAC analysis, which
was enough groups to capture variation in observer behav-
ior while eliminating most small groups of only a few users.
Second, we clustered users with at least 20 Insecta observa-
tions identified to species on the basis of the proportion
of their observations that fell into the 25 insect orders that
had at least 1000 total records in iNaturalist. We retained all
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clusters identified by the HAC analysis that included more
than 10 users, resulting in a total of eight groups.

We quantified the degree of taxonomic specialization of
the observers relative to a null expectation. For each user
included in the clustering analysis, we calculated the Shannon
evenness index (Egpgerveqs Shannon 1948) on the basis of the
proportion of observations in each taxonomic class or each
insect order. We then calculated a z-score for each user’s
Shannon evenness index relative to a null distribution of
possible Shannon evenness indices obtained by sampling 999
times from the list of all classes (218) or insect orders (27)
weighted by the proportion of total iNaturalist observations
per class or order. This weighting takes into account the fact
that different taxonomic groups vary in their abundance
and susceptibility to being documented. We also conducted
analyses weighting by the total number of species per class
or order as determined by the Catalog of Life with identical
results. We calculated the z-transformed Shannon evenness
index for each user using the mean (E,,) and standard
deviation (sdg ) of the null distribution of evenness values
as follows:

E _ Eobserved ~ Bt
z — transformed d
S Enull

Negative values indicate users that are more specialized
taxonomically, whereas values close to 0 indicate users that
sample taxonomic classes or orders roughly in proportion
to their density or diversity. Strong positive values were
uncommon but would indicate users that have a much more
even representation of observations across classes or orders
than would be expected by chance. We conducted a sensitivity
analysis of our user activity and taxonomic specialization
analyses including only research grade observations and
found that the results were qualitatively very similar to
results including observations needing identification and
casual observations as well (see supplemental table S1,
figures S3-S5), so in the present article, we present results
based on all observations identified to species.

Among the users with multiple submissions to iNaturalist,
the hierarchical clustering results reveal how the observations
were distributed across classes. Of the users with at least 50
identified observations, 51% focused primarily on plants
(Liliopsida and Magnoliopsida) and insects, the most
common and diverse groups of terrestrial organisms that
are difficult to miss because they are numerous, visible,
and photographable (figure 2a). The users in the second
most common group (about 30% of users) focused almost
exclusively on plants, whereas the users in the third most
common group (15% of users) had a strong focus on
birds (figure 2a). The remaining user groups were defined
by specializations on Agaricomycetes (which includes
mushroom-forming fungi; less than 2%), ray-finned fishes,
reptiles, amphibians, mammals, monocots (Liliopsida), or
arachnids (each group less than 1%; figure 2a). The usersin all

https://academic.oup.com/bioscience

120z Joquisidas g0 U HRqUNH US|l ‘IIIH [9dey Je euljosed YLON Jo AusieAlun Ad $08.GE9/€600BIA/IOSOIA/EE0 |0 L/IOP/SI0IIE-0OUBAPE/SOUSIOSOIQ/W0D dNO™dIWspeoe)/:SdjjY WoJj POPEOJUMOQ



s Biologist’s Toolbox

a b
] 51.3% of users B N i
21 29.5% | 12254
Class 31 14.9% e €192
Liliopsida n :
B Magnoliopsida 1.9% 778
Agaricomycetes '
. o 5 <1% . 312
B Arachnida 3 o B2
Insecta = 5
[ Actinopterygii G 61 <1% L 309
Amphibia -
B Reptilia 71 <1% : 179
Aves % : e
B Mammalia 8 <1% :
9 <1% ! 45
<1% ' 34
101 '
T T T T T -30 -20 -10 0 10
0.00 0.25 0.50 0.75 1.00

< More specialist users More generalist users —

Mean proportion of observations

Figure 2. Taxonomic specialization of iNaturalist users with at least 50 observations through 31 December 2019 at the class
level showing the composition of observations in each group of observers on the left and the distribution of specialization
z-scores for users in that group on the right, compared to a null expectation of evenly observing species across classes. Users
were grouped using agglomerative hierarchical clustering on the basis of the proportion of observations by class for the top
10 classes in iNaturalist by total number of records, and proportion of observations from each class are shaded by color. (a)
Barplot showing the average proportion of observations per class for users in each group. (b) Density plots for each group
showing the relative specialization of users in that group. Negative values indicate higher specialization across classes than
expected, values of 0 (vertical dashed line) indicate that classes are represented as expected on the basis of their overall
prevalence within the iNaturalist data set, and positive values indicate observations distributed more evenly across classes

than expected. To the left of each distribution is the percentage of users that fall into that group, and to the right is the

number of users in each group.

of these groups tended to be more specialized taxonomically
than expected from the null (figure 2b); however, the plant-
insect group (group 1) and the Agaricomycetes-biased group
(group 4) each included a substantial fraction of users that
submitted observations of different classes. Across all of
the groups, 77% of the users had specialization indices less
than -1.96, indicating specialization at the class level much
greater than the null expectation.

We also examined the degree of specialization on
particular orders within Insecta. Most users with at least
20 insect observations (about 60%) could be considered
insect generalists, with the distribution of evenness indices
centered near zero, although this generalist group (group 1)
had a plurality of observations in the order Lepidoptera
(figure 3a and 3b). Showy, charismatic, and conspicuous
groups, including Lepidoptera, Odonata, and Hymenoptera,
were the most common groups to specialize on, with 34%
of the users focused almost exclusively on Lepidoptera or
Lepidoptera and Odonata. Three percent of the users fell
into a group with a majority of observations in Hymenoptera
(figure 3a), possibly representing users focused specifically
on pollinators. A handful of users with the most extreme
departures from the null expectation of evenness were
highly specialized on Hemiptera, Diptera, and Orthoptera

https://academic.oup.com/bioscience

(figure 3a and 3b). Across all Insecta groups, 32% of the
users had specialization indices less than -1.96, indicating
that specialization on particular orders within Insecta was
less common than specialization by users at the class level.
Future work could examine whether this switch from
specializing observations at broad taxonomic scales and
generalizing at more narrow taxonomic scales holds true in
other groups besides insects.

The completeness of taxonomic coverage in iNaturalist
observations varied substantially with respect to taxonomic
class. Many plant, animal, and fungi classes had fewer than
25% of known, extant species recorded and identified in
iNaturalist, including some of the most species rich, such as
Insecta (figure 4a). Classes with the most complete record of
species in iNaturalist either have very few species per class
(e.g., Ginkoopsida, ginkgo trees; Merostomata, horseshoe
crabs) or are highly visible and interesting to humans and
may be easier to photograph (e.g., Pinopsida, Reptilia,
Mammalia). In particular, nearly 90% of extant bird species
have at least one observation recorded in iNaturalist. The
most commonly observed species on iNaturalist tended
to be species that are easily observed by virtue of their
size, behavior, and conspicuousness and that are common
in human-influenced areas, including monarch butterflies
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Figure 3. Taxonomic specialization of iNaturalist users with at least 20 Insecta observations through 31 December 2019
by Insecta order, showing the composition of observations in each group of observers on the left and the distribution of
specialization z-scores for users in that group on the right, compared to a null expectation of evenly observing species
across orders. The users were grouped using agglomerative hierarchical clustering on the basis of the proportion of
observations by order for orders in Insecta with at least 1000 records in iNaturalist. The shaded colors show the 11 Insecta
orders with the highest total number of records, and the “other” category is the sum of observations made of all other
orders. (a) Barplot showing the average proportion of observations per order by proportion of observations for users in
each group. (b) Density plots for each group showing the relative specialization of users in that group. Negative values
indicate higher specialization across orders than expected, values of 0 (vertical dashed line) indicate that classes are
represented as expected on the basis of their overall prevalence within the iNaturalist data set, and positive values indicate
observations distributed more evenly across orders than expected. To the left of each distribution is the percentage of users

that fall into that group.

(Danaus plexippus), mallards (Anas platyrhynchos), and
eastern gray squirrels (Sciurus carolinensis; table 1). The 10
most observed species on iNaturalist represent 4% of the
observations of the casual users (fewer than five observations
all time) and 3% of the total observations of the users with
five or more observations over time. The taxonomic groups
that were most well documented tended to be easy to
photograph, abundant (e.g., plants and insects), or especially
interesting to humans (e.g., butterflies and birds).

Variation in user activity levels

We characterized annual user frequency and intensity dur-
ing the most active months of iNaturalist usage each year,
May to September. For the users that submitted at least one
observation, we calculated the median number of observa-
tions per day, the number of observation dates per year
(omitting the first year a user was active to exclude cases in
which a user joined the platform midseason), and the total
number of observations per user during this period. Most
users on iNaturalist are infrequent even during the most
active months on the platform by total observations, with
50% of the users active three or fewer days per year, mak-
ing three or fewer observations, and uploading not more
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than one observation per active day from May through
September (table 2). However, there were a small number
of very active users, with the top 5% of the users based on
the number of active days per year active at least 37 days
per year and the top 5% of the users by observations per
day making more than 15 observations per day (table 2).
The observed pattern that a large majority of observations
identified to species come from only a handful of observers
has been observed in other citizen science projects (August
et al. 2020) and more generally in economics and other fields
(known as the Pareto principle; Newman 2005).

To evaluate the tendency of users to submit repeat
observations of species they had previously recorded, we
examined the relationship between the total number of
observations and the number of species observed. Users that
primarily use iNaturalist as a means of collecting new species
to maximize a personal species list or who use iNaturalist to
help identity species they have not seen before will fall close
to the one-to-one line on such a plot, whereas users who
submit repeated observations of species will deviate from
the one-to-one line with many more observations than
species. The majority of iNaturalist users could indeed be
characterized as low-frequency collectors.
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2015). Although there are certain organ-
isms that are easier to photograph with
widely available smartphone cameras
(although many submissions include
photographs taken with traditional cam-
eras or other methods of recording a
species, such as an audio recording or
spectrogram), organisms will be under-
sampled if they are often hidden from
view, highly mobile, not able to be iden-
tified on the basis of photographs alone,
or likely to avoid close approach by
humans. These categories might include
many larger animals and organisms that
are not often found out in the open
(Hochmair et al. 2020), as well as insects
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Figure 4. Proportion of extant species per class with at least one record in
iNaturalist through 31 December 2019 compared with the known number
of extant species per class from the Catalogue of Life. The color of the dots

indicates the phylum.

When including just iNaturalist observations identified
to species, the median user made six observations of six
different species, with the most common case being users
making only one observation of one species (figure 5a). Even
users with dozens to hundreds of observations tended to
make close to one observation per species. The most active
users, defined in the present article as users with more than
1000 observations, begin to depart from that one-to-one
relationship between recorded species and observations
(figure 5a). Notably, it is these highly active users that
contributed most of the observations that had been identified
to species. The top 10% of the users provided about 87% of
the observations identified to species, whereas the top 1%
(users with more than 455 observations identified to species)
contributed about 62% of identified observations (figure
5b). More active users on the platform may be more involved
in organized activities that encourage repeated posting of
observations, such as City Nature Challenge, bioblitzes,
and other organized events, which could contribute to this
observed pattern. The more active users had typically been
contributing observations for multiple years, and even
those who had submitted only a single observation per year
(e.g., first observation of the season) were more likely to
accumulate repeat observations of a species across years.

Implications of the iNaturalist observation process
for biodiversity research

As we have shown, iNaturalist observations can be biased
taxonomically in several ways, many of which are common
across opportunistic records in general (Isaac and Pocock

https://academic.oup.com/bioscience

such as flies that are less likely to remain
still long enough to be photographed.
Organisms of very small size are diffi-
cult to photograph clearly without spe-
cial equipment and are more difficult to
identify to species (Unger et al. 2020).
For some organisms, including many
insects, proper identification to species
requires clear views of genitalia or other
body structures that may not be evident
in photographs, and in some cases, identification may only
be possible on dissection or sequencing.

The observations from iNaturalist are widespread and
numerous for many taxonomic groups, but appropriate
use of these data in research applications requires careful
consideration of the sampling process and user behavior
on the platform. The observations are well suited to
research questions that can be answered with nonuniformly
sampled presence-only observations, including cataloging
species lists of organisms that are likely to be observed
and identified by the iNaturalist community in ecosystems
with high observation density or tracking species invasions
(Prudic et al. 2018, Hiller and Haelewaters 2019, Leong and
Trautwein 2019).

In addition to the limitations associated with presence-
only observations in general (Dorazio 2012, Yackulic et al.
2013), iNaturalist observations may be biased in directions
that diverge from other common sources of presence-only
data. For example, although iNaturalist observations have
a strong bias toward developed areas, specimen records
from museum collections are becoming less biased toward
human-influenced areas over time (Shirey et al. 2021). In
particular, the spatial bias in iNaturalist records may be
important to consider in applying these data in species
distribution modeling or measuring habitat associations of
species, because developed areas will be overrepresented
in the records, whereas harder to access, more remote
areas and habitats will be underrepresented. This pattern is
exacerbated in observations made by infrequent or casual
users of the platform, and restricting analyses to more
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Table 1. Top ten most observed species in iNaturalist and the total number
of observations of those species through 31 December 2019.

timing over a time series of just 5-10
years might suggest a shift toward earlier

phenology—even when there was no true

Common name Scientific name Order
Monarch Danaus plexippus Lepidoptera
Western honey bee Apis mellifera Hymenoptera
Mallard Anas platyrhynchos Anseriformes

Great blue heron Ardea herodias Pelecaniformes

Canada goose Branta canadensis Anseriformes

Red-tailed hawk Buteo jamaicensis Accipitriformes

House sparrow Passer domesticus Passeriformes

Great egret Ardea alba Pelecaniformes
American robin Turdus migratorius Passeriformes
Eastern gray squirrel Sciurus carolinensis Rodentia

og:::e::i:;s underlying trend—because of the shift
73.929 in the timing of weekend observations.
70,473 Aggregating observations to a temporal
66916 resolution of 1 week would eliminate
' this bias, although the reduced temporal
53,124 resolution may introduce uncertainty
45,756 to phenometrics in data sets with a
45,681 small total number of observations.
45,289 Certain phenometrics may also be
45,122 biased by the continued exponential
44,250 growth of the iNaturalist platform over
44,157 time. As the number of observers and

observations increases each year, first
or last observations dates, in particular,

Table 2. iNaturalist user observation frequency during the summer
months, May through September, including all observations made through

but even quantiles such as the 5th and
95th dates could become biased toward
more extreme values (Belitz et al. 2020,

30 September 2019. . .
eptember 2019 Park et al. 2021). For particular species,
95th -1 . .
Metric Median 5th percentile percentile the ability to estlm.ate phenolog?f Wl}l
Active davs bor vear 3 1 pn depend on how easily the organism is
_y pery observed, photographed, and identified.
Observations per day ! ! o In addition, users may differ in whether
Observations per user 3 1 64

midyear.

Note: When calculating the number of dates per year for each user, we included only the
second year of activity for a given user to avoid cases in which a user joined the platform

they are more likely to record only the
first of a species they observe in a given
year or to make repeated observations.

active users may reduce these spatial biases by yielding
a more representative distribution of sampled habitats,
improving species distribution models built with these data
(Van Eupen et al. 2021). Because downloaded iNaturalist
records are associated with a username, understanding
these spatial biases in a specific subset of the data is readily
achievable, and the methods that have been developed for
other opportunistic citizen science projects (e.g., Kelling
et al. 2019, August et al. 2020) may be useful to researchers
using iNaturalist data as well. Other promising methods
include incorporating information about species observed
by users other than the target species, which has been
shown to improve species distribution model performance
(Milanesi et al. 2020).

iNaturalist data clearly contain a signal of phenology of
individual species, but characterizing phenology accurately
requires considering how temporal variation in observer
effort might obscure, bias, or exaggerate the underlying
pattern. The weekend effect that we documented in
iNaturalist and that has been observed in other citizen
science data sets (Courter et al. 2013) may pose a problem
specifically for inferring how phenology has shifted over
time. This is because the day of the year for a given day of the
week (e.g., the first Saturday in June) advances 1 day earlier
each year (and 2 days in a leap year) until resetting roughly
every 7 years. Therefore, an examination of phenological

8 BioScience « XXXX XXXX / Vol. XX No. X

As the temporal extent of iNaturalist
data  grows, observations may
increasingly be used to estimate trends in biodiversity over
time (such as tracking occurrence over time), although
careful consideration must be given to biases in the iNaturalist
data set in these applications including increasing numbers
of observations over time and seasonality of observations
within years. Qualitatively similar patterns have been
found in population trends estimates from standardized
surveys and iNaturalist observations (controlling for effort
by standardizing using the total number of iNaturalist
observations) in butterfly species in western North America
(Forister et al. 2021). Standardizing observations of a
particular species using general patterns of iNaturalist
activity may be effective at removing bias associated with
individual events such as City Nature Challenges but may
prove challenging over longer periods of time, especially
when biological patterns in the species of interest mirror
patterns in the greater iNaturalist data set (e.g., spring
insect emergence concurrent with a seasonal increase in
observations on the platform). Another recent effort to
capture biodiversity change using iNaturalist records made
use of record metadata to reconstruct observation events and
species lists for observers and showed positive correlations
between rank change in California coastal species when
compared with estimates from standardized surveys
(Rappaciuolo et al. 2021). Furthermore, comparisons of
trends between species with different likelihoods of detection
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available to use. Despite featuring biases
associated with opportunistic, presence-
only observations, the vast number of
engaged observers and identifiers and
extent of observations on iNaturalist,
combined with associated photographs
of the organisms, makes the project and
data generated from it an invaluable
resource to biodiversity researchers.

Top 1% of users provide
62% of observations

Conclusions

0.00 1

Our results build on previous work that
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Observations per user
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Figure 5. iNaturalist user activity for observations identified to species
through 31 December 2019. (a) The number of species observed by a user
compared to total number of observations. The blue line represents a one-to-
one relationship, and the light blue line shows a smoothed generalized additive
model fit. The marginal histograms show the distribution of species per user
and observations per user, with the red lines showing the median of those
distributions. (b) The cumulative proportion of all observations identified to
species by user’s total number of observations. Shaded regions show the 90th
and 99th percentiles of users by total number of observations.

are complicated by the lack of detailed survey effort. Even
comparing relative, instead of absolute, abundance between
species may be difficult using these data without accounting
for differences in ease of detection and documentation.

In our analyses characterizing user taxonomic
specialization, we used observations identified to species.
Observations are often identified by participants on the
platform different than the user uploading the observation,
and for the observation to attain research grade status,
multiple users must agree. As a result, the identification
process itself is an important component of the iNaturalist
platform and community, although it is beyond the scope
of this article. Nevertheless, important areas for future
inquiry include a detailed exploration of the behavior and
activity level of identifiers, the resolution of identification
disagreements, and how the time to identification (18 days
on average; www.inaturalist.org/stats) varies by taxonomic
group or geographic region.

Our results are a broad first look at how users on
iNaturalist use the platform and can provide a starting
point for considering what portion of iNaturalist users or
observations may be most relevant to a particular question.
Researchers might prefer to use observations from iNaturalist
users on the higher end of the activity spectrum, who are
more likely to record more than one observation of a species
or exhaustively sample a particular taxonomic group of
interest in their local area. Because a vast majority of higher-
quality observations come from these very active users,
excluding low-activity users (casual or one-off accounts)
will not be a large penalty on the sample size of observations

https://academic.oup.com/bioscience

1000 10000 demonstrates the importance of examin-
ing biases and filtering approaches on a
case-by-case basis when working with
massive citizen science data (Steen et al.
2019), and researchers should consider
whether their analysis is affected by sys-
tematic biases in observations from one-
off, casual users or highly active users.
We suggest that simple corrections for
observer behavior such as normalizing
observations by the total observations in
a given time period may be insufficient
if the research interest is in monitoring
distribution or abundance changes. Further modeling of the
observation process to understand how user behavior may
bias biodiversity estimates will be essential in developing
toolkits for leveraging unstructured citizen science observa-
tions to address questions in biodiversity science. iNaturalist
as a platform provides substantial value not only as a tool for
researchers but as a place for community building and con-
necting with other naturalists as well.

Acknowledgments

Support was provided by funding from National Science
Foundation grants no. EF-1702708 and no. EF-1703048.
MB was supported by a University of Florida Biodiversity
Institute fellowship. We would like to thank Carrie Seltzer
and Ken-ichi Ueda for support and review of initial drafts.
We are especially indebted to the thousands of observers and
identifiers on the iNaturalist platform, without whom this
work would not have been possible.

Supplemental material
Supplemental data are available at BIOSCI online.

References cited

August, T, Fox, R, Roy, DB, Pocock, MJO. 2020. Data-derived metrics
describing the behaviour of field-based citizen scientists provide
insights for project design and modelling bias. Scientific Reports 10:
11009. https://doi.org/10.1038/s41598-020-67658-3.

Balaguera-Reina SA, Bustillo S, Zarrate-Charry DA, Charry F, Cepeda-
Mercado AA, Gonzilez-Maya JE 2019. Conservation status and dis-
tribution based on a species distribution model of the endemic
yellow-striped poison frog, Dendrobates truncatus (Cope, 1861), in
Colombia. Herpetological Review 50: 52-57.

XXXX XXXX / Vol. XX No. X « BioScience 9

120z Joquisidas g0 U HRqUNH US|l ‘IIIH [9dey Je euljosed YLON Jo AusieAlun Ad $08.GE9/€600BIA/IOSOIA/EE0 |0 L/IOP/SI0IIE-0OUBAPE/SOUSIOSOIQ/W0D dNO™dIWspeoe)/:SdjjY WoJj POPEOJUMOQ



Biologist’s Toolbox e

Barve V'V, et al. 2020. Methods for broad-scale plant phenology assessments
using citizen scientists’ photographs. Applications in Plant Sciences 8:
el1315.

Belitz MW, Larsen EA, Ries L, Guralnick RP. 2020. The accuracy of phenol-
ogy estimators for use with sparsely sampled presence-only observa-
tions. Methods in Ecology and Evolution 11: 1273-1285.

Boakes EH, Gliozzo G, Seymour V, Harvey M, Smith C, Roy DB, Haklay M.
2016. Patterns of contribution to citizen science biodiversity projects
increase understanding of volunteers’ recording behaviour. Scientific
Reports 6: 33051. https://doi.org/10.1038/srep33051.

Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL, Miller-Rushing AJ,
Parrish JK. 2014. Next steps for citizen science. Science 343: 1436-1437.
https://doi.org/10.1126/science.1251554.

Brown ED, Williams BK. 2019. The potential for citizen science to produce
reliable and useful information in ecology. Conservation Biology 33:
561-569.

Callaghan CT, Ozeroff I, Hitchcock C, Chandler M. 2020. Capitalizing on
opportunistic citizen science data to monitor urban biodiversity: A
multi-taxa framework. Biological Conservation 251: 108753. https://
doi.org/10.1016/j.biocon.2020.108753.

Chapman D, Prescott OL, Roy HE, Tanner R. 2019. Improving species
distribution models for invasive non-native species with biologi-
cally informed pseudo-absence selection. Journal of Biogeography 46:
1029-1040.

Chardon NI, Cornwell WK, Flint LE, Flint AL, Ackerly DD. 2015.
Topographic, latitudinal and climating distribution of Pinus coulteri:
Geographic range limits are not at the edge of the climate envelope.
Ecography 38: 590-601.

Courter JR, Johnson R]J, Stuyck CM, Lang BA, Kaiser EW. 2013. Weekend
bias in citizen science data reporting: Implications for phenology stud-
ies. International Journal of Biometeorology 57: 715-720.

Dorazio RM. 2012. Predicting the geographic distribution of a species
from presence-only data subject to detection errors. Biometrics 68:
1303-1312.

Drury JP, Barnes M, Finneran AE, Harris M, Grether GE 2019. Continent-
scale phenotype mapping using citizen scientists’ photographs.
Ecography 42: 1436-1445.

Follett R, Strezov V. 2015. An analysis of citizen science based research:
Usage and publication patterns. PLOS ONE 10: 143687.

Forister ML, et al. 2021. Fewer butterflies seen by community scientists
across the warming and drying landscapes of the American West.
Science 371: 1042-1045.

Fourcade Y. 2016. Comparing species distributions modelled from occur-
rence data and from expert-based range maps: Implication for pre-
dicting range shifts with climate change. Ecological Informatics 36:
8-14.

Gazdic M, Groom Q. 2019. iNaturalist is an unexplored source of plant—
insect interaction data. Biodiversity Information Science and Standards
3:e37303.

Heberling JM, Miller JT, Noesgaard D, Weingart SB, Schigel D. 2021. Data
integration enables global biodiversity synthesis. Proceedings of the
National Academy of Sciences 118: €2018093118.

Hiller T, Haelewaters D. 2019. A case of silent invasion: Citizen science con-
firms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in
Central America. PLOS ONE 14: 220082.

Hochmair HH, Scheffrahn RH, Basille M, Boone M. 2020. Evaluating the
data quality of iNaturalist termite records. PLOS ONE 15: 226534.

Isaac NJ. Pocock MJO. 2015. Bias and information in biological records.
Biological Journal of the Linnean Society 115: 522-531.

Kelling S, et al. 2019. Using semistructured surveys to improve citizen sci-
ence data for monitoring biodiversity. BioScience 69: 170-179.

Lance GN, Williams WT. 1967. A general theory of classificatory sorting
strategies: 1. Hierarchical systems. Computer Journal 9: 373-380.

Leong M, Trautwein M. 2019. A citizen science approach to evaluating US
cities for biotic homogenization. Peer] 7: €6879. https://doi.org/10.7717/
peer;j.6879.

10 BioScience « XXXX XXXX / Vol. XX No. X

Li D, et al. 2020. Climate, urbanization, and species traits interactively drive
flowering duration. Global Change Biology 27: 892-903.

Milanesi P, Mori E, Menchetti M. 2020. Observer-oriented approach
improves species distribution models from citizen science data. Ecology
and Evolution 10: 12104-12114.

Moulin N. 2020. When citizen science highlights alien invasive species in
France: The case of Indochina mantis, Hierodula patellifera (Insecta,
Mantodea, Mantidae). Biodiversity Data Journal 8: e46989.

Newman ME]. 2005. Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics 46: 323-351.

Park DS, Newman EA, Breckheimer IK. 2021. Scale gaps in landscape phe-
nology: Challenges and opportunities. Trends in Ecology and Evolution
36: 709-721.

Pocock MJO, Tweddle JC, Savage J, Robinson LD, Roy HE. 2017. The
diversity and evolution of ecological and environmental citizen science.
PLOS ONE 12: 172579.

Prudic KL, Oliver JC, Brown BV, Long EC. 2018. Comparisons of citizen
science data-gathering approaches to evaluate urban butterfly diversity.
Insects 9: 186. https://doi.org/10.3390/insects9040186.

R Core Team. 2019. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. https://
www.R-project.org/.

Rappaciuolo G, Young A, Johnson R. 2021. Deriving indicators of biodiver-
sity change from unstructured community-contributed data. Oikos 130:
1225-1239. https://doi.org/10.1111/0ik.08215.

Roskov Y, et al, eds. 2020. Species 2000 and ITIS Catalogue of Life.
Naturalis.

Shannon C. 1948. A mathematical theory of communication. Bell System
Technical Journal 27: 623-656.

Shirey V, Belitz MW, Barve V, Guralnick R. 2021. A complete inventory of
North American butterfly occurrence data: Narrowing data gaps, but
increasing bias. Ecography 44: 537-547.

Steen VA, Elphick CS, Tingley MW. 2019. An evaluation of stringent filter-
ing to improve species distribution models from citizen science data.
Diversity and Distributions 25: 1857-1869.

Unger S, Rollins M, Tietz A, Dumais H. 2020. iNaturalist as an engaging
tool for identifying organisms in outdoor activities. Journal of Biological
Education 2020: 1739114. https://doi.org/10.1080/00219266.2020.173
9114.

Van Eupen C, Maes D, Herremans M, Swinnen KRR, Somers B, Luca
S. 2021. The impact of data quality filtering of opportunistic citizen
science data on species distribution model performance. Ecological
Modelling 444: 109453.

Welvaert M, Caley P. 2016. Citizen surveillance for environmental moni-
toring: Combining the efforts of citizen science and crowdsourcing
in a quantitative data framework. SpringerPlus 5: 1890. https://doi.
org/10.1186/540064-016-3583-5.

Werenkraut V, Baudino F, Roy HE. 2020. Citizen science reveals the distri-
bution of the invasive harlequin ladybird (Harmonia axyridis Pallas) in
Argentina. Biological Invasions 22: 2915-2921.

Wilson JS, Pan AD, General DEM, Koch JB. 2020. More eyes on the prize:
An observation of a very rare, threatened species of Philippine bumble
bee, Bombus irisanensis, on iNatuarlist and the importance of citizen
science in conservation biology. Journal of Insect Conservation 24:
727-729.

Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Grant EHC,
Veran S. 2013. Presence-only modelling using MAXENT: When can
we trust the inferences? Methods in Ecology and Evolution 4: 236-243.

Grace Di Cecco (gdicecco@live.unc.edu) is a PhD student and Allen Hurlbert
is a professor in the Department of Biology at the University of North
Carolina, in Chapel Hill, North Carolina, in the United States. Michael Belitz
is a PhD student, Vijay Barve is a postdoctoral research associate, Brian
Stucky is an assistant scientist, and Robert Guralnick is curator of biodiversity
informatics at the Florida Museum of Natural History, in Gainesville, Florida,
in the United States.

https://academic.oup.com/bioscience

120z Joquisidas g0 U HRqUNH US|l ‘IIIH [9dey Je euljosed YLON Jo AusieAlun Ad $08.GE9/€600BIA/IOSOIA/EE0 |0 L/IOP/SI0IIE-0OUBAPE/SOUSIOSOIQ/W0D dNO™dIWspeoe)/:SdjjY WoJj POPEOJUMOQ



