
A hybrid NDN-IP Architecture for Live Video
Streaming: A QoE Analysis

Ishita Dasgupta∗, Susmit Shannigrahi†, Michael Zink∗
∗University of Massachusetts Amherst, †Tennessee Tech University

∗ishitadg@cs.umass.edu, zink@ecs.umass.edu, †sshannigrahi@tntech.edu

Abstract—With live video streaming becoming accessible in
various applications on all client platforms, it is imperative to
create a seamless and efficient distribution system that is flexible
enough to choose from multiple Internet architectures best suited
for video streaming (live, on-demand, AR). In this paper, we
highlight the benefits of such a hybrid system for live video
streaming as well as present a detailed analysis with the goal
to provide a high quality of experience (QoE) for the viewer. For
our hybrid architecture, video streaming is supported simulta-
neously over TCP/IP and Named Data Networking (NDN)-based
architecture via operating system and networking virtualization
techniques to design a flexible system that utilizes the benefits
of these varying internet architectures. Also, to relieve users
from the burden of installing a new protocol stack (in the case
of NDN) on their devices, we developed a lightweight solution
in the form of a container that includes the network stack as
well as the streaming application. At the client, the required
Internet architecture (TCP/IP versus NDN) can be selected in a
transparent and adaptive manner.

Based on a prototype we have designed and implemented
maintaining efficient use of network resources, we demonstrate
that in the case of live streaming, NDN achieves better QoE
per client than IP and can also utilize higher than allocated
bandwidth through in-network caching. Even without caching,
our hybrid setup achieves better average bitrate over live video
streaming services than its IP-only alternative. Furthermore, we
present detailed analysis on ways adaptive video streaming with
NDN can be further improved with respect to QoE.

Index Terms—Named Data Networking, Live Streaming, Soft-
ware Defined Networking, quality of experience

I. INTRODUCTION

With the advent of applications like Twitch, Facebook Live,

live streaming has increased tremedously in popularity occu-

pying upto 17% of the video traffic by 2022 [44]. Therefore

mechanisms are required that deliver efficient QoE for live

video streaming over existing internet infrastructures.
Apart from the traditional TCP/IP, multiple Internet archi-

tectures have been proposed for the future internet [1] [2]

[39]. Information Centric Networking (ICN) [1] is one such

future internet architecture that has the goal of replacing the

host-centric approach of the current (TCP/IP-based) Internet

with a content-centric approach. Named Data Networking

(NDN) [48] is an instantiation of ICN that identifies and serves

data by name instead of their location. In NDN, the commu-

nication is client-driven in the sense that it sends out “Interest

packets” requesting content and receives a response as “Data

packet” from the producer. Both these packets are stored in

the NDN router for some time in Pending Interest Table (PIT)

and Content Store cache, respectively. NDN routers forward

packets using information from their Forwarding Information

Base (FIB) and if an Interest arrives for a Data packet that

is stored in the router’s Content Store, the request is directly

served from the cache. NDN can improve video streaming

application performance due to its in-network caching and

multi-path forwarding capabilities [36]. Obviously, the in-

network caching characteristics of NDN are well-suited for

live streaming events like the Superbowl or the FIFA Worldcup

final, where the same content is requested by many viewers

simultaneously (potentially in geographic proximity). Since

NDN requires the replacement of the Layer 3 protocol, the

immediate widespread adoption of this new approach is dif-

ficult. Experiences with the long and painful rollout of IPv6

and some new TCP flavors, which all require changes in the

operating systems of virtually all nodes (routers and hosts) in

the Internet, have clearly shown how cumbersome this process

can be as well.

Motivated by these past experiences, we design, implement,

and evaluate an approach that can transparently choose and

adapt to multiple internet architectures (TCP/IP and/or NDN).

This requires a portable, flexible and an easy to configure

system that can be easily deployed on a variety of hard-

ware platforms and dynamically adapt to application and

network demands. To achieve this goal, our approach employs

Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) [5] for network virtualization. Further,

our approach is based on operating system virtualization

as offered by Platform-as-a-Service container systems like

Docker [3] or Singularity [17]. Such an approach bears the

benefit that a particular application can run in a container with

a completely pre-configured environment that does not require

any user administration. Also, this bypasses the requirement

for widespread replacement of the Layer 3 protocol in the case

of NDN. Previous work [43] focused on the implementation

of network elements that could support alternative Internet

protocol stacks parallelly, allowing the clients to stream videos

over both TCP/IP and NDN. However, our work presented in

this paper focuses on the following new contributions:

1. Hybrid architecture with end-to-end approach serving
miscellaneous viewing experiences over a multi-tier network
infrastructure: We analyze our hybrid infrastructure over

traditional IP with respect to live video streaming experience.

This end-to-end approach supports transparent architecture

selection all the way to the application running on end systems.

2. A QoE analysis on live streaming with NDN & IP: With

148

2021 IEEE International Symposium on Multimedia (ISM)

978-1-6654-3734-9/21/$31.00 ©2021 IEEE
DOI 10.1109/ISM52913.2021.00032

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ul
tim

ed
ia

 (I
SM

) |
 9

78
-1

-6
65

4-
37

34
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
M

52
91

3.
20

21
.0

00
32

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

the focus to optimize user’s QoE, we inspect the following:

• Average bitrate & bandwidth utilization by NDN and IP

clients.

• The effect of caching on live streaming QoE.

• Existing drawbacks due to the way ABR algorithms work

with NDN on user’s QoE.

• Performance evaluation of NDN vs. IP clients accross

server and client-side bottlenecks.

To summarize, this paper proposes a hybrid setup that is

flexible to the network as well as the underlying physical layer

such that it simultaneously supports multiple Internet architec-

tures for better QoE in an ABR application. Furthermore, with

our detailed QoE analysis, we justify using NDN along with

our hybrid setup to improve live video streaming experience

with minimal end-user involvement.

II. SDN AND NFV SUPPORT FOR PARALLEL LIVE VIDEO

STREAMING

The inherent caching properties of NDN have proven to

support live streaming applications well [43]. However, to

benefit from this improvement, significant changes throughout

the network have to be performed to support NDN including

installation at end systems. Hence, we propose a hybrid

approach where clients can stream videos over both IP and

NDN without needing NDN kernel support on hosts or fully

replacing the TCP/IP protocol stack with NDN. We achieve

this by utilizing virtualization techniques for standalone NDN-

based container applications that can run on any client host

supporting containerization. Further to enable the parallel

support of IP and NDN protocol stacks, we combine SDN

and NFV. Our primary goal is to build and evaluate an

environment that can utilize the benefits of both these network

architectures simultaneously in the domain of video-streaming

while optimizing resource use and user experience. In that

context, we present a brief overview on Live streaming with

NDN and network components that enable flexible hybridity

of our architecture.

Fig. 1: SDN-NFV setup in an intermediate router

A. NDN and Live Streaming

NDN provides a set of features that are well-tailored for

live streaming. Especially, the feature to cache content at each

router (even if only small amounts can be cached compared

to a CDN or web cache) supports live streaming where the

same content is requested simultaneously by many viewers

that might have a high degree of geographical locality. This

essentially creates an efficient multicast mechanism. Thus,

many user requests can be served from a router in the

network instead of the origin server or a CDN edge server.

Opposed to the traditional IP case where content sources

are less diversified, in the case of NDN, DASH segments

may come from various sources (a data publisher that is

closest to the consumer, an in-network cache, and so on),

when multiple sources are available. Additionally, each DASH

segment will be chunked into multiple NDN Data packets that

are 8800 Bytes in size (by default, the size of the packets

is configurable). These Data packets may come from various

sources as well. Further research is needed to create congestion

control algorithms that can take into account this heterogeneity

of Data sources in NDN [33].

The advantages of NDN for efficient delivery of video

streams have been investigated in works such as [10] and

[37], which make ICN-based protocols a likely candidate for

the transport of live video. While the general feasibility of

supporting live streaming with NDN has been demonstrated

earlier [43], the approach in this paper focuses on providing

transparent solutions that do not require users’ involvement

to configure the underlying network technology. Additionally,

this paper provides a much more detailed evaluation of live

video streaming based on our hybrid streaming architecture.

B. Network Devices

We have chosen an SDN supported NFV approach for the

network device design that handles IP and NDN traffic in an

isolated and adaptive fashion. This architecture enables flexible

topology setup and efficient resource use. In addition, it can be

easily extended to support other network layer protocols (e.g.,

IPv6 or IPSec). In our particular use case, this architecture is

used to dynamically configure customized hybrid routers that

simultaneously support IP(v4) and NDN. In this architecture,

SDN is used to internally (within the device) direct traffic

from the physical network interface to the respective virtual

interface of the respective router. This is realized by running

openvswitch [30] (OVS) on the Host OS of the node. An

SDN controller implements these rules for isolating NDN

from IP traffic in the OVS-based SDN switch as shown in

Figure 1. While we use a centralized OpenFlow controller

in our prototype, the architecture is designed such that any

type of controller architecture (centralized or distributed) can

be supported. Furthermore, our architecture reduces resource

utilization in the case of live-streaming as we do not need

client machines with NDN-supported kernels as we only need

hosts that can run NDN-based container applications whenever

live-streaming is requested.

149

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

III. EVALUATION SETUP

Fig. 2: Topology for our Evaluation setup

A. Experimental Setup

In this section, we describe the components of the architec-

ture we employ for the evaluation of our approach.

Topology: Figure 2 shows the topology used for the evalua-

tion experiments, which consists of a server, three intermediate

routers (OpenFlow enabled), six Ubuntu clients, and a cen-

tralized SDN controller. The server node contains the videos

being served for live streaming. The clients can be classified

as an NDN client or IP client depending on which Internet

architecture is being used by the client node for streaming.

We chose this topology as we wanted to evaluate tiered cache

effects amongst NDN clients in comparison with traditional

IP clients.

We implemented this topology on the Cloudlab testbed [6]

which offers bare metal servers providing flexibility to config-

ure individual nodes exactly to our needs. CloudLab supports

reproducibility, allowing us to share the complete setup and

make the execution and outcome of our evaluation repeatable

by other researchers. The decision to use a testbed for our eval-

uation instead of using a simulation or emulation environment

like ndnSIM [21] or Mininet [12], respectively, came from the

consideration that the latter would abstract several important

factors that have an impact on the overall performance of our

approach.

Network Setup: Figure 2 shows the available bandwidth

at each link interface. We employ traffic control (tc) [7]

to enforce the maximum bandwidth limits and the share of

bandwidth that is available for NDN and IP traffic. Prelim-

inary experiments revealed that TCP saturates the available

bandwidth quickly due to highly optimized congestion con-

trol, slowing down NDN transfers. On the contrary, NDN

is implemented in the application layer and currently lacks

sophisticated congestion control mechanisms. If not mentioned

otherwise, the link between Server and Router1 is shared

equally between IP and NDN traffic. For the virtualized NDN

routers (running on the physical router nodes 1-3 in Figure 2)

the cache size was varied between 0MB, 250MB, and 500MB.

As we will see in the case of server-side and client-

side bottleneck experiments in Sects. IV-B1 and IV-B4, the

chosen bottlenecks were 5Mbps to serve upto 20 clients and

10Mbps to serve 5 clients, respectively. In the server-side

scenario, this was done to maintain the proportionality of a

limited bandwidth to multiple customers. In the case of client-

side bottleneck,the highest quality segment in our dataset is

4.2Mbps. To serve 5 clients at highest quality, a bandwidth

of 21 Mbps would be required, hence the bottleneck is set to

10 Mbps. In other words, these bottleneck bandwidth numbers

were chosen keeping proportionality with real world in mind

and not the absolute values themselves.
Virtualization: As introduced in Sect. II, network virtu-

alization is implemented using a combined NFV-SDN setup,

whereas containers are used for application-level virtualization

in the case of NDN live streaming clients. The Kernel-based

Virtual Machine (KVM) hypervisor is used at the routers

to handle IP and NDN traffic separately and in an isolated

fashion. Figure 1 shows the virtualized network configuration

of Routers 1-3. The physical layer 2 links of the host are

mapped to the virtual interfaces of the internal VMs via

OpenVswitch [30], which is managed by the SDN OpenFlow

controller. Internally in the router, the traffic is routed from

the server to client nodes via these virtual VM interfaces at

the intermediate routers.
Using this approach, the controller uses the EtherType field

(0x8624 for NDN, 0x0800 for IPv4) of an incoming frame to

determine which virtual interface it has to be forwarded to.

As shown in Figure 1, an incoming IP packet on interface

eth1 would be forwarded to virbr5, while an outgoing NDN

packet from virbr4 would be forwarded to eth4. More details

on this configuration can be found in [43]. At the client side,

Docker containers [23] are used for the NDN live streaming

application. For the networking aspect of our containers,

we used Docker macvlan networks [4] that connect each

container’s virtual interface to a host’s physical interface. This

also lets us monitor and regulate the traffic at Layer 2, which

is needed for the NDN clients.

Fig. 3: Effect of increasing clients on CPU Load and Rebuffer-

ing percentage.

Deciding the number of NDN containers per host: For

the large scale experiment scenarios we describe in Sect.IV,

using one physical node per client would have required a

total of 65 physical nodes. Due to resource limitations of

the CloudLab testbed, using such a large number of physical

nodes is not feasible. Therefore, we had to resort to run

several NDN containers on the same physical nodes. We ran

experiments to decide how many clients we could safely run on

each physical node. We ran a series of experiments where we

constantly increase the number of containers (NDN) running

on a physical node. We start with a single client streaming

over NDN and monitor the CPU load during the process as

150

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

well as the resulting Rebuffering percentage (see Sect. III-C

for the definition of the metric). This experiment is then scaled

up to ten clients and we observe an increase in the Rebuffering

percentage along with CPU load, as shown in Figure 3. While

both metrics increase with an increase in the number of clients,

the Rebuffering percentage observed for the case of five NDN

container-based clients per physical node is only 0.01%. The

other QoE metrics (e.g., Spectrum and QS) show the same

behavior though we do not include them for brevity. Since

five clients do not significantly affect the QoE, we decided

to run five NDN containers per physical host for most of our

large-scale experiments.

Video: For our evaluation, we made use of the Big Buck

Bunny video [13], which is encoded in the DASH/AVC format

and supports up to 14 different quality bitrates. We use this

well-known encoding format for our basic dataset that has

been used in many works in the past. More recent encoding

formats like HVEC would also work with our approach since it

is encoding format agnostic, as long as there is MPD support

for the latter. It should also be noted that the same data is

compared across IP and NDN, hence the data itself or its

encoding type, is of less importance with the respect to the

comparative performance evaluation.

Video Server: Since DASH is employed as the streaming

technique in this work, we use a regular web server (vanilla

Apache2) for IP-based streaming. For NDN, the live-streaming

content needs to be named down to the granularity of a DASH

segment’s quality, which can be achieved with minimal effort.

For a given video “v” whose DASH segment “n” is of quality

“q”, the segment is named as “<ndn prefix>/<v>
<q> <n>.m4s.” This content is served using ndn-python-

repo [16] which creates a repository at the server containing

the DASH video segments in their respective quality levels.

Combined with ndncatchunks [29] on the client-side, it deliv-

ers data based on content names. ndncatchunks implements a

TCP CUBIC-like [11] congestion control algorithm that can

adjust the data transfer rate based on the observed network

conditions (e.g., congestion, packet loss).

Video Client: For the streaming client, we use a python-

based video streamer, AStream [14] that supports multiple

DASH adaptation algorithms. Here, AStream uses HTTP li-

braries and ndn-python-repo combined with ndncatchunks to

download video segments over IP and NDN, respectively.

We selected BOLA [42] as the bitrate adaptation algorithm.

We choose BOLA because it is a near-optimal state-of-the-

art adaptive bitrate streaming algorithm for our player at the

client and is also a part of the DASH reference player [41]. As

long as the same ABR algorithm is used by NDN and IP for

comparative analysis of the QoE, we can always use alternate

ABR algorithms with this setup in the future.

B. Live Streaming

Since our focus is only on the streaming part, we ignore

the production process of live content and only focus on the

content delivery. For the evaluation of our approach, we use the

Big Buck Bunny video as described in Sect. III-A, where only

the very first client starts requesting segments from the very

beginning of the video. We specify that this first request occurs

at t0. We log this time at the video server and once a request

from a new client arrives (e.g. at t = t1), we determine the

starting segment for that client as (t1 − t0)/segmentlength.

For example, if the first client starts requesting t0 = 0 seconds

and the next client request is received at t1 = 10 seconds and

we assume a video segment length of 2 seconds, then the

second client is served the video from segment 5 onwards. To

allow the client to determine the correct starting segment, this

information is transmitted from the server to the client in the

dynamic MPD file.

C. Metrics

Since one of our goals is to optimize QoE , we use the

following metrics that are widely accepted as good represen-

tations for viewers’ perceived quality. (a) Average Quality
Bitrate (AQB): One of the objectives of quality adaptation

algorithms is to maximize the average quality bitrate of the

streamed video. For a comprehensive QoE representation, we

need to combine this metric with the Number of Quality
Switches. (b) Number of Quality Switches (#QS): This

metric is used together with AQB to draw quantitative conclu-

sions about the perceived quality (QoE). For example, for two

streaming sessions having the same AQB, the session with

the lower #QS will be perceived better by the viewer. (c)
Spectrum (H) [49]: This metric is a centralized measure for

the variation of the video quality bitrate around the average

bitrate. A lower H indicates better QoE. (d) Rebuffering
percentage (RB): The average rebuffering percentage is given

by RB = E
[
ta−te
te

]
%, where ta is the actual playback time

and te is the entire video length in seconds.

IV. EVALUATION RESULTS

The aim of this paper is to present the feasibility and benefits

of our hybrid network model over a traditional IP-based one

with respect to live video streaming. Additionally, we also

make a case as to why NDN should be favored over IP in

live streaming scenarios. In this light, the results show that

our hybrid model achieves higher bitrate as NDN achieves

overall higher bandwidth utilization than traditional TCP/IP.

Followed by this, we observe that improvement in certain

QoE metrics for NDN live streaming clients increases with

increasing cache size but not indefinitely. Finally, we identify

drawbacks of implementing adaptive streaming with NDN

leading to oscillation effects as well as suggest improvements

to overcome them and make a case for improved QoE by NDN

over IP even with client-side bottleneck. In order to make

these evaluations, we carried out small as well as large-scale

experiments on the hybrid model that also tests the scalability

and robustness of our approach. It should be noted that for

each experiment, all clients start streaming at the same time

and the reported results were accumulated from an average of

10 streaming sessions.

Experiment I: Small-Scale This scenario serves as a baseline

in observing the impact of increasing clients (running on a

151

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1
C

D
F

NDN(Cache=500MB)
IP

0 50 100
No of quality switches

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

0 0.5 1
Rebuffering [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

0 1000 2000 3000
Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

Fig. 4: Cumulative Distribution Functions for QoE metrics for the case of 4 NDN and 4 IP clients.

0 0.5 1 1.5 2
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 50 100
No of quality switches

0

0.2

0.4

0.6

0.8

1
C

D
F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 5 10 15 20
Rebuffering Ratio [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 1000 2000 3000
Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

Fig. 5: Cumulative Distribution Functions for QoE metrics of 20 NDN client cases with varying cache sizes. Case A: NDN

cache size 0MB; Case B: NDN cache size 250MB; Case C: NDN cache size 500MB

single physical node) on the overall QoE. For this initial small-

scale evaluation of our approach, we run one NDN streaming

client application in a docker container on each of the four

physical client nodes (one container per node as shown in

Fig. 2), while two IP-based streaming applications runs on

each of the two physical client nodes (two per node).

Experiment II: Large-Scale For this set of large-scale exper-

iments, we evaluate the following setups:

a) 20 NDN & 20 IP: Here, we increase the number of clients

to 20 . Since we cannot increase the number of physical nodes

in the topology, we have to run 20 IP clients on two physical

nodes (10 on each) and 5 NDN containers on four physical

nodes, each (see Fig.2). Apart from the QoE analysis, we chose

this setting to also study i) the effect of varying cache sizes

(0, 250MB, 500MB) on the performance of NDN clients and

ii) compare the performance of NDN and IP clients when the

bottleneck is on the client-side instead of server-side.

b) 40 NDN & 20 IP: Further testing the scalability, the

number of NDN clients is increased to 40. This increase is

motivated by the assumption that popular live streaming events

will be watched by many viewers (almost in a flash crowd

style) putting additional stress on the system. To adjust for

the imbalance between the number of NDN and IP clients, we

adjust the bandwidth allocation on the 10Mbps link between

the server and Router 1. As explained in III-A, this number

was chosen to study the effect of limited server-side bandwidth

on midgress traffic. For this experiment, we allocate 2/3rd
of the bandwidth to NDN sessions and 1/3rd to IP sessions

(proportional to the number of clients of each type).

The average QoE metrics for all experiments are shown in

Table I. In this table, we present the Rebuffering percentage,

#QS, average bitrate and spectrum reported across 10 stream-

ing sessions for experiments I, IIa & IIb. In optimizing the

viewer’s QoE, a higher avg. bitrate and lower Rebuffering

percentage, #QS and spectrum is preferred. More detailed

analysis on these results are discussed in the next sections.

The CDFs for QoE metrics for Experiments I, IIa & IIb are

presented in Fig. 4, 5 and 6 respectively.

With respect to the end-to-end video-streaming architecture,

this work focuses on the subset of this architecture from post

video-processing to the distribution to the viewers. Henceforth,

we do not regard the latency from video capture (camera or

camera set at a live event) to making segments available on the

video server in our evaluation. To estimate latency differences

between IP and NDN clients between the central server and

end-client, we compare the download time differences for

identical content with Experiment IIa ’s 500MB cache setup.

The average difference amounts to less than 3% where NDN

clients take 40ms more time than IP to download the same

content. This difference can be further reduced with more

cache hits and further code optimization (in the case of NDN)

leading to reduced download times and thus reduced latency

difference.

A. Hybrid Streaming Architecture Analysis

Our hybrid model has the flexibility to stream videos over

multiple network types without affecting each other adversely.

On top of providing this benefit, the overall impact on QoE

also needs to be investigated. This evaluation allows the

comparison between an IP-only scenario and a mixed NDN/IP

scenario (as presented in experiments I & II). For IP-only case,

we run 40 IP live streaming clients. Similar to NDN clients in

the hybrid setup, half of the 40 IP live streaming clients also

run in a container. Table II shows the average QoE metrics for

the IP-only case and the NDN/IP case. For a fair comparison

with cache-less IP, the cache size at the NDN routers was set

to 0MB in this experiment. As can be seen from the table,

152

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1
C

D
F

NDN(Cache=500MB)
IP

0 50 100
No of quality switches

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

0 10 20 30
Rebuffering Ratio [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

0 1000 2000 3000
Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN(Cache=500MB)
IP

Fig. 6: Cumulative Distribution Functions for QoE metrics for the case of 40 NDN clients and 20 IP clients.

NDN live streaming performs better with respect to average

bitrate, even if no caching is performed. NDN uses the Pending

Interest Table (PIT) to aggregate all duplicate requests that

are temporally close. When data comes back, all requester

receives the same copy of the data, creating an inherent

multicast mechanism. We attribute the improved performance

to this inherent multicast characteristics that complement live

streaming scenarios well. However, this bitrate enhancement

is accompanied with increased #QS, Spectrum & Rebuffering

Ratio. We address the cause and solution to this drawback in

the next section.

B. Live Streaming with NDN vs. IP

This section first analyzes the benefits of using NDN for

live video streaming over IP due to its in-network caching

capabilities. We further study the effect of increasing the cache

size of NDN clients with respect to QoE. After discussing the

benefits, we analyze the drawbacks of using NDN in corre-

lation to live video streaming and suggest possible solutions.

Finally, we show that with our suggested improvements, NDN

outperforms IP across all QoE metrics with server-side as well

as client-side bottlenecks.

1) Higher bitrate & bandwidth utilization by NDN

NDN clients report higher average playback bitrate across

all experiments as can be observed from the corresponding

column in Table I and their respective CDFs (Figures 4, 5, 6).

While throughput for NDN traffic is limited to 5Mbps (50%

of the 10Mbps link between server and Router 1) in ex-

periments I & IIa, the combined average bitrate is almost

double (4*2.48=10Mbps) or higher (20 * 0.67=13.4Mbps),

respectively. Similar conclusions can be drawn from exper-

iment IIb results. As cumulative avg. bitrate increases with

increasing clients, this confirms our hypothesis that NDN

benefits live streaming scenarios due to its inherent in-network

caching and improved handling of potential NDN segment

retransmissions. In comparison, the cumulative average band-

width for IP clients for both experiments stays slightly below

(4*1.18=4.72Mbps, 20*0.24=4.8Mbps) the allotted 5Mbps
on the link between server and Router 1.

Motivated by NDN consistently reporting higher avg. bi-

trate, we also report bandwidth utilization by NDN versus IP

streaming clients. If we define bandwidth utilization as the

percentage of average playback bitrate per client for bottleneck

bandwidth allotted per client, then NDN utilizes up to 505% of

the available bandwidth (40*0.84=33.6Mbps out of 6.67Mbps)

whereas IP only utilizes up to 96% (20*0.16=3.2Mbps out

of 3.33Mbps) of it in the best case scenario (computed

from experiment IIb results). Thus, indicating NDN’s superior

bandwidth utilization over IP across all scales. This clearly

demonstrates the scalability and the benefits of using NDN

for live streaming applications.

TABLE I: Average QoE metric results from streaming sessions

accross different experiment setup

Scenario Rebuf % #QS Avg. bitrate Spectrum

Exp I: 4 NDN, 4 IP, 50/50 BW split, 500MB Cache
NDN 0.1 43.7 2.48 1220.0
IP 0.0 33.3 1.18 637.9

Exp IIa: 20 NDN, 20 IP, 50/50 BW split, 0MB Cache
NDN 1.98 54.6 0.40 745.8
IP 0.1 24.0 0.24 304.1

20 NDN, 20 IP, 50/50 BW split, 250MB Cache
NDN 2.07 73.3 0.75 977.6
IP 0.15 23.8 0.24 302.2

20 NDN, 20 IP, 50/50 BW split, 500MB Cache
NDN 2.5 78.0 0.67 1077.5
IP 0.12 22.2 0.24 287.4

Exp IIb: 40 NDN, 20 IP, 66/33 BW split, 500MB Cache
NDN 3.47 66.8 0.84 979.1
IP 0.3 21.8 0.16 268.6

TABLE II: Average QoE for IP-only and NDN/IP case.

Scenario Rebuf % #QS Avg. bitrate Spectrum

20 IP, 20 IP, 50/50BW split
IP 0.37 22.62 0.24 292.16

20 NDN, 20 IP, 50/50 BW split, 0MB Cache
NDN 1.04 39.31 0.32 524.97

2) Effect of caching

In this section, we present the effect of varying cache

sizes for NDN clients in large-scale scenario (experiment

IIa). Comparing the results for the three different cache-

sizes, we make three major observations. First, increasing

the cache size beyond 500MB does not lead to a further

increase in QoE. Even the increase from 250MB to 500MB
results in marginal improvement of the QoE metrics. Second,

the rebuffering percentage is almost identical for all three

cases (see Figure 5), but slightly increasing #QS indicating

interdependence between these QoE metrics. Third, as shown

in Figure 5, the #QS metric is lowest for the 0MB cache

and increases for the 250MB and 500MB cache cases (with

negligible differences between the two cases). Compared to

IP, the #QS metric is higher for all three caching scenarios

153

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2 2.5
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1
C

D
F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B

0 50 100
No of quality switches

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B

0 5 10 15 20
Rebuffering Ratio [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B

0 1000 2000 3000
Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B

Fig. 7: Cumulative Distribution Functions for QoE metrics for the case of limited playback bitrates. Case A: NDN chooses

from 4 qualities & IP from 14. Case B: Both NDN & IP choose from 14 qualities

Layer 3 protocol Rebuff% #QS ABR Spectrum Hit-Rate at Router1 Hit-Rate at Router2 Hit-Rate at Router3

NDN (14-qualities) 2.5 78.0 0.67 1077.5 0.05 0.12 0.11
IP 0.12 22.2 0.24 287.4 NA NA NA

NDN (4-qualities) 0.05 6.5 1.17 62.26 0.19 0.30 0.36
IP 0.13 22.62 0.24 288.98 NA NA NA

TABLE III: Avg. QoE and hit-miss ratio at respective caches for Livestreaming on NDN with 14 qualities vs. 4 qualities

and the difference to NDN is larger than in the small-scale

scenario. From the large-scale scenarios in Table I we observe

that #QS goes up in NDN and down in IP. In the next section,

we explain the reason behind this with a hypothesis as well

as proposed solutions.

3) Effect of Oscillation effect on Rebuffering, #QS & Spec-
trum: Causes & Solution

Examining the additional QoE parameters shows that the

increased playback bitrate in the NDN case comes with the

trade-off of increases in quality switches and spectrum. While

the rebuffering percentage stays comparable to the IP scenario

in small-scale results (experiment I), it increases in comparison

with IP for large-scale cases (experiment IIa & b). This

increase might have a negative impact on the viewer’s QoE

that can outweigh the positive impact of an increased playback

bitrate. Hence, in this section we try to find the underlying

cause and plausible solutions to this observed problem.

Cause/Hypothesis: First, higher #QS in NDN as opposed to

IP can in part be explained by examining the average band-

width available to each IP client on the bottleneck link. In the

case of 20 IP clients the average bandwidth is 0.25Mbps per

client. This bandwidth is only sufficient to stream the lowest

4 out of 14 playback bitrates (0.08Mbps, 0.13Mbps,
0.17Mbps, and 0.22Mbps). For NDN live streaming

with 250MB cache size, the average bitrate is 0.75Mbps,

which is sufficient to stream the 7 lower playback bitrates. This

clearly demonstrates higher opportunities for bitrate quality

changes in NDN as opposed to IP. Second, we conjecture that

some of the decreases in QoE are caused by the interplay

of ABR streaming and NDN. As presented by Grandl et al.

[9], the potentially random placement of video segment on

either the server or the caches can lead to so-called “oscillation

effects”. For example, if a client receives a video segment in

low quality from a cache, the measured download rate might

be high. Based on this observation, the ABR algorithm at the

client (BOLA [42]) might decide to request the next segment

in a higher quality. If this segment is currently not stored at

the cache, the client has to retrieve the segment from the

server and most likely experiences a lower download rate.

This results in the client requesting the next segment at a

(much) lower quality. This alternate retrieval of segments from

server or cache can happen several times during a streaming

session leading to increased #QS and spectrum in the case of

NDN. Furthermore, these suspected oscillation effects caused

by potential low hit rates on the caches lead to lower download

rates and hence the higher rebuffering percentages. This led us

to further investigate the effect of available bitrates on cache

hit-ratios causing potential ”oscillation effects” affecting QoE.
Confirmation: To gain more detailed correlation between

higher available bitrates (in the case of NDN), the oscillation

effect caused by low cache hit-rates and the resulting QoE

(#QS, spectrum & Rebuffering percentage), we first analyze

the hit rate (per NDN segment) on the three routers (1-3)

used in the topology for these experiments. In an additional

experiment for the 20NDN/20IP client case, we set the cache

sizes on all three routers to 2GB (large enough to cache all

DASH segment in all playback bitrates of the video which

totals to 1.8GB). We observed that the hit rates, surprisingly,

do not increase with an increase in cache size and are

consistently low. Reported hit-rates were 0.07,0.11 and 0.14

for 250MB caches, 0.05,0.12 and 0.11 for 500MB caches and

0.06,0.15 and 0.15 for 2GB caches in Router1, Router2, and

Router3, respectively. The most probable reason behind low

hit rates would be that all 20 NDN clients request a very

disjunct set of qualities for individual DASH video segments

(keep in mind that every segment is available in fourteen

different bitrates (see Sect. III-A)). Our hypothesis is further

strengthened by the observation that with a maximum of

fourteen qualities available, NDN clients requested up to seven

different qualities for a given DASH segment and an average of

five different qualities for all DASH segments. This seemingly

high variation in requested qualities results in low hit rates.

With ten clients connected to Routers 2 and 3 each, almost

every client requested a different quality per DASH segment.
Solution: Based on these observations, we reduced the avail-

154

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

1 1.5 2 2.5
Playback Bitrate [Mbps]

0

0.2

0.4

0.6

0.8

1
C

D
F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 10 20 30 40 50
No of quality switches

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 0.5 1 1.5
Rebuffering Ratio [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

0 500 1000 1500
Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

NDN: Case A
IP: Case A
NDN: Case B
IP: Case B
NDN: Case C
IP: Case C

Fig. 8: Cumulative Distribution Functions for QoE metrics with client-side bottleneck. Case A: NDN chooses from 4 qualities

& IP from 14. Case B: Both NDN & IP choose from 14 qualities. Case C: Case B with 1% packet loss

able playback bitrates from fourteen to four (0.08Mbps,
0.22Mbps, 0.79Mbps, and 1.24Mbps)for NDN

live streaming and conducted an experiment with 20 NDN and

20 IP clients (similar to Experiment IIa in Sect. IV) and cache

sizes set to 500MB at the routers. The IP clients are still able

to select from all fourteen playback bitrates. We observe that

the number of distinct qualities were much lower. Previously

with fourteen bitrates, mode for the distinct qualities requested

per DASH segment was five and a maximum of seven distinct

qualities. But with four available bitrates, the mode reduces to

one with a maximum of three distinct qualities requested by all

NDN clients. More importantly, this resulted in higher hit rates

as reported in Table III. Figures 7 and Table III further confirm

our hypothesis that the reduction of available qualities has a

significant impact on QoE. From the CDF graphs in Figure 7,

we observe that when NDN chooses from 4 qualities, it

results in higher playback bitrate, lower quality switches, lower

rebuffering percentage and spectrum as compared to when

NDN chooses from more available qualities(In our case, 14).

Furthermore, when NDN clients choose from lower available

bitrates, it outperforms IP clients (as can be seen from the CDF

grpah both in Cases A & B) in terms of QoE. Additionally

from Table III, the comparison of NDN with fourteen available

qualities to the case with only four available qualities shows

that #QS is significantly reduced while the playback bitrate

is increased for the four-quality case. A similar improvement

can be observed for the rebuffering ratio and the spectrum as

an effect of reduction in the #QS. These results conclusively

show that with suggested modifications, NDN outperforms IP

across all QoE metrics.

Clearly, the selection of the playback bitrate for NDN live

streaming was informed by the results presented in Sect. IV-B1

and Table I. With an average bitrate of 0.67Mbps in the

case of 500MB cache size, selecting playback bitrates was

straight-forward. To make such an approach feasible for an

actual system, an approach could be implemented that collects

the average client bandwidth and adapts the playback bitrates

that are advertised in the MPD file once a sufficient amount

of data has been collected.

4) NDN vs. IP with client-side bottleneck

Our motivation to enforce a server-side bottleneck so far was

to observe how the architecture responds to reduced midgress

traffic. Obviously, the last hop to the client can also be a

bottleneck (especially in mobile scenarios). Hence, a compar-

ative QoE analysis of NDN and IP clients streaming over a

network with client-side bottleneck is also required to give

a more wholesome idea about NDN’s superior performance

with live-streaming. To further study such a scenario, we

increased the bandwidth of the server side link (see Figure

2) to 1Gbps and added a client-side bottleneck of 10Mbps.

For equal distribution of resources and a fair comparison, 5

clients were run on each node (both IP and NDN) and all

nodes were connected to routers 2 & 3 with 10 Mbps links.

As Figure 8 shows, NDN outperforms IP across all QoE

metrics with 4 as well as 14 qualities. Even though the caching

is limited with this client-side bottleneck, NDN still benefits

from it as well as from its inherent nature of multicast and

retransmissions to the nearest cache. It is also interesting to

note that contrary to the results shown in Figure 7, QoE for

14 qualities is more comparable to the one with 4 qualities

(0.08Mbps, 0.79Mbps, 1.55Mbps, and 2.48 Mbps) around an

ideal average of 2Mbps. In this case, the bottleneck at the

last hop dampens the oscillation effect. The bitrate is slightly

increased in the case of 14 qualities because of more available

qualities which in turn slightly worsens #QS, spectrum, and

rebuffering percentage. In the event of loss, it is intuitive that

the QoE will be lower than in the lossless cases. However,

Figure 8 shows that NDN still outperforms IP with respect

to all QoE metrics besides the spectrum due to increased

magnitude of variability with 14 qualities.

V. RELATED WORK

A. CDNs and NDN

To accomplish large-scale live streaming, CDN providers

need to work around several limitations of the TCP/IP archi-

tecture such as lack of native IP multicast support, lack of

support for caching at the network layer, and more. NDN,

on the other hand, provides several desirable properties for

live streaming such as in-network caching, multicast, and

failure resiliency. These properties can be utilized for live-

streaming - both inside a CDN infrastructure and user-based

live streaming. A CDN can certainly deploy several NDN

based live-streaming servers inside its infrastructure that will

work in parallel with existing IP-based streaming mechanisms.

Previous work by Ghasemi et al. [8] compared an NDN based

video streaming solution deployed on the NDN Testbed with

155

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

two well-known CDNs, Akamai and Fastly. While this work

did not attempt a hybrid solution, it showed NDN can reduce

origin workload compared to traditional CDNs. Another work

by Thelagathoti et al. [45] demonstrated that NDN deployment

inside a CDN infrastructure will help with efficient data

retrieval and improve QoE.

B. SDN, NFV, and NDN

Several works have highlighted the benefits of an architec-

ture that integrates SDN with NFV [5], [22]. For instance, the

agility this integration provides to infrastructure and network

service design can be very desirable for any dynamic and

scalable architectural framework [28]. NFV and SDN com-

bined have revolutionized network architectures that are able

to cope with the continuous growth in data-traffic [26]. They

provide the ability to virtualize any network infrastructure

based on its requirements. Hence, the decision to use our SDN-

NFV setup. There has been work on SDN-NFV infrastructures

that handle heterogeneous network technologies (e.g., [20],

[46], [47]) but none of them compare multiple network stacks

and their performance. In [19], Mai et al. have implemented

NDN technologies with SDN-NFV support but the novelty of

our work lies in the heterogeneity of the network protocol

stacks as implemented in [43]. Performance analysis over IP

versus non-IP protocols [15] or specifically IP versus NDN

protocols [36], [38] have been executed before but not with

the design flexibility that comes with the benefits of SDN

programmability [43]. Kanada et al. [15] use virtual link

tunnels to encapsulate IP and non-IP packets whereas Satria

et al. [38] evaluate them separately and not in the context of

video streaming in a non-virtualized setup.

Several works have proposed translation between TCP/IP

and NDN so that they can coexist. Moiseenko et al. proposed

TCP over ICN where TCP traffic is converted into ICN

traffic [25]. Shannigrahi et al. proposed IPoC [40] where

TCP/IP traffic is encapsulated into NDN packets for transport.

Refaei et al. proposed an IP-ICN gateway that allows IP client-

server communication to operate seamlessly through an NDN

cloud [32]. Nour et al. [27] propose an approach that uses

NFV for ICN/IP hybrid routers that require predefining a

set of regions. On the contrary, we utilize layer 2 header

information to indicate different types of traffic that allows

us to differentiate between IP and NDN traffic in real-time

and decide whether to forward it to IP or NDN data source.

Several papers [18], [24], [34], [35] motivate the idea behind

using the NDN protocol for live video streaming. Mohammed

et al. [24] and Li et al. [18] realize NDN’s superiority as

compared to IP in live-streaming over wireless networks using

WiFi direct and WiFi’s built-in broadcast mechanism, respec-

tively. Samain et al. [36] and Rainer et al. [31] make similar

comparison of the dynamic adaptive streaming performance

on IP over NDN as shown in [43]. While Samain et al. [36]

experiments with different modes of NDN under wireless

loss detection recovery and load balancing state, our work

aims to provide the best user viewing experience leveraging

native NDN. Although on a different hybrid setup that runs

both the protocol stacks simultaneously, we also compare the

performance metrics of IP and NDN with respect to video

streaming. Our main motivation is to use this comparison to

build an architecture directed towards an optimal hybrid video-

streaming experience not explored before.

VI. CONCLUSION & FUTURE WORK

In this paper, we propose and show the benefits of a hybrid

and flexible streaming approach which supports multiple inter-

net architectures over a traditional IP approach for improved

QoE in live adaptive bitrate video streaming applications.

To achieve this goal our approach employs network and

containerization techniques. We present a detailed description

to demonstrate how SDN, NFV, kernel virtualization and con-

tainerization can be orchestrated to provide a hybrid and highly

scalable streaming architecture. We implement this setup in

the CloudLab testbed and perform an extensive performance

evaluation of our hybrid streaming approach. The evaluation

results demonstrate the profit in terms of average bitrate

and bandwidth utilization from our approach and reveal that

live streaming can be performed efficiently, is scalable, and

provides good QoE with the help of NDN. Using containers

for the NDN streaming clients provides a method that can

activate such clients without end user involvement. Counter-

intuitive to experience gained in the case of ABR streaming

over TCP/IP, we show that a reduced set of available playback

bitrates leads to better performance in the case of NDN-based

live streaming and outperforms IP-based live streaming under

both server and client-bottleneck conditions. We also show that

NDN-based live streaming behaves fairly to IP-based session

and does not negatively impact the QoE of these sessions. In

future work we plan to to develop new ABR algorithms that

are cognizant that NDN provides in-network caching. We will

also study if the approach of caching at the level of NDN

Segments is appropriate in the case of ABR streaming.

ACKNOWLEDGMENT

This work was funded by National Science Foundation

(NSF) grants CNS 19-01137, OAC-2019163, OAC-2126148,

and OAC-2019012. All opinions and statements in the above

publication are of the authors and do not represent NSF

positions.

REFERENCES

[1] S. H. Ahmed, S. H. Bouk, and D. Kim. Content-Centric Networks: An
Overview, Applications and Research Challenges. Springer Publishing
Company, Incorporated, 1st edition, 2016.

[2] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, et al. The
nebula future internet architecture. In The Future Internet Assembly,
pages 16–26. Springer, 2013.

[3] Docker. Docker. ”https://www.docker.com/”, 2020.
[4] Docker. Macvlan networks. ”https://docs.docker.com/network/macvlan/

”, 2020.
[5] Q. Duan, N. Ansari, and M. Toy. Software-defined network virtualiza-

tion: an architectural framework for integrating sdn and nfv for service
provisioning in future networks. IEEE Network, 30(5):10–16, 2016.

[6] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and

156

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

P. Mishra. The design and operation of cloudlab. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 1–14, Renton,
WA, July 2019. USENIX Association.

[7] L. Foundation. tc. ”https://linux.die.net/man/8/tc”, 2020.
[8] C. Ghasemi, H. Yousefi, and B. Zhang. Far cry: Will cdns hear ndn’s

call? In Proceedings of the 7th ACM Conference on Information-
Centric Networking, ICN ’20, page 89–98, New York, NY, USA, 2020.
Association for Computing Machinery.

[9] R. Grandl, K. Su, and C. Westphal. On the interaction of adaptive video
streaming with content-centric networking. In 2013 20th International
Packet Video Workshop, pages 1–8, 2013.

[10] P. Gusev, Z. Wang, J. Burke, L. Zhang, T. Yoneda, R. Ohnishi, and
E. Muramoto. Real-time streaming data delivery over named data
networking. IEICE Transactions on Communications, 99(5):974–991,
2016.

[11] S. Ha, I. Rhee, and L. Xu. Cubic: A new tcp-friendly high-speed tcp
variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation. In
Proceedings of the 8th International Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’12, page 253–264, New
York, NY, USA, 2012. Association for Computing Machinery.

[13] ITEC. Big buck bunny video. ”http://www-itec.uni-klu.ac.at/ftp/
datasets/DASHDataset2014/BigBuckBunny/2sec/”, 2020.

[14] P. Juluri. Astream. ”https://github.com/pari685/AStrea”, 2020.
[15] Y. Kanada and A. Nakao. Development of a scalable non-ip/non-

ethernet protocol with learning-based forwarding method. In 2012 World
Telecommunications Congress, pages 1–6, 2012.

[16] Z. Kong, X. Ma, Y. Zhang, Z. Zhang, D. Pesavento, S. Shannigrahi,
S. Dulal, and J. Shi. ndn-python-repo. ”https://github.com/UCLA-IRL/
ndn-python-repo”, 2020.

[17] LBL. Singularity. ”https://sylabs.io/docs/”, 2020.
[18] M. Li, D. Pei, X. Zhang, B. Zhang, and K. Xu. Ndn live video

broadcasting over wireless lan. In 2015 24th International Conference
on Computer Communication and Networks (ICCCN), pages 1–7, 2015.

[19] H. L. Mai, M. Aouadj, G. Doyen, W. Mallouli, E. M. de Oca, and
O. Festor. Toward content-oriented orchestration: Sdn and nfv as
enabling technologies for ndn. In 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pages 594–598,
2019.

[20] R. Martı́nez, A. Mayoral, R. Vilalta, R. Casellas, R. Muñoz, S. Pach-
nicke, T. Szyrkowiec, and A. Autenrieth. Integrated sdn/nfv orchestra-
tion for the dynamic deployment of mobile virtual backhaul networks
over a multilayer (packet/optical) aggregation infrastructure. IEEE/OSA
Journal of Optical Communications and Networking, 9(2):A135–A142,
2017.

[21] S. Mastorakis, A. Afanasyev, and L. Zhang. On the evolution of ndnsim:
An open-source simulator for ndn experimentation. SIGCOMM Comput.
Commun. Rev., 47(3):19–33, Sept. 2017.

[22] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob. Toward an sdn-
enabled nfv architecture. IEEE Communications Magazine, 53(4):187–
193, 2015.

[23] D. Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal, 2014(239):2, 2014.

[24] S. Mohammed and M. Xie. A measurement study on media streaming
over wi-fi in named data networking. In 2015 IEEE 12th International
Conference on Mobile Ad Hoc and Sensor Systems, pages 543–548,
2015.

[25] I. Moiseenko and D. Oran. Tcp/icn: Carrying tcp over content centric
and named data networks. In Proceedings of the 3rd ACM Conference
on Information-Centric Networking, ACM-ICN ’16, page 112–121, New
York, NY, USA, 2016. Association for Computing Machinery.

[26] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri. Sdn/nfv-
based mobile packet core network architectures: A survey. IEEE
Communications Surveys Tutorials, 19(3):1567–1602, 2017.

[27] B. Nour, F. Li, H. Khelifi, H. Moungla, and A. Ksentini. Coexistence
of icn and ip networks: an nfv as a service approach. In 2019 IEEE
Global Communications Conference (GLOBECOM), pages 1–6. IEEE,
2019.

[28] N. Omnes, M. Bouillon, G. Fromentoux, and O. L. Grand. A pro-
grammable and virtualized network it infrastructure for the internet of
things: How can nfv sdn help for facing the upcoming challenges. In
2015 18th International Conference on Intelligence in Next Generation
Networks, pages 64–69, 2015.

[29] R. Pauly, C. Ogle, C. Mcknight, D. Reddick, J. Presley, S. Shannigrahi,
and A. Feltus. NDN-TR68: Utilizing NDN for Domain Science
Applications - a Genomics Example - Named Data Networking (NDN),
Mar 2021. [Online; accessed 8. Mar. 2021].

[30] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The
design and implementation of open vswitch. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’15, page 117–130, USA, 2015. USENIX Association.

[31] B. Rainer, D. Posch, and H. Hellwagner. Investigating the performance
of pull-based dynamic adaptive streaming in ndn. IEEE Journal on
Selected Areas in Communications, 34(8):2130–2140, 2016.

[32] T. Refaei, J. Ma, S. Ha, and S. Liu. Integrating ip and ndn through an
extensible ip-ndn gateway. In Proceedings of the 4th ACM conference
on information-centric networking, pages 224–225, 2017.

[33] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang. Congestion control
in named data networking – a survey. Computer Communications, 86:1–
11, 2016.

[34] F. B. Rukmana and R. F. Sari. Performance evaluation of video
streaming application via named data network (ndn). In 2019 IEEE
Eurasia Conference on IOT, Communication and Engineering (ECICE),
pages 141–144, 2019.

[35] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun. Adaptive video
streaming with network coding enabled named data networking. IEEE
Transactions on Multimedia, 19(10):2182–2196, 2017.

[36] J. Samain, G. Carofiglio, L. Muscariello, M. Papalini, M. Sardara,
M. Tortelli, and D. Rossi. Dynamic adaptive video streaming: Towards
a systematic comparison of icn and tcp/ip. IEEE Transactions on
Multimedia, 19(10):2166–2181, 2017.

[37] J. Samain, G. Carofiglio, L. Muscariello, M. Papalini, M. Sardara,
M. Tortelli, and D. Rossi. Dynamic adaptive video streaming: Towards
a systematic comparison of icn and tcp/ip. IEEE Transactions on
Multimedia, 19(10):2166–2181, 2017.

[38] M. N. D. Satria, F. H. Ilma, and N. R. Syambas. Performance
comparison of named data networking and ip-based networking in
palapa ring network. In 2017 3rd International Conference on Wireless
and Telematics (ICWT), pages 43–48, 2017.

[39] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. Mobilityfirst
future internet architecture project. In Proceedings of the 7th Asian
Internet Engineering Conference, pages 1–3, 2011.

[40] S. Shannigrahi, C. Fan, and G. White. Bridging the icn deployment
gap with ipoc: An ip-over-icn protocol for 5g networks. In Proceedings
of the 2018 Workshop on Networking for Emerging Applications and
Technologies, pages 1–7, 2018.

[41] K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice:
Improving bitrate adaptation in the dash reference player. ACM Trans.
Multimedia Comput. Commun. Appl., 15(2s), July 2019.

[42] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
pages 1–9, 2016.

[43] B. Suresh, D. Bhat, and M. Zink. An evaluation of sdn and nfv
support for parallel, alternative protocol stack operations. In 2018 IEEE
International Conference on Communications (ICC), pages 1–7, 2018.

[44] I. Technical Report. Cisco Systems. Cisco. 2020. cisco visual networking
index (vni) complete forecast update. 2017 - 2022.

[45] R. K. Thelagathoti, S. Mastorakis, A. Shah, H. Bedi, and S. Shannigrahi.
Named data networking for content delivery network workflows. In 2020
IEEE 9th International Conference on Cloud Networking (CloudNet),
pages 1–7. 10.1109/CloudNet51028.2020.9335806, 2020.

[46] R. Vilalta, A. Mayoral, R. Casellas, R. Martı́nez, and R. Muñoz.
Experimental demonstration of distributed multi-tenant cloud/fog and
heterogeneous sdn/nfv orchestration for 5g services. In 2016 European
Conference on Networks and Communications (EuCNC), pages 52–56,
2016.

[47] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martı́nez.
Multitenant transport networks with sdn/nfv. Journal of Lightwave
Technology, 34(6):1509–1515, 2016.

[48] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang. Named data networking.
SIGCOMM Comput. Commun. Rev., 44(3):66–73, July 2014.

[49] M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded video in scalable
adaptive streaming. IEEE Transactions on Multimedia, 7(1):75–84,
2005.

157

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 18,2022 at 21:47:51 UTC from IEEE Xplore. Restrictions apply.

