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Abstract

There are currently no methods for the acquisition of ultra-wideline (UW) solid-state
NMR spectra under static conditions that enable reliable separation and resolution of overlapping
powder patterns arising from magnetically distinct nuclei. This stands in contrast to the variety of
techniques available for spin-1/2 or half-integer quadrupolar nuclei with narrow central transition
patterns under magic-angle spinning (MAS). Resolution of overlapping signals is routinely
achieved in MRI and solution-state NMR by exploiting relaxation differences between
nonequivalent sites. Preliminary studies of relaxation assisted separation (RAS) for separating
overlapping UWNMR patterns use pseudo—inverse Laplace Transforms have reported two-
dimensional spectra featuring relaxation rates correlated to NMR interaction frequencies.
However, RAS methods are inherently sensitive to experimental noise, and require that
relaxation rates associated with overlapped patterns be significantly different from one another.
Herein, principal component analysis (PCA) denoising is implemented to increase the signal-to-
noise ratios of the relaxation datasets and RAS routines are stabilized with truncated singular
value decomposition (TSVD) and elastic net (EN) regularization to resolve overlapped patterns
with a larger tolerance for differences in relaxation rates. We extend these methods for improved
pattern resolution by utilizing 3D frequency-R;-R; correlation spectra. Synthetic and
experimental datasets, including 33C1 (I = 3/2), H (I= 1), and '“N (/= 1) NMR of organic and
biological compounds, are explored with both regularized 2D RAS and 3D RAS; comparison of
these data reveal improved resolution in the latter case. These methods have great potential for

separating overlapping powder patterns under both static and MAS conditions.



Page 9 of 80

Physical Chemistry Chemical Physics

1. Introduction

High-resolution techniques are important for separation of overlapping patterns arising
from chemically and magnetically nonequivalent sites in solid state NMR (SSNMR) spectra,
leading to site-specific resolution and unambiguous spectral assignments. For spin-1/2 nuclei,
this includes techniques like phase-adjusted spinning sidebands,! magic-angle hopping,? and
magic-angle turning.? For quadrupolar NMR, techniques like multiple-quantum magic-angle
spinning (MQMAS),*> satellite-transition MAS (STMAS),® dynamic angle spinning (DAS),” and
double rotation (DOR)? are limited to resolving central transition (CT) patterns of half-integer
spin quadrupolar nuclei with relatively narrow pattern breadths, of which only a handful (e.g.,
1B, 170, 23Na, 2’Al) are routinely investigated. More recently, there have been additional
proposals for resolving wideline quadrupolar NMR patterns under MAS conditions;’~'? while
extremely useful, these techniques are limited in their application to ultrawide (UW) NMR
spectra with overlapping patterns, due to factors such as limited MQ or ST coherence generation,
complicated spinning-sideband manifolds, and/or challenges in precise magic angle settings.!3
Furthermore, few methods are helpful under static (i.e., no MAS) conditions at the present time.
Finally, in the case of integer spin NMR where MQMAS experiments are not necessary, high-
resolution spectra are difficult to obtain due to the need for extremely precise and stable magic
angle settings.!4-16

An alternative possibility for separating and resolving overlapping magnetic resonance
powder patterns is by relying on different site-specific magnetic resonance properties — for
instance, distinct spin relaxation, diffusion and/or dynamical behaviours. The spin evolution
defined by these properties is usually given by a basis set of time-dependent exponential

functions; hence, subjecting the resulting NMR signals to an inverse Laplace transform (ILT)!7~
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19 could serve to resolve the individual signals with these distinct properties. This is routinely
implemented in low-field NMR and in MRI, where diffusion and relaxation are prime contrast
mechanisms;?%-22 however, their routine use in SSNMR is rarer. Lupulescu et al. demonstrated
that relaxation assisted separation (RAS) could resolve relatively narrow, overlapping CT
powder patterns of half-integer quadrupolar nuclei, using a pseudo—ILT with a non-negative
least-squares (NNLS) fitting of the relaxation data.?3 Iijima and Shimizu implemented RAS for
static ZH NMR,?* while Boutis and Kausik used it for separating patterns influenced by chemical
shift anisotropy (CSA).?

We have extended RAS methods for resolving overlapped UW patterns,?® including those
exceeding 250 kHz in breadth due to large anisotropic NMR interactions,?’ using stabilized
solutions of the NNLS with Tikhonov regularization (Non-Negative Tikhonov Fitting — NNTF).
RAS measurements based on 7 and T-*f (i.e., effective T,) were thus used to resolve patterns of
both half-integer and integer-spin quadrupolar nuclei, as well as spin-1/2 patterns influenced by
large CSAs.2¢ These precedents could further benefit from the application of WURST?%2° pulses
(for direct excitation)3? or broadband adiabatic inversion-cross polarization (BRAIN-CP) (for
CP-enhanced excitation),?! combined with measurements of 7 and T, (or 7>°*f) relaxation time
constants using inversion recovery (IR)*? and CPMG?33-34 sequences, respectively.® In particular,
all of these sequences are relatively simple, utilize low RF powers, and can be applied to a wide
array of spin-1/2 and quadrupolar nuclei.?”-36-37

All RAS approaches involve an inversion of the NMR relaxation data, transforming it
from the time domain to the relaxation-rate domain. Ill-posed inversion problems of this type are
inherently sensitive to experimental noise, and the resulting solutions can be quite unstable.3®

Previous RAS work thus implemented regularization procedures by incorporating an additional

Page 10 of 80
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l,-norm constraint in the NNLS regression,*#? truncated singular value decompositions
(TSVD),*34143 [,-norm constraints,*4¢ and elastic net (EN) regularizations;**’ the use of neural
networks*® and principal component analyses (PCA) have also improved the robustness of these
relaxation measurments.**° Previous work also demonstrated the resolution improvement
capabilities of using 7;-T, correlations to obtain higher-dimensional relaxation spectra.*?44.51,52
This study describes the potential of using improved regularized methods for resolving
overlapping SSNMR powder patterns. To this end, protocols were developed to acquire R, (7~
- and R, (7> ')-encoded NMR datasets using WCPMG-IR, BRAIN-CP-IR, and QCPMG-IR
pulse sequences.?® RAS processing of these data employed custom-written routines stabilized
with TSVD and EN regularization, which substantially reduce both the computational
requirements and sensitivity to artifacts, as well as denoising by PCA. An improved pattern
resolution can be realised by encoding both R; and R, domains, as 3D RAS datasets separating
powder patterns along the R, and R, axes can yield separations that are not achievable from 2D
datasets. Experimental applications to the resolution of 2H (I = 1), 33Cl1 (/= 3/2) and “N (/= 1)

UWNMR datasets are discussed.

2. Theory

2.1 Multidimensional Inverse Laplace Transforms with EN and TSVD Regularization
Although the challenges of and solutions for multidimensional ILT of NMR and MRI

relaxation datasets have been described in detail, 38413153 a summary of the inversion methods

used in the current work are explained herein for clarity. 2D or 3D structures defined over a

continuous domain are capitalized (e.g., F); their discrete analogues are capitalized and
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boldfaced (e.g., F); and any 1D vectors are lowercase and boldface (e.g., f). Quantities spanning

domains of R" "', R" ", and R*" """, are 1D vectors, 2D matrices, and 3D arrays, respectively.
The problem considered here is that of a signal giving rise to a broad NMR powder

pattern, which is undergoing simultaneous exponential decay due to two independent relaxation

mechanisms (e.g., T} and 7). This signal can be modelled as:

Gl = f f f K(R1,Ryv,7)exp(ive) F(R1,R2,v) dR1dRydv + e(t,t.t) (1

where G(1,7,¢) is the signal viewed as a function of a direct, spectrum-encoding acquisition time
t and over two indirect relaxation dimensions t and 1'; F(R,R,,v) is a distribution correlating the
powder patterns to their associated relaxation rates; e(t,7’,) describes experimental noise; and K
is the kernel that encodes the relaxation behaviours. This is modelled as a product of a kernel that
encodes Ry, Ki(R,t) = 1-2exp(—R;1), with a kernel that encodes R,, K5(R;,t") = exp(—R,1") (vide
infra). The goal of RAS is to estimate F(R},R,,v) from G(r,r',t). This is a 3D inversion problem
that can be reduced to 2D by considering Eq. (1) on a frequency-by-frequency basis;* i.e., by

Fourier transforming the signal over the direct-acquisition time dimension, ¢, such that G(’E,’E’,t)

Y G(r,r',v). Considering only a single frequency point, v, the problem then reduces to solving

a 2D Fredholm integral of the first kind:3*

Gi(r7) = ff K(R1,R2,t,0) Fi(R1,R2) dR1dR, + €(z,1") 2)

This 2D inversion problem is evaluated numerically with a non-negative least-squares (NNLS)

regression, which is reduced to a 1D inversion problem by

f? = rflgg(llx-fk-Skllé) (3)

where discrete matrix representations of F(R,R,) and Gk(r,r') have been vectorized by

rearranging and stacking their columns as £ € R"™ " 'ands; € R™™ "', respectively, and the

6
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discrete kernel K=K; ® K, with K € R"" """ The label ‘g’ differentiates the signal f* that
minimizes the norm from f in the regression. n; and n, refer to the number of rates used to model
R, and R, relaxation, respectively, and m; and m; are the number of experimental time
increments used to encode R; (1 increments) and R, (t' increments; also, the number of CPMG
spin echoes) relaxation rates, respectively. A non-negativity constraint is imposed since the
experimental rates describing relaxation are strictly non-negative. Any constraints enforced in
the NNLS in general are referred to as regularization (vide infra). In general, ||x]||, and ||X||,
denote the /; and /; Euclidean norms of x, respectively.

In principle, the resultant f8 that minimizes the norm in Eq. (3) can be transformed back
into a matrix for every k, thereby forming a 3D dataset as F& € R* """, Solutions to Eq. (3),
however, are extremely sensitive to the experimental noise; such problems are classified as ill-
posed,>* and require additional regularization constraints to help stabilize their solutions. Elastic-
net (EN) is one form of regularization that we have adopted, and refers to the linear combination
of additional /, and /, norm constraints.3>4” The additional /, norm serves to minimize the
condition number of the kernel by penalizing its small non-zero singular values, which attenuates
the amplitude of the experimental noise in the NNLS fit. The /; norm imposes a sparsity
constraint that can force some solutions to zero, which is often useful for multi-component
relaxation or distributions of relaxation rates.*>*’ EN regularization introduces these norms into
Eq. 3):

ff = ?ilg(IIK-fk—Sklli + alldl3 + allgdl,) 4)
>

where o and A are called the regularization parameters, which are weighting factors for the /, and
/1 norm constraints, respectively. The /; norm constraint is implemented here using Tikhonov

regularization,?6-3%40:54 guch that
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(at)re~ (5)

(nyny — 2) x (n;'ny) « . . .
where L € R™™ " 1s the discrete, second-order derivative operator necessary for

i :min(

f>0

2 5
. xufkul) ®
2

inversion.?6:43-5435 In this work, the NNLS regression including the /; constraint is evaluated
directly in Eq. (5) using the novel interior point method developed by Boyd et al.*> The optimal
A for the /) norm constraint can be determined with a characteristic S-curve by examining the log
of the residual norm as a function of A (vide infra; see supporting information Figure S5).4>3¢
As mentioned, the kernel in Eq. (5) is defined as the outer product between the two

kernels used to describe R; and R, relaxation

K=K ®K (6)
where K; € R"™", K, € R, and K € R"™ "™, When many relaxation rates are used to
define K, the inversion problem becomes computationally expensive. One approach to overcome
the computational cost is to reduce the dimensionality of the problem using truncated singular
value decomposition (TSVD).#1:43 The SVD of K; (i = 1, 2) can be written as

K =ULV/ (7

where U; € R" ™ andV; € R"" " are orthogonal matrices whose columns form the singular
vectors of K;, ¥; € R "has diagonal non-negative singular value entries 6, (r = 1, ..., m;) of
progressively decreasing magnitude, and the superscript T indicates matrix transposition. To
reduce the dimensionality of the kernel, it is projected onto a low-rank subspace using only the

first 7; singular values and corresponding singular vectors:
~ il \T
K= 2/(Vv/) ®)
K=K® K ©)

and the signal is compressed as*!
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S; = (U’i‘)T-Sk~U§2 (10)
where U7 € R""", V7 € """, £/ € R"",K € """ "™, 5§, € R" ™", §; € R" ", and r; is
some value less than m; that is determined with the maximum entropy-based criterion separately
for each kernel K;.4357 §, is then rearranged into a vector to be used in 1D NNLS as 5, € R™"” "'
The total dimensionality of the kernel and signal can then be substantially reduced depending on
number of singular vectors and values retained, resulting in faster calculations and increased

regularization. With these provisions, Eq. (5) can be described as the sparse non-negative

Tikhonov fitting (Sparse NNTF):

() 6)

(ryry + nyny — 2) x (nyny)

2 (11)
+ xllfklll)
f>0

2

fz = min(

where the total concatenated kernel size is R and the concatenated signal size is

(ryry + npony = 2) x 1

R . As mentioned, this way of casting the ILT problem then needs to be evaluated for
every frequency point, k (k=1, 2, 3, ..., np) defining the SSNMR powder pattern, the result of

which is used to form the 3D dataset F8.

2.2 Spectral Denoising with Principal Component Analysis

A 3D v-R|-R,; correlation experiment, as described above, can be useful for achieving
high resolution; however, its performance is sensitive to the signal-to-noise ratio (SNR) — a
parameter that directly affects the performance of any NNLS regression. Spectral reconstruction
with principal component analysis (PCA) can be implemented to increase overall SNRs.49-0
PCA fundamentally operates along similar lines of the SVD described in Eq. (7), except in this
case the matrix of the centered 2D NMR signal X = G(t, v) or G(7', v) is factored with SVD. If X

is the centered matrix of G according to
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X = (x1—=X1, .. X,- Xp) " (12)
where p is the column index for X, then the SVD of X is
X =uzv' (13)
where the columns of V are the principal directions/axes of X, and the columns of U-X are the
corresponding principal components. Similar to TSVD, only the first » columns are retained
from V and U-X, which are a lower variance representation of the data (i.e., a low dimensional
subspace or projection). The signal is then reconstructed as
7 =0 zh(vh)' (14)
where Z has the same dimensions as X but is now of lower rank, and j indexes the relaxation-
delay increment (i.e., T; or 7;). The 2D NMR signal is thus denoised for every point in the other
relaxation dimension. For example, every 2D v-7 plane of the 3D data is individually denoised
foreachj (=1, 2, 3, ... my) number of echoes using this procedure. It is possible to determine b
with a maximum entropy criterion (vide supra); however, we have empirically found robust
performance with b = 2 or 3 throughout this work. It is important to note that PCA denoising is
performed during pre-Sparse NNTF processing, on the input NMR relaxation data (i.e., before
evaluating Eq. 11); in this way the data is denoised without augmented spectral features, and

retains its original dimensions.

3. Experimental Methods
3.1 Samples

Glycine HCI [Sigma Aldrich], histidine monohydrate HCI [Sigma Aldrich], isoxsuprine
HCI [Sigma Aldrich], xylazine HCI [VWR], betaine HCI [Sigma Aldrich], and 1,8-

dimethylnapthelene-d;, [Cambridge Isotopes] were purchased; all were all used in subsequent

10
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NMR experiments without further purification. The identities and purities of the samples were
verified through comparisons with previously reported NMR spectra.’8¢! A novel
RbCI:CdCl,:Urea cocrystal was prepared mechanochemically via ball milling of the dried
reagents in the appropriate molar ratios (1:1:1): rubidium chloride [Sigma Aldrich], cadmium
chloride [Sigma Aldrich], and urea [Sigma Aldrich]. This synthesis used a Retsch Mixer Mill
400, 10 mL stainless steel milling jars, and two 7 mm stainless steel ball bearings. All samples
were ground into fine powders and packed into 5 mm outer-diameter glass tubes that were sealed

with Teflon tape.

3.2 Solid-State NMR Spectroscopy

NMR spectra were acquired using a Bruker Avance NEO console and a 14.1 T
Magnex/Bruker (vo('H) = 600 MHz) wide-bore magnet at resonance frequencies of vo('*N) =
43.348 MHz, vo(**Cl) = 58.792 MHz, and vo(*H) = 92.104 MHz. A home-built 5 mm double-
resonance (HX) probe was used for all experiments. All data were collected under static
conditions (i.e., stationary samples). Spectra were acquired with '"H continuous-wave (CW)
decoupling using RF fields of 50 kHz. RF pulse powers and chemical-shift reference frequencies
were calibrated using the following standards: (i) '“N reference: NH4Cl1 with &;, = 0 ppm; (ii)

33Cl reference: NaCl (s) with 8;,, = 0.0 ppm; and (iii) *H reference: D,O (/) with 8;;, = 4.8 ppm.

3.3 Spectral Processing
All datasets were processed in MATLAB using custom-written code. NMR data were
acquired using pulse sequences that implemented inversion-recovery (IR) — sometimes with the

aid of an adiabatic pulse and CPMG refocusing: WCPMG-IR, BRAIN-CP-IR, or QCPMG-IR

11
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(Scheme 1).35%2 During each IR delay increment, T, NMR signals were acquired with CPMG-
windowed acquisitions; the individual spin echoes where then individually Fourier transformed
and phase-corrected with an automatic zeroth, first, and second-order phasing routine, resulting
in a 3D dataset, G(t, 7', v). For 2D RAS processing, the 3D dataset was summed over the rate
dimension that is not being analyzed. For example, R;-RAS was accomplished by summing over
the entire R, dimension in the 3D dataset, resulting in a 2D G(r, v) data set. Thirty-two
logarithmically sampled 1 increments were measured in every experiment. SNRs were calculated
as the ratio of maximum spectral intensity to the standard deviation of the baseline noise along
the relaxation dimension for a 1D slice of any 2D or 3D dataset presented herein: SNR =
max(s)/Cpoise-%* Sparse NNTF was calculated in MATLAB using custom code that implements
the regularization toolbox by Hansen® and the /;-regularized NNLS routine of Boyd ef a/.*> All
MATLAB code used is available at github.com/rschurko/RAS; simulation input files and pulse

programs are available from the authors upon request.

4. Results and Discussion
4.1 Overview

WCPMG-IR, BRAIN-CP-IR, or QCPMG-IR pulse sequences (Scheme 1) were used to
experimentally acquire 3D v-1-1’ datasets.®> R; was encoded via IR over a logarithmically
incremented delay t, leading to an exponential recovery of the form 1-aJexp(—R;1), where a =2
for direct excitation, and a = 1 + ¢ for CP, where ¢ is the CP enhancement factor.?® R,’s were
encoded with CPMG sequences over a delay 1’ that was linearly incremented via the number of
CPMG loops, N (where N = m, in the theory section), leading to an exponential decay of the

form exp(—R,1") (N.B.: R, is in fact reflecting the effective T5, T, in cases where 'H-S dipolar

12
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coupling is present and decoupling is active on the 'H channel; however, herein R; is used in
every case for simplicity of notation). The result is a 3D data set, but since the 1’ increments are
obtained as a result of windowed CPMG acquisitions, the experimental time requirements are the
same as those of a standard 2D NMR experiment. For both 77 and 73, it is also possible that the
encoded relaxation behaviour is multiexponential. An example of an experimental 3D v-t-1

dataset is shown in the supporting information (Figure S1).
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L ]
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Scheme 1: (a) The BRAIN-CP-IR pulse sequence, (b) the WCPMG-IR pulse sequence, and (c)
the QCPMG-IR pulse sequence. The delay time, 1, is logarithmically incremented in every case
which encodes R, relaxation. T’ represents the R, encoding, which is incremented linearly via the
number of loops, N. In (a) the phase of the 'H excitation pulse controls whether signal is stored
as £5,(¢) during t; this can also vary depending on the WURST-A sweep direction. These details
have been previously described.?® In (¢) a 0 refocusing pulse is used for signal enhancement and
¢; and @, are cycled according to an 8-step phase cycle.62-65-67
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Herein, we describe the use of BRAIN-CP-IR, WCPMG-IR, and QCPMG-IR
experiments to acquire experimental 2D or 3D datasets suitable for RAS. First, the application of
2D RAS is benchmarked on synthetic datasets to systematically demonstrate the outcomes of EN
and TSVD regularization methods as well as those of PCA denoising; these methods are then
tested with one experimental 2H (/ = 1) dataset. Second, 3D RAS is demonstrated with synthetic
datasets that outline the processing pipeline and test these same numerical methods. Finally, 3D
RAS is demonstrated for several experimental datasets and compared with 2D RAS, including
B3C1(I=3/2),?H (I=1), and '“N (I = 1) NMR examples that show the potential of 3D RAS for

separating overlapping powder patterns with clearly resolved features.

4.2 2D RAS

The effects of EN and TSVD regularization were first examined using a 2D
implementation of the Sparse NNTF inversion described earlier, as applied to v-t or v-t’ datasets.
To this end, a synthetic CPMG dataset of two overlapping powder patterns, with parameters
typical of 3°Cl in organic hydrochloride (HCI) salts, was used as input (Figure S2); 100 echoes
were simulated across the 1’ (R;) dimension and 1000 logarithmically spaced rates supplied to the
kernel. The size of the kernel was K € R(100<(1000) without TSVD and K € R2x(1000) with
TSVD, resulting in much faster calculations in the latter case. Figure 1 (and Figure S3) shows
evaluations of the Sparse NNTF for several input signals with distinct SNRs, and for different R,
rates applied to each powder pattern. In these simulations, a represents the amount of /,
regularization, which can be determined with a characteristic L-curve;?6->3 the resulting optimal a
is often on the order of the standard deviation of the noise and is set as such throughout. A

represents the amount of /; regularization, which can vary depending on the amount of noise

14
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and/or how close the rates or distributions of rates are to one another. If A is set too low, then no

sparsity is imposed — but if it is too high, then multiple unique rates will appear as just a single

rate distribution in the RAS spectrum, thereby hindering pattern separation (Figure S4). The

optimal A is determined using a S-curve routine in this work (Figure S5).42-56
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Figure 1: 2D R, RAS of simulated nonequivalent CT powder patterns using synthetic CPMG
data. The simulated patterns correspond to the case of two magnetically-distinct 33CI nuclei with
EFG tensor parameters of Co = 10 and 9.8 MHz and ng = 0.6 and 0.1, respectively, ata 14.1 T
field. The first two columns show the 2D RAS v-R, contour spectrum and a projection of the
corresponding 1D R, dimension for different SNRs, as indicated. Each row has a unique
combination of applied rates Ry o (T>.4") and Ry g (To57"). In every case (a — g) the regularization
parameters used for RAS are noted as a for the /; norm and A for the /; norm constraint,
respectively. (g) The same input signal as (f) is denoised using PCA prior to RAS. (h)
Projections of the individual powder patterns from their respective rate distributions in the RAS

spectrum from (g).
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These simulations show that when the supplied rates are far apart (e.g., Ry = 0.2 ms™!
and R, g = 0.033 ms™!) and the SNR of the input data is high, two distinct rate distributions are
observed in the frequency-R, contour plot and the 1D R, projection, where each corresponds to a
distinct powder pattern in the CPMG dataset (Figure 1a). Solutions in this relatively low-noise
regime are stable and provide two distinct rate distributions even as the rates become
increasingly similar (Figure 1b and 1c). As the SNR decreases, two isolated rate distributions
can still be identified when the rates are far apart (Figure 1d), but the distributions start to
overlap as the rates get closer (Figure 1e); however, the sparsity constraint of /; regularization
still helps to maintain two distinct distributions, as evidenced by the two peaks in the R,-
dimension (even though there is still some degree of overlap). Eventually, if noise is high and
rates are closely spaced, two distributions are not identifiable even with EN and TSVD
regularization (Figure 1f). This can be problematic, resulting in either long experimental times
for improving the SNR, or in preventing studies from intrinsically insensitive or chemically
dilute nuclei of interest. Reconstructing the input data with PCA (Eq. 12-14), which effectively
discards high-noise (or high-variance) components in the spectral data,* can alleviate this
problem. This is illustrated in Figure 1g, which took the input data corresponding to the
challenging case above (Figure 1f), and reconstructed it using just two principal components.
PCA improves the SNR of the input relaxation data (i.e., the data pre-processed before Sparse
NNTF) by approximately a factor of 12, making the solution of the 2D RAS problem much more
stable and identifying the correct rate distributions with little overlap and few artifacts.
Individual powder patterns can be projected from their respective rate distributions (Figure 1g),

revealing complete separation from one another (Figure 1h).

16
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2D RAS processing was applied to an experimental 2?H NMR dataset for 1,8-
dimethylnapthelene-d,,, for the purpose of separating the overlapping powder patterns. The 1D
NMR spectrum shows two nonequivalent 2H sites associated with methyl and aromatic deuterons
(Figure 2a).%! A modified QCPMG-IR sequence (Scheme 1) was used to encode R;’s for either
site while providing 7,-weighted signal enhancement in this case, where the refocusing pulses
use a flip angle of 0 = 36° for signal enhancement.5>67-71 The 2D R; RAS Sparse NNTF routine
with EN and TSVD regularization results in a 2D spectrum indicating unique R; distributions for
each deuteron site (Figure 2b). PCA denoising was not necessary for this dataset. The added
regularization constraints permit high-resolution separation of the overlapped powder patterns.
These distributions are characteristic of R;-anisotropy as has been previously observed in 2H
SSNMR spectra.’>’%73 There is a low intensity (i.e., < 1% max spectral intensity) rate
distribution around 0 Hz for the broad aromatic site, since in this frequency region, the two
patterns are the most overlapped in the 1D spectrum and the pattern corresponding to the
aromatic site is approximately five-times less intense than that of the methyl site. Summing over
specified rates in the distribution can recover uniform powder patterns corresponding to each
site; the rates that are summed over can easily be fine-tuned for optimal separation (i.e., as
represented by the dashed red line in Figure 2b). Projections of the powder patterns from each
rate distribution reveal *H patterns that match well with typical line shapes for 2H methyl and
aromatic moieties (Figure 2¢). 2D R, RAS in this example was not as useful as R;-encoding, as
both 2H sites have similar, closely overlapping R, distributions; however, the R, encoding may

be useful for 3D RAS for this sample (vide infra).
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Figure 2: (a) Experimental 1D ?H NMR of 1,8-dimethylnaphthalene-d;,. (b) 2D R; RAS of 1,8-
dimethylnapthelene-d;, with regularization parameters o = 0.015 and A = 0.02 using R; data
acquired with QCPMG-IR as input. PCA denoising was not necessary for this dataset. (c)
Projections of the powder patterns associated with each rate distribution from above and below
the dashed red line from the RAS spectrum. Relative intensities of the patterns are scaled
according to the factors on the right.

It is important to note that, in general, the rate distributions associated from 2D RAS may
not correspond to the ground-truth rate values (i.e., the exact rate distributions, R, and/or R,, that
could be measured in the absence of noise): Sparse NNTF solutions are sensitive to the
experimental noise, which can bias the calculated, inverted rates. Regularization can stabilize the
solutions; however, it can also affect the inverted rate distributions — especially the /; norm

constraint used in EN.#7 In the current work RAS is used to resolve overlapped spectra; hence,

the resulting rates should be interpreted with caution and verified with other methods.?3

4.3 3D RAS
Synthetic datasets for 3D RAS used simulated spectra based on two overlapping static
CT patterns corresponding to two non-equivalent 3°Cl sites though in principle, the shape of the

frequency pattern could be anything (e.g., CSA patterns, Pake doublets, spinning sideband
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manifolds, disordered distributions, efc.). The two sites (A and B) were simulated with EFG
tensor parameters of Co = 10 and 9.8 MHz and ng = 0.6 and 0.1, respectively, ata 14.1 T field
and relaxation time constants are applied for either site with Rjy =4 s, Rijg=1.5s", Ryp =
550 s7!, and R, 3 =300 s7!. IR behavior is modelled with 32 logarithmically-spaced t increments,
and transverse decays are modelled with 64 linearly-spaced CPMG echoes (Figure 3a,b). R, and
R, kernels were sampled with 200 rates each, resulting in a kernel size of K € [R(2048)x(40000)
without TSVD and K € R(8*40000) with TSVD, again offering a substantial reduction in

computational cost. Eq. 11 was evaluated for the S; dataset after rearranging it into a vector for

Sparse NNTF input as Sy o2 §krearran - si for every frequency point, initially without /; and/or /,

regularization in this example. The output is therefore a vector containing the joint R, and R, rate

distributions that can be rearranged into a matrix ﬁ%F% for every frequency point, thereby
yielding a multidimensional array describing R;, R,, and v. As this can be difficult to visualize
and interpret, it may be useful to instead examine the 2D v-R, (Figure 3¢) or v-R; plots (Figure
3d), which are generated by summing over all the rates in the opposite rate dimension.
Sometimes, it is also beneficial to examine the 2D R;-R, correlation map by summing over all
frequency points (Figure 3e). 2D RAS processing of the noiseless, two-site synthetic dataset
yields a R;-R; correlation map showing just two high-resolution peaks, as expected. Each peak
appears at rates that match perfectly with the simulated rates, as do the projections of both

powder patterns extracted from each of the unique rate distributions (Figures 3f).
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Figure 3 (a) Synthetic t-1" data at a single frequency point (S;) of two nonequivalent simulated
33CI NMR patterns that are summed together and used as input for 3D RAS without added noise
and (b) 1D frequency representation of the individual sites and their sum. The patterns are
simulated with EFG tensor parameters of Co = 10 and 9.8 MHz and ng = 0.6 and 0.1 for sites A
and B, respectively, at a 14.1 T field and relaxation time constants are applied for either site with
Ria=4s",Rig=1.5s", Rya=550s", and R,z =300 s'. 2D projections after performing 3D
RAS on the synthetic 3D dataset of the mixture for the (c) v-R, projection (summed over the R,
dimension) and the (d) v-R; projection (summed over the R, dimension). (¢) The R;-R,
correlation map obtained by summing over the frequency dimension; no regularization is used as
indicated by a = 0.0 and A = 0.0. (f) Projections of the individual powder patterns associated with
each rate distribution. (g) Synthetic 1-t’ data with added noise and (h) a 1D frequency
representation of the data. The R,-R, correlation map after 3D RAS (i) without regularization (o
=0.0, A =0.0), and (k) with regularization and PCA reconstruction such that the SNR of the
input data increases (i.e., the SNR prior to RAS processing). (j,1) Projections of the individual
powder patterns associated with the rate distributions in each case.
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The same dataset is presented in Figure 3g, 3h, except with the addition of Gaussian
noise. The R;-R, correlation map arising after performing 3D RAS without any regularization
(Figure 3i) shows many spurious artifacts, and a low-resolution “smear” of the signal between
the two expected (R}, R;) solutions. This complicates the identification of the two components
from projections, and the retrieval of clean powder patterns (Figure 3k). PCA denoising based
on two principal components improves the SNR of the input relaxation signal by approximately
an order of magnitude, greatly improving the performance of the Sparse NNTF. The resulting R;-
R, correlation maps then show two distinct components corresponding to each powder pattern
(Figure 3j) that can be projected separately with only minor distortions originating from the
noise (Figure 31).

Using these numerical methods, the experimental 3D v-R;-R, 3CI NMR dataset of a
glycine HCI : histidine HCI 3:1 w/w mixture (Figure S1) was processed using both 2D and 3D
RAS. The benefits of regularization from /; and /, penalties are first compared using a 2D R;-
RAS example. 2D R|-RAS is initially used with only TSVD and /, Tikhonov regularization
(Figure 4a), similar to the NNTF method previously reported by our research group.?® An
intense narrow signal is identifiable around +5 kHz and below R; = 1 s!, which is likely
associated with histidine HCI (denoted by 7); however, there is still a substantial amount of
broad signal (i.e., above 10 kHz and below —10 kHz) around the same rate distribution that likely
corresponds to glycine HCI. Above R; = 1 s7!, the broad glycine HCI powder pattern appears to
span two general rate distributions with several artifacts, which agrees with the observation that
the 77(*>Cl) for glycine HCl is described by a biexponential decay.?®> Additionally, there is signal
intensity outside of the bandwidth of the CT powder pattern of glycine HCI that appears at

multiple rates below ca. —80 kHz, which is likely ST signal. By contrast, if 2D R-RAS is
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executed with the additional /; norm, the rate distributions associated with each pattern are
clearly identifiable (Figure 4b). The low-frequency signal is also isolated and can be attributed
to satellite transition (ST) signal. The CT powder patterns can be extracted from each rate
distribution, revealing the patterns for glycine HCI and histidine HCI (Figure 4c¢); however, the
powder patterns are distorted, and the narrow pattern corresponding to histidine HCI appears to
have residual signal from glycine HCI (i.e., the broader, low-intensity features). 2D R,-RAS
cannot separate the patterns, since the R, distributions between the two samples are overlapped,

mainly due to the large R, distribution from glycine HCI (Figure S6).
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Figure 4: Experimental 3°C1 2D R; RAS NMR spectrum of a glycine HCl:histidine HCI 3:1 w/w
mixture with regularization parameters (a) a = 0.0001 and A = 0.0 and (b) o = 0.0001 and A = 0.3.
PCA denoising was not necessary for this dataset. In (a) the histidine pattern is indicated with T,
and the ST signal is denoted below ca. 80 kHz. (c) Projections of the powder patterns from each
of the highlighted rate distributions in (b). R;-R, correlation obtained from 3D RAS with Sparse
NNTF (d) without EN regularization and (e) with regularization. (f) Projections of the powder
patterns from each rate distribution in (e) with ideal 3>C1 NMR simulations of each pattern in red.
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3D RAS was used to process this entire 3D NMR dataset, initially without regularization.
The resulting R,-R, correlation map shows many artifacts and spurious signals with evidence of
potentially three components in the mixture, which likely originate from the two R, terms for
glycine HCI and a single R; and R, for histidine HCI (Figure 4d). Processing the data with
regularization, including a relatively large /; constraint (A), reduces the R,-R, correlation map to
two distinct regions of signal (Figure 4e). The optimal A was first determined with a S-curve
routine (Figure S5), and then refined empirically (Figure S4) by running 3D RAS with three
different A’s until an optimal pattern separation was obtained with A = 50. PCA denoising was
not necessary for this dataset. In this case, only the frequency points that were associated with
substantial regions of NMR signal intensity were used as input for Eq. 11 (i.e. only the frequency
points from ca. — 100 to + 70 kHz in this case) to reduce computational costs. These compounds
have unique R;’s, but glycine HCI has a distribution of R, values, which overlaps with the small
R, distribution of histidine HCI. Still, projecting the frequency dimension from suitable (Ry,R,)
regions reveals patterns that match exceptionally well with the ideal simulations for either
species®®>? (Figure 4f). Regardless of the R, overlap, the additional information provided by the
R>-dimension offers a higher-resolution separation of the powder patterns with 3D RAS than 2D
RAS.

33CI NMR of an isoxsuprine HCl:xylazine HCI 1:1 w/w mixture was acquired with the
direct excitation WCPMG-IR pulse sequence (Figure 5a). An R;-R; correlation map was
obtained with 3D RAS using all of the aforementioned regularization methods as well as PCA
denoising with three principal components (Figure 5b); in this case, the SNR of the input data

increases ca. 6-fold with PCA. This mixture serves as good test case, since the resulting R, and
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R, distributions are unique for both sites; the separation of the two patterns is very clear, and

their projections match extremely well with the ideal simulated 33Cl line shapes (Figure 5¢).7*
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Figure 5: (a) Experimental 1D 3*CI NMR spectrum of an isoxsuprine (isox) HCl:xylazine (xyla)
HCI 1:1 w/w mixture. (b) R;-R, correlation map obtained from 3D RAS with Sparse NNTF and
PCA denoising with a. = 0.0001 and A = 5. PCA increased the SNR of the input data from 118 to

694. (¢) Projections of the powder patterns from each rate distribution with ideal 3CI NMR
simulations of each pattern in red.

3D RAS processing of a 33C1 NMR dataset was also used for the characterization of a

novel RbCl:CdCl,:Urea cocrystal synthesized by our research group. This material was first
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examined using 1D WCPMG, where two distinct CT powder patterns are observable, distinct
from the CdCl, starting material (Figure 6a and Figure S7). A separate narrow resonance, which
may be unreacted RbCl, is observable if fewer echoes from the CPMG train are processed
(Figure 6b). Additional signal above ca. 150 kHz and below ca. — 230 kHz (as indicated by I)
spans several hundreds of kHz and extends well beyond the tuning range of the probe — it cannot
be assigned as another CT pattern or as ST patterns (Figure S8); therefore, experimental
acquisitions for RAS selectively and uniformly swept over only the &= 350 kHz offset range. The
R-R, correlation map displays the reconstructed signals, that spread over several rate
distributions (Figure 6c¢). Projections from the lower R;-R, distributions reveal separation of two
of the CT powder patterns, possessing low nq’s, and some residual overlap between them at ca.
+40 and — 50 kHz (Figure 6d). There is also a distinctive high-valued R;-R, distribution that
reveals a narrow pattern with a higher value of nq that does not match with the NMR of bulk
RbCI (Figures 6d, S9) and likely corresponds to a novel site in the cocrystal. The separation of
this latter pattern using 3D RAS can allow for the measurement of the EFG tensor parameters
(Table S6), which would not be possible using standard 1D static or MAS NMR for this sample.
Finally, the unassigned broad underlying pattern also has a distinct rate distribution, as indicated

by 1 (Figure 6c¢).
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Figure 6: (a) Experimental 1D 3°Cl NMR spectrum of a RbC1:CdCl,:Urea cocrystal acquired
with WCPMG and processed by coadding all 200 spin echoes and (b) processed by coadding the
first 10 spin echoes. } indicates a broad powder pattern in (a) and (b) of unknown origin (i.e., it
is not clear if it is a unique CT pattern or signal arising from overlapping ST patterns). (¢) R;-R,
correlation map obtained from 3D RAS with Sparse NNTF and PCA denoising with o = 0.0001
and A = 1. PCA increased the SNR of the data from 112 to 1450. The area between R; = 1.5 to
2.5 s”! marked with { corresponds to the unassigned broad pattern. (d) Projections of the CT
powder patterns from each rate distribution with 33Cl1 NMR simulations of each pattern in red.

26



Page 33 of 80

Physical Chemistry Chemical Physics

3D RAS was also implemented for the separation of overlapping ?H patterns of 1,8-
dimethylnaphthalene-d;, (Figure 7a), in which each ?H site has a unique R, (vide supra) but
overlapping distributions of R,’s. The Sparse NNTF R;-R, correlation map (Figure 7b) shows
two distinct regions of signal corresponding to each ?H site. As discussed for the 2D R; RAS of
this data, the R,’s are unique for each site, but both display a distribution over the R; dimension,
which may be characteristic of R;-anisotropy that has been widely observed for static 2H
NMR.3>72.73 The R,’s clearly overlap for these sites, limiting the potential of 2D R, RAS for
pattern separation; as in the case of 3°>C1 NMR of glycine HCI, there is also a large distribution
over the R, dimension for the 2H-methyl site. Each static ?H powder pattern can be resolved
(Figure 7¢) with minor distortions in the case of the broad aromatic 2H site (around + 20 — 50
kHz), likely from small residual spectral intensities arising from the much more intense methyl

pattern.
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Figure 7: (a) An experimental 1D 2H NMR spectrum of 1,8-dimethylnapthalene-d,,. (b) R;-R,
correlation map obtained from 3D RAS with Sparse NNTF with a = 0.001 and A =0.1. PCA
denoising was not necessary for this dataset. (¢) Projections of the powder patterns from each
rate distribution.

A final example of 3D RAS’s ability to resolve overlapping powder patterns is

demonstrated for a '“N NMR dataset of a glycine HCl:betaine HCI 1:1 w/w mixture. *N
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experiments yield UWNMR patterns that are very time-consuming to acquire;’> however, it has
been demonstrated that the combination of 'H-"YN BRAIN-CP and targeted acquisitions with
selected transmitter frequencies can accelerate this process.’®’’ Moreover, it has been
demonstrated that spectral regions from only one half of the spin-1 4N patterns, are necessary
for characterizing the EFG tensor parameters;3>7%77 targeting one half of the integer-spin powder
pattern also offers additional signal enhancement due to the direct enhancement of integer spin
magnetization (DEISM) effect.”® Experiments were accelerated by acquiring only half of the
patterns;’®8 in the current example, by sweeping all WURST pulses from low-to-high
frequency. The 1D '“N spectrum of the mixture was acquired with a targeted transmitter
frequency such that the positive half of the betaine HCI pattern appears uniform, and the “horn”
and shoulder” discontinuities of the glycine HCI pattern are visible (Figure 8a); for the latter,
these two discontinuities alone are sufficient to characterize the EFG tensor parameters.’® 3D
RAS data for the mixture were acquired with BRAIN-CP-IR; PCA denoising with 3 principal
components was used, resulting in an increase in the SNR by a factor of ca. 10. The resulting
regularized 3D RAS transformation reveals a R;-R; correlation map showing two distinct R;’s,
and partially overlapped R, distributions (Figure 8b). As in the case of the 3°Cl glycine
HCl:histidine HCI mixture (cf. Figure 4), although the R, distributions are slightly overlapped,
the added information from the R, dimension assists in the overall separation. The projections
from these rate distributions show clearly resolved powder patterns that match well with
simulations (Figure 8c). The dip in the glycine HCI spectrum at ca. 100 kHz is characteristic of
targeted spin-1 BRAIN-CP and is of no consequence for characterizing the powder pattern.””-8
In this case, as well as all others, 3D RAS is only evaluated for frequency points associated with

NMR signal in order to save on computation costs (ca. 0 to 550 kHz region).
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Figure 8: (a) Experimental 1D YN NMR spectrum of a glycine HCl:betaine HC1 1:1 w/w
mixture with a simulated '“N spectrum of both ideal patterns summed together in red. (b) R;-R,
correlation map obtained from 3D RAS with Sparse NNTF and PCA denoising with o = 0.0001
and A = 0.0. PCA increased the SNR of the input data from 94 to 920. (c) Projections of the
powder patterns from each rate distribution with ideal "N NMR simulations of each pattern in
red. All WURST-A and WURST-B pulses in the sequence are swept from low-to-high frequency
and the center offset of the sweep is set to +139 kHz with respect to vo(14N).

30

Page 36 of 80



Page 37 of 80

Physical Chemistry Chemical Physics

5. Conclusions

2D and 3D RAS implemented with TSVD, EN regularization, and PCA denoising can
provide clear separation of overlapping static UWNMR spectra, as demonstrated by
experimentally acquired and numerically simulated ?H (/ = 1), 3°C1 (/= 3/2), and 1*N (I=1)
SSNMR spectra. TSVD greatly reduces computational costs for 2D and 3D RAS and regularizes
Sparse NNTF solutions. EN regularization further stabilizes these solutions, and in particular, the
/1-norm constraint can aid in the separation of powder patterns for samples with nuclei
influenced by either multiexponential relaxation rates or distributions of rates. The SNR of the
raw input data prior to RAS can be increased by up to 12-fold with PCA reconstruction. RAS is
ultimately limited by experimental noise, requiring that the relaxation time constants associated
with different nuclear sites and their concomitant powder patterns be unique from one another.
Denoising and regularization schemes greatly alleviate these drawbacks, making RAS amenable
to a wider array of possible samples, potentially even those with complex relaxation behaviour.
The samples investigated herein are highly crystalline and their NMR data correspond to
relatively sparse distributions of relaxation rates. We anticipate that further considerations and
methodology will be required when analyzing amorphous samples that often yield broad
distributions of relaxation rates (e.g., alternative regression algorithms or the use of neural
networks).43#! Even if nonequivalent sites do not have unique 7;’s and/or (effective) 75’s, the
rotating frame 7' (T,) and the dipolar frame 7; (7p) are also suitable exponential decay
constants,?>82 that could be encoded and used with the RAS processing described herein.
Furthermore, if the effective 75’s of two magnetically distinct sites at a given decoupling power

are similar, it may be possible to differentiate them further by varying the heteronuclear dipolar
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decoupling RF fields;® variation in CP efficiency with variable contact times could serve to
highlight similar site differences.®

3D RAS is particularly useful for separating overlapping half-integer spin CT powder
patterns of quadrupolar nuclei with large Cq’s, of the kind that cannot be resolved with MQMAS
or STMAS. The example of a histidine HCI : glycine HC] mixture demonstrates the improved
site resolution capabilities of 3D RAS over 2D RAS. The case of the isoxuprine HCI: xylazine
HCI mixture suggests that RAS may be useful in the characterization of active pharmaceutical
ingredients with 33C1 NMR.>*74 2H RAS of 1,8-dimethylnapthelene-d;, and 3*Cl RAS of
RbCI1:CdCl,:Urea demonstrate the capabilities of site-resolution for multiple sites in the same
sample — including in the latter example, the identification of a 33Cl pattern and corresponding
site that would not resolvable using other methodologies. WCPMG-IR, BRAIN-CP-IR, and
QCPMG-IR pulse sequences used for RAS are facile to implement and the RAS routines have
been written in end-user friendly functions in MATLARB that are freely available to use. It is
anticipated that the aforementioned 2D and 3D RAS protocols will be used for high-resolution
static and MAS SSNMR in a wide variety of organic, inorganic, organometallic, and hybrid

systems with spin-1/2 and quadrupolar nuclei of elements across the Periodic Table.

6. Supporting Information
Additional experimental details, experiments, and simulations are available in the
electronic supporting information. All RAS routines are written in MATLAB and are available at

http://github.com/rschurko/RAS.
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Figure 7
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High-resolution separation of overlapped wideline solid-state NMR patterns is achieved with
regularized 3D relaxation assisted separation (RAS).

*Cl shift *Cl Shift *Cl Shift
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Table S1: Experimental Parameters for 33C1 WCPMG-IR Experiments in Fig S1 and Fig 4.

Number of Transients

IR delays (1)

Recycle Delay (s)

Spectral Window Width (kHz)
Dwell Time (ps)

Number of Meiboom-Gill loops (V)
Spin Echo Length (us)
Acquisition Time (ms)
WURST-A length (ms)
WURST-A Sweep width (kHz)
WURST-A Amplitude (kHz)
WURST-B length (ps)
WURST-B Sweep width (kHz)
WURST-B Amplitude (kHz)

340
32 points between 0.001 and 7 s
7
500
2
94
400
48.3
5
500
27.5
50
500
16

Table S2: Experimental Parameters for 2H QCPMG-IR Experiments in Fig 2 and Fig 7.

Number of Transients

IR delays (1)

Recycle Delay (s)

Spectral Window Width (kHz)
Dwell Time (us)

Number of Meiboom-Gill loops (V)
Spin Echo Length (us)

Acquisition Time (ms)

Excitation Pulse Width (us)
Refocusing Pulse Width, t..¢ (us)
Excitation Pulse Power, v (kHz)
Refocusing Pulse Power, v,.r (kHZ)

512
32 points between 0.001 and 3 s
3
1000
1

64
700
31.2
2.5
1.00
100
100
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Table S3: Experimental Parameters for 3°>Cl WCPMG-IR Experiments in Fig 5.

Number of Transients

IR delays (1)

Recycle Delay (s)

Spectral Window Width (kHz)
Dwell Time (us)

Number of Meiboom-Gill loops (V)

Spin Echo Length (us)
Acquisition Time (ms)
WURST-A length (ms)
WURST-A Sweep width (kHz)
WURST-A Amplitude (kHz)
WURST-B length (ps)
WURST-B Sweep width (kHz)
WURST-B Amplitude (kHz)

1024
32 points between 0.001 and 3 s
3
500
2

85
300
31.7
5
400
25
50
400
12.3

Table S4: Experimental Parameters for 3>C1 WCPMG-IR Experiments in Fig 6.

Number of Transients

IR delays (1)

Recycle Delay (s)

Spectral Window Width (kHz)
Dwell Time (us)

Number of Meiboom-Gill loops (V)

Spin Echo Length (us)
Acquisition Time (ms)
WURST-A length (ms)
WURST-A Sweep width (kHz)
WURST-A Amplitude (kHz)
WURST-B length (ps)
WURST-B Sweep width (kHz)
WURST-B Amplitude (kHz)

350
32 points between 0.01 and 6 s
6
1000
1
200
350
82.5
1
700
24.9
50
700
19.9




Table S5: Experimental Parameters for '“N BRAIN-CP-IR Experiments in Fig 8.
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Number of Transients

IR delays (1)

Recycle Delay (s)

Spectral Window Width (MHz)
Dwell Time (us)

Number of Meiboom-Gill loops (V)

Spin Echo Length (us)
Acquisition Time (ms)
'H Excitation Pulse Length (us)

'H Excitation Pulse Amplitude (kHz)

'H CP Pulse Amplitude (kHz)
CP Contact Time (ms)
TWURST-A Amplitude (kHz)
WURST-A Sweep width (kHz)
WURST-B length (ps)
WURST-B Sweep width (kHz)
WURST-B Amplitude (kHz)

1024
32 points between 0.1 and 12 s
1
1.8727
0.534
120
150
29.3
3.125
80

50

10
34.9
1300
50
1300
29.3

TAll WURST-A and WURST-B pulses in the sequence are swept from low-to-high frequency

and the center offset of the sweep is set to +139 kHz with respect to vo('“N).

Table S6: Fitted EFG Tensor Parameters and Isotropic Shifts for 33Cl spectra in Fig 6.

Site CO (MHZ)“ 8iso (ppm)c
1 12.1 130
2 54 177
3 4.0 170

a CQ = eQV33/h. b No = (Vll - V22)/V33- < Oiso

= (011 + 82 * 033)/3.
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Glycine HCI : Histidine HCI
Mixture
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Figure S1: (a) An experimental 1D 33ClI NMR spectrum of a glycine HCl:histidine HCI 3:1 w/w
mixture. The corresponding 3D WCPMG-IR data of the mixture can be visualized with (b) a 2D
1-1' slice at the 500" frequency point in the spectrum (corresponding to the signal at ca. +5 kHz
in (a)), (c) a 2D v-t slice for the first spin echo in the windowed CPMG acquisition, and (d) a 2D
v-T' slice for the last inversion recovery increment (the 327 t increment).

Discussion of Figure S1

An example of the T}-T, encoding using WCPMG-IR (Scheme 1) is shown for the 33Cl1
NMR of a glycine HCIL:histidine HCI 3:1 w/w mixture (Figure S1). Glycine HCI has a broad 3°Cl
CT powder pattern with a breadth of ca. 160 kHz at 14.1 T, whereas histidine HCI has a much
narrower pattern that spans ca. 20 kHz; therefore, both patterns are distinguishable in the 1D

spectrum (Figure S1a). The simultaneous relaxation decay processes arising from IR and CPMG
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can be visualized for a single frequency point (an example is shown for the 500" frequency point
in the spectrum, vsq, which approximately corresponds to the middle of the pattern, Figure
S1b). This representation corresponds to the 2D input Gy(t,t") = S; that is compressed with
TSVD yielding ék, then vectorized into s, and then solved according to the Eq. 11.
Representations of the v-t (Figure Slc¢) or v-1’ (Figure S1d) encodings appear as standard IR or
CPMG datasets, respectively. Either of these latter datasets can be used as input for 2D R;- or R;-
RAS that was previously described by our research group, where the input is also rearranged to

vectors and the Sparse NNTF routine is also used individually for every frequency point, &.!

a Site A ¢
h\r\
Site B AN
Site A+ Site B 04
b 100
: , . . . - Pf'@ 0 15
200 100 0 -100 -200 -300 QU@/)C —-200 10
Frequency (kHz) y(k/ye) 0 < (ms)

Figure S2: (a) Simulated 3CI NMR powder patterns with EFG tensor parameters of Co = 9.8
MHz and ng = 0.1 for site A and Cq = 10 MHz and ng = 0.6 for site B simulated at 14.1 T and
(b) the sum of the two spectra. (c) Synthetic CPMG data showing R, decay of the patterns where
a unique R4 and R,y is applied for either site.
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Figure S3: 2D R, RAS of simulated nonequivalent 3°Cl powder patterns using synthetic CPMG
data. Each column shows the 2D RAS frequency-R, contour spectrum and a projection of the
corresponding 1D R, dimension. Each column has a different signal-to-noise ratios (SNR) of the
input data. Each row has a unique combination of applied rates Ry o (T2.47!) and Ry 5 (T>57}). In
every case (a — 1) the regularization parameters used for RAS are noted as a and A for the /, and /;
norm constraints, respectively.
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Figure S4: 2D R, RAS of simulated nonequivalent 3°Cl powder patterns using synthetic CPMG
data. In each column the RAS spectrum is shown with its corresponding 1D R, projection below
it for: (a) no noise or regularization; (b) added noise and no regularization; and (c)-(e) added
noise, a fixed amount of /, regularization (a), and an increasing amount of /; regularization (A).
(c) In the absence of /; regularization there are many spurious rates and artifacts between the two
main distributions. (d) Two distinct rate distributions are identifiable with minor artifacts when
using an optimal A that was empirically determined. (¢) When A is too large either rate
distribution starts to significantly overlap with one another making it difficult to separate either
powder pattern. Projections of the powder patterns from either rate distribution when (f) A =0
and (g) when using an optimal A. The optimal A can be determined with a characteristic S-curve
plotting routine (vide infra) and be can further refined if a priori knowledge of the separated
pattern shapes are known.
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Figure S5: Examples of the S-curve plotting routine used to determine an optimal /; norm
constraint, A. In each plot, the vertical axis is the log of the residual norm after Sparse NNTF and
the horizontal axis represents different values of A. The plot depicts a characteristic ‘S’ shape
where the first corner of the S represents an approximate value for the optimal A.2* This value
can be further refined empirically (cf. Figure S4) for optimal pattern separation if needed.
Examples are given corresponding to 2D R, RAS simulations shown in Figure 1. Each column
represents different levels of SNR and /;, norm constraints (o), while each row represents

different rates used as input for each site used in the simulation.



Physical Chemistry Chemical Physics

a b
2D R, RAS Spectrum Histidine HCI
0.018 1.
0.016 1
0.014 1
~0.012 ] .
: .
g 0.011
~ f J A
P ]
5 0.008 - /
- ] c Glycine HCI
0.006 -
0.004 -
50 0 —20 -100 -150 50 0 -50 -100
Frequency (kHz) Frequency (kHz)

Figure S6: (a) Experimental 2D R, RAS spectrum of a glycine HCI: histidine HCI 3:1 w/w
mixture using 33C] NMR with regularization parameters a = 0.001 and A = 0.00005. Signal below
ca. —90 kHz is from the satellite transitions (STs). (b) Frequency projection from summing over
the rates between the dashed red lines and (c) a frequency projection from summing over the
rates outside of the dashed red lines. Ideal 3°C1 NMR patterns are simulated for each pattern. The
R, of glycine HCI has a large distribution across isochromats such that it is completely
overlapped with the small R, distribution of histidine HCI. The overlapping R, distributions
between the samples makes it challenging to separate the patterns without major distortions.
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Figure S7: Experimental 3>Cl WURST-CPMG NMR spectra of (a) CdCl,, (b) the
RbCI:CdCl,:Urea cocrystal processed by coadding all 200 echoes and (c) processed by coadding
just the first 10 echoes, and (d) a Bloch decay spectrum of RbCl. CdCl, has one broad and one
narrow 3Cl powder pattern. The broad pattern in (a) is unique from the broad pattern in the
cocrystal as indicated by the broad red dashed lines between (a), (b), and (c). The narrow pattern
in (a) is also unique from the narrow pattern in the cocrystal as indicated by the narrow-dashed
lines between (a) and (b). Both comparisons suggest that the cocrystal is a novel material and
contains little or no CdCl, starting reagent. A distinct narrow 33Cl resonance is distinguishable in
(c) compared to (b), suggesting that this narrow pattern has a much shorter 7, compared to that
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of the broader sites. A red dashed line between RbCl in (d) and the narrowest pattern in (c)
suggests this narrowest pattern in the cocrystal may correspond to residual RbCl from synthesis.
I indicates a broad resonance in (b) and (c) that cannot be distinguished as another CT pattern or
STs and extends well beyond the tuning range of the probe (c.f. Figure S8).

Sites 1-3
I

Sites 4 and 5
(*"CI STs)
|

T T
500 0 -500
%Cl Frequency (kHz)

1
—-1000

Figure S8: Experimental 3>Cl NMR of the RbCIl:CdCl,:Urea cocrystal acquired with WURST-
CPMG. The spectrum was acquired with two different sub-spectra at transmitter offsets of = 350
kHz with respect to vo(*>Cl). These offsets are at the tuning limits of the probe and the spectrum
cannot be acquired beyond this range. The patterns of the three Cl sites described in Figure S7
are denoted as Sites 1-3. Signal corresponding to 3’C1 STs associated with two additional ClI sites
(4 and 5) are clearly noticeable and suggest Cq values greater than ca. 30 MHz; therefore,
corresponding CT 3Cl powder patterns for 4 and 5 span well beyond the current acquisition
bandwidth and likely also overlap with 33C1 ST signal for Sites 1-3.
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Figure S9: Experimental 3CI NMR of (a) RbCl and (b) the pattern of Site 3 extracted from the
3D RAS R;-R; correlation map in Figure 6d. A qualitative comparison of these patterns suggests

that Site 3 extracted from the R,-R, correlation map for the RbCl:CdCl,:Urea cocrystal is not
residual RbCl from synthesis, and is a novel 33Cl site within the cocrystal.
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