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ABSTRACT

Despite being a recurring type of sequence variation, amino
acid insertions and deletions (InDels) and their resulting
functional significance remain a rather unexplored area of
structural biology. InDels are quite often the driving force
behind many diseases. Despite that, modeling InDels and
exploring their functional implications remains lacking, mainly
due to the dearth of experimental information and computa-
tional methodologies. In this work we introduce an algorithmic
approach to model short InDels in silico and explore the
structural and rigidity differences between the wildtype and
the mutant protein structures. We assess rigidity to gather
useful information about the protein’s general structure, the
location of flexible and rigid clusters, and to permit a visual
analysis of the effects of InDels local to the mutation site.
Our results show that our method can efficiently create a
computer-generated mutant that is functionally similar to the
experimental mutant at both the local region of the InDel, as
well as on the entire protein scale. The results show promise in
our ability to accurately predict the effects of short insertions
and deletions on the structural properties of proteins.

Keywords:: computational structural biology, protein In-
Del mutations, graph-theory rigidity

I. INTRODUCTION

Amino acid insertions and deletions (InDels) are a common
type of sequence variation in proteins. While the mechanisms
and functional changes caused by amino acid substitutions
have been studied extensively, InDels remain less understood
and studied due to the challenges of conducting wet-lab ex-
periments in which an inDel at the sequence level is followed
by transcription and translation that results in a viable protein
structure [1]. For this reason, the effects of InDels on protein
structure and dynamics is less studied [2]. InDel events occur
when a non-frameshift (NFS) insertion or deletion in the DNA
sequence results in one or more amino acids being inserted
or deleted relative to the wildtype amino acid sequence in a
protein. A protein variant that includes one or more inserted or
deleted amino acids relative to the wild type is called an InDel
protein mutant [3, 1, 4]. DNA inDels that cause protein InDels
have various causes such as genome duplication, proliferation
of transposal elements, as well as replication errors [3]. While
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InDels can occur anywhere in a protein sequence, they are
observed more often in the loop regions of proteins [5],
possibly due to their disruptive consequences if they occur
otherwise in secondary structure elements [6]. Further, InDels
usually do not occur in loop regions that are involved in a
catalytic reaction or a triad, or which serve a structural role. It
has recently been demonstrated that InDels, rather than sub-
stitutions, are strongly correlated with functional changes in
proteins [7]. In sum, there is substantial evidence that InDels,
not substitutions, are a predominant evolutionary factors when
it comes to structural changes in proteins [8, 9, 10].

InDels can result in many types of diseases such as cystic
fibrosis [11] and several types of cancer [12, 13]. The more
recently occurring severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) [14] has variants that are caused
by InDels. A closer look at the spike protein of this virus
reveals that InDels which occur at the S1/S2 subunits results in
mutants that have greater probability of resistance to vaccines.
In the case of cystic fibrosis, several mutants are known. The
F508del mutation in nucleotide-binding domain-1 (NBDI)
of the cystic fibrosis transmembrane conductance regulator
(CFTR) is the predominant cause of cystic fibrosis [11].

A. Previous Work

Early work at cataloging proteins with InDels included Indel
PDB [15], which is no longer publicly available. It was a
database of InDels generated from sequence alignments of
highly similar proteins. A later tool was Sequence Feature
and InDel Region Extractor (SeqFIRE) [16], which automated
identification and extraction of InDels from protein sequence
alignments. SeqFIRE extracted conserved blocks and identi-
fied fast evolving sites using a combination of conservation
and entropy information about InDel locations. Like InDel
PDB, SeqFIRE is no longer publicly available. Not many tools
exist today that model the structural changes in a protein in
response to an InDel, nor are there any tools that attempt to
correlate structural changes due to InDels and their ensuing
stability of a protein.

In this work we develop a computational pipeline, employ-
ing inverse kinematics and rigidity analysis, to model short
InDels in protein structures. Our goal here is twofold: First, we
aim to validate our protocol using wildtype-InDel pairs from
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experimentally resolved PDB structures, and compare them
to the computationally generated InDels. We also investigate
the structure and stability properties of the in silico generated
InDels and their wildtype equivalents, to explore possible
mechanisms to assess the extent to which an InDel affects
a protein’s structure and function.

II. METHODS

Our methodology includes identifying wildtype and their
InDel mutants in the PDB [17], generating the in silico InDel
mutants via an inverse kinematics robotics inspired approach,
and comparing the PDB mutants to our in silico generated
mutants via a rigidity analysis approach.

A. Identifying InDels in the PDB

Because there are no publicly-available well-established
databases of experimentally resolved InDel mutant protein
structures, we proceeded with a multi-pronged approach to
identify our data set of wildtype, InDel mutant pairs. One
source of such wildtype, InDel pairs was UniProt [18], from
which we retrieved PDB codes of wildtype and corresponding
InDel mutant structures. We also conducted an advanced
search of the PDB, looking for keywords such as deletion,
insertion and mutation in the title. This yielded structures
such as 6IDC [19]. Lastly, we searched the SEQADV and
999 REMARKS records among the entries in the PDB for
insertion and deletion codes, which allude to InDels.

All of the found InDel mutants were further manually
curated to determine the count of InDels, as well as their
locations — whether in a secondary structure or a loop region.
In total, we identified 24 mutants with PDB structures with
InDels in a loop region. For this We restricted our search
to InDels of size 1-4. With the help of UniProtKB [20], we
identified their corresponding wildtype structures.

B. Creating InDels and refining the resulting structures

The in silico InDels were generated from the wild type PDB
structures using the Rosetta software suite [21]. Rosetta is
a widely used molecular modeling application, which offers
a wide range of tools for modeling and performing three-
dimensional structure predictions and designing novel protein-
protein complexes. Rosetta’s protocols were used for loop
modeling applications and ab initio energy minimization.

In recent years, geometry and robotics based algorithms
have been used to model protein structure and dynamics
[22, 23]. Robotics-inspired motion planning methods model
the protein as a kinematic chain of rigid bodies connected
by flexible joints [24]. The motion of proteins is simulated
through the manipulation of degrees of freedom (DoF) of
the protein bond lengths, bond angles, and dihedral angles.
Inverse Kinematics (IK) is used to model the configuration of
a kinematic chain given its end constraints [23]. In protein
structure prediction, IK is often used to model loops by
manipulating the rotational degrees of freedom of a loop
region to find possible loop conformations that attach to
the rest of the protein. Inspired by IK, KIC (Figure 1)[25]
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is a robotics inspired methodology used for computation of
probable arrangements of linked objects that are subjected to a
set of constraints. Initially the loop is divided into three pivots
(colored green in the figure) and the rigid body transformation
from the start of the loop till the end is stored (highlighted by
black dotted line). This is followed by perturbing the degrees
of freedom [25]. Lastly, pivot torsion values are calculated and
set to orient each rigid segment so that the original rigid body
transformation between the loop ends is preserved. [26].

Fig. 1: A demonstration of kinematic closure, (top to bottom)
the first figure shows that rigid body transformations are
computed and stored shown by black dotted line. Second figure
shows perturbing the degrees of freedom pertaining torsions,
bond lengths and bond angles depicted by orange and red
arrows and the third figure shows that pivot torsion values are
calculated and stored shown by black arrows and each rigid
segment is oriented in a manner to reinstate the original rigid
body transformation [25]

For a kinematic articulated chain with a gap, that represents
an amino acid deletion or location where an amino acid is
inserted, the problem consists of finding a balance between
global tweaking of the torsion angles, and making positional
and angle changes incident to the residues adjacent to the
deleted or inserted residue. Our algorithmic approach to ad-
dress this challenge consists of two steps :

e Loop closure without refinement of resulting structures

using geometric modeling.

o Perform KIC in order to resolve the loop for energy

minimization.

The specific protocols used to achieve this are as follows:
Rosetta’s remodel protocol [27] was used to close the gap
initially, followed by the loop protocol [28, 29]. The structures
produced by Rosetta’s quick and dirty variant of the remodel
protocol do not have good energy scores as it simply closes the
gap but the resulting structures have steric clashes. The loop
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protocol uses KIC as explained earlier to refine the region
of closure, followed by all-atom refinement in order to find a
low energy conformation. The last step results in better energy
scores for the emergent structures.

For validation purposes, we compared the in silico generated
mutant structures with their PDB counterparts and evaluated
them based on both local (loop region) and global RMSD
before passing them on to the rigidity analysis step of our
approach. Figure 2 illustrates the process of deleting ARG-
119 for human lysozyme [30], followed by closing the gap.
Figure 2 (c) shows a superimposition of the computationally
generated mutant with the experimentally available structure
(PDB:1DIS). The global all atom RMSD was 0.283A. A
black arrow points to the region where the computational and
experimental mutant differ the most. We also computed the
local RMSD of the loop region from which the residue was
deleted. In this case the local RMSD is 0.251A.

Rigidity Analysis

The rigidity and flexibility of protein domains provides in-
sights into a protein’s structural stability [31]. A computational
analysis of the rigidity of a protein can yield insights into
the effects of amino acid substitutions [32, 33]. We relied on
the software tool KINARI [34] to assess the rigidity of our
InDel mutants. KINARI takes a PDB file as input, identifies
stabilizing interactions such as hydrogen bonds, models the
protein as a Body-Bar-Hinge Framework, and runs a Pebble
Game analysis on an associated graph representing the Body-
Bar-Hinge Framework. The output for rigidity analysis is a
list of atoms that exist among the identified rigid clusters.

We measured the differences between the in silico generated
InDel mutants and their wild types, and between the PDB
InDel mutants and the wildtype, using RMSD measurements,
and via a visual inspection via PyMol. The similarities and
differences in these scores gives us insight into the ability of
our method to accurately generate in silico InDels.

C. Rigidity Analysis to Measure InDel Effect

To quantify the difference between a wildtype and an
InDel mutant, we used our previously developed Rigidity
Distance Similarity Metric (RDSM), which reasons about the
counts and sizes of rigid clusters in the wildtype versus a
mutant [35]. The following RDSM score:

RDSM = Y 7= scw(z) x [WT; — Mut;]

quantifies the cumulative differences between the count of the
various sizes of rigid clusters (i is the size of the rigid cluster,
and LRC = Largest Rigid Cluster) in the wild type (WT') and
mutant (Mut). The sigmoid-based w(x) function

- 1
w(z) = 5 T e 0dxt5

weighs the differences that exist for the larger clusters in
the mutant and wild type more heavily than differences that
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(c) 1DI5 computational mutant superimposed with 1DI5 with
global RMSD of 0.283

Fig. 2: The loop closure process
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TABLE I: Global and local RMSD of PDB and in silico
generated InDel mutants in Angstroms

‘ Wildtype ‘ Mutant ‘ InDel type ‘ Global RMSD ‘ Local RMSD ‘

5GQL 5GQI d:1 0.138 0.126
5GQL 5GQJ d:2 0.767 0.708
5GQM 5GQN d:3 0.836 0.678
6J6C 6AIS d:2 0.96 0.509
6J6C 6ICS d:4 0.135 0.34
2VIJI 4XQF d:2 0.16 0.135
2BBO 1XMJ d:1 0.652 0.768
21Q1 6AK7 d:3 0.79 0.392
2Vl 6GVP d:2 0.186 0.376
1A7N 1A70 d:1 0.181 0.41
1STN ISTA 12 0.506 0.47
2Vl 6GVR d:2 0.168 0.329
S5GQM 5GQK d:3 0.796 0.269
1JWR 1DI4 d:2 0.563 0.498
1JWR 1DIS d:1 0.283 0.251
2Y0G 4KA9 i1, d:l 0.72 0.58
4KJIK 4KJL i1 0.378 0.574
2NIP 1IRW4 d:1 0.557 0.53
4EUL 6FLL d:2 0.206 0.36
1ANF IMDQ il 0.701 0.607
10MF 1GEN d:6 0.245 0.342
1F21 1GOA il 0.97 0.85
2Y0G 4KAG i1, d:l 0.69 0.74
SYHA SYHB d:3 0.623 0.807

exist among smaller clusters, as differences among large rigid
clusters are more important to a protein’s rigidity.

We calculated the pairwise RDSM scores for the wildtype,
PDB InDel mutant, and wildtype, in silico InDel mutant, to
assess the quality of our computer approach for generating and
assessing the effectgs of the InDels. The lower the RDSM
score, the closer the rigidity properties of the wildtype and
mutant are to each other. Since proteins vary in size, we
normalized the RDSM scores by the size of the protein in
order to better visualize the differences as a percent difference,
and not an absolute difference.

We also performed a visual analysis of the rigid clusters
at the location of the InDel using a custom built PyThon
visualizer. We did this to glean insights about the local effects
of the insertion or deletion in addition to the more global-based
measurement provided by the RDSM metric.

ITII. RESULTS AND DISCUSSION
A. Comparing PDB and Computed InDel Mutants

Table I shows the global RMSD and local (to the InDel
region) RMSD between the PDB InDel mutant and our in
silico generated InDel mutant. Some of the entries refer to
varying-length InDels from the same protein. For instance,
6AIS and 6ICS represent deletions of two and four amino
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acids, respectively, from the loop region of outer surface
protein A of Borreliella burgdorferi. In all, the table repre-
sents nineteen examples of deletions, and five insertions. The
Maximum number of inserted residues is two. We were able
to insert up to four residues in the loop region of the human
lysozyme, but we were unable to find any preexisting InDel
mutants in the PDB that contained more than two insertions
in the loop region of that protein. One of the deletions is of
length 6.

As can be seen, both the global and local RMSD values,
in Angstroms, are all less than 1.0A, with several as low as
0.13A. Therefore our in silico approach for creating InDel
protein mutants using the robotics-inspired inverse kinematics
approach appears to yield structures that are similar to InDel
mutants whose structures are resolved experimentally.

B. Using Rigidity Analysis to Measure the effect of an InDel

For this work, we rely on our RDSM scores for the InDels
and wildtype to determine the extent that the indel in the PDB
mutant had the same effect on the wildtype as the indel in
the in silico generated mutant. In our previous work [35] we
found that two RDSM metrics, which differ only by their w(x)
functions, produced RDSM scores that correlated best with the
known effects of substitutions:

1
B 1
- 1 +e—0.05x+5

The RDSM2 and RDSM3 scores for the wildtype and PDB
and in silico generate mutants among our dataset of protein
structures are shown in Figures 3 and 4. These represent the
differences in rigidity properties between the wildtype and
InDel pairs. If the PDB InDel and our in silico generated
InDel have the same effect on the rigidity properties of the
protein, we can expect the RDSM between the wildtype and
PDB InDel (blue bar) and the wildtype and in silico InDel
mutant (orange bar) to be similar, in Figures 3 and 4. If
our computational modelling of the InDel is correct, we can
expect that the rigidity scores between the PDB and in silico
InDel mutant, represented by the gray bars, to be small. In
other words, we would expect the score between the wildtype
and PDB mutant to be similar to the score between the
wildtype and in silico generated mutant because that means
that both mutants show a similar amount of difference from
the wildtype. We also would expect the rigidity properties
of the experimental and computational InDel mutants to be
similar, providing evidence that we are able to successfully
computationally model the Indel mutant.

RDSM3 : w(x)

C. Statistical Validation

To further determine whether using the RDSM metric to
assess the effect of an InDel is a fair approach, we performed
a statistical analysis of the results. The problem at hand can be
divided into two parts: Let us denote the RDSM score between
the PDB mutant and wildtype by X, and the RDSM score
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Fig. 3: The RDSM2 results for our tested proteins. The orange bar is a comparison of the RDSM2 measure between the
wildtype and PDB InDel mutant. Blue a comparison of the RDSM2 between the wildtype and our Computer-Generated InDel
Mutant, and the Gray bar is a comparison of the RDSM2 between the Mutant and Computer-Generated Mutant
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Fig. 4: The RDSM3 results for our tested proteins. The orange bar is a comparison of the RDSM3 measure between the wildtype
and PDB InDel mutant. Blue a comparison of the RDSM3 between the wildtype and our Computer-Generated Mutant, and
the Gray bar is a comparison of the RDSM3 between the Mutant and Computer-Generated Mutant

between the in silico mutant and wildtype by Y (representing
the blue and orange bars in the graphs, respectively). To see
whether they are similar we performed a Spearman correlation
test [36] between the two variables. We conducted the test for
5 RDSM values (see [35] for the weights RDSM1 and RSDM
4-5), which differed only by their weight, w(z) function. For
RDSM1 through 5, we got values 0.93, 0.916, 0.897, 0.95 and
0.45 with statistical significance of p < 0.05. This statistical
test revealed that both PDB mutant vs. wildtype and our in
silico mutants vs. wildtype exhibited a satisfactory correlation
to one another.

The second part of the problem consisted of finding what
is the relation between X and Y above (blue and orange bar
in the Figures 3 and 4, respectively) with the RDSM score
between the PDB mutant and in silico mutant denoted by W
(Grey bar in the graphs). The problem at hand now consisted
of comparing W with X and Y. This posed a problem, since
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we have three magnitudes involved, and in order to compare
their means we could not use a simple 2-sample z— or ¢-test.
Therefore, we relied on the following strategy to solve the
problem at hand:

We computed the probability of the value of the third
variable being smaller than the minimum of other two i.e.
PW < min(X,Y). In order to achieve this, we computed
the difference between W and the minimum of X and Y.
Once we calculated the difference, which we denote as D, we
computed the probability that D < 0. Any probability greater
than 0.5 indicates that probability is within reasonable limits.
We proceeded to repeat the same test for the RDSM values
and attained the scores of 0.7638, 0.6533, 0.6823, 0.7098 and
0.6098 for RDSM 1-5. This indicated that the PDB and in
silico InDel mutants are similar to one another as compared
to the wildtype when analysis was performed on the current
data.
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Fig. 5: Visualization (Left-to-right) of the wildtype 1A70,
experimental (PDB) mutant 1A7N, and computer generated
mutant. The InDel was a deletion of Proline at residue 95.
Residues surrounding the InDel location are made larger with
an arrow drawn to the indel’s exact spot. The largest 5 rigid
clusters are colored orange, with all other clusters colored
black

Fig. 6: Visualization (left-to-right) of wildtype 2YOG, its
experimental (PDB) mutant 4KAG, and computer generated
mutant. The indel was an insertion of Aspartic Acid at residue
190. Residues surrounding indel location are made larger with
an arrow drawn to the indel’s exact spot. Largest 5 rigid
clusters are colored, with all other clusters colored black

D. Effects of InDels Local to Mutation Site

We also assessed the effects of the InDel local to where the
insertion or deletion were made, via a visual inspection using a
custom built Python script. Figure 6 shows that despite the fact
that the RDSM score comparison reveals that for the wildtype
2Y0G and PDB mutant 4KAG, our in silico generated InDel
had a 2x greater effect than the PDB InDel on the RDSM,
the visualization local to the InDel site is similar for the PDB
mutant to the in silico mutant. Another example that showcase
how the rigidity analysis approach to determine the effect of
the InDel local to the mutation is shown in figure 5 that uses
wildtype 1A70 and PDB mutant 1A7N. While this mutation
didn’t have as large of an effect on the wildtype, our in silico
approach still resulted in rigid clusters that were very similar
to the rigid clusters as found in the PDB InDel mutant.

IV. CONCLUSION

InDels account for more changes in the structure and
function of proteins when compared to substitutions. However,
they are not as well studied, among other reasons due to lack
of experimental and computational data. In this research we
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attempted to gain insight related to InDels and their structural
implications. The goal of this work was to computationally
generate short insertions and deletions from PDB files and
to predict the effects of the mutations. For the purpose of
this research, we identified twenty-four InDels that were in
the loop regions of proteins. We generated those InDels com-
putationally and performed rigidity analysis on the resulting
structures. We showed that we can generate low-energy InDels
that are structurally very similar to the experimental PDB
InDel mutant structures.

Our rigidity analysis proved that we often produce com-
putationally generated InDels with rigidity properties — i.e. -
location and size of rigid clusters vs. flexible regions — that are
similar to the rigidity properties of the corresponding experi-
mental InDel mutant structures in the PDB. Statistical analysis
of the rigidity of the computational in silico and experimental
(PDB) mutants showed that both reveal statistically significant
differences from the wildtype, while having similar rigidity
properties to one another. Here we would like to address that
the statistical analysis is currently performed on the set of
proteins that were used for the purpose of this preliminary
study. However, once more data is discovered, the analysis
will be repeated in order to reevaluate the findings.

This initial study shows that our method has the ability to
generate InDels and bridge the gap between the importance
of InDels and their lack of experimental and computational
availability.
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