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ABSTRACT

Despite being a recurring type of sequence variation, amino

acid insertions and deletions (InDels) and their resulting

functional significance remain a rather unexplored area of

structural biology. InDels are quite often the driving force

behind many diseases. Despite that, modeling InDels and

exploring their functional implications remains lacking, mainly

due to the dearth of experimental information and computa-

tional methodologies. In this work we introduce an algorithmic

approach to model short InDels in silico and explore the

structural and rigidity differences between the wildtype and

the mutant protein structures. We assess rigidity to gather

useful information about the protein’s general structure, the

location of flexible and rigid clusters, and to permit a visual

analysis of the effects of InDels local to the mutation site.

Our results show that our method can efficiently create a

computer-generated mutant that is functionally similar to the

experimental mutant at both the local region of the InDel, as

well as on the entire protein scale. The results show promise in

our ability to accurately predict the effects of short insertions

and deletions on the structural properties of proteins.

Keywords:: computational structural biology, protein In-

Del mutations, graph-theory rigidity

I. INTRODUCTION

Amino acid insertions and deletions (InDels) are a common

type of sequence variation in proteins. While the mechanisms

and functional changes caused by amino acid substitutions

have been studied extensively, InDels remain less understood

and studied due to the challenges of conducting wet-lab ex-

periments in which an inDel at the sequence level is followed

by transcription and translation that results in a viable protein

structure [1]. For this reason, the effects of InDels on protein

structure and dynamics is less studied [2]. InDel events occur

when a non-frameshift (NFS) insertion or deletion in the DNA

sequence results in one or more amino acids being inserted

or deleted relative to the wildtype amino acid sequence in a

protein. A protein variant that includes one or more inserted or

deleted amino acids relative to the wild type is called an InDel

protein mutant [3, 1, 4]. DNA inDels that cause protein InDels

have various causes such as genome duplication, proliferation

of transposal elements, as well as replication errors [3]. While

InDels can occur anywhere in a protein sequence, they are

observed more often in the loop regions of proteins [5],

possibly due to their disruptive consequences if they occur

otherwise in secondary structure elements [6]. Further, InDels

usually do not occur in loop regions that are involved in a

catalytic reaction or a triad, or which serve a structural role. It

has recently been demonstrated that InDels, rather than sub-

stitutions, are strongly correlated with functional changes in

proteins [7]. In sum, there is substantial evidence that InDels,

not substitutions, are a predominant evolutionary factors when

it comes to structural changes in proteins [8, 9, 10].

InDels can result in many types of diseases such as cystic

fibrosis [11] and several types of cancer [12, 13]. The more

recently occurring severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) [14] has variants that are caused

by InDels. A closer look at the spike protein of this virus

reveals that InDels which occur at the S1/S2 subunits results in

mutants that have greater probability of resistance to vaccines.

In the case of cystic fibrosis, several mutants are known. The

F508del mutation in nucleotide-binding domain-1 (NBD1)

of the cystic fibrosis transmembrane conductance regulator

(CFTR) is the predominant cause of cystic fibrosis [11].

A. Previous Work

Early work at cataloging proteins with InDels included Indel

PDB [15], which is no longer publicly available. It was a

database of InDels generated from sequence alignments of

highly similar proteins. A later tool was Sequence Feature

and InDel Region Extractor (SeqFIRE) [16], which automated

identification and extraction of InDels from protein sequence

alignments. SeqFIRE extracted conserved blocks and identi-

fied fast evolving sites using a combination of conservation

and entropy information about InDel locations. Like InDel

PDB, SeqFIRE is no longer publicly available. Not many tools

exist today that model the structural changes in a protein in

response to an InDel, nor are there any tools that attempt to

correlate structural changes due to InDels and their ensuing

stability of a protein.

In this work we develop a computational pipeline, employ-

ing inverse kinematics and rigidity analysis, to model short

InDels in protein structures. Our goal here is twofold: First, we

aim to validate our protocol using wildtype-InDel pairs from
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experimentally resolved PDB structures, and compare them

to the computationally generated InDels. We also investigate

the structure and stability properties of the in silico generated

InDels and their wildtype equivalents, to explore possible

mechanisms to assess the extent to which an InDel affects

a protein’s structure and function.

II. METHODS

Our methodology includes identifying wildtype and their

InDel mutants in the PDB [17], generating the in silico InDel

mutants via an inverse kinematics robotics inspired approach,

and comparing the PDB mutants to our in silico generated

mutants via a rigidity analysis approach.

A. Identifying InDels in the PDB

Because there are no publicly-available well-established

databases of experimentally resolved InDel mutant protein

structures, we proceeded with a multi-pronged approach to

identify our data set of wildtype, InDel mutant pairs. One

source of such wildtype, InDel pairs was UniProt [18], from

which we retrieved PDB codes of wildtype and corresponding

InDel mutant structures. We also conducted an advanced

search of the PDB, looking for keywords such as deletion,

insertion and mutation in the title. This yielded structures

such as 6IDC [19]. Lastly, we searched the SEQADV and

999 REMARKS records among the entries in the PDB for

insertion and deletion codes, which allude to InDels.

All of the found InDel mutants were further manually

curated to determine the count of InDels, as well as their

locations – whether in a secondary structure or a loop region.

In total, we identified 24 mutants with PDB structures with

InDels in a loop region. For this We restricted our search

to InDels of size 1-4. With the help of UniProtKB [20], we

identified their corresponding wildtype structures.

B. Creating InDels and refining the resulting structures

The in silico InDels were generated from the wild type PDB

structures using the Rosetta software suite [21]. Rosetta is

a widely used molecular modeling application, which offers

a wide range of tools for modeling and performing three-

dimensional structure predictions and designing novel protein-

protein complexes. Rosetta’s protocols were used for loop

modeling applications and ab initio energy minimization.

In recent years, geometry and robotics based algorithms

have been used to model protein structure and dynamics

[22, 23]. Robotics-inspired motion planning methods model

the protein as a kinematic chain of rigid bodies connected

by flexible joints [24]. The motion of proteins is simulated

through the manipulation of degrees of freedom (DoF) of

the protein bond lengths, bond angles, and dihedral angles.

Inverse Kinematics (IK) is used to model the configuration of

a kinematic chain given its end constraints [23]. In protein

structure prediction, IK is often used to model loops by

manipulating the rotational degrees of freedom of a loop

region to find possible loop conformations that attach to

the rest of the protein. Inspired by IK, KIC (Figure 1)[25]

is a robotics inspired methodology used for computation of

probable arrangements of linked objects that are subjected to a

set of constraints. Initially the loop is divided into three pivots

(colored green in the figure) and the rigid body transformation

from the start of the loop till the end is stored (highlighted by

black dotted line). This is followed by perturbing the degrees

of freedom [25]. Lastly, pivot torsion values are calculated and

set to orient each rigid segment so that the original rigid body

transformation between the loop ends is preserved. [26].

Fig. 1: A demonstration of kinematic closure, (top to bottom)

the first figure shows that rigid body transformations are

computed and stored shown by black dotted line. Second figure

shows perturbing the degrees of freedom pertaining torsions,

bond lengths and bond angles depicted by orange and red

arrows and the third figure shows that pivot torsion values are

calculated and stored shown by black arrows and each rigid

segment is oriented in a manner to reinstate the original rigid

body transformation [25]

For a kinematic articulated chain with a gap, that represents

an amino acid deletion or location where an amino acid is

inserted, the problem consists of finding a balance between

global tweaking of the torsion angles, and making positional

and angle changes incident to the residues adjacent to the

deleted or inserted residue. Our algorithmic approach to ad-

dress this challenge consists of two steps :

• Loop closure without refinement of resulting structures

using geometric modeling.

• Perform KIC in order to resolve the loop for energy

minimization.

The specific protocols used to achieve this are as follows:

Rosetta’s remodel protocol [27] was used to close the gap

initially, followed by the loop protocol [28, 29]. The structures

produced by Rosetta’s quick and dirty variant of the remodel

protocol do not have good energy scores as it simply closes the

gap but the resulting structures have steric clashes. The loop

Authorized licensed use limited to: Western Washington University. Downloaded on July 18,2022 at 22:32:46 UTC from IEEE Xplore.  Restrictions apply. 





2514

TABLE I: Global and local RMSD of PDB and in silico

generated InDel mutants in Angstroms

Wildtype Mutant InDel type Global RMSD Local RMSD

5GQL 5GQI d:1 0.138 0.126

5GQL 5GQJ d:2 0.767 0.708

5GQM 5GQN d:3 0.836 0.678

6J6C 6AIS d:2 0.96 0.509

6J6C 6ICS d:4 0.135 0.34

2VJI 4XQF d:2 0.16 0.135

2BBO 1XMJ d:1 0.652 0.768

2IQ1 6AK7 d:3 0.79 0.392

2VJJ 6GVP d:2 0.186 0.376

1A7N 1A7O d:1 0.181 0.41

1STN 1STA i:2 0.506 0.47

2VJJ 6GVR d:2 0.168 0.329

5GQM 5GQK d:3 0.796 0.269

1JWR 1DI4 d:2 0.563 0.498

1JWR 1DI5 d:1 0.283 0.251

2Y0G 4KA9 i:1, d:1 0.72 0.58

4KJK 4KJL i:1 0.378 0.574

2NIP 1RW4 d:1 0.557 0.53

4EUL 6FLL d:2 0.206 0.36

1ANF 1MDQ i:1 0.701 0.607

1OMF 1GFN d:6 0.245 0.342

1F21 1GOA i:1 0.97 0.85

2Y0G 4KAG i:1, d:1 0.69 0.74

5YHA 5YHB d:3 0.623 0.807

exist among smaller clusters, as differences among large rigid

clusters are more important to a protein’s rigidity.

We calculated the pairwise RDSM scores for the wildtype,

PDB InDel mutant, and wildtype, in silico InDel mutant, to

assess the quality of our computer approach for generating and

assessing the effectgs of the InDels. The lower the RDSM

score, the closer the rigidity properties of the wildtype and

mutant are to each other. Since proteins vary in size, we

normalized the RDSM scores by the size of the protein in

order to better visualize the differences as a percent difference,

and not an absolute difference.

We also performed a visual analysis of the rigid clusters

at the location of the InDel using a custom built PyThon

visualizer. We did this to glean insights about the local effects

of the insertion or deletion in addition to the more global-based

measurement provided by the RDSM metric.

III. RESULTS AND DISCUSSION

A. Comparing PDB and Computed InDel Mutants

Table I shows the global RMSD and local (to the InDel

region) RMSD between the PDB InDel mutant and our in

silico generated InDel mutant. Some of the entries refer to

varying-length InDels from the same protein. For instance,

6AIS and 6ICS represent deletions of two and four amino

acids, respectively, from the loop region of outer surface

protein A of Borreliella burgdorferi. In all, the table repre-

sents nineteen examples of deletions, and five insertions. The

Maximum number of inserted residues is two. We were able

to insert up to four residues in the loop region of the human

lysozyme, but we were unable to find any preexisting InDel

mutants in the PDB that contained more than two insertions

in the loop region of that protein. One of the deletions is of

length 6.

As can be seen, both the global and local RMSD values,

in Angstroms, are all less than 1.0Å, with several as low as

0.13Å. Therefore our in silico approach for creating InDel

protein mutants using the robotics-inspired inverse kinematics

approach appears to yield structures that are similar to InDel

mutants whose structures are resolved experimentally.

B. Using Rigidity Analysis to Measure the effect of an InDel

For this work, we rely on our RDSM scores for the InDels

and wildtype to determine the extent that the indel in the PDB

mutant had the same effect on the wildtype as the indel in

the in silico generated mutant. In our previous work [35] we

found that two RDSM metrics, which differ only by their w(x)
functions, produced RDSM scores that correlated best with the

known effects of substitutions:

RDSM2 : w(x) =
1

1 + e−0.1x+5

RDSM3 : w(x) =
1

1 + e−0.05x+5

The RDSM2 and RDSM3 scores for the wildtype and PDB

and in silico generate mutants among our dataset of protein

structures are shown in Figures 3 and 4. These represent the

differences in rigidity properties between the wildtype and

InDel pairs. If the PDB InDel and our in silico generated

InDel have the same effect on the rigidity properties of the

protein, we can expect the RDSM between the wildtype and

PDB InDel (blue bar) and the wildtype and in silico InDel

mutant (orange bar) to be similar, in Figures 3 and 4. If

our computational modelling of the InDel is correct, we can

expect that the rigidity scores between the PDB and in silico

InDel mutant, represented by the gray bars, to be small. In

other words, we would expect the score between the wildtype

and PDB mutant to be similar to the score between the

wildtype and in silico generated mutant because that means

that both mutants show a similar amount of difference from

the wildtype. We also would expect the rigidity properties

of the experimental and computational InDel mutants to be

similar, providing evidence that we are able to successfully

computationally model the Indel mutant.

C. Statistical Validation

To further determine whether using the RDSM metric to

assess the effect of an InDel is a fair approach, we performed

a statistical analysis of the results. The problem at hand can be

divided into two parts: Let us denote the RDSM score between

the PDB mutant and wildtype by X , and the RDSM score
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Fig. 5: Visualization (Left-to-right) of the wildtype 1A7O,

experimental (PDB) mutant 1A7N, and computer generated

mutant. The InDel was a deletion of Proline at residue 95.

Residues surrounding the InDel location are made larger with

an arrow drawn to the indel’s exact spot. The largest 5 rigid

clusters are colored orange, with all other clusters colored

black

Fig. 6: Visualization (left-to-right) of wildtype 2Y0G, its

experimental (PDB) mutant 4KAG, and computer generated

mutant. The indel was an insertion of Aspartic Acid at residue

190. Residues surrounding indel location are made larger with

an arrow drawn to the indel’s exact spot. Largest 5 rigid

clusters are colored, with all other clusters colored black

D. Effects of InDels Local to Mutation Site

We also assessed the effects of the InDel local to where the

insertion or deletion were made, via a visual inspection using a

custom built Python script. Figure 6 shows that despite the fact

that the RDSM score comparison reveals that for the wildtype

2Y0G and PDB mutant 4KAG, our in silico generated InDel

had a 2x greater effect than the PDB InDel on the RDSM,

the visualization local to the InDel site is similar for the PDB

mutant to the in silico mutant. Another example that showcase

how the rigidity analysis approach to determine the effect of

the InDel local to the mutation is shown in figure 5 that uses

wildtype 1A7O and PDB mutant 1A7N. While this mutation

didn’t have as large of an effect on the wildtype, our in silico

approach still resulted in rigid clusters that were very similar

to the rigid clusters as found in the PDB InDel mutant.

IV. CONCLUSION

InDels account for more changes in the structure and

function of proteins when compared to substitutions. However,

they are not as well studied, among other reasons due to lack

of experimental and computational data. In this research we

attempted to gain insight related to InDels and their structural

implications. The goal of this work was to computationally

generate short insertions and deletions from PDB files and

to predict the effects of the mutations. For the purpose of

this research, we identified twenty-four InDels that were in

the loop regions of proteins. We generated those InDels com-

putationally and performed rigidity analysis on the resulting

structures. We showed that we can generate low-energy InDels

that are structurally very similar to the experimental PDB

InDel mutant structures.

Our rigidity analysis proved that we often produce com-

putationally generated InDels with rigidity properties – i.e. -

location and size of rigid clusters vs. flexible regions – that are

similar to the rigidity properties of the corresponding experi-

mental InDel mutant structures in the PDB. Statistical analysis

of the rigidity of the computational in silico and experimental

(PDB) mutants showed that both reveal statistically significant

differences from the wildtype, while having similar rigidity

properties to one another. Here we would like to address that

the statistical analysis is currently performed on the set of

proteins that were used for the purpose of this preliminary

study. However, once more data is discovered, the analysis

will be repeated in order to reevaluate the findings.

This initial study shows that our method has the ability to

generate InDels and bridge the gap between the importance

of InDels and their lack of experimental and computational

availability.
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planning under kinematic loop-closure constraints. In

Algorithmic Foundations of Robotics VI, pages 75–90.

Springer, 2004.

[25] RosettaCommons Org. KIC Tutorial generalized kine-

matic closure 1, 2017.

[26] Peggy Yao, Ankur Dhanik, Nathan Marz, Ryan Propper,

Charles Kou, Guanfeng Liu, Henry Van Den Bedem,

Jean-Claude Latombe, Inbal Halperin-Landsberg, and

Russ B Altman. Efficient algorithms to explore con-

formation spaces of flexible protein loops. IEEE/ACM

Transactions on Computational Biology and Bioinfor-

matics, 5(4):534–545, 2008.

[27] Po-Ssu Huang, Yih-En Andrew Ban, Florian Richter,

Ingemar Andre, Robert Vernon, William R Schief, and

David Baker. Rosettaremodel: a generalized frame-

work for flexible backbone protein design. PloS one,

6(8):e24109, 2011.

[28] Daniel J Mandell, Evangelos A Coutsias, and Tanja

Kortemme. Sub-angstrom accuracy in protein loop recon-

struction by robotics-inspired conformational sampling.

Nature methods, 6(8):551–552, 2009.

[29] Amelie Stein and Tanja Kortemme. Improvements

to robotics-inspired conformational sampling in rosetta.

PloS one, 8(5):e63090, 2013.

[30] Junichi Higo and Masayoshi Nakasako. Hydration

structure of human lysozyme investigated by molecular

dynamics simulation and cryogenic x-ray crystal struc-

Authorized licensed use limited to: Western Washington University. Downloaded on July 18,2022 at 22:32:46 UTC from IEEE Xplore.  Restrictions apply. 



2518

ture analyses: on the correlation between crystal water

sites, solvent density, and solvent dipole. Journal of

computational chemistry, 23(14):1323–1336, 2002.

[31] Andrey Karshikoff, Lennart Nilsson, and Rudolf Laden-

stein. Rigidity versus flexibility: the dilemma of under-

standing protein thermal stability. The FEBS journal,

282(20):3899–3917, 2015.

[32] Filip Jagodzinski, Jeanne Hardy, and Ileana Streinu. Us-

ing rigidity analysis to probe mutation-induced structural

changes in proteins. Journal of bioinformatics and

computational biology, 10(03):1242010, 2012.

[33] Ramin Dehghanpoor, Evan Ricks, Katie Hursh, Sarah

Gunderson, Roshanak Farhoodi, Nurit Haspel, Brian

Hutchinson, and Filip Jagodzinski. Predicting the effect

of single and multiple mutations on protein structural

stability. Molecules, 23(2):251, 2018.

[34] N. Fox, F. Jagodzinski, Y. Li, and I. Streinu. KINARI-

web: A server for protein rigidity analysis. Nucleic Acids

Research, 39 (Web Server Issue):W177–W183, 2011.

[35] E. Andersson, R. Hsieh, H. Szeto, R. Farhoodi,

F. Jagodzinski, and N. Haspel. Assessing how multiple

mutations affect protein stability using rigid cluster size

distributions. In proc. of IEEE-ICCABS (International

Conference on Computational Advances in Bio and Med-

ical Sciences), October 2016.

[36] Clark Wissler. The spearman correlation formula. Sci-

ence, 22(558):309–311, 1905.

Authorized licensed use limited to: Western Washington University. Downloaded on July 18,2022 at 22:32:46 UTC from IEEE Xplore.  Restrictions apply. 


