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Abstract
This paper concerns the existence of global weak solutions à la Leray for com-
pressible Navier–Stokes equations with a pressure law which depends on the
density and on time and space variables t and x. The assumptions on the pressure
contain only locally Lipschitz assumption with respect to the density variable
and some hypothesis with respect to the extra time and space variables. It may be
seen as a first step to consider heat-conducting Navier–Stokes equations with
physical laws such as the truncated virial assumption. The paper focuses on
the construction of approximate solutions through a new regularized and fixed
point procedure and on the weak stability process taking advantage of the new
method introduced by the two first authors with a careful study of an appropriate
regularized quantity linked to the pressure.

Keywords: compressible, Navier–Stokes, fluid dynamics, heterogeneous pres-
sure, weak solution
Mathematics Subject Classification numbers: 35Mxx.

1. Introduction and main result

As mentioned in [6], the existence of global weak solutions, in the sense of J Leray [7],
to the non-stationary barotropic compressible Navier–Stokes (CNS) system with constant
shear and bulk viscosities μ and λ remained a longstanding open problem in space dimen-
sion strictly greater than one until the first results by Lions (see [18]) with P(ρ) = aργ

(γ > 3d/(d + 2)). Many important contributions followed to improve the result including
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Feireisl–Novotny–Petzeltova (γ > d/2, see [14, 19]), Plotnikov–Weigant (γ = d/2, see [20]),
E Feireisl (pressure law s �→ P(s) non-monotone on a compact set, see [16]) and more recently
Bresch–Jabin (thermodynamically unstable pressure law s �→ P(s) or anisotropic viscosities,
see [4]).

One of the main issue is that the weak bound of the divergence of the velocity field does
not a priori rule out singular behaviors by the density which may oscillate, concentrate or even
vanish (vacuum state) even if this is not the case initially.

Heat-conducting viscous CNS equations (Navier–Stokes–Fourier) with constant viscosities
namely with a pressure law (ρ,ϑ) �→ P(ρ,ϑ) and an extra equation on the temperature ϑ has
been firstly discussed in [18] and solved by E. Feireisl and A. Novotny for specific pressure
laws, see [12, 13] which in some sense are monotone with respect to the density after a fixed
value. In the present paper, we prepare the resolution of the heat-conducting CNS equations
with a truncated virial pressure law

P(ρ,ϑ) = ργ + ϑ

[γ/2]∑
n=0

Bn(ϑ) ρn. (1.1)

Such pressure law is not monotone with respect to the density after a fixed value and therefore
is not thermodynamically stable. This paper concerns the existence of global weak solutions à
la Leray for CNS equations with a pressure law which depends on the density and on time and
space variables t and x. It may be seen as a first step to consider heat-conducting Navier–Stokes
equations with physical laws such as the truncated virial assumption. More precisely, we
consider the CNS equations

∂tρ+ div(ρu) = 0 (1.2)

∂t(ρu) + div(ρu ⊗ u) − μΔu − (μ+ λ)∇ div u +∇P = 0 (1.3)

with initial condition

ρ|t=0 = ρ0 (ρu)|t=0 = m0, (1.4)

in a periodic box Ω = T
d = [−π, π]d for d � 2 and μ and λ two constants satisfying the

physical constraint μ > 0 and λ+ 2μ/d > 0. The pressure P = P(t, x, ρ) is a given function
depending on the time t, space x, and the density ρ. For simplicity in the redaction we con-
sider in the sequel that the shear viscosity μ = 1 and the bulk viscosity λ = −1: this does not
changed the mathematical proof and result.

For simplicity, we consider the periodic boundary conditions in x, namely Ω = T
d , even

if arguments can be adapted to the whole space case as well. As explained previously, the
article should be seen as a first step to solve the truncated virial case where we assume that the
temperature ϑ(t, x) is actually given instead of solving the temperature equation

∂t(ρE) + divx(ρE u) + divx(P(ρ,ϑ) u) = divx(∇xu · u) + divx(κ(ϑ)∇ϑ), (1.5)

where E = |u|2/2 + e(ρ,ϑ) is the total energy density with e(ρ,ϑ) is the specific internal energy
and initial condition

ρE|t=0 = ρ0E0. (1.6)

with the virial pressure state law (1.1). The main result presented here will be used in our
upcoming article (see [9]) to construct solutions to the full system (1.2)–(1.4), (1.5) and (1.6)
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as it provides the starting point for the fixed point procedure that we adopt. If ϑ is given then
naturally P(t, x, ρ) = P(ρ,ϑ(t, x)). But there are however several other contexts (for instance
in biology) where it is necessary to involve non spatially homogeneous pressure law and for
this reason, it is useful to consider more general formulas for P than given by (1.1). Note
that as shown in [5, 8], the procedure developed here is also applicable for the compressible
Brinkman system (semi-stationary compressible Stokes system) which is standard system that
may be seen in porous media and biology.

The construction of appropriate approximate solutions will be a difficulty in our paper. It is
based on an original approximate system for which existence of solutions is obtained through
a regularization and a fixed point approach. The weak stability property on the sequence of
approximate solution is obtained using the new method introduced by the two first authors
in [4] and taking care of the regularized term linked to the pressure state law which involves
serious difficulties.

We assume hypothesis on the pressure law (t, x, s) �→ P(t, x, s): some of them are used
to ensure the propagation of energy and the others are used to guarantee the propagation of
compactness on the density.

More precisely, let us present:
-Assumptions to ensure the propagation of energy.
Let γ > 3d/(d + 2):

(P1) There exist q > 2, 0 � γ̄ � γ/2, and a smooth function P0 such that

|P(t, x, s) − P0(t, x, s)| � C R(t, x) + C sγ̄ for R ∈ Lq((0, T) × T
d). (1.7)

(P2) There exist p < γ +
2 γ
d

− 1, q > 2, Θ1(t, x) ∈ Lq((0, T) × T
d), such that

C−1 sγ −Θ1(t, x) � P0(t, x, s) � Csp +Θ1(t, x). (1.8)

(P3) There exist p < γ +
2 γ
d

− 1, and Θ2 ∈ Lq([0, T] × T
d) with q > 1 such that

|∂tP0(t, x, s)| � Csp +Θ2(t, x). (1.9)

(P4) |∇xP0(t, x, s)| � C sγ/2 +Θ3(t, x), for Θ3 ∈ L2([0, T], L2d/(d+2)(Td)). (1.10)

-Assumptions required for the propagation of compactness on the density.

(P5) The pressure P is locally Lipschitz in the sense of that

|P(t, x, z) − P(t, y,w)| � Q(t, x, y) + C(zγ−1 + wγ−1)

+ (P̃(t, x) + P̃(t, y))|z − w|,

for some P̃ ∈ Ls0 ([0, T] × T
d) and Q ∈ Ls1 ([0, T] × T

2d) for some s0, s1 > 1.

(1.11)

(P6) The functions Q, P̃ satisfy that rh → 0, as h → 0, with

1
‖Kh‖L1

∫ T

0

∫
T2d

Kh(x − y)
(
|P̃(t, x) − P̃(t, y)|s0 + |Q(t, x, y)|s1

)
dx dy dt = rh.

(1.12)
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The total energy of the CNS system. The total energy of the system, which is the sum of the
kinetic and the potential energies, reads

E(t, x, ρ, ρu) =
∫
Td

(
|ρu|2
2ρ

+ ρe(t, x, ρ)

)
dx

where

e(t, x, ρ) =
∫ ρ

ρref

P(t, x, s)
s2

ds (1.13)

with ρref a constant reference density. We also define similarly the reduced total energy
E0(t, x, ρ, ρu) which is based on P0 instead of P, see assumption (1.7). Note that we assume as
usually

u0 =
m0

ρ0
whenρ0 	= 0 and u0 = 0 elsewhere, (1.14)

|m0|2
ρ0

= 0 a.e. on {x ∈ Ω : ρ0(x) = 0}. (1.15)

The following is our main result dealing with heterogeneous pressure laws.

Theorem 1.1. Assume the initial data m0 and ρ0 � 0 with
∫
Tdρ0 = M0 > 0 satisfy

E(ρ0, m0) =
∫
Td

(
|m0|2
2ρ0

+ ρ0e(0, x, ρ0)

)
dx < ∞.

Suppose that the pressure P satisfies (1.7)–(1.12). Assuming for simplicity μ = 1 and
μ+ λ = 0, then there exists a global weak solution to CNS system (1.2)–(1.4) such that

u ∈ L2(0, T; H1(Td)), |m|2/2ρ ∈ L∞(0, T; L1(Td))

ρ ∈ C([0, T], Lγ(Td) weak ) ∩ Lp((0, T) × T
d) where 0 < p < γ(d + 2)/2 − 1

with the heterogeneous pressure state law P satisfying the energy inequality∫
Td
E0(ρ, u) dx +

∫ t

0

∫
Td
|∇u(s, x)|2 dx ds � E(ρ0, u0)

+

∫ t

0

∫
Td

divx u(s, x) (P(s, x, ρ(s, x)) − P0(s, x, ρ(s, x)))ds dx

+

∫ t

0

∫
Td

(ρ ∂te0(s, x, ρ(s, x)) + ρ u · ∇xe0(s, x, ρ(s, x))) dx ds

where

E0(ρ, u) = |ρu|2/2ρ+ ρ

∫ ρ

ρref

P0(t, x, s)
s2

ds.

Remark 1.2. We note that since P0 is smooth, the reduced internal energy e0(t, x, ξ) is smooth
in each variable. This allows us to give a precise meaning to the terms above

∂te0(s, x, ρ(s, x)) = ∂te0(s, x, ξ)|ξ=ρ(s,x),

∇xe0(s, x, ρ(s, x)) = ∇xe0(s, x, ξ)|ξ=ρ(s,x).
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Remark 1.3. Note that u ∈ L2(0, T; H1(Td)) comes from the control of the gradient of the
velocity field ∇u in L2((0, T) × Ω) and the control of |m|2/ρ in L1((0, T) × T

d) using the fact
that

∫
Ω ρ =

∫
Ω ρ0 = M > 0. The interested reader is referred to [18].

Remark 1.4. We have assumed in the proof that μ = 1 and λ+ μ = 0 for simplicity but it
is straightforward that it is valuable for μ > 0 and λ+ 2 μ/d � 0 as usually.

2. The approximation systems with a sketch of proof and a priori estimates

We present here the approximate system upon which we rely to construct the solution to
(1.2)–(1.4) with the pressure law P given by (1.7)–(1.12). As is classical in compressible
fluid mechanics, the approximation procedure is performed through several stages, involving
different approximate systems.

2.1. The approximate system with artificial and delocalized pressures

One of the main difficulty is to find a proper approximation of the above system so that we may
construct a solution of it and prove the compactness of the solutions. We propose to define the
approximating system

∂tρε,η + div(ρε,ηuε,η) = 0 (2.1)

∂t(ρε,ηuε,η) + div(ρε,ηuε,η ⊗ uε) −Δuε,η +∇(Part,η(ρε,η) + Lε ∗ P) = 0 (2.2)

with initial condition

ρε,η|t=0 = ρ0,ε,η and (ρε,ηuε,η)|t=0 = m0,ε,η (2.3)

where an artificial pressure term reads

Part,η(ρε,η) = η1 ρ
γart,1
ε,η + · · ·+ ηm ργart,m

ε,η

for some fixed parameters γart = γart,1 > γart,2 > · · · > γart,m. The coefficients η1, . . . , ηm will
later be let to converge to 0 in that order and the γart,i will be chosen so that

γart,1 > 2 γ, γart,i+1 + 2
γart,i+1

d
− 1 > γart,i, γ + 2

γ

d
− 1 > γart,m.

In addition an appropriate regularization of the pressure state law Lε∗ (P(t, ·, ρε,η(t, ·)) has been
introduced. More precisely the key step is to construct a suitable mollifying operatorLε defined
as follows

Lε(x) =
1

log 2

∫ 2ε

ε

Lε′(x)
dε′

ε′
.

where Lε is a standard mollifier given by

Lε(x) =
1
εd

L
( x
ε

)
,

with L is a non-negative smooth function such that L ∈ C∞
0 (Td) and

∫
Td L(x) dx = 1. Then

Lε → δ0 as ε→ 0, with δ0 being the Dirac delta function at 0. It is straightforward to check
that ∫

Td
Lε(x) dx = 1

4119



Nonlinearity 34 (2021) 4115 D Bresch et al

and

Lε → δ0, as ε→ 0.

We observe that we easily have the following global existence result through a fixed point
argument that will be presented in the appendix for readers convenience

Theorem 2.1. Assume that P satisfies (1.7) with γart > γ and that the initial data ρ0,ε,η , u0,ε,η

satisfy the uniform bound

sup
ε,η

∫
Td

(
η1 (ρ0,ε,η(x))γart,1 + · · ·+ ηm (ρ0,ε,η(x))γart,m

+ ρ0,ε,η(x) |u0,ε,η(x)|2
)

dx < ∞.

There exist ρε,η ∈ L∞([0, T], Lγart (Td)) ∩ Lp([0, T] × T
d) for any p < γart + 2γart/d − 1,

uε,η ∈ L2([0, T], H1(Td)) solution to (2.1) and (2.2). Moreover, ρε,η , uε,η satisfy the uniform
in ε bounds

sup
ε

sup
t∈[0, T]

∫
Td

(
η1 ρ

γart ,1
ε,η (t, x) + · · ·+ ηm ργart,m

ε,η (t, x)

+ ρε,η(t, x) |uε,η(t, x)|2
)

dx < ∞, (2.4a)

sup
ε

∫ T

0

∫
Td
|∇uε,η|2 dx dt < ∞, (2.4b)

sup
ε

∫ T

0

∫
Td
η1 ρ

p
ε,η(t, x) dx dt < ∞ for any p < γart + 2 γart/d − 1. (2.4c)

Finally, we have the explicit energy inequality∫
Td

(
η1

ργart,1
ε,η (t, x)

γart,1 − 1
+ · · ·+ ηm

ργart ,m
ε,η (t, x)

γart,m − 1
+ ρε,η(t, x) |uε,η(t, x)|2

)
dx

+

∫ t

0

∫
Td
|∇uε,η(s, x)|2 dx ds �

∫ t

0

∫
Td

div uε,η Lε∗xP dx ds

+

∫
Td

(
η1

(ρ0,ε,η)γart,1 (t, x)
γart,1 − 1

+ · · ·+ ηm
(ρ0,ε,η)γart,m (t, x)

γart,m − 1

)
dx.

+

∫
Td
ρ0,ε,η(t, x) |u0,ε,η(t, x)|2 dx. (2.5)

The main difficulty and contribution of the present article is the limit passage ε→ 0, with
η fixed, given by the following result

Theorem 2.2. Assume that P satisfies (1.11) and (1.12). Let γart > max(2s′0, s′1, 2 + d),
where s′0 and s′1 are the Hölder conjugate exponents of s0 and s1 respectively. Suppose that
the initial data ρ0

ε , u0
ε of the system (2.1) and (2.2) satisfy that ρ0,ε,η → ρ0,η in Lγart (Td),

ρ0,ε,ηu0,ε,η → ρ0,ηu0,η and ρ0,ε,η|u0,ε,η|2 → |ρ0,ηu0,η|2 in L1(Td). Let (ρε,η , uε;η) be the corre-
sponding sequence of solutions satisfying the energy estimate (2.4). Then ρε,η is compact in
Lp(Td) for 1 � p < γart as ε→ 0.

The particular form of the mollifier operator Lε is strongly used for the compactness
property on {ρε,η}ε to have enough control of terms involving the pressure terms in the method
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introduced by the two first authors in [4]. Using the previous theorem, the limit passage
provides a sequence of global weak solutions (ρη , uη) to the following system

∂tρη + div(ρη uη) = 0 (2.6)

∂t(ρηuη) + div(ρ uη ⊗ uη) −Δuη +∇(Part,η(ρη) + P(t, x, ρη)) = 0, (2.7)

for some large γart � γ with initial boundary conditions

ρη|t=0 = ρ0,η , ρηuη|t=0 = m0,η. (2.8)

Fortunately once we obtain global weak solutions to (2.6)–(2.8) then passing to the limit as
η1 → 0, then η2 → 0 and up to ηm → 0, to obtain global weak solutions to (1.2)–(1.4) is in fact
a straightforward consequence of [4]. More precisely we have

Theorem 2.3. Assume that P satisfies (1.7)–(1.12). Consider any sequence
ρη ∈ L∞([0, T], Lγart (Td)) with γart,m < γ + 2γ/d − 1, γart,i < γart,i+1 + 2γart,i+1/d − 1
and γart > 2γ, any sequence uη ∈ L2([0, T], H1(Td)) of solutions to (2.6) and (2.7) over
[0, T]. Suppose moreover that ρ0

η → ρ0 in Lγ (Td), ρ0
η u0

η → ρ0 u0 and ρ0
η |u0

η|2 → ρ0 |u0|2 both
in L1(Td). Assume finally that supηsupt∈[0, T]

∫
Tdρη |uη|2 dx < ∞. Then ρη is compact in L1

t,x,
uη is compact in L2

t,x and converge to a global solution to (1.2) and (1.3) with

∫
Td
E0(ρ, u) dx +

∫ t

0

∫
Td
|∇u(s, x)|2 dx ds � E(ρ0, u0)

+

∫ t

0

∫
Td

divx u(s, x) (P(s, x, ρ(s, x)) − P0(s, x, ρ(s, x)))ds dx

+

∫ t

0

∫
Td

(ρ(s, x) ∂te0(s, x, ρ(s, x)) + ρ(s, x) u(s, x) · ∇xe0

× (s, x, ρ(s, x))) dx ds.

The proof of theorem 2.3 will be discussed in the appendix of the article for reader’s
convenience. This will end the proof of the main theorem 1.1.

Important remark. It is important to note that the requirement for having several expo-
nents γart,i in the artificial pressure Part,η appears from the constraints in the proofs of theorems
2.1–2.3. To recover the appropriate energy terms in theorem 2.1, we need to treat the actual
pressure P as a source term. This is only possible if div uLε 
 P is integrable uniformly in ε
and, as P � ργ , it forces that γart > 2γ.

On the other hand, assuming that γart,1, . . . , γart,i−1 = 0, to pass to the limit in the term
ηiρ

γart,i as ηi → 0 but ηi+1 > 0, we again need to have ργart,i integrable. From the gain of
integrability detailed in the next subsection, this only appears possible if γart,i < γart,i+1 +
2γart,i+1/d − 1. If we had only one correction in Part,η , i.e. m = 1, then we would actually need
both γart > 2γ and γart < γ + 2γ/d − 1, which is of course not possible if d � 2. The intro-
duction of several exponents γart,i seems to be a fairly straightforward manner of resolving this
issue.
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2.2. Basic energy estimates

As those are used several times, we collect here the basic energy estimates for the generic
system

∂tρ+ div(ρ u) = 0,

∂t(ρ u) + div(ρ u ⊗ u) −Δu +∇(P0(t, x, ρ) + S(t, x)) = 0.
(2.9)

We define

X = L1([0, T], W−1,p(Td))

+ H−1([0, T], L2pd/(2d+2p−pd)(Td)) ∩ W−1,∞([0, T], Lpd/(p+d)(Td)).

There exist a well-known gain in integrability on ρ from the momentum equation. For
convenience later, we write it in a slightly more general form.

Lemma 2.4. Assume that ρ ∈ L2([0, T] × T
d) ∩ L∞([0, T], Lγ0 (Td)) for γ0 � d/2 solves

(B.1) with a velocity field u ∈ L2([0, T], H1(Td)) and source term S ∈ L1 ([0, T], Lγ′0 (Td).
Assume ∇x(P0(t, x, ρ(t, x)) + S(t, x)) ∈ X , then for any 0 < θ < γ0/p′

∫ T

0

∫
Td
ρθ(s, x) P0(s, x, ρ(s, x)) ds dx

� Cd ‖ρ‖θL∞t L
γ0
x

(1 + ‖u‖L2
t H1

x
) ‖∇xP0(ρ)‖X + Cd ‖ρ‖θL∞t L

γ0
x
‖S‖

L1
t L

γ′0
x

.

Proof. We can rewrite the assumption simply as

∇x(P0(t, x, ρ) + S) = divx f + ∂tg,

where f ∈ L1([0, T], Lp(Td)) and g ∈ L2([0, T], L2pd/(2d+2p−pd)(Td)), with in addition
g ∈ L∞([0, T], Lpd/(p+d)(Td)). For a fixed exponent θ > 0 to be chosen later, we define
cθ = 1

(2π)d

∫
Tdρθ(t, x) dx and B(t, x) = −∇x Δ

−1
x (ρθ − cθ). In the case of a bounded domain

with a boundary instead of the torus, one has to be more careful and use the appropriate
Bogovski operator (see [12] for example).

The idea is then simply for multiply by B and first notice that∫ T

0

∫
Td

B(s, x) · ∇x(S + P0(s, x, ρ)) dx ds

=

∫ T

0

∫
Td

(ρθ(s, x) − cθ) (S + P0(s, x, ρ)) dx ds

� −C +

∫ T

0

∫
Td
ρθ(s, x) (S + P0(s, x, ρ(s, x))) dx ds,

where the constant C depends on ρ, θ, T, S and P0:

C = cθ (‖S‖L1
t,x
+ ‖P0(., ., ρ(., .)‖L1

t,x
) � cθ (‖S‖

L1
t L

γ′0
x

+ ‖∇P0‖X ).

The integral of ρθS can be bounded immediately to yield the second term in the right-hand side
of the lemma, ∫ T

0

∫
Td
ρθ(s, x) S dx ds � ‖ρθ‖L∞t L

γ0
x
‖S‖

L∞1 L
γ′0
x

.
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On the other hand∫ T

0

∫
Td

B(s, x) · ∇x(S + P0(s, x, ρ)) dx ds

= −
∫ T

0

∫
Td
∇xB(s, x) : f (s, x) dx ds

−
∫ T

0

∫
Td
∂tB(s, x) · g(s, x) dx ds

+

∫
Td

(B(0, x) · g(0, x) − B(0, T) · g(T, x)) dx.

By standard Calderon–Zygmund theory, ‖∇xB‖
L∞t L

γ0/θ
x

� Cd ‖ρ‖θL∞t L
γ0
x

. Hence the first term in

the rhs is directly bounded by

−
∫ T

0

∫
Td
∇xB(s, x) : f (s, x) dx ds � ‖ f ‖L1

t Lp
x
‖∇B‖

L∞t Lp′
x

� Cd ‖ f ‖L1
t Lp

x
‖ρ‖θ

L∞t L
γ0
x

,

since p′ � γ0/θ as θ < γ0/p′. By Sobolev embedding ‖B‖L∞t Lq
x
� Cd ‖ρ‖θL∞t L

γ0
x

with

1/q = θ/γ0 − 1/d. Hence we have again that∫
Td

(B(0, x) · g(0, x) − B(0, T) · g(T, x)) dx � Cd ‖ρ‖θL∞t L
γ0
x
‖g‖

L∞t L
pd/(p+d)
x

,

since 1 − (p+ d)/pd = 1 − 1/d − 1/p � θ/γ0 − 1/d by the same condition on θ. The second
term in the rhs is handled by using the continuity equation (B.1) satisfied by ρ. Due to the
assumptions that ρ ∈ L2([0, T] × T

d), ρ is a renormalized solution to (B.1) by theorem B.1
and hence we have that

∂tρ
θ + div(ρθ u) = (1 − θ) ρθ div u.

We may replace∫ T

0

∫
Td
∂tB(s, x) · g(s, x) dx ds =

∫ T

0

∫
Td
∇x Δ

−1
x

(
(1 − θ) ρθ div u

− div(ρθ u) − c̃θ
)
· g(s, x) dx ds,

for some time dependent constant c̃θ. Using that g ∈ L2
t L2pd/(2d+2p−pd)

x , we bound in a similar
manner all the terms and conclude that

−
∫ T

0

∫
Td
∂tB(s, x) · g(s, x) dx ds � Cd ‖ρ‖θL∞t L

γ0
x
‖u‖L2

t H1
x
‖g‖

L2
t L

2p/(p+2)
x

.

�

3. Notations and technical preliminaries

In this section, we give our notations and list technical results with considerations which were
mostly developed in [4] and upon which our proof relies.
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3.1. Notations

Because we use functions at various points and differences of functions, we introduce specific
notations. First, the symbol f x stands for a function of x, i.e., f x = f (x). Next, we also denote

δ f (x, ξ) = f (x) − f (x − ξ)

and

f̄ (x, ξ) = f (x) + f (x − ξ).

If the argument is not mentioned explicitly then we set ξ = x − y, i.e.,

δ f = δ f (x, x − y) = f (x) − f (y)

and

f = f (x, x − y) = f (x) + f (y).

We denote the maximum operator by

M f (x) = sup
r>0

1
|Br|

∫
Br

| f (x)| dx.

Recall, see that

‖M f ‖Lp � ‖ f ‖Lp

for p > 1 and where the relation f � g stands for that f � Cg for some constant C > 0. We
use bracket to stand for the commutator

[ f , T]g = f T g − T( f g)

where f and g are smooth functions and T is an operator.

3.2. Our compactness criterion

As is classical in compressible fluid mechanics, the main difficulty in obtaining existence is to
prove the compactness of a sequence of approximations of the density ρε. As mentioned above,
we follow here the general strategy of [4], and we hence rely on the following criterion.

Lemma 3.1. Let ρε be a family of functions which are bounded in some Lp([0, T] × T
d) with

1 � p < ∞. Assume that Kh is a family of positive bounded functions such that

• suph

∫
|x|�ηKh(x) dx < ∞ for any η > 0.

• ‖Kh‖L1 →∞ as h → 0.

Assume that for some q � 1

sup
ε

‖∂tρε‖Lq([0,T],W−1,1(Td)) < ∞

and

lim
h→0

lim sup
ε

∫ T

0

∫
T2d

Kh(x − y)
‖Kh‖L1

|ρε(x) − ρε(y)|p dx dy ds = 0.
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Then the family of functions ρε is compact in Lp([0, T] × T
d). Conversely if ρε is compact in

Lp([0, T] × T
d), then the above limit is 0.

The construction of a suitable kernel function Kh for the system that we are considering
again follows [4]. We first define a bounded, positive, and symmetric function K̃h such that

K̃h(x) =
1

(h + |x|)d+a
, for |x| � 1

4

with some a > 0 and K̃h independent of h for |x| � 1/3. We will also require that K̃h ∈
C∞(Td\B(0, 1/4)) and that supp K̃h ⊂ B(0, 1/2). Setting

Kh =
K̃h

‖K̃h‖L1(Td)

we have immediately that

‖Kh‖L1(Td ) = 1

and

|x‖∇Kh(x)| � |Kh(x)|. (3.1)

For our compactness argument, we use the operator

Kh0 =

∫ 1

h0

Kh(x)
dh
h
. (3.2)

Note that

‖Kh0‖L1(Td ) = c0| log h0|

for some positive constant c0. With the above notation, one of our main steps is to show that

lim sup
ε

∫ T

0

∫
T2d

Kh0 (x − y)|ρε(x) − ρε(y)|p dx dy ds → 0

as h0 → 0, from where the compactness of the family ρε follows.

3.3. Technical lemmas

As our main strategy is to control differences δρε, which requires some specific lemmas. One
may find proofs for these lemmas in [4]. Our basic way of estimating differences is through

Lemma 3.2. Let u ∈ W1,1, we have

|u(x) − u(y)| � (D|x−y|u(x) + D|x−y|u(y))|x − y|,

where

Dhu(x) =
1
h

∫
|z|�h

|∇u(x + z)|
|z|d−1

dz.

The next lemma provides a bound for the term Dhu(x) in term of the maximal function.
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Lemma 3.3. For any u ∈ W1,p with p � 1, the following inequality holds

Dh u(x) � M|∇u|(x).

Remark 3.4. By the above two lemmas we deduce immediately the classical inequality

|u(x) − u(y)| � (M|∇u(x)|+ M|∇u(y)|)|x − y|. (3.3)

In several critical places of the proof, we need to estimate the difference D|z|u(x) − D|z|u(x −
z) while relying only on the L2 regularity of ∇u. Using classical harmonic analysis results, we
can get the following.

Lemma 3.5. Assume that u ∈ H1(Td). Then for any 1 < p < ∞, one has∫ 1

h0

∫
Td

Kh(z)‖D|z|u(x) − D|z|u(x − z)‖Lp
x

dz
dh
h

� ‖u‖B1
p,1

as a result of which, we further have that∫ 1

h0

∫
Td

Kh(z)‖D|z|u(x) − D|z|u(x − z)‖L2
x

dz
dh
h

� ‖u‖H1 | log h0|1/2.

Moreover, the following estimate holds∫ 1

h0

∫
T2d

Kh(z)Kh(ξ)‖D|z|u(x) − D|z|u(x − ξ)‖L2
x

dz dξ
dh
h

� ‖u‖H1| log h0|1/2.

In most instances, the above estimate is sufficient. But in several cases, we need the more
general version, see [21] for more details.
Lemma 3.6. Consider a family of kernels Nr ∈ Ws,1(Td), where s > 0, which satisfy

• sup|ξ|�1 supr r−s
∫
Td |z|s|Nr(z) − Nr(z − rξ)| dz < ∞,

• supr(‖Nr‖L1 + rs‖Nr‖Ws,1 ) < ∞.

Then the estimate∫ 1

h0

∫
Td

Kh(z)‖Nh ∗ u(x) − Nh ∗ u(x − z)‖Lp
x

dz
dh
h

� ‖u‖Lp| log h0|1/2

holds for any u ∈ Lp with 1 < p � 2.

3.4. The choice of the weight function

We now turn to the construction of an appropriate weight function tailored for the proof of
theorem 2.2. First we define the function wε which satisfies the equations

∂twε + uε · ∇wε = −Dεwε (3.4)

wε(0) = 1 (3.5)

where Dε is given by

Dε = λ(M|∇uε|+ |ρε|γ + Kh ∗ (|div uε|+ |Lε ∗ P|+ |P̃1+l
ε |)). (3.6)
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Denote

wε,h = Kh ∗ wε.

Then the weight function Wε,h we use is given by

Wx,y
ε,h = wε,h(x) + wε,h(y)

which could capture the feature that Wε,h is big if either one of wε,h(x) and wε,h(y) is big. Since
the function Wx,y

ε = wε(x) + wε(y) satisfies the following equation

∂tWε + ux
ε · ∇xWε + uy

ε · ∇yWε = −(Dx
εwε(x) + Dy

εwε(y)),

it follows that

∂tWε,h + ux
ε · ∇xWε,h + uy

ε · ∇yWε,h = −Dx,y
ε,h + Comx,y

ε,h (3.7)

where

Dx,y
ε,h = Kh ∗ (Dεwε)(x) + Kh ∗ (Dεwε)(y) (3.8)

and

Comx,y
ε,h = [uε·, Kh∗]∇wε(x) + [uε·, Kh∗]∇wε(y). (3.9)

We conclude the subsection by listing several properties of this weight function without giving
a proof (see again [4] for the proof).

Proposition 3.7. Assume that (ρε, uε) solves system (2.1) and (2.2) with the bounds (2.4)
satisfied. Then there exists a weight function wε which satisfies equations (3.4) and (3.5) with
Dε given by (3.6) such that the following hold:

• For any t, x, 0 � wε � 1.
• If p � γ + 1, then we have

sup
t∈[0,T]

∫
Td
ρε(t, x)| log wε(t, x)| dx � C(1 + λ). (3.10)

• For p � 1 + γ,

sup
t∈[0,T]

∫
Td
ρε(t, x)1Kh∗wε�η dx � C

1 + λ

| log η| . (3.11)

• Setting D = |div uε|+ |Lε ∗P|+ |P̃1+l
ε | for penalization, for p > γ we have the following

commutator estimate∫ 1

h0

∫ t

0
‖Kh ∗ (wε Kh ∗ D) − wε,h Kh ∗ D‖Lq dt

dh
h

� C| log h0|1/2 (3.12)

with q = min(2, p/γ).
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4. Proof of theorem 2.2

In this section, we give a proof of the theorem 2.2 using the compactness argument provided
in lemma 3.1. Because all coefficients ηi are fixed for this section, we drop the index η in our
notations to keep them simple.

In order to carry out our approach, we introduce a smooth function χ(ξ) ∈ C1(R) given by

χ(ξ) = |ξ|1+l (4.1)

where 0 < l < 1/2 is to be specified below. Throughout this section, χ is used as a function of
δρε(x) or δρε(x, y). We recall that

δρε = δρε(x, x − y) = ρε(x) − ρε(y),

together with

f̄ = f̄ (x, x − y) = f (x) + f (y)

for a general function f ; see subsection 3.1 for the notations convention. To make the
presentation compact, we also denote

χ = χ(δρε), χ(x, y) = χ(δρε(x, y)).

Notations for χ′ are similarly defined. We aim to show

lim sup
ε→0

∫
T2d

Kh0 (x − y)χ(δρε) dx dy → 0 as h0 → 0. (4.2)

We follow the general strategy developed in [4] by introducing weights and propagate the
following quantity instead:

Th0,ε(t) =
∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,hχ(δρε) dx dy

dh
h

where as before

Wx,y
ε,h = wx

ε,h + wy
ε,h.

Since the weightwε satisfies (3.4), the time derivative of Th0,ε will exhibit the penalization (3.6)
which is necessary to control some of the other terms.

Compared with [4], we however have a different approximation system (2.1) and (2.2).
While many terms in the proof are similar, the pressure term is considerably more intricate and
its treatment constitutes the main innovation in this paper performed in subsection 4.5.

We calculate the time derivative Th0,ε in lemma 4.1 in the next subsection. The proof of
statement (4.2) will then follow from the bounds on the various terms in the right-hand side
that are divided into several lemmas.

4.1. The time evolution of Th0,ε(t)

Before stating the first lemma, we recall some notation used in subsection 3.4. The penalization
term is defined as

Dx,y
ε,h = Kh ∗ (Dεwε)(x) + Kh ∗ (Dεwε)(y)
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and the commutator term is given as

Comx,y
ε,h = [uε·, Kh∗]∇wε(x) + [uε·, Kh∗]∇wε(y).

We then have,

Lemma 4.1. Let ρε and uε be a sequence of solutions to the system (2.1) and (2.2) satisfying
the bound (2.4) with γart � 3d/(d + 2). Assume that the pressure P satisfies (1.7), (1.8), and
(1.11). Then we have the estimate

Th0,ε(t) � Th0,ε(0) + I1 + I2 + I3 + I4 + I5, (4.3)

where the terms I1–I5 are given by

I1 =

∫ t

0

∫ 1

h0

∫
T2d

δuε∇xKh(x − y)Wx,y
ε,hχ(δρε) dx dy

dh
h

ds (4.4)

I2 = −
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Dx,y
ε,hχ(δρε) dx dy

dh
h

ds (4.5)

I3 =

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Comx,y
ε,h χ(δρε) dx dy

dh
h

ds (4.6)

I4 = −1
2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,hχ

′(δρε)ρε δ(div uε) dx dy
dh
h

ds (4.7)

I5 =

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h

(
χ(δρε) −

1
2
χ′(δρε)δρε

)
divx uε dx dy

dh
h

ds. (4.8)

For the estimate of the terms I1, I2, and I3 defined in lemma 4.1, we use similar ideas as in
[4] . However I4 and I5 require a more complex approach. The main difference is that div uε

involves pressure terms while we use a delocalized pressure Lε in system (2.1) and (2.2).
Unfortunately the estimates in [4] strongly relied on having appropriate pointwise control on
the pressure, which is not available here because of the convolution with Lε.

Proof. From (2.1), one gets an equation for δρε

∂tδρε + divx(ρεuε)(x) − divy(ρεuε)(y) = 0,

which may be rewritten as

∂tδρε + divx(δρε uε(x)) + divy(δρε uε(y)) + ρε(y)divx uε(x)

− ρε(x)divy uε(y) = 0. (4.9)

Note that the terms ρε(y)divx uε(x) and ρε(x)divy uε(y) are well-defined since ρε ∈ L2 and
divx uε ∈ L2. By (2.4), we have ρ1+l

ε ∈ L2 for γart > 2(1 + l) and ∇xuε ∈ L2. Hence, by
theorem B.1, δρε is a renormalized solution for the system (4.9). Noticing that

−ρε(y)divx uε(x) + ρε(x)divy uε(y)

=
1
2

(δρε (divx uε(x) + divy uε(y)) − ρ̄ε (divx uε(x) − divy uε(y))),
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we arrive at

∂tχ(δρε) + divx(χ(δρε)(x)uε(x)) + divy(χ(δρε)(x)uε(y))

=

(
χ(δρε) −

1
2
χ′(δρε)δρε

)
(divx uε(x) + divy uε(y))

− 1
2
χ′(δρε) ρ̄ε (divx uε(x) − divy uε(y)). (4.10)

From the definition of χ in (4.1), one gets easily

χ(δρε) + |χ′(δρε)| ρε � Cρ1+l
ε ,

which implies that χ(δρε),χ′(δρε)ρ̄ ∈ L2. Since ∇xuε ∈ L2, all the terms on the right side of
(4.10) make sense. By (3.7), we obtain

∂t(Kh(x − y)Wx,y
ε,hχ(δρε)) = Kh(x − y)∂tW

x,y
ε,h χ(δρε) + Kh(x − y)Wx,y

ε,h ∂t(χ(δρε))

= −Kh(x − y)uε(x)∇xWx,y
ε,h χ(δρε) − Kh(x − y)

× uε(y)∇yWx,y
ε,h χ(δρε) − Kh(x − y)Dε,h

× χ(δρε) + Kh(x − y)Comε,h χ(δρε)

+ Kh(x − y)Wx,y
ε,h (χ(δρε) − χ′(δρε) δρε)

× (divx uε(x) + divy uε(y)) +
1
2

Kh(x − y)

× Wx,y
ε,h χ

′(δρε) δρε div uε −
1
2

Kh(x − y)

× Wx,y
ε,h χ

′(δρε) ρε δdiv uε − Kh(x − y)

× Wx,y
ε,h divx(χ(δρε) uε(x)) − Kh(x − y)

× Wx,y
ε,h divy(χ(δρε) uε(y)). (4.11)

The above equation may be justified as the following. First, in order to show Kh(x −
y)uε(x)∇xWx,y

ε,h χ(δρε) ∈ L1
x,y, we just need to prove Kh(x − y)uε(x)χ(δρε) ∈ L1

x,y since
∇xWx,y

ε,h ∈ L∞. Recalling χ(δρε) = χ(ρε(x) − ρε(y)), by a change of variable we get∫
T2d

Kh(x − y)|uε(x)|χ dx dy =

∫
Td

Kh(y)
∫
Td
|uε(x)|χ (ρε(x)

− ρε(x − y)) dx dy

�
∫
Td

Kh(y) dy � 1.

Therefore, the term Kh(x − y)uε(x)∇xWx,y
ε,h χ(δρε) is well-defined. Similar arguments could

show that Kh(x − y)uε(y)∇yW
x,y
ε,h χ(δρε) ∈ L1

x,y. Second, noting that

Kh(x − y)Wx,y
ε,h � 2Kh(x − y),

the term Kh(x − y) Wx,y
ε,h (χ(δρε) − χ′(δρε) δρε)(divx uε(x) + divy uε(y)), together with Kh(x −

y)Wx,y
ε,hχ

′(δρε) δρε div uε, and Kh(x − y)Wx,y
ε,h χ

′(δρε) ρε δdiv uε belong to L1
x,y by similar argu-

ments as for the first term. �
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Third, we note that Dε,h is smooth and belongs to L∞. Hence, Kh(x − y)Dε,hχ(δρε) makes
sense since χ(δρε) ∈ L1

x . One may check easily that ρ1+l
ε uε ∈ L1 for γart � 3d/(d + 2) and

thus Kh(x − y)Comε,h χ(δρε) ∈ L1
x,y. Lastly, divx(χ(δρε)uε(x)) ∈ W−1,r for some r > 1 and

Kh(x − y)Wx,y
ε,h ∈ W1,r′ where r′ is the Hölder conjugate exponent of r. Therefore, the terms

Kh(x − y)Wx,y
ε,h divx(χ(δρε) uε(x)) and Kh(x − y)Wx,y

ε,h divy(χ(δρε) uε(y)) make sense. Using the
product rule, we further rewrite (4.11) as

∂t(Kh(x − y)Wx,y
ε,hχ(δρε)) = −divx

(
uε(x) Kh(x − y) Wx,y

ε,h χ(δρε)
)

− divy

(
uε(y) Kh(x − y) Wx,y

ε,h χ(δρε)
)

+ δuε∇xKh(x − y) Wx,y
ε,h χ(δρε) − Kh(x − y)

× Dε,h χ(δρε) + Kh(x − y)Comε,h χ(δρε)

+ Kh(x − y)Wx,y
ε,h (χ(δρε) − χ′(δρε)δρε)

× divx uε +
1
2

Kh(x − y)Wx,y
ε,hχ

′(δρε), δρε

× div uε −
1
2

Kh(x − y)Wx,y
ε,hχ

′(δρε) ρε δ div uε,

which can be justified similarly as the equation (4.11). Integrating the time derivative of Th0,ε(t)
from 0 to t gives (4.3), concluding the proof. �

4.2. A bound for I1

In this subsection, we estimate the terms I1 in the following lemma.

Lemma 4.2. Let I1 be given by (4.4). Under the assumptions in lemma 4.1, the estimate

I1 � C| log h0|1/2 + Cλ−1D1

holds with the penalization D1 defined by

D1 = λ

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) (Kh ∗
((

M|∇uε|

+ |ρε|γ
)
wε

)
(x)χ(δρε)dx dy

dh
h

ds (4.12)

for t � T, where T can be any positive number and the constant C depends on time T and a
priori bounds on the solution, in particular through ‖uε‖L2

t H1
x

and ‖ρε‖L∞t Lγx
.

Proof. We first recall

I1 =

∫ t

0

∫ 1

h0

∫
T2d

δuε∇xKh(x − y)Wx,y
ε,hχ(δρε) dx dy

dh
h

ds.

By lemma 3.2, it follows

|δuε(x)| = |uε(x) − uε(y)| � |x − y|(D|x−y|uε(x) + D|x−y|uε(y)),

with Dhuε(x) given by

Dhuε(x) =
1
h

∫
|z|�h

|∇uε(x + z)|
|z|d−1

dz.
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Hence, in view of (3.1), we obtain

I1 �
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)(D|x−y|uε(x) + D|x−y|uε(y))Wx,y
ε,hχ(δρε) dx dy

dh
h

ds

= 2
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)(D|x−y|uε(x) + D|x−y|uε(y))wx
ε,hχ(δρε) dx dy

dh
h

ds

where we used symmetry in x and y of the integral bound in the last step. Since we only have

‖uε‖L2H1 � 1 and ‖ρ‖Lγart � 1,

we can not expect the last integral to be much smaller than∥∥∥∥
∫ 1

h0

Kh
dh
h

∥∥∥∥
L1

= | log h0|.

Instead, we use the penalty defined in (3.6) to absorb the main contribution of I1 and prove the
remainder is of the size of |log h0|1/2. In order to proceed, we rewrite

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)(D|x−y|uε(x) + D|x−y|uε(y))wx
ε,hχ(δρε) dx dy d

dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)(D|x−y|uε(y) − D|x−y|uε(x))wx
ε,hχ(δρε) dx dy

dh
h

ds

+ 2
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)D|x−y|uε(x)wx
ε,hχ(δρε) dx dy

dh
h

ds

= I1,1 + I1,2. (4.13)

To estimate the term I1,1, we change the variable to arrive at

I1,1 =

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)(D|x−y|uε(y) − D|x−y|uε(x))wx
ε,hρ

1+l
ε (x) dx dy

dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T2d

Kh(z)(D|z|uε(x − z) − D|z|uε(x))wx
ε,hρ

1+l
ε (x) dx dz

dh
h

ds.

From proposition 3.7, we know 0 � wε � 1, which implies

0 � wε,h � 1

for any h > 0 since ‖Kh‖L1 = 1. By Hölder’s inequality, lemma 3.5, we obtain

∫ t

0

∫ 1

h0

∫
T2d

Kh(z)(D|z|uε(x − z) − D|z|uε(x))wx
ε,hρ

1+l
ε (x) dx dz

dh
h

ds

�
∫ t

0

∫ 1

h0

∫
Td

Kh(z)‖|D|z|uε(x − z) − D|z|uε(x)|‖L2
x

dz
dh
h

ds

� | log h0|1/2‖uε‖L2H1 .
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While for the second integral I1,2, it is not in a form to which we could directly apply lemma
3.5. Instead, we rewrite it as

I1,2 = 2
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)(D|x−y|uε(x) − D|x−y|uε(z))wz
ε

× χ(δρε) dx dy
dh
h

ds +
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)D|x−y|uε(z)

× wz
εχ(δρε) dx dy dz

dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)(D|x−y|uε(x) − D|x−y|uε(z))wz
ε

× χ(δρε) dx dy dz
dh
h

ds + C
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)

× M(|∇uε|)(z)wz
εχ(δρε) dx dy dz

dh
h

ds

where we used lemma 3.3 in the last step. By lemma 3.5 and the uniform boundedness of ρε
in Lγart , we further get

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)(D|x−y|uε(x) − D|x−y|uε(z))wz
ε

× χ(δρε) dx dy dz
dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T2d

Kh(y) Kh(z) ‖|D|y|uε(x − z) − D|y|uε(x)|‖L2
x

dy dz
dh
h

ds

� | log h0|1/2‖uε‖L2H1 . (4.14)

Collecting the estimates of I1,1 with I1,2 and applying them to (4.13) gives

I1 � | log h0|1/2 +

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y) Kh(x − z) M(|∇uε|)(z)wz
ε

× χ(δρε) dx dy dz
dh
h

ds (4.15)

where the last integral could be bounded by Cλ−1D1 and the proof is completed. �

4.3. An estimate for I2

We recall

D(x) = |div uε|(x) + |Lε ∗ P|(x) + |P̃ε|1+l(x)

and

Dx,y
ε,h = Kh ∗ (Dεwε)(x) + Kh ∗ (Dεwε)(y)
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where Dε is defined in (3.6). The estimate for I2 is provided in the lemma below.

Lemma 4.3. Let I2 be as in (4.5). Under the assumptions in lemma 4.1, then we have that

I2 � C| log h0|θ − 2D1 − 2D2

holds for some 1 > θ > 0 with the penalization D1 defined in (4.12) and D2 given by

D2 = λ

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Kh ∗ D(x)wε,h(x)χ(δρε) dx dy
dh
h

ds (4.16)

for t � T, where T can be any positive number and the constant C may depend on time T.

Proof. The term I2 is negative and helps us in controlling other terms. We pull out the penal-
ization terms D1 with D2 and the error is bounded by C|log h0|1/2. To be more specific, we have

I2 = −
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Dx,y
ε,hχ(δρε) dx dy

dh
h

ds

= −λ

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) (Kh ∗ ((M|∇uε|+ |ρε|γ)wε)(x)χ(δρε) dx dy

× dh
h

ds − λ

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) (Kh ∗ (Kh ∗ Dwε)(x)χ(δρε) dx dy

× dh
h

ds.

By the symmetry in x and y of the above expression, we further get

I2 = −2λ
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) (Kh ∗ ((M|∇uε|+ |ρε|γ)wε)(x)χ(δρε) dx dy

× dh
h

ds − 2λ
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) (Kh ∗ (Kh ∗ Dwε)(x)χ(δρε) dx dy

× dh
h

ds

= −2D1 + I2,1. (4.17)

We extract the second penalization D2 from I2,1 as

I2,1 = −2λ
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Kh ∗ D(x)wε,h(x)χ(δρε) dx dy
dh
h

ds

+ 2λ
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)
(
Kh ∗ D(x)wε,h(x)

− Kh ∗ (Kh ∗ Dwε)(x))χ(δρε) dx dy
dh
h

ds.

Noting wε,h(x) = Kh ∗ wε(x), in view of (3.12), we may bound the last commutator integral in
the above equality by

C| log h0|θ
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for some 1 > θ > 0. Therefore, we arrive at

I2,1 � −2D2 + C| log h0|θ.

Hence, from (4.17) we get

I2 � −2D1 − 2D2 + C| log h0|θ (4.18)

concluding the proof. �

4.4. Treatment of I3

We bound the term I3 in this subsection.

Lemma 4.4. Let I3 be given by (4.6). Under the assumptions in lemma 4.1, the estimate

I3 � C| log h0|1/2 − Cλ−1D1

holds with the penalization D1 defined by (4.12) for t � T, where T can be any positive number
and the implicit constant may depend on time T.

Proof. In view of (3.9), we may write I3 as

I3 =

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Comx,y
ε,h χ(δρε) dx dy

dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) ([uε·, Kh∗]∇wε(x) + [uε·, Kh∗]∇wε(y))

× χ(δρε) dx dy
dh
h

ds

= 2
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)[uε·, Kh∗]∇wε(x)χ(δρε) dx dy
dh
h

ds

where we used the symmetry in x and y in the last step. Expanding the commutator and using
the identity

uε · ∇wε(x) = div(uεwε(x)) − div(uε)wε(x),

we arrive at

I3 = 2
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)(ux
ε · ∇Kh(x − z)wz

ε − uz
ε · ∇Kh(x − z)wz

ε)

× χ(δρε) dx dy dz
dh
h

ds + 2
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Kh ∗ (div uεwε)(x)

× χ(δρε) dx dy
dh
h

ds

= 2
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)(ux
ε − uz

ε) · ∇Kh(x − z)wz
εχ(δρε) dx dy dz

dh
h

ds

+ 2
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Kh ∗ (div uεwε)(x)χ(δρε) dx dy
dh
h

ds
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where the second integral in the last equality of the above expression is bounded by Cλ−1D1

since

|div uε| � |∇uε| � M|∇uε|.

By lemma 3.2 and the inequality (3.1), the first integral is estimated as∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)(ux
ε − uz

ε) · ∇Kh(x − z)wz
εχ(δρε) dx dy dz

dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)(D|x−z|uε(x) + D|x−z|uε(z))

× |(x − z) · ∇Kh(x − z)|wz
εχ(δρε) dx dy dz

dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)|D|x−z|uε(x) − D|x−z|uε(z)|wz
ε

× χ(δρε) dx dy dz
dh
h

ds

+ 2
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)D|x−z|uε(z)wz
εχ(δρε) dx dy dz

× dh
h

ds (4.19)

where the second integral in the last inequality is bounded by Cλ−1D1 by lemma 3.3. By the
definition of χ in (4.1), we change the variable to get∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)|D|x−z|uε(x) − D|x−z|uε(z)|wz
ε

× χ(δρε) dx dy dz
dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T3d

Kh(y)Kh(z)|D|z|uε(x) − D|z|uε(x − z)|wx−z
ε

× χ(ρx
ε − ρx−z

ε ) dx dy dz
dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T3d

Kh(y)Kh(z)|D|z|uε(x) − D|z|uε(x − z)|wx−z
ε

× (ρ1+l
ε (x) + ρ1+l

ε (x − z)) dx dy dz
dh
h

ds,

from where by Hölder’s inequality and lemma 3.5 we obtain a further bound of the above
integral ∫ t

0

∫ 1

h0

∫
Td

Kh(z)Kh(y)‖D|z|uε(x) − D|z|uε(x − z)‖L2
x

dz dy
dh
h

ds

� | log h0|1/2‖uε‖L2H1 � | log h0|1/2.
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Collecting the estimates for the two terms in (4.19), we arrive at

I3 � C| log h0|1/2 + Cλ−1D1 (4.20)

proving the lemma. �

4.5. Pressure term

In this section, we treat the terms involving the pressure. Actually the pressure term appears in
both I4 and I5 in slightly different forms. We introduce an abstract function to give the estimate
in a more general form and the corresponding bounds in terms I4 and I5 follow easily. We define
the following integral

IP = − 1
log 2

∫ t

0

∫ 2ε

ε

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h(x)

× (Lε′ ∗ P(x) − Lε′ ∗ P(y)) dx dy dỹ
dh
h

dε′

ε′
ds (4.21)

and recall

rh =
1

‖Kh‖L1

∫ T

0

∫
T2d

Kh(x − y)
(
|P̃(t, x) − P̃(t, y)|s0 + |Q(t, x, y)|s1

)
dx dy dt

defined in (1.12) with

Th0,ε(t) =
∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,hχ(δρε) dx dy

dh
h
.

The estimate of IP is established in the lemma 4.5 below.
In the estimate of the first three terms I1, I2, and I3, the argument is still true even if we

replace the mollifying kernel Lε by Lε, i.e., we may have an upper bound point-wise in ε. The
kernel Lε is only necessary in the treatment of the pressure term. In fact for the pressure term,
it is very difficult to obtain an estimate uniform in ε (using the mollifier Lε) since when ε is
relatively big compared to h0, the error term Diff defined by (4.26) is out of control because
Lε ∗ P can not approximate P precisely enough. Therefore, instead of consider a L∞

ε topology,
we consider L1

ε(dε/ε). In order to treat the term IP, we need to study two cases separately,
i.e., h � ε′ and ε′ � h. The case h � ε′ is easy. We bound the term δ(Lε′ ∗P) by the Hölder
norm of Lε′ , which is under our control since ε′ is relatively big. For the case ε′ � h, it is much
more difficult. Roughly speaking, we use the fact that the smoothing effect of Kh is dominant
since the scaling of Lε′ is smaller. Therefore, we treat Lε′ ∗P as an approximation of P which
is bounded by P in any Lp for p ∈ [1,∞] such that P ∈ Lp. The main difficulty of executing
this idea is that we can not control Lε′ ∗P directly with our penalization. Instead, we need
to consider the quantity Lε′ ∗ (wθP) for some θ > 0 (see (4.25)). Hence, we have to control
commutator between the weight function and the convolution with Lε to close the estimate.

Lemma 4.5. Let IP be defined by (4.21) and (ρε, uε) be a sequence of solutions to the system
(2.1) and (2.2) satisfying the bound (2.4) with γart � max(2s′0, s′1, 3d/(d + 2)) where s′0 and
s′1 are the Hölder conjugate exponent of s0 and s1 respectively. Assume the pressure P satisfies
(1.7), (1.8), (1.11), and (1.12). Let f (x, y, ỹ) be such that

| f (x, x − y, x − ỹ)| � C(|χ′(δρε(x, y))|ρε(x, y) + |χ′(δρε(x, ỹ))|ρε(x, ỹ)). (4.22)
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We have

|IP| � C + C

(∫ 2ε

ε

rmax(h0,ε′)
dε′

ε′

)θ̄

| log(h0)|θ + C
∫ t

0
Th0,ε(s)ds + Cλ−1D2 +

3D3

8

with D2 given by (4.16) and D3 by

D3 = η(1 + l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,hχ(δρε)ρ

γart
ε dx dy

dh
h

ds, (4.23)

for some 0 < θ̄, 0 < θ < 1, and t � T, where T can be any positive number and the implicit
constant may depend on time T.

Proof. Here we give a uniform estimate in ε of this term, which may be divided into two
cases: ε′ < h and ε′ � h:

IP = − 1
log 2

∫ t

0

∫ 2ε

ε

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − ỹ) f wε,h(x)

× δ(Lε′ ∗ P) dx dy dỹ
dh
h

dε′

ε′
ds

= − 1
log 2

∫ t

0

∫ 2ε

ε

∫ 1

h0

∫
T3d

(1ε′�h + 1ε′<h)Kh(x − y)Kh(x − ỹ) f wε,h(x)

× δ(Lε′ ∗ P) dx dy dỹ
dh
h

dε′

ε′
ds

= Ib + Is,

where Ib and Is are corresponding to the integrals with characteristic functions 1ε′�h and 1ε′<h

in them respectively. As we see below, the term Ib is easier to treat since in this case the Kh

is the mollifier playing the key role, which is more consistent with the whole compactness
argument. While for term Is, we need to take the advantage of regularity of the weight function
to generate an extra small factor (ε′)θ, which help us control the singularity of Kh around the
origin. First we rewrite Ib as

|Ib| =
1

log 2

∣∣∣∣
∫ t

0

∫ 2ε

ε

∫ 1

h0

∫
T3d

1ε′�hKh(x − y)Kh(x − ỹ) f wε,h(x)

× δ(Lε′ ∗ P) dx dy dỹ
dh
h

dε′

ε′
ds

∣∣∣∣
=

1
log 2

∣∣∣∣∣
∫ t

0

∫ 2ε

ε

∫ max(h0,ε′)

h0

∫
T4d

Kh(x − y)Kh(x − ỹ) f wε,h(x)

× P(t, z, ρε(z)) (Lε′(x − z) − Lε′(y − z)) dx dy dỹ dz
dh
h

dε′

ε′
ds

∣∣∣∣
=

1
log 2

∣∣∣∣∣
∫ t

0

∫ 2ε

ε

∫ max(h0,ε′)

h0

∫
T4d

Kh(y)Kh(̃y) f (x, x − y, x − ỹ)wε,h(x)

×P(t, z, ρε(z))(Lε′(x − z) − Lε′(x − y − z)) dx dy dỹ dz
dh
h

dε′

ε′
ds

∣∣∣∣ .
4138



Nonlinearity 34 (2021) 4115 D Bresch et al

Due to the smoothness of Lε′ , we have the uniform bound in x–z

Lε′(x − z) − Lε′(x − y − z) � C
|y|θ
ε′θ

with 1 > θ > 0. By (1.7) and (1.8), we get∫
Td

P(t, z, ρε(z)) dz �
∫
Td

R(t, z) +Θ1(z) + ρp(z) dz � 1

since γart � p. Therefore, by (4.22), using the uniform integrability of ρε and the fact that

‖Kh‖L1 = 1,

we arrive at

|Ib| �
∫ 2ε

ε

∫ max(h0,ε′)

h0

∫
Td

Kh(y)
|y|θ
ε′θ

dy
dh
h

dε′

ε′

�
∫ 2ε

ε

∫ max(h0,ε′)

h0

hθ

ε′θ
dh
h

dε′

ε′
� 1.

Next we treat the difficult term Is. Denoting ε̃ = max(h0, ε′), by assumptions (1.11), we obtain

|Is| � C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h(x)Lε′(z)|

× ρε(x − z) − ρε(y − z)|(ργ−1
ε (x − z) + ργ−1

ε (y − z)) dx dy dỹ dz

× dh
h

dε′

ε′
ds + C

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h

× (x)Lε′(z)
(

Qx−z,y−z
ε + (P̃x−z

ε + P̃y−z
ε )|ρε(t, x − z)

− ρε(t, y − z)|
)

dx dy dỹ dz
dh
h

dε′

ε′
ds

= Is,1 + Is,2 + Is,3 (4.24)

where Is,1 is the first integral with Is,2 and Is,3 corresponding to the integrals containing Qx−z,y−z
ε

and (P̃x−z
ε + P̃y−z

ε ) respectively. For the sake of simplicity, we suppress the constant C in Is,1,
Is,2, and Is,3. By making constants in the following estimates bigger if necessary, we may
recover the bound for Is. The first integral Is,1 is the most difficult one among the three. In
order to estimate this term, we need to use the penalization term D3 as well as the regularity of
the weight function wε,h. To be more specific, we have

Is,1 =

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(y)Kh(̃y) f (x, x − y, x − ỹ)wε,h(x)Lε′(z)

× |ρε(x − z) − ρε(x − y − z)|
(
ργ−1
ε (x − z)

+ ργ−1
ε (x − y − z)

)
dx dy dỹ dz

dh
h

dε′

ε′
ds

= Īs,1 + Diff
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where we denoted using the notation in subsection 3.1

Īs,1 =

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(y)Kh (̃y) f (x, x − y, x − ỹ)w1/γart
ε,h (x)w1−1/γart

ε,h

× (x − z)Lε′(z)|δρε(x − z, y)|ργ−1
ε (x − z, y) dx dy dz

dh
h

dε′

ε′
ds (4.25)

and

Diff =
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(y)Kh (̃y) f (x, x − y, x − ỹ)w1/γart
ε,h (x)Lε′(z)|

× δρε(x − z, y)|(w1−1/γart
ε,h (x) − w

1−1/γart
ε,h (x − z))ργ−1

ε

× (x − z, y) dx dy dz
dh
h

dε′

ε′
ds. (4.26)

As we see below, the term Īs,1 is the leading order term and Diff is a perturbation of constant
size. Using Hölder’s inequality, the term Īs,1 is bounded by

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh (̃y)‖Lε′ ∗ (|δρε(x, y)|ργ−1
ε (x, y)w1−1/γart

ε,h )‖
L
γ′art
x

× ‖ f (x, x − y, x − ỹ)w1/γart
ε,h ‖L

γart
x

dy dỹ
dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh (̃y)‖δρε(x, y)ργ−1
ε (x, y)w1−1/γart

ε,h ‖
L
γ′art
x

× ‖(|χ′(δρε)| ρε(x, y) + |χ′(δρε)| ρε(x, ỹ))w1/γart
ε,h ‖L

γart
x

dy dỹ

× dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh (̃y)‖(δρε)σ(x, y)w1−γ/γart
ε,h ‖L

α1
x

× ‖(δρε)1−σ(x, y)ργ−1
ε (x, y)w(γ−1)/γart

ε,h ‖L
α2
x
‖
(
|χ′(δρε)| ρε(x, y)

+ |χ′(δρε)| ρε(x, ỹ)
)
w

1/γart
ε,h ‖L

γart
x

dy dỹ
dh
h

dε′

ε′
ds (4.27)

where α1, α2, and σ are given by

α1 =
γart

γart − γ
α2 =

γart

γ − 1
, σ = 1 − (γ − 1)(1 + l)

γart
.

We also require

lγart = 1 + l.
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Using Young’s inequality, one further gets

Īs,1 �
∫ t

0

∫ 1

h0

∫
T2d

Kh(y)Kh(̃y)

(
C
η

∫
|δρε|1+l(x, y)wε,h dx

+
η

16

∫
|δρε|1+l(x, y)ργart

ε (x, z)wε,h dx +
η

16

∫
|δρε|1+l(x, ỹ)ργart

ε

× (x, y)wε,h dx

)
dy dỹ

dh
h

ds

=
C
η

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|δρε|1+lwε,h dx dy
dh
h

ds

+
η

8

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|δρε|1+lργart
ε wε,h dx dy

dh
h

ds

where we used ‖Kh‖L1 = 1 and the last integral may be bounded by D3/8. Next we turn to the
term Diff. Noting

w
1−1/γart
ε,h (x) − w

1−1/γart
ε,h (x − z) � C

|z|1−1/γart

h1−1/γart
,

we obtain

Diff �
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(y)Kh (̃y) f (x, x − y, x − ỹ)w1/γart
ε,h (x)

× |z|1−1/γart

h1−1/γart
Lε′(z)

× |δρε(x − z, y)|ργ−1
ε (x − z, y) dx dy dz dỹ

dh
h

dε′

ε′
ds

� C
∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y)Kh (̃y)
|z|1−1/γart

h1−1/γart
Lε′(z)‖ f (x, x − y, x − ỹ)

× w
1/γart
ε,h ‖L

γart
x

‖|δρε(x, y)|ργ−1
ε (x, y)‖

L
γ′art
x

, dy dz dỹ
dh
h

dε′

ε′
(4.28)

from where using (4.22) and Young’s inequality, by the uniform integrability of ρε and
‖Kh‖L1 = 1, we further get

Diff � Cνη
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

|z|1−1/γart

h1−1/γart
Lε′(z) dz

∫
T2d

Kh(x − y)|δρε|1+l

× ργart
ε wε,h dx dy

dh
h

dε′

ε′
ds +

C
ν

∫ 2ε

ε

∫ 1

ε̃

∫
Td

|z|1−1/γart

h1−1/γart
Lε′(z) dz

× dh
h

dε′

ε′

for a small parameter ν > 0. For the second integral in the right side of the above inequality,
we have

C
ν

∫ 2ε

ε

∫ 1

ε̃

∫
Td

|z|1−1/γart

h1−1/γart
Lε′ (z) dz

dh
h

dε′

ε′
� C

ν

∫ 2ε

ε

∫ 1

ε̃

(ε′)1−1/γart

h1−1/γart

dh
h

dε′

ε′
� C

ν
.
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Using ε′ � h and choosing ν sufficiently small, we arrive at

Cνη
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

|z|1−1/γart

h1−1/γart
Lε′(z) dz

∫
T2d

Kh(x − y)|δρε|1+lργart
ε

× wε,h dx dy
dh
h

dε′

ε′
ds

� Cνη
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

(ε′)1−1/γart

h1−1/γart
Kh(x − y)|δρε|1+lργart

ε wε,h dx dy

× dh
h

dε′

ε′
ds

� η

16

∫ t

0

∫ 1

ε̃

∫
T2d

Kh(x − y)|δρε|1+lργart
ε wε,h dx dy

dh
h

ds

which may be bounded by D3/16. Therefore, we obtain

Diff � C +
D3

16
.

Next we turn to the treatment of the term Is,2. By changing variables, we rewrite it as

Is,2 =

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h(x)Lε′(z)

× Qx−z,y−z
ε dx dy dz dỹ

dh
h

dε′

ε′
ds

=

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(y)Kh(̃y) f (x, x − y, x − ỹ)wε,h(x)Lε′(z)

× Qx−z,x−y−z
ε dx dy dz dỹ

dh
h

dε′

ε′
ds.

In view of wε,h(x) � 1, we get

Is,2 �
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y)Kh(̃y) | f (x, x − y, x − ỹ)|w1/γart
ε,h (x)Lε′(z)

× Qε dx dy dz
dh
h

dε′

ε′
ds

where Qε = Qx−z,x−y−z
ε . Using (4.22), Hölder’s inequality, and that ‖Lε′‖L1 = 1, we arrive at

Is,2 �
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh(̃y)‖ f (x, x − y, x − ỹ)w1/γart
ε,h ‖L

γart
x

×
∥∥∥∥
∫
Td

Lε′ (z)Qε dz

∥∥∥∥
L
γ′art
x

dy dỹ
dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh (̃y)‖
(
|χ′(δρε)| ρε(x, y) + |χ′(δρε)|

× ρε(x, ỹ)
)
w

1/γart
ε,h ‖L

γart
x

∥∥Qx,x−y
ε

∥∥
L
γ′art
x

dy dỹ
dh
h

dε′

ε′
ds
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where γ ′
art is as usual in this paper the Hölder conjugate exponent of γart. By Young’s inequality,

we further get

Is,2 � η

8

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|δρε|1+lργart
ε wε,h dx dy

dh
h

ds

+
C
η

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|Qx,x−y
ε |γ′art dx dy

dh
h

ds

where the first integral on the right side is bounded by D3/8. Using Hölder’s inequalities, the
second integral may be estimated as

C
η

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|Qx,x−y
ε |γ′art dx dy

dh
h

ds

� C
η

(∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y) dx dy
dh
h

)(s1−γ′art)/s1

×
(∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)|Qx,x−y
ε |s1 dx dy

dh
h

ds

)γ′art/s1

with s1 − γ ′
art � 0 since γart � s′1. From (1.12), the above expression may be further

bounded by

C

(∫ 2ε

ε

rε̃
dε′

ε′

)γ′art/s1

| log h0|(s1−γ′art)/s1 .

Therefore, we obtain

Is,2 � D3

8
+ C

(∫ 2ε

ε

rε̃
dε′

ε′

)γ′art/s1

| log h0|(s1−γ′art)/s1 .

We estimate the term Is,3 next and rewrite it as

Is,3 =

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h(x)Lε′(z)

× (P̃y−z
ε − P̃x−z

ε )|ρε(t, x − z) − ρε(t, y − z)| dx dy dz dỹ
dh
h

dε′

ε′
ds

+ 2
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y)Kh(x − ỹ) f (x, y, ỹ)wε,h(x)Lε′(z)

× P̃x−z
ε |ρε(t, x − z) − ρε(t, y − z)| dx dy dz dỹ

dh
h

dε′

ε′
ds. (4.29)

For the first term, we perform a change of variables and use Hölder’s inequality to arrive at∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T4d

Kh(x − y) Kh(x − ỹ) f (x, y, ỹ)wε,h(x)Lε′(z)

× (P̃y−z
ε − P̃x−z

ε )|ρε(t, x − z) − ρε(t, y − z)| dx dy dz dỹ
dh
h

dε′

ε′
ds
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� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y) Kh (̃y)
∥∥∥|χ′(δρε)x,y| ρεx,yw

1/γart
ε,h (x)

+ |χ′(δρε)
x,y| ρεx,yw

1/γart
ε,h (x)

∥∥∥
L
γart
x

∥∥∥(δP̃x,y
ε )| δρε(x, y)|

∥∥∥
L
γ′art
x

× dy dỹ
dh
h

dε′

ε′
ds

where we denote δP̃x,y
ε = P̃ε(x) − P̃ε(y), and we also used the bound wε,h(x) � 1 and

‖Lε′ ‖L1 = 1 for any ε′ > 0. Using Young’s inequality and Minkowsky’s inequality, we get
a further bound for the above term

η

16

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

Kh(y)‖|χ′(δρε)| ρε(x, y)wε,h(x)‖γart

L
γart
x

dy
dh
h

dε′

ε′
ds

+
C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

Kh(y)
∥∥∥(δP̃x,y

ε )|δρε(x, y)|
∥∥∥γ′art

L
γ′art
x

dy
dh
h

dε′

ε′
ds.

The first integral in the above bound is bounded by D3/16. In order to estimate the second
integral, we introduce the truncation function

φ̃M
ε (x, y) = φ̄(ρx

ε/M)φ̄(ρy
ε/M)

where φ̄ is a smooth function such that

φ̄(s) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 � s � 1,

0, s � 2

∈ [0, 1], otherwise

. (4.30)

Then we have

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

Kh(y)
∥∥∥(δP̃x,y

ε ) |δρε(x, y)|
∥∥∥γ′art

L
γ′art
x

dy
dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y) |δP̃x,y
ε |γ′art φ̃M

ε (x, x − y)|

× δρε(x, y)|γ′art dx dy
dh
h

dε′

ε′
ds + C

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)

× |δP̃x,y
ε |γ′art (1 − φ̃M

ε (x, x − y)) |δρε(x, y)|γ′art dx dy
dh
h

dε′

ε′
ds.

Applying Hölder’s inequality and using (1.12), we bound the truncated term as

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y) |δP̃x,y
ε |γ′art φM

ε (x, x − y) |δρε(x, y)|γ′art dx dy
dh
h

dε′

ε′
ds

� C Mγ′art

(∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y) dx dy
dh
h

dε′

ε′
ds

)1−γ′art/s0

×
(∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y) |P̃x−y
ε − P̃x

ε |s0 dx dy
dh
h

dε′

ε′
ds

)γ′art/s0
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� C Mγ′art |log h0|1−γ′art/s0

(∫ 2ε

ε

rε̃
dε′

ε′

)γ′art/s0

.

For the remainder term, (i.e., the term involving 1 − φM
ε ), we use the simple relation

({ρ(x) � M} ∩ {ρ(z) � M})c = {ρ(x) � M}c ∪ {ρ(z) � M}c

to obtain ∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)|δP̃x,y
ε |γ′art (1 − φ̃M

ε (x, x − y))|δρε(x, y)|γ′art dx dy
dh
h

dε′

ε′
ds

�
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)|δP̃x,y
ε |γ′art (1{ρx�M} + 1{ρx−y�M})|

× δρε(x, y)|γ′art dx dy
dh
h

dε′

ε′
ds.

By Hölder’s and Young’s inequalities, we get

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)|δP̃x,y
ε |γ′art (1 − φM

ε (x, x − y))|δρε(x, y)|γ′art dx dy

× dh
h

dε′

ε′
ds

�
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)|P̃x−y
ε − P̃x

ε |s0 dx dy
dh
h

dε′

ε′
ds

+

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)1{ρx�M}ρε(t, x)s0γ
′
art/(s0−γ′art) dx dy

× dh
h

dε′

ε′
ds

� rh0 + M−(γart−s0γ
′
art/(s0−γ′art))| log h0|.

Note that for γart � 2s′0, one can easily check that γart − s0γ
′
art/(s0 − γ ′

art) > 0. For the second
term in (4.29), we need to use the penalty function defined in (3.6). More specifically, we
need to extract an integral involving Kh ∗ P̃ and estimate the remainder term with a quantity
converging to 0. To proceed, we rewrite this integral as

2
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y)Kh(̃y) f (x, x − y, x − ỹ)w1/γart
ε,h (x)Lε′(z)P̃x−z

ε

× w
1/(1+l)
ε,h (x − z)|ρε(t, x − z) − ρε(t, x − y − z)| dx dy dz

dh
h

dε′

ε′
ds

+ 2
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y)Kh (̃y) f (x, x − y, x − ỹ)w1/γart
ε,h (x)Lε′(z)

(w1/(1+l)
ε,h (x) − w

1/(1+l)
ε,h (x − z)) P̃x−z

ε |ρε(t, x − z)

− ρε(t, x − y − z)| dx dy dz
dh
h

dε′

ε′
ds

= IG + Diff1.
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The treatment of IG is slightly more difficult. Similar to previous calculations in (4.27), we
change variable and use Hölder’s inequality to obtain

|IG| � η

16

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)χ(δρε)x,y ργart
ε (x, y)wε,h(x) dx dy

× dh
h

dε′

ε′
ds +

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)P̃1+l
ε (x)wε,h(x)|

× δρε(x, y)|1+l dx dy
dh
h

dε′

ε′
ds.

The first term in the above inequality is bounded by D3/16. To estimate the second term, we
need to introduce Kh ∗ G to use the penalty function:

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)P̃1+l
ε (x)wε,h(x)χ(δρε(x, y)) dx dy

dh
h

dε′

ε′
ds

� C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y) Kh(z)
∣∣∣P̃ε(x) − P̃ε(x − z)

∣∣∣1+l
wε,h(x)

× χ(δρε(x, y)) dx dy dz
dh
h

dε′

ε′
ds +

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y) Kh(z)

× |P̃ε|1+l(x − z)wε,h(x)χ(δρε(x, y)) dx dy dz
dh
h

dε′

ε′
ds

where the last term may be bounded by Cλ−1D2 with Cλ−1 being arbitrarily small provided λ
is sufficiently large. By Hölder we bound the first term as

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y) Kh(z)
∣∣∣P̃ε(x) − P̃ε(x − z)

∣∣∣1+l
wε,h(x)

× χ(δρε(x, y)) dx dy dz
dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Kh(z)

∥∥∥∥∣∣∣P̃ε(x) − P̃ε(x − z)
∣∣∣1+l

∥∥∥∥
L

s0/(1+l)
x

× ‖χ(δρε(x, y))‖
L

s0/(s0−(1+l))
x

dz dy
dh
h

dε′

ε′
ds.

Note that for γart � 2s′0 we always have s0(1 + l)/(s0 − (1 + l)) � γart. Hence, we get

‖χ(δρε(x, y))‖
L

s0/(s0−(1+l))
x

= ‖χ(ρε(x) − ρε(x − y))‖
L

s0/(s0−(1+l))
x

� C.

Therefore, we have a further bound

C
η

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T3d

Kh(y)Kh(z)
∣∣∣P̃ε(x) − P̃ε(x − z)

∣∣∣1+l
wε,h(x)

× χ(δρε(x, y)) dx dy dz
dh
h

dε′

ε′
ds

� C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
Td

Kh(z)
∥∥∥P̃ε(x) − P̃ε(x − z)

∥∥∥1+l

L
s0
x

dz
dh
h

dε′

ε′
ds
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� C

(∫ 2ε

ε

rε̃
dε′

ε′

)(1+l)/s0

| log h0|(s0−1−l)/s0 .

By Hölder’s inequality, the Diff1 term is estimated similarly to (4.28) as

Diff1 � η

16

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)χ(δρε)x,y ργart
ε (x, y)wε,h(x) dx dy

× dh
h

dε′

ε′
ds + C

∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)
∥∥ρ1+l

∥∥
L

s0/(s0−(1+l))
x

Lε′ (z)

×
( z

h

)1/(1+l)∥∥∥|P̃x−z
ε |1+l

∥∥∥
L

s0/(1+l)
x

dy dz
dh
h

dε′

ε′
ds

� 1
16

D3 + C
∫ t

0

∫ 2ε

ε

∫ 1

ε̃

∫
T2d

Kh(y)Lε′(z)
( z

h

)1/(1+l)
dy dz

dh
h

dε′

ε′
ds

� 1
16

D3 + C

provided γart > 2s′0. Collecting all the estimates of Is,1, Is,2, with Is,3 and optimizing in M
concludes the proof. �

4.6. Term I4

Before giving the bound for the integral terms I4 and I5, we introduce the following lemma
needed for the treatment of the effective viscous flux F = Δ−1 div(∂t(ρεuε) + div(ρεuε ⊗ uε)).
We refer the readers to [4] for a proof of this result.

Lemma 4.6. Let F be the effective viscous flux introduced above. Assume that (ρε, uε) is a
solution of the system (2.6) and (2.7) satisfying the bound (2.4) with γart > d/2. Suppose that
Φ ∈ L∞([0, T] × T

2d) and that

CΦ :=

∥∥∥∥
∫
Td

Kh(x − y)Φ(t, x, y) dy

∥∥∥∥
W1,1(0,T;W−1,1

x (Td ))

+

∥∥∥∥
∫
Td

Kh(x − y)Φ(t, x, y) dx

∥∥∥∥
W1,1(0,T;W−1,1

y (Td ))

< ∞,

then there exists θ > 0 such that∫ t

0

∫
T2d

Kh(x − y)Φ(t, x, y)(F(t, x) − F(t, y)) dx dy dt

� hθ(CΦ + ‖Φ‖L∞((0,T)×T2d))

holds, where the implicit constant in � is independent of ε.
Next we estimate I4 in the lemma below. We use θ to denote a parameter between 0 and 1

which may be different from line to line.

Lemma 4.7. Let I4 be defined by (4.7). Under the assumptions of lemma 4.5, it follows

I4 � C + C

(∫ 2ε

ε

rmax(h0,ε′)
dε′

ε′

)θ̄

| log(h0)|θ + C
∫ t

0
Th0,ε(s)ds − D1 − D2 −

7D3

8
,
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with D1, D2, D3, and rh given by (4.12), (4.16), (4.23), and (1.12) respectively. Here 0 < θ̄,
0 < θ < 1, and t � T, where T can be any positive number and the implicit constant may
depend on time T.

Proof. We first recall

I4 = −1
2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ

′(δρε) ρε δ(div uε) dx dy
dh
h

ds.

We proceed by getting a representation formula for div uε from (2.2)

div uε = ηργart
ε + Lε ∗ P + F (4.31)

where F is the effective viscous flux:

F = Δ−1 div F(∂t(ρεuε) + div(ρεuε ⊗ uε)).

Then the term I4 may be rewritten as

I4 = −1
2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ

′(δρε) ρε δ(ηργart
ε + Lε ∗ P + F) dx dy

dh
h

ds

= I4,1 + I4,2 + I4,3

with I4,1, I4,2, and I4,3 being the integrals corresponding to the three terms in the parentheses
of the above formula. Noting that

η χ′(δρε) ρεδ(ργart
ε ) � η χ′(δρε) ρε(ρε(x) − ρε(y))(ργart−1

ε (x) + ργart−1
ε (y))

= η(1 + l)χ(δρε) ρε(ρ
γart−1
ε (x) + ργart−1

ε (y))

� η(1 + l)χ(δρε) ρ
γart
ε

we arrive at

I4,1 � −η(1 + l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ(δρε) ρ

γart
ε dx dy

dh
h

ds (4.32)

which serves as a penalization. To bound the term I4,2, we rewrite it as

I4,2 = −1
2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ

′(δρε) ρε δ(Lε ∗ P) dx dy
dh
h

ds

= −
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − ỹ)wx
ε,h χ

′(δρε) ρε

× δ(Lε ∗ P) dx dy dỹ
dh
h

ds.

Let f (x, y, ỹ) = χ′(δρ(x, x − y))ρε(x, x − y), then it is straightforward to check that f satisfies
the condition (4.22). Appealing to the lemma 4.5, we arrive at

|I4,2| � C + C

(∫ 2ε

ε

rmax(h0,ε′)
dε′

ε′

)θ̄

| log(h0)|θ + C
∫ t

0
Th0,ε(s)ds + Cλ−1D2 +

3D3

8
.
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Finally, we deal with the effective viscous flux term I4,3, which is rewritten as

I4,3 = −1
2

∫ t

0

∫ 1

h0

∫
T2d

φM
ε Kh(x − y)Wx,y

ε,hχ
′(δρε) ρε δF dx dy

dh
h

ds

− 1
2

∫ t

0

∫ 1

h0

∫
T2d

(1 − φM
ε )Kh(x − y)Wx,y

ε,h χ
′(δρε) ρε δF dx dy

dh
h

ds. (4.33)

For the second integral, we use the uniform integrability of ρε and div uε to obtain∣∣∣∣
∫ t

0

∫ 1

h0

∫
T2d

(1 − φM
ε )Kh(x − y)Wx,y

ε,h χ
′(δρε) ρε δF dx dy

dh
h

ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫ 1

h0

∫
T2d

(1 − φM
ε )Kh(y)Wx,x−y

ε,h χ′(δρε) ρε δF(x, y) dx dy
dh
h

ds

∣∣∣∣
�

∫ t

0

∫ 1

h0

∫
Td

Kh(y)‖(1 − φM
ε )χ′(δρε) ρε(x, y)‖

L
p/(p−γart)
x

× ‖δF(x, y)‖
L

p/γart
x

dy
dh
h

ds

� | log h0|M−θ

with some 1 > θ > 0 and p = γart + 2γart/d − 1 − 1/λ0 for a sufficiently large constant λ0.
Note here (1 + l)p/(p− γart) < γart since we require γart > 2 + d. While for the first integral
in (4.33), we need to use lemma 4.6 with

Φ = Wx,y
ε,h χ

′(δρε) ρε φM
ε .

Obviously we have that ‖Φ‖L∞ � M1+l. In view of the system (2.6) and (2.7), we get an
equation for Φ as

∂tΦ + divx

(
Φux

ε

)
+ divy

(
Φuy

ε

)
= f x,y

ε,1 divx ux
ε + f x,y

ε,2 divy uy
ε + f x,y

ε,3
1
λ

Dx
ε

+ f x,y
ε,4

1
λ

Dy
ε

where Dε is the penalization introduced in (3.6) and f x,y
ε,i are polynomials of ρε, wε, φM

ε , and
derivatives of φM

ε for i = 1, 2, 3, 4. Noting that

‖ f x,y
ε,i ‖L∞ � M1+l for i = 1, 2, 3, 4,

it is not difficult to get that

CΦ � M1+l

where CΦ is defined in lemma 4.6. Hence lemma 4.6 implies∣∣∣∣
∫ t

0

∫ 1

h0

∫
T2d

φM
ε Kh(x − y)Wx,y

ε,h χ
′(δρε) ρε δF dx dy

dh
h

ds

∣∣∣∣ � M1+l.

Optimizing the bound in M gives

I4,3 � | log h0|θ
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for some 0 < θ < 1. The proof is concluded by collecting the estimates for I4,1, I4,2, and I4,3.
�

4.7. Term I5

We give the estimate for I5 in this subsection.

Lemma 4.8. Let I5 be defined by (4.8). Under the assumptions in lemma 4.5, we have

I5 � C + C

(∫ 2ε

ε

rmax(h0,ε′)
dε′

ε′

)θ̄

| log(h0)|θ + C
∫ t

0
Th0,ε(s)ds

+ Cλ−1D2 +
D3

2

with D2 and D3 given by (4.16) and (4.23) respectively, for some 0 < θ̄, 0 < θ < 1, and t � T,
where T can be any positive number and the implicit constant may depend on time T.

Proof. We recall

I5 =

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h

(
χ(δρε) −

1
2
χ′(δρε) δρε

)

× divx uε dx dy
dh
h

ds.

By the definition of χ in (4.1), the term I5 may be rewritten as

I5 =
1 − l

2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ(δρε) divx uε dx dy

dh
h

ds

=
1 − l

2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)Wx,y
ε,h χ(δρε) (Part,η(ρε) + Lε ∗ P + F) dx dy

× dh
h

ds

= I5,1 + I5,2 + I5,3.

Note that since Part,η(ρε) � C ργart
ε , the term I5,1 may be absorbed by the term D3/2 in (4.23).

Next we treat I5,2 as

I5,2 =
1 − l

2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wε,h(x)χ(δρε) (Lε ∗ P(x)

+ Lε ∗ P(y)) dx dy
dh
h

ds

= (1 − l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wε,h(x)χ(δρε)Lε ∗ P(x) dx dy
dh
h

ds

− 1 − l
2

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wε,h(x)χ(δρε) δ(Lε ∗ P) dx dy
dh
h

ds.
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Since the second integral in the right side of the last equality is already estimated in I4, we
only need to consider the first integral. We need to use the penalization D2 defined in (4.16) to
control the main contribution of this term. Note∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wε,h(x)χ(δρε)Lε ∗ P(x) dx dy
dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wε,h(x)χ(δρε)Lε ∗ P(x) dx dy dz

× dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wε,h(x)χ(δρε) (Lε ∗ P(x)

− Lε ∗ P(z)) dx dy dz
dh
h

ds +
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)

× wε,h(x)χ(δρε)Lε ∗ P(z) dx dy dz
dh
h

ds

where the last integral is bounded by Cλ−1D2. We switch variables to rewrite the first
integral as ∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wε,h(x)χ(δρε) (Lε ∗ P(x)

− Lε ∗ P(z)) dx dy dz
dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − ỹ)wε,h(x)χ(δρε(x, x − ỹ)) (Lε ∗ P(x)

− Lε ∗ P(y)) dx dy dỹ
dh
h

ds.

Let f (x, y, ỹ) = χ(δρε(x, x − ỹ)), then it is easy to check that (4.22) holds. Using lemma 4.5,
we arrive at ∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − ỹ)wε,h(x)χ(δρε(x, x − ỹ)) (Lε ∗ P(x)

− Lε ∗ P(y)) dx dy dỹ
dh
h

ds

� C + C

(∫ 2ε

ε

rmax(h0,ε′)
dε′

ε′

)θ̄

| log(h0)|θ + C
∫ t

0
Th0,ε(s)ds

+ Cλ−1D2 +
3D3

8
.

At last, we treat the effective viscous flux term as

I5,3 = (1 − l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wx
ε,h χ (δρε) F dx dy

dh
h

ds
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= (1 − l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wx
ε,h χ(δρε) (F(y) − F(x)) dx dy

dh
h

ds

+ 2(1 − l)
∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wx
ε,h χ(δρε) F(x) dx dy

dh
h

ds.

Note that the first integral is already treated in I4,2, and we now deal with the second
integral as

∫ t

0

∫ 1

h0

∫
T2d

Kh(x − y)wx
ε,h χ(δρε) F(x) dx dy

dh
h

ds

=

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wx
ε,h χ(δρε)

× (F(x) − F(z)) dx dy dz
dh
h

ds +
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)

× wx
ε,h χ(δρε) F(z) dx dy dz

dh
h

ds.

For the first integral, by similar argument as in the treatment of I4,3, we arrive at

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wx
ε,h χ(δρε) (F(x) − F(z)) dx dy dz

dh
h

ds

� | log h0|θ

for some 0 < θ < 1. While for the second integral, we use the formula (4.31) to obtain

∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wx
ε,h χ(δρε) F(z) dx dy dz

dh
h

ds

�
∫ t

0

∫ 1

h0

∫
T3d

Kh(x − y)Kh(x − z)wx
ε,hχ(δρε)|div uε|(z) dx dy dz

dh
h

ds

which is bounded by Cλ−1D2. Collecting all the estimate and optimizing in M concludes the
proof. �

4.8. Compactness argument

Proof of theorem 2.2. Collecting the estimates from lemmas 4.1, 4.2–4.4, 4.7 and 4.8,
choosing λ sufficiently large, and dropping the extra penalization D1, D2, and D3, we have

Th0,ε(t) � Th0,ε(0) + C
∫ t

0
Th0,ε(s)ds + | log h0|θ

for some 0 < θ < 1. A Gronwall inequality implies

Th0,ε(t) � eCT | log h0|θ
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for t � T . Recalling the definition of Th0,ε, in order to get the compactness of the solution ρε,
we need to get rid of the weight function. Note that∫

T2d
Kh0 (x − y)χ(δρε) dx dy =

∫
T2d

Kh0 (x − y)χ(δρε)1wx
ε,h�η1w

y
ε,h�η dx dy

+

∫
T2d

Kh0 (x − y)χ(δρε)

× (1 − 1wx
ε,h�η1w

y
ε,h�η) dx dy

where η > 0 is a big parameter depending on h0 to be chosen later. For the first integral, in
view of (3.11), we have∫

T2d
Kh0 (x − y)χ(δρε)1wx

ε,h�η1w
y
ε,h�η dx dy

�
∫
T2d

Kh0 (x − y)ρ1+l
ε (x)1wx

ε,h�η dx dy +
∫
T2d

Kh0 (x − y)ρ1+l
ε

× (y)1wy
ε,h�η dx dy

�
∫
Td
ρ1+l
ε (x)1wx

ε,h�η dx| log h0| � | log h0|
| log η|α

for some 0 < α < 1. For the second integral, we use Th0,ε to get∫
T2d

Kh0 (x − y)χ(δρε)(1 − 1wx
ε,h�η1w

y
ε,h�η) dx dy � 1

η
Th0,ε(t)

� 1
η
| log h0|θ.

By choosing η = |log h0|, we arrive at∫
T2d

Kh0 (x − y)χ(δρε) dx dy � | log h0|
log | log h0|

,

which implies the compactness of the solution ρε by lemma 3.1. �

5. Concluding section

In this paper, we prove the existence of global weak solutions à la Leray for CNS equations
with a pressure law which depends on the density and on time and space variables t and
x. It may be seen as a first step to consider heat-conducting Navier–Stokes equations with
physical laws such as the truncated virial assumption. The paper focuses on two main
difficulties:

• The construction of approximate solutions through a new regularized and fixed point pro-
cedure: to do so, an artificial pressure term based on a hierarchy cascade is introduced in
addition to an appropriate regularization of the pressure law to design a candidate for the
approximate pressure law.
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• The weak stability process taking advantage of the new method introduced by the first
two authors with a careful study of the regularized pressure defined in the first step: its
treatment constitutes the main innovation in this paper.

Acknowledgments

The first author is partially supported by the SingFlows project, Grant ANR-18-CE40-0027.
The second author is partially supported by NSF DMS Grant 161453, 1908739, 2049020 and
NSF Grant RNMS (Ki-Net) 1107444.

Appendix A. Proof of theorems 2.1 and 2.3

A.1. Proof of theorem 2.3

The proof is performed by taking several consecutive limits, first η1 → 0, then η2 → 0 till the
last limit ηm → 0. The generic step is hence, once we already have η1 = · · · = ηi = 0, to pass
to the limit ηi+1 → 0. For this reason, we introduce the notation ρη,i, uη,i which is obtained
by taking the first i − 1 weak limits η1 → 0, ηi−1 → 0. More precisely, after extracting sub-
sequences, we have that ρη,1 = ρη, uη,1 = uη and

ρη,i+1 = w − lim
ηi→0

ρη,i, uη,i+1 = w − lim
ηi→0

uη,i.

The final solution that we will obtain is simply ρ = ρη,m+1, u = uη,m+1 which is independent
of all ηi. Assuming that ρη,i is a weak solution to the system

∂tρηi + div(ρηi uηi ) = 0,

∂t(ρηi uηi) + div(ρηi uηi ⊗ uηi ) −Δuηi +∇
(
ηi ρ

γart ,i
ηi

+ · · ·+ ηm ργart,m
ηi

+ P(t, x, ρηi)
)
= 0,

(A.1)

then we have to show that ρη,i+1 solves the same system with ηi = 0.
Step 1: basic energy inequality for ρη , uη . We observe that ρη , uη solves (A.1) directly from

theorem 2.1. However the a priori estimates provided by theorem 2.1 are not uniform in η so
that our first step consists in deriving such estimate starting from the energy inequality (2.5).

The first point is to pass to the limit as ε→ 0 in (2.5). Of course the left-hand side is convex
in ρε,η , uε,η so it handled in the usual manner. We have that div uε,η is uniformly bounded in L2

t,x
so div uε,η → div uη in w − L2

t,x .
On the other hand by (1.7) and (1.8), we have that |P(t, x, ρε,η)| � R +Θ1 + C ρp

ε,η with p �
γ + 2 γ

d − 1 and R +Θ1 ∈ Lq
t,x with q > 2. By theorem 2.1, we have that ρε,η ∈ Lpart

t,x uniformly
in ε for any part � γart + 2γart/d − 1. Observe that 2 (γ + 2 γ

d − 1) < 2 γ + 4 γ
d − 1 � γart +

2 γart/d − 1 since 2γ � γart. This is the first place where the assumption 2γ � γart is critical.
Hence P(t, x, ρε,η) is uniformly bounded in ε in Lq

t,x for some q > 2. By the compactness of
ρε,η provided by theorem 2.2, we obtain that P(t, x, ρε,η) → P(t, x, ρη) strongly in L2

t,x .
Therefore this provides a solution ρη , uη to the system (2.6) and (2.7) with, for a fixed η,

the bounds ρη ∈ L∞
t Lγart

x , ρη ∈ Lp
t,x for any p � γart + 2γart/d − 1, uη ∈ L2

t H1
x , and the basic
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energy inequality∫
Td

(
η1

ργart ,1
η (t, x)

γart,1 − 1
+ · · ·+ ηm

ργart ,m
η (t, x)

γart,m − 1
+ ρη(t, x) |uη(t, x)|2

)
dx

+

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds �

∫ t

0

∫
Td

div uη P dx ds

+

∫
Td

(
η1

(ρ0,ε,η)γart,1 (t, x)
γart,1 − 1

+ · · ·+ ηm
(ρ0,ε,η)γart,m (t, x)

γart,m − 1

)
dx.

+

∫
Td
ρ0,ε,η(t, x) |u0,ε,η(t, x)|2 dx

(A.2)

Step 2: modified energy inequality. Our next step is to work with (A.2) to obtain a form that
is more suitable to the derivation of a priori estimates.

We recall that E0 = ρη (|uη|2/2 + e0(ρη)) with e0(t, x, ρ) =
∫ ρ

ρref
P0(t, x, s)/s2 ds.

We have that

d
dt

∫
Td
ρη e0(t, x, ρη) dx =

∫
Td

(ρη∂te0(ρη) + ρη uη · ∇xe0(ρη)) dx

+

∫
Td

div uη(ρη e0(ρη) − ρη ∂ρ(ρηe0(ρη))) dx.

From the definition of e0, we get that

d
dt

∫
Td
ρη e0(t, x, ρη) dx =

∫
Td

(ρη∂te0(ρη) + ρη uη · ∇xe0(ρη)) dx

−
∫
Td

div uη P0(ρη) dx.

Note that from (1.8)–(1.10), we have that for a fixed η, P0 ∈ L2 while ρη∂te0(ρη) ∈ L1
t,x and

ρη ∇xe0(ρη) ∈ L2
t L2d/(d+2)

x so that ρη uη · ∇xe0(ρη) ∈ L1
t,x as well. Therefore all terms make

sense and this is again due to the assumption γart � 2γ.
Adding this to (A.2) yields the more precise energy inequality∫

Td
(E0(ρη, uη) + η1

ργart ,1
η

γart,1 − 1
+ · · ·+ ηm

ργart ,m
η

γart,m − 1
) dx

+

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds

�
∫ t

0

∫
Td

divx uη(s, x) (P(s, x, ρη(s, x)) − P0(s, x, ρη(s, x)))ds dx

+

∫ t

0

∫
Td

(ρη ∂te0(ρη) + ρη uη · ∇xe0(ρη)) dx ds

+

∫
Td

(
η1

(ρ0,ε,η)γart,1 (t, x)
γart,1 − 1

+ · · ·+ ηm
(ρ0,ε,η)γart,m (t, x)

γart,m − 1

+ E0(ρ0,η, u0,η)
)

dx, (A.3)

which we will use to obtain our a priori estimates.
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Step 3: a priori estimates on ρη , uη . From (A.3), we first observe that from (1.7) since γ̄ �
γ/2, ∫ t

0

∫
Td

divx uη(s, x) (P(s, x, ρη(s, x)) − P0(s, x, ρη(s, x))) ds dx � C

+
1
4

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds + C

∫ t

0

∫
Td
|ρη(s, x)|γ dx ds.

Similarly by (1.9)–(1.10), we can bound∫ t

0

∫
Td

(∂te0(ρη) + ρη uη · ∇xe0(ρη)) dx ds

� C +
1
4

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds + C

∫ t

0

∫
Td
|ρη(s, x)|γ dx ds.

By (1.8), we hence obtain that∫
Td

(
ργη
C

+ η1
ργart,1
η

γart,1 − 1
+ · · ·+ ηm

ργart,m
η

γart,m − 1
+ ρη

|uη|2
2

)
dx

+
1
2

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds

� C + C
∫ t

0

∫
Td
|ρη(s, x)|γ dx ds.

By Gronwall’s lemma, we deduce the first main estimate on ρη and uη, for some constant C
independent of η∫

Td

(
ργη
C

+ η1
ργart ,1
η

γart,1 − 1
+ · · ·+ ηm

ργart ,m
η

γart,m − 1
+ ρη

|uη|2
2

)
dx � C eC t,

∫ t

0

∫
Td
|∇uη(s, x)|2 dx ds � C eC t.

(A.4)

Those estimates are convex in ρη and uη . Hence by the definition of the ρη,i, uη,i, we trivially
have as well that∫

Td

(
ργη,i

C
+ ηi

ργart,i
η,i

γart,i − 1
+ · · ·+ ηm

ργart ,m
η,i

γart,m − 1
+ ρη,i

|uη,i|2
2

)
dx � C eC t,

∫ t

0

∫
Td
|∇uη,i(s, x)|2 dx ds � C eC t.

(A.5)

When considering the limit ηi → 0 on ρη,i, uη,i, we have that ηi+1, . . . , ηm > 0. We hence
have all the bounds needed to apply lemma 2.4 with S = P − P0, γ0 = γart,i+1 and 1/p =
1 + 1/γart,i + 1 − 2/d or γart,i + 1/p′= 2γart,i + 1/d − 1. This lets us obtain our last a priori
estimate

sup
ηi

∫ T

0

∫
Td
ρq
η,i(t, x) dx dt < ∞, ∀ q < γart,i+1 + 2 γart,i+1/d − 1. (A.6)
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Step 4: passing to the limit. Equipped with those bounds, we have the weakly converging
sub-sequences as ηi → 0: ρη,i → ρη,i+1 in w − L∞

t L
γart ,i+1
x and w − Lq

t,x for any q < γart,i + 1 +
2γart,i + 1/d − 1, and uη,i → uη,i+1 in w − L2

t H1
x .

As usual, this is also enough to show the weak limits ρη,iuη,i → ρη,i+1uη,i+1 and ρη,iuη,i ⊗
uη,i → ρη,i+1uη,i+1 ⊗ uη,i+1. Those bounds also provides equi-integrability on P(t, x, ρη,i) by the
upper bounds following from (1.7) and (1.8). Equi-integrability also holds on

ηi
ργart ,i
η,i

γart,i − 1
+ · · ·+ ηm

ργart,m
η,i

γart,m − 1
,

since γart,i < γart,i + 1 + 2γart,i + 1/d − 1 which is the key relation between the coefficients
γart,i.

The main remaining question is to prove the compactness of ρη,i in L1
t,x . This is in gen-

eral the difficult question for CNS but, fortunately in this case, we may directly apply the
result of [4].

Specifically we invoke theorem 5.1, case (ii) in that article (page 613). Our sequence ρη,i, uη,i

solves the continuity equation (denoted (5.1) in the article). The momentum equation implies
that uη,i solves equation (5.2) in the article with constant viscosity and Rk = 0. Our a priori
estimates directly ensures the bounds (5.3)–(5.7) that are required by theorem 5.1 in [4]. Finally
the assumption on the pressure law for this theorem is identical to our assumptions (1.11) and
(1.12).

We hence deduce the compactness of ρη,i and hence the convergence of P(t, x, ρη,i) +
ηi ρ

γart,i
η,i + · · ·+ ηm ργart,m

η,i to P(t, x, ρη,i+1) + ηi+1 ρ
γart ,i+1
η,i+1 + · · ·+ ηm ργart,m

η,i+1. This implies that
ρη,i+1, uη,i+1 solves (A.1) with ηi = 0 and finally that ρ, u is indeed a global solution to the
system (1.2) and (1.3) as claimed with the corresponding estimates for i = m + 1 following
from (A.5) and (A.6). Finally the energy inequality is directly obtained from (A.3) by taking
the successive limits.

A.2. Proof of theorem 2.1

We can obtain solutions to (2.1) and (2.2) through a fixed point theorem. Given any
S ∈ L2([0, T] × T

d) ), we define NS, US as a global weak solution to

∂tNS + div(NS US) = 0, NS(t = 0) = ρ0
ε,

∂t(NS US) + div(NS US ⊗ US) −ΔUS +∇(Pη(NS) + S) = 0,

Uρ(t = 0) = u0
ε.

(A.7)

System (A.7) is in fact the classical CNS system with barotropic pressure law Pη(ρ) =
η1ρ

γart,1 + · · ·+ ηmρ
γart,m and a source term. Provided that γart + 2γart/d − 1 > 2 with

γart = γart,1 = maxi γart,i, which we assumed, existence of global solution to this system is
guaranteed by [18] and moreover such solutions satisfy the following energy estimate for some
constant C

sup
t∈[0, T]

∫
Td

((NS(t, x))γart + NS |US|2) dx +

∫ T

0

∫
Td
|∇US|2 dx

� C
∫
Td

((ρ0
ε(t, x))γart + ρ0

ε |u0
ε|2) dx + C ‖S‖2

L2
t,x
. (A.8)
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and the following energy inequality∫
Td

(
η1

Nγart,1
S (t, x)
γart,1 − 1

+ · · ·+ ηm
Nγart ,m

S (t, x)
γart,m − 1

+ NS(t, x) |US(t, x)|2
)

dx

+

∫ t

0

∫
Td
|∇US(s, x)|2 dx ds �

∫ t

0

∫
Td

div US · S dx ds

+

∫
Td

(
η1

(ρ0,ε,η)γart,1 (t, x)
γart,1 − 1

+ · · ·+ ηm
(ρ0,ε,η)γart,m (t, x)

γart,m − 1

)
dx

+

∫
Td
ρ0,ε,η(t, x)|u0,ε,η(t, x)|2dx. (A.9)

We are now using lemma 2.4 with P0 = Pη(NS) = η1 Nγart,1
S + · · ·+ ηm Nγart,m

s .
One has that NS ∈ L∞

t Lγart
x solves (B.1) with uε ∈ L2

t H1
x . Since γart > 2 then S ∈ L2

t,x ⊂
L1

t L
γ′art
x trivially. On the other hand

sup
ε

‖ΔUS‖L2
t H−1 < ∞,

and using Sobolev embeddings US ∈ L2
t Lq

x with 1/q = 1/2 − 1/d so that

sup
ε

‖NS US ⊗ US‖L1
t Lp

x
< ∞,

1
p
=

1
γart

+
2
q
=

1
γart

+ 1 − 2
d
.

Similarly

sup
ε

‖NS US‖L2
t Lr

x
< ∞,

1
r
=

1
γart

+
1
q
=

1
γart

+
1
2
− 1

d
,

and one notes that 2pd/(2d + 2p− pd) = r or 1/r = 1/p+ 1/d − 1/2.
Using the bound on the kinetic energy

∫
NS|US|2 dx, we also have that

∫
Td

Ns
S |US|s dx �

(∫
Td

NS |US|2
)s/2 (∫

Td
Ns/(2−s)

S

)1−s/2

.

Note that s/(2 − s) = γart iff s = 2γart/(1 + γart), implying that

sup
ε

‖NS US‖L∞t Ls
x < ∞, s = 2γart/(1 + γart),

with in particular s = 2pd/(d + 2p) � pd/(p+ d).
We hence deduce that for θ < γart/p′ or θ < 2γart/d − 1

sup
ε

∫ T

0

∫
Td

Nθ
S P0(NS) dt dx < ∞,

or, in other words, lemma 2.4 implies that∫ T

0

∫
Td

Nq
S (t, x) dx dt � C

∫
Td

((ρ0
ε(t, x))γart + ρ0

ε |u0
ε|2) dx + C ‖S‖2

L2
t,x
. (A.10)

This leads to defining the following operator

F : S → F(S)(t, x) = Lε 
 P(NS).
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From the definition, we have that

‖F(S)‖2
L2

t,x
� C ε−d ‖P(NS)‖2

L2
t L1

x
� C ε−d ‖R‖2

L1 + C ε−d ‖Np
S‖2

L2
t L1

x
,

for some p < γ + 2γ/d − 1, by using assumptions (1.7) and (1.8) on P. Since R ∈ L2
t,x„ we

deduce that

‖F(S)‖2
L2

t,x
� C ε−d + C ε−d ‖NS‖2p

L2p
t,x
.

Finally, γart + 2γart/d − 1 � 2γ + 4γ/d − 1 > 2p since γart � 2γ, we have by (A.10)

‖F(S)‖2
L2

t,x
� C ε−d + C ε−d T4 ‖S‖2 θ

L2
t,x

,

for some exponent θ < 1 through the uniform in ε bound on

sup
ε

sup
t

∫
Td

((ρ0,ε(t, x))γart + ρ0,ε(t, x) |u0,ε(t, x)|2) dx < ∞.

As θ < 1, there exists a ball B ⊂ L2
t,x with large enough radius such that F(B) ⊂ B.

Moreover F(S) ∈ L2
t H1

x for any S ∈ B thanks to the convolution in x giving compactness
in the space variable. To prove the time compactness, one could observe that the argument in
[18] or the quantitative estimates from [4] provide full compactness on the density provided
that the source term is compact in space (i.e. without time compactness being required).

However, since it is possible to obtain the time compactness in a straightforward manner
and for the sake of completeness, we present the argument here. We need to introduce various
regularization and truncations. First of all (1.7) implies that P/(1 + sp) is in L2

t,x uniformly in
s. Hence we can choose Pη(t, x, s) a regularization of P in t and x with for example

|∂tPη(t, x, s)|+ |∇xPη(t, x, s)|+ |∂2
s Pη(t, x, s)| � C

η
(1 + sp),

‖P(., ., s) − Pη(., ., s)‖L2
t,x

� f (η) (1 + sp),

for some continuous function f with f (0) = 0.
By (1.7) again and since (A.8) shows that NS ∈ L∞

t Lγart
x with γart > γ, we may immediately

deduce from the last point that there exists f̃ continuous with f̃ (0) = 0 such that for any S ∈ B

‖P(., ., NS) − Pη(., ., NS)‖L2
t,x

� f̃ (η). (A.11)

Now choosing any standard convolution kernel L, we may write

Lε 
 Pη(NS)(t, x) =
∫
Td
Lε(x − y) Pη(t, y, NS(t, y)) dy

=

∫
Td
Lε(x − y) L√

η(y − z) Pη(t, z, NS(t, y)) dy dz

+

∫
Td
Lε(x − y) L√

η(y − z)
(
Pη(t, y, NS(t, y))

− Pη(t, z, NS(t, y))
)

dy dz.
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Therefore ∥∥∥∥Lε 
 Pη(NS) −
∫
Td
Lε(x − y) L√

η(y − z) Pη(t, z, NS(t, y))dy dz

∥∥∥∥
L1

t,x

� C
√
η. (A.12)

Since NS solves the continuity equation (B.1) and US ∈ L2
t H1

x , we have by theorem B.1 that for
any fixed z

∂t(Pη(t, z, NS(t, x))) = ∂tPη(t, z, NS(t, x)) + divx

(
Pη(t, z, NS(t, x))

× US(t, x))

= (Pη(t, z, NS(t, x)) − NS ∂sPη(t, z, NS(t, x)))

× div US.

From this, we obtain that

d
dt

∫
Td
Lε(x − y) L√

η(y − z) Pη(t, z, NS(t, y)) dy dz

=

∫
Td
Lε(x − y) L√

η(y − z) ∂tPη(t, z, NS(t, y)) dy dz

+

∫
Td
Lε(x − y)∇yL√

η(y − z) Pη(t, z, NS(t, y)) US(t, y) dy dz

+

∫
Td
Lε(x − y) L√

η(y − z)
(
Pη(t, z, NS(t, x))

− NS ∂sPη(t, z, NS(t, x))
)

div US dy dz.

Bounding directly each term, this implies that∣∣∣∣ d
dt

∫
Td
Lε(x − y) L√

η(y − z) Pη(t, z, NS(t, y)) dy dz

∣∣∣∣ � Cε η
−k, (A.13)

for some exponent k > 0.
We may now combine (A.11)–(A.13) to obtain the compactness in time of Lε 
 P(NS) and

hence the compactness in L2
t,x of F(B). By the Schauder fixed point, F has a fixed point S

in B ⊂ L2
t,x . We now simply choose ρε = NS and uε = US and since NS, US solve (A.7) with

S = F(S) = Lε 
 P(NS) = Lε 
 P(ρε), we obtain a solution to (2.1) and (2.2). The energy bound
(A.8) provides all uniform in ε bounds on ρε while the energy inequality (A.9) of course leads
to the corresponding inequality in the theorem. Estimate (A.10) provides the extra-integrability
on ρε,η .

Appendix B

B.1. Renormalized solutions

We rely on the concept of renormalized solution (see for instance [11, 17]) to justify several
a priori formal calculations in the article. For this reason, we recall here the main definitions.
Given our system, we naturally focus on the conservative transport equation

∂tρ+ div(ρu) = 0. (B.1)
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Given a weak solution ρ to the above, it is not a priori possible to calculate nonlinear functions
of ρ which is precisely what we need here. Hence one introduces the notion of renormalized
solutions

Definition B.1. A weak solution ρ ∈ Lp
t,x to (B.1) with u ∈ Lq

t,x for 1/p+ 1/q = 1 is a
renormalized solution iff for any χ ∈ C1(R) with |χ′(s)| � C(1 + |s|p−1), one has that

∂tχ(ρ) + div(χ(ρ)u) = (χ(ρ) − ρχ′(ρ))div u (B.2)

in the sense of distributions.
Renormalized solutions were first introduced in the famous [11] which in particular proved

that if u belongs to the right Sobolev space then all weak solutions are renormalized.

Theorem B.1. Assume that ρ ∈ Lp
t,x is a solution to (B.1) in the sense of distributions.

Suppose that u ∈ Lq
t W1,q

x with 1/p + 1/q = 1, then ρ is a renormalized solution to (B.1).

For linear equations, i.e. when u is given in (B.1), then the theory of renormalized solu-
tions immediately provides many key properties such as the compactness for a sequence or the
uniqueness of a solution. For example, assume there are two solutions ρ1 and ρ2 to (B.1) for
the same u. Applying theorem B.1 to the function ρ = ρ1 − ρ2 with χ(x) = |x| and integrating
in time and space gives

d
dt

∫
Td
χ(ρ) dx = 0

which immediately implies that ρ1 = ρ2.
Observe however that in general and unless div u ∈ L∞, it is not possible to have a general

existence result for (B.1) for a given u ∈ Lq
t W1,q

x . A solution with only div u ∈ L2 may for
example concentrate, by forming Dirac masses.

Following [11] and the BV extensions in [3] for the kinetic case and the seminal [1] in the
general case, the theory of renormalized solutions is now an extensive field for which we refer
for example to the reviews [2, 10].

In the context of compressible fluid mechanics, renormalized solutions have been critical
to obtaining the compactness of the density since the first breakthrough in [18] and they also
form the basis of the extension introduced in [12, 16]. We in particular cite the straightforward
compactness result from [11]
Theorem B.2. Consider a sequence un converging strongly to u in L1([0, T], Lq(Td))
s.t. div un converges to div u in L1([0, T], Lq(Td)) as well. Consider any sequence ρn such
that ρn, un satisfies equation (B.1) and ρn uniformly bounded in L∞([0, T], Lp(Td)) with
1/p + 1/q < 1. Assume finally that u ∈ L1 ([0, T], W1,p′ (Td) with 1/p + 1/p′ = 1. Then the
sequence ρn is compact in L1([0, T] × T

d).

Theorem B.2 can be deduced from theorem B.1. The proof of theorem B.1 itself relies on
a so-called qualitative commutator estimate and in several respects, the method introduced in
[4] consists in quantifying this commutator estimate.
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