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Abstract

This paper concerns the existence of global weak solutions a la Leray for com-
pressible Navier—Stokes equations with a pressure law which depends on the
density and on time and space variables ¢ and x. The assumptions on the pressure
contain only locally Lipschitz assumption with respect to the density variable
and some hypothesis with respect to the extra time and space variables. [t may be
seen as a first step to consider heat-conducting Navier—Stokes equations with
physical laws such as the truncated virial assumption. The paper focuses on
the construction of approximate solutions through a new regularized and fixed
point procedure and on the weak stability process taking advantage of the new
method introduced by the two first authors with a careful study of an appropriate
regularized quantity linked to the pressure.

Keywords: compressible, Navier—Stokes, fluid dynamics, heterogeneous pres-
sure, weak solution
Mathematics Subject Classification numbers: 35Mxx.

1. Introduction and main result

As mentioned in [6], the existence of global weak solutions, in the sense of J Leray [7],
to the non-stationary barotropic compressible Navier—Stokes (CNS) system with constant
shear and bulk viscosities 1 and A remained a longstanding open problem in space dimen-
sion strictly greater than one until the first results by Lions (see [18]) with P(p) = ap’
(y > 3d/(d 4 2)). Many important contributions followed to improve the result including
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Feireisl-Novotny—Petzeltova (v > d/2, see [14, 19]), Plotnikov—Weigant (y = d/2, see [20]),
E Feireisl (pressure law s — P(s) non-monotone on a compact set, see [16]) and more recently
Bresch—Jabin (thermodynamically unstable pressure law s — P(s) or anisotropic viscosities,
see [4]).

One of the main issue is that the weak bound of the divergence of the velocity field does
not a priori rule out singular behaviors by the density which may oscillate, concentrate or even
vanish (vacuum state) even if this is not the case initially.

Heat-conducting viscous CNS equations (Navier—Stokes—Fourier) with constant viscosities
namely with a pressure law (p, ) — P(p,?)) and an extra equation on the temperature ¥ has
been firstly discussed in [18] and solved by E. Feireisl and A. Novotny for specific pressure
laws, see [12, 13] which in some sense are monotone with respect to the density after a fixed
value. In the present paper, we prepare the resolution of the heat-conducting CNS equations
with a truncated virial pressure law

[v/2]
P(p,¥) =p" +10 Y B.(9)p". (1.1)

n=0

Such pressure law is not monotone with respect to the density after a fixed value and therefore
is not thermodynamically stable. This paper concerns the existence of global weak solutions a
la Leray for CNS equations with a pressure law which depends on the density and on time and
space variables 7 and x. It may be seen as a first step to consider heat-conducting Navier—Stokes
equations with physical laws such as the truncated virial assumption. More precisely, we
consider the CNS equations

Op + div(pu) =0 (1.2)
O(pu) + div(pu @ u) — pAu — (u+ AN)Vdivu + VP =0 (1.3)

with initial condition

pli=o =po  (pw)|i=0 = mo, (1.4)

in a periodic box Q = T¢ = [—7,7]¢ for d > 2 and p and \ two constants satisfying the
physical constraint 1 > 0 and A + 2u/d > 0. The pressure P = P(t, x, p) is a given function
depending on the time 7, space x, and the density p. For simplicity in the redaction we con-
sider in the sequel that the shear viscosity = 1 and the bulk viscosity A = —1: this does not
changed the mathematical proof and result.

For simplicity, we consider the periodic boundary conditions in x, namely €2 = T¢, even
if arguments can be adapted to the whole space case as well. As explained previously, the
article should be seen as a first step to solve the truncated virial case where we assume that the
temperature 9(t, x) is actually given instead of solving the temperature equation

O(pE) + divi(p E u) + div(P(p, W) u) = div (V. u - u) + div,(k(9) VI), (1.5)

where E = |u|?/2 + e(p, V) is the total energy density with e(p, ¥9) is the specific internal energy
and initial condition

pE|i—o = poEy. (1.6)

with the virial pressure state law (1.1). The main result presented here will be used in our
upcoming article (see [9]) to construct solutions to the full system (1.2)—(1.4), (1.5) and (1.6)
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as it provides the starting point for the fixed point procedure that we adopt. If 9 is given then
naturally P(t, x, p) = P(p,V(t, x)). But there are however several other contexts (for instance
in biology) where it is necessary to involve non spatially homogeneous pressure law and for
this reason, it is useful to consider more general formulas for P than given by (1.1). Note
that as shown in [5, 8], the procedure developed here is also applicable for the compressible
Brinkman system (semi-stationary compressible Stokes system) which is standard system that
may be seen in porous media and biology.

The construction of appropriate approximate solutions will be a difficulty in our paper. It is
based on an original approximate system for which existence of solutions is obtained through
a regularization and a fixed point approach. The weak stability property on the sequence of
approximate solution is obtained using the new method introduced by the two first authors
in [4] and taking care of the regularized term linked to the pressure state law which involves
serious difficulties.

We assume hypothesis on the pressure law (7, x, s) — P(¢, x, s): some of them are used
to ensure the propagation of energy and the others are used to guarantee the propagation of
compactness on the density.

More precisely, let us present:

-Assumptions to ensure the propagation of energy.

Let~y > 3d/(d + 2):

(P1) Thereexistg > 2, 0 < ¥ < /2, and a smooth function P such that

|P(t, x,8) — Po(t, x,5)| < CR(t,x) +Cs?  for R € L1((0,T) x TY). (1.7)
(P2) Thereexistp < v + %77 —1, ¢g>2, O,(t,x) € LY(0,T) x T?), suchthat
C's” — O4(1,x) < Py(t, x,5) < Cs” + O4(t, x). (1.8)
(P3) Thereexistp < v+ %77 —1, and ©, € LY([0, T] x T%) with ¢ > 1 suchthat
|0:Po(t, x,5)| < Cs” + O,(1, x). (1.9)

(P4) |V Po(t,x,5)| < Cs7? +Os(t,x), for O3 € LX([0, T], L*/“+2(T9)). (1.10)
-Assumptions required for the propagation of compactness on the density.
(P5) Thepressure P is locally Lipschitz in the sense of that
|P(t,x,2) — P(t,y, w)| < Q(t, x,y) + CE~" + w1
+ (P(t,x) + P(t, )|z — wl,
forsome P € L*0([0, T] x T¢) and Q € L*' ([0, T] x T>%)for some 5o, s; > 1.

(1.11)
(P6) The functions Q, I~’satisfy that r, — 0, as h — 0, with
1 T ~ ~
7/ Ka(x — ) (|P(t, x) — P(t, )" + |01, x,y)\sl) dxdydr = 7.
Il Jo Jr2a
(1.12)
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The total energy of the CNS system. The total energy of the system, which is the sum of the
kinetic and the potential energies, reads

£ B |pul®
3-x7 p7 pu) - + pe(t7 -x7 p) d'x
@ \ 2p
where
p P ta s
e(t,x,p):/ %ds (1.13)
Pref

with p.; a constant reference density. We also define similarly the reduced total energy
Eo(t, x, p, pu) which is based on P instead of P, see assumption (1.7). Note that we assume as
usually

Uy = o whenpy # 0 and uy = 0 elsewhere, (1.14)
Po
mol® _ . _
p— =0ae. on {x €Q:pyx)=0}. (1.15)
0

The following is our main result dealing with heterogeneous pressure laws.

Theorem 1.1.  Assume the initial data my and py > 0 with depo = My > 0 satisfy

2
E(po, mo) =/ (mo +poe(0,x,po)> dx < oo.
¢ \ 2P0

Suppose that the pressure P satisfies (1.7)—(1.12). Assuming for simplicity p =1 and
w4+ A =0, then there exists a global weak solution to CNS system (1.2)—(1.4) such that

u e L*0,T; H'(T%), Im|?/2p € L¥(0, T; L' (T%))
p € C(0,T], L'(T%) weak ) N LP((0,T) x T¢) where 0<p<~(d+2)/2—1

with the heterogeneous pressure state law P satisfying the energy inequality

t
Eo(p,u)dx+// [Vu(s, x)[* dx ds < E(po, uo)
Td 0 'ﬂ‘d
t
+ / / divy (s, x) (P(s, x, pls, x)) — Po(s. x. p(s, x)))ds dx
0 JTd

t
+ / / (p Breo(s, %, pls, X)) + put - Veols, x. pls. x))) dx ds
0 ’]I*d

where

P Py(t, x, 8)
g = a2+ p [ P s

Pref

Remark 1.2. We note that since Py is smooth, the reduced internal energy ey(t, x, £) is smooth
in each variable. This allows us to give a precise meaning to the terms above

Oreo(s, x, p(s, x)) = 0reo(S, X, §)|e=p(s.)»

Vieo(s, x, p(s, x)) = Vieo(s, X, §)|e=pes.n)-
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Remark 1.3. Note that u € L>(0, T; H'(T%)) comes from the control of the gradient of the
velocity field Vu in L*((0, T) x §2) and the control of |m|?/p in L'((0, T) x T¢) using the fact
that [, p = [, po =M > 0. The interested reader is referred to [18].

Remark 1.4. We have assumed in the proof that y = 1 and A + p = 0 for simplicity but it
is straightforward that it is valuable for i > 0 and A + 2 1 /d > 0 as usually.

2. The approximation systems with a sketch of proof and a priori estimates

We present here the approximate system upon which we rely to construct the solution to
(1.2)—(1.4) with the pressure law P given by (1.7)—(1.12). As is classical in compressible
fluid mechanics, the approximation procedure is performed through several stages, involving
different approximate systems.

2.1. The approximate system with artificial and delocalized pressures

One of the main difficulty is to find a proper approximation of the above system so that we may
construct a solution of it and prove the compactness of the solutions. We propose to define the
approximating system
3:[)5,1; + diV(ps,nus,n) =0 (2.1)
at(pa,nua,n) + diV(pE,nua,n ® u) — Aue,n + V(Part,n(pa,n) +L.xP)=0 (22)

with initial condition

Peali=0 = pocy and  (peylizy)|i—0 = Moy (2.3)

where an artificial pressure term reads

Yart, artun
Par‘t,n(ps,n) ="M Ps,f;tl + -+ N Pz“,;[
for some fixed parameters Yo, = Va1 > Varea > ©°° > Yaem- Lhe coefficients 7y, ..., 7, will
later be let to converge to O in that order and the ,,; will be chosen so that
Vart,i+1

Vart,1 > 27, Varti+1 T 2 0 I > Yaris v+ 2% — 1> Yargym-

In addition an appropriate regularization of the pressure state law L. (P(t, -, p-,(t, -)) has been
introduced. More precisely the key step is to construct a suitable mollifying operator £. defined
as follows
1 [* de’
L(x)=——= La(x)—.
(x) log 2 /E )=

where L. is a standard mollifier given by

1
L) =L(2),
5 €
with L is a non-negative smooth function such that L € C3°(T%) and [;,,L(x)dx = 1. Then
L. — dy as € — 0, with §y being the Dirac delta function at 0. It is straightforward to check
that

L(x)dx =1
Td
4119
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and
L.— 0, as —0.

We observe that we easily have the following global existence result through a fixed point
argument that will be presented in the appendix for readers convenience

Theorem 2.1.  Assume that P satisfies (1.7) with . > vy and that the initial data p, . ,), Uo <.
satisfy the uniform bound

sup/d ("71 (PO,g,,,](x))W’aml +o (pox:’”(x))%n,m
en JT

+ pO,a,n(-x) ‘uofﬁl(‘xnz) d)C < 0o.

There exist p., € L*([0, T], L= (T?) N LP([0, T]1 x T¢) for any p < Yan + 27Var/d — 1,
Uy € L*([0, T], HY(T%) solution to (2.1) and (2.2). Moreover, Peps Ue satisfy the uniform
in € bounds

sup sup / 1(’7‘ PENH,X) + -+ A 1 pL (2, X)
'JI(

e 1€[0, T
+ Pey(t, X) Uz (8, 0)|*) dx < o0, (2.4a)
T
sup/ / Ve ,|* dx df < oo, (2.4b)
e Jo J1d

T
sup/ / m p’;n(t, x)dxdr < oo forany p < Ya + 27Yan/d — 1. (2.4¢)
e Jo J1d

Finally, we have the explicit energy inequality

p'c_‘/anvl([’ x) p'g‘/anvm 1, )C)
/ ("71 et SRR Tn = 4 ps,'r](ta X) |u£,'r](ta X)|2 dx
Td Varts1 — 1 Vartsm — 1

t t
+ / |Vue,(s, x))?dxds < / / divu., L.+,Pdxds
0 J1d 0 J1d

_Yarts1 t, - Yartsm t,
T / (771 (pO,c,n) (t,x) T (Po, ,11) ( X)) dx.
Td 'Yart,l - 1 'Vamm - l

+ /IPO,E,'r](t, X) |u0,6,7](t5 X)|2 dx. (2.5)
’E(

The main difficulty and contribution of the present article is the limit passage € — 0, with
1 fixed, given by the following result

Theorem 2.2. Assume that P satisfies (1.11) and (1.12). Let 7y, > max(2s),s;,2 + d),
where s, and s\ are the Holder conjugate exponents of so and s, respectively. Suppose that
the initial data p°, u® of the system (2.1) and (2.2) satisfy that Poen = Poy N L (T9),
Ponocn = Poyuon and po.yluocy)* = |po,uonl* in L'(TY). Let (p.,.u-y) be the corre-
sponding sequence of solutions satisfying the energy estimate (2.4). Then p., is compact in
LP(TY) for 1 < p < v, as € — 0.

The particular form of the mollifier operator L. is strongly used for the compactness
property on {p- , }- to have enough control of terms involving the pressure terms in the method
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introduced by the two first authors in [4]. Using the previous theorem, the limit passage
provides a sequence of global weak solutions (p,, u;) to the following system

Orpy + div(p, u,) =0 (2.6)
Oi(pyuty) + div(pu, @ u,) — Auy + V(Par(py) + P(t, x, py)) = 0, (2.7)

for some large vy, = v with initial boundary conditions

p17|t:0 = Pos pnun‘tzo = Moy (2.8)

Fortunately once we obtain global weak solutions to (2.6)—(2.8) then passing to the limit as
n; — 0, then 7, — 0 and up to n7,, — 0, to obtain global weak solutions to (1.2)—(1.4) is in fact
a straightforward consequence of [4]. More precisely we have

Theorem 2.3. Assume that P satisfies (1.7)-(1.12). Consider any sequence
py € LX([0, T, L=(T) with Yy <7 +27/d =1, Yani < Va1 + 2Vanis1/d = 1
and v, > 27, any sequence u, € L*([0, T], H'(T?)) of solutions to (2.6) and (2.7) over
[0, T). Suppose moreover that pg — p%in L(T9), pg ug — p°u® and p?] |u9]\2 — % [u°? both
in L'(T¢). Assume finally that SUp, SUP;cio. 77 Jpa P |uy|* dx < oo. Then p, is compact in L},

u, is compact in L,z’x and converge to a global solution to (1.2) and (1.3) with

/ Eo(pru)dx + / / Vuts, x) dxds < E(po, o)
Td 0 J1d
+ / / divy (s, x) (P(s, x, pls. x)) — Po(s. x. p(s, x)))ds dx
0 J1d

+ / (pls, x) Dreos. x. p(s, 1)) + pls. ¥)u(s, x) - Vseo
0 JTd
X (s, x, p(s, x))) dx ds.

The proof of theorem 2.3 will be discussed in the appendix of the article for reader’s
convenience. This will end the proof of the main theorem 1.1.

Important remark. It is important to note that the requirement for having several expo-
nents vy, ; in the artificial pressure Py, appears from the constraints in the proofs of theorems
2.1-2.3. To recover the appropriate energy terms in theorem 2.1, we need to treat the actual
pressure P as a source term. This is only possible if divuL. * P is integrable uniformly in €
and, as P < p7, it forces that y,, > 2.

On the other hand, assuming that v, 1, ..., Va1 = 0, to pass to the limit in the term
n;p"™ as n; — 0 but 7,,; > 0, we again need to have p?™* integrable. From the gain of
integrability detailed in the next subsection, this only appears possible if v, ; < Vurie1 +
2% artit1 /d — 1.1f we had only one correction in Py, 1.6.m = 1, then we would actually need
both v, > 27 and v, < v + 27/d — 1, which is of course not possible if d > 2. The intro-
duction of several exponents v, ; seems to be a fairly straightforward manner of resolving this
issue.
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2.2. Basic energy estimates

As those are used several times, we collect here the basic energy estimates for the generic
system

Op + div(pu) =0, 29
d(pu) + div(pu @ u) — Au+ V(Po(t, x, p) + S(t, x)) = 0.
We define
X =L'(0, T, w='2(T?)
+ H7Y([0, T, L2P4/Cd+20=pd(Tdyy  w=Loo([0, T, LP/@+D(TY).

There exist a well-known gain in integrability on p from the momentum equation. For
convenience later, we write it in a slightly more general form.

Lemma 2.4. Assume that p € L*([0, T] x T¢) N L>([0, T], L°(T9)) for Yo = d/2 solves
(B.1) with a velocity field u € L*([0, T1, H'(T%)) and source term S € L' ([0, T], L'0(T%).
Assume N (Po(t, x, p(t, x)) + S(t, X)) € X, then for any 0 < 0 < ~,/p’

T
/ / p’9 (s, x) Po(s, x, p(s, x))ds dx
o Jrd

< Callplleyzo 1+ ) 1P+ Caloleo 1] .
1 Lx

X

Proof. We can rewrite the assumption simply as
Vi(Po(t, x, p) + ) = div. [ + 98,

where f e L'([0, T1, L(T%)) and g € L*([0, T], L?/Cd+2r=pd(Td))  with in addition
g € L™([0, T], LP/@+d(T9)). For a fixed exponent § > 0 to be chosen later, we define
co = ﬁ Jpap’(t, x)dx and B(t,x) = =V, A" (p” — cp). In the case of a bounded domain
with a boundary instead of the torus, one has to be more careful and use the appropriate
Bogovski operator (see [12] for example).

The idea is then simply for multiply by B and first notice that

T
/ / B(s,x) - V(S + Po(s, x, p))dx ds
0 Td
T
_ / / (P(5,%) — o) (S + Po(s, x, py) dx i
0 Td

T
>+ / / §(5.) (S + Pols, x. pls, x))) dx ds,
o Jrd
where the constant C depends on p, 0, T, S and P:

€= o (ISlly, + IPoCs s Mg ) < oIy + IV Poll .

The integral of p’S can be bounded immediately to yield the second term in the right-hand side
of the lemma,

T
U U
,x)Sdxds < ;0 ||S o
[ [ snsanss <18l 1,
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On the other hand

T
/ / B(s,x) - V(S + Po(s, x, p))dx ds
o Jrd

T
_ / / V. B(s,x) ¢ f(s,x)dxds
0 Td

T
— / / 0,B(s, x) - g(s,x)dx ds
o Jrd
+ /d(B(O, x)-g(0,x)— B(0,T) - g(T, x))dx.
T

ot < Callpll? Hence the first term in

By standard Calderon—Zygmund theory, ||V, B| |L°°L Lo 0

the rhs is directly bounded by

T
[ [ Va0 s fndrds < 1y V5],
0 Jr o

0
< Callflipe ||PHL;0L}0’

since p' </0 as 0 <7,/p. By Sobolev embedding ||Bl|;~zq < Calpl’ with

L0

1/q = 0/~, — 1/d. Hence we have again that
/d(B(O, x) - 8(0,x) — B(0,T) - g(T, x))dx < Cq Hp”i"CLm 18l oo, ps ot
T ¢ b ¢ Lx

sincel —(p+d)/pd=1—1/d—1/p > 0/, — 1/dby the same condition on §. The second
term in the rhs is handled by using the continuity equation (B.1) satisfied by p. Due to the
assumptions that p € L?([0, T] x T%), p is a renormalized solution to (B.1) by theorem B.1
and hence we have that

A,p” + div(p’ u) = (1 — ) p’ divu.

We may replace
T T
// 0;B(s,x) - g(s,x)dxds = / Vi A;l ((1 —0) p(’ divu
0JTd 0.J1d
— div(p” u) — @) - g(s, x)dx ds,

for some time dependent constant ¢y. Using that g € L?Lipd /@d+2p=pd ), we bound in a similar

manner all the terms and conclude that

T
[ [ ot st dxas < Callplfe o iz el oo
0 Td ¢ Lbx t Lx

3. Notations and technical preliminaries

In this section, we give our notations and list technical results with considerations which were
mostly developed in [4] and upon which our proof relies.
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3.1. Notations

Because we use functions at various points and differences of functions, we introduce specific
notations. First, the symbol f* stands for a function of x, i.e., f* = f(x). Next, we also denote

0f(x,8) = f(x) = f(x=&)

and

Fx,8) = f)+ fx = 9).

If the argument is not mentioned explicitly then we set { = x — y, i.e.,

Of =0f(x,x—y)=f(x)—f(y)

and

f=Ffx—y)=f@)+fO).

We denote the maximum operator by

M f(x) = sup —
r>0 |Br‘ B,

|f(x)| dx.

Recall, see that

1M fllier S 1 Nler

for p > 1 and where the relation f < g stands for that f < Cg for some constant C > 0. We
use bracket to stand for the commutator

LfsTlg=fTg—-T(fg

where f and g are smooth functions and 7 is an operator.

3.2. Our compactness criterion

As is classical in compressible fluid mechanics, the main difficulty in obtaining existence is to
prove the compactness of a sequence of approximations of the density p.. As mentioned above,
we follow here the general strategy of [4], and we hence rely on the following criterion.

Lemma 3.1. Let p_ be a family of functions which are bounded in some LP([0, T] x T%) with
1 < p < oo. Assume that ICy, is a family of positive bounded functions such that

o suphf‘xgnl@,(x) dx < oo for any n > 0.
o ||[Kpl|pg — ocash— 0.

Assume that for some g > 1

Sl—lp ||3ng La(0,T],W-11(Tdyy < OO
and
K
hm lim sup/ / n(x — p-(x) — p-(y)|? dx dyds = 0.
T2 IIChHL
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Then the family of functions p, is compact in L”([0, T] x T%). Conversely if p. is compact in
LP([0, T] x T?), then the above limit is 0.

The construction of a suitable kernel function C;, for the system that we are considering
again follows [4]. We first define a bounded, positive, and symmetric function K, such that

1

PO G T

N

for |x| <
with some a > 0 and K, independent of & for |x| > 1/3. We will also require that K €
C>(T\B(0, 1/4)) and that supp K, C B(0, 1/2). Setting
K
| e —
||Kh||L1(1rd)

we have immediately that

HKhHLl('JId) =1
and

X[ VKL ()| < [Kn(x)]. (3.1
For our compactness argument, we use the operator

! dh
Ky = K@)~ (3.2)

ho
Note that
HICh()HLl('JId) = co|log ho|

for some positive constant cy. With the above notation, one of our main steps is to show that

T
timsup [ K = 3)p-06) = p-)] dxyds 0
€ 0 JT2

as hp — 0, from where the compactness of the family p_ follows.

3.3. Technical lemmas

As our main strategy is to control differences dp,, which requires some specific lemmas. One
may find proofs for these lemmas in [4]. Our basic way of estimating differences is through

Lemma 3.2. Leru € W', we have

|u(x) — u()| S Dy u(x) + Dyyyju(y))|x — y,

where

1 |Vu(x + 2)|
Du(x) =~ [ 22Ty
nu(x) h/zgh B dz

The next lemma provides a bound for the term Dju(x) in term of the maximal function.
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Lemma 3.3. Foranyu € W' with p > 1, the following inequality holds
Dy u(x) S M|Vul(x).

Remark 3.4. By the above two lemmas we deduce immediately the classical inequality
u(x) — u)| < M|Vu()| + M|Vu@)lx - yl. (3.3)

In several critical places of the proof, we need to estimate the difference Dy;ju(x) — Dy;ju(x —
z) while relying only on the L? regularity of Vu. Using classical harmonic analysis results, we
can get the following.

Lemma 3.5. Assume that u € H'(T?). Then for any 1 < p < oo, one has

1
dh
/ / Ko@) | Dygu(x) — DiguCx — 212 de 2 <
ho JTd Y h P!

as a result of which, we further have that

1
dh
|| Ki@lIDeuo = Dyt = 32 5 5 il 1og ol
hgy J T

Moreover, the following estimate holds

1 dh
/h /Tszh(Z)Kh(E”'D‘ZW(X) - D\z\u(x — §)‘|sz dzd¢ 7

< llull | 1og hol'2.

In most instances, the above estimate is sufficient. But in several cases, we need the more
general version, see [21] for more details.
Lemma 3.6. Consider a family of kernels N, € WS (T%), where s > 0, which satisfy

® supj¢<; Sup, 7’ [ |2’ INA(2) — No(z — ré)| dz < o0,
o sup,(||N]| 1 + 7|l wst) < o0

Then the estimate
! dh 12
Kn@|[Ny  u(x) = Ny u(x = 2)|pp dz == < [|ul o[ log o
ho JT

holds for any u € L” with 1 < p < 2.

3.4. The choice of the weight function

We now turn to the construction of an appropriate weight function tailored for the proof of
theorem 2.2. First we define the function w,. which satisfies the equations

ow, +u, - Vw, = —D.w. (3.4
w-(0) =1 3.5)

where D, is given by
D. = XM|Viu| + |p|” + Ky  (|divue| + | Lo % P| + |P1F])). (3.6)
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Denote
Wep = K * we.

Then the weight function W ; we use is given by
W) = wep(x) + wep(y)

which could capture the feature that W, is big if either one of w. ;,(x) and w, ; () is big. Since
the function WX = w.(x) + w.(y) satisfies the following equation

OW: +ul - VW, +ul - ViW. = —(Diw:(x) + Dw.(y)),

it follows that

OWep 4 ul - ViWey +ul - VyW., = =D + Com®, (3.7
where

DY), = Ky (D-w:)(x) + K * (D-w:)(y) (3-8)
and

Com™) = [u.-, Kp*x|Vw.(x) + [z, Kpx]Vw.(y). (3.9)

S

We conclude the subsection by listing several properties of this weight function without giving
a proof (see again [4] for the proof).

Proposition 3.7. Assume that (p., u.) solves system (2.1) and (2.2) with the bounds (2.4)
satisfied. Then there exists a weight function w.- which satisfies equations (3.4) and (3.5) with
D. given by (3.6) such that the following hold :

e fForanyt,x,0 < w. < L.
o Ifp> v+ 1, then we have

sup / p(t, %) log w-(1, x)| dx < C(1 + \). (3.10)
t€[0,71.J T

e forp>1+1,

1+

T (3.11)
| log 7

sup / Ps(f, x)lKh*wag'r] dx g C
t€[0,71JTd

e SettingD = |divu.| + |L.*P| + \?§+l|f0rpenalizati0n, for p > ~ we have the following
commutator estimate

1 pt
dh
/ / | Kp * (w. Ky % D) — w.;, Kj, % D||1a dr == < Cllog ho|'?  (3.12)
ho J0O
with ¢ = min(2, p/~).
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4. Proof of theorem 2.2

In this section, we give a proof of the theorem 2.2 using the compactness argument provided
in lemma 3.1. Because all coefficients 7); are fixed for this section, we drop the index 7 in our
notations to keep them simple.

In order to carry out our approach, we introduce a smooth function x(¢) € C'(R) given by

x(©) = ¢ 4.1

where 0 < [ < 1/2 s to be specified below. Throughout this section, x is used as a function of
dp-(x) or 6p.(x,y). We recall that

6pe = 0p=(x, x —y) = p(x) — p:(y),
together with

f=Fflx—y=f0)+fO

for a general function f; see subsection 3.1 for the notations convention. To make the
presentation compact, we also denote

X =x(00p), X, y) = x(0p:(x, ).
Notations for X’ are similarly defined. We aim to show
lim sup/ Kho(x — y)x(0p:)dxdy — 0 as hy — 0. 4.2)
e-0  JT2d

We follow the general strategy developed in [4] by introducing weights and propagate the
following quantity instead:

! . dh
Ty (1) = / / Ki(x — WS x(@po) dedy &
ho J 124 h

where as before
W = wi, +wl,

Since the weight w. satisfies (3.4), the time derivative of T}, . will exhibit the penalization (3.6)
which is necessary to control some of the other terms.

Compared with [4], we however have a different approximation system (2.1) and (2.2).
While many terms in the proof are similar, the pressure term is considerably more intricate and
its treatment constitutes the main innovation in this paper performed in subsection 4.5.

We calculate the time derivative T}, . in lemma 4.1 in the next subsection. The proof of
statement (4.2) will then follow from the bounds on the various terms in the right-hand side
that are divided into several lemmas.

4.1. The time evolution of Ty .(t)

Before stating the first lemma, we recall some notation used in subsection 3.4. The penalization
term is defined as

D;:}V, = K * (D.w:)(x) + Kp, * (D-w:)(y)
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and the commutator term is given as
Comyy = [u.-, Kp*]Vw(x) + [ue-, Ky Vwe(y).

We then have,

Lemma 4.1. Let p. and u. be a sequence of solutions to the system (2.1) and (2.2) satisfying
the bound (2.4) with 7, = 3d/(d + 2). Assume that the pressure P satisfies (1.7), (1.8), and
(1.11). Then we have the estimate

Thye ) STy O+ L+ L+ L+ L+ 15, (4.3)

where the terms I, —Is are given by

t rl ! dh
I = / / SV K(x — YW X(p.) dxdy & ds (44)
0 Jhy J12d ' h
t 1 dh
b= / / / Ki(x — WD (Gp.) drdy S ds (4.5)
0 JhyJT2d - h
t pl ! dh
I = / / / Kj(x — y)Com™) x(6p.) dx dy — ds (4.6)
0 JhyJT2d ’ h
17! . 3 . dh
I=—— Ki(x — Y)W2X'(8p-)pe 6(divu.) dxdy —— ds 4.7)
2 0 Jhy T2d = h

t 1
Is = / / / Ki(x — )W (x(épg)—lx'@pg)épg) T dedy S ds. (48)
0 Jhy JT2 = 2 h

For the estimate of the terms 11, I, and I3 defined in lemma 4.1, we use similar ideas as in
[4]. However 14 and Is require a more complex approach. The main difference is that div u.
involves pressure terms while we use a delocalized pressure L. in system (2.1) and (2.2).
Unfortunately the estimates in [4] strongly relied on having appropriate pointwise control on
the pressure, which is not available here because of the convolution with L..

Proof. From (2.1), one gets an equation for dp,
016 p= + divy(pous)(x) — diVy(paus)(y) =0,
which may be rewritten as

315Ps + div, (9 p: us(x)) + diVy((Sps u(y)) + p=(y)divy u-(x)
— p(x)divy u.(y) = 0. 4.9)
Note that the terms p (y)div, u.(x) and p_(x)div, u.(y) are well-defined since p, € L* and
div, u. € L>. By (2.4), we have p!*' € I? for v,, > 2(1 +1) and V,u. € L*. Hence, by
theorem B.1, dp, is a renormalized solution for the system (4.9). Noticing that
—p(y)divy u(x) + pe (X)diVy u:(y)
1
= 5(505 (divy ue(x) + divy us(y)) — pe (divy ue(x) — divy u=(y))),
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we arrive at

Orx(0p2) + div, (X (6 p-)(X)u-(x)) + divy(x(0p=)(x)u-(y))

1
= (x(c?pg) - Ex’(505)5p5> (divy u-(x) + divy u-(y))

1 o .
- EX'(5PE) Pe (divy u-(x) — divy u-(y)). (4.10)
From the definition of y in (4.1), one gets easily
X(0p:) + [x'(0po)| B < Cpi ™,

which implies that x(6p.), X'(0p-)p € L?. Since V,u. € L?, all the terms on the right side of
(4.10) make sense. By (3.7), we obtain

D(Kn(x — Y)W x(6p:)) = Ki(x — )OW x(0p2) 4+ Kn(x — )W ,(x(9p-))
= —Ki(x — u-(x)V, W x(9p-) — Kn(x —y)
X u(y) Vy W2 x(8p2) — Ki(x — y)De
X X(0p:) + Ku(x — y)Com. ;, x(dp-)
+ Ki(x — )W (x(p2) — X'(6p2) dp-)

X (v + divy w0 + 5 Kix — )

X

1
W;}\: X/((Sps) Opedivu, — EKh(x -y

X

Wgﬁ Xl(5p€) ﬁa 5d1V U: — Kh(x — y)
W;}\: diVx(X@Pe) u-(x)) — Kp(x —y)
W25 divy(X(8p2) u=(y)). @.11)

The above equation may be justified as the following. First, in order to show Kj(x —
y)ug(x)Vfo}f x(6p.) €LL , we just need to prove Kj(x — y)u-(x)x(6p.) € L)'qu since

X,y

V. W2 € L. Recalling x(p.) = x(p-(x) — p.()), by a change of variable we get

X

X

/ Kp(x — y)|u-(x)|x dxdy = / Kh(}’)/ |u ()| x (p=(x)
’]I*Zd Td Td
— pe(x —y)) dxdy
§/mw®§1
Td

Therefore, the term Kj(x — y)u-(x)V. W2 x(dp.) is well-defined. Similar arguments could
show that Kj,(x — y)u.(y)V,W23 x(6p.) € L} . Second, noting that
Ki(x — W2 < 2Kp(x — ),

the term Kj(x — y) Wf,f (x(0p2) — X' (6p2) 6 po)(divy u-(x) + divy u-(y)), together with Kj,(x —
WX (0p2) 6p- divue, and Ky(x — y)W2 x'(6p.) p- ddiv u. belong to L}C’y by similar argu-
ments as for the first term. O
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Third, we note that D, is smooth and belongs to L>°. Hence, K,(x — y)D. ,x(dp.) makes
sense since x(dp.) € L.. One may check easily that p! ™' u. € L' for v, > 3d/(d + 2) and
thus Kj(x — y)Com,, x(dp.) € L}w. Lastly, div,(x(dp.)u-(x)) € W~ for some r > 1 and

Ky(x — W2, € W' where # is the Holder conjugate exponent of r. Therefore, the terms
Ki(x — W25 div (x(0p:) u-(x)) and Kj(x — y)WZ; divy(x(dp-) u-(y)) make sense. Using the
product rule, we further rewrite (4.11) as

O(Kn(x — YW X(0p2) = —divy (u=(x) Kn(x — y) W5 x(6p-))
— divy (u=(y) Kn(x — y) W23 x(6p2))
+ due VK (x — y) W2, x(0p2) — Ki(x — y)
X D x(6p:) + Ki(x — y)Com. j, x(Jp-)
+ Ki(x — )W (x(0p2) — X' (9p-)dp:)

— 1
X diVx Us + EKh(x - y)W;}tX/((SPe), 5p5

- 1 ! .
X divu — S Ky(x = WWxX'(0p2) p= 6 div u,

which can be justified similarly as the equation (4.11). Integrating the time derivative of T}, - (?)
from O to ¢ gives (4.3), concluding the proof. (]

4.2. A bound for I

In this subsection, we estimate the terms /; in the following lemma.

Lemma 4.2. Let I, be given by (4.4). Under the assumptions in lemma 4.1, the estimate
I < Cllog ho|'? + CA7'D,

holds with the penalization Dy defined by

t 1
Dle/// K — ) K+ (M| |
0 JhyJT2

) dh
+ |pel") we) ()x(po)drdy - ds (4.12)

fort < T, where T can be any positive number and the constant C depends on time T and a
priori bounds on the solution, in particular through ||uc|| 2,51 and || pel| ;-

Proof. We first recall
[ dh
I = / / Su-V  Ky(x — y)W x(6p.) dx dy — ds.
0 Jhy T2d ) h

By lemma 3.2, it follows

[0u:(x)| = [u-(x) — u-(y)| S |x = Y|(Dpx—yjut=(x) + Dyx—yju(y)),
with Dju.(x) given by
1 [Vu-(x + 2)|
Dyuo(x) = —/ L
! hJ < |z]4-1
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Hence, in view of (3.1), we obtain
t 1 dh
I < / / / K (x — )(Dypy—yjue(x) 4 Dy u- ()W x (0p2) dx dy; ds
0 JhyJT2d

t 1 dl’l
- / / / Ki(x — Y)(Dppytte(x) + Doyt (S doedy S ds
0 Jhy T2d h

where we used symmetry in x and y of the integral bound in the last step. Since we only have

|uell 2 S 1 and ||PHman S

we can not expect the last integral to be much smaller than

1
h
[
oo b

Instead, we use the penalty defined in (3.6) to absorb the main contribution of /; and prove the
remainder is of the size of [log /o|'/2. In order to proceed, we rewrite

= |log hol.
L!

t 1
dh
[ [ K= 900y + Do Gpor ey ds
0 Jhy T2d
t 1 dh
— [ [ [ Kot = 90y~ Dyt n@pyaray G s
0 Jhy T2d h

r ol
dh
12 / / Ki(x = 9Dyt (0w, (o) dxdy S ds
0 JhyJT2 h
=5+, (4.13)

To estimate the term /; ;, we change the variable to arrive at

t pl
dh
ho= [ [ [ K= D) = Doyl oo dray 5 ds
0 hO T2d I’l

t 1 dh
= / / / Kn(@(Dyjue(x — 2) = Digju-(x)w? ot (x) dr dz= - ds.
0 Jhy T2d h

From proposition 3.7, we know 0 < w. < 1, which implies
0 < We,h < 1

for any h > 0 since ||K;||;1 = 1. By Holder’s inequality, lemma 3.5, we obtain
t 1 dh
| [ [ g0t =2 = Duconwspl oo araz 5 as
0 Jhy JT2 h

1 1
dh
5///Kh(Z)II\D\z\ug(x—z)—D\z\ug(x)llngdZ;dS
0 JhoJTd
< [og hol'?|uc|| 241
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While for the second integral I », it is not in a form to which we could directly apply lemma
3.5. Instead, we rewrite it as

t 1
Iy =2 / / K — )Kn(x — DDyt () — Doyt
0 Jny JT3d
dh t 1
X X(6po) drdy ' ds + / / / Ki(x — YKy(x — DDjuyte(2)
0 JhyJT3d
dh
x wix(6p:)dxdydz o ds

t 1
< / / / Ko — WK (x — 2Dyt (x) — Doyt
0 Jny JT3d

dh 1 1
X x(0p:) dxdydz — ds + C/ / / Ky(x — Y)Kp(x — 2)
h 0 Jny JT3d

X M(|Vu.

dh
YQwix(6p.)dx dydz " ds

where we used lemma 3.3 in the last step. By lemma 3.5 and the uniform boundedness of p_
in L7, we further get

t 1
/ / / Ki(x — YK (x — D(Dpeyto () — Dyeyyuc (0
0 Jhy JT3d

dh
X x(0p:)dxdydz — ds

h
trt dh
S [ [LB0K@ D0 = 2 = Do dy e as
0 hO T2d X I’l
< [og hol' " lucl| 2 - (4.14)
Collecting the estimates of 7, ; with I, and applying them to (4.13) gives
r ol
I < |log ho|'? + / / / Ki(x — ) Kip(x — 2) M(|Vu.|)(z) we
0 JhyJT3d
dh
X x(6p:)dxdydz Tds (4.15)
where the last integral could be bounded by CA~'D; and the proof is completed. ([

4.3. An estimate for I»

‘We recall

D(x) = |div u.|(x) + | L * P|(x) + \ﬁ:\lﬂ(x)

and

D;:}V, = K * (D.w:)(x) + Kp, * (D-w:)(y)

4133



Nonlinearity 34 (2021) 4115 D Bresch et al

where D, is defined in (3.6). The estimate for I, is provided in the lemma below.

Lemma 4.3. Let I, be as in (4.5). Under the assumptions in lemma 4.1, then we have that
I, < Cllog ho|’ — 2D, — 2D,

holds for some 1 > 6 > 0 with the penalization Dy defined in (4.12) and D, given by

t 1 dh
Dy=\ / / Ky(x — y)Ky * Dwe () x(6p2) dx dy 2 ds (4.16)
0 hO 'JIZd h

fort < T, where T can be any positive number and the constant C may depend on time T.

Proof. The term I, is negative and helps us in controlling other terms. We pull out the penal-
ization terms D; with D, and the error is bounded by C|log h|'/?. To be more specific, we have

1 1 i dl’l
h=- / / Ki(x — WD x(0p ) dxdy & ds
0 Jhg T2d ’ h

t 1
Y / / / Ko — ) (o = (AT F [o)wn)(x)x(3p.) dx dy
0 Jhy JT2d

h t 1

« Va5 / / Ki(x — ) &y % (K # Du)(x) x(5p.) de dy
h 0 hO ’]I*Zd
h

X % ds.

By the symmetry in x and y of the above expression, we further get

+

t 1
I =2\ / / Ki(x — ) (K (M) + |- YY) x (5p.) dx dy
0 JhyJ12

h t 1
x 45— 2 / / / Ki(x — ) (K % (Ky % D)) x(6p2) dx dy
h 0 Jhg T2d
X %ds
— D, + D). 4.17)

We extract the second penalization D, from I as

t rl dh
L= —2)\/ / / Ki(x — y)Kj, * D(x)we 4 (x)x(0p:) dx dy — ds
0 JhyJT2d h

t rl
+ 2)\/ / / Ki(x—y) (Kh * D(x)we 5 (x)
0 Jhy JT2

dh
— K, + (K, * Dw.)(x)) x(6p:) dx dy A ds.

Noting w, ;(x) = K, * w.(x), in view of (3.12), we may bound the last commutator integral in
the above equality by

Cllog ho|’
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for some 1 > 6 > 0. Therefore, we arrive at
L < —2D; + C|log hol’.
Hence, from (4.17) we get
I, < —2D, — 2D, + C|log hol’ (4.18)

concluding the proof. (|

4.4. Treatment of I3
We bound the term /3 in this subsection.

Lemma 4.4. Let I5 be given by (4.6). Under the assumptions in lemma 4.1, the estimate
Iy < Cllog hy|'/? — CA™'D,

holds with the penalization D defined by (4.12) fort < T, where T can be any positive number
and the implicit constant may depend on time T.

Proof. In view of (3.9), we may write /5 as

r ol
L= / / / Kiy(x — y)Comj, x(5p2) dx dy s
0 Jng Jr2d ’ h
t 1
= // / Ki(x = y) ([ue+, Kpx]Vwe(x) + [ue-, Kp*x]Vw:(y))
0 JhyJT2
X x(dp:) dxdy i_h ds

S "
= 2/ / / Kn(x — y)[u-, KpxVw.(x)x(0p.) dx dy — ds
0 Jhy J12 P

where we used the symmetry in x and y in the last step. Expanding the commutator and using
the identity

Uz - Vwe(x) = div(uew:(x)) — div(us)w:(x),

we arrive at

t ol
I = 2/ / / Knp(x — )W} - VKu(x — 2)w? — ul - VK (x — 2)w?)
0 JhyJT3d
dh t 1
X x(6p:)dxdydz — ds + 2/ / Ki(x — y)Kj, * (div u-w:)(x)
h 0 Jhy T2d
X x(6p:) dx dy C;l—h ds

¢l " ”
= 2/ / / Kn(x — y)ul — u2) - VKu(x — 2)w’x(0p:) dxdydz — ds
0 JhyJT3d h

t rl
+ 2/ / / Ki(x — y)Kj, * (div u-w.)(x)x(dp:) dx dy % ds
0 Jhy T2d I’l
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where the second integral in the last equality of the above expression is bounded by CA™' D,
since

[divue| < |Vue| < M|Vu|.

By lemma 3.2 and the inequality (3.1), the first integral is estimated as

t 1
dh
/ / / Ki(x — )t — 1) - VKy(x — i x(Bp.) dudydz o ds
0 Jhy T3d

h
t pl
g/// Kh(x_y)(D\xfz\ua(x)+D\xfz\u5(z))
0 Jhy JT3d

dh
X |(x — 2) - VKj(x — 2)|wix(dp:)dxdydz n ds
r el
< / / / Ki(x — Y)Ki(x — 2)|Dy—zjt(x) — Dy yju(2)|w?
0 JhoJT3d
dh
X x(6p:)dxdydz m ds

t 1
12 / / / Ki(x — )Ki(x — D—yu- (s x(Bp2) dx dy dz
0 JhyJT3d

X il—hds (4.19)

where the second integral in the last inequality is bounded by CA~'D; by lemma 3.3. By the
definition of x in (4.1), we change the variable to get

t 1
/ / / Ki(x — )Kp(x — 2)[Djx—jute(x) — Dy ju.(z)|w?
0 Jhy T3d

dh
X x(6p:)dxdydz m ds

t 1
_ / / / Ky K@Dy 6) — Diguec(x — 2w
0 Jhy JT3d

dh
X x(pz — p2 ) dxdydz 5 9
1 1
< / / / Ky(0)Kn(2)|Du=(x) — Dijjuc(x — 2)|w ™
0 JhyJT3d

dh
X (prH100) + p(x = ) drdydz - ds,

from where by Holder’s inequality and lemma 3.5 we obtain a further bound of the above
integral

t ol
dh
/ / /lKh(z)Kh(y)HD‘z‘ug(x) — Dy ju-(x — z)HL% dzdy m ds
0 Jny JTe

< [1og hol"? |2 S [ log ho|'/2.
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Collecting the estimates for the two terms in (4.19), we arrive at
I; < C|log ho|'? + CA™'D, (4.20)

proving the lemma. (]

4.5. Pressure term

In this section, we treat the terms involving the pressure. Actually the pressure term appears in
both /4 and I in slightly different forms. We introduce an abstract function to give the estimate
in a more general form and the corresponding bounds in terms /4 and /5 follow easily. We define
the following integral

1 t 2¢e 1
In=— / / / / Ki(x — »)Kn(x = P)f (x, y, Vw. 5 (x)
0g 2 /o Jo iy Jria

_dh de’
X (Lo % P(x) — L *P@))dxdydy7§ ds @20
and recall
1 T ~ B
Kl / / Kalx =) (|P<t,x)—P<z,y)\S0+|Q<z,x,y>\fl) dx dydr
IKnllzr Jo Jrea

defined in (1.12) with

! v dh
Ty (1) = / / Kn(x — y)WEq’Zx((SpE) dxdy 7R
ho T2d

The estimate of Ip is established in the lemma 4.5 below.

In the estimate of the first three terms /7, I, and I3, the argument is still true even if we
replace the mollifying kernel L. by L., i.e., we may have an upper bound point-wise in €. The
kernel L. is only necessary in the treatment of the pressure term. In fact for the pressure term,
it is very difficult to obtain an estimate uniform in € (using the mollifier L.) since when ¢ is
relatively big compared to Ay, the error term Diff defined by (4.26) is out of control because
L. = P can not approximate P precisely enough. Therefore, instead of consider a L° topology,
we consider Lé(de /€). In order to treat the term Ip, we need to study two cases separately,
ie,, h <& and & < h. The case h < €’ is easy. We bound the term §(L. * P) by the Holder
norm of L./, which is under our control since €’ is relatively big. For the case ¢’ < A, it is much
more difficult. Roughly speaking, we use the fact that the smoothing effect of K, is dominant
since the scaling of L. is smaller. Therefore, we treat L. x P as an approximation of P which
is bounded by P in any L” for p € [1, oco] such that P € L”. The main difficulty of executing
this idea is that we can not control L. x P directly with our penalization. Instead, we need
to consider the quantity L. (w?P) for some 6 > 0 (see (4.25)). Hence, we have to control
commutator between the weight function and the convolution with L. to close the estimate.

Lemma4.5. LetIp be defined by (4.21) and (p., u.) be a sequence of solutions to the system
(2.1) and (2.2) satisfying the bound (2.4) with v, > max(2s, s},3d/(d + 2)) where s, and
s| are the Holder conjugate exponent of so and s, respectively. Assume the pressure P satisfies
(1.7), (1.8), (1.11), and (1.12). Let f(x,y,y) be such that

|/, x =y, x = )| < C(Ix G p-(x, y)|p=(x, y) + X' (6 p-(x, ) [p=(x, 7). (4.22)
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We have
2e de’ g t 3D3
‘Ip‘ <C+ C(/ rmax(hoqg/)?> ‘ 10g(h0)|9 + C/ Thoqg(s)ds + C)\_lDz + T
€ 0
with D, given by (4.16) and D3 by
trl — dh
D3y =n(1+ l)/ / / Ki(x — Y)W x(0p-)p2* dx dy — ds, (4.23)
0 Jhy JT2 ’ h

for some 0 < 0,0<60<1,and t < T, where T can be any positive number and the implicit
constant may depend on time T.

Proof. Here we give a uniform estimate in ¢ of this term, which may be divided into two
cases: &/ < hand e’ > h:

1 t 2 pl
IP — _10g 2/0 /5 /ho /TMK},(X — y)Kh(X —y)fws,h(x)

_dhde’
xé(LE/*P)dxdydyWE—el ds

l t 2¢e 1
/ / / / (Lorzp + o) Kn(x — MK (x — 3) fwen(x)
log 2 0 Je ho T3d

_dhde
X 0(L * P)dx dydy 76—5/ ds

- Ih + IS;

where ), and I are corresponding to the integrals with characteristic functions 1./>;, and 1./,
in them respectively. As we see below, the term /,, is easier to treat since in this case the K,
is the mollifier playing the key role, which is more consistent with the whole compactness
argument. While for term /;, we need to take the advantage of regularity of the weight function
to generate an extra small factor (¢’ ) which help us control the singularity of K; around the

origin. First we rewrite I, as
t 2 1
/ / / / Lo Ky(x — YK (x =) f wep(x)
0 Je ho T3d

_dh de’
X 6(Ls *P)dxdydyw g—g/ds

t 2 pmax(hge’)
/ / / / K — WKt — ) f ()
0Je ho Ad

_dhde
X Pt,2, pe(2)) (Lo(x — 2) = Lu(y — 2)) dr dydydz - ?6 ds

t 2 pmax(he’)
/ / / / KnMKrO)f (x, x = y, x — y)we p(x)
0 Je hg 4d

_dhde
X P(t, 2, p-(D)(Ler(x = 2) = La(x — y = 9)) dx dydydz — 5_6 ds

\Ip| =

1
log 2

1
log 2

1
log 2
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Due to the smoothness of L./, we have the uniform bound in x—z

MK
Lo(x =2~ Lolx =y =9 < Cf
with 1 > 6 > 0. By (1.7) and (1.8), we get
/dP(t, Zp:(2)dz S /dR(t, 2+ 012 + pl)dz S 1
T T

since = p. erefore, . , using the uniform integrability ot p. and the fact that
ince v, > p. Therefore, by (4.22), using the uniform integrability of p, and the fact th

1Kl = 1,

2¢  pmax(hg.e’) 4 h
s | / |x K0 2 ay P

2¢ pmax(ho.g’) 1.0
</ / h’ dh de’:‘ <
~ e n e hoe ™

Next we treat the difficult term 7. Denoting & = max(hg, '), by assumptions (1.11), we obtain

we arrive at

t 2¢e 1
I < C / / / / Ki(x — DKu(x — ) (5, . s (L)
0 Je g Jr4d
X p-(x —2) — p-(y — D|(p? ' (x — )+ p2 (v — 2)) dx dy dydz

i 2
xidid +C// // Ki(x — Y)Kp(x — y) f(x,y, Ywep

X (L) (027 + (P 4+ P9 peltx — )

_ . dhde
— pt,y — z)|) dxdydydz 78—5/ ds
= Is,l + IS,Z + Ix,3 (424)

Where I, is the first integral with I, and I, 3 corresponding to the integrals containing O ~*~*
and (P" T4 Pv %) respectively. For the sake of simplicity, we suppress the constant C in I,
I, and I;3. By making constants in the following estimates bigger if necessary, we may
recover the bound for /. The first integral I, is the most difficult one among the three. In
order to estimate this term, we need to use the penalization term D3 as well as the regularity of
the weight function w, ;. To be more specific, we have

t 2e 1
Iy = / / / / KuDKLG)F (tax — 3% — Poea(OLar(2)
0 Je g Jr4d

X |pex =) = pelx =y = 2)| (pI'(x —2)
dhd
+ p;”l(x —y— z)) dxdydydz I—E ds

— I, + Diff
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where we denoted using the notation in subsection 3.1

2e
sl—// // Ka)KnG)f (o x — .2 — Pyl o eyl

dh de’
(x —2z,y)dxdydz ——-ds (4.25)

X (x = 2)L(2)|0p-(x — z, 7

and

2
Diff = / / / / KK f (6 x — .2 — Do (Lo (@)
% 5Pc(x —Z,y)\(wl 1/’)an(x) 1 l/Wdrt(x _Z))p271

dhd
x@—qyﬁh@dﬂ;é;m. (4.26)

As we see below, the term I, is the leading order term and Diff is a perturbation of constant
size. Using Holder’s inequality, the term I, is bounded by

2e
/ / / / KnOIKnG) Lo (Sp-0e, o2 eyl )]y,

X1 e = o = Tl o dy by = — dis

2e
// // Ka0Kn®|[8p-0r, »)p2~ (e, yywl, | Dl

X [I(X B po)] 7, 3) + X (Gpe) | PG D)wly ™ [ un dy

h
xd—d—gd

2e
/ / / / Ki KD 002 (e, w5 o

(— 1)/“/drt|| o ” (
Ly

X [[(5p) (e, yp2~ (x, yyu, X' (6p2)| P(x, )

dh de’
Hﬂwc(fwlmmm®@hzws 4.27)
where ), ap, and o are given by
 Yant _ Yant _ (v—=DA+D
= a = , c=1-——"
Vart — Y v—1 Yart

We also require

l'yan = l +l.
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Using Young’s inequality, one further gets

t rl
I C
: S// / K ()K() <_/5p£|1+1()€,y)w57hdx
0 Jhy T2d 77

% / 16| (e, y)p2™ (x, 2)we dx + = 16 x, ) p2

_dh
X (X, Y)We dx) dydy m ds

c [/ dh
= _/ / / Kn(x — y)|5p5|1+lw5,h dx dy —ds
ho J T h
dh
// / Ki(x — y)|6p-|"H plmw chdxdy;ds

where we used ||Kj||;; = 1 and the last integral may be bounded by D3 /8. Next we turn to the
term Diff. Noting

|Z‘171/'\/an

1 1/')drt(x) 1 1/')drt(x )< Cm’

we obtain

t p2e 1
Diff < / / / / KOO Cxx — vx = )
0 Je g JT

|z|1 1/
X L@

-1

. 4
X [0p(x — z,9)|pl " (x — z,y)dx dydzdy oo b

2¢e 1 1— 1 Yart
c/ / / thymm‘fl'l L@ x — yx =)
€ g JT3d

1 dh de’
X w. " || [0 e (x, SIS y)H o dydedy == (4.28)

from where using (4.22) and Young’s inequality, by the uniform integrability of p. and
||Kn||;1 = 1, we further get

> \Z|1 1/ 141
Diff < Cvn | T L@z 2IK»,(x—y)\éps\

_ dh de’ % || 1=/
X pl wghdxdy——d + / / = —————L.(2)dz

thda
h &

for a small parameter v > 0. For the second integral in the right side of the above inequality,

we have
* |21/ i@ dhde' _C L =1/ dp de’ _C
- Tdhll/v L@ 7?\35 - WV e Sy
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Using ¢’ < h and choosing v sufficiently small, we arrive at

- 1+ T
Clm/o/a /-g Tdng,(Z)dZ/ Ki(x — y)|6p:]

dhd
X wchdxdy——ad
h €
* N1/
(")
CV??// / 2d 11/ 1 Kn(x — »)|dp: ‘H[ "we p dx dy
dh de’
— —ds
X h

dh
// Ki(x — 9)|0p| " plw,, dx dy — ds
’E d h
which may be bounded by D5 /16. Therefore, we obtain

D;
Diff < C+ —2
1 +16

Next we turn to the treatment of the term /. By changing variables, we rewrite it as

t 2¢e 1
Is = /O / / / K = K= D (3T (L(2)

_dhde’
X QI dxdydzdy - ?E/ ds

t 2e 1
_ / / / / Ki)KG) S (6 x — 3. x — Pwes(@)Lo(2)
0 Je g 4d

_dhde’
X QI T drdydzdy ) 5—6 ds.

In view of w. ,(x) < 1, we get
t p2e 1 l
2 S / / / /Sth(y)KhG) ‘f(x’x —»Xx- y)‘ wa,/ﬂ/m(x)LE’(Z)
0Je Je JT

dh de’
X Qadxdydz——gds
h ¢

where Q. = QY *77%. Using (4.22), Holder’s inequality, and that ||L./||,; = 1, we arrive at

/ / / / Ks K@ f (o — 3,3 — 5w

dhd
. dydy——gds

Jart
Ly

LE’ (Z) Qa dz
Td

t p2e 1
C/o/ / /th(y)Kh@” (X @po)| P=x, ) + X' Gp2)|

dh de’

X p=(x,3)) 1/’\/&“‘|L’ar |QXX y|| ¥ dydy;g—ds
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where 7/, is as usual in this paper the Holder conjugate exponent of 7,,,. By Young’s inequality,

we further get
dh
/ / / Ki(x — )[6p- o, dx dy S ds
o h

C / dh
+*/ / / Ky(x — p)|QF 7 dxdy -~ ds
nJo JhyJT2d h

where the first integral on the right side is bounded by D5 /8. Using Holder’s inequalities, the
second integral may be estimated as

dh
// / Kj(x — )| Q5 dx dy — ds
ho h
C el dh (51 =Y/ 51
(// Kh(x—y)dxdy>
' \Jo JhyJT2d h
t 1 s dh 7/e/xrt/“'1
x Ki(x — Q= dxdy O ds
0 hO T2d h

with s — 4, > 0 since v, > s}. From (1.12), the above expression may be further

bounded by
2 7N Yart/51
d Yy
C( / rg—f) [ Tog o[t/
. €

Therefore, we obtain

D 2e dc":J ’7'c/irt/51 , ,
e () s

We estimate the term /; 3 next and rewrite it as

t 2¢e 1
Is = /O / / /T K= DK = D 3 s (L)

- ~ dh d
X (P = PEO)putx —2) = pulty — 9l dxdydzdy 5o = s

1 2e 1
+2 /0 / / /T K = K = ) 03, s (L)

_ _dhde’
X P it = 2) = pty - 9l dxdydzdy 6—5, ds. (4.29)

For the first term, we perform a change of variables and use Holder’s inequality to arrive at

t 2e 1
/O / / /T K= ) K = D DL
dh de’

X (ﬁi_z — 13;_1)|p5(t,x —2) — pe(t,y — z)| dxdy dzdy W_ds
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t p2e pl
C/ / / / Zth(y) KO H X' (0p)™| E’x’yw;,/ ) (x)
oJe Jz o

+ X (0p)™] pﬂwl“m(x)H

(x, )]

!
P
LX art

x dydy %d—gds

where we denote 51~D§*y :i’g(x)—?g(y), and we also used the bound w.;,(x) <1 and
|IL. ||, = 1 for any &’ > 0. Using Young’s inequality and Minkowsky’s inequality, we get
a further bound for the above term

2 dhd
/ / / / K| 6| P, y>w5h<x>||”/mdy—ids

//L//Kh(y)H(aP*’)wpc(x o[l i

— —-ds.
y g’
The first integral in the above bound is bounded by D3 /16. In order to estimate the second
integral, we introduce the truncation function

7 arl

M (x,y) = ¢(p* /M)(p) /M)

where ¢ is a smooth function such that

1, 0<s<1,
P(s) =40, ) (4.30)
€ [0, 1], otherwise

Then we have

art dhd
’)'*an m - d

SI [ [P
2e - , o~
C/ / / / Kn() |9PE e G, x — )
0 Je z Jr12d
2C
xépg(x,y)\“/;ndxdy—g—d +C// // Kin(y)

~ Vi ~ Vi dh d<€
X |OPEY Par (1 — qi)i_w(x,x — ) |dp(x, y)|[ Tt dx dy e a ds.

Applying Holder’s inequality and using (1.12), we bound the truncated term as

crry P dh de’
5// / /Zth(y) |6P% [Tar oM (x, x — y) |5p-(x, y)[fon dxdy——ds
0 Je = JT

¢ p2e pl / =% /%0
/ dh de
< C MM (// // Kh(y)dxdy——d>
0 Je g
t 2 1 _ dh ds !;/m/SO
X (// / / Ku(y) |P:™ —Px|‘°d dy — —ds)
0 Je F 2d I’l
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2e /N Yart/%0
/ —~! s d

< CMn [log ho|' "/ (/ r?%) ~
. €

For the remainder term, (i.e., the term involving 1 — ¢), we use the simple relation

{p(x) =M} N {p(z) = M}) = {p(x) > M} U{p(z) > M}*

to obtain

‘2l A , dh de’
/ / / / K0P T (1 — ¢ (x, x — y)[dp-(x, y)| "= dx dy———-ds
0Je Jz Jru h &

t p2e 1
</ / / / KiIOPE [0 (L pespry + Lz
0 Je g J12d

dhd
X dpe(x, y)\“’an dxdy 75—6 ds.

By Holder’s and Young’s inequalities, we get

C 2e 1 _ ) //
E/ / / /21Kh(y)|5P§*y‘vm(1 — M (x, x — y))|0p=(x, )| dx dy
0 I3 g d

h
xd—d—gd

2e 1
~ dhd
// // KilP — Pepodray 9 gy
TZd
2e 1 , ,
+ / / / / KLty -1, )"/ 00~ i ly
z Jrea

dh de’
——ds
” h &

< Tho + M—(’)’an—So’)’gn/(So—“/.fm))| log h0‘~
Note that for 7y, > 25, one can easily check that v, — S0V /(S0 — Var) > 0. For the second
term in (4.29), we need to use the penalty function defined in (3.6). More specifically, we

need to extract an integral involving Kj, * P and estimate the remainder term with a quantity
converging to 0. To proceed, we rewrite this integral as

2e
// // KiKnG)f (x,x =y, x = Pl (1)L (@) PE

dhd
w0 = D)|pe(t.x = 2) — peltx —y —z)ldxdydzf—sds

2e
2 / / / / Kn0)KnG)f (5 x — 3 x — P () Lo2)

w000 — w = ) P puttyx — 2)

dhd
—pt,x—y —z)|dxdydzz—€ds

X

= I + Diff;.
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The treatment of I is slightly more difficult. Similar to previous calculations in (4.27), we
change variable and use Holder’s inequality to obtain

t 2e 1
ol < - / / / / KO x50 7, ) ey
2e
x%d—gd / / / / Ky ()P (we(x)]

dh de’
< op-(ry)| ' dxdy 55 ds.

The first term in the above inequality is bounded by D3/16. To estimate the second term, we
need to introduce K, * G to use the penalty function:

2
/ / / / K )P (0w () (e, y))dxdy——d

2e
¢ / / / / K Kin(2) [P
nJo Je z Jr13d

h d / 2e
X X(Epe(x.»)) dxdydz——d / / / / K Kn(2)

dh de’
— ) wep(x) X(pe(x,y))dx dy dz ——ds

~ 141
—Po(x — z)] wep(x)

x |P.

where the last term may be bounded by CA\™'D, with CA™! being arbitrarily small provided X
is sufficiently large. By Holder we bound the first term as

t 2e 1 _
¢ / / / / KO Ki(2) P
NnJoJe Jz Jr3d

X x(6p:(x,y))dxdydz % d—g ds

2e
<cC / / / / KK (2)
0 Je z Jr12d
dh de’

X HX(CSPg(X,,V))Hon/(so—qu/» dzdy g ds.

~ 1+1
~Pe-2| wa

~ 1+1
—h@—ﬂ

£20/0+D

Note that for v, > 2s; we always have so(1 4 1)/(so — (1 + 1)) < 7, Hence, we get
Xt D so/so-+00 = [IX(P=(x) = e = YD so/cs0-01417 < C-

Therefore, we have a further bound

1 2e 1
¢ / / / KK P
nJo Je Jz Jr3d

X x(0p(x,y))dxdydz % d—g ds

<[[[].

~ 141
—P.(x— z)\ wep(x)

+1 dh de’

—P. (x—2) 0 = —ds
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2 i\ (D /so
d
< C(/ r;%) | log h0|(50*1*1)/50.
. €

By Holder’s inequality, the Diff; term is estimated similarly to (4.28) as

2e
Diff; < / / / / i) x(3po)™ 75 x, y) wep(x) dx dy
2C
P, +c// // K)o

sy dh de’
<) e

L50/0+D dydz g ds
1 toe ol /(14D dhd
<—D3+c// // Kh()’)Lg/(Z)(E) dydz—ids
16 A Ay h hoe

£20/60- a+nLe(2)

D C
1 63 +
provided y,,, > 2s;. Collecting all the estimates of I, I, with I;3 and optimizing in M
concludes the proof. (]
4.6. Term I,

Before giving the bound for the integral terms /4 and /s, we introduce the following lemma
needed for the treatment of the effective viscous flux F = A™! div(0,(p.ue) + div(p.u: ® u.)).
We refer the readers to [4] for a proof of this result.

Lemma 4.6. Lert F be the effective viscous flux introduced above. Assume that (p.,u.) is a
solution of the system (2.6) and (2.7) satisfying the bound (2.4) with v, > d /2. Suppose that
O € L2([0, T] x T??) and that

Ccp =

Ky(x — y)®(t, x,y)dy
Td

wi1,T;wy " (Td))

< 00,
WLLO,T:Wy 1 (Td))

+ H/th(x —y)®(t, x,y)dx
'[r(

then there exists 0 > 0 such that
t
/ / Kn(x — y)®(t, x, y)(F(t, x) — F(t,y)) dx dy dr
0 JT2d

S H(Co + ||®|| e 0.1 < T20)

holds, where the implicit constant in < is independent of e.
Next we estimate 1y in the lemma below. We use 6 to denote a parameter between 0 and 1
which may be different from line to line.

Lemma 4.7. Let 1, be defined by (4.7). Under the assumptions of lemma 4.5, it follows

1Ds

2¢e / 0 t
de
I <C+H C(/ Fmax(ho.<') ;- ) | log(ho)|” + C/ Ty (s)ds — Dy — Dy — e
€ 0
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with Dy, D>, D3, and ry given by (4.12), (4.16), (4.23), and (1.12) respectively. Here 0 < 6,
0< 0 <1,and t <T, where T can be any positive number and the implicit constant may
depend on time T.

Proof. We first recall
Lt XY s N s dh
Iy = — Ki(x — W25, X (0pc) pe 0(div u) dx dy — - ds.
2 0 JnyJT2 - h
We proceed by getting a representation formula for div u. from (2.2)
divu. =npl™ + L.« P+ F (4.31)
where F is the effective viscous flux:
F = A7 div F(O,(peuz) + div(peue @ uc)).

Then the term /4 may be rewritten as

I . dh
A / / / Kix — W X (0p2) 52 80 + Lo+ P+ Fydr dy " ds
2 0 Jhy T2d ’ h

=141 +14p+ 143

with 141,147, and 143 being the integrals corresponding to the three terms in the parentheses
of the above formula. Noting that

N X' (6p:) p=6(p2™) = 0 X' (6p2) Pe(p=(x) — p-) (P2 (x) + p2 ' (v))
=01+ D) x(8p) p=(p2 ' (x) + p2 ' (1))
> (1 + 1) x(5p2) p*

we arrive at
t 1 i - dh
Iy < —n(1+D) / / / Ki(x — W2 x@po i dedy Pas @32)
0 hO 'JIZd h

which serves as a penalization. To bound the term 145, we rewrite it as

1 [t . dh
P / / / Ki(x — W X' (0p) 77 (L. + Py dx dy 2 ds
2 0 Jhy T2d ’ h

1 1
_ / / / Ki(x — Y)Ki(x — Dty X' 5p2) Pz
0 JhoJT3d
h
X 0(L: x P)ydxdydy % ds.

Let f(x,y,y) = X' (dp(x, x — ¥))p=(x, x — y), then it is straightforward to check that f satisfies
the condition (4.22). Appealing to the lemma 4.5, we arrive at

3D3

2¢e / 0 1
de _
|1o] < C+ C(/ ”max(ho,s/)?, ) |10g(h0)\‘9 + C/o Thyc(s)ds + CA 'D, + 3
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Finally, we deal with the effective viscous flux term 1,3, which is rewritten as
1/t w ey _ dh
Iz =—3 & Ki(x — )W_5, X (0p:) p= 0F dx dy — ds
2 0 hO 'JIZd c’ I’l

t 1
- %/ / (1 = IHKu(x — W X' (0p:) p- OF dx dy 4 s @433)
0 JhyJTM h

For the second integral, we use the uniform integrability of p. and div u. to obtain

t pl dh
/ / (1 — ¢"Ky(x — W2 X' (6p2) p= OF dx dy — ds
0 JhyJT2 - h

! ! X, X—Yy / dh
/ / / (1= S IW X (o) SF (e, ) dxdy S ds
0 JhoJT2d

t 1
s [ [ 6ola-ex6opwl o w
0 JnyJ1d &

dh
X ||5F(x’y)HL£/7’an dy 7 ds
< |log ho|M~*

with some 1 > 6 > 0 and p = 7y, + 27v,4/d — 1 — 1 /) for a sufficiently large constant \o.
Note here (1 + D)p/(p — Vo) < Van SiNCE We require 7, > 2 + d. While for the first integral
in (4.33), we need to use lemma 4.6 with

¢ = W;}y, X' (6p2) pe ¢15V[
Obviously we have that |||z~ < M'*’. In view of the system (2.6) and (2.7), we get an

equation for @ as

) X . XY qe X 1
O ® + div, (Pul) + divy (Pul) = f17 diveul + 173 divyul + fE;-gXDg
+ f"*y"lDv
&4 by €
where D. is the penalization introduced in (3.6) and f z,‘ are polynomials of p_, w., ¢¥, and

derivatives of ¢¥ fori = 1,2,3,4. Noting that c
[FE e S M fori=1,2,3,4,

it is not difficult to get that
Co < M

where Cg is defined in lemma 4.6. Hence lemma 4.6 implies

t 1
dh
[ ][ = sz xenop.oraxdy Ghas) s m,
o0 Jn T2d o I’l

Optimizing the bound in M gives
I4q3 S; |10g /’lo‘ﬂ
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for some 0 < 6 < 1. The proof is concluded by collecting the estimates for 11, 14, and 1 3.
O

4.7 Term Is
We give the estimate for /s in this subsection.

Lemma 4.8. Let I5s be defined by (4.8). Under the assumptions in lemma 4.5, we have

2¢e / t
de
Ls<C+ C< / oot ) [ og(ho)|’ + C / Ty (5)ds

D
+ C)\_IDZ + 73

with D, and D5 given by (4.16) and (4.23) respectively, for some 0 < 6,0 < 0 < 1,and t < T.
where T can be any positive number and the implicit constant may depend on time T.

Proof. We recall

t 1 oy 1 ,
Is = / / / Ki(x — )W (X(M)— 2x(<5p5)5p5>
0 JhyJT2d

S dh
X div, u- dx dy n ds.

By the definition of ) in (4.1), the term /5 may be rewritten as

1-1 dh
Is = / / Ki(x — YW2 x(6p-) divy u- dx dy — ds
hO T2d h

1-1
/ / /Zth(x - y) X((Spa) (Part,n(pa) + ['5 * P+ F)d-Xdy

X —d
o ds
=I5+ Isp +Is3.

Note that since Py, (p-) < C p2*, the term /5 may be absorbed by the term Ds3/2 in (4.23).
Next we treat I5, as

1—1 t 1
Isp = —— / / / Ki(x — y)wen(x)x(0pe) (Le * P(x)
2 ho T2d

+ L. * P(y)) dx dy % ds

t 1 dh
=( - l)/ / Kin(x — y)w pn(x)x(0p:) L. * P(x)dx dy W ds
hO 'JIZd
l —1 dh
/ / / Kix — D s(x(3p2) 5L + P drdy ' ds.
ho JT2d
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Since the second integral in the right side of the last equality is already estimated in 14, we
only need to consider the first integral. We need to use the penalization D, defined in (4.16) to
control the main contribution of this term. Note

t 1
/ / / Ki(x — wes(X@p)Le % P dxdy 2 ds
0 Jhy T2d h

t 1
_ / / / Ki(x — K — Dwep()X(6p) Lo # P(x) dx dydz
0 Jhy JT3

dh
X Tds

t 1
_ / / / Ki(x — YKn(x — 2w-p(0)x(65p.) (Lo % P(x)
0 JhyJT3d

dh t 1
— L. % P(2)) dxdydz — ds + / / / Ki(x — y)Kp(x — z2)
I’l 0 h T3d

dh
X we (X)X (Ope)Le x P(z)dx dydz m ds

where the last integral is bounded by CA\~'D,. We switch variables to rewrite the first
integral as

t 1
/ / / K — WK — D a(0x(6p2) (Lo % P(Y)
0 JhyJT3d

dh
— L. % P(2)) dxdydz n ds

t rl
- /0 /h /TMK;,(x = MK = Ywe (D)X (0p-(x, x =) (L * P(x)
0

— L. * P(y)) dxdyd’iil—h ds.

Let f(x,y,y) = x(0p-(x,x —y)), then it is easy to check that (4.22) holds. Using lemma 4.5,
we arrive at

t 1
/ / / K — WK (x — Dws(0x(Gpxx — ) (Lo * Px)
0 Jhy JT3d

— L. x P(y))dxdydy % ds

2e de' 0 t
<C+ C(/ rmax(ho,s’)?> | log(ho)|” + C/ Ti=(5)ds
i 0

3Ds

+C\'D, + o

At last, we treat the effective viscous flux term as

t 1 _ dh
Is3=(1— 1)/ / / Ki(x — y)wz, x (6pe) Fdxdy A ds
0 Jhy T2d
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t 1 dh
— (-0 / / / Kie =y, X(0p2) (FO) — F@) dedy ' ds
0 Jny JT2d

1 1
dh
L2011 / / / Ki(x — Yt X(Bp2) Fx) dxdy S ds.
0 Jhy T2d I’l

Note that the first integral is already treated in I4,, and we now deal with the second
integral as

t pl dh
| [ gt = st xop P ey G as
0 Jhy T2d I’l

t 1
— / / / Ki(x — »)Ki(x — 2w, x(6p:)
0 Jhy T3d

r ol
X (F(x) — F(z))dxdydz c;l_h ds + / / Ky(x — y)Kp(x — z2)
0 Jh

0 T3d

dh
X wi, x(6p:) F(z) dx dydz W ds.

For the first integral, by similar argument as in the treatment of 1, 3, we arrive at

t 1 dh
/ / / Ki(x — )Kp(x — 2w, x(6p-) (F(x) — F(z))dx dydz m ds
0 Jhy T3d

< |log hol’

for some 0 < 6 < 1. While for the second integral, we use the formula (4.31) to obtain

topl
dh

/ / / Ki(x — )Kp(x — 2w, x(6p-) F(z) dx dy dz — ds

0 hO T3d h

t 1 ) dh
< / / / Ki(x — y)Ki(x — 2w’ ), x(0p-)|divu.|(z) dx dydz ——ds
0 Jhy J13d h

which is bounded by CA~'D,. Collecting all the estimate and optimizing in M concludes the
proof. |

4.8. Compactness argument

Proof of theorem 2.2.  Collecting the estimates from lemmas 4.1, 4.2-4.4, 4.7 and 4.8,
choosing A sufficiently large, and dropping the extra penalization D, D,, and D3, we have

t
Tpyo (1) < T (0) + C / Thoc(s)ds + |log fol’
0

for some 0 < 6 < 1. A Gronwall inequality implies

Tho e (1) S eCT| log ho\’9
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for t < T. Recalling the definition of T}, ., in order to get the compactness of the solution p,
we need to get rid of the weight function. Note that

/ Kno(x — y)x(dp:) dx dy = / Koo (x = yIx(0p)lyr, <yl <, dxdy
T2d T2d &, eh

+/ Ko (x = )x(0p2)
T2d
X (l — 1,,‘,,g,hg1;1wzh<77)dx dy

where 1 > 0 is a big parameter depending on A to be chosen later. For the first integral, in
view of (3.11), we have

A2th0(x - Y)X(5P5)1ug,hgnlwz,hgn dx dy

< / Kony(x = np (0 1r, < dxdy + / Kny(x = y)pt*!
'ﬂ‘2d ’ 'ﬂ‘2d

X (y)l“’;f,h <y dxdy

< |log h|
™~ [log n|

S} / p;+[(x)1'u,r"hgn dx‘ IOg h0|
Td €,
for some 0 < « < 1. For the second integral, we use Tj, . to get

/ Ko = DX~ s, ey, ) drdy < Ty o0
i sl

I |= I~

< —|log h0|9.

By choosing ) = |log |, we arrive at

| log ho
K (x — Sp)dxdy < ——= 1
/w no(x — Y)X(0p)dxdy < Tog [log Iy

which implies the compactness of the solution p, by lemma 3.1. (]

5. Concluding section

In this paper, we prove the existence of global weak solutions a la Leray for CNS equations
with a pressure law which depends on the density and on time and space variables ¢ and
x. It may be seen as a first step to consider heat-conducting Navier—Stokes equations with
physical laws such as the truncated virial assumption. The paper focuses on two main
difficulties:

e The construction of approximate solutions through a new regularized and fixed point pro-
cedure: to do so, an artificial pressure term based on a hierarchy cascade is introduced in
addition to an appropriate regularization of the pressure law to design a candidate for the
approximate pressure law.
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e The weak stability process taking advantage of the new method introduced by the first
two authors with a careful study of the regularized pressure defined in the first step: its
treatment constitutes the main innovation in this paper.
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Appendix A. Proof of theorems 2.1 and 2.3

A.1. Proof of theorem 2.3

The proof is performed by taking several consecutive limits, first ; — 0, then 1, — 0 till the
last limit n,, — 0. The generic step is hence, once we already have n; = - - - =1, = 0, to pass
to the limit 7;,; — 0. For this reason, we introduce the notation Pri» Uni which is obtained
by taking the first i — 1 weak limits ; — 0, n,_; — 0. More precisely, after extracting sub-
sequences, we have that p, | = p,, u;1 = u, and

i+1 =w — limp,; Upiv1 = w — limu,,;.
Pn.i+ m_}ﬂpnn n,i+ 10 0,0

The final solution that we will obtain is simply p = p, 11,4 = tym+1 Which is independent
of all 7;. Assuming that p, ; is a weak solution to the system

Orpy; + div(py, uy,) = 0,
3:([)'7” um) + diV(Pn,- Uy, & u'r]i) - Aum +V (771' p:,/;‘.‘“’i + -t N p:,’;‘“”” (A.1)
+ P(ta -xa pn,-)) = Oa

then we have to show that p, ;, solves the same system with 7; = 0.

Step 1: basic energy inequality for p,, u,. We observe that p, , u, solves (A.1) directly from
theorem 2.1. However the a priori estimates provided by theorem 2.1 are not uniform in 7 so
that our first step consists in deriving such estimate starting from the energy inequality (2.5).

The first point is to pass to the limit as ¢ — 0 in (2.5). Of course the left-hand side is convex
in p. . u, so it handled in the usual manner. We have that div u., is uniformly bounded in L7,
s0 div uz, — divu, inw — L7 .

On the other hand by (1.7) and (1.8), we have that |P(t, x, p.,))] < R+ 0, + C p?, with p <
v+ %7” —landR + O, € L{, with g > 2. By theorem 2.1, we have that p.,, € LI*" uniformly
in € for any p, < Yan + 27a/d — 1. Observe that 2 (y + % - <2y+ 47” — I < Ya+
2 Yar/d — 1 since 27y < 7, This is the first place where the assumption 2y < -, is critical.

Hence P(1, x, p, ,,) is uniformly bounded in € in L], for some g > 2. By the compactness of
p-, provided by theorem 2.2, we obtain that P(z, x, p, ,) — P(t, x, p,) strongly in L,%x.

Therefore this provides a solution p,, u; to the system (2.6) and (2.7) with, for a fixed 7,
the bounds p, € L*L}™, p, € LY, for any p < Yaq + 27an/d — 1, u, € L?H}, and the basic
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energy inequality

p"/drt l(t X) p"/arhm (t, x)
/("————+-~Hml———+w@@%@@Vdx
Td Yart1 — 1 Yartom — 1

t
+// \Vun(s,x)|2dxds<//divu,,deds
0J1d 0 Jmd

(A.2)
en) ! _Yartsm
+ [ <WIM+...+UMM> 0.
T

Varts1 — 1 VYartsm — 1
+ /dPO,E,n(t’ )C) |u0,5,n(t’ x)‘Z dx
T
Step 2: modified energy inequality. Our next step is to work with (A.2) to obtain a form that
is more suitable to the derivation of a priori estimates.

We recall that & = p,, (lu,|*/2 + eo(p,)) with eg(t, x, p) = fp’;fPo(t, x,s)/s> ds.
‘We have that

d
d_/ Pn eo(t, x, Pn) dx = / (pnate()(pn) + py - Ver(pn)) dx
1 Td Td

+ /IdiV un(p'r] eO(pn) — Py 3/)(01160(%1))) dx.
’E(

From the definition of ¢,, we get that

d
dt/ pyeo(t, x, pp)dx = / (pnOreo(py) + py uy - Veo(py)) dx

— /Idivu,,Po(p,,,)dx.
'[r(

Note that from (1.8)—(1.10), we have that for a fixed 7, Py € L* while p,0;e0(p,) € L}, and

pn Vyeo(py) € L2 L 24/@+2) o that py y - Veo(py) € L}, as well. Therefore all terms make
sense and this is again due to the assumption v, > 2+.
Adding this to (A.2) yields the more precise energy inequality
p"/aﬂ 51 p;‘;arlvm

/ (50(01;, ur]) + 771 + P + ’r}m
Yarts1 — 1 Vartom — 1

+// |Vu,,,(s,x)\2dxds
0 J1d

t
< / / divy 1ty (5, ) (P(5, %, py (8, 5)) — Po(s, %, pr(s, x)))ds dx
0 J1d

)dx

t
+ / /d(pn 3z€0(Pn) + py uy - Veeo(py)) dx ds
0 JT

- Yart,1 1, x - Yartsm 1, x
+/ <m<po,,n> tx) o Poe) 0 2)
d Yarts1 — 1 Yartsm — 1
+ 50([’0,7;, uO,n)) dx, (A.3)
which we will use to obtain our a priori estimates.
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Step 3: a priori estimates on Ps Un- From (A.3), we first observe that from (1.7) since vy <
/2,

t
/ / div, 11,5, %) (PG5, %, py(5, 1)) — Pofs, %, py(s, ) ds dx < C
0 ’]I*d
l t t
+ —// \Vun(s,x)\zdxds—i-C// |pn(s, x)|” dx ds.
4 0 J1d 0 J1d
Similarly by (1.9)—(1.10), we can bound
t
/ Do)+ gty - Vo) d ds
0 JTd

l t t
<C+ - / / |V, (s, x)|* dx ds + C/ / |pn(s, x)|” dx ds.
4 Jo Jra 0 JT¢

By (1.8), we hence obtain that

p'r‘; p;‘;anvl p;\;anvm u"|2>
g +p dx
/Td ( c M =1 e —1 12

1 t
+ = / |V, (s, x)|* dx ds
0 J1d

2

t
<C+C// |pn(s, )| dx ds.
o Jrd

By Gronwall’s lemma, we deduce the first main estimate on p, and u,, for some constant C
independent of 7

2 Vart1 Yartsm u, 2
/ (&4—7]1 p,] —|—+’I7m p?] +p” ‘ 7]‘ ) dxgcect,
Td C Yarts1 — 1 Yartom — 1 2

t (A.4)
// |Vu,,(s,x)\2dxds< CeC’,
0 Jrd

Those estimates are convex in Pr and u,. Hence by the definition of the Pri» Unis WE trivially
have as well that

7Y “Vartsi “Vartsm 2
i i n,i Unp,i
/ (pL + P, + O Pn, _‘_pw‘ 71,| ) deCeCt,
Td

C l Vartsi — 1 VYartom — 1 2
. (A.5)
/ / Vit (s, x)* dxds < Ce“".
0 JTd
When considering the limit n; — 0 on p, ;, u;;, we have that 7, ,...,7, > 0. We hence

have all the bounds needed to apply lemma 2.4 with S = P — Py, vy = Yy and 1/p=
1+ 1/vu +1—2/dor v + 1/P'= 27, + 1/d — 1. This lets us obtain our last a priori
estimate

T
Sup/ /dpi]],i(t, x)dxdt < oo, Vg <Yatsit1 + 2'7art,i+1/d — 1. (A.6)
n JO JT
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Step 4: passing to the limit. Equipped with those bounds, we have the weakly converging
sub-sequences as 1; — 0: p,; — p, ;1 inw — LXL{ ™ and w — L, forany ¢ < v, + 1+
2Va; + 1/d — 1, and u; — w4y inw — LZH..

As usual, this is also enough to show the weak limits p, ;u,; — p, ;1 1Upi+1 and p, ;uy; @
Ui —> P it1Uni+1 @ Uy iv1. Those bounds also provides equi-integrability on P(z, x, p, ;) by the
upper bounds following from (1.7) and (1.8). Equi-integrability also holds on

Yart i Yartsm

p N p N
i — 0 44 Mo —
’Yami - 1 ’Yart,m - 1

since Vo < Yari + 1 + 27Van; + 1/d — 1 which is the key relation between the coefficients
Yart,i-

The main remaining question is to prove the compactness of p, ; in L}’x. This is in gen-
eral the difficult question for CNS but, fortunately in this case, we may directly apply the
result of [4].

Specifically we invoke theorem 5.1, case (ii) in that article (page 613). Our sequence p,,;, Uy i
solves the continuity equation (denoted (5.1) in the article). The momentum equation implies
that u,; solves equation (5.2) in the article with constant viscosity and Ry = 0. Our a priori
estimates directly ensures the bounds (5.3)—(5.7) that are required by theorem 5.1 in [4]. Finally
the assumption on the pressure law for this theorem is identical to our assumptions (1.11) and
(1.12).

We hence deduce the compactness of p,; and hence the convergence of P(z, x, p,;) +
NP5 e A N P 10 P2, X, pyi1) + it P;,Yd,rzr'frl + o N p,- This implies that
Pri+1> Unit1 solves (A.1) with n; = 0 and finally that p, u is indeed a global solution to the
system (1.2) and (1.3) as claimed with the corresponding estimates for i = m + 1 following
from (A.5) and (A.6). Finally the energy inequality is directly obtained from (A.3) by taking
the successive limits.

A.2. Proof of theorem 2.1

We can obtain solutions to (2.1) and (2.2) through a fixed point theorem. Given any
S € L*([0, T] x T9)), we define N, Us as a global weak solution to
OiNs + div(Ns Us) =0, Ns(t=0) = p?,
0(Ns Us) 4 div(Ns Ug @ Us) — AUs + V(P,(Ns) + 5) = 0, (A7)
Uyt =0)=u.
System (A.7) is in fact the classical CNS system with barotropic pressure law P,(p) =
" -, " and a source term. Provided that 7y, + 27,./d — 1 > 2 with
Vart = YVareq = MAX; Yy, ;» Which we assumed, existence of global solution to this system is

guaranteed by [18] and moreover such solutions satisfy the following energy estimate for some
constant C

T
sup / ((Ns(t,x))%n+N5|U5|2)dx+/ / |V Us|* dx
Td 0 Td

t<[0, T]
< C/ (P2, ) + p? [ul|*) dx + C[|S]|7, - (A.8)
'JT‘I 1,X
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and the following energy inequality

N"!arlﬂl t,x N"/amm t,x
/ (771 Ns™ (1) + o Ns™ (8, %) + Ni(t, x) Us(t,x)2> dx
Td Varts1 — 1 Vartsm — 1

t t
+// \VUS(s,x)\dedsg//divUS-deds
0 JTd 0 JT1d

o Yarts1 t,x o Yartsm t,x
+_/ (nI(PQ,J 0 | o) )) "y
Td Yarts1 — 1 Yartsm — 1

[ et Do e 0P, (A9)
'JI(

We are now using lemma 2.4 with Py = P,(Ns) = 1, N;a“" + ey N,
One has that Ny € L°L)™ solves (B.1) with u. € L?H.. Since ~,, > 2 then S € L}, C

L!'LJ trivially. On the other hand

sup || AUs|| ;241 < o0,

and using Sobolev embeddings Us € L2L4 with 1 /g = 1/2 — 1/d so that

1 1 2 1 2
Sup||NsU5®Us||L1Lﬁ<OO, —=— 4 -=—+1—--.
e o P Va4 Yan d

Similarly

INs Us| - 1 1 n 1 1 n 1 1
su 277 oo, - = — - = — - — —,
sp ST Likx r “Vart q “Vart 2 d

and one notes that 2pd/(2d +2p— pd) =ror 1 /r=1/p+1/d — 1/2.
Using the bound on the kinetic energy [ Ns|Us|* dx, we also have that

s/2 1—s5/2
/Ng\US\‘dx < (/ N5U52> ( N;/(z“")> .
Td Td Td

Note that s/(2 — 5) = Y iff s = 27,4/ (1 + Y,y), implying that

sup [|Ns Us||rpors <00, 8= 279ut/(1 + Yar)s

with in particular s = 2pd/(d + 2p) > pd/(p + d).
We hence deduce that for § < 7, /p or 0 < 2v,,/d — 1

T
sup / / N Py(Ns) dtdx < oo,
e Jo J1d

or, in other words, lemma 2.4 implies that

T
/ N{(t,x)dx dr < C/ (P2, 0 + P2 [ulP)dx + C[IS]7, . (A.10)
0 J1d T4 b

This leads to defining the following operator
F:S— F(S)(t,x) = L. x P(Ns).
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From the definition, we have that

IFOI7:, < Ce™IPNs)II72 11 < Ce™IRIZ + Ce IN§I72 1

for some p < 7 + 2v/d — 1, by using assumptions (1.7) and (1.8) on P. Since R € Lix,, we
deduce that

IF@I2, < Ced4 e g%,

Finally, v, + 2Va/d — 1 = 2y +4v/d — 1 > 2psince 7y, = 27, we have by (A.10)

IFSIIE < Ced+Cce'TS|3

for some exponent § < 1 through the uniform in £ bound on
supsup | (oo™ + o0, (1.0 d < o,
e t T

As 6 < 1, there exists a ball B C L7, with large enough radius such that F(B) C B.

Moreover F(S) € L?H! for any S € B thanks to the convolution in x giving compactness
in the space variable. To prove the time compactness, one could observe that the argument in
[18] or the quantitative estimates from [4] provide full compactness on the density provided
that the source term is compact in space (i.e. without time compactness being required).

However, since it is possible to obtain the time compactness in a straightforward manner
and for the sake of completeness, we present the argument here. We need to introduce various
regularization and truncations. First of all (1.7) implies that P/(1 + s”) is in Lix uniformly in
s. Hence we can choose P,/(t, x, s) a regularization of P in ¢ and x with for example

C
|8tP7](ta X, s)‘ + |VXP7](ta X, s)‘ + ‘avaV](ta X, s)‘ < 5 (1 + SP),

HP(, . S) - Pn(., .’S)HLtZ,x < f(n)(l + SP)’
for some continuous function f with f(0) = 0.

By (1.7) again and since (A.8) shows that Ny € L>*L)* with v, > 7, we may immediately
deduce from the last point that there exists f continuous with f(0) = O such that forany S € B

IPCo o Ns) = Py N9l 2, < F (). (A.11)

Now choosing any standard convolution kernel L, we may write
£E * PT](NS)(ta x) = /lﬁE(X - )’) PT](ta Vs NS(Ly)) dy
'JI(
- / L DLy — D P02 Noth, ) dy e
’]I‘(

4 /T L= L= 2) (PNt )
— Py(t,2,Ns(t,y))) dy dz.
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< C V. (A.12)

Since N solves the continuity equation (B.1) and Us € L?H!, we have by theorem B.1 that for
any fixed z

Therefore

L. % Py(Ns) — / Iﬁa(x = L 70 — 2) Py(t, 2, Ns(t, y))dy dz
'JI(

1
Lix

Oi(Pyy(t, 2, Ns(t, x))) = O,P,(t, z, Ns(t, x)) + divy (P,,(t, z, Ns(t, x))
x Us(t, x))
= (Py(t,2, Ns(t, x)) — N5 O;P,(t,z, Ns(1, x)))
x div Us.

From this, we obtain that

d
y / L= W) Ll = D P65 Nty dy de
'JI(
- / L= DLyl — DO 0, No(h, ) dy e
T
+ / L= D) VLl — 2Pyt Nott, ) Us(, ) dy e
T

+ /T L= DLy D) (Pl Nstt )

- NS aYPn(t, 2, NS(ta X))) div US dy dZ-

Bounding directly each term, this implies that

d
a/dﬁg(x =Y L 7(y —2) Py(t, 2, Ns(1,y))dy dz| < C. n (A.13)
T

for some exponent k > 0.

We may now combine (A.11)—(A.13) to obtain the compactness in time of L. x P(Ns) and
hence the compactness in L,%x of F(B). By the Schauder fixed point, F has a fixed point S
in B C L,ZJ. We now simply choose p, = Ny and u. = Uy and since Ng, Us solve (A.7) with
S =F(S)= L. *P(Ns) = L. x P(p-), we obtain a solution to (2.1) and (2.2). The energy bound
(A.8) provides all uniform in € bounds on p, while the energy inequality (A.9) of course leads
to the corresponding inequality in the theorem. Estimate (A.10) provides the extra-integrability
on pE,?]'

Appendix B

B.1. Renormalized solutions

We rely on the concept of renormalized solution (see for instance [11, 17]) to justify several
a priori formal calculations in the article. For this reason, we recall here the main definitions.
Given our system, we naturally focus on the conservative transport equation

Orp + div(pu) = 0. (B.1)
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Given a weak solution p to the above, it is not a priori possible to calculate nonlinear functions
of p which is precisely what we need here. Hence one introduces the notion of renormalized
solutions

Definition B.1. A weak solution p € L, to (B.1) with u € LY, for 1/p+1/g=11is a
renormalized solution iff for any y € C'(R) with |x/(s)| < C(1 + |s|P~!), one has that

dix(p) + divix(pu) = (x(p) — px'(p)divu (B.2)

in the sense of distributions.
Renormalized solutions were first introduced in the famous [11] which in particular proved
that if u belongs to the right Sobolev space then all weak solutions are renormalized.

Theorem B.1. Assume that p € L, is a solution to (B.1) in the sense of distributions.
Suppose that u € LW with 1 /p + 1/q = 1, then p is a renormalized solution to (B.1).

For linear equations, i.e. when u is given in (B.1), then the theory of renormalized solu-
tions immediately provides many key properties such as the compactness for a sequence or the
uniqueness of a solution. For example, assume there are two solutions p; and p, to (B.1) for
the same u. Applying theorem B.1 to the function p = p; — p, with x(x) = |x| and integrating
in time and space gives

% de(p) dx=0
which immediately implies that p; = p,.

Observe however that in general and unless divu € L, it is not possible to have a general
existence result for (B.1) for a given u € LIW!4. A solution with only divu € L* may for
example concentrate, by forming Dirac masses.

Following [11] and the BV extensions in [3] for the kinetic case and the seminal [1] in the
general case, the theory of renormalized solutions is now an extensive field for which we refer
for example to the reviews [2, 10].

In the context of compressible fluid mechanics, renormalized solutions have been critical

to obtaining the compactness of the density since the first breakthrough in [18] and they also
form the basis of the extension introduced in [12, 16]. We in particular cite the straightforward
compactness result from [11]
Theorem B.2. Consider a sequence u, converging strongly to u in L'([0, T], LI(T%))
s.t. divu, converges to divu in L'([0, T], LY(T%)) as well. Consider any sequence p, such
that p,,u, satisfies equation (B.1) and p, uniformly bounded in L*([0, T], LP(T%)) with
1/p+1/q < 1. Assume finally that u € L' ([0, T], W (T9) with 1/p+1/p' = 1. Then the
sequence p, is compact in LY([0, T] x T9).

Theorem B.2 can be deduced from theorem B.1. The proof of theorem B.1 itself relies on
a so-called qualitative commutator estimate and in several respects, the method introduced in
[4] consists in quantifying this commutator estimate.
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