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Abstract—The brain’s vascular network dynamically affects its development and core functions. It rapidly responds to abnormal

conditions by adjusting properties of the network, aiding stabilization and regulation of brain activities. Tracking prominent arterial

changes has clear clinical and surgical advantages. However, the arterial network functions as a system; thus, local changes may

imply global compensatory effects that could impact the dynamic progression of a disease. We developed automated personalized

system-level analysis methods of the compensatory arterial changes and mean blood flow behavior from a patient’s clinical images.

By applying our approach to data from a patient with aggressive brain cancer compared with healthy individuals, we found unique

spatiotemporal patterns of the arterial network that could assist in predicting the evolution of glioblastoma over time. Our personalized

approach provides a valuable analysis tool that could augment current clinical assessments of the progression of glioblastoma and

other neurological disorders affecting the brain.

Index Terms—Brain arterial network, adaptation, GBM, patient data, network topology and hemodynamics

Ç

NOMENCLATURE

ACA Anterior cerebral artery
CoW Circle of Willis
GBM Glioblastoma
HGG High grade glioblastoma
LGG Low grade glioblastoma
LPCA Left posterior cerebral artery
LMCA Left middle cerebral artery
MCA Middle cerebral artery
MRA Magnetic resonance angiography
MRI Magnetic resonance imaging
RMCA Right middle cerebral artery
RPCA Right posterior cerebral artery

1 INTRODUCTION

BRAIN diseases come in many different forms. The develop-
ment of diverse pathological states, though initiated by a dis-
tinct set of molecular changes, heavily depends on, and is
regulated by a subset of essential interconnected sub-systems

that together constitute the complex brain core system.
Addressing ’disease conditions’ by estimating the repertoire
of behaviors of each essential sub-system that would be per-
turbed or evolve over time could deepen our understanding
of a disease’s evolution, resulting in a better process of offer-
ing treatments and assessing their effectiveness. The greater
the dependency of the disease on related brain components,
the greater the need for a system-level view [1], [2].

One such vital sub-system is the human brain arterial net-
work [3]. Its critical unique function is to fulfill the brain’s con-
stant high metabolic demands, as significant changes in
oxygen level may result in permanent damage or even neuro-
nal cell death. Thus, the arterial network must function as a
robust system [4]. However, its centrality is also demonstrated
by its connections to all other solid, soft, and fluid components
that together constitute the brain [5]. Such central characteris-
tics can easily have an impact on and be affected by other sys-
tems or conditions such as tumors or surgery. Thus, the
arterial network must also be adaptive. An essential complex
system such as the arterial network includes key processes
to guarantee its functional and structural stability, e.g., autore-
gulation or adaptation, which could both contribute to
compensation for inefficiencies or abnormalities [3]. Autore-
gulation and adaption cause changes in the arterial network
topology, resulting in functional blood flow variations [6].
Although it is well known that both processes are important
to guarantee a functioning arterial network, it is unknown
which circumstances or disease conditions induce one pro-
cess more than the other. The timing and extent of changes an
arterial network undergoes over time, in response to a certain
disease, have not yet been thoroughlymapped.

In this study, we addressed this question of how the
brain arterial network adapts over the course of a disease.
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We started by developing automated personalized system-
levelmethods to track and analyze the structure of a patient’s
complete brain arterial network, and to estimate its mean
blood flow behavior, frommagnetic resonance (MR) images.
The effects of treatments (such as chemotherapy or radia-
tion), and brain disease progression, not only perturb the
arterial network, but also add uncertainties to an image,
making it challenging to extract information. Moreover, clin-
ical image datasets are generated from different image reso-
lutions. Thus, it is important to establish which of the
arteries’ abnormalities are the results of the disease itself, as
opposed to other causes. We studied the effects of different
image resolutions by comparing two datasets of healthy sub-
jects [7], [8], [9], and exploring their neurovascular structure-
function relationships. Moreover, we address several clini-
cally relevant questions using our approach. In this study,
we addressed the question of how the brain arterial network
adapts over the course of a disease.We started by developing
automated personalized system level methods to track and
analyze the structure of a patient’s complete brain arterial

network, and to estimate its mean blood flow behavior, from
magnetic resonance images. The main issue in studying
dynamic processes in cancer is the lack of patient time series
data, especially during the initial developmental period of
the disease. To estimate the patient’s arterial network during
the non-GBM stage, a creative approach was needed. We
needed to create an atlas of a healthy brain arterial network
from a range of image resolutions (150mm-600mm) and infer
the initial configuration of the patient’s arterial network. A
workflow image is provided in Fig. 1.

Having such an atlas could help to resolve many issues.
The effects of treatments (such as chemotherapy or radia-
tion), and brain disease progression, not only perturb the
arterial network, but also add uncertainties to an image,
making it challenging to extract information. Moreover,
clinical image datasets are generated at different image res-
olutions. Thus, it is important to establish which of the
arteries’ abnormalities are the results of the disease itself, as
opposed to other causes. We studied the effects of different
image resolutions by comparing two datasets of healthy

Fig. 1. Analysis workflow. (a) An overview to track GBM progression from patient data concerning the brain, tumor, and arterial network (AN), from an
image to a detailed network with all of its properties. The arterial network mainly includes its structure and the radius length of each branch. (b) A
study of a specific GBM patient with time series MRI data, with a single MRA at an advanced stage of GBM. The aim is to assess how the AN adapta-
tion over a period of time is related to GBM progression and brain function, using fluid dynamics simulation. (d) Since normally there is no MRA scan
during the initial development of the disease, we propose a method to infer the configuration of the patient’s AN. Such a method includes creating a
healthy AN atlas from a range of resolutions (150 mm-600 mm), and its network analysis results in order to infer the properties of a patient’s AN.
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subjects [7], [8], [9], and exploring their neurovascular struc-
ture-function relationships. Altogether, our method can
extract information from a patient’s images, and address
challenging questions in cases of missing data by comparing
them to the healthy atlas or another source, if needed.

By analyzing time series data from a patient with aggres-
sive brain cancer, we found significant variations in the
structure of the arterial network, and the resulting changes
in blood flow dynamics due to biomechanical mechanism.
We simulated the evolution in the patient’s arterial network
over time and find that the patient’s arterial network changes
are due to the interplay between the development of the
tumor and compensation processes of the brain. We show
that significant disease-related local changes cause global
changes at the arterial network, which in return impacts the
progression of the disease. Our automated methodframe-
work could easily be applied to large cohort of patients, per-
form statistical analyses that reliably identify markers of
glioblastoma (GBM) or other neurological disorders affect-
ing the brain. Moreover, it provides a valuable personalized
assessment analysis that could complement the current clini-
cal approach.

2 MATERIALS AND METHODS

2.1 Experimental Design

The methods of our study can be divided into two important
steps. First, we elaborate on methods to segment and con-
struct graphs from human MR image data, which include 1)
raw image registration, 2) vesselness filtering, 3) skeletoniza-
tion, 4) manual error correction, 5) graph representation. Sec-
ond, we estimate the steady-state fluid flow behavior of a
given arterial network using a 1D model that is suitable
when patient brain fluid flow data is lacking.

2.2 Data Availability

Our source code can be fully and freely downloaded
from project GitHub page (https://github.com/zjx1805/
ArteryNetwork) or https://github.com/OritLavi/Artery
Network.

2.3 Datasets

Four cohorts of datasets were used in this study. First, we
analyzed data gathered by Speck et al., who imaged a
healthy brain arterial network at high resolution. It consists
of T1-weighted whole brain anatomical data acquired at 7
Tesla with a nominal isotropic resolution of 250 mm [8], and
150 mm MR angiography (MRA) [7] that focused on the
middle portion of the brain, of a single young healthy Cau-
casian subject, recorded using prospective motion correc-
tion. We studied the structural properties of this arterial
network. Second, we worked with data from Wright et al.,
[9] who imaged and studied the brain arterial network of 61
healthy subjects with 3T time-of-flight MRA images (with a
620 mm isotropic resolution). Of the 61 subjects, 36 were
females and 25 males, with an average age of 31.2 � 10.7
and a range of 19-64 years. Reconstruction of the six major
arterial trees, left and right middle cerebral arteries (MCAs),
posterior cerebral arteries (PCAs), and anterior cerebral
arteries (ACAs), starting at the Circle of Willis (CoW) for
each subject. We compared the arterial network properties

at two image resolutions, using the Speck and Wright
datasets. Third, to address fluid flow behavior, Blanco et al.
[10] developed an anatomically detailed arterial network
(ADAN) model. Their entire dataset was established based
on the literature and known autopsy results, but not from
patient image data. It consists of more than 2,000 vessels with
well-established branches over the entire human body, with
about 140 vessels in the brain. They provided 1Dflow simula-
tion results (pressure and flow rate waveform for one cardiac
cycle) for each of the vessel branches obtained by solving the
1D Navier-Stokes equation (see Appendix C), which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2020.3008379. The
fourth dataset consists of a GBM image data with clinical
information from NIH (BTRIS_2018_1358_LAVI_O_NCI),
including 400 GBM patients with MRI Brain-Perfusion data.
For 8 patients there is also information concerning brain
arteries, although only a single patient had a full brain MRA
performed. That patient was a female in her early 30s who
came to the NIH in 2010 with LGG that two years later, trans-
formed into GBM. A summary of the scan parameters of the
four datasets and their corresponding usage throughout the
paper is shown in Table S1, available in the online supple-
mentalmaterial.

2.4 Raw Image Registration

Two sets of 3DMRI images (250mmand 150mm) of the same
healthy patient but with different coverage were obtained by
Hendrik et al. [7] The sequence parameters for the two
acquisitions are: TR=50/35 ms (for 250 mm and 150 mmdata,
respectively), TE=6.63/6.63 ms, flip angle=25/23 degrees,
FOV=196 � 147 � 78/196 � 147 � 46.8 mm3. Then the two
sets of MR images were merged using the nonlinear image
registration algorithm in FSL [11], [12], [13], [14] with 12 DoF
to form a merged volume. The nonlinear image registration
algorithm in FSL [11], [12], [13], [14] with 12 DoF is used to
register multiple MR images of different time points, if any,
to the same space.

2.5 Vascular Filtering

The merged 150 mm/250 mm image wasThe registered
imageswere then filtered using Frangi vascular filtermethod
[15] provided in the vascular modeling toolkit in 3D Slicer
[16]. After thresholding, the resulted image was then split
into several connected components by a labeling algorithm
[17] and each component was fed to a variational region
growing technique [18] as an initial attempt to further
smooth the boundary of the segmented vessels. There are
also more advanced vessel segmentation methods available,
such as [19], [20], [21].

2.6 Skeletonization

A curve skeletonization algorithm developed by Tabb and
Medeiros [22] specifically designed to deal with elongated
objects was applied to the segmented vessel volume from
the previous step to extract the centerline of each vessel
branch. In order to suppress the spurious vessel segments
in noisy regions, the user-defined acceptance probability t
was set to 1e�12.
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2.7 Manual Error Correction

It is clear that the resulting skeleton of vessel branches from
the previous automatic steps might contain some errors in
mis-segmentations due to poor image quality in those
regions or due to identification errors. These inaccuracies in
connections/segmentations are usually quite difficult to
identify automatically, and thus a semi-automated cleaning
process using a GUI was performed to manually correct
them. Generally, this manual correction step takes less than
a minute per mislabeled connection. The GUI program is
written in Python and utilizes PyQt to create the interface.
Since the arterial network is constructed from the patient’s
image, not all branches are necessarily connected. Note,
analyses reported here include only the results of the con-
nected network. There are some automatic algorithms to fix
the disconnected branches, such as [23]. Note that the skele-
tonization algorithm finds paths to neighboring regions, if
there is a path in the segmentation. The problem is not nec-
essarily the skeletonization method, but also resolution and
errors in the segmentation, which exist in every domain. If
there is not a path in the segmentation, some automatical
methods may not connect centerlines.

2.8 Graph Representation

The extracted centerlines of each vessel from the previous
steps were converted into a graph representation in which
each node corresponds to a bifurcation point/terminating
point and each edge corresponds to the centerline of a vessel
branch. The radius and length information are embedded in
the edges as graph attributes. The purpose of the graph repre-
sentation of the arterial network is to enable further analysis
about its structural properties, e.g., the behavior at the bifur-
cating point, the distribution of the network properties, the
classification of the vessel branches based on brain geometry
(e.g., left middle cerebral arteries (LMCAs), right middle
cerebral arteries (RMCAs), anterior cerebral arteries, left pos-
terior cerebral arteries (LPCAs), right posterior cerebral arter-
ies (RPCAs)) or physical/functional brain compartments.
Except from the arteries in these five major compartments,
the graph also contains several major arteries in the neck that
supplies blood flow to the entire brain. Also, graph represen-
tation enabled us to develop fluid flowmodeling.

Several morphological properties of the graph structure
are calculated as followsSome researches have shown that
vascular morphometrics have some clinical indications [24],
[25], [26], [27], [28], [29], [30], [31], and thus several morpho-
logical properties of the graph structure are calculated as fol-
lows: a vessel branch is referred to as a sequence of centerline
points of a specific vessel segmentbranch that starts from a
bifurcation point (or root) and ends at another bifurcation
point (or terminationpoint). The path length is the geodesic dis-
tance between the starting and ending point of a branch. The
branch order is the number of the bifurcation point in a branch
from the CoWCircle of Willis[32]. The tortuosity is defined as
the ratio between the path length and the euclidean (straight)
distance of a branch. Two types of properties are measured at
each bifurcation point: the local and the remote. The local/
remote bifurcating amplitude is the angle between the bifurca-
tion point and the first/last centerline point of the two
branches away from the bifurcation. The (remote) bifurcation
tilt is the smaller of the two angles between the bifurcation

point, the previous bifurcation towards the current bifurca-
tion, and each of the last centerline points of the two branches
away from the current bifurcation. The torque is the angle
between the plane of the current bifurcation and the plane of
the previous bifurcation. Definitions of more morphological
properties can be found at the L-Measure website (http://
krasnow1.gmu.edu/cn3/) [33].

To identify changes that could infer or indicate accumu-
lating adaptation and compensation changes due to under-
lying diseases, we studied the graph’s properties based on
spatial, in addition to non-spatial constraints. Throughout
the study, space is included in several interconnected ways
(Fig. 2): 1) brain spatial compartments, as posterior versus
anterior versus central, or left versus right (Fig. 2d), 2) brain
spatial cubic mesh to calculate e.g., artery volume density,
or branch density per mesh unit, 3) graph properties
(Fig. 2e) that measure its shape (e.g., curvature, angle) of the
branches, and the relationship between parents and chil-
dren bifurcating nodes in a graph, such as tortuosity, ampli-
tude, tilt, and torque.

Moreover,Murray’s law predicts the thickness of branches in
transport networks, such that the cost for transport andmain-
tenance of the transport medium is minimized. Murray’s
law [34] was tested with two quantities: ðr31 þ r32Þ=r30 and
ðr21 þ r22Þ=r20, where r1 and r2 are radii of child branches
and r0 is the radius of the parent branch. In practice, a
power of two, instead of three, is commonly used in different
studies [35].

2.9 Fluid Simulation

We provide a method that would work with a minimum
amount of data, similar towhat is available with the standard-
of-care treatment. Thus, we used a simple 1D model, because
it requires significantly fewer assumptions, less time and less
parameter fitting as compared with the 3D counterpart and
yet is still able to provide important information (steady state
values). The simplicity refers to the fluid simulation as 1D
steady state, instead of more advanced 3D dynamic solutions
that are used in other studies. We simulated the steady state
solution of a simple model using the type of Hazen-Williams
(H-W) equationwith the following formula:

DPi ¼ Phead;i � Ptail;i ¼ 10:67 �Qki
i

c
ki
i � d4:8704i

� Li; (1)

Qi ¼ vi � p
4
� d2i ; (2)

where ci; ki; vi; di; Li; Qi;DPi are the roughness coefficient,
flow exponent, flow velocity, diameter, length, flow rate and
pressure drop of the ith branch (see details in Table S2), avail-
able in the online supplemental material. The definition of
flow velocity, diameter, length, flow rate are rather self-
explanatory, while the roughness coefficient c can be viewed
as a proportionality constant coming from the original H-W
type relationship: v ¼ c� r0:63 � s0:54, where s is the pressure
drop per unit length. The flow exponent k, on the other
hand, is taken to be 1.852 in the original H-W type relation-
ship but only works for water. In our model, however, we
allow k to have some other value so that it can better fit the
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blood flow.In our case for blood flow, it was calculated based
on an optimization approach, to better fit the ADAN result.

At each bifurcation node, the incoming flow is equal to
the outgoing flow by satisfying the following equation:

X

i

Qin;i ¼
X

j

Qout;j; (3)

where Qin;i and Qout;j represent the flow rate of the ith/
jth branch that flows into/out of the bifurcation node. The
flow velocities as well as pressures at each bifurcation node
are treated as unknown and solved simultaneously through
a system of coupled equations consisting of the aforemen-
tioned pressure and flow rate conservation relationships.
Using the H-W type relationship to approximate the 1D
blood flow simulation obtained by solving 1D partial differ-
ential equations (PDEs) has both advantages and disadvan-
tages: solving the H-W type relationship is much simpler
than solving the PDEs and the relationship does not depend
on the Reynolds number. However, it does not account for
the viscosity of the blood and assumes a constant radius
and flow rate in each branch, which is not the case for actual
blood flow. We showed (Appendix C), available in the
online supplemental material, that the H-W type relation-
ship is able to reproduce, to a reasonable extent, the pres-
sure predicted by solving the 1D PDEs.

In order to determine the c and k value in the pressure
equation, we utilized the 1D fluid simulation results from
the ADAN model [10]. We took the average value of the
pressure and flow rate waveform and used that as the
steady state solution of their results. We chose two major
arterial trees on one side (LMCAs+RMCAs, which both

starts from the CoW) in their dataset and ran an optimiza-
tion to find the best c and k value such that the error
between the simulated pressure and their reported pres-
sure at each bifurcating node was minimal. Specifically,
we categorized all the branches into 4 groups based on their
radii. The branches in one group shared the same rough-
ness coefficient c that was specific to that group. All the
branches shared the same flow exponent k. The values of
the bin edges uniformly span from the minimum radius of
all the segments in LMCA and RMCA to the maximum
radius of these segments. For LICA, RICA and BA, if their
radius is larger than the maximum radius, then it uses the
c and k value of the largest bin. For each set of c and k
parameters, a system of equations made up of applying
the H-W type relationship to each branch and volume con-
servation to each bifurcation node were established and
solved, the resulting simulated pressures at all the bifurca-
tion nodes were compared to the corresponding predicted
pressures from the ADAN result. The optimization pro-
cess iteratively updated the set of c and k parameters such
that the difference between predicted pressures from our
dataset and the ADAN dataset became minimal. Then we
extracted the relationship between c (from each group)
and k and the mean radius of each group (calculated as the
average of the lower and upper radius threshold of each
group) and applied it to our simulation. We also per-
formed a sensitivity analysis in which we investigated
how the steady state solution is influenced by the vessel
network structure through random or specific perturba-
tions of the network properties to simulate relevant clini-
cal cases. See more details in Appendix D, available in the
online supplemental material.

Fig. 2. Workflow of the analysis procedure. (A) MR images of different time or coverage (if any) are registered to the same space. (B) Artery network
is segmented from the registered image. (C) Segmented artery network is skeletonized to obtain the centerlines. (D) Five major compartments
(LMCA/RMCA/ACA/LPCA/RPCA) are identified and labeled. (E) Various structural properties (e.g., angles and curvatures) are computed for each
compartment. (F) The sub-network in each compartment is converted into a graph for further analysis.Extracting properties of a patient’s arterial net-
work from MR images. (a) Time series of patient MRIs are used to demonstrate tumor and surgical locations. MR images of different time or cover-
age (if any) are registered to the same space. (b) The brain arterial network is segmented from the registered image. (c) Segmented arterial network
is skeletonized to obtain the centerlines. (d) Five major compartments (LMCA/RMCA/ACA/LPCA/RPCA), the neck and Circle of Willis (CoW) are
identified and labeled. (e) Various structural properties (e.g., angles and curvatures) are computed for each compartment. (f) The sub-network in
each compartment is converted into a graph for further analysis and for fluid dynamics simulations.
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2.10 Whole-Brain Blood Flow Simulation

In order to study the effect of the CoW in the regulation of
blood pressure and flow,we connected all five compartments
in the GBM dataset to a simplified CoW model to form a
whole-brain artery network (called GBM-Wb) [36]. Note that
in the GBM dataset, the LPCA communication artery is miss-
ing. The radius, length, c, k of the three incoming branches
from the heart (i.e., left internal carotid artery (LICA)/right
internal carotid artery (RICA)/vertebral artery (VA)) were
slightly modeified such that the model produced reasonable
pressures at the CoW region.We first generated a healthy ref-
erence subject by applying the radius versus graph level rela-
tionship obtained from BraVa dataset to the new GBM-Wb
network. We then interpolated the radius of each branch for
the time between healthy state (time step T0) and 2013 (time
step T4) by assuming the radius of each branches varied line-
arly between the two time steps. In total, we have five equally
spaced time steps T0 through T4 where T1, T2 and T3 are cal-
culated using liner interpolation. For time step T0, we gener-
ated a ground truth solution by manually setting the flow by
assuming that the blood flow split proportional to the cross-
sectional area of the child branches at each bifurcation. For
the remaining four time steps, we solved the system for pres-
sures and flows in order to answer the question of why the
radius of arteries changed in the way we saw. For each of
these time steps, we set the pressures of each terminating
nodes as a boundary condition using the formula

P0 � TPj;Ti ¼
ðP0 � TPj;T0Þ � ðVj;T0 � Vj;TiÞ

Vj;T0

: (4)

Where P0 ¼ 120 mmHg is set as the root pressure at the
heart, Vj;Ti is the total volume of the compartment that the
jth terminating node belongs to, and TPj;Ti is the pressure of
the jth terminating point at time step Ti. We solved the sys-
tem by minimizing the error related to a system of equa-
tions, which was composed of flow conservation equations
at each bifurcation and H-W equations for each branch. The
error in each flow conservation equations are

X

i

Qin;i �
X

j

Qout;j: (5)

And the error in the H-W equations are

DPi � 10:67 �Qk
i

cki � d4:8704i

� Li: (6)

The combined error, which is also the objective function
of the minimization, is expressed as

Combined error ¼
X

i

ðFlow errori � 20000Þ2

þ
X

j

ðH-W errorj � 500Þ2:
(7)

Weights are added to flow error and pressure error terms
so that they are roughly on the similar magnitude. Since the
objective function is nonconvex, we employed a global opti-
mization solver using the basinhopping technique [37] to
search for the global minimum. See more details in Appen-
dix C, available in the online supplemental material.

2.11 Tumor and Edema Segmentation Procedure

Much efforts have been invested on automated tumor seg-
mentation methods in recent years (e.g., Multimodal Brain
Tumor Segmentation Challenge (BraTS)), however, since
for this project we needed to analyze a single patient data-
set, we manually segmented those images. To obtain
tumor segmentation for each time point the following
acquisitions protocols were used: 1) T1: T1-weighted axial
orientation with 5 mm slice thickness; 2) T1c: T1-weighted
gadolinium contrast enhanced with 1 mm isotropic resolu-
tion; 3) T2: T2-weighted axial orientation with 5 mm slice
thickness; 4) Flair: T2-weighted FLAIR image with 1 mm
isotropic resolution.

2.11.1 Preprocessing

All image volumes were co-registered via affine transfor-
mation to the MRA volume. In order to accomplish this
and minimize registration errors, given that multiple sur-
geries occurred over the life of the patient, the registration
process was as follows: 1) For each time point co-register
T1, T2, and Flair modalities to the T1c image volume; 2)
For the first time point with the MRA image register the
T1c volume to the MRA volume; 3) For each consecutive
time point register the T1c volume to the T1c volume of
the time point preceding it; 4) Apply the transformations
generated from the previous step to the T1, T2, and Flair
modalities for each respective time point. These steps
were performed using 3D Slicer’s General Registration
(BRAINS) and Transforms modules. Without this incre-
mental registration significant errors occurred. The result-
ing registered volumes were than resampled with linear
interpolation using a reference volume with 1 mm resolu-
tion and orthogonal image axes. The image volumes were
then bias corrected using N4ITK bias correction [38] and
normalized using linear normalization.

2.11.2 Segmentation

Segmentation was achieved using tools in 3D Slicer’s seg-
ment editor module. 1) Edema was segmented primarily
from FLAIR images. A threshold value was determined
visually for each region and then a spherical brush was
used to paint over the region segmenting voxels above the
given threshold. In most cases the segmentation of the
previous time point was used as a starting place and seg-
mentation was added and removed as necessary. The seg-
mentation was filtered using a median filter of size 3 and
then smaller details were re-segmented. 2) Tumor was pri-
mally segmented from visualization of intensity changes
over time in T1c verified by radiologist’s notes on tumor
progression, location, and size. Radiologist notes and
visual progression indicated which areas were likely
tumor, then these areas were painted with and without
intensity thresholding to capture enhancing and non-
enhancing tumor. Previous time point’s segmentation was
usually used as a starting point to ensure consistency.
FLAIR images were also used to help distinguish between
vessels in certain cases. T1 images were cross-referenced
to distinguish against hemorrhaging. The resulting seg-
mentation was filtered using a median filter of size 3 and
then smaller details were re-segmented.
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3 RESULT

The main contribution of our work is to provide an auto-
mated, personalized, system-level approach to analyzing
how changes in the brain arterial network of a GBM patient
could result in blood flow behavior that is advantageous to
development of the cancer over time, using common clinical
patient data. We showed that in individuals with GBM, arte-
rial radius changes are driven by two ’forces’, spatiotempo-
ral tumor-related constraints, and a brain compensatory
mechanism that tries to overcome arterial changes by restor-
ing brain homeostasis. Our analysis includes the following
steps: First, we develop a tool to measure and observe the
changes in properties of an arterial network due to GBM.
Second, we provide a detailed comparisonwith healthy arte-
rial networks, to appreciate the contribution of differences in
resolution in multiple datasets. This step can also serve as an
independent resource. Third, we present a case study of
GBM, analyzed by the current clinical approach. Fourth, we
provide a system-level analysis of the GBM arterial network
structure. Lastly, after measuring the patient’s structural
changes over time, we simulate themean blood flow dynam-
ics, to assess evolution of the arterial network due to the
tumor and brain function.

Potential future consequences of our work could infer the
disease stage given the adaptation stage of the arterial net-
work, separate between different responders, select treat-
ments with minimum impact on the arteries, integrate
genomic data with the adaptive arterial network of a patient,
to advanceGBMpredictions.

3.1 Tracking the Topological Properties of the
150-250 mm High-Resolution Arterial Network

To study the expected arterial network (i.e., control, normal
subset), we analyzed the most detailed healthy human sub-
ject’s arterial network available to date. Recently, Speck and
colleagues [7], [8] imaged a single healthy brain arterial net-
work at very high resolution (250 mm T1-weighted whole
brain anatomical data [8], and 150 mm limited-area of brain
MRA [7]). We created an integrated image from the two
images. The segmentation pipeline of the merged dataset
using our approach includes several steps, which are
described in Section 2, Fig. 2 and Video 1.

The combined network has a total length of about 8,676
mm, with a maximum of 20 bifurcation nodes per path (i.e.,
graph level). A path distance can be up to 282 mm, with a
wide range (3 orders of magnitudes) of bifurcating and ter-
minating branch lengths (see Fig. 3a). A negative relation-
ship between radius and graph level is apparent (Fig. 3b).
Graph topological properties also include spatial elements
per node or branch, such as node amplitude and branch cur-
vature. A detailed summary can be found in Table S3 and
Fig. S1, available in the online supplemental material. Analy-
sis of left and right hemispheres shows that they are far from
being locally identical. Although, both sides peak at different
graph levels, include slightly dissimilar radius distributions,
and different tree structures, yet these differences are not sta-
tistically significant at the population level. It would be diffi-
cult to compare branches one-to-one in the left and right
hemispheres of a healthy individual, and obviously when
one is damaged. Even for the main arteries of the Circle of

Willis, anatomical variations are common in healthy subjects
[39]. It is important to note that not every artery’s abnormal-
ity may cause or contribute to the development of a disease.
Thus, once comparing cases, we focused on major trends
and relationships between the variables and properties (see
Appendix A), available in the online supplemental material.
This arterial network segmentation and its structural analy-
sis categorization can serve as an atlas, due to its unique
high-resolution image information.

3.2 Variations in Structural Properties of Arterial
Networks When Determined From a Higher
Resolution Image

To assess the information gained concerning structural net-
work properties from a higher resolution image, we com-
pared the Speck et al. integrated network (150/250 mm) with
the BraVa networks (600mmMRAs) [9], [40], which analyzed
the brain artery properties of 61 healthy subjects. Using the
Speck highest resolution dataset, we calculated the arterial
network properties and investigated the difference between
the Speck high resolution graph and one representative
example of the healthy subjects from BraVa dataset that was
chosen randomly.We also examined the trends and relation-
ships between the variables with themean behavior of BraVa
population (Table S3, Fig. 3, Fig. S2), available in the online
supplemental material.

While the Speck graph is quite detailed, it is interesting to
find that the main distribution results agree with the BraVa
estimations, while the numbers of nodes/edges are different,
and include a wider variations per graph’s property. To
compare the bifurcating and terminating nodes within each
dataset, the BraVa dataset indicated that the terminating
branches on average are 73 percent longer, and are 28 percent
more tortuous (i.e., twisted branches) than bifurcating
branches. We found that terminating branches are more
tortuous (p < 0:001 using Student’s t testMann-Whitney
U-test) than bifurcating branches. However, our analysis of
the high-resolution network shows that there is no signifi-
cant difference in length between bifurcating and termina-
ting branches (p ¼ 0:15p ¼ 0:29 using Student’s t testMann-
WhitneyU-test). This difference could be due to the resolution
limit of the BraVa data, thus mistakenly considering bifurcat-
ing branches as terminating branches.This difference could be
because some terminating branches in the BraVa dataset
might be a portion of bifurcating branches in the higher reso-
lution image. Either, the image cannot capture the additional
information, or for other reasons such as image artifact, and
disconnected branches. Moreover, the BraVa dataset showed
that length and tortuosity of the bifurcating branches
increasedwith path distance from the CoW,whichwe did not
observe in the Speck dataset. Both datasets showed no left or
right hemisphere dominance concerning local or remote
branching angles and they did not vary to any great degree
throughout the network.

3.3 A Case Study of LGG to GBM Evolution Based
on a Patient’s Clinical Data

We next analyzed the data of one GBM patient with time
series modalities of MRI brain perfusion (sMRI 1 mm) from
2010 to 2016, and a single MRA (400 mm) performed in 2013.
This patient’s tumor began as an LGG (initially identified on
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2008) that later transformed into GBM (in 2012). We received
a clinical assessment from a trained diagnostic neuroradiolo-
gist who assessed the disease progression longitudinally
based on the current clinical approach and the patient data.
The patient’s clinical data were further reviewed and inter-
preted by another trained neuroradiologist whowas blinded
to the purpose of this study (see Appendix B), available in
the online supplemental material. Independently, we ran
our pipeline and analyzed the patient’s arterial network, and
compared the results of the two assessments. Thenwe evalu-
ated how accurate the assessments were at predicting dis-
ease progression, based on the sMRI after 2013.

3.4 Current Neuroradiological Assessment
Focuses on Local Changes

Neuroradiologists mainly commented on the transformation
of LGG to GBM, spatiotemporal progression pattern, and
brain MRA assessment. In brief, there were two transforma-
tions from LGG to GBM, the first occurred in May 2012, and

second after September 2014. Two surgical intervention
were performed with resection of areas of GBM lesions after
2013. The lesion continued to increase in size leading to the
patient’s death in October 2016. An abnormal brain MRA
(semi full brain size) was reported in May 2013 following
surgical excision of areas of abnormally enhancing tissue in
the left frontal lobe. There was a 4 mm short segmentbranch
of high-grade stenosis of the M1 segmentbranch of the left
middle cerebral artery. A focal point of irregularity was seen
in the M1 segmentbranch of the right middle cerebral artery
as well. There was hypoplasia of the left anterior cerebral
artery and asymmetry of the left carotid arteries. Distal
branches of themiddle cerebral arteries and anterior cerebral
arteries and peri-callosal arteries were patent (enhanced).
The etiology of these findings was unclear, but the images
suggested a developmental vascular anomaly versus an
acquired injury from prior radiation treatment, especially as
radiation-induced vasculopathy could be seen on subse-
quent imaging dated April 2014. No visualized collateral

Fig. 3. Network properties of the Speck and BraVa dataset. (a) Number of terminating/bifurcating nodes versus graph level, number of nodes for left
and right hemisphere versus graph level, mean branch radius distribution between left and right hemisphere. The latter two show that there are no
hemispheric dominance between left and right hemisphere. (b) The mean branch radius decreases with increasing graph level in a similar way for
both Speck and BraVa dataset. (c) LMCA/RMCA/LPCA/RPCA in both the Speck and BraVa dataset exhibits roughly similar branch radius versus
graph level relationship. (d) The graph structure (LMCA/RMCA and LPCA/RPCA) are similar for Speck and BraVa dataset.Network topological prop-
erties of healthy individuals. Data presented here are from the Speck dataset, and from one subject randomly chosen from the BraVa dataset. (a)
Comparison between number of terminating/bifurcating nodes as a function of graph level, and comparison of left and right hemispheres of the high-
resolution arterial network (Speck dataset). The latter two show that there is no hemispheric dominance of either the left or right hemisphere. (b) The
mean branch radius decreases with increasing graph level in a similar way for both Speck and BraVa subject datasets. (c) Compartments (LMCA/
RMCA/LPCA/RPCA) in both datasets exhibit similar branch radius versus graph level relationships. (d) The main graph structures (LMCA/RMCA
and LPCA/RPCA) of the Speck and BraVa subject datasets are similar. The Speck graph includes many more nodes and is higher in graph level.
The color of each node represents cubic Murray’s law ratio, whereas the color of the edges represents mean branch radius.
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vascularization was seen (see Appendix B), available in the
online supplemental material.

3.5 Analysis of the Entire Arterial Network
Complements Information to Assess
Disease Progression

Our topological analysis included two steps. First, we exam-
ined all local changes, beyond the main CoW arteries (as was
made by the common neuroradiological approach). More-
over, we studied their global effects on the network struc-
ture. Our analysis provides all radius distributions of each
network’s compartment, so a comparison with healthy cases
can be performed. In addition, to emphasis the connection

between tumor growth pattern to arterial network, we pro-
vide a unique video. Tumor progression can be visualized
over time, compared to the limited MRA area that was taken
in 2013 (see Video 2, and Section 2). By providing our seg-
mentation of the tumor and edema over time, and including
the reference arterial network based on a single MRA, the
pattern of GBMprogression can be observed.

The tumor is located between the ACA and LMCA areas.
Over time it spreads mainly through the LMCA, where some
cells invaded to the RMCA area (Fig. 4a). Based on our struc-
tural network analysis, we found that there was a global
change throughout all graph levels. To be able to compare the
GBM case with a healthy subject with close image resolution,

Fig. 4. GBM study case. (a) A sequence of T1 image from the GBM patient taken from 2012 to 2016 showing the progression of tumor growth. (b)
The structure of the LMCA/RMCA and LPCA/RPCA compartment of the GBM subject. Note that although its resolution (400 mm) is better than the
BraVa dataset (600 mm), we see significantly less arteries. (c) Comparison of the mean branch radius versus graph level for different compartments
in GBM dataset shows that the tumor in the GBM patient causes the radius of the arteries in LMCA/RPCA to decrease and that in RMCA/LPCA to
increase. (d) A diagram showing main arteries around the Circle of Willis (the GBM patient is missing the left posterior communicating artery).
(Source: Wikipedia)GBM patient’s arterial network. (a) A sequence of T1 images from a GBM patient taken from 2012 to 2016 showing the progres-
sion of tumor growth and surgical area. The segmented tumor is colored in red, the segmented edema is colored in light blue and the arteries in gray,
shown using the maximum intensity projection (MIP). The tumor originally started as LGG in the left anterior area, later penetrated as GBM to the
right anterior lobes, and from 2015 spread to the left posterior area. We focus on GBM progression and arterial changes during those time periods.
(b) The graph structures of the LMCA and RMCA compartments based on a GBM patient’s MRA taken in 2013. Note, although the MRA resolution
(400 mm) is higher than the healthy subjects in the BraVa dataset (600 mm), we see significantly fewer arteries due to the treatments and disease
progression. The color of each node represents cubic Murray’s law ratio, whereas the color of the edges represents mean branch radius. We also
include the complete graph that includes all branches from the neck to CoW to compartments to terminating branches. (c) Comparison of the mean
branch radius versus graph level for different compartments in the GBM dataset shows that the tumor causes the radius of the arteries in LMCA &
RPCA to decrease and the radius in RMCA & LPCA to increase. MCA branches mainly cover the physical space of the anterior lobes, while PCA
can cover the posterior area of the brain. (d) A diagram showing the main arteries around the Circle of Willis, where the GBM patient is missing the
left posterior communicating artery (Image illustration source:Wikipedia and [41]).
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we randomly chose one representative subject from the BraVa
dataset. This showed a negative relationship between a
mean radius at the graph level that began at 1 mm. How-
ever, the GBM relationship began at the first graph level,
either greater than or less than a 1 mm radius. We found
that the reduced branch radius, mentioned in the neuro-
radiologist’s assessment, occurred at the first two graph
levels (e.g., first branch in ACA, and M1 in MCA). How-
ever, there were many significant changes in the mean
radius at higher graph levels, specifically levels 4-6, that
were imperceptible using the current neuroradiological
approach (Fig. 4c). The branch radii in the left cerebral
arteries (LMCAs) were significantly smaller than those in
the right cerebral arteries (RMCAs), with distorted distri-
bution. It is interesting to point out that on graph level 2,
where the LMCA had a reduced mean radius, the RMCA
had an increased mean radius, which clearly demonstrate
compensation between the two left-right compartments.
Both LMCAs and RMCAs, on graph level 2, showed high
variation in radius size. While the compensation between
left and right hemispheres with some fluctuations (around
1 mm in initial mean radius on graph level 1) may be rea-
sonable, the more striking structural network changes are
the adaptations on the posterior side versus the anterior
side, where the tumor is located. Examining the LPCA, we
found that the mean radius length was twice that of the
LMCA. This increase occurred throughout all graph levels
in the LPCA, beginning at 2 mm.

Moreover, we found that the left posterior communicat-
ing artery branch was absent, which was not noticed in the
clinical exam. Since there was surgery in 2013, we exam-
ined a previous T1 image of 2010, and determined that
most likely this was a developmental defect, and not due
to the surgery. It is important to note that the extraction of
a full arterial network from T1 images after treatments
was not possible; only parts of the network could be recov-
ered. However, an MRA can provide the entire patient’s
network. Yet, by comparing CoW branches in 2010 versus
2013, we found a general decrease in all radii, with greater
changes occurring on the left side than on the right side.
We further examined the changes of the main CoW arter-
ies over time until 2016 based on T1 images, and found
that all arteries were dynamically changing, and the left
M1 in the MCA branch continued to significantly decrease
in radius over time. Lastly, we asked, regardless of the dis-
ease, could the absence of the left posterior communicating
artery branch simply be the cause of the LPCA compensa-
tion? To answer this question, we examined the results of
a study by Krabbe-Hartkamp et al. [39] about morphologi-
cal variation of CoW arteries in healthy subjects. Subjects
with no posterior communicating artery branch (left or
right), demonstrated no changes in other CoW arteries,
proving that the observed compensation is the results of
the GBM disease progression, and not the intrinsic devel-
opmental structure.

3.6 Mean Blood Flow Behavior Reveals
Parts of GBM Evolution

After identifying the structural changes in the patient’s arte-
rial network on a system scale, we asked how those changes
would impact brain hemodynamics. Furthermore, we were

interested to answer why the GBM patient had such spatio-
temporal changes in the arterial network, and how they
could have been evolved from its normal or earlier phase
to its advanced MRA state in 2013. To address these chal-
lenging questions concerning adaptive hemodynamics
behavior, we developed a mathematical model. Given the
lack of detailed brain blood flow data, especially informa-
tion on brain pressure in terminating nodes, from a sys-
tematic clinical screening, we assessed mainly the steady-
state solution. From a simplified math model inspired
by the Hazen-Williams (H-W) equation, we applied the
model to the detailed network extracted from the patient’s
image (see detailed description of the model and all steps
and results in Appendix C, Section 2, Fig. S11), available in
the online supplemental material. Note, we do not directly
include the tumor consumption or its occupying space,
but rather examine the brain arteries as a sensor to the
perturbed brain behavior (Appendix E), available in the
online supplemental material.

Given the lack of time series MRAs, we first generated a
healthy reference network by applying the radius versus
graph level relationship obtained from the BraVa dataset to
the GBM patient’s network structure. At each bifurcation,
we assumed the flow split in a way that is proportional to
the cross-sectional area of its ’child branches’. We then inter-
polated the radius of each branch for the time between
healthy state and GBM state in 2013, by assuming that the
radius of each branches varied linearly between the two
time steps. Based on our simulations, there are several
important results that add information to our structural net-
work analysis (Fig. 5a). Mainly, the results reveal an inter-
play between the tumor and the brain compensatory
mechanism. First, the total flow to the brain decreases over
time, as the brain gets less blood flow to compensate for the
high tumor demands. While the actual flow on the left side
decreases, the proportion going to the LMCA increases.
Specifically, LMCA and RPCA increases. RMCA decreases
and the rest are quite stable. Interestingly, even though the
LMCA and RPCA compartments do not share the same
trend in terms of radius change, their blood flow increases.
From the compartment-based distributions of terminating
pressure nodes, an asymmetrical pattern emerges to offset
flow to the left (LMCA+LPCA) and right (RMCA+RPCA)
sides, and to offset upper (MCA) and lower (PCA) areas
(Fig. 5b). LMCA and RPCA decrease, while RMCA and
LPCA increase. Altogether, the tumor affected the arterial
network in three ways. Higher blood demand on one side
was created, changing the radii of arteries, and by regulat-
ing the neighboring terminating pressure nodes. Since the
tumor was located mainly on the left side, next to the
LMCA and LACA, the neighboring terminating pressure
nodes were changed, thus creating a higher pressure drop.
In return, the blood flow changes and compensatory mecha-
nism adjusted the entire arterial structure to maintain the
homeostasis, as much as possible, at a given time point. The
CoW compensatory mechanism led to a non-linear relation-
ship between the radius changes, terminating pressure and
blood flow patterns. Moreover, at time points T2-T3 (reflect
the year of 2012), blood flow values at PCA showed a fluctu-
ating pattern, even though the radius of each branch varied
linearly between the two time points.
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4 CONCLUSION

Glioblastoma multiforme is the most lethal adult primary
brain cancer and remains incurable despite decades of
research [42]. There is substantial evidence showing that
GBM development is not solely an intrinsic cellular process
driven by epigenetic/genetic perturbations, but is also
heavily dependent on the different microenvironments that
form the brain’s topology. Brain anatomy, including the brain
parenchyma, pre-existing blood vessel network,whitematter
tracts, and the subarachnoid space below the meningeal cov-
ering of the brain, all play important roles in GBM aggres-
siveness and its resistance to treatments [43]. The brain
environment is far from homogeneous, and has three GBM
related fundamental spatial environments: the brain paren-
chyma (BP), the perivascular space (PS), and thewhitematter
tracts (WM). These parts are richwith spatial brain and tumor
microenvironment stimuli, including mitogens (EGF and
PDGF), other key pathway drivers (TIMP andWNT Canoni-
cal, impacting TGFB andWNT signaling), and various attrib-
utes of the internal and external environment (DNADamage,

Oxygen, Bradykinin, Ephrin B1/B2, Stiff ECM Components,
Hyaluronan). Through a cellular machinery, GBM cells react
to those stimuli by switching between the different pheno-
types of Go, Grow, Dormant, andApoptosis [43], [44].

For instance, along white matter tracts, a range of axonal
guidance molecules are known to direct movement of neural
precursor cells during development. GBM tumor cells co-opt
some of these mechanisms, including experimentally estab-
lished pathways leading from Ephrin B1 and B2 to direct
motility, via activation of the EphB2 receptor, FAK, and
RHOA [45]. Such information and the well known Scherers
Secondary Structures of GBM, encourage researchers to
mathematically model tumor growth using MRI and DTI
[46] and others to offer patient prognosis methods based on
the intersection between location of brain tumor with white
matter tracts [47]. However, the experimental research of
motility along the WM tracts is not as detailed, and not
advanced in developing targeted drugs, as other motility
pathways. In addition, tracking tumor growth using MRI +
DTI has its own limitations. In a study conducted byMorteza
Esmaeili et al. [48], it was shown that the alignment between

Fig. 5. (a) Simulated pressure and velocity of one compartment between time step T0 and T4. Node values/colors represent the pressure and edge val-
ues/colors represent flow rate. (b) Various flow properties among the five time steps. (c) Terminating pressure distribution among the five time steps.
Mean blood flow dynamics in evolving GBM. (a) Graph plot of the GBM network of pressures and flow rates at two different time points (T0 ¼ 2010 till
T4 ¼ 2013). The color and the value of each node refer to the pressure at that node and the color and the value on each edge refer to the flow rate in that
branch. This plot shows that the changes are not just near the tumor, but global due to brain function. (b) Bottom: Change of terminating pressures with
respect to the five time points (each color in the subplot refers to a terminating node). Middle: Flow proportions and flow rates with respect to the five
time points. Top: Mean terminating pressures per compartment or hemisphere. Their value changes are significant during GBM progression
(T0 ¼ 2010 till T4 ¼ 2013). (c) 3D histogram of the terminating pressures per compartment and five time points (T0 ¼ 2010 till T4 ¼ 2013).
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tumor growth and DTI has low correlations, which suggests
that there are other significant mechanisms involved. The
next question is what are those other measurements and
how exactly can one use them to address the GBM progres-
sion problem, using patient data?

This scientific exploration led us to the current study, in
which we suggest integrating another component, the arte-
rial network using patient MRA. Apart from the obvious
dependency of a tumor on the arterial network due to its
high consumption of nutrients, GBM cells also follow the
perivascular space. In the perivascular space, extracellular
bradykinin acts through a G-protein-coupled receptor to
increase intracellularCa2þ, leading toCa2þ-dependent efflux
of Cl� and Kþ through ion channels. This leads to water loss
from the cell by osmosis and consequent volume reduction,
which facilitates movement amidst astrocytic end feet and
other local barriers in the perivascular space [43]. While this
mechanism of motility is well known to be experimentally
proven, no imaging technique has been offered to track those
motile cells based on arterial network information, nor their
impact on the disease and patient brain, in a systematic way.

In this work, we provide, for the first time, a new compu-
tational technology that is distinct from approaches that
have been used for GBM. We offer to integrate a key layer
of the brain’s components, the arterial network, and study
its adaptation during the evolution of GBM. The arteries are
an essential part of GBM development, not just as a way to
deliver drugs or nutrients, but also as a physical pathway
for GBM motile cells. This process is driven by the network
location, structure, and fluid dynamics of blood. Therapeu-
tic treatments do change the arterial network, in many
ways. Our work shows that the process of tumor develop-
ment is regulated by the brain’s compensatory processes.
One is left to wonder if such a communication sub-system
exists, could we use it in other ways? For instance, 1) If
tumor cells cannot be detected by MRIs, could we use the
adaptation stage of the arteries to infer the disease stage? 2)
Could we use the arterial network properties to separate
between different responders? 3) Should a particular drug
be used, given changes it may induce in the arterial net-
work? 4) Could the integration of genomic data and adap-
tive arteries advance our predictions?

The current, most advanced clinical approach to treating
GBM does not involve a full brain arterial network analysis,
unless there is a concern and thus a very limited local exam-
ination will be conducted. Out of a NIH dataset of 400 GBM
patients, with about 3800 clinical follow-ups, a semi-full
brain MRA scan was performed for only a single patient,
throughout the entire treatment period. We propose to add
to the routine clinical assessment not only a time series MRI
brain-perfusion (at least 1 mm in resolution), but also time
series brain MRA scans (at least 400 mm), to allow the devel-
opment of a more comprehensive personalized computa-
tional study (including deep learning of complex dynamical
systems) of the arteries and their compensation due to the
disease progression. Our automated method could easily be
applied to large cohort of patients, perform a large statistical
analysis to reliably identify markers of glioblastoma.

Neuroimaging plays an important and evolving role in the
diagnosis, treatment planning (surgical and medical inter-
ventions), and post-therapy assessment of brain disease [49],

[50]. However, clinicians and surgeons are facedwith signifi-
cant challenges concerning the accuracy of diagnosis and
treatmentmanagement, as most are based on a series of clini-
cal imagesstandard of care imaging data, which may some-
times be misleading. For example, a suspicious lesion may
lead to uncertainty concerning post-treatment effects, and
may be due to pseudoprogression, or tumor recurrence. Sim-
ilar issues arise with immunotherapy response [51], [52]. It is
challenging to determine whether a patient has responded
well to the treatment or if an image has been over-enhanced
for other reasonsenhancement that is not driven by underly-
ing disease. An even more problematic problem is the
inverse, in which tumor cells cannot be identified by MRIs.
How can we predict, with reasonable accuracy, the spatial
migration distribution of glioblastoma cells when enhancing
lesions cannot be detected by MRIscontrast to noise ratio
between the enhanced lesion and healthy brain is not high
enough? While the first problem of over enhancementnon-
disease driven enhancement could be resolved in the future
by advanced deep learning methods, the second problem of
non-detected signals needs a better re-thinking of the app-
roach, concerning measurements and data analysis. For such
provoking cases, it would be wiser to explore and include
complementary indirect system-level approaches to draw
conclusions about the disease. We offer to track the adapta-
tion and compensation processes of patients’ brain arterial
network to infer properties of glioblastoma.
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