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Abstract—Does Federated Learning (FL) work when both

uplink and downlink communications have errors? How much
communication noise can FL handle and what is its impact on
the learning performance? This work is devoted to answering
these practically important questions by explicitly incorporating
both uplink and downlink noisy channels in the FL pipeline. We
present several novel convergence analyses of FL over simultane-
ous uplink and downlink noisy communication channels, which
encompass full and partial clients participation, direct model
and model differential transmissions, and non-independent and
identically distributed (IID) local datasets. These analyses char-
acterize the sufficient conditions for FL over noisy channels to
have the same convergence behavior as the ideal case of no com-
munication error. More specifically, in order to maintain the
O(1/T ) convergence rate of FEDAVG with perfect communica-
tions, the uplink and downlink signal-to-noise ratio (SNR) for
direct model transmissions should be controlled such that they

scale as O(t2) where t is the index of communication rounds,
but can stay O(1) (i.e., constant) for model differential trans-
missions. The key insight of these theoretical results is a “flying
under the radar” principle – stochastic gradient descent (SGD)
is an inherent noisy process and uplink/downlink communica-
tion noises can be tolerated as long as they do not dominate the
time-varying SGD noise. We exemplify these theoretical findings
with two widely adopted communication techniques – transmit
power control and receive diversity combining – and further val-
idate their performance advantages over the standard methods
via numerical experiments using several real-world FL tasks.

Index Terms—Federated learning, convergence analysis, noisy
communications, power allocation optimization.

I. INTRODUCTION

F
EDERATED learning (FL) [2], [3] is an emerging dis-

tributed machine learning paradigm that has many attrac-

tive properties which can address new challenges in machine

learning (ML). In particular, FL is motivated by the growing

trend that a massive amount of the real-world data is exoge-

nously generated at the edge devices and is considered as one

of the potential key applications in 6th generation (6G) cellular

communication systems [4].
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Communication efficiency has been at the front and center

of FL ever since its inception [2], [3], and it is widely regarded

as one of its primary bottlenecks [5]–[7]. Communication

schemes for FL can be divided into two categories: digital

communication and analog communication. Digital communi-

cation for FL is usually considered to incur a heavy burden

for wireless networks, as it allocates different communica-

tion resources to the ML model parameters of each client.

Analog communication reduces the communication overhead

by allowing different clients to transmit FL models using

shared resources. Early research has largely focused on either

reducing the number of communication rounds [2], [8], or

decreasing the size of the payload for transmission [9]–[11].

However, in most FL literature that deals with communication

efficiency, it is often assumed that a perfect communication

“tunnel” has been established, and the task of improving

communication efficiency largely resides on the ML design

that trades off computation and communication. More recent

research starts to close this gap by focusing on the system

design, particularly for wireless FL; see Section II for an

overview. Nevertheless, the focus has been on bandwidth allo-

cation, device selection, or either uplink or downlink (but not

both) cellular system designs.

While the early studies provide a glimpse of the potential

of optimizing the communication design for FL, the impor-

tant and more practical issue of noisy communications for

both uplink (clients send local models to the parameter server)

and downlink (server sends the global model to clients) has

not been well investigated. Analytically speaking, joint con-

sideration of both noisy uplink and downlink complicates the

convergence analysis because of noise propagation in both

directions of every communication round. Furthermore, all of

these noisy uplink and downlink communications collectively

determine the final learning performance, which requires a

holistic design and analysis.

The goal of this paper is two-fold: we want to first under-

stand the impact of communication-induced noise, in both

upload (uplink) and download (downlink) phases of FL, on

the ML model convergence and accuracy performance, and

then design communication algorithms to control the signal-

to-noise ratio (SNR) to improve FL performance under a total

resource budget. We focus on analog communications for

model updates [12]–[14] and investigate SNR control in both

uplink and downlink, which is especially crucial when the

underlying ML method is stochastic gradient descent (SGD)

as considered in this work, because SGD is much more

sensitive to noise than the (full) gradient descent [6], [15].
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Our treatment is novel because all prior works either study

uplink-only [12], [13], [16]–[18] or downlink-only [19] noisy

communications, but not both. We present novel conver-

gence analyses of the standard Federated Averaging (FEDAVG)

scheme under non-IID datasets, full or partial clients partici-

pation, direct model or model differential transmissions, and

simultaneous noisy downlink and uplink analog communica-

tions. These analyses are based on very general receive noise

assumptions, and hence are broadly applicable to a variety of

communication systems. The key insight of these theoretical

results is a “flying under the radar” principle: SGD is inher-

ently a noisy process, and as long as uplink/downlink channel

noises do not dominate the SGD noise during model train-

ing (which is controlled by the time-varying learning rate),

the scaling of convergence is not affected. This general prin-

ciple is exemplified with two widely adopted communication

techniques – transmit power control and receive diversity com-

bining – by controlling the resulting post-processing SNR

to satisfy the theoretical analyses under a fixed total bud-

get constraint. Comprehensive numerical evaluations on three

widely adopted ML tasks with increasing difficulties (MNIST,

CIFAR-10 and Shakespeare) are carried out using these tech-

niques. We carry out a series of experiments to demonstrate

that the fine-tuned transmit power control and receive diver-

sity combining that are guided by the theoretical analyses can

significantly outperform the equal-SNR-over-time baseline,

and in fact can approach the ideal noise-free communication

performance in many of the experiment settings.

To summarize, the main contributions of this work include

the following.

• We present novel convergence analyses for FL with

simultaneous uplink and downlink noisy analog commu-

nications, with full vs. partial clients participation, direct

model vs. model differential, and non-IID local datasets.

To the best of the authors’ knowledge, this is the first

time FL convergence analysis is carried out when both

upload and download phases are over noisy communi-

cation channels, which introduces significant challenges

because of the noise propagation in both directions.

• We establish SNR scaling laws. In particular, we prove

that in order to maintain the well established O(1/T )1

convergence rate of FEDAVG with noise-free communica-

tions, O(t2) SNR scaling is needed for direct model and

O(1) (i.e., constant) for model differential. This t2-vs-1

scaling law comparison under the same communication

environment is novel.

• We enhance the widely adopted transmit power control

and receive diversity combining algorithms to better serve

FL over noisy channels, and validate their performance

advantages over the state-of-the-art methods under the

same total resource budget via extensive numerical exper-

iments.

The remainder of this paper is organized as follows. Related

works are surveyed in Section II. The system model that cap-

tures the noisy channels in both uplink and downlink of FL is

described in Section III. Theoretical analyses are presented

1Notation f = O(g) denotes f is of order at most of g.

in Section IV for three different FL configurations. These

results inspire novel communication designs of transmit power

control and receive diversity combining that are presented in

Section V. Experimental results are given in Section VI, fol-

lowed by the conclusions in Section VII. All technical proofs

are given in the Appendices.

II. RELATED WORKS

Improve FL Communication Efficiency: The original

FEDAVG reduces the communication overhead by only peri-

odically averaging the local models. Theoretical understanding

of the communication-computation tradeoff has been actively

pursued and, depending on the underlying assumptions (e.g.,

IID or non-IID local datasets, convex or non-convex loss

functions, GD or SGD), rigorous analyses of the conver-

gence behavior have been carried out [15], [20], [21]. For

the approach of reducing the size of messages, general dis-

cussions on sparsification, subsampling, and quantization are

given in [3]. There are also recent efforts in developing

quantization and source coding to reduce the communica-

tion cost [9]–[12], [22]–[24]. Nevertheless, they mostly do not

consider the communication channel noise.

Communication Design for FL: Recent years have also

seen increased effort in the communication algorithm and

system design for FL. The trade-off between local model

update and global model aggregation is studied in [25]

to optimize the transmission power/rate and training time.

Various radio resource allocation and client selection poli-

cies [26]–[31] have been proposed to minimize the learning

loss or the training time. Joint communication and compu-

tation is investigated [13], [14], [22], [32]. In particular, the

analog aggregation design [13], [22], [33] serves as one of

our design examples in Section V.

FL With Imperfect/Noisy Communications: Existing lit-

erature is dominated by uplink-only noisy communica-

tions [12]–[14], [16]–[18], [34], [35]. There is very limited

study on downlink-only noisy communications for FL; [19]

proposes and analyzes downlink digital and analog trans-

missions while assuming an error-free uplink. On the other

hand, existing literature that consider both upload and down-

load imperfect communications focus only on how to modify

the ML model training method. In particular, [36] changes

the loss function of FL to accommodate the communication

error. References [37]–[39] propose to compress the gradi-

ents in order to tolerate both uplink and downlink bandwidth

bottlenecks. Their methods are either error compensation,

quantization or leveraging sparsity. None of these considers

improving the communication design.

III. SYSTEM MODEL FOR LEARNING

AND NOISY COMMUNICATION

We first introduce the FL problem formulation, and then

describe the FL pipeline where both local model upload

(uplink) and global model download (downlink) take place

over noisy channels.
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Fig. 1. End-to-end FL system diagram in the t-th communication round. The impact of noisy channels in both uplink and downlink is captured.

A. FL Problem Formulation

The federated learning problem setting studied in this

paper mostly follows the standard model in the original

paper [2]. In particular, we consider a FL system with

one central parameter server (e.g., base station) and a set

of at most N clients (e.g., mobile devices). Client k ∈
[N ] � {1, 2, . . . ,N } stores a local dataset Dk = {zi}Dk

i=1,

with its size denoted by Dk , that never leaves the client.

Datasets across clients are assumed to be non-IID and dis-

joint. The maximum data size when all clients participate

in FL is Dtot =
∑N

k=1Dk . Each data sample z is given

as an input-output pair {x, y}. The loss function f (w, z)

measures how well a ML model with parameter w ∈ R
d

fits a single data sample z. Without loss of generality, we

assume that w has zero-mean and unit-variance elements,2

i.e., E‖wi‖2 = 1, ∀i ∈ [d ]. For the k-th client, its local loss

function Fk (·) is defined by Fk (w) � 1
Dk

∑

z∈Dk
f (w, z),

and we further use ∇Fk (w, ξ) to denote the SGD oper-

ation with model w and data sample ξ at client k. The

goal of FL is to learn a global machine learning (ML)

model at the parameter server based on the distributed local

datasets at the N clients, by coordinating and aggregating

the training processes at individual clients without allow-

ing the server to access the raw data. Specifically, the

global optimization objective over all N clients is given by

F (w) �
∑N

k=1
Dk

Dtot
Fk (w) = 1

Dtot

∑N
k=1

∑

z∈Dk
f (w, z).

The global loss function measures how well the model fits

the entire corpus of data on average. The learning objec-

tive is to find the best model parameter w∗ that minimizes

the global loss function: w∗ = argminw F (w). Let F ∗ and

F ∗
k be the minimum value of F and Fk , respectively. Then,

Γ = F ∗ −∑N
k=1

Dk

Dtot
F ∗
k quantifies the degree of non-IID as

shown in [21].

2The parameter normalization and de-normalization procedure in wire-
less FL can be found in the Appendix in [13]. We further note that weight

normalization is widely adopted in training deep neural networks [40].

B. FL Over Noisy Uplink and Downlink Channels

We study a generic FL framework where partial client par-

ticipation and non-IID local datasets, two critical features that

separate FL from conventional distributed ML, are explicitly

captured. Unlike the existing literature, we focus on imper-

fect communications and consider that both the upload and

download transmissions take place over noisy communication

channels. The overall system diagram is depicted in Fig. 1. In

particular, the FL-over-noisy-channel pipeline works by itera-

tively executing the following steps at the t-th learning round,

∀t ∈ [T ].
1) Downlink Communication for Global Model Download:

The centralized server broadcasts the current global ML

model, which is described by the latest weight vector wt−1

from the previous round, to a set of uniformly randomly

selected clients3 denoted as St with |St | = K . Because of

the imperfection introduced in communications, e.g., channel

noise, imperfect channel estimation, and detection or estima-

tion error, client k receives a noisy version of wt−1, which is

written as

ŵk
t−1 = wt−1 + ekt , (1)

where ekt = [ekt ,1, . . . , e
k
t ,d ]

T ∈ R
d is the d -dimensional

downlink effective noise vector at client k and time t. We

assume that ekt is a zero-mean random vector consisting of

IID elements with variance:

E

∥
∥
∥e

k
t ,i

∥
∥
∥

2
= ζ2t ,k and E

∥
∥
∥e

k
t

∥
∥
∥

2
= dζ2t ,k ,

∀t ∈ [T ], k ∈ St , i ∈ [d ]. (2)

Effective Noise and Definition of SNR: In order to keep the

problem general, we do not specify a particular communica-

tion system for the actual downlink data transmission, and

only use the effective noise model in (1). The same approach

applies to the uplink. This is a conscious choice to keep the

problem general, and we want to focus on analyzing the impact

3We note that for partial clients participation, we have K < N ; in the case
of full clients participation we have K = N.
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of communication-induced noise and further controlling the

resulting SNR to improve FL performance. In this way, ekt
shall be interpreted as the effective noise that captures all the

processing components in a downlink communication phase

in addition to the natural channel noise.4 Because we have

normalized the variance of each scalar model parameter as

described in Section III-A, the (post-processing) receive SNR

for the k-th client at the t-th communication round can be

written as

SNR
L
t ,k =

E‖wt−1‖2

E
∥
∥ekt

∥
∥2

=
1

ζ2
t ,k

. (3)

Lastly, we note that the noise assumption is very mild,

because (2) only requires a bounded variance of the random

noise, but does not limit to any particular distribution. In addi-

tion, the downlink communication model is very general in the

sense that the effective noise variances, {ζ2t ,k}, can be different

for different clients and at different rounds.

2) Local Computation: Each client uses its local data to

train a local ML model improved upon the received global

ML model. In this work, we assume that mini-batch SGD is

used in the model training. Note that this is the most com-

monly adopted training method in modern ML tasks, e.g.,

deep neural networks, but its analysis is more complicated

than gradient descent (GD) when communication noise is

present.

Specifically, mini-batch SGD operates by updating the

weight iteratively (for E steps in each learning round) at client

k as follows:

Initialization: wk
t ,0 = ŵk

t−1,

Iteration: wk
t ,τ = wk

t ,τ−1 − ηt∇F k

(

wk
t ,τ−1, ξ

k
τ

)

,

∀τ = 1, . . . ,E ,

Output: wk
t = wk

t ,E ,

where ξkτ is a batch of data points that are sampled indepen-

dently and uniformly at random from the local dataset of client

k in the τ -th iteration of mini-batch SGD.

3) Uplink Communication for Local Model Upload: The

K participating clients upload their latest local models to the

server. More specifically, client k transmits a vector xkt to

the server at the t-th round. We again consider the practi-

cal case where the server receives a noisy version of the

individual weight vectors from each client in the uplink

communications (e.g., channel noise, fading, transmitter and

receiver distortion). The received vector for client k can be

written as

x̂kt = xkt + nkt , (4)

where nkt ∈ R
d is the d-dimensional uplink effective noise

vector for decoding client k’s model at time t. We assume that

4As a simple example, if the downlink communication is over a standard
Additive White Gaussian Noise (AWGN) channel, then the actual received

signal at client k is yk
t−1

=
√

Pt−1wt−1 + zk
t

where zk
t

represents the

AWGN and Pt−1 is the downlink broadcast transmit power. The effective

channel noise becomes ek
t
= 1√

Pt−1
zk
t

.

nkt is a zero-mean random vector consisting of IID elements

with bounded variance:

E

∥
∥
∥n

k
t ,i

∥
∥
∥

2
= σ2t ,k and E

∥
∥
∥n

k
t

∥
∥
∥

2
= dσ2t ,k ,

∀t ∈ [T ], k ∈ St , i ∈ [d ]. (5)

We again note that the uplink communication model in (5)

is very general in the sense that (1) only bounded variance

is assumed as opposed to the specific noise distribution; and

(2) the effective noise variances, {σ2t ,k}, can be different for

different clients and at different rounds.

Unlike in the download phase where the model itself is

transmitted to clients, two different choices of the vector xkt
for model upload are considered in this paper.

1) Model Transmission (MT): The K participating clients

upload the latest local models: xkt = wk
t . Following (4),

the server receives the updated local model of client k as

w̃k
t = x̂kt = wk

t + nkt . (6)

2) Model Differential Transmission (MDT): The K partic-

ipating clients only upload the differences between the

latest local model and the previously received (noisy)

global model, i.e., xkt = dkt � wk
t − ŵk

t−1. For MDT,

the server uses dkt and the previously computed global

model wt−1 to reconstruct the updated local model of

client k as

w̃
k
t = wt−1 + x̂

k
t = wt−1 + d

k
t + n

k
t = w

k
t + n

k
t − e

k
t . (7)

The SNR for these two models, however, has to be defined

slightly differently because we have normalized the ML model

parameter w to have unit-variance elements in Section III-A.

Thus, for MT, we can write the receive SNR at the server for

k-th client’s signal as

SNR
S,MT
t ,k =

E

∥
∥
∥wk

t

∥
∥
∥

2

E
∥
∥nkt

∥
∥2

=
1

σ2
t ,k

. (8)

For MDT, we keep the SNR expression general since the vari-

ance of model difference dkt is unknown a priori and also

changes over time. We have:

SNR
S,MDT
t ,k =

E

∥
∥
∥dkt

∥
∥
∥

2

E
∥
∥nkt

∥
∥2

=
E

∥
∥
∥dkt

∥
∥
∥

2

dσ2
t ,k

. (9)

The different choices of MT and MDT are not considered

in most of the literature because with a perfect communication

assumption, there is no difference between them from a pure

learning perspective – as long as the server can reconstruct

wk
t , this aspect does not impact the learning performance [2].

However, the choice becomes significant when communication

noises are present. From a practical system point of view, both

schemes can be useful in different use cases. For example,

MDT in the uplink relies on the server keeping the previous

global model wt−1, from which the new local models can

be reconstructed. This, however, may not always be true if the

server deletes intermediate model aggregation (after broadcast)

for privacy preservation [5], which makes reconstruction from

the model differential infeasible.
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We also note that the download phase, on the other hand,

does not have these two choices – we always transmit the

global model wt−1 itself. This is because we have partial

(and random) clients participation, where the set of clients

participating in the t-th round can be totally different from the

(t − 1)-th round, and they do not have the previous global

model to reconstruct based on the model difference.

Noise Propagation: Both uplink and downlink channel

noises collectively impact the received local models at the

server. This noise propagation effect is more prominent in

MDT ((7) explicitly has both noise terms). However, this effect

in fact exists in both cases, because the local model is trained

using the previously received global model, which contains

the downlink noise.

4) Global Aggregation: The server aggregates the received

local models to generate a new global ML model, following

the standard FEDAVG [2]: wt =
∑

k∈St

Dk
∑

i∈St
Di

w̃k
t . The

server then moves on to the (t + 1)-th round. For ease of expo-

sition and to simplify the analysis, we assume in the remainder

of the paper that the local dataset sizes at all clients are the

same5: Di = Dj , ∀i , j ∈ [N ], which leads to the following

simplifications.

1) MT: The aggregation can be simplified as

wt =
1

K

∑

k∈St

w̃k
t =

1

K

∑

k∈St

x̂kt =
1

K

∑

k∈St

(

wk
t + nkt

)

.

(10)

2) MDT: The aggregation can be written as

wt =
1

K

∑

k∈St

w̃k
t = wt−1 +

1

K

∑

k∈St

x̂kt

=
1

K

∑

k∈St

(

wk
t + nkt − ekt

)

. (11)

For the case of MT, the SNR for the global model (after

aggregation) can be written as

SNR
G
t =

E

∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

E
∥
∥
∑

k∈St
nkt

∥
∥2

=
E

∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

dσ2t
, (12)

and for MDT, the SNR for the global model can be written as

SNR
G
t =

E

∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

E
∥
∥
∑

k∈St

(
nkt − ekt

)∥
∥2

=
E

∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

d
(
σ2t + ζ2t

) , (13)

where σ2t �
∑

k∈St
σ2t ,k and ζ2t �

∑

k∈St
ζ2t ,k denote the

total uplink and downlink effective noise power for participat-

ing clients, respectively.

In general, {wk
t } are correlated across clients because the

local model updates all start from (roughly) the same global

model. Intuitively, once FL convergences, these models will

largely be the same, leading to a signal power term of dK 2

for the numerator. On the other hand, if we assume that these

local models are independent across clients, which is reason-

able in the early phases of FL with large local epochs, where

5We emphasize that all the results of this paper can be extended to handle
different local dataset sizes.

the (roughly) same starting point has diminishing impact due

to the long training period and non-IID nature of the data dis-

tribution, we can have a signal power term of dK. Nevertheless,

since the SNR control can be realized by adjusting the effec-

tive noise power levels, we focus on the impact of σ2t and ζ2t
on the FL performance in Section IV.

In this paper, we mainly focus on analog communication

for FL, where model parameters are transmitted in an ana-

log manner. Therefore, digital communication processing such

as source coding, channel coding and modulation are not

incorporated. The adopted zero-mean bounded random noise

assumption is reasonable for this setting, because it does not

require any specific distribution and thus can be applicable to

a broad range of analog communication systems.

IV. CONVERGENCE ANALYSIS OF

FL OVER NOISY CHANNELS

A. Convergence Analysis for Model Transmission for Full

Clients Participation

We first analyze the convergence of FEDAVG in the pres-

ence of both uplink and downlink communication noise when

direct model transmission (MT) is adopted for local model

upload: xkt = wk
t . To simplify the analysis and highlight the

key techniques in deriving the convergence rate, we assume

K = N in this subsection (i.e., full clients participation with

St = [K ] = [N ]), and leave the case of partial clients

participation to Section IV-B.

We make the following standard assumptions that are com-

monly adopted in the convergence analysis of FEDAVG and

its variants; see [9], [10], [15], [21], [41]. In particular,

Assumption 1-2) indicates that we focus on strongly convex

Fk (·), which represents a category of loss functions that are

widely studied in the literature.

Assumption 1: 1) L-Smooth: ∀ v and w, Fk (v) ≤
Fk (w) + (v − w)T∇Fk (w) +

L
2 ‖v − w‖2.

2) µ-Strongly Convex: ∀ v and w, Fk (v) ≥ Fk (w) + (v−
w)T∇Fk (w) +

µ
2 ‖v − w‖2.

3) Bounded Variance for Unbiased Mini-Batch SGD: The

mini-batch SGD is unbiased: E[∇Fk (w, ξ)] = ∇Fk (w),
and the variance of stochastic gradients is bounded:

E‖∇Fk (w, ξ)−∇Fk (w)‖2 ≤ δ2k , for mini-batch data

ξ at client k ∈ [N ].
4) Uniformly Bounded Gradient: E‖∇Fk (w, ξ)‖2 ≤ H 2

for mini-batch data ξ at client k ∈ [N ].
We present the main convergence result of MT with full

clients participation in Theorem 1.

Theorem 1: Define φ = L/µ, γ = max{8φ,E}. Set learn-

ing rate as ηt = 2/(µ(γ+t)) and adopt an SNR control policy

that scales the effective uplink and downlink noise power over

t such that:

σ2t ≤ 4N 2

µ2(γ + t − 1)2
∼ O

(
1

t2

)

(14)

ζ2t ≤ 4N 2

µ2(γ + t)(γ + t − 2)
∼ O

(
1

t2

)

(15)

where σ2t �
∑

k∈[N ] σ
2
t ,k and ζ2t �

∑

k∈[N ] ζ
2
t ,k denote the

total uplink and downlink effective noise power, respectively.
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Then, under Assumption 1, the convergence of FEDAVG with

non-IID datasets and full clients participation satisfies

E‖wT − w∗‖2 ≤ 8L+ µE

µ(T + γ)
‖w0 − w∗‖2 + 4D

µ2(T + γ)
(16)

with D =
∑N

k=1 δ
2
k/N

2 + 6LΓ + 8(E − 1)2H 2 + 2d .

A few remarks about Theorem 1 and its proof are now in

order.

Remark 1: A complete proof of Theorem 1 can be found in

Appendix A. The core technique utilized in Appendix A is the

perturbed iterate framework that was pioneered in [42], espe-

cially the virtual sequence construction that have been widely

adopted in the distributed SGD analysis [9], [10], [15], [21].

The unique challenge of this proof, however, is how to han-

dle simultaneous uplink and downlink noises, which cannot

be isolated from the SGD iterations. Not only do we have to

incorporate more virtual sequences in the proof, but they also

have the “coupling” effect in that downlink noise is present in

the SGD steps and further in the new local model for uplink,

while the uplink noise is present in the next-round downlink

model. A careful manipulation of these coupled noise com-

ponents in the various virtual sequences is a key analytical

novelty of the proof.

Remark 2: We make an important clarification that

although the requirement of Theorem 1 is presented in terms

of the effective noise power, what ultimately matters is the

SNR defined in Section III-B. Controlling the effective noise

power to scale as O(1/t2) is equivalent to scaling the SNR

as O(t2), and can be implemented by either increasing the

signal power (e.g., transmit power control) or reducing the

post-processing noise power (e.g., receive diversity combin-

ing) while satisfying a fixed total resource budget constraint.

We discuss design examples that realize the requirement of

Theorem 1 in Section V.

Remark 3: It is not surprising to see that Theorem 1

requires the SNR to increase, which gradually suppresses the

noise effect as the FL process converges. There are, however,

two unique characteristics about this theorem:

1) It characterizes a sufficient condition for the SNR scal-

ing law as O(t2). As we will see in Section VI, choosing

an SNR scaling that is slower than O(t2) degrades the

FL performance.

2) This O(t2) scaling law can be realized under a fixed

total budget constraint. In other words, the benefit of

Theorem 1 does not come from using more communi-

cation resources, but rather is due to a more judicious

allocation (following the scaling law) of the same

resource budget.

Remark 4: Theorem 1 guarantees that even under simulta-

neous uplink and downlink noisy communications, the same

O(1/T ) convergence rate of FEDAVG with perfect commu-

nications can be achieved if we control the effective noise

power of both uplink and downlink to scale at rate O(1/t2)
and choose the learning rate at O(1/t) over t. We note that the

choice of ηt to scale as O(1/t) is well-known in distributed

and federated learning [15], [20], [21], [41], which essentially

controls the “SGD noise” that is inherent to the stochastic pro-

cess in SGD to gradually shrink as the FL process converges.

We also note that for other learning rate choices in SGD, the

fundamental insight of Theorem 1, i.e., controlling the “effec-

tive channel noise” to not dominate the “SGD noise”, is still

valid. We will investigate the convergence requirement that

clients adopt different learning rates in future research.

Remark 5: Lastly, we note that the scaling law in

Theorem 1 should be viewed as an average SNR requirement

that changes over learning rounds. The time scale of changing

the average SNR is on the order of learning rounds, which is

much slower6 than the time scale of the time-varying wireless

channel. Furthermore, the SNR scaling law can be used in con-

junction with other “faster” resource allocation mechanisms,

such as inner-loop power control, to handle wireless dynamics

under the average SNR budget decided from Theorem 1. This

will become clear in Section V-A.

B. Convergence Analysis for Model Transmission for Partial

Clients Participation

We now generalize the convergence analysis for full clients

participation to partial clients participation, where we have a

given K < N and uniformly randomly select a set of clients

St at round t to carry out the FL process. In this section, we

mostly follow the FL system model described in Section III-B,

with the only simplification that we consider homogeneous

noise power levels at the uplink and downlink, i.e., we assume

σ2t ,k = σ̄2t , and ζ2t ,k = ζ̄2t , ∀t ∈ [T ], k ∈ [N ]. (17)

The main reason to introduce this simplification is due to the

time-varying randomly participating clients: since St changes

over t, the total power levels also vary over t if we insist on

heterogeneous noise power for different clients. Furthermore,

since clients are randomly selected, the total power level

becomes a random variable as well, which significantly com-

plicates the convergence analysis. Making this assumption

would allow us to focus on the challenge with respect to the

model update from partial clients participation.

Theorem 2: Let φ, γ and ηt be the same as in Theorem 1.

Adopt an SNR control policy that scales the effective uplink

and downlink noise power over t such that:

σ̄2t ≤ 4K

µ2(γ + t − 1)2
∼ O

(
1

t2

)

(18)

ζ̄2t ≤ 4N

µ2(γ + t)(γ + t − 2)
∼ O

(
1

t2

)

(19)

where σ̄2t and ζ̄2t represent the individual client effective

noise in the uplink and downlink, respectively, which are

defined in (17). Then, under Assumption 1, the convergence of

FEDAVG with non-IID datasets and partial clients participation

has the same convergence rate expression as (16), with D being

replaced as D =
∑N

k=1 δ
2
k/N

2 + 4(N −K )E2H 2/(K (N −
1)) + 6LΓ + 8(E − 1)2H 2 + 2d .

6This is particularly true when there are a large number of clients partici-
pating in the FL process, as the length of learning rounds is often dominated
by the “straggler” [43].
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The proof of Theorem 2 is given in Appendix B. We can

see that partial clients participation does not fundamentally

change the behavior of FL in the presence of uplink and

downlink communication noises. However, unlike full client

participation, the uplink effective noise depends on the number

of active users, which makes it harder to satisfy (18) compared

with (19). The reason behind this difference is that, in partial

client participation, the downlink process remains the same

as the fully client participation, while the number of partici-

pants in the uplink process reduces from N to K. Therefore,

the effective uplink noise can only be controlled by K rather

than N participants, which implies that each user needs to

allocate more transmission power than the fully client par-

ticipation case to achieve the desired noise-free convergence

rate of FL. We will provide a practical example to handle this

tighter upper bound in Section V-B.

C. Convergence Analysis for Model Differential Transmission

In this section, we consider the model different transmission

(MDT) scheme when the clients upload model parameters.

Since only model differential is transmitted, the receiver must

possess a copy of the “base” model to reconstruct the updated

model. This precludes using MDT in the downlink for partial

clients participation, because participating clients differ from

round to round, and a newly participating client does not have

the “base” model of the previous round to reconstruct the new

global model. We thus only focus on MDT in the uplink and

MT in the downlink with partial clients participation.

Theorem 3: Let φ, γ and ηt be the same as in Theorem 1,

and the effective noise follows (17). Adopt an SNR control

policy that maintains a constant uplink SNR at each client

over t:

SNR
S,MDT
t ,k = ν ∼ O(1), (20)

and scales the effective downlink noise power at each client

over t such that:

ζ̄
2
t ≤

4

µ2

1
N
(γ + t)(γ + t − 2) + 1

K

(
1 + 1

ν

)
(γ + t)2

∼ O

(
1

t2

)

.

(21)

Then, under Assumption 1, the convergence of FEDAVG with

non-IID datasets and partial clients participation for uplink

MDT and downlink MT has the same convergence rate expres-

sion as (16), with D being replaced as D =
∑N

k=1 δ
2
k/N

2 +
4(N −K )E2H 2/(K (N −1))+4E2H 2/(Kν)+6LΓ+8(E−
1)2H 2 + d .

The complete proof of Theorem 3 can be found in

Appendix C. It is instrumental to note that unlike direct

model transmission, only transmitting model differentials in

the uplink allows us to remove the corresponding SNR scal-

ing requirement. Instead, one can keep a constant SNR in

uplink throughout the entire FL process. Intuitively, this is

because the “scaling” already takes place in the model differ-

ential dkt , which is the difference between the updated local

model at client k after E epochs of training and the start-

ing local model. As FL gradually converges, this differential

becomes smaller. Thus, by keeping a constant communication

SNR, we essentially scale down the effective noise power at

the server.

Lastly, we note that the constant SNR requirement of

Theorem 3 enables very simple implementation given the

MDT SNR expression in (9). The signal power in the numer-

ator of (9) is unknown and varies over learning rounds.

However, a constant SNR requirement means one can fix the

transmit power and “scales” individual dkt to have the desired

power, without prior knowledge of its true variance.

V. COMMUNICATION DESIGN EXAMPLES

FOR FL IN NOISY CHANNELS

An immediate engineering question following the previous

analyses is how we can realize the effective noise power (or

equivalently the SNR) specified in the theorems. A natural

approach is transmit power control, which has the flexibility

of controlling the average receive SNR (and thus the effec-

tive noise power) while satisfying a total power constraint.

Specially, for an FL task with T total communication rounds

and a given total power budget of P over all rounds, it is

straightforward to compute that

Pt = 6Pt2/(T (T + 1)(2T + 1)), ∀t = 1, . . . ,T , (22)

where Pt is the desired average transmit power of the

communication round t.

Since we consider analog communication and aggregation

for FL, we also need to take the wireless channel fading

into account. To combat the influence of channel fading on

received power, we now propose two design examples to

demonstrate how the proposed O(t2)-power increased strat-

egy could be adopted in both continuous and discrete average

power allocation schemes.

A. Design Example I: Transmit Power Control for

Analog Aggregation

We first design a power control policy for the analog aggre-

gation FL framework in [12], [13], [33], as an example to

demonstrate the system design for FL tasks in the presence of

communication noise.

The Analog Aggregation Method in [12], [13], [33]:

Consider a communication system where several narrow-

band orthogonal channels (e.g., sub-carriers in orthogonal

frequency-division multiplexing (OFDM), time slots in time

division multiple access (TDMA)) are shared by K random

selected clients in an uplink model upload phase of a commu-

nication round. Each element in the transmitted model w ∈ R
d

is allocated and transmitted in a narrowband channel and

aggregated automatically over the air. Denote the received sig-

nal of each element i = 1, . . . , d in the t-th communication

round as

yt ,i =
1

K

∑

k∈St

r
−α/2
t ,k ht ,k ,i

√
pt ,k ,iwt ,k ,i + nt ,i ∀k ∈ St ,

where r
−α/2
t ,k and ht ,k ,i∼ CN (0, 1) are the large-scale and

small-scale fading coefficients of the channel, respectively,

nt ,i ∼ CN (0, 1) is the additive Gaussian white noise of the

channel, and pt ,k ,i denotes the transmit power determined by
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the power control policy. We assume perfect channel state

information at the transmitters (CSIT). Due to the aggrega-

tion requirement of federated learning, the channel inversion

rule is used in [13], which leads to the following instantaneous

transmit power of user k at time t for model weight element i:

pt ,k ,i =
ρUL
t

r−α
t ,k |ht ,k ,i |2

, (23)

where ρUL
t is a scalar that denotes the uplink average transmit

power, which is to be optimized. Hence, the receive SNR of

the global model can be written as

SNR
G
t = E

∥
∥
∥
∥
∥
∥

1

K

d∑

i=1

√

ρUL
t

∑

k∈St
wt ,k ,i

nt ,i

∥
∥
∥
∥
∥
∥

2

=
ρUL
t E

∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

dK 2
. (24)

Transmit Power Control: The original analog aggregation

framework in [13] assumes that ρUL
t is a constant over time t.

However, our theoretical analysis in Section IV suggests that

this can be improved. Specifically, if we take partial clients

participation and MT as an example, and further assume IID

weight elements, we have

ρUL
t =

K

σ̄2t
≥ µ2(γ + t − 1)2

4
∼ O

(

t2
)

, (25)

by plugging in Theorem 2, which implies that ρt should be

increased at the rate O(t2) in the uplink to ensure the con-

vergence of FEDAVG. Similar policy can be derived for MDT

and/or full clients participation, by invoking the corresponding

theorems.

In the downlink case, when the server broadcasts the global

model to K randomly selected clients, the receive signal of the

i-th element for the n-th user in the t-th communication round

is

yt ,n,i = r
−α/2
t ,n ht ,n,i

√

ρDL
t wt ,i + et ,n,i ∀n = 1 · · ·K ,

where et ,n,i ∈ CN ∼ (0, 1) is the additive Gaussian white

noise, and ρDL
t is the transmitted power at the server. The

downlink SNR for the n-th user is

SNR
L
t ,n,i = r−α

t ,n |ht ,n,i |2ρDL
t . (26)

Instead of keeping ρDL
t as a constant, we derive the following

policy based on Theorem 3 to guarantee the convergence of

FEDAVG:

ρDL
t ≥

rαt ,kµ
2(γ + t)(γ + t − 2)

4N |ht ,n,i |2
∼ O(t2). (27)

Finally, by applying the power control policy defined in

Eqns. (25) and (27), FL tasks are able to achieve better perfor-

mances under the same energy budget. This is also numerically

validated in the experiment.

Remarks: We note that the proposed transmit power control

only changes the average transmit power at learning rounds.

Such method is often referred to as the outer-loop power con-

trol (OLPC) [44], which operates at a very slow time scale

and only relies on the large-scale, stationary information of

the wireless FL system. In fact, this method can be used in

conjunction with a faster inner-loop power control, such as

the channel inversion power in (23) or any other methods that

handle the fast fading component or interference, to deter-

mine the instantaneous transmit power of the sender. Another

minor note is that the pathloss component appears in (27) but

not in (25). This is due to the broadcast nature of download.

For upload, the pathloss is absorbed in the channel inversion

expression (23).

B. Design Example II: Receive Diversity Combining for

Analog Aggregation

Another technique that can benefit from our theoretical

results is to control the diversity order of a receiver combining

scheme, such as using multiple receive antennas, multiple time

slots, or multiple frequency resources. Essentially we are lever-

aging the repeated transmissions to reduce the effective noise

power via receive diversity combining, and by only activating

sufficient diversity branches as we progress over the learning

rounds, resources can be more efficiently utilized.

Uplink Diversity Requirement: We assume the uploaded

local model is independently received Lt times (over time,

frequency, space, or some combination of them) in the t-th

round. Reusing the notations and the channel inversion rule

in (23), the Lt received signals for the i-th element can be

denoted as

yt ,i ,l =
1

K

K∑

k=1

√
ρt ,lwt ,k ,i + nt ,i ,l ∀k ∈ St , ∀l = 1 · · ·Lt .

For simplicity, we fixed the average transmit power for each

branch: ρt ,l = ρ0, but this can be easily extended to incorpo-

rate power allocation over diversity branches [44]. The receive

SNR of the global model after the diversity combining can be

written as

SNR
G
t = E

∥
∥
∥
∥
∥
∥

d∑

i=1

∑Lt

l=1

√
ρt,l
K

∑

k∈St
wt ,k ,i

∑Lt

l=1 nt ,i ,l

∥
∥
∥
∥
∥
∥

2

= Lt

ρ0E
∥
∥
∥
∑

k∈St
wk
t

∥
∥
∥

2

dK 2
.

Compared with the SNR of the power control policy in (24),

we can derive the diversity requirement as

Lt =
⌈

ρUL
t /ρ0

⌉

, (28)

where 
a� denotes the ceiling operation on a.

Downlink Diversity Requirement: The server broadcasts

the global weight for Qt times (again it can be over time,

frequency, space, or some combination of them) in the t-th

round and each client combines the multiple independent

copies of the received signals to achieve a higher SNR (i.e.,

lower effective noise power). The receive signal at client k can

be written as

yt ,k ,i ,q = r
−α/2
t ,k ,i ,qht ,k ,i ,q

√
ρt ,qwt ,i + et ,k ,i ,q ∀q = 1 · · ·Qt ,
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where ρt ,q = ρ1 is the (constant) transmit power at the server.

The downlink SNR for the k-th user is SNRL
t ,k = r−α

t ,k Qtρ1.
Similarly, compared with the local SNR in (26), we can derive

the diversity requirement as

Qt =
⌈

ρDL
t /ρ1

⌉

. (29)

By applying the combining rules in Eqns. (28) and (29), we

have the complete design for receive diversity combining that

can guarantee the convergence of FL at rate O(1/T ), under

the transmit power constraints at both clients and server.

Remarks: Receive diversity combining is not as flexible as

power control, because it can only achieve discrete effective

noise power levels. This is also observed in the experiments.

However, it can be useful in situations where adjusting the

average transmit power is not feasible, e.g., no change at the

transmitter is allowed. In addition, one can combine the trans-

mit power control in Section V-A with the receive diversity

combining in Section V-B in a straightforward manner. We

also note that there are other methods, such as increasing the

precision of Analog-to-Digital Converters (ADC), to imple-

ment the SNR control policy. The general design principles in

Theorems 1 to 3 can be similarly realized.

VI. EXPERIMENT RESULTS

A. Experiment Setup

We consider noisy uplink and downlink communications to

support various FL tasks. For simplicity, we assume that every

channel use has the same noise level, and we also assume that

both uplink and downlink have the same total energy budget

P =
∑T

t=1 Pt , where Pt is the transmission power of the

t-th round, t = 1, . . . ,T . However, we note that the downlink

energy is consumed only by the server (i.e., Pt ), while the

uplink budget is equally shared among all clients (i.e., Pt/N
per transmitter), resulting in significantly smaller uplink trans-

mit power per transmitter than the downlink. In each round of

FL, the updated (locally or globally) ML model (or model dif-

ferential when applicable) is transmitted over the noisy channel

as described in Section III-B. We consider the following four

schemes in the experiments.

1) Noise Free: This is the ideal case with no noise in

either uplink or downlink. The accurate model parame-

ters are perfectly received at the server and clients. This

represents the best-case performance.

2) Equal Power Allocation: This corresponds to Pt =
P/T , ∀t = 1, . . . ,T , as used in [13]. We adopte a

normalized transmitted power Pt = 1 and the receive

SNR of the model parameters is set as 10 dB in the

experiments.

3) O(t2)-Increased Power Control Policy: Transmit power

increases at the rate of O(t2) with the round t but the

overall energy consumption is kept constant as other

methods, i.e., the receive SNR is increased and the effec-

tive noise of the signal is decreased with the progress

of FL. With the total budget P, (22) gives the power

allocation solution.

4) O(t2)-Increased Diversity Combining Policy: The trans-

mit power in both downlink and uplink remains the same

as 2). However, the final models at the server and clients

of each communication round are obtained by multiple

repeated transmissions and the subsequent combining.

The number of the repeated transmissions increases at

the rate of O(t2). For simple discretization, we use 1, 4,

9, 16 and 25 orders of receive diversity combining in

both uplink and downlink model transmissions for 1st

to 9th, 10th to 45th, 46th to 125th, 125th to 270th,

and 270th to 500th communication round, respectively,

of a 500-round task. Note that the total energy budget

remains the same as the previous two methods.

We use the standard image classification and natural lan-

guage processing FL tasks to evaluate the performances of

these schemes. The following three standard datasets are used

in the experiments, which are commonly accepted as the

benchmark tasks to evaluate the performance of FL.

1) MNIST: The training sets contain 60000 examples. For

the full clients participation case, the training sets are

evenly distributed over N = K = 10 clients. For the

partial clients participation case, the training sets are

evenly partitioned over N = 2000 clients each contain-

ing 30 examples, and we set K = 20 per round (1% of

total users). For the IID case, the data is shuffled and

randomly assigned to each client, while for the non-IID

case the data is sorted by labels and each client is then

randomly assigned with 1 or 2 labels. The CNN model

has two 5 × 5 convolution layers, a fully connected

layer with 512 units and ReLU activation, and a final

output layer with softmax. The first convolution layer

has 32 channels while the second one has 64 channels,

and both are followed by 2 × 2 max pooling. The fol-

lowing parameters are used for training: local batch size

BS = 5, the number of local epochs E = 1, and learning

rate η = 0.065.

2) CIFAR-10: We set N = K = 10 for the full clients par-

ticipation case while N = 100 and K = 10 for the partial

clients participation case. We train a CNN model with

two 5 × 5 convolution layers (both with 64 channels),

two fully connected layers (384 and 192 units respec-

tively) with ReLU activation and a final output layer with

softmax. The two convolution layers are both followed

by 2 × 2 max pooling and a local response norm layer.

The training parameters are: (a) IID: BS = 50, E = 5,

learning rate initially sets to η = 0.15 and decays every

10 rounds with rate 0.99; (b) non-IID: BS = 100, E = 1,

η = 0.1 and decay every round with rate 0.992.

3) Shakespeare: This dataset is built from The Complete

Works of William Shakespeare and each speaking role

is viewed as a client. Hence, the dataset is naturally

unbalanced and non-IID since the number of lines and

speaking habits of each role varies significantly. There

are totally 1129 roles in the dataset [45]. We randomly

pick 300 of them and build a dataset with 794659

training examples and 198807 test examples. We also

construct an IID dataset by shuffling the data and redis-

tribute evenly to 300 roles and set K = 10. The ML task

is the next-character prediction, and we use a classifier

with an 8D embedding layer, two LSTM layers (each
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Fig. 2. Comparing the performance of transmit power control to the baselines
with full clients participation, model transmission, and both IID (left two) and
non-IID (right two) FL on the CIFAR-10 dataset.

with 256 hidden units) and a softmax output layer with

86 nodes. The training parameters are: BS = 20, E = 1,

learning rate initially sets to η = 0.8 and decays every

10 rounds with rate 0.99.

We compare the test accuracies and training losses as func-

tions of the communication rounds for all the aforementioned

configurations. All of the reported results are obtained by aver-

aging over 5 independent runs. We also report the final test

accuracy, which is averaged over the last 10 rounds, as the

performance of the final global model.

B. Experiment Results for Transmit Power Control

The focus of the experiment is on partial clients participa-

tion under both MT and MDT, but we first report the results

for full clients participation in CIFAR-10, to highlight some

common observations across all experiments.

Full Clients Participation: We see from Fig. 2 that under

the same total power budget, the O(t2) power control pol-

icy performs better than the equal power allocation scheme

and is very close to the noise-free ideal case. Specifically,

O(t2) power control policy achieves 81.1% and 59.6% final

test accuracy in IID and non-IID data partitions on CIFAR-10,

which is 2.6% and 9.8% better than that of the equal power

allocation scheme. Note that the training loss (test accuracy)

of equal power allocation scheme increases (decreases) during

the late rounds (350th to 500th) in the non-IID case, imply-

ing that a non-increasing SNR may occur deterioration in the

convergence of FL for more difficult ML tasks.

To further validate the O(t2) scaling, we also carry out

experiments where power is increased as a slower rate of

O(log(t)) and O(t). The resulting performance is much worse

than the O(t2) scaling, and in fact has only very limited

improvement over the equal power allocation.

Lastly, we note that the early rounds of all methods have

very similar performance. This is because although O(t2)
power control allocates less power than the equal power pol-

icy, both are dominated by the noise of SGD in early rounds

Fig. 3. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the MNIST dataset.

Fig. 4. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the CIFAR-10 dataset.

and thus their performances are similar. This phenomenon is

also observed in other experiments, which again highlights the

benefits of adaptively “flying under the radar”, to only allocate

sufficient-but-not-excessive transmit power in each round. All

of the aforementioned observations carry over to other tasks

and different FL configurations.

Partial Clients Participation: The performance comparisons

of the three schemes on MNIST, CIFAR-10 and Shakespeare

datasets in both IID and non-IID configurations and MT are

reported in Figs. 3, 4, and 5, respectively. Their final model

accuracies (after T rounds of FL are complete) are also sum-

marized in Table I. First, we see from Fig. 3 that the proposed

O(t2)-increased power allocation scheme achieves higher test

accuracy and lower train loss than the equal power alloca-

tion scheme under the same energy budget on MNIST. In

particular, O(t2)-increased power allocation scheme achieves

0.6% higher test accuracy than that of equal power allocation

scheme in both IID and non-IID data partitions, respectively.
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Fig. 5. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the Shakespeare dataset.

TABLE I
PERFORMANCE SUMMARY OF MT

TABLE II
PERFORMANCE SUMMARY OF MDT

It may seem that the gain is insignificant, but the reason is

mostly due to that MNIST classification is a very simple

task. In fact, the gain of power control is much more notable

under the challenging CIFAR-10 and Shakespeare tasks as

shown in Figs. 4 and Fig. 5, respectively. Compared with

the equal power allocation scheme, which achieves 90.2%

and 81.6% of the ideal (noise free) test accuracy in IID

and non-IID data partitions under CIFAR-10 dataset respec-

tively, the proposed O(t2)-increased power allocation achieves

99.2% (IID) and 95.9% (non-IID) of the ideal (noise free) test

accuracy respectively after T = 500 communication rounds.

Similarly, under Shakespeare dataset, the equal power alloca-

tion scheme achieves 91.5% (IID) and 95.8% (non-IID) of the

ideal (noise free) test accuracy, while the proposed method

improves 8.5% and 3.5%, respectively.

MDT: We next present the experiment results of model

differential transmission. Note that, by applying MDT, the

Fig. 6. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the MNIST dataset.

Fig. 7. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the CIFAR-10 dataset.

uplink transmission power of the proposed scheme remains

constant (recall that SNR is set as 10dB) while the downlink

transmission power still increases at the rate of O(t2).
Figs. 6, 7 and 8 illustrate the test accuracies and training losses

with MDT under MNIST, CIFAR-10 and Shakespeare datasets

and the final model accuracies of the three schemes are sum-

marized in Table II. We see that the proposed power control

policy achieves 99.7% (99.7%), 99.2% (98.0%) and 100%

(98.9%) of the ideal test accuracy in IID (non-IID) data setting

under MNIST, CIFAR-10 and Shakespeare datasets, respec-

tively, which significantly outperforms the baseline equal

power allocation scheme.

C. Experiment Results for Receive Diversity Combining

We next evaluate the performance of receive diversity com-

bining. Due to space limitations, we only report the result

for CIFAR-10, but similar conclusions hold for other tasks.

Fig. 9 captures the test accuracies and training losses of receive

diversity combining together with noise free and equal power
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Fig. 8. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the Shakespeare dataset.

Fig. 9. Comparing the performance of receive diversity combining to the
baselines with partial clients participation, model differential transmission,
and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

allocation schemes. Although receive diversity combining is

less flexible than the (continuous) transmit power control pol-

icy, we can see that it still outperforms the baseline method

and approaches the noise-free ideal case. We notice that the

training losses of receive diversity combining are larger than

those of the equal power allocation scheme at the beginning

stage of convergence, but as the diversity branches increase,

the training losses eventually reduce and the model converges

to a better global one. Particularly, receive diversity combining

achieves 75.6% and 47.8% test accuracies for IID and non-IID

data partitions, which is 3.9% and 3.4% better than the equal

power allocation scheme.

VII. CONCLUSION

In this paper, we have investigated federated learning over

noisy channels, where a FEDAVG pipeline with both uplink

and downlink communication noises was studied. By theo-

retically analyzing the model training convergence, we have

proved that the same O(1/T ) convergence rate of FEDAVG

under perfect (noise-free) communications can be maintained

if the uplink and downlink SNRs are controlled as O(t2)
over noisy channels for direct model transmission, and O(1)
for model differential transmission. We have showcased two

widely used communication methods – transmit power control

and receive diversity combining – to implement these theoret-

ical results. Extensive experimental results have corroborated

the theoretical analysis and demonstrated the performance

superiority of the advanced designs over baseline methods

under the same total energy budget. Future research direc-

tions include relaxing the assumption of strongly convex loss

functions to a broader class (e.g., convex, non-convex), and

removing the fixed T assumption to develop an any-time

version of the proposed design.

APPENDIX A

PROOF OF THEOREM 1

A. Preliminaries

With a slight abuse of notation, we change the timeline to

be with respect to the overall SGD iteration time steps instead

of the communication rounds, i.e.,

t = 1, . . . ,E
︸ ︷︷ ︸

round 1

,E + 1, . . . , 2E
︸ ︷︷ ︸

round 2

, . . . , . . . , (T − 1)E + 1, . . . ,TE
︸ ︷︷ ︸

round T

.

Note that the (noisy) global model wt is only accessible at the

clients for specific t ∈ IE , where IE = {nE | n = 1, 2, . . . },

i.e., the time steps for communication. The notations for ηt ,
σt and ζt are similarly adjusted to this extended timeline, but

their values remain constant inside the same round.

As mentioned in Section IV-A, the key technique in the

proof is the perturbed iterate framework in [42]. In partic-

ular, We first define the following variables

ukt+1 =
1

N

∑

i∈[N ]

vit+1, pkt+1 = ukt+1 +
1

N

∑

i∈[N ]

nit+1,

and wk
t+1 = pkt+1 + ekt+1,

to summarize the aforementioned steps:

vkt+1 � wk
t − ηt∇Fk

(

wk
t , ξ

k
t

)

;

ukt+1 �

{

vkt+1 if t + 1 /∈ IE ,
1
N

∑

i∈[N ] v
i
t+1 if t + 1 ∈ IE ;

pkt+1 �

{

vkt+1 if t + 1 /∈ IE ,
ukt+1 +

1
N

∑

i∈[N ] n
i
t+1 if t + 1 ∈ IE .

wk
t+1 �

{
vkt+1 if t + 1 /∈ IE ,
pkt+1 + ekt+1 if t + 1 ∈ IE .

Then, we construct the following virtual sequences:

vt =
1

N

N∑

k=1

vkt , ut =
1

N

N∑

k=1

ukt ,

pt =
1

N

N∑

k=1

pkt , and wt =
1

N

N∑

k=1

wk
t . (30)
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We also define gt = 1
N

∑N
k=1∇Fk (w

k
t ) and gt =

1
N

∑N
k=1∇Fk (w

k
t , ξ

k
t ) for convenience. Therefore, vt+1 =

wt − ηtgt and E[gt ] = gt . After some manipulation, we can

also write the specific formulations of these virtual sequences

when t + 1 ∈ IE as follows:

ut+1 =
1

N

∑

i∈[N ]

vit+1, pt+1 = ut+1 +
1

N

∑

i∈[N ]

nit+1,

wt+1 = pt+1 +
1

N

N∑

k=1

ekt+1. (31)

Note that for t + 1 /∈ IE , all these virtual sequences are

the same. In addition, the global model (at the server) pt+1 is

meaningful only at t+1 ∈ IE . We emphasize that when t+1 ∈
IE , Eqns. (31) and (10) indicate that pt+1 = wt+1. Thus it

is sufficient to analyze the convergence of
∥
∥pt+1 − w∗∥∥2.

B. Lemmas and Proofs

Lemma 1: Let Assumption 1 hold, ηt is non-increasing,

and ηt ≤ 2ηt+E for all t ≥ 0. If ηt ≤ 1/(4L),
we have E‖vt+1 − w∗‖2 ≤ (1 − ηtµ)E‖wt − w∗‖2 +
η2t (

∑N
k=1 δ

2
k/N

2 + 6LΓ + 8(E − 1)2H 2).
Lemma 1 establishes a bound for the one-step SGD.

This result only concerns the local model update and is

not impacted by the noisy communication. The derivation is

similar to the technique in [15].

Lemma 2: We have

E
[
pt+1

]
= ut+1,E

∥
∥ut+1 − pt+1

∥
∥2 =

dσ2t+1

N 2
;

E[wt+1] = pt+1,E
∥
∥wt+1 − pt+1

∥
∥2 =

dζ2t+1

N 2
(32)

for t + 1 ∈ IE , where σ2t+1 �
∑

k∈[N ] σ
2
t+1,k and ζ2t+1 �

∑

k∈[N ] ζ
2
t+1,k .

Proof: For t + 1 ∈ IE , we have E[pt+1 − ut+1] =
1
K

∑

k∈[N ] E[n
k
t+1] = 0 and E

∥
∥pt+1 − ut+1

∥
∥2 =

1
N 2E

∥
∥
∥
∑

k∈[N ] n
k
t+1

∥
∥
∥

2
= 1

N 2

∑

k∈[N ] E

∥
∥
∥nkt+1

∥
∥
∥

2
=

dσ2
t+1

N 2

from (31), because {nkt+1, ∀k} are independent

variables. Similarly, according to (31), we have

E[wt+1 − pt+1] = 1
N

∑

k∈[N ] E[e
k
t+1] = 0 and

E
∥
∥wt+1 − pt+1

∥
∥2 = 1

N 2E

∥
∥
∥
∑

k∈[N ] e
k
t+1

∥
∥
∥

2
=

1
N 2

∑

k∈[N ] E

∥
∥
∥ekt+1

∥
∥
∥

2
=

∑

k∈[N ] dζ
2
t+1,k

N 2 =
dζ2

t+1

N 2 .

C. Proof of Theorem

We need to consider four cases for the analysis of the

convergence of E
∥
∥pt+1 − w∗∥∥2.

1) If t /∈ IE and t + 1 /∈ IE , wt = pt and vt+1 = pt+1.

Using Lemma 1, we have:

E
∥
∥pt+1 − w

∗
∥
∥
2
= E

∥
∥vt+1 − w

∗
∥
∥
2
≤ (1− ηtµ)E

∥
∥pt − w

∗
∥
∥
2

+ η
2
t

[
N∑

k=1

δ2
k

N 2
+ 6LΓ + 8(E − 1)2H 2

]

.

2) If t ∈ IE and t + 1 /∈ IE , we still have vt+1 = pt+1.

With wt = pt +
1
N

∑N
k=1 e

k
t , we have:

‖wt − w∗‖2 = ‖wt − pt + pt − w∗‖2

= ‖pt − w∗‖2 + ‖wt − pt‖2
︸ ︷︷ ︸

A1

+ 2〈wt − pt , pt − w∗〉
︸ ︷︷ ︸

A2

.

We first note that the expectation of A2 over the noise ran-

domness is zero since we have E[wt − pt ] = 0 (from (32)).

Second, the expectation of A1 can be bounded using Lemma 2.

We then have

E
∥
∥pt+1 − w∗∥∥2 = E‖vt+1 − w∗‖2

≤ (1− ηtµ)E‖pt − w∗‖2

+ (1− ηtµ)E‖wt − pt‖2 (33)

+ η2t

[
N∑

k=1

δ2k
N 2

+ 6LΓ + 8(E − 1)2H 2

]

≤ (1− ηtµ)E‖pt − w∗‖2 + (1− ηtµ)
dζ2t
N 2

(34)

+ η2t

[
N∑

k=1

δ2k
N 2

+ 6LΓ + 8(E − 1)2H 2

]

.

(35)

3) If t /∈ IE and t+1 ∈ IE , then we still have wt = pt . For

t+1, we need to evaluate the convergence of E
∥
∥pt+1 − w∗∥∥2.

We have

∥
∥pt+1 − w∗∥∥2 =

∥
∥pt+1 − ut+1 + ut+1 − w∗∥∥2

=
∥
∥pt+1 − ut+1

∥
∥2

︸ ︷︷ ︸

B1

+ ‖ut+1 − w∗‖2
︸ ︷︷ ︸

B2

+ 2
〈
pt+1 − ut+1, ut+1 − w∗〉

︸ ︷︷ ︸

B3

. (36)

We first note that the expectation of B3 over the noise is zero

since we have E
[
ut+1 − pt+1

]
= 0 (from (32)). Second,

the expectation of B1 can be bounded using Lemma 2.

Noticing that ut+1 = vt+1 for B2 and applying Lemma 1,

we have:

E
∥
∥pt+1 − w∗∥∥2 ≤ E‖vt+1 − w∗‖2 +

dσ2t+1

K 2

≤ (1− ηtµ)E‖pt − w∗‖2 +
dσ2t+1

N 2
(37)

+ η2t

[
N∑

k=1

δ2k
N 2

+ 6LΓ + 8(E − 1)2H 2

]

.

(38)

4) If t ∈ IE and t + 1 ∈ IE , vt+1 �= pt+1 and wt �= pt .

(Note that this is possible only for E = 1.) Combining the
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results from the previous two cases, we have

E
∥
∥pt+1 − w∗∥∥2 ≤ (1− ηtµ)E‖pt − w∗‖2

+ (1− ηtµ)
dζ2t
N 2

+
dσ2t+1

N 2

+ η2t

[
N∑

k=1

δ2k
N 2

+ 6LΓ + 8(E − 1)2H 2

]

.

(39)

Finally, we have that inequality (39) holds for all four

cases. Denote ∆t = E‖pt − w∗‖2. If we set the effective

noise power σ2t+1 and ζ2t such that σ2t+1 ≤ N 2η2t and

ζ2t ≤ N 2 η2
t

1−ηtµ
, we always have ∆t+1 ≤ (1−ηtµ)∆t+η2t D ,

where D =
∑N

k=1
δ2
k

N 2 +6LΓ+8(E −1)2H 2+2d . We decay

the learning rate as ηt = β
t+γ for some β ≥ 1

µ and γ ≥ 0

such that η1 ≤ min{ 1
µ ,

1
4L} = 1

4L and ηt ≤ 2ηt+E . Now we

prove that ∆t ≤ v
γ+t where v = max{ β2D

βµ−1 , (γ + 1)∆0} by

induction. First, the definition of v ensures that it holds for

t = 0. Assume the conclusion holds for some t > 0. It then

follows that

∆t+1 ≤ (1− ηµ)∆t + η
2
t D =

(

1−
βµ

t + γ

)
v

t + γ
+

β2
D

(t + γ)2

=
t + γ − 1

(t + γ)2
v +

[
β2

D

(t + γ)2
−

µβ − 1

(t + γ)2
v

]

≤
v

t + γ + 1
.

Then by the strong convexity of F (·), E[F (wt )] − F ∗ ≤
L
2∆t ≤ L

2
v

γ+t . Specially, if we choose β = 2
µ , γ =

max{8Lµ − 1,E} and denote φ = L
µ , then ηt = 2

µ
1

γ+t .

Using max{a, b} ≤ a + b, we have v ≤ 4D
µ2 + (γ +

1)∆0 ≤ 4D
µ2 +(8φ+E )‖w0 − w∗‖2. Therefore, ∆t ≤ v

γ+t =

1
γ+t

[
4D
µ2 + (8φ+ E )‖w0 − w∗‖2

]

. Setting t = T concludes

the proof.

APPENDIX B

PROOF OF THEOREM 2

The additional difficulty in proving Theorem 2 comes from

partial clients participation. The approach we take is to study

a “virtual” FL process where all clients receive the noisy

downlink broadcast of the latest global model, and they all par-

ticipate in the subsequent local model update phase. However,

only the selected clients in St+1 upload their updated local

model to the server via the noisy uplink channel. It is clear

that this “virtual” FL is equivalent to the original process in

terms of the convergence – clients that are not selected do not

contribute to the global model aggregation. This seemingly

redundant process, however, circumvents the difficulty due to

partial clients participation as can be seen in the analysis.

Before presenting the proof, we first elaborate on some

necessary changes of notation. The notation defined in

Appendix A-A can be largely reused, with the notable distinc-

tion that now we have to separate the cases for K and for N. For

t+1 ∈ IE , the variables of ukt+1 and pkt+1 are now defined as:

ukt+1 = 1
K

∑

i∈St
vit+1 and pkt+1 = ukt+1 +

1
K

∑

i∈St
nit+1.

Note that Lemma 2 still holds with the following update:

E
∥
∥ut+1 − pt+1

∥
∥2 =

d σ̄2
t+1
K , E

∥
∥wt+1 − pt+1

∥
∥2 =

d ζ̄2
t+1
N .

In addition, we need the following lemma, whose proof is

available on a complete online version of this paper [46].

Lemma 3: Let Assumption 1-4) hold. With ηt ≤ 2ηt+E

for all t ≥ 0 and ∀t + 1 ∈ IE , we have E[ut+1] = vt+1 and

E‖vt+1 − ut+1‖2 ≤ N−K
N−1

4
K η2t E

2H 2.

We can now similarly analyze the four cases as in

Section A-C. Cases 1) and 2) remain the same as before. For

Case 3) we need to consider t /∈ IE and t + 1 ∈ IE . Note

that (36) still holds, but we need to re-evaluate the expectation

of B2 because of partial clients participation. We have:

‖ut+1 − w∗‖2 = ‖ut+1 − vt+1 + vt+1 − w∗‖2

= ‖ut+1 − vt+1‖2
︸ ︷︷ ︸

C1

+ ‖vt+1 − w∗‖2
︸ ︷︷ ︸

C2

+ 2〈ut+1 − vt+1, vt+1 − w∗〉
︸ ︷︷ ︸

C3

. (40)

When the expectation is taken over the random

clients sampling, the expectation of C3 is zero since

we have E[ut+1 − vt+1] = 0. The expectation of

C1 can be bounded using Lemma 3. Therefore we

have E
∥
∥pt+1 − w∗∥∥2 ≤ E‖vt+1 − w∗‖2 +

d σ̄2
t+1

K +
N−K
N−1

4
K η2t E

2H 2. Using Lemma 1 and the new defini-

tion of D in Theorem 2, we have E
∥
∥pt+1 − w∗∥∥2 ≤

E‖vt+1 − w∗‖2 +
d σ̄2

t+1
K +

4η2
t
E2H 2(N−K )
K (N−1)

≤
(1 − ηtµ)E‖pt − w∗‖2 +

d σ̄2
t+1
K + η2t (D − 2d). Case

4) can be similarly updated based on the new result in Case

3). Finally, we have that

E
∥
∥pt+1 − w

∗
∥
∥2 ≤ (1− ηtµ)E

∥
∥pt − w

∗
∥
∥2

+ (1− ηtµ)
d ζ̄2t
N

+
d σ̄2

t+1

K
+ η

2
t (D − 2d)

(41)

holds for all cases. If we set σ̄2t+1 and ζ̄2t such that σ̄2t+1 ≤
Kη2t and ζ̄2t ≤ N

η2
t

1−ηtµ
, the remaining proof follows the same

way as in Appendix A-C.

APPENDIX C

PROOF OF THEOREM 3

For model differential transmission (MDT), if t + 1 ∈ IE ,

the global aggregation is given in (11). Similar to Appendix A

and B, we expand the timeline to be with respect to the overall

SGD iteration time steps, and define the following variables

to facilitate the proof. vkt+1 � wk
t − ηt∇Fk (w

k
t , ξ

k
t ), d

k
t+1 �

vkt+1 − wk
t+1−E . Furthermore, when t + 1 /∈ IE we define

ukt+1 = pkt+1 = wk
t+1 � vkt+1, and when t+1 ∈ IE we define

ukt+1 � 1
K

∑

i∈St
vit+1, pkt+1 � wt+1−E+ 1

K

∑

i∈St
[dit+1+

nit+1], and wk
t+1 � pkt+1 + ekt+1. The virtual sequences vt ,

ut , pt and wt remain the same as (30). gt and gt are also

similarly defined. Note that the global model at the server is

the same as pt , i.e., wt+1 = pt+1.

We first establish the follow in lemma, which is instrumental

in the proof of Theorem 3.
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Lemma 4: Let Assumption 1-4) hold. Assume that ηt ≤
2ηt+E for all t ≥ 0, and further assume that the

uplink communication adopts a constant SNR control policy:

SNR
S,MDT
t ,k = ν. Then, for t + 1 ∈ IE , we have: E

[
pt+1

]
=

ut+1 and E
∥
∥ut+1 − pt+1

∥
∥2 ≤ (1+ 1

ν )
d
K ζ̄2t+1−E+ 4E2

Kν η2t H
2.

Proof: Note that if t + 1 ∈ IE , so does t + 1 − E. Insert

dkt+1 = vkt+1 − wk
t+1−E into pkt+1, we have E

[
pt+1

]
=

ut+1 + 1
K E

[
∑

k∈St
nkt+1

]

− 1
K E

[
∑

k∈St
ekt+1−E

]

=

E[ut+1]. As for the variance, we have

E
∥
∥ut+1 − pt+1

∥
∥2 =

1

K 2
E

∥
∥
∥
∥
∥
∥

∑

k∈St

nkt+1

∥
∥
∥
∥
∥
∥

2

+
1

K 2
E

∥
∥
∥
∥
∥
∥

∑

k∈St

ekt+1−E

∥
∥
∥
∥
∥
∥

2

=
1

K 2ν
E

∥
∥
∥
∥
∥
∥

∑

k∈St

dkt+1

∥
∥
∥
∥
∥
∥

2

+
d ζ̄2t+1−E

K
(42)

where the last equality comes from the constant uplink SNR

control, (9), and the assumption that each client has the same

downlink noise power ζ̄2t , ∀k ∈ [N ]. We further have

E

∥
∥
∥
∥
∥
∥

∑

k∈St

d
k
t+1

∥
∥
∥
∥
∥
∥

2

= E

∥
∥
∥
∥
∥
∥

∑

k∈St

(

v
k
t+1 − wt+1−E

)

∥
∥
∥
∥
∥
∥

2

+ dK ζ̄
2
t+1−E

≤ ESt

⎡

⎢
⎣

∑

k∈St

ESG

∥
∥
∥
∥
∥
∥

t∑

τ=t+1−E

ητ∇Fk (w
k
τ , ξ

k
τ )

∥
∥
∥
∥
∥
∥

2
⎤

⎥
⎦

+ dK ζ̄
2
t+1−E

≤ 4E2
Kη

2
t H

2 + dK ζ̄
2
t+1−E (43)

using the Cauchy-Schwarz inequality, Assumption 1-4), and

ηt+1−E < ηt−E ≤ 2ηt . Plugging (43) back to (42) gives

E
∥
∥ut+1 − pt+1

∥
∥2 =

1

K 2ν
E

∥
∥
∥
∥
∥
∥

∑

k∈St+1

dkt+1

∥
∥
∥
∥
∥
∥

2

+
d ζ̄2t+1−E

K

≤
(

1 +
1

ν

)
d

K
ζ̄2t+1−E +

4E2

Kν
η2t H

2,

which completes the proof.

We are now ready to present the proof of Theorem 3, which

is similar to that of Theorem 2. In particular, the analysis

of four cases in Section B still hold, with the only change

that (41) is updated to (44) below using Lemma 4 and the

new definition of D in Theorem 3.

E
∥
∥pt+1 − w∗∥∥2 ≤ (1− ηtµ)E‖pt − w∗‖2 + (1− ηtµ)

d

N
ζ̄2t

+

(

1 +
1

ν

)
d

K
ζ̄2t + η2t (D − d). (44)

We note that the constant uplink SNR control is already used

in Lemma 4 and (44). Then, by the definition of ∆t =
E‖pt − w∗‖2 and controlling the downlink SNR such that

ζ̄2t ≤ NKη2
t

(1−ηtµ)K+(1+ 1
ν
)N

, we have ∆t+1 ≤ (1 − ηtµ)∆t +

η2t D . The remaining proof follows using the same induction

method.

REFERENCES

[1] X. Wei and C. Shen, “Federated learning over noisy channels,” in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2021, pp. 1–6.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. AISTATS, Fort Lauderdale, FL, USA, Apr. 2017,
pp. 1273–1282.

[3] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in Proc. NIPS Workshop Private Multi-Party Mach. Learn.,
2016.

[4] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6G: Applications, challenges, and opportunities,” 2021,
arXiv:2101.01338.

[5] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. 2nd SysML Conf., 2019, pp. 1–15.

[6] P. Kairouz et al., “Advances and open problems in federated learning,”
2019, arXiv:1912.04977.

[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[8] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. 3rd MLSys

Conf., 2020.

[9] S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and
downlink communications for federated learning,” IEEE J. Sel. Areas

Commun., vol. 39, no. 7, pp. 2150–2167, Jul. 2021.

[10] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. AISTATS, 2020, pp. 2021–
2031.

[11] Y. Du, S. Yang, and K. Huang, “High-dimensional stochastic gradient
quantization for communication-efficient edge learning,” IEEE Trans.

Signal Process., vol. 68, pp. 2128–2142, Mar. 2020.

[12] M. M. Amiri and D. Gündüz, “Federated learning over wireless
fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3546–3557, May 2020.

[13] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, Jan. 2020.

[14] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[15] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2018.

[16] S. Xia, J. Zhu, Y. Yang, Y. Zhou, Y. Shi, and W. Chen, “Fast convergence
algorithm for analog federated learning,” 2020, arXiv:2011.06658.

[17] T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air
federated learning from heterogeneous data,” 2020, arXiv:2009.12787.

[18] H. Guo, A. Liu, and V. K. N. Lau, “Analog gradient aggregation for
federated learning over wireless networks: Customized design and con-
vergence analysis,” IEEE Internet Things J., vol. 8, no. 1, pp. 197–210,
Jan. 2021.

[19] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Convergence
of federated learning over a noisy downlink,” 2020, arXiv:2008.11141.

[20] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of communication-efficient SGD algorithms,” in
Proc. ICML Workshop Coding Theory Mach. Learn., 2019.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Represent.

(ICLR), 2020.

[22] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” 2020, arXiv:2001.05713.

[23] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Federated
learning with quantized global model updates,” 2020, arXiv:2006.10672.

[24] S. Chen, C. Shen, L. Zhang, and Y. Tang, “Dynamic aggregation for
heterogeneous quantization in federated learning,” IEEE Trans. Wireless

Commun., vol. 20, no. 10, pp. 6804–6819, Oct. 2021.

[25] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” 2020, arXiv:2003.00199.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 25,2022 at 22:27:44 UTC from IEEE Xplore.  Restrictions apply. 



1268 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

[26] Q. Zeng, Y. Du, K. K. Leung, and K. Huang, “Energy-efficient
radio resource allocation for federated edge learning,” 2019,
arXiv:1907.06040.

[27] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast convergence
for wireless federated learning,” 2019, arXiv:1911.00856.

[28] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
2019, arXiv:1911.02417.

[29] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 317–333, Jan. 2020.

[30] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time
optimization for federated learning over wireless networks,” 2020,
arXiv:2001.07845.

[31] J. Xu and H. Wang, “Client selection and bandwidth allocation in wire-
less federated learning networks: A long-term perspective,” IEEE Trans.

Wireless Commun., vol. 20, no. 2, pp. 1188–1200, Feb. 2021.
[32] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint

learning and communications framework for federated learning over
wireless networks,” 2019, arXiv:1909.07972.

[33] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal

Process., vol. 68, pp. 2155–2169, Mar. 2020.
[34] M. Frey, I. Bjelakovic, and S. Stanczak, “Over-the-air computation for

distributed machine learning,” 2020, arXiv:2007.02648.
[35] R. Jiang and S. Zhou, “Cluster-based cooperative digital over-the-air

aggregation for wireless federated edge learning,” in Proc. IEEE/CIC Int.

Conf. Commun. China (ICCC), Chongqing, China, 2020, pp. 887–892.
[36] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Robust

federated learning with noisy communication,” IEEE Trans. Commun.,
vol. 68, no. 6, pp. 3452–3464, Jun. 2020.

[37] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “DoubleSqueeze:
Parallel stochastic gradient descent with double-pass error-compensated
compression,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 6155–6165.

[38] Y. Yu, J. Wu, and L. Huang, “Double quantization for communication-
efficient distributed optimization,” 2018, arXiv:1805.10111.

[39] C.-Y. Chen et al., “ScaleCom: Scalable sparsified gradient compression
for communication-efficient distributed training,” in Advances in Neural

Information Processing Systems. Red Hook, NY, USA: Curran Assoc.,
Inc., 2020, pp. 13551–13563.

[40] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Advances in Neural Information Processing Systems. Red Hook, NY,
UA: Curran Assoc., Inc., 2016.

[41] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in

Neural Information Processing Systems. Red Hook, NY, USA: Curran
2018, pp. 2525–2536.

[42] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. I. Jordan, “Perturbed iterate analysis for asynchronous stochastic
optimization,” SIAM J. Optim., vol. 27, no. 4, pp. 2202–2229, 2017.

[43] A. Reisizadeh, I. Tziotis, H. Hassani, A. Mokhtari, and R. Pedarsani,
“Straggler-resilient federated learning: Leveraging the interplay between
statistical accuracy and system heterogeneity,” 2020, arXiv:2012.14453.

[44] A. Goldsmith, Wireless Communications. New York, NY, USA:
Cambridge Univ. Press, 2005.

[45] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[46] X. Wei and C. Shen, “Federated learning over noisy channels:
Convergence analysis and design examples,” 2021, arXiv:2101.02198.

Xizixiang Wei received the B.E. degree in engi-
neering from Tongji University, Shanghai, China,
in 2017, and the M.E. degree in engineering from
Fudan University, Shanghai, in 2020. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
Virginia. His research interests are mainly in the area
of federated learning, wireless communication, and
signal processing.

Cong Shen (Senior Member, IEEE) received
the B.S. and M.S. degrees from the Department
of Electronic Engineering, Tsinghua University,
China, and the Ph.D. degree in electrical engi-
neering from the University of California, Los
Angeles. He is currently an Assistant Professor
with the Charles L. Brown Department of Electrical
and Computer Engineering, University of Virginia.
He also has extensive industry experience, hav-
ing worked for Qualcomm, SpiderCloud Wireless,
Silvus Technologies, and Xsense.ai, in various full

time and consulting roles. His general research interests are in the area of
wireless communications and machine learning. He currently serves as an
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,
and IEEE WIRELESS COMMUNICATIONS LETTERS.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 25,2022 at 22:27:44 UTC from IEEE Xplore.  Restrictions apply. 


