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Federated Learning Over Noisy Channels:
Convergence Analysis and Design Examples

Xizixiang Wei

Abstract—Does Federated Learning (FL) work when both
uplink and downlink communications have errors? How much
communication noise can FL handle and what is its impact on
the learning performance? This work is devoted to answering
these practically important questions by explicitly incorporating
both uplink and downlink noisy channels in the FL pipeline. We
present several novel convergence analyses of FL over simultane-
ous uplink and downlink noisy communication channels, which
encompass full and partial clients participation, direct model
and model differential transmissions, and non-independent and
identically distributed (IID) local datasets. These analyses char-
acterize the sufficient conditions for FL over noisy channels to
have the same convergence behavior as the ideal case of no com-
munication error. More specifically, in order to maintain the
O(1/T) convergence rate of FEDAVG with perfect communica-
tions, the uplink and downlink signal-to-noise ratio (SNR) for
direct model transmissions should be controlled such that they
scale as (’)(tz) where ¢ is the index of communication rounds,
but can stay O(1) (i.e., constant) for model differential trans-
missions. The key insight of these theoretical results is a “flying
under the radar” principle — stochastic gradient descent (SGD)
is an inherent noisy process and uplink/downlink communica-
tion noises can be tolerated as long as they do not dominate the
time-varying SGD noise. We exemplify these theoretical findings
with two widely adopted communication techniques — transmit
power control and receive diversity combining — and further val-
idate their performance advantages over the standard methods
via numerical experiments using several real-world FL tasks.

Index Terms—Federated learning, convergence analysis, noisy
communications, power allocation optimization.

I. INTRODUCTION

EDERATED learning (FL) [2], [3] is an emerging dis-

tributed machine learning paradigm that has many attrac-
tive properties which can address new challenges in machine
learning (ML). In particular, FL is motivated by the growing
trend that a massive amount of the real-world data is exoge-
nously generated at the edge devices and is considered as one
of the potential key applications in 6th generation (6G) cellular
communication systems [4].
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Communication efficiency has been at the front and center
of FL ever since its inception [2], [3], and it is widely regarded
as one of its primary bottlenecks [5]-[7]. Communication
schemes for FL can be divided into two categories: digital
communication and analog communication. Digital communi-
cation for FL is usually considered to incur a heavy burden
for wireless networks, as it allocates different communica-
tion resources to the ML model parameters of each client.
Analog communication reduces the communication overhead
by allowing different clients to transmit FL. models using
shared resources. Early research has largely focused on either
reducing the number of communication rounds [2], [8], or
decreasing the size of the payload for transmission [9]-[11].
However, in most FL literature that deals with communication
efficiency, it is often assumed that a perfect communication
“tunnel” has been established, and the task of improving
communication efficiency largely resides on the ML design
that trades off computation and communication. More recent
research starts to close this gap by focusing on the system
design, particularly for wireless FL; see Section II for an
overview. Nevertheless, the focus has been on bandwidth allo-
cation, device selection, or either uplink or downlink (but not
both) cellular system designs.

While the early studies provide a glimpse of the potential
of optimizing the communication design for FL, the impor-
tant and more practical issue of noisy communications for
both uplink (clients send local models to the parameter server)
and downlink (server sends the global model to clients) has
not been well investigated. Analytically speaking, joint con-
sideration of both noisy uplink and downlink complicates the
convergence analysis because of noise propagation in both
directions of every communication round. Furthermore, all of
these noisy uplink and downlink communications collectively
determine the final learning performance, which requires a
holistic design and analysis.

The goal of this paper is two-fold: we want to first under-
stand the impact of communication-induced noise, in both
upload (uplink) and download (downlink) phases of FL, on
the ML model convergence and accuracy performance, and
then design communication algorithms to control the signal-
to-noise ratio (SNR) to improve FL performance under a total
resource budget. We focus on analog communications for
model updates [12]-[14] and investigate SNR control in both
uplink and downlink, which is especially crucial when the
underlying ML method is stochastic gradient descent (SGD)
as considered in this work, because SGD is much more
sensitive to noise than the (full) gradient descent [6], [15].
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Our treatment is novel because all prior works either study
uplink-only [12], [13], [16]-[18] or downlink-only [19] noisy
communications, but not both. We present novel conver-
gence analyses of the standard Federated Averaging (FEDAVG)
scheme under non-IID datasets, full or partial clients partici-
pation, direct model or model differential transmissions, and
simultaneous noisy downlink and uplink analog communica-
tions. These analyses are based on very general receive noise
assumptions, and hence are broadly applicable to a variety of
communication systems. The key insight of these theoretical
results is a “flying under the radar” principle: SGD is inher-
ently a noisy process, and as long as uplink/downlink channel
noises do not dominate the SGD noise during model train-
ing (which is controlled by the time-varying learning rate),
the scaling of convergence is not affected. This general prin-
ciple is exemplified with two widely adopted communication
techniques — transmit power control and receive diversity com-
bining — by controlling the resulting post-processing SNR
to satisfy the theoretical analyses under a fixed total bud-
get constraint. Comprehensive numerical evaluations on three
widely adopted ML tasks with increasing difficulties (MNIST,
CIFAR-10 and Shakespeare) are carried out using these tech-
niques. We carry out a series of experiments to demonstrate
that the fine-tuned transmit power control and receive diver-
sity combining that are guided by the theoretical analyses can
significantly outperform the equal-SNR-over-time baseline,
and in fact can approach the ideal noise-free communication
performance in many of the experiment settings.

To summarize, the main contributions of this work include
the following.

e We present novel convergence analyses for FL with
simultaneous uplink and downlink noisy analog commu-
nications, with full vs. partial clients participation, direct
model vs. model differential, and non-IID local datasets.
To the best of the authors’ knowledge, this is the first
time FL convergence analysis is carried out when both
upload and download phases are over noisy communi-
cation channels, which introduces significant challenges
because of the noise propagation in both directions.

o We establish SNR scaling laws. In particular, we prove
that in order to maintain the well established O(1/T)!
convergence rate of FEDAVG with noise-free communica-
tions, O(t?) SNR scaling is needed for direct model and
O(1) (i.e., constant) for model differential. This #2-vs-1
scaling law comparison under the same communication
environment is novel.

o We enhance the widely adopted transmit power control
and receive diversity combining algorithms to better serve
FL over noisy channels, and validate their performance
advantages over the state-of-the-art methods under the
same total resource budget via extensive numerical exper-
iments.

The remainder of this paper is organized as follows. Related
works are surveyed in Section II. The system model that cap-
tures the noisy channels in both uplink and downlink of FL is
described in Section III. Theoretical analyses are presented

INotation f = O(g) denotes f is of order at most of g.
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in Section IV for three different FL configurations. These
results inspire novel communication designs of transmit power
control and receive diversity combining that are presented in
Section V. Experimental results are given in Section VI, fol-
lowed by the conclusions in Section VII. All technical proofs
are given in the Appendices.

II. RELATED WORKS

Improve FL Communication Efficiency: The original
FEDAVG reduces the communication overhead by only peri-
odically averaging the local models. Theoretical understanding
of the communication-computation tradeoff has been actively
pursued and, depending on the underlying assumptions (e.g.,
IID or non-IID local datasets, convex or non-convex loss
functions, GD or SGD), rigorous analyses of the conver-
gence behavior have been carried out [15], [20], [21]. For
the approach of reducing the size of messages, general dis-
cussions on sparsification, subsampling, and quantization are
given in [3]. There are also recent efforts in developing
quantization and source coding to reduce the communica-
tion cost [9]-[12], [22]-[24]. Nevertheless, they mostly do not
consider the communication channel noise.

Communication Design for FL: Recent years have also
seen increased effort in the communication algorithm and
system design for FL. The trade-off between local model
update and global model aggregation is studied in [25]
to optimize the transmission power/rate and training time.
Various radio resource allocation and client selection poli-
cies [26]-[31] have been proposed to minimize the learning
loss or the training time. Joint communication and compu-
tation is investigated [13], [14], [22], [32]. In particular, the
analog aggregation design [13], [22], [33] serves as one of
our design examples in Section V.

FL With Imperfect/Noisy Communications: Existing lit-
erature is dominated by uplink-only noisy communica-
tions [12]-[14], [16]-[18], [34], [35]. There is very limited
study on downlink-only noisy communications for FL; [19]
proposes and analyzes downlink digital and analog trans-
missions while assuming an error-free uplink. On the other
hand, existing literature that consider both upload and down-
load imperfect communications focus only on how to modify
the ML model training method. In particular, [36] changes
the loss function of FL to accommodate the communication
error. References [37]-[39] propose to compress the gradi-
ents in order to tolerate both uplink and downlink bandwidth
bottlenecks. Their methods are either error compensation,
quantization or leveraging sparsity. None of these considers
improving the communication design.

III. SYSTEM MODEL FOR LEARNING
AND NoOIsY COMMUNICATION

We first introduce the FL problem formulation, and then
describe the FL pipeline where both local model upload
(uplink) and global model download (downlink) take place
over noisy channels.
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Fig. 1.

A. FL Problem Formulation

The federated learning problem setting studied in this
paper mostly follows the standard model in the original
paper [2]. In particular, we consider a FL system with
one central parameter server (e.g., base station) and a set
of at most N clients (e.g., mobile devices). Client k &
[N] & {1,2,..., N} stores a local dataset D}, = {2 ?:kr
with its size denoted by Dy, that never leaves the client.
Datasets across clients are assumed to be non-IID and dis-
joint. The maximum data size when all clients participate
in FL is Diot = 22121 Dy,. Each data sample z is given
as an input-output pair {x, y}. The loss function f(w, z)
measures how well a ML model with parameter w & R?
fits a single data sample z. Without loss of generality, we
assume that w has zero-mean and unit-variance elements,?
ie., E||w;||> = 1, Vi € [d]. For the k-th client, its local loss
function Fy(-) is defined by Fy(w) = Dikzzepkf(w,z),
and we further use VFi(w,&) to denote the SGD oper-
ation with model w and data sample ¢ at client k. The
goal of FL is to learn a global machine learning (ML)
model at the parameter server based on the distributed local
datasets at the N clients, by coordinating and aggregating
the training processes at individual clients without allow-
ing the server to access the raw data. Specifically, the
global optimization objective over all N clients is given by
F(w) £ Y, FEFuw) = 5= 300 5ep, f(w,2).
The global loss function measures how well the model fits
the entire corpus of data on average. The learning objec-
tive is to find the best model parameter w* that minimizes
the global loss function: w* = argminy, F(w). Let F* and
F}; be the minimum value of F' and F}, respectively. Then,
r=Fr*-— Zé\le %F; quantifies the degree of non-1ID as
shown in [21].

2The parameter normalization and de-normalization procedure in wire-
less FL can be found in the Appendix in [13]. We further note that weight
normalization is widely adopted in training deep neural networks [40].

End-to-end FL system diagram in the #-th communication round. The impact of noisy channels in both uplink and downlink is captured.

B. FL Over Noisy Uplink and Downlink Channels

We study a generic FL framework where partial client par-
ticipation and non-IID local datasets, two critical features that
separate FL from conventional distributed ML, are explicitly
captured. Unlike the existing literature, we focus on imper-
fect communications and consider that both the upload and
download transmissions take place over noisy communication
channels. The overall system diagram is depicted in Fig. 1. In
particular, the FL-over-noisy-channel pipeline works by itera-
tively executing the following steps at the 7-th learning round,
vt e [T).

1) Downlink Communication for Global Model Download:
The centralized server broadcasts the current global ML
model, which is described by the latest weight vector w;_1
from the previous round, to a set of uniformly randomly
selected clients® denoted as S; with |S;| = K. Because of
the imperfection introduced in communications, e.g., channel
noise, imperfect channel estimation, and detection or estima-
tion error, client k receives a noisy version of wy_1, which is
written as

~ k k

Wi_] = W1+ ey, (D
where e’f = [efl,...,efd]T € R? is the d-dimensional
downlink effective noise vector at client k and time . We
assume that ef is a zero-mean random vector consisting of
IID elements with variance:

2 2
k 2 k 2
EHet,i = (i and EHet H = dC ks

YVt e [T], k € S,i € d]. )

Effective Noise and Definition of SNR: In order to keep the
problem general, we do not specify a particular communica-
tion system for the actual downlink data transmission, and
only use the effective noise model in (1). The same approach
applies to the uplink. This is a conscious choice to keep the
problem general, and we want to focus on analyzing the impact

3We note that for partial clients participation, we have K < N; in the case
of full clients participation we have K = N.
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of communication-induced noise and further controlling the
resulting SNR to improve FL performance. In this way, e’t“
shall be interpreted as the effective noise that captures all the
processing components in a downlink communication phase
in addition to the natural channel noise.* Because we have
normalized the variance of each scalar model parameter as
described in Section III-A, the (post-processing) receive SNR
for the k-th client at the #-th communication round can be
written as

Eljwe | _ 1
SNRL, = —/—"—0 — .
R T

Lastly, we note that the noise assumption is very mild,
because (2) only requires a bounded variance of the random
noise, but does not limit to any particular distribution. In addi-
tion, the downlink communication model is very general in the
sense that the effective noise variances, { Ct2, 1) can be different
for different clients and at different rounds.

2) Local Computation: Each client uses its local data to
train a local ML model improved upon the received global
ML model. In this work, we assume that mini-batch SGD is
used in the model training. Note that this is the most com-
monly adopted training method in modern ML tasks, e.g.,
deep neural networks, but its analysis is more complicated
than gradient descent (GD) when communication noise is
present.

Specifically, mini-batch SGD operates by updating the
weight iteratively (for E steps in each learning round) at client
k as follows:

3)

Initialization: w]tio = v‘vf_l,
. k k k k
Iteration: Wir =Wir 1~ mVFE} (wt,T—1? 57)7
Vr=1,...,F,
. k _ ok
Output: w; =wy p,

where 5’; is a batch of data points that are sampled indepen-
dently and uniformly at random from the local dataset of client
k in the 7-th iteration of mini-batch SGD.

3) Uplink Communication for Local Model Upload: The
K participating clients upload their latest local models to the
server. More specifically, client k transmits a vector x],f to
the server at the t-th round. We again consider the practi-
cal case where the server receives a noisy version of the
individual weight vectors from each client in the uplink
communications (e.g., channel noise, fading, transmitter and
receiver distortion). The received vector for client k can be
written as

f(t = X]tg + n]tg7 (4)

where mltC € R is the d-dimensional uplink effective noise
vector for decoding client k’s model at time 7. We assume that

4As a simple example, if the downlink communication is over a standard
Additive White Gaussian Noise (AWGN) channel, then the actual received
signal at client k is y{ttl = /Pi_1wi_1 + zlg where sz represents the
AWGN and P;_1 is the downlink broadcast transmit power. The effective

channel noise becomes elg = Lk

VPi—1 b
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n} is a zero-mean random vector consisting of IID elements

with bounded variance:
2 2
k 2 k 2
]EHnt’l = Jt,k a,nd EHnt H = dat,k’

Vit e [T],k €Sy, i € [d). )

We again note that the uplink communication model in (5)
is very general in the sense that (1) only bounded variance
is assumed as opposed to the specific noise distribution; and
(2) the effective noise variances, {0?7 1} can be different for
different clients and at different rounds.

Unlike in the download phase where the model itself is
transmitted to clients, two different choices of the vector x’f
for model upload are considered in this paper.

1) Model Transmission (MT): The K participating clients

upload the latest local models: x]tC = w]tc. Following (4),
the server receives the updated local model of client & as

Wi =&F = wl +nb. (6)
2) Model Differential Transmission (MDT): The K partic-
ipating clients only upload the differences between the
latest local model and the previously received (noisy)
global model, i.e., xltC = d]f £ wf — ‘i’lttl- For MDT,
the server uses d],f and the previously computed global
model w;_1 to reconstruct the updated local model of
client k as

_k ok ko k ko kK
Wi =wi 1+ % =wi1+dif +nf =wi +nf —ef. (7)

The SNR for these two models, however, has to be defined
slightly differently because we have normalized the ML model
parameter w to have unit-variance elements in Section III-A.
Thus, for MT, we can write the receive SNR at the server for
k-th client’s signal as

E||w||”
SMT _ d _ 1 ®)
tk 2~ 2

Elnf[™ 7t
For MDT, we keep the SNR expression general since the vari-
ance of model difference d’t“ is unknown a priori and also
changes over time. We have:

s et

NRSMDT _ :
dat,k

tk = p)
E||n||

The different choices of MT and MDT are not considered
in most of the literature because with a perfect communication
assumption, there is no difference between them from a pure
learning perspective — as long as the server can reconstruct
w’t“, this aspect does not impact the learning performance [2].
However, the choice becomes significant when communication
noises are present. From a practical system point of view, both
schemes can be useful in different use cases. For example,
MDT in the uplink relies on the server keeping the previous
global model w;_1, from which the new local models can
be reconstructed. This, however, may not always be true if the
server deletes intermediate model aggregation (after broadcast)
for privacy preservation [5], which makes reconstruction from
the model differential infeasible.
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We also note that the download phase, on the other hand,
does not have these two choices — we always transmit the
global model w;_1 itself. This is because we have partial
(and random) clients participation, where the set of clients
participating in the #-th round can be totally different from the
(t — 1)-th round, and they do not have the previous global
model to reconstruct based on the model difference.

Noise Propagation: Both uplink and downlink channel
noises collectively impact the received local models at the
server. This noise propagation effect is more prominent in
MDT ((7) explicitly has both noise terms). However, this effect
in fact exists in both cases, because the local model is trained
using the previously received global model, which contains
the downlink noise.

4) Global Aggregation: The server aggregates the received
local models to generate a new global ML model following
the standard FEDAVG [2]: w; = Zkest Sics D D . The

server then moves on to the (¢ 4+ 1)-th round. For ease of expo-
sition and to simplify the analysis, we assume in the remainder
of the paper that the local dataset sizes at all clients are the
same>: D; = Dj, Vi,j € [N], which leads to the following
simplifications.

1) MT: The aggregation can be simplified as

Zwt’f(z KZ(Wt“‘t)

kGSt keS; keS:
(10)
2) MDT: The aggregation can be written as
1 - 1 .
Wt:? wa:wt,1+? Zxk
kES: keS:
1
:?Z<wf—|—n{?—e]§). (11)
keS:

For the case of MT, the SNR for the global model (after
aggregation) can be written as

k 2
B Sues, v

k112
E[|Xhes, nf|
and for MDT, the SNR for the global model can be written as

k 2 k 2
EHZkest Vi H B EHZICESt Wi H
2 2 2
E[Zies, (nf —ef)| d(oF +¢F)

where 07 £ 3, g 07, and (? £ 3, g (7, denote the
total uplink and downlink effective noise power for participat-

ing clients, respectively.

In general, {Wf } are correlated across clients because the
local model updates all start from (roughly) the same global
model. Intuitively, once FL convergences, these models will
largely be the same, leading to a signal power term of dK2
for the numerator. On the other hand, if we assume that these
local models are independent across clients, which is reason-
able in the early phases of FL with large local epochs, where

k 2
I R

SNRE = ,
t da%

12)

SNRY = , (13)

SWe emphasize that all the results of this paper can be extended to handle
different local dataset sizes.
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the (roughly) same starting point has diminishing impact due
to the long training period and non-IID nature of the data dis-
tribution, we can have a signal power term of dK. Nevertheless,
since the SNR control can be realized by adjusting the effec-
tive noise power levels, we focus on the impact of 0t2 and Ctz
on the FL performance in Section IV.

In this paper, we mainly focus on analog communication
for FL, where model parameters are transmitted in an ana-
log manner. Therefore, digital communication processing such
as source coding, channel coding and modulation are not
incorporated. The adopted zero-mean bounded random noise
assumption is reasonable for this setting, because it does not
require any specific distribution and thus can be applicable to
a broad range of analog communication systems.

IV. CONVERGENCE ANALYSIS OF
FL OVER NOISY CHANNELS

A. Convergence Analysis for Model Transmission for Full
Clients Participation

We first analyze the convergence of FEDAVG in the pres-
ence of both uplink and downlink communication noise when
direct model transmission (MT) is adopted for local model
upload: x]t"’ = wltf. To simplify the analysis and highlight the
key techniques in deriving the convergence rate, we assume
K = N in this subsection (i.e., full clients participation with
Sit = [K] = [N]), and leave the case of partial clients
participation to Section IV-B.
We make the following standard assumptions that are com-
monly adopted in the convergence analysis of FEDAVG and
its variants; see [9], [10], [15], [21], [41]. In particular,
Assumption 1-2) indicates that we focus on strongly convex
Fj.(+), which represents a category of loss functions that are
widely studied in the literature.
Assumption 1: 1) L-Smooth: ¥ v and w, Fp(v) <
Fy(w) + (v = w) TV Fy(w) + £ lv — w2,

2) p-Strongly Convex: ¥ v and w, F(v) > Fi(w) +
w) TV Fy(w) + &]|v — w])>

3) Bounded Variance for Unbiased Mini-Batch SGD: The
mini-batch SGD is unbiased: E[V F(w, )] = VFi(w),
and the variance of stochastic gradients is bounded:
E||V Fy(w,&) — VF(w)||? < 62, for mini-batch data
¢ at client k € [N].

4) Uniformly Bounded Gradient: E||V Fy(w,¢)||> < H?
for mini-batch data & at client k € [N].

We present the main convergence result of MT with full
clients participation in Theorem 1.

Theorem 1: Define ¢ = L/u1, v = max{8¢, E'}. Set learn-
ing rate as 7 = 2/(u(y+t)) and adopt an SNR control policy
that scales the effective uplink and downlink noise power over
t such that:

(v—

5 AN? 1

%< e~ o) “‘”
< et s~ o(2)
“S G nnri-n " o\e 1

where Utz £ Zke[N] UtQ,k and §t2 £ Zke[N] Ct2,k denote the
total uplink and downlink effective noise power, respectively.
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Then, under Assumption 1, the convergence of FEDAVG with
non-IID datasets and full clients participation satisfies

8L+ pE o 4D
< ————|wo— W +
u(T+v)” | w2 (T +7)
(16)

2
Eljwp —w|

with D = SN | 62 /N2 + 6L + 8(E — 1)2H? + 2d.

A few remarks about Theorem 1 and its proof are now in
order.

Remark 1: A complete proof of Theorem 1 can be found in
Appendix A. The core technique utilized in Appendix A is the
perturbed iterate framework that was pioneered in [42], espe-
cially the virtual sequence construction that have been widely
adopted in the distributed SGD analysis [9], [10], [15], [21].
The unique challenge of this proof, however, is how to han-
dle simultaneous uplink and downlink noises, which cannot
be isolated from the SGD iterations. Not only do we have to
incorporate more virtual sequences in the proof, but they also
have the “coupling” effect in that downlink noise is present in
the SGD steps and further in the new local model for uplink,
while the uplink noise is present in the next-round downlink
model. A careful manipulation of these coupled noise com-
ponents in the various virtual sequences is a key analytical
novelty of the proof.

Remark 2: We make an important clarification that
although the requirement of Theorem 1 is presented in terms
of the effective noise power, what ultimately matters is the
SNR defined in Section III-B. Controlling the effective noise
power to scale as O(1/t?) is equivalent to scaling the SNR
as O(tz), and can be implemented by either increasing the
signal power (e.g., transmit power control) or reducing the
post-processing noise power (e.g., receive diversity combin-
ing) while satisfying a fixed total resource budget constraint.
We discuss design examples that realize the requirement of
Theorem 1 in Section V.

Remark 3: It is not surprising to see that Theorem 1
requires the SNR to increase, which gradually suppresses the
noise effect as the FL process converges. There are, however,
two unique characteristics about this theorem:

1) It characterizes a sufficient condition for the SNR scal-
ing law as O(#2). As we will see in Section VI, choosing
an SNR scaling that is slower than O(#2) degrades the
FL performance.

2) This O(t?) scaling law can be realized under a fixed
total budget constraint. In other words, the benefit of
Theorem 1 does not come from using more communi-
cation resources, but rather is due to a more judicious
allocation (following the scaling law) of the same
resource budget.

Remark 4: Theorem 1 guarantees that even under simulta-
neous uplink and downlink noisy communications, the same
O(1/T) convergence rate of FEDAVG with perfect commu-
nications can be achieved if we control the effective noise
power of both uplink and downlink to scale at rate O(1/t2)
and choose the learning rate at O(1/t) over 7. We note that the
choice of 7 to scale as O(1/t) is well-known in distributed
and federated learning [15], [20], [21], [41], which essentially
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controls the “SGD noise” that is inherent to the stochastic pro-
cess in SGD to gradually shrink as the FL process converges.
We also note that for other learning rate choices in SGD, the
fundamental insight of Theorem 1, i.e., controlling the “effec-
tive channel noise” to not dominate the “SGD noise”, is still
valid. We will investigate the convergence requirement that
clients adopt different learning rates in future research.

Remark 5: Lastly, we note that the scaling law in
Theorem 1 should be viewed as an average SNR requirement
that changes over learning rounds. The time scale of changing
the average SNR is on the order of learning rounds, which is
much slower® than the time scale of the time-varying wireless
channel. Furthermore, the SNR scaling law can be used in con-
junction with other “faster” resource allocation mechanisms,
such as inner-loop power control, to handle wireless dynamics
under the average SNR budget decided from Theorem 1. This
will become clear in Section V-A.

B. Convergence Analysis for Model Transmission for Partial
Clients Participation

We now generalize the convergence analysis for full clients
participation to partial clients participation, where we have a
given K < N and uniformly randomly select a set of clients
S; at round ¢ to carry out the FL process. In this section, we
mostly follow the FL system model described in Section III-B,
with the only simplification that we consider homogeneous
noise power levels at the uplink and downlink, i.e., we assume

ol =07, and (Fp=(f, Vte[T]ke[N]. (A7)

The main reason to introduce this simplification is due to the
time-varying randomly participating clients: since Sy changes
over t, the total power levels also vary over ¢ if we insist on
heterogeneous noise power for different clients. Furthermore,
since clients are randomly selected, the total power level
becomes a random variable as well, which significantly com-
plicates the convergence analysis. Making this assumption
would allow us to focus on the challenge with respect to the
model update from partial clients participation.

Theorem 2: Let ¢, vy and 7 be the same as in Theorem 1.
Adopt an SNR control policy that scales the effective uplink
and downlink noise power over ¢ such that:

_9 4K 1

%< e~ () o
- AN 1
PG 0 -2 O<t2> 4

where 5? and 5,52 represent the individual client effective

noise in the uplink and downlink, respectively, which are
defined in (17). Then, under Assumption 1, the convergence of
FEDAVG with non-1ID datasets and partial clients participation
has the same convergence rate expression as (16), with D being
replaced as D = Z,ivzl 62/N? + 4(N — K)E*H?/(K (N —
1)) +6LT + 8(F — 1)2H]§ + 2d.

OThis is particularly true when there are a large number of clients partici-
pating in the FL process, as the length of learning rounds is often dominated
by the “straggler” [43].
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The proof of Theorem 2 is given in Appendix B. We can
see that partial clients participation does not fundamentally
change the behavior of FL in the presence of uplink and
downlink communication noises. However, unlike full client
participation, the uplink effective noise depends on the number
of active users, which makes it harder to satisfy (18) compared
with (19). The reason behind this difference is that, in partial
client participation, the downlink process remains the same
as the fully client participation, while the number of partici-
pants in the uplink process reduces from N to K. Therefore,
the effective uplink noise can only be controlled by K rather
than N participants, which implies that each user needs to
allocate more transmission power than the fully client par-
ticipation case to achieve the desired noise-free convergence
rate of FL. We will provide a practical example to handle this
tighter upper bound in Section V-B.

C. Convergence Analysis for Model Differential Transmission

In this section, we consider the model different transmission
(MDT) scheme when the clients upload model parameters.
Since only model differential is transmitted, the receiver must
possess a copy of the “base” model to reconstruct the updated
model. This precludes using MDT in the downlink for partial
clients participation, because participating clients differ from
round to round, and a newly participating client does not have
the “base” model of the previous round to reconstruct the new
global model. We thus only focus on MDT in the uplink and
MT in the downlink with partial clients participation.

Theorem 3: Let ¢, v and 7 be the same as in Theorem 1,
and the effective noise follows (17). Adopt an SNR control
policy that maintains a constant uplink SNR at each client
over t:

SNRPT = v~ 0(1), (20)

and scales the effective downlink noise power at each client
over ¢ such that:

4
=2

- oL
U B B GRS Ty O(t2)'
2D

Then, under Assumption 1, the convergence of FEDAVG with
non-1ID datasets and partial clients participation for uplink
MDT and downlink MT has the same convergence rate expres-
sion as (16), with D being replaced as D = ZkN:1 (5]%/N2 +
4N — K)E?H?/(K(N —1))+4E?H?/(Kv)+6LT+8(E —
1)2H? + d.

The complete proof of Theorem 3 can be found in
Appendix C. It is instrumental to note that unlike direct
model transmission, only transmitting model differentials in
the uplink allows us to remove the corresponding SNR scal-
ing requirement. Instead, one can keep a constant SNR in
uplink throughout the entire FL process. Intuitively, this is
because the “scaling” already takes place in the model differ-
ential df, which is the difference between the updated local
model at client k after E epochs of training and the start-
ing local model. As FL gradually converges, this differential
becomes smaller. Thus, by keeping a constant communication
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SNR, we essentially scale down the effective noise power at
the server.

Lastly, we note that the constant SNR requirement of
Theorem 3 enables very simple implementation given the
MDT SNR expression in (9). The signal power in the numer-
ator of (9) is unknown and varies over learning rounds.
However, a constant SNR requirement means one can fix the
transmit power and “scales” individual d’tc to have the desired
power, without prior knowledge of its true variance.

V. COMMUNICATION DESIGN EXAMPLES
FOR FL IN NOISY CHANNELS

An immediate engineering question following the previous
analyses is how we can realize the effective noise power (or
equivalently the SNR) specified in the theorems. A natural
approach is transmit power control, which has the flexibility
of controlling the average receive SNR (and thus the effec-
tive noise power) while satisfying a total power constraint.
Specially, for an FL task with T total communication rounds
and a given total power budget of P over all rounds, it is
straightforward to compute that

Py =6P2/(T(T+1)2T +1)), Vt=1,..., T, (22)

where P; is the desired average transmit power of the
communication round ¢.

Since we consider analog communication and aggregation
for FL, we also need to take the wireless channel fading
into account. To combat the influence of channel fading on
received power, we now propose two design examples to
demonstrate how the proposed O(tQ)-power increased strat-
egy could be adopted in both continuous and discrete average
power allocation schemes.

A. Design Example I: Transmit Power Control for
Analog Aggregation

We first design a power control policy for the analog aggre-
gation FL framework in [12], [13], [33], as an example to
demonstrate the system design for FL tasks in the presence of
communication noise.

The Analog Aggregation Method in [I12], [13], [33]:
Consider a communication system where several narrow-
band orthogonal channels (e.g., sub-carriers in orthogonal
frequency-division multiplexing (OFDM), time slots in time
division multiple access (TDMA)) are shared by K random
selected clients in an uplink model upload phase of a commu-
nication round. Each element in the transmitted model w € R¢
is allocated and transmitted in a narrowband channel and
aggregated automatically over the air. Denote the received sig-
nal of each element : = 1,...,d in the 7-th communication
round as

—a/2
E Tk / hi ki/Pt ki Wi ki + N Yk € St,
kES:

Yt,i = 7~

where rt_,?/z and hyp, i~ CN(0,1) are the large-scale and
small-scale fading coefficients of the channel, respectively,
ng; ~ CN(0,1) is the additive Gaussian white noise of the

channel, and p; ;. ; denotes the transmit power determined by
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the power control policy. We assume perfect channel state
information at the transmitters (CSIT). Due to the aggrega-
tion requirement of federated learning, the channel inversion
rule is used in [13], which leads to the following instantaneous
transmit power of user k at time ¢ for model weight element i:

"

Dt kyi = (23)

BT
rik bt gl
where pyL is a scalar that denotes the uplink average transmit
power, which is to be optimized. Hence, the receive SNR of
the global model can be written as

2
d ./, UL
1 Pt §:kes Wt ki
G_ t L2}
SNRy =E ?;El s

=

2
V|5, |

B dK? '

Transmit Power Control: The original analog aggregation

framework in [13] assumes that ng is a constant over time ¢.

However, our theoretical analysis in Section IV suggests that

this can be improved. Specifically, if we take partial clients

participation and MT as an example, and further assume IID
weight elements, we have

(24)

2 —_1)2
L _ K iy +t-1) No(tz)’ (25)

a2 = 4
by plugging in Theorem 2, which implies that p; should be
increased at the rate O(¢2) in the uplink to ensure the con-
vergence of FEDAVG. Similar policy can be derived for MDT
and/or full clients participation, by invoking the corresponding
theorems.

In the downlink case, when the server broadcasts the global
model to K randomly selected clients, the receive signal of the
i-th element for the n-th user in the #-th communication round
is

—a/2 DL
Yt =Ty Meni\/Pf Wi+ eini Yn=1---K,

where e; , ; € CN ~ (0,1) is the additive Gaussian white
noise, and pPL is the transmitted power at the server. The
downlink SNR for the n-th user is

SNR 1,5 = 7 e n i 7™ (26)
Instead of keeping pPL as a constant, we derive the following
policy based on Theorem 3 to guarantee the convergence of
FEDAVG:

o o RO+t -2)
= 4N|ht,n,i 2

Finally, by applying the power control policy defined in
Eqns. (25) and (27), FL tasks are able to achieve better perfor-
mances under the same energy budget. This is also numerically
validated in the experiment.

Remarks: We note that the proposed transmit power control
only changes the average transmit power at learning rounds.
Such method is often referred to as the outer-loop power con-
trol (OLPC) [44], which operates at a very slow time scale

~ O(t?).

27)
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and only relies on the large-scale, stationary information of
the wireless FL system. In fact, this method can be used in
conjunction with a faster inner-loop power control, such as
the channel inversion power in (23) or any other methods that
handle the fast fading component or interference, to deter-
mine the instantaneous transmit power of the sender. Another
minor note is that the pathloss component appears in (27) but
not in (25). This is due to the broadcast nature of download.
For upload, the pathloss is absorbed in the channel inversion
expression (23).

B. Design Example II: Receive Diversity Combining for
Analog Aggregation

Another technique that can benefit from our theoretical
results is to control the diversity order of a receiver combining
scheme, such as using multiple receive antennas, multiple time
slots, or multiple frequency resources. Essentially we are lever-
aging the repeated transmissions to reduce the effective noise
power via receive diversity combining, and by only activating
sufficient diversity branches as we progress over the learning
rounds, resources can be more efficiently utilized.

Uplink Diversity Requirement: We assume the uploaded
local model is independently received L; times (over time,
frequency, space, or some combination of them) in the #-th
round. Reusing the notations and the channel inversion rule
in (23), the L; received signals for the i-th element can be
denoted as

K

|
Vi = 72 D PLW ki + et TR E Sy, Vi=1-o Ly,
k=1

For simplicity, we fixed the average transmit power for each
branch: p; ; = pg, but this can be easily extended to incorpo-
rate power allocation over diversity branches [44]. The receive
SNR of the global model after the diversity combining can be
written as

2

SNRtG —E i ZlL:tl @ ZkESt wt’kvi

Ly
i=1 21;1 .1

k 2
| Ees, vt
=L e :

Compared with the SNR of the power control policy in (24),
we can derive the diversity requirement as

L= MJL/M,

where [a] denotes the ceiling operation on a.

Downlink Diversity Requirement: The server broadcasts
the global weight for (); times (again it can be over time,
frequency, space, or some combination of them) in the #-th
round and each client combines the multiple independent
copies of the received signals to achieve a higher SNR (i.e.,
lower effective noise power). The receive signal at client k can
be written as

(28)

—a/2
Yt,kyi,qg = Tt,k,i,qhtvk%qmwt,i + et kg Va=1---Qr,
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where p; 4 = p1 is the (constant) transmit power at the server.
The downlink SNR for the k-th user is SNRZ th = rt i X Qp1.
Similarly, compared with the local SNR in (26) we can derive
the diversity requirement as
Q= [PPL/PJ-

By applying the combining rules in Eqns. (28) and (29), we
have the complete design for receive diversity combining that
can guarantee the convergence of FL at rate O(1/T), under
the transmit power constraints at both clients and server.

Remarks: Receive diversity combining is not as flexible as
power control, because it can only achieve discrete effective
noise power levels. This is also observed in the experiments.
However, it can be useful in situations where adjusting the
average transmit power is not feasible, e.g., no change at the
transmitter is allowed. In addition, one can combine the trans-
mit power control in Section V-A with the receive diversity
combining in Section V-B in a straightforward manner. We
also note that there are other methods, such as increasing the
precision of Analog-to-Digital Converters (ADC), to imple-
ment the SNR control policy. The general design principles in
Theorems 1 to 3 can be similarly realized.

(29)

VI. EXPERIMENT RESULTS
A. Experiment Setup

We consider noisy uplink and downlink communications to
support various FL tasks. For simplicity, we assume that every
channel use has the same noise level, and we also assume that
both uplink and downlink have the same total energy budget
P = Zthl P;, where P, is the transmission power of the
t-thround, t = 1,..., T. However, we note that the downlink
energy is consumed only by the server (i.e., P;), while the
uplink budget is equally shared among all clients (i.e., P;/N
per transmitter), resulting in significantly smaller uplink trans-
mit power per transmitter than the downlink. In each round of
FL, the updated (locally or globally) ML model (or model dif-
ferential when applicable) is transmitted over the noisy channel
as described in Section III-B. We consider the following four
schemes in the experiments.

1) Noise Free: This is the ideal case with no noise in
either uplink or downlink. The accurate model parame-
ters are perfectly received at the server and clients. This
represents the best-case performance.

2) Equal Power Allocation: This corresponds to P; =
P/T.,Nt = 1,..., T, as used in [13]. We adopte a
normalized transmitted power P; = 1 and the receive
SNR of the model parameters is set as 10 dB in the
experiments.

3) O(t?)-Increased Power Control Policy: Transmit power
increases at the rate of O(t2) with the round 7 but the
overall energy consumption is kept constant as other
methods, i.e., the receive SNR is increased and the effec-
tive noise of the signal is decreased with the progress
of FL. With the total budget P, (22) gives the power
allocation solution.

4) O(t?)-Increased Diversity Combining Policy: The trans-
mit power in both downlink and uplink remains the same
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as 2). However, the final models at the server and clients
of each communication round are obtained by multiple
repeated transmissions and the subsequent combining.
The number of the repeated transmissions increases at
the rate of O(t2). For simple discretization, we use 1, 4,
9, 16 and 25 orders of receive diversity combining in
both uplink and downlink model transmissions for 1st
to 9th, 10th to 45th, 46th to 125th, 125th to 270th,
and 270th to 500th communication round, respectively,
of a 500-round task. Note that the total energy budget
remains the same as the previous two methods.

We use the standard image classification and natural lan-
guage processing FL tasks to evaluate the performances of
these schemes. The following three standard datasets are used
in the experiments, which are commonly accepted as the
benchmark tasks to evaluate the performance of FL.

1) MNIST: The training sets contain 60000 examples. For
the full clients participation case, the training sets are
evenly distributed over N = K = 10 clients. For the
partial clients participation case, the training sets are
evenly partitioned over N = 2000 clients each contain-
ing 30 examples, and we set K = 20 per round (1% of
total users). For the IID case, the data is shuffled and
randomly assigned to each client, while for the non-IID
case the data is sorted by labels and each client is then
randomly assigned with 1 or 2 labels. The CNN model
has two 5 X 5 convolution layers, a fully connected
layer with 512 units and RelLU activation, and a final
output layer with softmax. The first convolution layer
has 32 channels while the second one has 64 channels,
and both are followed by 2 x 2 max pooling. The fol-
lowing parameters are used for training: local batch size
BS =5, the number of local epochs E = 1, and learning
rate n = 0.065.

2) CIFAR-10: We set N = K = 10 for the full clients par-
ticipation case while N = 100 and K = 10 for the partial
clients participation case. We train a CNN model with
two 5 x 5 convolution layers (both with 64 channels),
two fully connected layers (384 and 192 units respec-
tively) with ReLU activation and a final output layer with
softmax. The two convolution layers are both followed
by 2 x 2 max pooling and a local response norm layer.
The training parameters are: (a) IID: BS = 50, E = 5,
learning rate initially sets to 7 = 0.15 and decays every
10 rounds with rate 0.99; (b) non-1ID: BS = 100, E =1,
1 = 0.1 and decay every round with rate 0.992.

3) Shakespeare: This dataset is built from The Complete
Works of William Shakespeare and each speaking role
is viewed as a client. Hence, the dataset is naturally
unbalanced and non-IID since the number of lines and
speaking habits of each role varies significantly. There
are totally 1129 roles in the dataset [45]. We randomly
pick 300 of them and build a dataset with 794659
training examples and 198807 test examples. We also
construct an IID dataset by shuffling the data and redis-
tribute evenly to 300 roles and set K = 10. The ML task
is the next-character prediction, and we use a classifier
with an 8D embedding layer, two LSTM layers (each
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Fig. 2. Comparing the performance of transmit power control to the baselines
with full clients participation, model transmission, and both IID (left two) and
non-IID (right two) FL on the CIFAR-10 dataset.

with 256 hidden units) and a softmax output layer with
86 nodes. The training parameters are: BS = 20, E = 1,
learning rate initially sets to 7 = 0.8 and decays every
10 rounds with rate 0.99.

We compare the test accuracies and training losses as func-
tions of the communication rounds for all the aforementioned
configurations. All of the reported results are obtained by aver-
aging over 5 independent runs. We also report the final test
accuracy, which is averaged over the last 10 rounds, as the
performance of the final global model.

B. Experiment Results for Transmit Power Control

The focus of the experiment is on partial clients participa-
tion under both MT and MDT, but we first report the results
for full clients participation in CIFAR-10, to highlight some
common observations across all experiments.

Full Clients Participation: We see from Fig. 2 that under
the same total power budget, the (’)(tQ) power control pol-
icy performs better than the equal power allocation scheme
and is very close to the noise-free ideal case. Specifically,
O(t?) power control policy achieves 81.1% and 59.6% final
test accuracy in IID and non-IID data partitions on CIFAR-10,
which is 2.6% and 9.8% better than that of the equal power
allocation scheme. Note that the training loss (test accuracy)
of equal power allocation scheme increases (decreases) during
the late rounds (350th to 500th) in the non-IID case, imply-
ing that a non-increasing SNR may occur deterioration in the
convergence of FL for more difficult ML tasks.

To further validate the O(t2) scaling, we also carry out
experiments where power is increased as a slower rate of
O(log(t)) and O(t). The resulting performance is much worse
than the O(t?) scaling, and in fact has only very limited
improvement over the equal power allocation.

Lastly, we note that the early rounds of all methods have
very similar performance. This is because although O(t?)
power control allocates less power than the equal power pol-
icy, both are dominated by the noise of SGD in early rounds
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Fig. 3. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the MNIST dataset.

CIFAR-10 IID CIFAR-10 1ID
o —Noise free
B " —Equal power
> @ 2. .
©,, 8 —O(t%)-increased power
3 =
<. g
2 ) £
K —Noise free E .
o —Equal power .
" —O(t?)-increased power
Rounds Rounds
CIFAR-10 non-IID CIFAR-10 non-lID
055 —Noise free
0s —Equal power
> 2., 2 .
© o 3 — O(t)-increased power
3 o4 - 18
S g
- 0 =
g i E
2o —Noise free =
02 —Equal power .
" —O(t?)-increased power

N "
0 s 0 i 0 20 a0 om0 40 40 0 0

Rounds

S 10 10 20 20 0 0 40 450 50

Rounds

Fig. 4. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the CIFAR-10 dataset.

and thus their performances are similar. This phenomenon is
also observed in other experiments, which again highlights the
benefits of adaptively “flying under the radar”, to only allocate
sufficient-but-not-excessive transmit power in each round. All
of the aforementioned observations carry over to other tasks
and different FL configurations.

Partial Clients Participation: The performance comparisons
of the three schemes on MNIST, CIFAR-10 and Shakespeare
datasets in both IID and non-IID configurations and MT are
reported in Figs. 3, 4, and 5, respectively. Their final model
accuracies (after T rounds of FL are complete) are also sum-
marized in Table I. First, we see from Fig. 3 that the proposed
O(t?)-increased power allocation scheme achieves higher test
accuracy and lower train loss than the equal power alloca-
tion scheme under the same energy budget on MNIST. In
particular, O(t?)-increased power allocation scheme achieves
0.6% higher test accuracy than that of equal power allocation
scheme in both IID and non-IID data partitions, respectively.
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Fig. 5. Comparing the performance of transmit power control to the baselines
with partial clients participation, model transmission, and both IID (left two)
and non-IID (right two) FL on the Shakespeare dataset.

TABLE 1
PERFORMANCE SUMMARY OF MT

Dataset Scheme Accuracy Percentage® Accuracy Percentage*
1ID non-IID
MNIST Noise free 99.3% 100% 99.1% 100%
Increased power 99.1% 99.8% 99.0% 99.9%
Equal power 98.5% 99.2% 98.4% 99.3%
CIFAR-10 Noise free 79.5% 100% 54.3% 100%
Increased power  78.9% 99.2% 52.1% 95.9%
Equal power 71.7 % 90.2% 44.3% 81.6%
Shakespeare Noise free 57.8% 100% 56.8% 100%
Increased power  57.8% 100% 56.4% 99.3%
Equal power 529 % 91.5% 54.4% 95.8%
TABLE I
PERFORMANCE SUMMARY OF MDT
Dataset Scheme Accuracy Percentage* Accuracy Percentage*
11D non-1ID
MNIST Noise free 99.3% 100% 99.1% 100%
Increased power 99.1% 99.8% 99.0% 99.9%
Equal power 98.5% 99.2% 98.4% 99.3%
CIFAR-10 Noise free 79.5% 100% 54.3% 100%
Increased power 78.9% 99.2% 52.1% 95.9%
Equal power 71.7 % 90.2% 44.3% 81.6%
Shakespeare Noise free 57.8% 100% 56.8% 100%
Increased power  57.8% 100% 56.4% 99.3%
Equal power 529 % 91.5% 54.4% 95.8%

It may seem that the gain is insignificant, but the reason is
mostly due to that MNIST classification is a very simple
task. In fact, the gain of power control is much more notable
under the challenging CIFAR-10 and Shakespeare tasks as
shown in Figs. 4 and Fig. 5, respectively. Compared with
the equal power allocation scheme, which achieves 90.2%
and 81.6% of the ideal (noise free) test accuracy in IID
and non-IID data partitions under CIFAR-10 dataset respec-
tively, the proposed O(tQ)—increased power allocation achieves
99.2% (I1ID) and 95.9% (non-1ID) of the ideal (noise free) test
accuracy respectively after 7 = 500 communication rounds.
Similarly, under Shakespeare dataset, the equal power alloca-
tion scheme achieves 91.5% (IID) and 95.8% (non-IID) of the
ideal (noise free) test accuracy, while the proposed method
improves 8.5% and 3.5%, respectively.

MDT: We next present the experiment results of model
differential transmission. Note that, by applying MDT, the
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Fig. 6. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the MNIST dataset.
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Fig. 7. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the CIFAR-10 dataset.

uplink transmission power of the proposed scheme remains
constant (recall that SNR is set as 10dB) while the downlink
transmission power still increases at the rate of (’)(tg).
Figs. 6, 7 and 8 illustrate the test accuracies and training losses
with MDT under MNIST, CIFAR-10 and Shakespeare datasets
and the final model accuracies of the three schemes are sum-
marized in Table II. We see that the proposed power control
policy achieves 99.7% (99.7%), 99.2% (98.0%) and 100%
(98.9%) of the ideal test accuracy in IID (non-IID) data setting
under MNIST, CIFAR-10 and Shakespeare datasets, respec-
tively, which significantly outperforms the baseline equal
power allocation scheme.

C. Experiment Results for Receive Diversity Combining

We next evaluate the performance of receive diversity com-
bining. Due to space limitations, we only report the result
for CIFAR-10, but similar conclusions hold for other tasks.
Fig. 9 captures the test accuracies and training losses of receive
diversity combining together with noise free and equal power
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Fig. 8. Comparing the performance of transmit power control to the baselines
with partial clients participation, model differential transmission, and both IID
(left two) and non-IID (right two) FL on the Shakespeare dataset.
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Fig. 9. Comparing the performance of receive diversity combining to the

baselines with partial clients participation, model differential transmission,
and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

allocation schemes. Although receive diversity combining is
less flexible than the (continuous) transmit power control pol-
icy, we can see that it still outperforms the baseline method
and approaches the noise-free ideal case. We notice that the
training losses of receive diversity combining are larger than
those of the equal power allocation scheme at the beginning
stage of convergence, but as the diversity branches increase,
the training losses eventually reduce and the model converges
to a better global one. Particularly, receive diversity combining
achieves 75.6% and 47.8% test accuracies for IID and non-IID
data partitions, which is 3.9% and 3.4% better than the equal
power allocation scheme.

VII. CONCLUSION

In this paper, we have investigated federated learning over
noisy channels, where a FEDAVG pipeline with both uplink
and downlink communication noises was studied. By theo-
retically analyzing the model training convergence, we have
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proved that the same O(1/T) convergence rate of FEDAVG
under perfect (noise-free) communications can be maintained
if the uplink and downlink SNRs are controlled as O(t2)
over noisy channels for direct model transmission, and O(1)
for model differential transmission. We have showcased two
widely used communication methods — transmit power control
and receive diversity combining — to implement these theoret-
ical results. Extensive experimental results have corroborated
the theoretical analysis and demonstrated the performance
superiority of the advanced designs over baseline methods
under the same total energy budget. Future research direc-
tions include relaxing the assumption of strongly convex loss
functions to a broader class (e.g., convex, non-convex), and
removing the fixed 7' assumption to develop an any-time
version of the proposed design.

APPENDIX A
PROOF OF THEOREM 1

A. Preliminaries

With a slight abuse of notation, we change the timeline to
be with respect to the overall SGD iteration time steps instead
of the communication rounds, i.e.,

A(T-1)E+1,...,TE.

round T

t=1,...,E,E+1,...,2E,...,..

round 1 round 2

Note that the (noisy) global model w; is only accessible at the
clients for specific ¢t € Zg, where Zg = {nE | n=1,2,...},
i.e., the time steps for communication. The notations for 7,
oy and (; are similarly adjusted to this extended timeline, but
their values remain constant inside the same round.

As mentioned in Section IV-A, the key technique in the
proof is the perturbed iterate framework in [42]. In partic-
ular, We first define the following variables

1 ; 1 ;
k k k
Wit = 3 Z Viit, Pig1 = Wi + N Z ny
i€[N] i€[N]
k k k
and Wiy =Py e,
to summarize the aforementioned steps:
k k k ¢k
Vipl = Wi — VI (Wt 7&);
uf g £ vlll'?+1 ; %f t+1¢1p,
N 2ic[n] Viqr if t+1€Tp;
. vgﬂ 1 i t+1¢ T,
" ui + oy e iy if t+1€Zp.
whoo2 Vil it t+1¢7Zpg,
o piig tefy if t+1eZp.

Then, we construct the following virtual sequences:
1 & 1
= _ - k = _ T k
Vt_Nth’ “t—NZ“t’
k=1 k=1

1 1 &
P —NZpIZ7 and Wt:Nwa. (30)
k=1 k=1

s
|
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We also define g, = % ijvzl VFy(wF) and g =
% 227:1 VFy,(wF,€F) for convenience. Therefore, ¥ 1 =
w; — m:gt and E[g:] = g;. After some manipulation, we can
also write the specific formulations of these virtual sequences
when ¢t + 1 € Zg as follows:

Z nt—&-l’

zE [N]

Z Vt+1, Piy1 = W1+ &
1€[N]

U1 =

Wirl =Pip1 + (31

LN
k
N E et
k=1

Note that for t + 1 ¢ Zg, all these virtual sequences are
the same. In addition, the global model (at the server) p;q is
meaningful only at {+1 € Zr. We emphasize that when {+1 €
1g, Eqns. (31) and (10) indicate that Py = Wi 1. Thus it
is sufficient to analyze the convergence of ||pt 1= W ||

B. Lemmas and Proofs

Lemma 1: Let Assumption 1 hold, n; is non-increasing,

and n; < 2map for all ¢ > 0. If npy < 1/(4L),
we have El[vi1—w'l? < (1 — nuElw; —w'? +
nF(Sn_q 02/ N? + 6LT + 8(E — 1)2H?).

Lemma 1 establishes a bound for the one-step SGD.
This result only concerns the local model update and is
not impacted by the noisy communication. The derivation is
similar to the technique in [15].

Lemma 2: We have

= . = = do}y
]E[Pt+1] = ut+laE||ut+1 - pt+1|| = N2 ;

S = e Ay
EW: 1] = Pit1, B[|[Wer1 — Doy | Nz (2

L

for t +1 € I, where 07,1 = Y pcn) 9741 a0d (Fyy

> g
ke[N] St+1,k
Proof: For t + 1 € Ip, we have E[p;; — ut_,_ﬂ =

KZkE[N [nt+1] = 0 and E”Pt+1—ut+1’| =
do?

NQ]EHZke[N]ntHH = WZke[N]EHntHH = 3
from  (31), because {ny ;,Vk} are independent
variables.  Similarly, according to (31), we have
— = 1
EWi1 — Pyl & Zrev Elef] = 0 and

= = 2 _ 1 k|2
E||Wit1 — Dy = WEHEke[N] et-i—l”

E d<2 ) dCQ

ﬁZke[N]EHefHH = et — n

C. Proof of Theorem

We need to consider four Cases for the analysis of the
convergence of E||Pt+1 -w H
DIft¢Zgand t+1¢ 7T, Wy =p; and Vi1 = Pyiq-
Using Lemma 1, we have:
E[pee —w|* = Elvis — " < (0 = mew)E[[p — |

N 52
Z N—’C + 6L +8(E — 1) H?
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2)If t eI and t + 1 ¢ I, we still have V411 = Pyy.
With w; =p; + % Z{CVZI el, we have:

[we —w*|> = |[w; — B, + P, — w*|?
=B — w*I|* + |[We — B2
Ay
+ 2(Wi =Py, P — W)

Ao

We first note that the expectation of Ao over the noise ran-
domness is zero since we have E[w; — p;] = 0 (from (32)).
Second, the expectation of A; can be bounded using Lemma 2.
We then have

EHE:H - W*H2 = E|[vi41 — W*H2

< (1 = nep)E|p; — w*[|?
+ (1 ~m E||wt — Bl (33)
+n? Z k4 6LT + 8(E )QHQ]
< (1 E|p * 1 Ay
< (1= nElpy — w1 + (1 — mp) 2L N2
(34)

+77t

N 52
Z —’“2 + 6L+ 8(E — 1)2H2] .
B (35)

3)Ift ¢ Ip and t+1 € T, then we still have w; = p;. For
t+1, we need to evaluate the convergence of IEHpt 41— W H
We have

e = w1 = [Pesr —Tegs + T — w7

= ||Pes1 — ﬁt+l||2 + 1 — W

Bl B2
+ 2(Pyi1 — Wyg1, Upg1 — W)
Bs

(36)

We first note that the expectation of B3 over the noise is zero
since we have E[u;41 —Py11] = 0 (from (32)). Second,
the expectation of B; can be bounded using Lemma 2.
Noticing that U;y; = V41 for By and applying Lemma 1,
we have:

— %12 - *112 dUtQ—i-l
]EHPt+1 —w¥|" <E[vig — wHIT+ %2
do?
_ 2 1
< (L= nElp, —w" "+ —5+ 67

N 52
+n? Z N—’f +6LL 4 8(E — 1)°H?
B (38)

HhIftelgandt+1€lp, viqr1 #ﬁt—i—l and wW; # Pp;.
(Note that this is possible only for £ = 1.) Combining the
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results from the previous two cases, we have

2
E[B1 — W < (1 - nw)E[[p, — w*|
a¢? o},

+ (1= mep) =5 Nz T e

N 52
+n? ZN—’3+6LP+8(E— 1)2H?|.

k=1

(39)

Finally, we have that inequality (39) holds for all four
cases. Denote Ay = E|p, — w*|%. If we set the effective
noise power afﬂ and ¢? such that U%—H < N2p? and

2
(2 < N? 77:] 5> we always have Ay 1 < (1—mp)A¢+12D

where D = S, N2 +6LT +8(E —1)2H? +2d. We decay
forsomeﬁz % and v > 0
E and 77t < 2n;4+ 5. Now we
prove that A; < 1 where v = max{ = 1,(7 +1)Ap} by
induction. First, the definition of v ensures that it holds for

t = 0. Assume the conclusion holds for some ¢ > 0. It then
follows that

the learning rate as 77t =
such that 77 < mln{ , 4L}

Bu \ v B*D

App1 < (1 —np)Ay+m2D = (1-— +

t+1 < (L —=nmp)A¢ + g ( o) ol P
7t+’y—1v 382D B ,uﬂ—lv < v
I (O N (N e

Then by the strong convexity of F(-), E[F(w:)] — F* <
LAt < L_v. Specially, if we choose 3 = =

Pe=g
max{Sf — 1,E} and denote ¢ = ﬁ, then n; = %ﬁ
Using max{a b} < a4+ b, we have v < ‘L—D+ v+
1)Ag < ‘LD (8¢ + E)||wo — w*||%. Therefore, A; < =
7—1|-t + (8¢ + E)||wg — w*|?|. Setting t = T concludes
the proof

APPENDIX B
PROOF OF THEOREM 2

The additional difficulty in proving Theorem 2 comes from
partial clients participation. The approach we take is to study
a “virtual” FL process where all clients receive the noisy
downlink broadcast of the latest global model, and they all par-
ticipate in the subsequent local model update phase. However,
only the selected clients in S;41 upload their updated local
model to the server via the noisy uplink channel. It is clear
that this “virtual” FL is equivalent to the original process in
terms of the convergence — clients that are not selected do not
contribute to the global model aggregation. This seemingly
redundant process, however, circumvents the difficulty due to
partial clients participation as can be seen in the analysis.

Before presenting the proof, we first elaborate on some
necessary changes of notation. The notation defined in
Appendix A-A can be largely reused, with the notable distinc-
tion that now we have to separate the cases for K and for N. For
t+1 € I, the variables of u]i~C 1 and p]; 1 are now defined as:

ko1 i ok 1 i
Ui = % Dies, Vier and Py = Wiy + % > s, By

Note that Lemma 2 still holds with the following update:

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

=2 ~2
Elfac —pon® = S El[Wen -] = S
In addition, we need the following lemma, whose proof is
available on a complete online version of this paper [46].

Lemma 3: Let Assumption 1-4) hold. With n; < 2ny4 g
for all ¢ > 0 and Vt +1€Tg, we have E[d¢41] = vy and
Vi1 — G |* < 5K #n?E2H2.

We can now 51m11arly analyze the four cases as in
Section A-C. Cases 1) and 2) remain the same as before. For
Case 3) we need to consider t ¢ Zp and ¢t + 1 € Zp. Note
that (36) still holds, but we need to re-evaluate the expectation

of By because of partial clients participation. We have:

2 _ — — 2
— w7 = |[Wp1 — Vi1 + Vo1 — w|

([T41
= [@41 = Ve [P + [Feg1 — w
C1 Ca
+ 2(Wpt1 — Vi1, Ver1 — W) . (40)
Cs
When the expectation is taken over the random

clients sampling, the expectation of C3 is zero since
we have E[U;41 —Viy1] = 0. The expectation of
C7 can be bounded using Lemma 3. Therefoge we
have E[[prsy — w* 1P < Efvi-w? + Do
]X,’K 4 2E H?. Using Lemma 1 and the new defini-

tion of D in Theorem 2, we have E||Pt+1*W H
A?2E?H2(N-K
El[vi41 — w> + + HTED) <
d72
(1 — mElp, —w*> + “L + n}(D — 2d). Case
4) can be similarly updated based on the new result in Case
3). Finally, we have that

do’H_1
K

2
il

(1= nep)E|p; — w H
) Ct

]EHPt+1 -w ||

t+1

2
D —
K +ni (

;4 2d)

(41)

+ (1 —mp

holds for all cases. If we set c‘rt2 1 and @2 such that 5152 11 <

— 2
K n% and CtQ <N 1_% T the remaining proof follows the same
way as in Appendix A-C.

APPENDIX C
PROOF OF THEOREM 3

For model differential transmission (MDT), if t + 1 € Zp,
the global aggregation is given in (11). Similar to Appendix A
and B, we expand the timeline to be with respect to the overall
SGD iteration time steps, and define the following variables
to facilitate the proof. vF ; & wf —n,VFy(wi,&F), df, , £
vf+1 — wf_i_l - Furthermore, when t + 1 ¢ Zp we define

k

U =Py = wf+1 = Verl’ and when t+1 € Tg we define
“Itcﬂ 2 K 2ies, Vt+1’ Pt+1 Wit1— E+K 2ies, ld t+1+
n; 4], and wfﬂ £ pH_1 + e’t“_|r1 The virtual sequences vy,
u;, p; and wW; remain the same as (30). g; and g; are also
similarly defined. Note that the global model at the server is
the same as py, i.e., Wgp1 = Pyyq-

We first establish the follow in lemma, which is instrumental
in the proof of Theorem 3.
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Lemma 4: Let Assumption 1-4) hold. Assume that 7; <
2n¢4p for all ¢ > 0, and further assume that the
uplink communication adopts a constant SNR control policy:
SNR?’}C\/IDT = v. Then, for ¢t + 1 € Ty, we have: E[p; 1] =
- = = 2 1y.d 72 AB2 272
Uyt and El[ags1 — Doy [|” < (4 5) £ G p+ R H>

Proof: Note that if t +1 € Z, so does t + 1 — E. Insert
iy = Vi — Wi _p into pfyy. we have E[p; ]
= 1 k 1 k
U1 + ?E[Zkest Dy FE[Zkest et+17E] =
E[u¢+1]- As for the variance, we have

2

1
El[tt41 —§t+1H2 = FE Z nf

kEeS:
2
1 k
+ ﬁE Z Ci+1—-F
keS:
2 =2
1 k A6
= 75, B 2 A+ @)
kES:

where the last equality comes from the constant uplink SNR
control, (9), and the ass_umption that each client has the same
downlink noise power (2, Yk € [N]. We further have

2 2

k k =
E Z dit1|| =E Z (Vt+1 - Wt+1—E) +dK (g
kES: kES:

2
t
k ok
<Es, | Y Esal| Y. n-VFi(wr, &)
kES; T7=t+1—F
+dK
<ABPKniH® + dK (i (43)

using the Cauchy-Schwarz inequality, Assumption 1-4), and
M+1—E < Ni—g < 2n;. Plugging (43) back to (42) gives

2
2
_ _ 2 1 k A1 g
Bl ~ B = B 3 dha| + SE
kESi+1
1\ d - 4E? 5 4
< (1 + 1/) 7 Str1-E T o, A
which completes the proof. |

We are now ready to present the proof of Theorem 3, which
is similar to that of Theorem 2. In particular, the analysis
of four cases in Section B still hold, with the only change
that (41) is updated to (44) below using Lemma 4 and the
new definition of D in Theorem 3.

— 2 — 2 d
E|ps1 —w*[|” < (1 —mp)Elp; — w*|* + (1 - mu)ﬁéf

1\ d -
+<1+V)K<t2+n?(p—d). (44)

We note that the constant uplink SNR control is already used
in Lemma 4 and (44). Then, by the definition of A; =
E|p, — w*||? and controlling the downlink SNR such that
— 2

NK
(2 < (1—ntu)K47r7€1+l)N’ we have Ayyq < (1 —mep) Ay +

1267

n%D. The remaining proof follows using the same induction
method.
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