
Electric Power Systems Research 212 (2022) 108386

A
0

E

a
w
f

a
r
m
s
m
t
H
t

N
I

z

h
R

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Quantummicrogrid state estimation✩

Fei Feng, Peng Zhang ∗, Yifan Zhou, Zefan Tang
lectrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA

A R T I C L E I N F O

Keywords:
Quantum computing
State estimation
Hierarchical control
Microgrid

A B S T R A C T

This paper investigates the feasibility and efficiency of quantum-circuit-based algorithms for microgrid state
estimation. Our new contributions include: (1) a general quantum state estimation (GQSE) formulation is
devised for swing-bus-contained microgrids through the quantized Gaussian–Newton iteration, (2) a pre-
conditioned quantum linear solver (PQLS) is developed for tackling the ill-conditioned GQSE with limited
quantum resources, and (3) an enhanced quantum state estimation (EQSE) algorithm is further established
for hierarchical-control-based microgrids with exogenous disturbances. Extensive case studies demonstrate the
correctness of GQSE, PQLS and EQSE in two typical microgrids. The robustness and convergence performance
of EQSE are also verified.
1. Introduction

Microgrid is a proven paradigm that can flexibly manage distributed
energy resources (DERs) and ensure the electricity resiliency against
outages [1,2]. Among many microgrid functions, state estimation is of
fundamental importance as it enables online monitoring and control of
microgrids based on a limited number of sensors such as microPMUs
(micro-phasor measurement units). The basic requirements for micro-
grid state estimation mainly include accuracy, efficiency, and resiliency
against noises [3]. For modern microgrids, an increasingly urgent and
important demand is the need of high-frequency state estimation due to
the community expansion, a high penetration of uncertain renewables,
and volatile operational conditions [4]. However, the complexities of
lmost all the classical state estimation methods scale polynomially
ith the problem size, which makes those methods no longer suitable
or a future grid with formidable real-time operation needs.
To overcome the complexity issue, quantum computing provides
promising solution. Unlike classical computing, quantum computing
equires fewer bits (i.e., qubits) to handle a complicated problem. For
icrogrid state estimation, a main bottleneck is to establish an efficient
olver for a sparse linear system of equations. Currently, there are
ainly two types of quantum linear system algorithms: hybrid quan-
um/classical algorithms and quantum-circuit-based algorithms [5,6].
ybrid algorithms are developed for the noisy intermediate-scale quan-
um (NISQ) era. Examples include the Variational Quantum Linear
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Solver and quantum random walk algorithms [7,8]. Specifically, a
hybrid algorithm utilizes the interaction between quantum and classical
computers such that the quantum circuit depth is effectively reduced
to accommodate the high noise level and short coherence time on
NISQ devices. However, the inevitable computation and optimization
processes on classical computers have made most hybrid algorithms
heuristic. As a consequence, the convergence and efficiency of hybrid
algorithms cannot be strictly guaranteed.

Quantum-circuit-based algorithms enable exponential speedups over
traditional methods on noise-free quantum computers [5,9]. An im-
portant milestone in recent years has been the development of the
Harrow–Hassidim–Lloyd (HHL) algorithm, a pure quantum method
for solving linear equations. Specifically, the HHL algorithm utilizes a
unitary transformation to prepare a quantum superposition for a linear
system solution [10]. Several HHL variants have also been studied for
enhanced convergence precision [11] and enhanced robustness under
different conditions [12,13]. A salient feature of HHL (or any of its
variants) is that it effectively accelerates the analysis of a sparse system,
which exactly matches the characteristics of power systems. In our prior
work [14,15], we have used HHL to devise dynamic/static-state-related
quantum algorithms for power flow and electromagnetic transients
analyses.

In addition to the complexity issue, high-volume state measure-
ment and information exchange also make microgrids vulnerable to
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exogenous disturbances [16]. The existing microgrid state estimation
methods typically follow classical power flow formulations, which
however have ignored the features of droop-based microgrids where
multiple DERs, instead of a swing bus, support the entire system [17].
For instance, [18] presents a distributed state estimation approach
for microgrids connected with distribution systems. For hybrid AC/DC
microgrids, the state estimation problem is solved by decomposing the
system into subsystems [19]. In those existing methods, microgrids
are modeled in the same way with the traditional distribution feed-
ers where a main grid or an infinite source is used to support the
downstream system. Failure to represent the droop/secondary regu-
lation may provide erroneous results when a microgrid is subject to
unforeseeable disturbances.

In this paper, we investigate the feasibility and efficiency of
quantum-circuit-based algorithms for microgrid state estimation.
Specifically, we first devise a general quantum state estimation (GQSE)
formulation for swing-bus-constrained microgrids through the quan-
tized Gaussian–Newton iteration. To resolve the ill-conditioned matrix
issue in GQSE, a preconditioned quantum linear solver (PQLS) is
developed with limited quantum resources. Further, we establish an
enhanced quantum state estimation (EQSE) algorithm for hierarchical-
control-based microgrids with exogenous disturbances. These quantum
algorithms are conducted through IBM’s Qiskit, Terra, and the IBMQ
provider. A traditional state estimation method is implemented in MAT-
LAB for comparison. Extensive case studies demonstrate the correctness
of GQSE, PQLS and EQSE in two typical microgrids, and the robustness
and convergence performance of EQSE are also verified.

The rest of this paper is organized as follows: Section 2 and III
escribe the GQSE formulation and PQLS, respectively. The EQSE
lgorithm is presented in Section 4. Section 5 provides our test results.
ection 6 concludes the paper.

. GQSE for microgrids

This section presents the GQSE formulation. Without loss of gener-
lity, a DC microgrid is studied in this paper, yet the formulation can
e readily extended to AC microgrids.

.1. GQSE formulation

State estimation is an indispensable functionality in modern energy
anagement systems for determining power system states with raw
easurement data containing heterogeneous noises [20]. The weighted
east square is a widely used method for state estimation. It minimizes
he sum of weighted squared errors between measurements and esti-
ated system states. The following equation gives the cost function of
tate estimation for a DC microgrid:

(𝑽 ) =
[

𝒛 − 𝒉(𝑽 )
]𝑇 𝑹−1 [𝒛 − 𝒉(𝑽 )

]

, (1)

here 𝑽 denotes a vector of per-unit unknown bus voltages (to be
etermined, and the initialized 𝑽 is a vector where each element is
ne). 𝒉(𝑽 ) is a vector containing the system states to be estimated. In
his study, the estimated system states consist of three types of states,
amely, power injections at unknown-voltage buses, branch powers at
nknown-voltage buses, and unknown voltages. Mathematically, it can
e expressed as follows:

(𝑽 ) =
⎡

⎢

⎢

⎣

𝑷 (𝑽 )
𝑷 (𝑔,𝑙)(𝑽 )

𝑽

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑮𝑽 ◦𝑽
𝑽 (𝑔)◦𝒈(𝑔,𝑙)◦(𝑽 (𝑔) − 𝑽 (𝑙))

𝑽

⎤

⎥

⎥

⎦

, (2)

where 𝑷 (𝑽 ) is a vector of power injections at unknown-voltage buses.
𝑷 (𝑔,𝑙)(𝑽 ) denotes the branch-power vector. 𝑽 𝑔 and 𝑽 𝑙 are from-bus-
voltage and to-bus-voltage vectors, respectively. 𝑮 and 𝒈(𝑔,𝑙) are the
nodal conductance matrix and branch conductance vector of the DC
2

microgrid, respectively. ◦ indicates the Hadamard product. o
In (1), 𝒛 is a vector containing the measured results of variables
in 𝒉(𝑽 ). 𝑹 is the weight matrix (each element in 𝑹 represents the
coefficient for the corresponding element in

[

𝒛 − 𝒉(𝑽 )
]

).
The Gauss–Newton algorithm can be applied to solving the non-

linear least square problem in (1). It performs following iterations to
obtain the minimal cost function:

𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 𝑘−1)) = (𝑯𝑇𝑹−1𝑯)𝛥𝑽 𝑘, (3)

where 𝑽 𝑘−1 denotes the bus-voltage vector at the (𝑘 − 1)th iteration,
𝛥𝑽 𝑘 is a vector at the 𝑘th iteration containing the difference between
𝑽 𝑘 and 𝑽 𝑘−1, and 𝑯 is the Jacobian matrix of 𝒉(𝑽 𝑘−1). Then, the
bus-voltage vector 𝑽 𝑘 can be updated as 𝑽 𝑘 = 𝑽 𝑘−1 + 𝛥𝑽 𝑘.

The major computation burden of the Gauss–Newton algorithm
lies in (3), which involves the calculation of the gain matrix inverse,
i.e., (𝑯𝑇𝑹−1𝑯)−1. Meanwhile, the gain matrix 𝑯𝑇𝑹−1𝑯 inherits the
sparsity feature from the Jacobian matrix 𝑯 and is strictly Hermitian.
This allows the classical state estimation to be converted to a quantum
formulation.

In the GQSE formulation, the HHL algorithm is utilized to tackle (3)
to reduce the computational complexity of the entire state estimation.
For concision, the following derivations omit the subscript 𝑘. The
classical formulation (3) can be converted to a quantum computing
odel as follows:

𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ))⟩ = (𝑯𝑇𝑹−1𝑯)|𝛥𝑽 ⟩, (4)

here |𝛥𝑽 ⟩ is a normalized quantum state of 𝛥𝑽 . To be specific, the 𝑖th
omponent of 𝛥𝑽 corresponds to the amplitude of the 𝑖th basis state of
he quantum state |𝛥𝑽 ⟩. Similarly, |𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ))⟩ is a normalized
uantum state of 𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 )).
The main idea of GQSE is to prepare a quantum superposition of

𝑽 , i.e., |𝛥𝑽 ⟩, on the quantum circuit, which satisfies (4). To achieve
his, since 𝑯𝑇𝑹−1𝑯 is Hermitian, it has a spectral decomposition as
ollows:
𝑇𝑹−1𝑯 =

∑

𝑗
𝜆𝑗 |𝑢𝑗⟩⟨𝑢𝑗 |, (5)

here |𝑢𝑗⟩ is the 𝑗th eigenvector of 𝑯𝑇𝑹−1𝑯 with respective eigen-
alue 𝜆𝑗 . |𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ))⟩ can also be decomposed using the eigen-
ectors of 𝑯𝑇𝑹−1𝑯 as follows:
𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ))⟩ =

∑

𝑗
𝑏𝑗 |𝑢𝑗⟩, (6)

here 𝑏𝑗 is the coefficient of eigenvector |𝑢𝑗⟩.
Consequently, the quantum superposition of 𝛥𝑽 , i.e., |𝛥𝑽 ⟩, can be

stablished from (4)–(6) as follows:

𝛥𝑽 ⟩ = (𝑯𝑇𝑹−1𝑯)−1|𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ))⟩

=

(

∑

𝑗
𝜆−1𝑗 |𝑢𝑗⟩⟨𝑢𝑗 |

)(

∑

𝑗
𝑏𝑗 |𝑢𝑗⟩

)

=
∑

𝑗
𝜆−1𝑗 𝑏𝑗 |𝑢𝑗⟩.

(7)

(7) allows us to express |𝛥𝑽 ⟩ using |𝑢𝑗⟩. The main task is to establish
quantum circuit where 𝜆−1𝑗 is combined with 𝑏𝑗 |𝑢𝑗⟩. In the following
ubsection, the quantum-circuit-based GQSE algorithm is developed to
chieve this.

.2. Quantum-circuit-based GQSE algorithm

The architecture of the quantum-circuit-based GQSE algorithm is
iven in Fig. 1. The overall idea of this algorithm is as follows: The raw
ata 𝒛 are measured and sent to the control center to obtain 𝑯𝑇𝑹−1𝑯
nd 𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 )) in a classical computer.
The HHL quantum circuit is then established to obtain |𝛥𝑽 ⟩. This

ircuit mainly consists of three components, namely, a quantum phase
stimation (QPE), a controlled rotation, and an inverse QPE. The input

f this circuit consists of 𝑎 qubits for ancilla quantum encoding (AQE)
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Fig. 1. The architecture of the GQSE algorithm.

(denoted as 𝑎𝑛𝑐 in Fig. 1), 𝑛 qubits for the binary representation of
𝜆𝑗 (denoted as 𝑞 in Fig. 1), and 𝑚 qubits for the binary representa-
tion of 𝑏𝑗 |𝑢𝑗⟩ (denoted as 𝑖0 in Fig. 1). The initialized states 𝑏𝑗 |𝑢𝑗⟩
(𝑗 = 1, 2,… , 𝑚) in 𝑖0 can be achieved by applying a set of gates to
the initial state |0⟩𝑚 [21]. Meanwhile, the eigenvectors in the HHL
implementation are prepared in the state 𝑏𝑗 |𝑢𝑗⟩. Then, the input of the
circuit can be represented as |𝜓0⟩ = |0⟩𝑛 ⊗

∑

𝑗 𝑏𝑗 |𝑢𝑗⟩𝑚 ⊗ |0⟩𝑎, where ⊗
refers to the tensor product.

The initialized quantum state |𝜓0⟩ is first handled by QPE. QPE
consists of 𝑛 Hadamard gates for generating quantum superpositions,
𝑛 quantum unitary gates for obtaining a multi-qubit quantum state
containing 𝜆𝑗 , and an inverse quantum Fourier transformation (denoted
as 𝑄𝐹𝑇 † in Fig. 1) for obtaining each 𝜆𝑗 . The controlled rotation
contains a set of controlled quantum gates to obtain the reciprocal of
each 𝜆𝑗 , i.e., 𝜆−1𝑗 [5]. 𝜆−1𝑗 and 𝑏𝑗 |𝑢𝑗⟩ are thus combined through the
unctions of QPE and the controlled rotation. An inverse QPE (denoted
s 𝑄𝑃𝐸† in Fig. 1) is further utilized to reset the state of each qubit in
and 𝑖0, i.e., making the state of each qubit in 𝑞 to be zero and that in

0 as 𝑏𝑗 |𝑢𝑗⟩. More details are given below:

PE
QPE aims to obtain 𝜆𝑗 . To start with, 𝑛 Hadamard gates are applied

n 𝑛 qubits in 𝑞, respectively, to create quantum superpositions. The
uantum state (with all the qubits used) after all the Hadamard gates
re applied (denoted as |𝜓1⟩ in Fig. 1), can be expressed as follows:

𝜓1⟩ = 𝐻⊗𝑛 ⊗ 𝐼⊗(𝑚+𝑎)
|𝜓0⟩

= 1
√

2𝑛

∑

𝛼∈{0,1}𝑛
|𝛼⟩𝑛

∑

𝑗
𝑏𝑗 |𝑢𝑗⟩𝑚|0⟩𝑎,

(8)

where 𝐻 and 𝐼 are the Hadamard and unit gates, respectively.
𝑛 quantum unitary gates (represented as 𝑈2𝜅 in Fig. 1 where 𝜅 =

0, 1,… , 𝑛 − 1) are then applied on the qubits in 𝑖0 in series for ob-
taining a multi-qubit quantum state containing 𝜆𝑗 . Specifically, 𝑈2𝜅 =
𝑒(𝑖𝜋2𝜅+1𝑯𝑇𝑹−1𝑯). After unitary gates are applied, the quantum state
(|𝜓2⟩) can be expressed as follows:

|𝜓2⟩ =
𝑛−1
∏

𝜅=0
𝑈2𝜅 ⊗ 𝐼⊗𝑎|𝜓1⟩

= 1
2𝑛∕2

2𝑛−1
∑

𝜒=0
𝑒(𝑖2𝜋𝜆𝑗𝜒)|𝜒⟩𝑛

∑

𝑗
𝑏𝑗 |𝑢𝑗⟩𝑚|0⟩𝑎.

(9)

𝑄𝐹𝑇 † is further applied to obtaining each 𝜆𝑗 . The quantum state
after 𝑄𝐹𝑇 † is applied (|𝜓3⟩) can be represented as

|𝜓3⟩ = 𝑄𝐹𝑇 † ⊗ 𝐼⊗(𝑚+𝑎)
|𝜓2⟩ =

∑

𝑏𝑗 |𝜆𝑗⟩𝑛|𝑢𝑗⟩𝑚|0⟩𝑎. (10)
3

𝑗

Controlled rotation
AQE is applied to obtaining the reciprocal of each 𝜆𝑗 i.e., 𝜆−1𝑗 . The

quantum state (|𝜓4⟩) then contains
∑

𝑗 𝜆
−1
𝑗 𝑏𝑗 |𝑢𝑗⟩𝑚, i.e., |𝛥𝑽 ⟩ as in (7),

as follows:
|𝜓4⟩ = 𝐴𝑄𝐸 ⊗ 𝐼⊗𝑚|𝜓3⟩

=
∑

𝑗
𝑏𝑗 |𝜆𝑗⟩𝑛|𝑢𝑗⟩𝑚(

√

1 −
𝛽2

𝜆𝑗2
|0⟩𝑎 +

𝛽
𝜆𝑗

|1⟩𝑎),
(11)

where 𝛽 is a user-defined constant value.

Inverse qpe
The inverse QPE (𝑄𝑃𝐸†) is utilized to reset the state of each qubit

in 𝑞 and 𝑖0. After 𝑄𝑃𝐸† is applied, the quantum state (|𝜓5⟩) can be
expressed as follows:

|𝜓5⟩ = 𝑄𝑃𝐸† ⊗ 𝐼⊗𝑎|𝜓4⟩

= |0⟩𝑛
∑

𝑗
𝑏𝑗 |𝑢𝑗⟩𝑚(

√

1 −
𝛽2

𝜆𝑗2
|0⟩𝑎 +

𝛽
𝜆𝑗

|1⟩𝑎).
(12)

As shown in (12), once the measurement on 𝑎𝑛𝑐 is |1⟩𝑎, the quantum
tate can be obtained as: |𝜓6⟩ = |0⟩𝑛 ⊗ |𝛥𝑽 ⟩𝑚 ⊗ |1⟩𝑎, where |𝛥𝑽 ⟩𝑚 =
𝑗 𝑏𝑗

𝛽
𝜆𝑗
|𝑢𝑗⟩𝑚 (see (7)). The voltage vector 𝑽 can thus be updated for the

next iteration. The aforementioned procedures are required to update
at each iteration. The GQSE iterations continue until 𝛥𝑽 achieves
convergence.

3. PQLS for quantum state estimation

Although theoretically HHL offers an exponential speedup in terms
of the system dimension, its efficiency can be affected by many factors.
The computational complexity of HHL can be expressed as
𝑂(𝑙𝑜𝑔(𝑁)𝜂2𝜅2) [12], where 𝑁 , 𝜂 and 𝜅 respectively denote the dimen-
sion, sparsity and condition number of the gain matrix 𝑯𝑇𝑹−1𝑯 . While
does not vary much due to the sparse nature of power grids, 𝜅 can
argely deviate in different systems. If an ill-conditioned gain matrix
𝑇𝑹−1𝑯 (where 𝜅 is extremely large) appears in GQSE, the efficiency
f GQSE will be largely impacted. This is because a larger 𝜅 leads to
higher difference between the largest and the smallest eigenvalues,
hich makes the QPE in GQSE has to have more qubits to maintain
he estimation accuracy. This inevitably leads to an increased quantum
ircuit depth and an over-consumption of qubit resources.
To tackle this challenge, we develop a preconditioned quantum

inear solver (PQLS) in this paper. The overall idea of PQLS is to use a
reconditioned iterative optimization to obtain 𝛥𝑽 instead of directly
alculating 𝛥𝑽 through (4). In other words, at each iteration in the
Gauss–Newton algorithm (see (3) and (4)), 𝛥𝑽 is calculated by PQLS
which utilizes an optimization process. The iteration procedures of
PQLS are given below:

Multiple iterations are involved in PQLS. Here, we use 𝜉 to distin-
guish each iteration in PQLS with the iteration in the Gauss–Newton
algorithm (denoted as 𝑘 in (3)), where 𝜉 starts at 0, and ends until a
convergence is reached. At the 𝜉th iteration of PQLS, 𝛥𝑽 𝜉+1 and the
residual vector 𝑟𝑟𝑟𝜉+1 (i.e., 𝑟𝑟𝑟𝜉+1 = 𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 )) − (𝑯𝑇𝑹−1𝑯)𝛥𝑽 𝜉 ,
obtained from (3)) can be updated by using the gradient descent rule
as follows:
{

𝛥𝑽 𝜉+1 = 𝛥𝑽 𝜉 + 𝜌𝜉𝑝𝑝𝑝𝜉
𝑟𝑟𝑟𝜉+1 = 𝑟𝑟𝑟𝜉 + 𝜌𝜉 (𝑯𝑇𝑹−1𝑯)𝑝𝑝𝑝𝜉 , 𝜉 = 0, 1,…

(13)

where the initialized 𝛥𝑽 𝜉 and 𝑟𝑟𝑟𝜉 (i.e., 𝛥𝑽 0 and 𝑟𝑟𝑟0) are 𝟎 and𝑯𝑇𝑹−1(𝒛−
𝒉(𝑽 )) − (𝑯𝑇𝑹−1𝑯)𝛥𝑽 0, respectively. 𝑝𝑝𝑝𝜉 refers to the search direction
and can be updated as follows:

𝑝𝜉+1 = 𝑤𝑤𝑤𝜉+1 + 𝑟𝑟𝑟𝑇𝜉+1𝑤𝑤𝑤𝜉+1(𝑟𝑟𝑟
𝑇
𝜉𝑤𝑤𝑤𝜉 )

−1𝑝𝑝𝑝𝜉 , 𝜉 = 0, 1,… (14)

where𝑤𝑤𝑤𝜉 represents the preconditioned errors [22]. It can be calculated
through quantum computing as follows:

𝑟 𝑤
|𝑟𝑟𝜉⟩ = 𝑴|𝑤𝑤𝜉⟩, 𝜉 = 0, 1,… (15)
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where 𝑴 denotes a positive-definite, fixed preconditioner. An exam-
le of a commonly used preconditioner is the incomplete Cholesky
actorization [23]. 𝑤𝑤𝑤𝜉 is initialized as follows:

|(𝑯𝑇𝑹−1(𝒛 − 𝒉(𝑽 ) −𝑯𝑇𝑹−1𝑯)𝛥𝑽 0)⟩ = 𝑴|𝑤𝑤𝑤0⟩. (16)

𝑝𝑝𝑝𝜉 is initialized as 𝑝𝑝𝑝0 = 𝑤𝑤𝑤0. In (13), 𝜌𝜉 is a coefficient, and can be
btained as 𝜌𝜉 = 𝑟𝑟𝑟𝑇𝜉𝑤𝑤𝑤𝜉 (𝑝𝑝𝑝

𝑇
𝜉 𝑯

𝑇𝑹−1𝑯𝑝𝑝𝑝𝜉 )−1 (𝜉 = 0, 1,…).
The entire PQLS algorithm is summarized as follows:

• Step 1: Initialize 𝛥𝑽 0, 𝑟𝑟𝑟0, 𝑤𝑤𝑤0, and 𝑝𝑝𝑝0.
• Step 2: For each iteration, update 𝛥𝑽 𝜉+1 and 𝑟𝑟𝑟𝜉+1 through (13).
• Step 3: If 𝑟𝑟𝑟𝜉+1 reaches a tolerance of 𝜖, output 𝛥𝑽 𝜉+1. Otherwise,
update 𝑤𝑤𝑤𝜉+1 and 𝑝𝑝𝑝𝜉+1 using (14) and (15), respectively.

4. EQSE for microgrids

4.1. Microgrid hierarchical control

In microgrids, hierarchical controls are applied on DERs to support
power consumption and regulate bus voltages [24]. A hierarchical
control commonly consists of a droop control and a secondary control.
For DC microgrids, a P/V droop control can be applied to balance the
power consumption. The main function of the secondary control in this
study is to retrieve deviations of local voltages to their nominal values
[25,26].

Existing microgrid state estimation methods typically follow classi-
cal power flow formulations in (2), which however have ignored the
features of hierarchical-control-based microgrids where multiple DERs,
instead of a swing bus, support the entire system. Failure to represent
the droop/secondary regulation may provide erroneous results when a
microgrid is subject to disturbances. In the next subsection, we present
the EQSE algorithm considering droop/secondary characteristics.

4.2. The EQSE algorithm

The EQSE algorithm is given in Algorithm 1. It incorporates either
droop or (droop + secondary) control into 𝒉(𝑽 ) to mitigate errors of
state estimation results when the measurement 𝒛 contains disturbances.

4.2.1. Droop-based EQSE
When only droop controls are applied in a microgrid, 𝑷 (𝑽 ) and the

corresponding elements in the Jacobian matrix 𝑯 (i.e., 𝜕𝑷 (𝑽 )
𝜕𝑽 ) can be

evised as

𝑷 (𝑽 ) = 𝑮𝑽 ◦𝑽 + 𝒌𝐺◦(𝑽 𝑟𝑒𝑓 − 𝑽 )
𝜕𝑷 (𝑽 )
𝜕𝑽 = 𝑮𝑽 +𝑮(𝑑𝑖𝑎𝑔)𝑽 − 𝒌𝐺 ,

(17)

where 𝑮(𝑑𝑖𝑎𝑔) is the diagonal part of 𝑮, 𝒌𝐺 is a vector contain-
ing the reciprocal of each P/V droop coefficient, and 𝑽 𝑟𝑒𝑓 is the
reference-voltage vector.

4.2.2. Secondary-based EQSE
When both droop and secondary controls are applied in a microgrid,

a dummy bus 𝑽 𝑑 can be added to calculate 𝑷 (𝑽 ) to assist the voltage
ecovery. Specifically, 𝑽 𝑑 can be designed as 𝑽 𝑑 = 𝑽 ∗−𝑽 +𝑽 𝑝

𝑑 , where
is the unknown-voltage vector, 𝑽 ∗ is the rated-voltage vector, and

𝑽 𝑝
𝑑 denotes the dummy-bus-voltage vector at the previous iteration. To

be specific, if the element within (𝑽 ∗ −𝑽 ) is negative (or positive), the
corresponding element in 𝑽 𝑝

𝑑 will be added by a positive (or negative)
deviation. With the dummy bus 𝑽 𝑑 , 𝑷 (𝑽 ) and 𝜕𝑷 (𝑽 )

𝜕𝑽 can be expressed
s

𝑷 (𝑽 ) = 𝑮𝑽 ◦𝑽 + 𝑽 ◦(𝑽 𝑑 − 𝑽 )◦𝑮𝑑
𝜕𝑷 (𝑽 )
𝜕𝑽 = 𝑮𝑽 +𝑮(𝑑𝑖𝑎𝑔)𝑽 + (𝑽 𝑑 − 2𝑽 )◦𝑮𝑑 ,

(18)

here 𝑮𝑑 is a vector containing the coefficients. At each iteration,
𝑑 will be updated until the difference between 𝑽 ∗ and 𝑽 reaches

convergence.
4

G

Fig. 2. Test system architectures. (a) The 2-bus DC microgrid. (b) The 4-bus DC
microgrid.

Note that the aforementioned droop/secondary-based state estima-
tion schemes are discussed in the context of DC microgrids. Nonethe-
less, the principles of EQSE are generic and can be readily applicable
for AC microgrids where hierarchical P/𝑓 and Q/V control schemes are
adopted.

Algorithm 1: The EQSE Algorithm
Initialize: 𝒛, 𝑽 , 𝑽𝑑 , 𝜖, 𝑮, 𝑮𝑑 , 𝑹, 𝑴 ;
hile 𝛥𝑽 , 𝛥𝑽𝑑 ≥𝜖 do
Update: 𝒉(𝑽 ), 𝑯 , 𝑯𝑇𝑹−1𝑯 , 𝑯𝑇𝑹−1(𝒛−𝒉(𝑽 )) Eqs. (2), (17) and (18);
if well-condition then

Execute: |𝜓0⟩
𝐻𝐻𝐿
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ |𝛥𝑽 ⟩, Eq. (4);

else
Initialize: 𝛥𝑽 , 𝑟𝑟𝑟, 𝑤𝑤𝑤, 𝑝𝑝𝑝;
Update: 𝛥𝑽 , 𝑟𝑟𝑟, Eq. (13);

Execute: |𝜓0⟩
𝐻𝐻𝐿
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ |𝑤𝑤𝑤⟩ Eq. (15) and (16);

if 𝑟𝑟𝑟 < 𝜖 then
Break;

end
Update: 𝑝𝑝𝑝, Eq. (14);

end
Update: 𝑽 , 𝑽𝑑 ;

end
Result: 𝑽 .

5. Numerical tests

In the case studies, we validate the correctness of GQSE, PQLS and
EQSE in two typical microgrids (see Fig. 2(a) and (b)). The robustness
and convergence performance of EQSE are verified as well. All quantum
algorithms are implemented in IBM’s Qiskit (version: 0.23.4), Terra
(version: 0.16.3), and the IBMQ provider (version: 0.11.1). The classical
state estimation (i.e., the Gauss–Newton algorithm) is implemented in
MATLAB running on a 2.50 GHz computer for comparison.

The base voltage, i.e., the nominal rated voltage of the system, is
set at 400 V, and the base power is 1 KVA. In the 2-bus system in
Fig. 2(a), Bus 1 is a swing bus whose per-unit bus voltage is fixed at 1
p.u., and supports the power consumption of the entire system. In the
4-bus system in Fig. 2(b), DERs 1 and 2 are connected with Buses 1 and
4, respectively. The P/V droop coefficients for DER 1 and 2 in Fig. 2(b)
re set at 1 × 10−5 and 2 × 10−4. Each element in 𝑮𝑑 (see (18)) for the
econdary control is set at 20.

.1. Validity of gqse, PQLS and EQSE

This subsection verifies the correctness of GQSE in the 2-bus system
nd that of PQLS and EQSE in the 4-bus system. The classical state es-
imation (CSE), i.e., the Gauss–Newton algorithm [27], is implemented
or comparison. Tables 1 and 3 provide the state estimation results of
QSE and PQSL (together with the CSE comparisons) in the normal
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Table 1
GQSE and CSE results in the normal situation (p.u.).
System Iteration 𝑽 1(GQSE) 𝑽 2(GQSE) 𝑽 1(CSE) 𝑽 2(CSE)

2-bus DC grid
1 1.0000 0.9486 1.0000 0.9486
2 1.0000 0.9473 1.0000 0.9472
3 1.0000 0.9472 1.0000 0.9472

Table 2
GQSE results at 1st iteration with different numbers of qubits in 𝑞 (p.u.).
Qubits in 𝑞 2 4 6 10 CSE

𝛥𝑽 1 0.0036 0.0006 0.0004 0.0000 0.0000
𝛥𝑽 2 −0.0242 −0.0525 −0.0508 −0.0514 −0.0514

Table 3
PQLS and CSE results in the normal situation (p.u.).
System Method Iteration 𝑽 1 𝑽 2 𝑽 3 𝑽 4

4-bus
DC grid
(Droop)

PQLS
1 0.9999 0.9877 0.9884 0.9987
2 0.9999 0.9875 0.9882 0.9986
3 0.9999 0.9875 0.9882 0.9986

CSE
1 0.9999 0.9877 0.9884 0.9987
2 0.9999 0.9875 0.9882 0.9986
3 0.9999 0.9875 0.9882 0.9986

4-bus
DC grid
(Secon-
dary)

PQLS
1 0.9999 0.9880 0.9892 0.9999
2 1.0003 0.9884 0.9895 1.0003
3 1.0003 0.9884 0.9895 1.0003

CSE
1 0.9999 0.9880 0.9892 0.9999
2 1.0003 0.9884 0.9895 1.0003
3 1.0003 0.9884 0.9895 1.0003

situation (i.e., without an ill-conditioned matrix), respectively. Table 2
gives the state estimation results of GQSE with different numbers of
qubits in 𝑞 (see Fig. 1). Table 4 presents the PQLS and CSE estimation
esults with an ill-conditioned matrix (i.e., the maximum eigenvalue:
.4675×1010, and the minimum eigenvalue: 277.7778).
For EQSE, an enhanced state estimation (ESE) method is utilized

or comparison. Specifically, ESE has the same principle with EQSE
xcept that the quantum procedures in EQSE are replaced with classical
perations. Table 5 presents the comparison results of EQSE and ESE
nder the droop control and the (droop + secondary) control. From
ables 1–5, the following insights can be obtained:

The estimation results from GQSE (i.e., after the third iteration)
and CSE are exactly the same (see Table 1), which validates the
correctness of GQSE.

For GQSE, having a sufficient number of qubits in 𝑞 is critical to
achieve an accurate estimation result. As shown in Table 2, increasing
the number of qubits in 𝑞 can greatly improve the accuracy of the
GQSE result, i.e., the result obtained from GQSE is closer to the CSE
result. This is because more precise eigenvalues of 𝑯𝑇𝑹−1𝑯 can be
obtained with more qubits in 𝑞.

Tables 3 and 4 validate the correctness of PQLS in the normal situ-
ation and with an ill-conditioned matrix, respectively. Results show
that even though 𝑯𝑇𝑹−1𝑯 is ill-conditioned, our PQLS-based QSE
still possesses excellent convergence by adjusting the preconditioning
errors to eventually achieve accurate results.

• Further, Table 5 validates the correctness of EQSE, i.e., the results
obtained from EQSE are exactly the same with those from ESE in both
droop and secondary controls.

5.2. EQSE against disturbances

This subsection demonstrates the robustness of EQSE against distur-
5

bances. Disturbances are assumed to follow the Gauss distribution with
Table 4
GQSE, PQLS, and CSE results with an ill-conditioned matrix (p.u.).
Algorithm Iteration 𝛥𝑽 1 𝛥𝑽 2 𝛥𝑽 3 𝛥𝑽 4

GQSE – 0.0065 −0.0060 −0.0055 0.0049

PQLS

1 0.0062 −0.0060 −0.0052 0.0050
2 0.0062 −0.0060 −0.0052 0.0049
3 0.0001 −0.0124 −0.0116 0.0013
4 0.0001 −0.0123 −0.0116 0.0013
5 0.0001 −0.0123 −0.0116 0.0013
6 0.0001 −0.0123 −0.0116 0.0013

CSE – 0.0001 −0.0123 −0.0116 0.0013

Table 5
EQSE and ESE results (p.u.).
System Method Iteration 𝑽 1 𝑽 2 𝑽 3 𝑽 4

4-bus
DC grid
(Droop)

EQSE
1 0.9999 0.9876 0.9884 0.9986
2 0.9999 0.9875 0.9883 0.9986
3 0.9999 0.9875 0.9883 0.9986

ESE
1 0.9999 0.9876 0.9884 0.9986
2 0.9999 0.9875 0.9883 0.9986
3 0.9999 0.9875 0.9883 0.9986

4-bus
DC grid
(Secon-
dary)

EQSE

1 1.0435 1.0317 1.0329 1.0437
2 1.0018 0.9899 0.9912 1.0020
3 0.9983 0.9864 0.9877 0.9986
4 0.9998 0.9879 0.9892 1.0001
5 0.9999 0.9880 0.9893 1.0001

ESE

1 1.0435 1.0317 1.0329 1.0437
2 1.0018 0.9899 0.9912 1.0020
3 0.9983 0.9864 0.9877 0.9986
4 0.9998 0.9879 0.9892 1.0001
5 0.9999 0.9880 0.9893 1.0001

𝑁(𝜇, 𝜎2). Specifically, 100 samples of disturbances are generated based
on the distribution of 𝑁(0.01, 0.012). These disturbances are then added
to the measurement 𝒛, respectively. For each disturbance, EQSE and
CSE are used to conduct the state estimation using the updated 𝒛 (with
the disturbance), respectively. Similarly, another 100 samples with
the distribution of 𝑁(0.01, 0.052) are applied. The voltage distributions
in droop-based and secondary-based EQSE and CSE under the two
distributions are shown in Figs. 3 and 4, respectively, where the outlier,
maximum, upper quartile, median, lower quartile, and minimum volt-
ages are presented. Table 6 presents the average voltages and variances
(from all the 100 samples) of droop-based and secondary-based EQSE
and CSE. It can be observed that:

• The droop-based EQSE outperforms CSE in terms of the robustness
against disturbances. For instance, in Fig. 3(a), the voltage distri-
butions of EQSE under the disturbance of 𝑁(0.01, 0.012) are much
narrower than those of CSE. When the disturbance has a distribution
of 𝑁(0.01, 0.052) (see Fig. 3(b)), the voltage variations of CSE become
larger, while those of EQSE remain small. This is because CSE relies
on a swing bus to balance the disturbances. EQSE then redistributes
the disturbances into multiple DERs as it incorporates the hierarchical
control scheme. Fig. 4 shows the secondary-based EQSE is also robust
against disturbances.

• Table 6 further validates the robustness of both droop-based and
secondary-based EQSE under disturbances. For instance, when the
disturbance has a distribution of 𝑁(0.01, 0.012), for CSE under the
secondary control, 𝑉1 becomes 0.9986 p.u., which largely deviates
from the value with no disturbance, i.e., 1.0000 p.u. under 𝑁(0, 02).
However, for EQSE, 𝑉1 remains 0.9998 p.u., i.e., a value much closer
to 1.0000 p.u. This becomes more obvious when the disturbance has
a distribution of 𝑁(0.01, 0.052).

5.3. EQSE convergence performance

The EQSE convergence performance is demonstrated in this subsec-
tion. Specifically, for both EQSE and CSE, under each disturbance (from
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Fig. 3. Voltage distribution of droop-based EQSE against disturbances. (a)
(0.01, 0.012). (b) 𝑁(0.01, 0.052).

Fig. 4. Voltage distribution of secondary-based EQSE against disturbances. (a)
𝑁(0.01, 0.012). (b) 𝑁(0.01, 0.052).

100 samples with 𝑁(0.01, 0.012)), the required number of iterations (for
roducing the final result) is recorded, in droop-based and secondary-
ased systems, respectively. The comparison results are given in Fig. 5,
rom which the following insights can be obtained:

For either droop-based or secondary-based EQSE, the required num-
ber of iterations has a similar level with that of CSE. For instance, all
the recorded numbers of iterations for the droop-based EQSE are 4
(see EQSE1 in Fig. 5), while those for CSE are either 3 or 4 (see CSE1
in Fig. 5).
The convergence performance of EQSE is less likely to be affected
by disturbances than that of CSE. In Fig. 5, all the recorded numbers
of iterations for the droop-based EQSE are 4 (see EQSE1 in Fig. 5)
and those for the secondary-based EQSE are 5 (see EQSE2 in Fig. 5).
However, those for CSE are distributed (see CSE1 and CSE2 in Fig. 5).
6

Table 6
Average EQSE and CSE results with disturbances (p.u.).
Control Bus Num. 𝑁(0, 02) 𝑁(0.01, 0.012) 𝑁(0.01, 0.052)

EQSE&CSE EQSE/CSE EQSE/CSE

Droop

𝑽 1 0.9999 0.9980/1.0098 0.9979/1.0110
𝑽 2 0.9875 0.9865/0.9976 0.9865/0.9987
𝑽 3 0.9883 0.9878/0.9983 0.9878/0.9994
𝑽 4 0.9986 0.9980/1.0085 0.9980/1.0097

Variance – 5.43e−6/1.26e−5 5.55e−6/1.04e−2

Secondary

𝑽 1 1.0000 0.9998/0.9986 0.9998/0.9841
𝑽 2 0.9884 0.9877/1.0016 0.9879/0.9719
𝑽 3 0.9896 0.9894/1.0028 0.9891/0.9731
𝑽 4 1.0000 1.0001 /1.0135 0.9999/0.9841

Variance – 9.75e−4/3.82e−3 1.01e−3/5.20e−3

Fig. 5. Convergence performances. CSE1 and EQSE1: only with the droop control. CSE2
and EQSE2: with both droop and secondary controls.

6. Conclusion

This paper presents the GQSE formulation for swing-bus-constrained
microgrids, and the PQLS for resolving the ill-conditioned matrix issue
in GQSE. The EQSE algorithm is further developed for hierarchical-
control-based microgrids with exogenous disturbances. Test results
demonstrate the correctness of GQSE, PQLS and EQSE in two typical
microgrids, and the robustness and convergence performance of EQSE
are also verified. Although the two test systems applied in this study
have limited scales (due to the fact that current quantum computers
still have limitations regarding the quantum depth, coherence time, and
noise tolerance capability), the presented methods provide a firm basis,
underpinning the great potential of quantum computing in microgrid
state estimation.
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