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Abstract

We consider a collection of Markov chains that model the evolution of multitype biolog-
ical populations. The state space of the chains is the positive orthant, and the boundary
of the orthant is the absorbing state for the Markov chain and represents the extinction
states of different population types. We are interested in the long-term behavior of the
Markov chain away from extinction, under a small noise scaling. Under this scaling,
the trajectory of the Markov process over any compact interval converges in distribu-
tion to the solution of an ordinary differential equation (ODE) evolving in the positive
orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in
this scaling regime. Our main result shows that, under conditions, the limit points of the
QSD are supported on the union of interior attractors of the flow determined by the ODE.
We also give lower bounds on expected extinction times which scale exponentially with
the system size. Results of this type when the deterministic dynamical system obtained
under the scaling limit is given by a discrete-time evolution equation and the dynamics
are essentially in a compact space (namely, the one-step map is a bounded function)
have been studied by Faure and Schreiber (2014). Our results extend these to a setting
of an unbounded state space and continuous-time dynamics. The proofs rely on uniform
large deviation results for small noise stochastic dynamical systems and methods from
the theory of continuous-time dynamical systems.

In general, QSD for Markov chains with absorbing states and unbounded state spaces
may not exist. We study one basic family of binomial-Poisson models in the positive
orthant where one can use Lyapunov function methods to establish existence of QSD
and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The
results from the first part are then used to characterize the support of limit points of this
sequence of QSD.
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1. Introduction

In this work we study discrete-time Markov chains with values in the d-dimensional pos-
itive orthant that are absorbed upon hitting the boundary of the orthant. Such processes are
well suited to model biological and ecological systems [9, 11] where each coordinate rep-
resents the population size of individuals of a given type/species. One of the fundamental
issues in mathematical biology is to characterize the conditions for a population of interacting
species to coexist, that is, to survive for a long time with no extinctions. Many real-world
systems are certain to go extinct eventually, yet appear to be stationary over any reason-
able time scale. Generally, the finite nature of the resources available prevents the system
from growing without limit. Thus, provided we wait long enough, a sufficiently strong down-
ward fluctuation in population size is bound to occur. We are interested in studying the
long-term behavior of such systems away from extinction, under a suitable scaling of the
system.

The processes we consider have a natural scaling parameter (V) representing the system
size. From standard results, as N — oo, the linearly interpolated trajectory of the state process
XV, over any compact time interval [0, 7], converges in distribution in C([0, T]:Ri) (the space
of continuous functions from [0, 7] to Ri, equipped with the uniform topology) to the solu-
tion of an ordinary differential equation (ODE) of the form ¢(f) = G(¢(1)), ¢(0) = x (see (4)).
Our goal is to analyze the limiting behavior of the steady states of XV, conditioned on non-
extinction, as N — oo, in terms of the properties of the flow determined by the above ODE.
The steady state of a Markov chain conditioned on non-extinction is made precise through the
notion of a quasi-stationary distribution (QSD) (see Definition 1). We refer the reader to [14]
for a comprehensive background and survey of results in the theory of QSD. QSD are impor-
tant objects in biological models, and discussions of applications in biology can be found in
[1,7,8, 15, 16].

Our first main result (Theorem 1) studies asymptotics of QSD of XV (denoted by juy), as
N — oo, provided they exist and the sequence {uy} is tight. Specifically, in Theorem 1 we
show that, under Assumptions 1, 2, 3, and 4, any limit point u of the sequence of QSD {uy} is
invariant under the flow determined by the ODE (4) and is supported on the union of interior
attractors of the flow. We also provide lower bounds on the probability of non-extinction over
a fixed time horizon that scale exponentially in system size. These bounds readily give similar
lower bounds on expected time to extinction.

In general, Markov chains with absorbing states and an unbounded state space may fail
to have a QSD. Conditions for existence of QSD have been studied in [5, 18, 19]; how-
ever, these results are not easily applicable to the models considered in this work. We instead
make use of the recent work of Champagnat and Villemonais [2], which gives general and
broadly applicable Lyapunov-function-based Foster-type criteria for existence of QSD (see
Theorem 10). In our second main result we consider a basic family of Markov chains, to
which we refer as binomial-Poisson models, where the results of [2] can be applied to
give existence of QSD. Using the stability properties of these Markov chains we obtain
bounds on exponential moments of certain hitting times that allow us to construct suit-
able Lyapunov functions (and related objects) for which the conditions in Theorem 10 are
satisfied, thus establishing the existence of a QSD uy for each N. In fact, this QSD can
be characterized as the limit, as n — oo, of the law of X,’;’ , conditioned on non-extinction,
starting from an arbitrary initial condition in the interior. Using this characterization, and
similar moment estimates as used in the construction of the Lyapunov functions, we then
argue that the sequence of QSD is tight. Finally, from these results and other properties of
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the model, we establish our second main result (Theorem 2), which says that the binomial-
Poisson model introduced in Section 2.3 satisfies all the conditions in Theorem 1 and
therefore provides an important class of Markov chains where the conclusions of Theorem 1
hold.

1.1. Approach and idea of proof

We now comment on the proof of Theorem 1. Our results are motivated by the work of
Faure and Schrieber [4] (see also the unpublished manuscript of Marmet [13]), which consid-
ers analogous problems for a class of Markov chains where the deterministic dynamical system
obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics
are essentially in a compact space (namely, the one-step map is a bounded function). As in [4],
one of the important ingredients in the proof is an analysis of the large deviation behavior of the
sequence of small noise Markov chains in Section 2.1. However, because of the continuous-
time setting here, one needs to study large deviation principles on suitable path spaces. One of
the issues that arise in the large deviation analysis is that transition probabilities of the Markov
chain behave in a degenerate manner near the boundaries. For this reason, the associated
local rate functions have poor regularity properties, which in turn makes establishing a global
large deviation principle on the path space technically challenging. Another issue arises from
the unboundedness of the state space. In particular, the moment generating functions of the
noise sequences can become arbitrarily large as the system state becomes large. In order to
handle these issues, we instead consider large deviation principles for a collection of modi-
fied chains in R?. These modified chains behave identically to the original chain until exiting
from a given compact set K in the interior of the orthant; upon exiting, the modified chains
change their behavior to a more regular dynamics in an appropriate sense. The large devia-
tion estimates that are needed for our analysis can be obtained by piecing together such large
deviation principles associated with all such compact sets K. A similar approach, in a setting
where the state space is compact, has been proposed in [13]. Another important point in the
analysis is that one needs large deviation estimates that are uniform in initial condition in com-
pact sets, in the sense of Freidlin and Wentzell [6, Chapter 3.3, pp. 91-92]. For this we use
results on uniform Laplace principles for small noise stochastic difference equations that have
been developed in [3, Section 6.7]. The recent work [17] shows that a uniform Laplace prin-
ciple implies a uniform large deviation principle in the sense of Freidlin and Wentzell. These
results together allow us to establish uniform probability estimates that are needed in our large
deviation analysis (see Section 4).

The proof of Theorem 1, analogous to [4], also requires a detailed analysis of the dynamical
system properties of the flow associated with the ODE (4). In particular, a careful understand-
ing of the properties of continuous-time analogues of absorption-preserving pseudo-orbits (in
the terminology of [4]) and those of the associated recurrence classes are key to the proof (see
Section 3). Although some of the arguments are similar to those of [4], there are new challenges
that arise due to the unboundedness of the state space and the continuous-time dynamics. To
handle these features we exploit the stability properties of the underlying ODE and develop
several a priori estimates for pseudo-orbits that are uniform in time and/or space. The dynami-
cal systems results in Section 3 and the large deviation estimates in Section 4 take us most of the
way to the proof of Theorem 1. In particular, in Section 5, using these results, we establish the
lower bound on probabilities of non-extinction given in Theorem 1 and also that the limit points
w of the QSD are invariant under the flow, they do not charge the boundary, and in fact that they
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are supported on the union of absorption-preserving recurrence classes in the interior. The final
step is to show that the support in fact lies in the union of the interior attractors. For this, fol-
lowing [4], we reformulate the notion of recurrence in terms of the quasipotential associated
with the rate functions in the underlying large deviation principles. Section 6 introduces the
quasipotential and this alternative notion of recurrence and proves the equivalence between
these two definitions of recurrence classes. The second definition is better suited to the analy-
sis and allows the use of the large deviation estimates of Section 4 in studying the behavior of
the stochastic dynamical system in terms of the properties of the recurrence classes. Combining
the results of Section 6 with the results of Section 4 and the properties of absorption-
preserving pseudo-orbits studied in Section 3, we complete the proof of the main result in
Section 7.

1.2. Organization

The paper is organized as follows. In Section 2 we introduce the model of interest, state
the assumptions, and present the main results of the paper. In Section 3 we introduce some
notions from the theory of dynamical systems, and study properties of recurrence points and
associated (pseudo-) orbits for the dynamical system associated with the law-of-large-numbers
limit of the underlying sequence of scaled Markov chains. In Section 4 we establish some
key large deviation estimates. In Section 5 we give some important asymptotic properties
of QSD (provided they exist) for the Markov chains considered in this work. In Section 6
we introduce the quasipotential V that governs the large deviation behavior of the model
and study the properties of V-chain recurrence. In Section 7 we complete the proof of our
first main theorem, namely Theorem 1. Finally, in Section 8 we prove our second main
result, Theorem 2, which gives an important family of models for which Theorem 1 can be
applied.

1.3. Notation

Let A = Rﬂ’r, A? = {x € A:x > 0}, where inequalities for vectors are interpreted componen-
twise, and A = A\ A°. For Ne N, let Ay = AN LZ% Ay =dA N LZ%, and Ay = A% N
+Z%. Forx,y e RY, (x, y) = Y4 | xiyi. Forxe RY and A C RY, dist(x, A) = infyes [lx — y||. We
denote by N¢(A) the e-neighborhood of a set A in A, namely N¢(A) = {x € A:dist(x, A) < &}.
For r > 0 and x € R?, B,.(x) will denote the open ball of radius r centered at x. Denote by P(S)
the space of probability measures on a Polish space S, equipped with the topology of weak
convergence. For a € P(S) and p-integrable f:S — R, we write [ fdu as u(f). The support
of € P(S) will be denoted by supp(u). For a signed measure 1 on S, ||n]|7v denotes its total
variation norm, namely

[ an

where the supremum is taken over all measurable maps f:S — R such that sup ¢ [f(x)| < I.
For a bounded F:S — R, we denote sup, g [F(x)| by ||F|lo. We denote by K the collection of
all convex compact subsets with a nonempty interior that are contained in A°. For T < co, we
denote by C([0, T']:S) the space of continuous functions from [0, 7] to S, equipped with the
uniform topology. For ¢ € C([0, T1:R%), let l@lls,7 = supg<,;<7 lI@(®)|l. Given a metric space
S1 and a Polish space S, a stochastic kernel x — 6(dy|x) on S, given S; is a measurable map
from S to P(S»).

’

nll7v = sup
f

https://doi.org/10.1017/apr.2021.20 Published online by Cambridge University Press



68 A. BUDHIRAIJA ET AL

2. Statement of results

2.1. The model

Consider the sequence {XkN Jken, of Ay-valued random variables defined as

1
N N N (yN
Xjp1 =X + et (X7) k € No, N

N _
Xy =x",

where for each x € Ay, nf{v (x) is a Z%-valued random variable with distribution #"(-|x) such
that supp(@V (- |x)) C ]_[le [ — Nx;, 00).

We will denote by IP’C’ the probability measure under which the Markov chain {X,ICV } has the
initial distribution v, namely P (Xg/ €A) =v(A). If v =§,, we write P as simply P

Definition 1. A probability measure uy on Af; is said to be a quasi-stationary distribution
(QSD) for the Markov chain {X,’{V }if forevery n e N

Py [Xy =j|XY € AY] = un(). forallje Af andkeN.

2.2. Definitions and assumptions

Consider the continuous-time process XV obtained from a linear interpolation of XV, given
as

Ny =xY + XN, — XNt —n), te[n/N, (n+1)/N], neN, )

The following assumption on the law-of-large-numbers behavior of XN will play a central role
in our study of asymptotic properties of QSD of XV.

Assumption 1. There is a Lipschitz function G:A — R? such that for any sequence xy — x
with xy € Ay for every N € N,

Pyy ( sup ||)A(N(t) — ()| > e) —0, asN— oo, forevery T €[0,00)and ¢ >0, (3)
0<t<T
where {@;(x)}s>0 is the solution of the ODE
o) =G(p), ¢0)=nx. “4)

We now introduce the notion of absorption-preserving pseudo-orbits for the flow associated
with the ODE (4). Discrete-time analogues of these were introduced in [4].

Definition 2. Given §, T > 0, consider a family of points § = (§p=x, ..., &, =y) € A" and
a collection of times T < T}, ..., T,,_ such that

o 5o —&1ll <6
e whenever & € 0A, &1 € 0A;
o [I§it1 —or,G)ll <dforl<i<n-—1.

The piecewise continuous path
(@G € [0, T1 1}, {ei(82):2 € [0, T2}, - -, {@i(En—1): € [0, Ty 11}, y)
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is said to be a (8, T) absorption-preserving pseudo-orbit (AP—pseudo-orbit) from x to y.
Occasionally, we will also refer to the sequence {&;}7_, as a (8, T) AP—pseudo-orbit from x
toy.

Definition 3. For two points x, y € A, we say that x <,p y if for all §, T > 0 there is a (§, T)
AP—pseudo-orbit from x to y. If x <,p y and y <,p x, we write x ~,p y. If x ~,p x, then X is said
to be an AP—chain recurrent point. Let Rp denote the set of AP—chain recurrent points, and
note that ~,p is an equivalence relation on R p. For x € R 4p, the equivalence class [x]p of
all y € Rp such that y ~,p x is said to be an AP-basic class. Such a class is called maximal if,
whenever for some y € Rp, X <ap y, We have y € [x],p. A maximal AP-basic class is called an
AP—quasiattractor. We let R%, = Rp N A°.

The following will be our main assumptions on the dynamical system {¢;(x)}. Parts (c) and
(d) say that the velocity fields decay as the boundaries are approached but not at too fast a rate.
Part (e) is our main stability assumption on the dynamics. Parts (a) and (b) are requirements on
recurrence classes for the flow that are satisfied quite broadly.

Assumption 2.

(a) There are a finite number of AP-basic classes contained in A°, which are denoted
by {Ki},_,. Each K; is a closed set. Additionally, for some [<v, {K,-}ﬁz1 are
AP—quasiattractors and {K;};_, | are non-AP-quasiattractors.

(b) For each i=1,...,v there is an x; € K; such that, for every T >0, {¢;(x;):t>T} is
dense in K;.
(¢c) There exist € >0 and m > 0 such that for every i=1,...,d, Gi(x)> mx; whenever

x€ A% and x; <s.

(d) Foreveryi=1,...,d,asé—0, sup Gix)— 0.

XEA:X;<§
(e) For some k € (0, 00) and M € (1, 00), (x, G(x)) < —« ||x||* for all x € A with || x| > M.
We will need certain assumptions on the moment generating functions of 87( - |x).

Assumption 3.

(a) ForeveryNeN, ¢ eR?, andx e A%
HY(x, £) =log /R expl(¢, )} (dylx) < oo.

(b) There exists a stochastic kernel 8(dy|x) on RY given A° such that the following hold:
(i) For every x € A? the convex hull of supp(6( - |x)) equals R4,
(ii) The map x> 6( - |x) is a continuous map from A° to P(RD),

(iii) For every ¢ e R and K € K, sup,cx H(x, {) < 0o, where

H(x, ¢) = log /R expl(z I
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Furthermore, as N — 00,

sup [HY(x,¢)— H(x, {)| — 0.
xeKNAN

We introduce one final assumption to provide a lower bound on the probability that XV is
absorbed when its initial state is sufficiently close to dA.

Assumption 4.

i. Foreach N € Nand x,y € A%, there is a k € N such that Pij(XN =x)>0.

ii. Foreveryy € (0,00)and T €N, there is an open neighborhood Uy, of d A in A such that

. . 1 aN
liminf inf N log ]P’X(X (T e aA) > —y.

N—oo xeUyNAy

We now present our main results.

2.3. Main results

It is easy to see that under Assumption 2, for all x € A and # > 0, ¢;(x) € A. In particular, ¢,
is a measurable map from A to itself for every r > 0. We recall the definition of an invariant
measure for the flow {¢;}.

Definition 4. A probability measure p on A is {¢,}-invariant if pu(p; 1(A)) = u(A) for every
measurable A € A and ¢ > 0.

Theorem 1. Suppose that for every N €N, there exists a QSD uy for {Xflv }neny, and the
sequence {uy} is relatively compact as a sequence of probability measures on A°. Suppose
that Assumptions 1, 2, 3, and 4 are satisfied. Then any weak limit point u of this sequence is
{¢@:}-invariant and is supported on UleK,-. Moreover, letting

=[Py (XY e a9)]", (5)

there is a ¢ > 0 and Ng € N such that Ay > 1 — e_CNfor all N > Ny.

We now introduce a basic family of Markov chains, which we refer to as the binomial-
Poisson models, for which Theorem 1 can be applied.

Consider a population with d types of particles evolving in discrete time, in which, at each
time step, any given particle dies with probability 1/N, and given that the population size
at previous time step was Nx = (in)fl: |» the number of particles of type i that are produced
at the next time step follows a Poisson distribution with mean F;(x) distribution for some
F:A— Ri. Denote the total number of particles of type i at time k by NX,ICV". The evolution
of XNV =X}, ..., X)) is then given by (1), where, for each N, 6N (dy|x) = 6N *(dylx) is the
distribution of U — V, where U= (Up®_,, V= (V)L , {U;, V},i,j=1,..., d} are mutually
independent, U; ~ Poi(F;(x)) (namely, a Poisson random variable with mean F;(x)), and V; ~
Bin(Nx;, Il\,) (namely a binomial random variable with Nx; trials and probability of success
1/N).

Define

) =inf {k e No:X}) € dAn}. (6)
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For a bounded and measurable f:Ay — R,
P =B [f (V) 7) > n]. @)

Theorem 2. Suppose that, for each N, X" is given by (1) with 0N = 0N-*. Further suppose that
F is a bounded Lipschitz map and Parts (a)—(d) of Assumption 2.2 are satisfied with G(x) =
F(x) — x. Then there is a iy € P(AY,;) such that for every N € N and xy € Ay,

Bxy Pl
S PY(1ag)

converges to Ly in the total variation distance as n — 0o. The measure |y is a QSD for {XN }
The sequence {juy}neN is relatively compact as a sequence of probability measures on A, and
any weak limit point p of this sequence is {¢;}-invariant and is supported by Uﬁle,-. Finally,
letting Ly = []PMN(XIIV e ANV, there is a ¢ > 0 and Ny € N such that Ay > 1 —e~N for all
N > Ny.

Theorem 1 is proved in Section 7 while Theorem 2 is established in Section 8.

3. Absorption-preserving pseudo-orbits

In this section we present some basic facts on absorption-preserving pseudo-orbits that will
be used to prove Theorem 1. Throughout the section we will take Assumptions 1 and 2 to hold.

The proofs of many of these results are similar to those found in [4] for discrete-time flows,
but we provide the details for completeness. Recall that the solution of the ODE (4) with initial
value ¢(0) = x is denoted by {¢;(x)};>0. The following lemma is a consequence of the stability
condition in Assumption 2(e).
Lemma 1. For every T >0 and compact A C A, there is a 8o >0 and a compact A C
A such that for any (5o, T) AP-pseudo-orbit {éi}?:ol with & € A, we have & € Ay for all
i=0,...,n+1.

Proof. For fixed x € A, ||¢;(x)||> solves the ODE

%Ilgt)z(x)ll2 =2(G(: (), ¢1(x)).
From Assumption 2(e), when || x|| > M
2(G(0), x) < =2c|lx].
This implies the following two facts:

(a) If forany R> M, x € Br = {z:]|z]| < R}, then ¢;(x) € By for every ¢t > 0.

(b) Given T > 0, define g = 8o(T) = % A 1. Then for any 6 < 8y, and any R > M, whenever
X € Brys, we have that ¢,;(x) € Bg forall t > T.

Now fix T > 0 and a compact A C Ri. Without loss of generality assume that there is an R >
M such that A C Bg. Let 69 = §o(T) be as defined above and consider a (§y, 7)) AP—pseudo-orbit
{é,-};’;“ol with &y € A. Then the above two facts imply that &; € By foralli=0,1,...,n+ 1.
The result follows on taking A; = Br+1. O
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As a consequence of Lemma 1 we get the following result on the boundedness of AP—basic
classes.

Lemma 2. The Ap-basic classes are bounded.

Proof. Fixx € Rap and y € [x]ap. Let T > 0 and A = {x}. From Lemma 1, there is a §o > 0
and a compact A; in A such that for each § < §y, any (§, T) AP—pseudo-orbit starting at x is
contained in Aj. Since y € [x],p, there must exist a (8, T) AP—pseudo-orbit from x to y, which
means that y must lie in Aj. The result follows. (I

For x € A?, we denote the forward orbit of ¢ by y*(x) = {¢,(x)|t > 0}. From Assumption
2(b) and arguments as in Lemma 1 the following result is immediate.

Lemma 3. The following hold:

(a) There exists ag € (0, 1) such that if for some « € (0, ag] and x € A, dist(x, 0A) > «,
then for all t > 0, dist(¢:(x), 0A) > «.

(b) There exists My € (0, 00) such that if for some M > My and x € A°, ||x|| <M, then for
allt =0, le(0)|l <M.

(c) For every A€k, there exist T>0, A|,AyeK such that A| DA, A, CAj,
dist(A, A1) > 0, and for all x e Ay and t > T, ¢:(x) € Aj.

(d) For every Ag € K, there is an Ay € K such that for every x € Ay, the forward orbit
YT (x) CAL

The proof of the next lemma follows from the observation (a) in the proof of Lemma 1.

Lemma 4. For each compact K C A, sup sup || ¢:(x)] < oo.
xekK >0
We say a (8, T) Ap—pseudo-orbit described by a collection of points &€ = (&g, ..., &,) €

A" and a collection of times T <Ty, ..., T,_1 intersects a set AC A, if for some je
{1,....,n—1}and t € [0, T}], ¢:(§)) € A. We say such an orbit lies in A if its intersection with
A€ is empty. The following lemma shows that for small § and large T, (5, T) AP—pseudo-orbits
starting from the interior stay away from the boundary.

Lemma 5. Suppose A€ K. Then there exist ¢g>0, T>0, § >0 such that any (§,T)
AP-pseudo-orbit {&};_, with & €A does not intersect Eg = {x € Aix; < g for some i =
1,...,d}. In particular, there is an Ay € K such that any such Ap—pseudo-orbit starting in
Aliesin Ay.

Proof. Let ¢1 =dist(A, dA) and let ¢ and m be as in Assumption 2(c). Let g9 = (¢ A €1)/4.
Note that foranyxe Aandi=1,...,d,

d
E([‘Pt(x)]i)z = 2[p(0)iGi(¢:(x)) > 2m([@:(0]))*  whenever [¢;(x)]; <. ®)

Since m > 0, we can choose a T > 0 such that forany xe A andi=1, ..., d with x; > g9, we
have [¢,(x)]; > 3gq forall > T. Fix § € (0, &9). Consider a (8, T) AP—pseudo-orbit {&};_, with
&y € A and associated time instants 7 < T1, ..., T,,—1. Clearly & & Ex;,, and by (8), ¢;(&0) &
Eyg, for all 1 € [0, T1]. Also, by our choice of T, ¢r,(§0) & E3¢, and consequently &1 & Eog,.
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A recursive argument now shows that the pseudo-orbit has no intersection with E,. The result
follows. (]

We now recall a definition from the theory of dynamical systems.

Definition 5. The w-limit set of B C A is
w(B) = {x € A:there is a sequence f, 1 co and a sequence x,, € B such that ¢, (x,) — x} ,
so forx € A,
wx) = { y € A: there is a sequence #, 1 oo such that ¢;, (x) — y} .

The result below follows from classical arguments and on observing that under Assumption
2(b), if x € A?, then w(x) C A°. For a proof of the lemma in the discrete-time setting see [4].
The proof for the continuous-time setting considered here is similar, so we omit details.

Lemma 6. For any x € A, w(x) C Rap.
The following lemma gives a useful property of an AP—quasiattractor.
Lemma 7. If [x]ap is maximal, then x <up zZ if and only if 7 € [X]ap-

Proof. Suppose that x <,p z. In order to show that z € [x]ap, it is enough to show that 7 <,p
x. Note that o (z) is nonempty. Let 7’ € @ (z). From Lemma 6, 7 € R,p. We now show that
z<ap 2. Since 7’ € w (z), there is a sequence 7; 1 oo such that ¢r, (z) — 7. Fix §, T > 0. Then
we can find 77 > T such that o (2) — 7|l < 8. This shows that (z, z, 7, Z) is a (8, T) AP—
pseudo-orbit from z to 7. Since §, T > 0 are arbitrary, we have z <,p 7. Combining this with
X <ap Z, we now see that x <.p 2. Since 7 € Rp and [x]4p is maximal, we must have 2’ € [x]ap,
and therefore z <,p x. This completes the proof of the lemma. (]

The following lemma provides an important invariance property of AP—classes under the
flow {¢:}.

Lemma 8. Any AP-basic class [x]ap is positively g;-invariant for all t > 0: @i([x]ap) C [X]ap.
Additionally, if [x]ap C A, then [x]ap is @s-invariant for all t > 0: @([x]ap) = [x]ap-

Proof. Let y € [x]ap. To begin, fix ¢, §, T > 0, and let 7" > T + . We can find some §y =
80(y) < & such that if ||y — xg|| < 8¢, then ||@;(y) — @:(x0)|| < 8. Since y € R p, thereis a (8o, T")

AP-pseudo-orbit from y to y, which we denote by § = (y, &1, .. ., §4—1, ), with corresponding
time instants (71, ..., T,—1). Then & = (¢:(y), ¢:(§1), &2, ..., &y =y) is a (§, T) AP—pseudo-
orbit from ¢;(y) to y with corresponding time instants (77 — ¢, 1>, . .., Ty—1), since

lo:(x) —(EDNl <8, and [lor,—(@:(51)) — &2l = ller, (61) — &2l < 6.
Thus ¢;(y) <ap y- y
Next, define & = (y, &1, ..., &1—1, ¢:(3)), and note that £ is a (§, T) AP—pseudo-orbit from y
to ¢;(y) with time instants (T4, ..., T,—2, T,—1 + 1), since
ler, , (En—1) — ¥l < do.

which ensures that

o, +1(En-1) — oWl = ller(er,_ (En-1)) — @I < 8.
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We have shown that ¢,(y) ~apy, and so ¢;(y) € [y]lap = [x]ap. Since y € [x],p is arbitrary,
@:([x]ap) C [x]ap. This proves the first part of the lemma.

For the second part, suppose now that [x],p C A°. In order to see that [x],p C @;([x]sp) for
each 1> 0, let y € [x]p and fix > 0. We need to show that there is some z € [x],p such that
¢:(z) = y. Fix a sequence (8k, Ty) such that §; | 0 and T* 1 00. Since y € Rp, we can find a

sequence of (8, TX) AP—pseudo-orbits with corresponding time instants {T{‘};.ilgfl from y to
y, which we denote by &% = (s(])‘, ... & :];(k))' We assume without loss of generality that 7% > ¢

for all k and let 7% = T":(k)_l — t. From Lemma 1 there is a compact K in A such that for all

sufficiently large %, Si" cKforallie {0, ..., n(k)}. From Lemma 4 we then have that, for all
such &, wTk(Srlzc(k)—l) lies in some compact set K’. Thus (passing to a subsequence) we may

assume that g (S,’f(k)_l) — ze K'. Since

k k
¢r (¢Tk (S”(k)_l)> - wTrl:(k)—l (E”(k)_l) Be4

the continuity of ¢; ensures that ¢;(z) =y. Now we show that z € [x],p. Fix §, T >0, and
let k be large enough so that § <&, |‘pT"(€r]f(k)—1) —z| <& TF > T, and T > T. Then

(5(’)‘, e, g,’f(k)fl, z) is a (8, T) Ap—pseudo-orbit from y to z with corresponding time instants

(T{‘, L, Tk(k)fz, Tk), S0 ¥ <ap 2. Now, fix 7 > max{t, T}, and note that

01(2) = i (01(2)) = g7, ().

Since y € [x]ap, it follows from the positive ¢;-invariance of [x],p that ¢;_,(y) € [X]ap, so there
is a (8, T) AP—pseudo-orbit from ¢;_,(y) to y, which we denote by (&, ..., &,). Denote the
corresponding time instants by 71, T2, ..., T,—1. Then § =(z,z,&1,....&)isa (8, T) AP—
pseudo-orbit from z to y with time instants (7, 71, ..., T,_1), $0 2 <ap ¥ and z € [x]sp. U

We now recall the definition of an attractor for the flow {¢;}.

Definition 6. A compact set A is an attractor for the flow {¢,} if ¢;(A) = A for each > 0 and
there is some neighborhood U of A such that

lim sup dist(g;(x), A) =0.

1= yeU
The neighborhood U is referred to as a fundamental neighborhood for the attractor A.
The proof of Corollary 1 follows from the proof of [12, Proposition 4.2].
Corollary 1. If [x]ap C A° is an AP—quasiattractor, then [x]ap is an attractor.

Proof. Recall that R, denotes the collection of all AP—chain recurrent points in A°. Note
that, from Assumption 2(a) and Lemma 2, for each z € R},, [z]ap is a compact set. Choose
8 > 0 such that N®([x]p) is an isolating neighborhood of [x],p With closure contained in A°.
Then, from Lemma 4 and Assumption 2(b), there is a compact Ky C A such that for all z €
N3([x1ap), ¢:(2) € Ko for all £ > 0. Let

* = inf  dist , .
& yeRip\[x]Ap ist([ylap, [x]ap)

For ¢ < &*, let

K® =Kj\ U NE([ylar)

YERLp\[X]ap
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We claim that there exist ¢ < ¢* and §p < § such that
forallze NO([xlap).  ¢1(2) €K forall t>0. ©9)

We argue via contradiction. Suppose the claim is false; then, since there are finitely many
AP-basic classes in R%,, there exist 8, | 0, &, | 0, z, € N n([x]ap), 1 =0, y € Rip \ [x]aps
such that ¢, (z,) € Nen([ylap). Passing to a subsequence we may assume that z, — z and
¢1,(z) = u. Then z € [x]ap and u € [y]ap. We consider two cases: (I) along a further subse-
quence t, converges to some 1* < 0o; (I) t, — oco. In Case I, u = ¢+ (z) and so by Lemma 8 u €
[x]ap. But this is a contradiction since y ¢ [x]p. In Case II, for every §, T > 0, there is a (8, T)
AP—pseudo-orbit from z to u, which means that z <,p u. Since [x]5p is a quasiattractor, from
Lemma 7, u € [x]p, Which is once more a contradiction to the fact that y ¢ [x],p. Thus we have
the claim. Now fix §g < * and ¢ < &* so that (9) holds.
We now argue that

for some 81 € (0, 8p), whenever y € N ([x]ap), we have ¢,(y) € N%([x],p) for all 7> 0.
(10)
Once more we proceed via contradiction. Suppose the statement is false. Then there exist
8u 4 0, yn € N¥n([x]p), tn > O such that g, (y) € (V% ([x]4p)) . We can find a subsequence
along which y, — y and ¢;,(v,) — u. We must have y € [x],p and u € (A%([x]4p)) . Once
again we consider two cases as above. In Case I, u = ¢ (y) € [x]ap, Which contradicts the
fact that u € (N So([x] AP))C. In Case II, y <,p u, and so as before, u € [x],p. Once more this
is a contradiction. Thus we have shown (10). Now fix §; € (0, §p) such that (10) holds. Let
Uo = N([x]ap) and Uy = N ([x] ap)-
We will now show that
m sup dist(g,(y), [x]ap) =0. (1n

li

=00 e,
Together with Lemma 8 we will then have that [x],p is an attractor, completing the proof of the
result. In order to show (11) we will show that for each open neighborhood O of [x],p, O C Uy,
there is some #(0) < oo such that ¢;(Uy) C O for all ¢ > #O). For any such O, let O1 CC O be
an open neighborhood of [x],p such that for all y € Oy, ¢;(y) € O for all t > 0. Here, for open
sets G1, G2, we write G; CC G, if G; C G,. Existence of such an O; is shown in a similar
manner as (10). It suffices to show that

t(0) = inf{t:¢,(Up) C O} < o0,
since then for each 7 > #(0),

©:(U1) = 010)(@r—1(0)(U1)) C @10)(Up) C O,

which will complete the proof.

In order to see that #(O) < oo for each such O, we argue by contradiction. Suppose that
there is some O (with the associated Op) such that #(O) = oo. Then we can find sequences
{24} C Up and T}, 1 oo such that ¢7,(z,) € O°. From the definition of O, this says that ¢;(z,) €
Of for all 0 <t < T,,. Suppose that z, — z along a subsequence. Then ¢,(z) € Of for all # > 0.
Also, since z € N%([x]ap), by (9), ¢;(z) € K¢ for all > 0. Thus we have w(z) C K¢ \ O;. The
final statement of Lemma 1 implies that for each x € A%, w(x) # @ and therefore w(z) is a
nonempty subset of R%,. Thus we have that (K* \ O1) NR%, is nonempty, which contradicts
the definition of K¢ and O;. Thus we have that #(O) < 0o, and the result follows. O
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The following lemma shows that suitable AP—pseudo-orbits come arbitrarily close to
AP-recurrence classes.

Lemma 9.

(a) Foreach § >0 and compact A € A, there is a 5o € (0, 1] and T4 € (0, 00) such that any
(80, Ta) AP—pseudo-orbit that starts in A intersects NS (Rap).

(b) For each 6§ >0 and A € K, there is a T: € (0, 00) such that for every x € A, there is a
1o € [0, T:] with @ (x) € NB(R:P)-

Proof. Consider first Part (a). Fix § > 0 and a compact A € A, and let 7= 1. With this
choice of A and T, let 5o and A be as given in Lemma 1. Forx € A, let T (x) = inf{t > 0:¢,(x) €
N®(Rap)}. Since w(x) is a nonempty subset of R p, T°(x) < oo for each x € A. We now claim
that 7% is an upper semicontinuous function on A. For this it suffices to argue that for each
a >0, the level set L, ={x e AT (x) > a} is closed. Let {x,} C Ly be a sequence converg-
ing to some x € A, and note that for each >0, nli>rrolo @1(xp) = @i(x). For t <o, @ix,) €

(N°(Rap))", which is closed, so g (x) € (N*(R4p)). Since this holds for all <, we
have that x € L,. This shows that the level sets of T° are closed and thus establishes the
claim. Since an upper semicontinuous function achieves its supremum over any compact set,
T =supyeq4, T‘S(x) <o0. Let Ty =T; v 1. Then, from Lemma 1, any (89, T4) AP—pseudo-

orbit given by a collection of points & = (5 =x, ..., £ =y) € A" and a collection of times
Ty <Ty,...,T,—1, with x € A, must satisfy & € A for every i € {0, . . ., n}. Also, by the def-
inition of T4, we must have that for each i€ {1, ..., n — 1}, there is a t € [0, T;] such that

@i(€;) € N*(R ap). The result in Part (a) follows.

The proof of Part (b) can be completed in a similar manner on observing that from
Lemma 3, for every x € A, the forward orbit y* (x) is contained in a compact subset of A°.
We omit the details. [l

The following lemma gives key properties of pseudo-orbits in relation to their visits to
neighborhoods of ApP—quasiattractors and non-quasiattractors.

Lemma 10.

(a) Forevery 0 >0, there are 6 =8(0) <0 and T = T(0) > 0 with the property that if there
is a (8, T) Ap—pseudo-orbit &€ = (&, ..., &,) with

&0 € N*(K)), & € N°(K,), and & € (N°(K7)) forsomeje{l,....n—1}, (12)

then we must have i #1'.

(b) There exist 8§, T > 0 such that if for some i,i’ € {1, ..., v} there is a (8, T) AP—pseudo-
orbit £ = (&, . .., &) such that & € N°(K;) and &, € N° (Ki/), then we must have that
Kl SAP Kl,/.

Proof. For the first statement in the lemma we will argue via contradiction. By Lemma 5 we
can choose § > 0, 7 > 0, and K € K such that any (8, T) AP—pseudo-orbit starting from N°(K;)
lies in K for every i=1, ..., v. Henceforth we only consider (§, T) AP—pseudo-orbits with
8§ <8 and T > T. Fix # > 0 and suppose that there is a sequence 6 > & | 0 and T} 1 oo, such
that for every k there is a (8¢, Ty) AP—pseudo-orbit Ek = (Sé‘ e S,’;(k)) that satisfies (12) (with
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&, 8, n replaced by &, 8, n(k)), with i =17 Let j(k) € {1, ..., n(k) — 1} be such that E(k) €
(N0 (K)))-. By passmg toa subsequence if necessary, we can find x, y € K; and z € N (K)) N
K such that é}o — X, n(k) -y, andg 0~ %

In order to see that x <,p z, fix §, T > () and let k be large enough so that

<3 TT |x-g <y, andfghy 2] <
Then |x — &f || < [lx — &1l + 1§ — &1 <. and
pr Tl (sj’ik)_l) H H(p Tl (éjlzk)_l) B EJ'IE") H + “gf%k) - ZH <3
and so & = (x, &5, ..., S;Ek)_l, z) is a (8, T) AP-pseudo-orbit from x to z. Thus x <apz.

Similarly, z <p y, which shows that z € K;. However, since z € (NY(K;))¢, this is a contra-
diction. This proves (a).

Now consider Part (b). Fix i, // € {1, .. ., v} and suppose that for each §, T > 0 there is some
(8, T) AP-pseudo-orbit & = (%, ..., &,) such that & € N°(K;) and &, € N°(K;). Let & | 0
and Ty 1 oo and let Sk (SO, R Sr]z((k)) be a (6x, Tx) AP—pseudo-orbit such that S(])‘ € N (K;)

and 5,’1‘ e N (Kl./). Passing to subsequences if necessary, we can find x € K; and y € K/ such
that f(’)‘ — x and ér’l‘(k) — y. Thus, for any fixed §, 7> 0, when k is sufficiently large, Ei
(x, 5{‘, ce, Sf(k)_l, y) is a (6, T) AP—pseudo-orbit from K; to Kl./, showing that K; <,p Kl./. So
if for some i, i/, K; <up K does not hold, there must exist § = §(i, iNY>0and T=T(, i) < o0
such that there is no (8, T) AP—pseudo-orbit & = (&, . . ., &,) with the property that &y € NS (K;)
and &, € N° (K/) Define § = mln( 7 8(i,7)and T = max; /, T(i, i"). Clearly, the statement in
Part (b) holds w1th this choice of (8, T) 1

The final result of this section is a consequence of Lemma 9 and Lemma 10. It summarizes
key properties of AP—pseudo-orbits in relation to AP—recurrent classes. This result will be used
in Section 7 in the proof of Theorem 1.

Lemma 11. For each §, T > 0 and compact set A C A?, there is a collection of open neigh-
borhoods {V;}]_, of {Ki}]_,, with V; C NO(K;) N A°, along with 8g € (0, 8), Ty € (T, o0), and
n €N, such that the following hold:

1. Noo(K;)) C Viforeachie{l,...,v).

2. Foreachie{l,...,1}, if ¢ =(&, ..., &) is a (8o, To) AP—pseudo-orbit with &y €V,
then§j eV forallje(l, ..., n}.

3. If §E=(&, ..., &) is a (8o, To) AP—pseudo-orbit with corresponding time instants
(Th, ..., To_1) such that & € N*(K;) and &, eN’SO(Kj)for some i,j€{l,...,v}, and
thereisme{l, ..., n— 1} such that &, € Vf, then i #jand K; <xp Kj.

4. If £ = (&, ..., &) is a (8o, To) AP—pseudo-orbit with &y € A, then there is some k €
{1,...,n—1}andt € [0, Ty] such that ¢;(&;) € NO(Rap N A?).

Proof. Fix §, T €(0, 00) and a compact A € A°. Since Ki_is an attractor for each i€
{1, ..., [}, there is a bounded open neighborhood O; of K;, with O; C NS (K;) N A?, such that

hm sup dist(gs(x), K;) = (13)

 xe0;
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Foreachie{l+1,...,v}, let O; be an arbitrary bounded, open, and isolating neighborhood
of K; such that O; C N®(K;) N A°. Denote the (5, T) given by Lemma 10(b) by (87, ),
and denote the (8o, T4) given by Lemma 9(a) by (83, T;). Let 6 > 0 be small enough so
that NY(K;) C O; for each i€ {1, ..., v}. From Lemma 10 we can find §; <min{6, 8}, 85}
and 71 > max{T, T}, T;} such that if & = (&, ..., &,) is a (81, T1) AP—pseudo-orbit with
& € N°1(K;) and &, € N° (K;) such that &, € (N?(K;))° for some m € {1, ..., n— 1}, then i #j

and K; <,p Kj. o
Now, let V; = N9+8(K,-), where ¢ > 0 is small enough so that V; C O; foralli e {1, ..., v},
and let 8, < &; be small enough so that N%2(V;) C O;. Thus, forevery i e {1, ..., v}

K; C N®2(K;) cc N°(K;) cc V; cC N*2(V)) cc 0;,

where, as before, for open sets G1, Go, we write G| CC G if G1 C G».
From (13), there is some 7, > T such that if t > T, then foreachi e {1, ..., [},

sup dist(¢;(u), K;) < 83.

uEO,'

Then Parts 1 and 2 hold when 8y = 8, and Ty = T». Additionally, Part 3 holds from the property
of (81, T1) AP—pseudo-orbits noted above, since Vi C (N?(K;))¢ foreachie {1, ..., v}. Finally,
since Ty > T;‘ and 8y < 8%, from Lemma 9, Part 4 holds as well. O

4. Large deviation estimates

Throughout this section we will assume that Assumption 3 is satisfied. We will give some
key uniform large deviation bounds that will be used in Sections 5, 6, and 7.

For o € (0, 1) let V, = {x € A%dist(x, dA) > a}. For each compact K € IC, let V, x =Vy N
K, and let 7y g denote the projection map from R to ]_/a, K, defined as

Mok (x) = argmin, {[|ly — x[:y € Vo k}-

Similarly, denote by 7} the projection map from R? to Vy,x N Ay. Let 0V-*X be a transition
probability kernel on R¢ defined by

QN’Q,K( . |x) :eN (|7‘[£{K(x)) .

Let {X-*K} be an R?-valued chain defined as in (1) but with 6" replaced with 6¥-*-K. We
consider continuous-time processes XNk agsociated with {X,Ilv Ky a9

XNy = xNeK 4 [X,’ff{"( - XQ"""K] (Nt — n), te[n/N, (n+ 1)/N], neNy.

We now present a basic large deviation result for XN-«K Recall the stochastic kernel 0(dy|x)
from Assumption 3(b). For x, ¢ € R?, define

Hy g (x, ¢) =log /R ) exp{(¢, y)}10(dy|ma,k (%)),

and let

Lok (x, B) = sup {({, B) — Hox(x, {)}.

¢eRd
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We note that for every B, ¢ € RY, Hox(x,§)=H ((x,¢) and Ly k(x, B)=L p(x, B)
whenever 7ok (x) =x=m s /(x). Forx € A®and B, ¢ € R?, define

L(x, B) = Lok (x, B), H(x,{)=Hy k(x, ) if x €V k.
Fora>0,xeR? K e K, T € (0, 00), and ¢ € C([0, T]:R?), define

Sy k(e T, ) = fOT Ly x(¢(1), d())dr if ¢ is absolutely continuous,
o K 5, 60— 00 otherwise.

Note that if, for a,e’>0 and K,K' €K, ¢ € C([0, T]:Vex) NC(0, TI:V,/ ), then
Sa.k(@0), T, p)=S s ((¢(0), T, ¢). Thus, for ¢ € C([0, T]:R?) that satisfies ¢(0) =x and
¢(r) € A° for all ¢ € [0, T, we define

S, T, ) =Sax(x, T, ) if¢p e ([0, T]:]_/a,K) for some o > 0 and K € K. (14)

The following uniform large deviation principle will be used several times in this work.

Theorem 3. Suppose Assumption 3 is satisfied. Fix T € (0, 00), « > 0, and K, K’ € K. For each
a € (0, 00), let

P, o' (@ =10 € C(10. TIRY):S, (x, T, ) <al.

(a) (Compact level sets.) For every a € (0, 00), the set | J @ . g rl@ is compact.
xek T

(b) (Upper bound.) Given 8,y € (0, 1) and L € (0, 00), there is some N < 0o such that

(]

foralln>N,xe KN Ay, and ¢ € CIDX’%K/VT(L).

gnak _ ¢H*,T - a) >exp (—n(S, (. T.¢)+7v))

(¢c) (Lower bound.) Given 8,y € (0, 1) and L € (0, 00), there is some N < 0o such that
N /
P, (d (X""’"K , d)x,a’K/’T(l)) > 5) <exp(—nl—v))

foralln>N,xe KN Ay, andl €0, L].
Proof. We will apply [3, Theorem 6.7.5]. For x, £ € R?, let

Hy i (x, ¢) =log /R L expl(E Y (dylmgl ) -

By Assumption 3(b)(iii), for each compact A C R4 and IS R4,

sup sup HZXV’K(x, £) < o0, sup Hy k(x, £) <00, (15)
NeN xeRd xeR4
and
sup |[HY x(x, §) — Hyx(x, §)| =0 as N — oc. (16)
xeA

Furthermore, from Assumption 3(b)(ii), x — 0(dy|my x(x)) is a continuous map from R? to
P(Rd). Thus, Conditions 6.2.1 and 6.7.2 of [3] are satisfied. Next, since from Assumption
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3(b)(i) the convex hull of the support of 6(dy|my k(x)) is all of R4, [3, Condition 6.7.4] is sat-
isfied as well. Thus, from [3, Theorem 6.7.5] we have that, for every T € (0, 00), {(XN-*K}yen
satisfies a Laplace principle, uniformly on compact subsets of R¢, in the sense of [3, Definition
1.2.6], with rate function Sy g (x, T, -). It is shown in [17, Theorem 4.3] that a uniform Laplace
principle of the form given in [3, Theorem 6.7.5] implies a uniform large deviation principle
in the sense of Freidlin and Wentzell [6], which means that Parts (a)—(c) of the theorem hold.
The result follows. O

Lemma 12. For every o € (0, 1) and a compact K € A°, (x, B) = Ly x(x, B) is a continuous
map on RY x R4
Proof. The proof follows from [3, Lemma 6.5.2] on noting that, by Assumption 3(b) for

every x € R?, the convex hull of the support of 0(dy|my, g (x)) is R?, and sup,crd Ho x(x, §) <
oo for every ¢ € R%. (]

An important consequence of the above uniform large deviation principle is the following
uniform upper bound for closed sets F in C([O0, T]:RY).

Theorem 4. Fix T € (0,00), a >0, and K,K € K. Then, for every closed set F in
(0, TIRY),

1 A /
limsup —log sup P (XN""’K c F) < —inf inf § x, T, ¢).
N%oop N £ xeKﬂpAN ! T xeK ¢eF a,K/( ¢)

Proof. Fix T, a, K, K’ as in the statement of the theorem. We begin by showing that for
each s > 0 and § > O there is some ¢ = ¢(8) € (0, 1) such that for all x, y € K with ||x — y|| <&,

[#ec(io. TiRY): d(0, @, , 0 ) =5]

B B
2{¢eCQQ7TRﬂﬂ(¢¢&mﬂj<s—z)>55}. (17)

Let ko =1+ sup,ck <1 L(x, B). From Lemma 12, ko < cc. Since

1)
UyeKCDy,a,K/,T (S — Z)

is a compact set, we can find ¢ € (O, 8570) such that for all

1)
Ve UYEKCDy,a,K/,T (S — Z)

and 0 < <1, < T with |t — io] <&, we have [y (1) — Yr(11)]| < §.
Fix y € K and ¢ in the set on the right side of (17). Then there is a | € CDy o K.T (s — %)

such that
16— Yilr<oto=
Hel=2Tg = %"
Note in particular that 11(0) = y. Fix x € K such that ||y — x|| <¢. Let fo = ||x — y|| and define

the function 7, y:[0, fo] — R4 as

@—mt

. (18)
lly — i

nx,y(t) =x+

https://doi.org/10.1017/apr.2021.20 Published online by Cambridge University Press



Convergence of QSD in unbounded domains 81

Define ¥»:[0, T — R4 as

Y2(8) = Nx,y () 1[0,101(8) + Y1 (s — t0) 119, 77(0)-

Note that ¥»(0) =x and

T

L, x (2(0), ya())dt + / L, WD), 2 (0))dt

0]

fo

S, k(6 T, ) = /O
5

§ 6
§8K0+S—Z=§+S—Z§s.

Thus vy, € @ (s). Furthermore,

x,a,K/,T
58
lp — Y2l <Ml — Vil + 11 — Y2lle7 = 3 + Iy — Y2l
Also, for t € (1o, T1,
)
Y1) — Y2DI = I[Y1(0) — Y1t — o)l < 3’
and for ¢ € [0, 9],

ol o
Bl

0| &>

8
Y1) = 2O < 1Y2() =yl + [[¥1()) — 1 O)| <& + s=g™t

IhU.S
’ 8 4 ’

Since Y2 € @ s (5), we have d(¢, O ()
side of (17). This proves the inclusion in (17).
Now fix a closed set F in C([0, T]:R%). If

<4, and thus ¢ is in the set on the left

;21f< dﬁl;zfv Sa,K’(x’ T, ¢)=0,

then the result clearly holds, so we assume that

Siggg (;Iel}; Sa’K/(x, T, $)>0.

Fix s € (0, S‘), and let {x,} C K and ¢ | 0. Since K is compact, we may pass to a subsequence
and assume that x,, — X for some x € K. Since

inf 8, ¢ G T, 9)> s,

FNd. /.(s)=0. This, along with the facts that ®. . .(s) is compact and F' is closed,
x,o, K\ T . x,o, K\ T
ensures that there is some § € (0, s) such that

Fclpec(o. TiR)d(e, o, , ) >},
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Let ¢ = ¢(5) > 0 be chosen as above (17). Without loss of generality we assume that ||x — x, || <
¢ for all n. Then, for every n € N,

FcC {¢ = C([O, T]:Rd:d(¢, cDSc,a,K/,T(S)> - 5}

C{¢EC<[0 T]'Rd'd<¢>d> / <S_§>>>§}
SATRTAN PPy wk T I AR

From the upper bound in Theorem 3(c) we see that

1 ~ / 1 - / 8 8
lim sup[—vlog Py (XN’D"K € F) < lim sup N log Py, (d (XN’“’K , d>XN7a’K/’T<s — —>> > —)

N—oco N—>oo 4 2
3
<—|s—-=].
- 4
The result follows from letting § — 0 and 5 — S. U

5. Asymptotic behavior of QSD

In this section we assume that Assumptions 1, 2, 3, and 4 are satisfied. Using these assump-
tions we will provide several exponential probability estimates and use them to deduce some
asymptotic properties of the QSD {uy} (when they exist). For N € N and T € (0, 00), let

DY = sup “XN(I) — o (X)) H = HXN — 0. (X9)

0<t<T

*,T.

The estimates obtained in Lemma 13 and Lemma 14 are the key steps in the proof of
Theorem 5, which gives the asymptotics of Ay = [IP’,LN (XIIV € A")]N, where py is a QSD
for {X"}. Recall the definition of V, from Section 4.

Lemma 13. For each a > 0, compact set K CVy, € >0, and T > 0, there is a ¢ € (0, 00) and

No € N such that for every N > Ny,

sup P, [D’}/ > ¢] <exp(— No).
xeKNAN

Proof. Leta > 0 and let K C V,, be compact. For each ¢ € (0, ), let

0<t<T

Fe= !I/f € C([0, TI:RY): sup [[¥(1) — (¥ (O] = 8} .

Using Lemma 3 we can (and will) assume without loss of generality that ¢ is small enough so
that the compact set

K' = N¢ (¢10,00)(K)) C A°.
Note that

A / N /
sup Py [DI}] >¢e]= sup Py| sup HXN""’K ) — (p,(XN""’K (O)) H >el.
xeKNAyN xeKNAyN 0<t<T

https://doi.org/10.1017/apr.2021.20 Published online by Cambridge University Press



Convergence of QSD in unbounded domains 83

Since F; is closed, Theorem 4 says that for each § > 0, there is an N5 € N such that for all
N > Ns,

SN K _ &N K
log sup Py| sup [IX (=@l = ¢ |=log sup Py(X €Fe
xeKNApN 0<t<T xeKNAy

<-N [g{ Jnf S, 06 T = 5} .

To prove the result, it suffices to show that

;21f< wlg{_g Sa’K/(x, T, y)>0.

Arguing by contradiction, suppose that this infimum is 0. Then there are sequences {x,} C K
and {¥,,} C C([0, T]:R?) such that v, € F, for each n and

nli)n(;lo Sa’K/(xnv Tv wﬂ) = 0

Since Sa’ . T, ¢) < oo if and only if ¢(0) = x, we can assume without loss of generality that
Xn = Y,(0) for every n. For each ¢’ > 0,

Yy € {(}5 € C([O, T]:Rd):SaYK/(y, T, ¢) < &' for some y € K}

whenever n is sufficiently large. Since K is compact, Theorem 3 ensures that {,} is pre-
compact in C([0, T]:R9), and so there is a convergent subsequence of {1,,}. Denoting this
subsequence by {v,, } and its limit by ¥, we have that

lim (Y, X)) = Hm (Y, Y, (0)) = (¥, ¥(0)).
k— 00 k—00
Since ¢ = S /(¢(0), T, ¢) is lower semicontinuous, it follows that
SD[,K/(‘(//(O)’ T’ W) S kll)n;o SO[,K/ (wﬂk(())’ T’ wnk) = 07

which says that ¥ (7) = ¢;(¥(0)). However, this is a contradiction, since ¥ € F,. The result
follows. O

Lemma 14. Let U be a fundamental neighborhood of an attractor A C A° such that U C A°.
Then for every Ty € (0, 00), there are co € (0, 00), T € (Ty, 00), and Ny € N such that

sup Py (XszNT € UC) < exp (—coN)
xeUNAN

for all N > Nj.

Proof. Let o =dist(A, U°). Since U is a fundamental neighborhood of the attractor A, we
can find T > T such that
sup sup dist(g(x), A) < /2.
t>T xeU
Let K € K be a compact set containing U. From Lemma 3 there exists a o € (0, ®/4) and a
K’ € K such that N° (y*(U)) C K’, where y7(U) = U,cyy ™ (x). Then for each x € U N Ay, we
have
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P, (X € U°) <Py (dist (XN 4) > @) <P ([ Xy — 10| > @/2)
<P, (| ¥y = XY@ + |20 - 01| > 212) (19)
<P (DY = o) + P, (|xMhyy =XV D)| > /4, DY <o)

Using the Markov property, we have

P (| XMy = X¥D)| > 074, D <o) <P (| Xy = X | > /4. DY <)

< sup IP’X(
xekK' NAy

lev —xH > a/4).
From Assumption 3 we have that for every A > 0,

Coy=sup sup By %y ,x”) -~

NeN yek'nay
Thus, for any A > 0,
sup IP’x( ‘Xﬁv —xH > a/4) < c(n)e N/,
xekK'NAy
The result follows on using the above estimate and Lemma 13 in (19). [

The following lemma says that for every open U C A?, the support of uy (when it exists)
has a nonempty intersection with U when N is sufficiently large.

Lemma 15. Suppose that for each N € N, XN has a QSD uy. Then for each open U C A°,
there is some Ng € N such that un(U) > 0 for all N > Nj.

Proof. Let Ny be large enough so that U N A%, is nonempty for all N > Ny. Fix N > Ny,
xe UNAY, and w e A, with py(w) > 0. From Assumption 4(a), there is a k € N such that
P,,(XY =x) > 0. Then

> unO)Py (X)) =x)

yeAy unw)P,, (X,iV :x)
pun(U) = pn(x) = > >0
XX B (=2 T X nO)Py (X =2)
ZEAS, yeAY, ZEAS, yeAY,
O
The following lemma quantifies the asymptotic behavior of the sequence {Ay} introduced

in (5).

Theorem 5. Suppose that for each N € N, XN has a QSD uy. Then there exist c, ¢’ € (0, 00)
such that for all N € N,
0<l—Ayv=<cexp(—cN).

Proof. From Assumption 2 and Corollary 1 there exists an attractor A in A°. Let U C A° be
a fundamental neighborhood of A. From Lemma 14 there are ¢g € (0, c0) and 7, N1 € N such
that for all N > Ny,

sup P, (X%T € Uc) <exp (—coN) . (20)
xeUNAN
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From Lemma 15 there is an N, € N such that for all N > N,, un(U) > 0. Fixing N > N1 V N,
we have

MUy =Y Py (XNy € U) un(x)

xeAfV

= Y Pe(XyreU) v
erﬂA;(,

> inf P, (XN,ecU X
= relinag x( NT )XE;A;)V U (x)
= inf P, (XN, eU U).
erﬂA;(, x( NT )MN( )

Thus, forall N > N; VvV Na,

Aw=AL> inf P (XNpeU)=1— sup Py (XN;€U)>1—exp(—coN),
xeUNAY xeUNAY,

where the last inequality uses (20). The result follows. U

For§ >0, TeN,and K € I, let

BY(D)= sup P|XN - 0], ;>8] (1)
xeANNK

The following lemma gives a different lower bound on Ay. This bound will be needed in
the proof of Theorem 6 below.

Lemma 16. Suppose that for each N € N, XV has a QSD uy. Let A be an attractor in A°,
U C A° an open set containing A, and K € IC such that U C K. Then there exist § >0 and
T, No € N such that )»1(, >1-— ﬁé\fK(T)for each N > Nj.

Proof. Since A is an attractor, there is a fundamental neighborhood U of A contained in U.
Thus we can find a § > 0 and T € N such that N°(¢7(U)) C U. From Lemma 15 we can find an
No € N such that uy(U) > 0 for all N > Ny. Following the proof of Theorem 5, we see that

Aun(U) = (1 — sup Py (Xhre Uc)) un(U).
xeUNAY,

From our choice of U and § it now follows that

AL =1— sup ]ID,C(X%T € (N’S ((pT(U)))C> >1- ﬂé\,’K(T).
xeUNAY,

O

A key consequence of the following theorem is that the support of any weak limit point of
v is contained in A°. This, along with a further characterization of the support of such weak
limit points given in Corollary 2, is a key element in the proof of Theorem 1.
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Theorem 6. Suppose that for each N € N, XN has a QSD py. Then, for every § >0, T €N,
and K € KC, there exists an open neighborhood Vg of dA in A such that
B3 k(1)

lim sup pun (Vi) < lim sup - - =0. (22)
N—o00 N—oo infrevinay PX[XN(T) S 3A]

Suppose in addition that iy converges along some subsequence to some probability measure
won A. Then there is an open neighborhood Vy of 9 A in A such that (Vp) = 0.

Proof. Fix §, T, K as in the statement of the theorem. Let

1
8o =~ inf inf dist A
0 2161[3]] inf dis (pr(x), 0A)

and let K" = N%(gjo.71(K)), and consider the closed set
F= {¢ e C([0, TIRY): ¢ — @.(d(O)ls.7 = 50} .

Fix « €(0,8p) and K; € K that contains some open neighborhood of K’. Then from
Theorem 4,

1 - 1 A
limsup — log sup ]P’X(XN € F) =limsup — log sup IP’X(XN’O"K‘ € F)

N—o0 xeKNAy N—o00 xeKNAy
< — inf inf Sy, (x, T, ¢) = —c(K).
xeK ¢peF

Clearly ¢(K) > 0. From Assumption 4(b) we can find an open neighborhood Vi of d A such
that

1 .
liminf inf v log P, (XV(T) € dA) > —c(K) /4.

N—oo xeVgNAyn

Combining last two displays, we can find an Ny € N such that for all N > Ny,

sip Po (|2~ 0], ;2 9)

N
,35,K(T) _ xeANNK <exp ( _ NC(K)/Z)
infrevgnay Px[XV(T) € 0A] . VinrﬁA P [XN(T) € 9A] -
K N

which converges to 0 as N — oo. This proves the last equality in (22).

Next, from Assumption 2 and Corollary 1 there exists an attractor A in A°. Let U € A° be
an open set containing A, and let K € K be such that U C K. Then from Lemma 16 there exist
8 >0and T, Ny € N such that

Ay =1—BY(T) foreach N > No.
Since uy(A%) =1, we have, with Vg given as in the first part of the theorem,
1= By k(1) < A{un(AR)
=Y (1 =Py (Xyr €9A)) pun()

xeAX,
- ¥ (1 —P(XV(D) e 8A)> @+ Y (1 —P(XV(D) e 8A)> 1y ()
xeVENAY xeA{\Vk
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< (1 — inf P(XM(D)e aA)) 1N (Vk) + v (AR \ Vi)

XEVKQA;)V

=1— inf P.(XN(T)€dA)un(Vk).
xEVKﬂAX/

Rearranging the previous inequality, we obtain

By (T)
inf  P.(XN(T)edA)

XGVKﬂA;’V

un (Vi) <

This proves the first inequality in (22). B
Finally, let Vj be an open neighborhood of d A such that Vy C Vi. From the first part of the
theorem, taking the limit along the convergent subsequence,

w(Vo) <liminf uy(Vp) < liminf uy(Vg) =0.
N—o0 N—oo

The result follows. (]

The following theorem proves the invariance of p under the flow {¢;}.

Theorem 7. Suppose that for each N € N, XN has a QSD wy, and suppose that juy converges
along some subsequence to some probability measure (. Then w is invariant under {¢;}. In
particular, u(go,_l(B)) = w(B) for each measurable set B C A and t > 0.

Proof. From Corollary 1, foreachie {1, ..., [}, K; is an attractor. Fix 1 <i </, § > 0, and
K € K such that NY(K;) C K for some y > 0. Let /3(13\,/1( be as in (21). It suffices to show that for
any continuous and bounded f:A — R and 7 > 0, u(f) = u(f o ¢;). Fix f and ¢ as above and let
& > 0 be arbitrary. Using the fact that {uy} (considered along the convergent subsequence) is
tight, we can assume that the K chosen above satisfies

sup uy(K) < .
N>1 2|[flloo

Let ty = [Nt]/N. Note that ty — t as N — oo, and from Theorem 5, )L;g — 1 as N — oo. For
abounded g:A? - R and k € N, let

PV =E Jf (XY) st > k], xeAy,

and
P =E [ (X)), xeay.
Then
v () =3 (Pliyf)

In particular, as N — oo,

— 0.

) = 1 (Plagf) | < 1o 1 = 2

Also,

x (Plhasf) =1 090)| = 5772 e 509 [P0 = o 0]
xXe

" 2l lloo
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Foreachxe KN Ay,

Pl @ —f 0 00| = [PIif00 = Py + [Plinf 0 = f 0 o)

< 1l (73 = INt)) + [P0 = £ 0 010

’

and Assumption 1 ensures that as N — oo,
N, *
sup [Pisf () —f 0 10| > 0.
xek

Let § = infyek, 0<s<; dist(gs(x), dA) > 0, and note that Assumption 1 ensures that as N — oo,

sup Py (7} < [MVt]) < sup P([|XV —o.0],,>8) 0.
xe

xekK

Combining the two previous convergence properties, we see that as N — oo,

[Pl —foa| >0,
and therefore that

[(f) — u(f o @)l < limsup |[un(f) — un(f o @) <e.

N—oo
Since ¢ > 0 is arbitrary, the result follows. O

We now recall the definition of the Birkhoff center of {¢;}.
Definition 7. The Birkhoff center of {¢;:t > 0} is
BC(p) ={x e Ax € w(x)}.
Lemma 17. The Birkhoff center of {¢;:t > 0} is contained in the closure of R ap. Furthermore,
BC(p) N A° CRE,.

Proof. Let §, T > 0 and suppose that x € w(x). There is a sequence of time instants #; 1 0o
such that ¢, (x) — x, so if we let

J=min{i:t; > T and ||¢;(x) — x|| <&},

then (x, x, qﬁ,j (x), x, x)is a (8, T) AP—pseudo-orbit from x to x. Since §, T are arbitrary, x € Rap.
This proves the first part of the lemma. The second part is now immediate on using Assumption
2(a). O

We will use the PoincarE recurrence theorem given below. For a proof see [10, Theorem
4.1.19].

Theorem 8. Let v be a measure which is invariant under {¢,}. Then for each measurable B C A
and T > 0,

v({x € B{@/(0)}=r C A\ B})=0.
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The next result is a consequence of Lemma 17 and Theorem 8. It shows that the support of
w is contained in R7}5.

Corollary 2. Suppose that for each N € N, XV has a QSD .y, and suppose that yy converges
along some subsequence to some probability measure . Then supp (1) C R,

Proof. From Theorem 7, u is invariant under {¢;}. Enumerate the d-dimensional rationals
in A as Qd ={q1, q2, ...}, and for m, n € N, denote the ball of radius n~! centered at qm by
B(qm, n! ). Then for each m, n € N, Theorem 8 says that

1(B(gm: n™")) = u(Blgm: n")),
where
B(gm. nil) = {x € B(gm. n*]): there exist # 1 0o with ¢y, (x) € B(gm. nfl) for all k € N}J.

Let R=N%, U% | B(gm, n~"); then
I=u (ﬂ,iil U,ono=1 B (Qm, Vlil)) =M (mzi] U,?f:] B (C]nu Vlil)) = w(R),

which together with Theorem 6 implies that supp(u) € RN A°. Furthermore, if x € R, then
x € w(x), so R € BC(¢), and consequently RNA°C BC(¢p) N A°. It now follows from Lemma
17 that

supp() CRN A° CBC(p) NNA° C R%,.

O

Combining the results of Corollary 2, Theorem 7, and Theorem 5, we have most of Theorem
1. In particular, we have the lower bound on probabilities of non-extinction given in Theorem
1, and we also have that the limit points u of the QSD are invariant under the flow and are
supported on the union of absorption-preserving recurrence classes in the interior. The final
step is to show that the support in fact lies in the union of the interior attractors. For this
we will introduce another notion of recurrence which is given in terms of the quasipotential
associated with the rate functions in the underlying large deviation principles.

6. Quasipotential and chain recurrence

In this section we suppose that Assumptions 1, 2, and 3 are satisfied. Recall the rate function

S introduced in (14). Forx, y € A%, letC(x, y, T) = {¢ € C([0, T]:A?):¢(0) = x, ¢(T) =y}, and
define

V(x,y)=liminf inf S(x, T, ¢). 23

(x, y) im in ¢65&,y,r> &, T, ¢) (23)

For x, y e A%, we say x leads to y in A if V(x, y) =0, and we write x <y y. We say x € A°
is V-chain recurrent if x <y x. The collection of V-chain recurrent points is denoted by Ry.
For x, y € A? we say x ~y y if x <y y and y <y x. Equivalence classes under ~y will be called
V-basic classes, and the equivalence class associated with an x € Ry will be denoted by [x]y.
For x,y e Ry we say [x]y < [yly if x <y y. A V-basic class [x]y is said to be maximal if,
whenever y € Ry satisfies [x]y < [y]y, we have that y € [x]y. A maximal V-basic class is a
called a V-quasiattractor. The following is the main result of this section.

Theorem 9. We have R}, =Ry, and for each x € Ry, [x]y = [x]ap. In particular there are
finitely many V-chain recurrent points, and for every x € Ry, [x]y is a closed set. Furthermore,
Kifori=1,...,lisa V-quasiattractor, while K; fori=1+1, ..., vis not a V-quasiattractor.
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Before proving Theorem 9 we will establish some basic results regarding V(-, -) and Ry.
The following lemma is a consequence of the stability properties of the ODE (4) stud-
ied in Lemma 3 and the property that low-cost trajectories closely follow the solution of
the ODE.

Lemma 18. Let o € (0, 00) and K € K. Let Ty € (0, 00) and suppose T, € [Ty, 00) for all
neN. Let ¢, € C([0, T, ]:A°) be such that ¢n(0) € Vo for each n>1. Suppose that
S(#,(0), T, ¢pp) — 0 as n — oo. With ag and My as in Lemma 3, let o) = % Aag and Ky =
B, (0), where My =14 (Mo V sup,cg llx|). Then, for some k > 1, ¢,(t) € Vy, k, foralln >k
and t €10, T,].

Proof. Forn>1, let
T(¢y) = inf{z € [0, T,,] : dist(¢u (1), dA) <y or |[@u(D)|| = M1},

where the infimum is taken to be 7, if the above set is empty. Note that the result holds trivially
if the above set is empty for all but finitely many n. Now, arguing by contradiction, suppose
the set is nonempty for infinitely many n. Consider the subsequence along which the above
sets are nonempty, and denote the subsequence once more by {n}. Also assume without loss of
generality that y, = S(¢,,(0), T}, ¢,) < 1 for every n.

We claim that there is a § > 0 and kg € N such that t(¢,) > é for all n > kg. Indeed, other-
wise, by passing to a further subsequence (once more denoted by {n}) we can find a sequence
8n — 0 such that for every n,

Pn(0) € Vo k. @n(8n) € Vo i, 1%

Since S(¢,(0), Ty, ¢n) <y, <1, we must have from the compactness-of-level-sets property in
Theorem 3 that ¢,(0) and ¢,(5,) converge along a subsequence to the same limit, which is a
contradiction.

Let § > 0 be such that 7(¢,) > § for all sufficiently large n. For each such n let 7, = 7(¢,,) —
8, and define ¢;:[0, §] — A? as ¢¥(t) = ¢n(t + T,), t € [0, 8]. Then ¢;F € C([0, §1:Vy, k,)- Also,

S )
/0 Loy &, (915(1), ¢ (t))dt = fo L(gi(0), k(0)dt

T, ‘
< fo L(@u(0). a0t =y < 1. (24)

In particular,
{¢;1k} - UXEK] q)x,czl ,K] ,8(1)~
From Theorem 3, the latter set is compact, and so, along some subsequence, ¢, converges to

some ¢* in C([0, 8]:V,, k). Using the compactness of level sets again, we have from (24) and
the fact that y,, — 0 that

)
/O L, k(6 (1), ¢*(1))dt = 0.

In particular, ¢*(¢) solves the ODE (4), namely ¢*(r) = ¢;(¢*(0)) for f € [0, 8]. Since ¢*(0) €
Vu, .k, in view of Lemma 3, we must have that ||[¢*(§)|| <M and dist(¢*(5), 0A) > ;.
However, from the definition of t(¢,), we have that for each n, ¢ (5) satisfies either
dist(¢,(8), dA) <« or ||¢;:(8)]l = M. This is a contradiction, since ¢;; converges to ¢* (along
some subsequence). The result follows. O
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Corollary 3. Let K € KC and Ty > 0. Then there existay > 0 and an Ay € K such that whenever
for some x € K we have T* € [Ty, 00) and ¢* € C([0, T*]: A°) with ¢*(0) = x and S(x, T*, ¢*) <
Y, we have ¢*(t) € Ay for all t € [0, T*].

Proof. Let a € (0, 00) be such that K =V, . Let a1, K| be as in Lemma 18. We argue by
contradiction. Suppose the statement in the corollary is false. Then there are sequences vy, |,
0, x, € K, time instants 7 € [Ty, 00), trajectories ¢* € C([0, T**]:A?), and sets B, = {x €
A x|l < n, dist(x, dA) > 1/n} such that S(¢*(0), T*, ¢*") <y, and ¢*(t,) € B;, for some
tp € [0, T**]. However, from Lemma 18, there exists a k € N such that ¢™(¢) € V,, k, for all
n > kand all t € [0, T*], which is clearly a contradiction since we can find an ny > k such that
Vi, ,k, C By for all n > ny. O

The following continuity property of V, which is a consequence of the continuity of Ly g
shown in Lemma 12, will be needed in the proof of Theorem 9.

Lemma 19. Suppose x,, x € A are such that x, — x as n— oo. Then for every y e A°,
V(xp, y) = V(x,y) and V(y, x,) = V(y, x).

Proof. Fix x € A? and let G C A° be a bounded open ball containing x such that G C A°.
Without loss of generality assume that x, € G for every n. Choose « € (0, 1) and K € K such
that Vi, x O G. Since G is compact, from Lemma 12, we have that

sup Ly k(z, B) =Ko < 00,
zeG.lIBlI<1

where B1(0) is the unit ball in RY. Let e €(0,00) be arbitrary. Take x1,x; € G such
that x; #Zx> and |x; —x2|| <&/(2kp). Also, fix ye A°. From the definition of V(x,,y)
we can find a sequence Ty — oo and ¢y € C([0, Ti]:A?) such that for all k, ¢r(0)=x2,
&k(Tr) =y, and

SO, Te, dx) < Vixz, y) +&/2.

Let 8 = [|x; —xofl, B = L2220 Ty = Ty + 8, and for ¢ < Ty define

[l —x1 1|2

() = {’” thr=

or(t—98), t=4.

Then
- - fk - 2
S, T o) = /0 L@, $u(0)dt
) .
_ fo L@e(0), $u0)dt + SCra. T b0

S
- /O Lax(y + Bt, B)di + SCez. Te. )

& &
<kp— +Vx2, )+ ==V, y) +e¢.
2K0 2

Thus V(x1, y) < V(xz, y) + €, which proves the convergence V(x,, y) — V(x, y). The proof of
V(y, x,) = V(y, x) is similar and is omitted. 1
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The following result is a consequence of the compactness-of-level-sets property in
Theorem 3 and the uniqueness of the path where the rate function vanishes.

Lemma 20. Fix T € (0, oo) and a K € K. For each § > 0, there is some ¢ =¢(K, T, §) > 0 such
that for any ¢ € C([0, T1:Vy k) and x € K, if Sq. x(x, T, ¢) < ¢, then

sup [lp() — ()]l <.

0<t<T

Proof. Arguing via contradiction, suppose that there is some § > 0 such that for all ¢ > 0,
there exist x € K and ¢, € C([0, T]:Vy k) such that Sy x(x, T, ¢¢) < € but [|¢e(t) — @x(?)|| > 6
for some ¢ € [0, T']. Using the compactness-of-level-sets property in Theorem 3(a) and recalling
that S, x(x, T, ¢) = 0 if and only if ¢(¢) = ¢;(x) for r € [0, T], we see that

c=inf{Sek(x, T, #):x €K, sup [lp(1) — g:(x)|| = 8} > 0.
te[0,T]

Thus ¢ < Sy x(x, T, ¢¢) < € for all ¢ > 0. Letting ¢ |, 0, we obtain ¢ = 0, which is a contradic-

tion. t
As an intermediate step we now prove a somewhat weaker statement than that in
Theorem 9.

Lemma 21. Suppose that x € Ry. Then x € R}, and [x]y C [x]ap.

Proof. Lety € [x]y. Then there exist time instants 7, 1 oo and ¢, € C([0, T,,]: A°) such that
for all n > 1, ¢,(0) =x, ¢p(T,) =y, and S(x, T, ¢n) < % From Lemma 18 there exist k € N,
a1 >0, and K € K such that, for all n > k, ¢, € C([0, T,]:Vu, k,)-

Now fix 7, § > 0. From Lemma 20 there is an ¢ > 0 such that, with 7% =T and T* = 2T,
the following holds:

if, for some ¢ € C([0, T*], Vg, .k,) and z € Vy, &, , Ser. k(@ TH, @) <e,

(25)
then [[¢ — ¢.(2)[|+,7+ < 8.

Choose ng such that 1/ng < e and T,,, > T. Write T, = mT + ty, where m € N and #( € [0, 7).
Then from (25), with ¢ = ¢,

IoGT) —r(@((G— D)l <6 forj=1,....m—1,

and
(T + t0) — Pr44y(P((m — DT))|| < 4.

Thus, with §g =& =x, 6 =¢(T), ..., & =¢((m— DT), &1 = P(Ty,), the sequence & =
(o, - .., &ny1) along with time instants (7, T, ..., T 4 ty) defines a (5§, T) AP—pseudo-orbit
from x to y. Since §, T > 0 are arbitrary, x <,p y. Similarly, y <,p x, showing that x € R ,p and
v € [x]ap. This shows that [x]y C [x],p and completes the proof. O

From Lemma 21 and Assumption 2 (see also Lemma 2), the closure of Ry is a compact set
in A°.

We now complete the proof of Theorem 9 by establishing the reverse inclusion from the
one established in Lemma 21.

Proof of Theorem 9. From Lemma 21, if x € Ry, then x € R, and [x]y C [x]ap. Now sup-
pose that x € R%,. From Assumption 2 there is an x* € [x]p such that {¢,(x*);t > T’} is dense
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in [x]ap for every T > 0. Fix y € [x]. For n € N, let 1,,, 7, € (0, 00) be such that #, 1 00, 7, 1 00
as n — oo, and for every n,

s, &) —xll < 1/m, 05,47, &) —yIl < 1/n.

Using Lemma 19 it follows that x <y y. This shows that x € Ry and that [x],p C [x]y. We thus
have that R}, = Ry, and for all x € Ry = Rap, [x]ap = [x]y. Similar arguments show that [x]
is a V-quasiattractor if and only if it is an AP—quasiattractor. The result follows.

In view of Theorem 9, henceforth we will use the qualifiers ‘V’ and ‘AP’ interchangeably
when referring to recurrence classes and quasiattractors in A°.

7. Proof of Theorem 1

In this section we assume that Assumptions 1, 2, 3, and 4 are satisfied. The following lemma
shows that there are low-cost trajectories that take any given point in a recurrence class to any
other point in the same class.

Lemma 22. For any y > 0 and K € Ry, there is a T € (1, 00) such that for all x, y € K, there
exist Ty y € (1, T) and ¢, € C([0, Ty ,1:A°) with

S(x, Ty, bry) <, Gxy(0)=1x, ¢x,y(Tx,y) =)

Proof. Fix ye(0,1) and KeRy. Let yoisupzeKJwSlL(z, B). Let keN and

V1, ..., Vk € K be such that for any x € K, there exists 1 <i <k with [lx — v;|| <v/(4«o). For
i,jel{l,... k}, let T,',j € (1, oo) and Wi,j e C(]0, Ti’j]ZAO) be such that wi,j(o) =V, wi,j(Ti,j) =
vj and S(v;, Ti,j, Yij) <v/2. Let x,y € K be arbitrary and select 7,j€ {1, ..., k} such that

lx — vill <v/(4x0) and |y —v;|l <y/(4ko). Consider the continuous trajectory ¢, in A°
defined over the time interval of length T, = |lx — v;|| + i + [ly — vj|| as follows:

lin Vi lin 26)
X, — ViZ Vi T~
vimall 7 7 Y=Y

In the above display, for a term of the form a N b, the trajectory connects the points a and
b in time length d in a manner described by c¢. When ¢ = lin, the trajectory is just a linear
path connecting a and b; when ¢ = v; j, the trajectory is defined by v ; introduced above.
Clearly S(x, Tyy, ¢x.y) <V, @xy(0) =xand ¢, (T y) =y. Also, Ty y < maxj<; j<k Ti_j +2=T.
The result follows. 0

Recall that for a set B C A, t}g\' =inf{r > 0:XV (t) ¢ B}. The following lemma gives an
upper bound on the probabilities of long residence times of the Markov chain near non-
quasiattractors.

Lemma 23. Suppose that K; € Ry is not a quasiattractor. Then we can find some A > 0 such

that for all y > 0, there is some No = No(y) and ¢ = {,:N — R satisfying lim ¢,(n) =0 such
n—o0

that

sup P (7l ) > XD (V) < &)
xeN*(Kj) !

for all N > Ny.

Proof. Since K; is not a quasiattractor, there exist Aoe(0,1), u; €K, yje A’N
[NZ)‘O (Kj)]c such that u; <y y;. Choose A € (0, Ag) such that, for some Ag € KC, y; € Ay,
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U{_N*1(Ky) C Ao, and for each i, k € {1, ..., v} such that i # k, dist(N*1(Ky), N*1(K;)) = Aj.
From Lemma 3 we can find A; € K such that the forward orbit y*(x) C A for every x € Ag.
Let
sup Lo k(z, B) = ko.
ZE€ALLIIBI=1
Let y > 0 be given and let yo =7y/6. Fix é € (0, AL A Z—g) Then, denoting by 7, , the linear
trajectory from x to y,

for x*, y* € A; with ||x* — y*| <, SO, ly™ = x* |, nery#) < Yo
With § as above, choose le as in Lemma 9(b) (with A replaced by Aj). Then, in view of

Theorem 9, for every x € Ay, there exists a ty € [0, T:l] such that ¢, (x) € N' g (Ry).

Define for x € N*1 (K;) the continuous trajectory ¢Y( ) according to the following two cases:
Case I, ¢, (x) € N°(K;) for some i # j; Case I, ¢y, (x) € N°(K)).

In Case I, we simply take qb}/ (1) = ¢s(x) for t € [0, t9]. In particular, TY =1y is the length of
the time interval over which the trajectory is defined.

For Case II we proceed as follows. Taking K =Ap and 7p =1 in Corollary 6, denote
by (y*, A*) the (y, A1) given by the corollary. Let up € K; be such that |lug — ¢4, (x)|| < 6.
Then ug <y u; <y y1. Let t1(x) € [1, 00) and ¢ € C([0, 11(x)]:A?) be such that ¢(0) = uo,
¢1(t1(x)) = y1, and S(ug, t1(x), ¢1) < y* Ay/3. Using Lemma 22 we can assume without loss
of generality that sup,,cp Ky 1 (w) =11 < oo. From Corollary 3, ¢1(¢) € A* for all ¢ € [0, 71(x)].
Consider the continuous trajectory ¢, in A° that connects x and y; in the following manner:

flow

lin (Pl
X i) g "o ) M0 1 V1

The above display is interpreted similarly to (26), with a term of the form a —;> b, when ¢ =

flow, representing the segment of ¢,(a) until it reaches b. In this case let TY =ty + llug —
@1, (x)|| 4 11 (x) denote the length of the time interval over which @7 is defined.
Note that in both cases,

V= sup TY<to+1+417 <oo.
xeN*1(K;)

Also, in both cases, ¢y (1) € A} UA* = A, for all 7 € [0, T]. Furthermore, in Case II,
S(x ¢! . TY) <0+yo+v/3=7/2,

and in Case I the cost on the left side of the above display is 0.
LetA € (0, A1), o’ > Obe such that K’ = N*(Ay) C A° and K’ = V. - Extend the trajectory

¢! from [0, V] to [0, T'] by defining ¢ (¢ + T7) = ¢,(¢Y (7)) for 1 & (¥, T*]. The bound
from Theorem 3(b) ensures that for each § € (0, 1) there is some No(3) € N such that, whenever

NZN()(S),
_ oN,a K
*,T;/<)\’>_]P)x <‘ *,T}’<A>Z]Px <”¢}C’—X o *,TY<A>

P, (‘
> exp(—N (S(x, TV, oY) + 5/4)) =exp (—N (S (x. TY. 9Y) + 5/4»
> exp (—N (y/2 + 5/4)>

N N /
¢)\C’ _ XN ¢}C/ _ XN.a.K

for all x € N*(K)).
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It follows that for each x € N* (K;), if N > No(y), then
Po (o) > ) = 1= Pu (l8) = X1, 17 <)
<l—exp(—=N(y/2+7/4).
Using the Markov property we see that, if N > Ny(y) and x € N* (K;), then

exp (Ny)
(o) 2, (|22 )

exp (Vy) J

<l —exp(— 3Nv/4))L m

We can assume without loss of generality that N(y) is large enough so that

LGXP (NY)J _ Xp (Nv).

TY 217

Then for all N > Ny(y),

exp (Ny)
sup By (1 ) > exp (V) = (1 — exp (— 3Ny/4) 5"
xeN*(Kj)

)

exp (N
=exp (log (1 —exp (—3Ny/4))) 217

SCXP( %;Y) exp (— 3Nv/4))

_ exp (Ny/4)
= eXp —T .

The result follows from taking

&(N) = exp (— S 4)) :

21V
]

Proof of Theorem 1. Recall that we assume that Assumptions 1, 2, 3, and 4 are satisfied.
Also, by assumption, for every N € N, there exists a QSD sy for {X"}, and the sequence {1y}
is relatively compact. From Theorem 5 there are ay, ¢ € (0, co) such that

v > 1—ae sV forall N e N.

Let n be a limit point of uy. From Theorem 7, w is invariant under the flow {¢;}. From
Corollary 2, supp (1) C R’,. Thus, to finish the proof, it suffices to show that for every j €
{{+1,...,v}, there is a neighborhood V; of K; such that u(V;) =0. Fix ¢ >0 and choose
Fo € K such that un(Fg) < ¢ for every N € N. This can be done in view of Theorem 6 and our
assumption that the sequence {uy} is relatively compact.

Using Lemma 3(c) we can assume that F) is large enough so that for some 77 € (0 00) and
5> 0, ¢i(x) € Fy for all t > T and x € F, where F'| C Fy is such that dist(F, dFp) > 5.
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Let A be as in Lemma 23. Fix § = A A §. From Lemma 11, we can choose §g € (0, §), an
integer Tp > T, and open sets V; with ViC N‘S(K,') N A? such that Parts 1-3 of Lemma 11
hold.

Consider

ﬁfSNo,To,Fo = sup Py [HXN ¢ (X)”* Ty = 0]'

xeANNFy
Then from Lemma 13 there exist ¢, > 0 and a; € (0, co) such that

N —Nc;
Bso.1o.ry = @26 ’

Define ¢* = min{1, ¢y, c2}. With y =c¢*/8, let (N, y) = ¢*(N) be as in Lemma 23. Then, for

some a3 € (0, 00),

sup P, (N’“(K) > exp (Nc*/S)) <a3C*(N) forall NeN.
xeN*(Kj)

Define my = exp (Nc*/2) and m'y = exp (Nc*/4).
Define the events
ev ={(X"(0), X (o), X¥ 2Ty, . .., XY (myTo)), (To, To, - .., To),
defines a (89, To)AP—pseudo-orbit }
and
E'v={foranyie{l+1,...,v}andany g>m'y, andp >0,
if X" (pTo) € N (K;), then X" ((p + ¢)To) € N*(K))}.
Without loss of generality we can assume that my > (b + 2)(m'y + 1). Then, for x € A,
P (XN (mnTo) € Vi) <Po(XY (mnTo) € Vi, En, E'N) + Pu(Ens (E'n)°) +Pu((En)°).
Fora=1,...,b+ 1, define tfxv = lamy /(b + 2)]. Then, from Part 2 of Corollary 11 and the
definition of £y, with K = UJ‘.’ZIKj,

P, (XY (nnTo) € Vi, . €'y < % P, (XY (7o) € Vo)) N A?).

Using Part 3 of Lemma 11, for every x € A?,

v

P(En, (E'N)) < Z sup Py (r{,\f > Tom'y)
i=1+1 XeN0(K;)
%

<Y s B (NS(K)>exp (Nc*/4)) < bC*(N).
l‘:H_lxeN’S(K,)

From our choice of 8y, Tp we see that if for some k, X ((k — 1)To) € Fo, then o7, (X" ((k —
1)Ty)) € F1, and if in addition

IXY (kTo) — o1, (XN ((k — DTo)) || < o,
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then XV (kTp) € Fo. Using this observation, we see that, with
k* =min {1 <k < my:| X" (kTo) — o7, (X" ((k — DTo))|| > o},
for every x € Fy,
Pe((En)) = ]P’x(”f(N(kTo) — o1, ()A(N((k —DTp))| = 8o for some k=1, ..., my)
=P (k* <my)

<Y " P(| XV (kT0) — @1, (XY ((k — DTo)) | = 80, XV ((k — DTy € Fo)
k=1

< my sup Po(| X (7o) — o7, (XV(0)) | = &)

xeFy
<mnBy 1 gy < a2exp (Nc*/2) exp (— Nc¥) = ay exp (— Nc*/2).

Thus, from our choice of F,

)»xNTOMN(Vj) — / MN(dx)]P’X(XN(mNTO) € VJ)

b+1

< / UN(dXPEN. (EN)+ D / 1N (dx)Py (XN (£ To) e [N ()] A”)
a=1

+ /F N @OPL(EN)) +
0

<bS*WN) + (b + Dun ([NY(K)]) + az exp (— Nc*/2) + e.

Note that un([N%(K))]¢) — 0, in view of Theorem 6 and Corollary 2. Since Ay > 1 — aje 1V
and mye~ 1N < e=N/2 — 0, )N o _, 1. Thus, sending N — oo in the above display, we have
m(Vj) < e. Since € > 0 is arbitrary, the result follows. U

8. Proof of Theorem 2

In this section we prove Theorem 2. For this we first show that when 6" = #"-* under the
conditions of the theorem, Assumptions 1, 2, 3, and 4 are satisfied. These assumptions are
verified in Sections 8.1, 8.2, 8.3, and 8.4, respectively. We then argue in Section 8.5 that, for
every N, XN has a QSD pupy of the form in the statement of Theorem 2. In Section 8.6 we
show that the sequence {uty} is tight. Finally, in Section 8.7 we combine the results of previous
sections to complete the proof of Theorem 2.

8.1. Verification of Assumption 2.1

We need to show that if 6~ =6V* and x¥ — x, then (3) holds. The proof follows by a
standard application of Gronwall’s lemma and from moment formulas of Poisson and binomial
random variables, and thus we only give a sketch. First, using the relation (1) and the discrete-
time GrOnwall inequality it is easy to verify that for every T < oo,

E xXV|? < oo. 27
sup B | max 1% < 27)
Next, using the relation
M1 0= GO+ [ @) —E ()] xea,
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and the Lipschitz property of G, it can be checked that

t

Neoy=xN+ / G(XN(9))ds + MM (1) + RV (1), t€[0,T], NeN, (28)
0

where MV is a martingale and SUPg</<T IR (#)|| converges to O in probability as N — oo.
Standard moment estimates show that E( SUPg<t<T ”MN(t)||2) — 0 as N — oo. Next, using

the moment bound (27) and the convergence properties noted above, it can be checked that XN
is tight in C([0, T]:A). Finally, if XV converges in distribution along a subsequence to X, then
from (28) it follows that X must satisfy

t
X =x+ f G(X(s))ds, t€[0, T].
0

From the unique solvability of the ODE in (4), which is a consequence of the Lipschitz prop-
erty of G, it now follows that X(#) = ¢,(x) for all 7 € [0, T], almost surely. This proves the
convergence in (3). U

8.2. Verification of Assumption 2

Parts (a)—(d) hold by assumption. We now verify Part (e). Since G(x) = F(x) — x, for each
xe€ A (x, G(x)) = (x, F(x)) — ||x||>. As F is bounded, taking M = 2||F|| o, we see that || F(x)|| <
lx|l/2 for all ||x|| > M. Thus

1 1
(x, G(x)) < znxn2 —|IxlI* = —Enxn2 for all x € A with ||x|| > M.
Thus Assumption 2(e) holds with k = 1/2 and M as above. [l

8.3. Verification of Assumption 3

Part (a) of the assumption is immediate from the fact that for x € A%, #¥*(- |x) is the prob-
ability law of UY — V¥, where UN = (UN )?:1 and VN = (V¥ );.1:1 are d-dimensional random
variables such that {UlN , VJN ,Lj=1,...,d } are mutually independent and UIN ~ Poi(F;(x)),
VN ~Bin(Nx;, 1/N), fori,j=1,...,d.

To verify Part (b), for x € A? define 6( - |x) as the probability law of U — V, where U =
(U,-)l?‘i=1 and V = (Vj)J‘.lz1 are d-dimensional random variables such that {U;, V;, i,j=1, ..., d}
are mutually independent and U; ~ Poi(F;(x)), V; ~ Poi(x;), fori,j=1, ..., d. Then with this
choice of 6, Parts (i) and (ii) of Assumption 3(b) are clearly satisfied. Finally, Part (iii) is a
consequence of the observation that if zy — z € (0, 00), then for every A € R, as N — oo,

1\ 1M )
|:<1 — [T/) + Né‘)i| — eZ(e _1).

8.4. Verification of Assumption 4

Part (a) of the assumption is clearly satisfied (in fact with k = 1). Part (b) is verified in the
following lemma.
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Lemma 24. Suppose that 0¥ = 0N-*. Then, for every y € (0, 00) and T € N, there is an open
neighborhood Uy, of A in A such that

P oy
liminf inf N log P (XV(T) € 9A) > —.

N—oo xeUyNAy

Proof. Forxe A°, let
iy =arg 12;;101 X;.
From Assumption 2(d) we can find §p > 0 such that
Y
sup  F(y);, < T
yeN%(9A)

Let

5y = Y
2T —log (e — 1))’

d =min{dg, 61}, and U, = N‘S(BA). Fix x € U, N A%, and note that, under Py,
| M
N _ - N (N
R0 =x+5 3 (x%).
J=1

where r;JI-V (X]Ai 1) = U/ — V/ and the conditional distribution of (U’ — V) given that X]Ai | =xis
that of (UV, VV) as in Section 8.3. Thus

NT

. 1 . .
P&V (T) €08)= Py i, + 1 (U, —V]) =0
j=1
NT
>P (U =-..=UM =0, Zv{X:inx

j=1
Let U',..., UM be independent and identically distributed (i.i.d.) Poisson random vari-
ables with mean y/2T, and let v vz o VT be iid. geometric random variables with

probability of success 1/N such that {T7, V¥;j, k} are mutually independent. Then

N
]Px UlEC::Uf)Y:O’ZV{X:Nx[X
j=1
=P, (U,{( =...= Uf»l’ =0, by time instant N7 all initial Nx;_ type iy particles die)
=P, (0= = 0N =0, V! <NT, P2 <NT ..., V¥ < NT)

77l NT N\ e
=[P(U" =0)] (1 — (1 - ]V) )
Nx;
_ Y 1 NT ix
=exp (—NTﬁ) (1 - (1 — 1—\/) ) .
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Combining the last two displays,

Nx;,
1 . 1 N\
N log P (XN(T) e dA) > N log (exp (—N;—/)) + log (1 — <1 — —) )

I\
:—%—}-x,'xlog (l— <1_]T]> )
- Y siee(1- (1= 1)
—_—— 0 J— —_— —
st 2 g N ’

and thus from our choice of §,

liminf inf llvlogpx()?N(T)eaA)z—§+a(—T+1og(eT—1))z—y.

N—oo xeUyNAy

8.5. Existence of quasi-stationary distributions

In this section we prove the existence of a QSD uy for the Markov chain {Xf,V }, for each
N €N, and show that the sequence {y} of QSD is relatively compact in P(A). For some
uniform bounds needed for the tightness proof in Section 8.6, it will be convenient to consider
the N-step processes {5(,’1\' }nen,, where

XN=xN., neNp, NeN. (29)
Recall the definition of rf)v and Pf;/ from (6) and (7).

For existence of QSD, we will use the following result from [2].

Theorem 10. ([2, Theorem 2.1, Proposition 3.1].) Fix N € N. Suppose that there are
01, 6, c1 € (0, 00), functions ¢1, gpzzA;{, — Ry, and a measurable subset K C A;’V such that
the following hold:
(B1) For each x € K, for some na(x) € N,
Py (X €K)>0 forallxeK and n > n(x).

(B2) We have 0; < 6», and

(a) inf @1(x)>1, sup ¢;(x) < o0,
)CEA;)V xeK

(b) inf @2(x) >0, sup ¢2(x) < I;
xekK

XeAR,
(©) PYoi1(x) <0191(x) + ¢ 1x(x) for all x € AY;
(d) PYpa(x) = 0202(x) for all x € A,

Suppose also that there exist C € (0, oo) and ng, mg € N such that ny < mgy and

P, (Xf:g €-NK) < CP, (X,I,Vloe) forall x € A% and y € K. (30)
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Then there exist C; € (0, 00), @ € (0, 1), and a probability measure py on A;’V such that for all
nelN,
N
Py < Co’ wule1)

wpPN <1A0) o w(g2)
n N TV

for all probability measures 1 on A{; which satisfy u(¢1) < oo and u(¢2) > 0. Moreover, jiy is
the unique QSD of {XV} that satisfies uy(¢1) < 0o and un(@2) > 0. Additionally, uy(K) > 0.

Remark 1. The above theorem combines two different results from [2]. Proposition 3.1 of
[2] shows that under the assumptions of Theorem 10, for some ¢; € (0, 00), n; € N, and a
probability measure v supported on K, we have

Py (X)) €)= cov(-NK) forallxeK.
This proposition also shows that for some c¢3 € (0, 00),

sup Py (n < 7))
sup 255
neNg ;Iellf( Py (n < TEI)V)

<c3.

Using these facts, it then follows that, under the assumptions of Theorem 10, all the conditions
of Theorem 2.1 in [2] are satisfied, which gives the existence of QSD uy with the properties
stated in the above theorem.

In Lemma 11 we use the above result to establish existence of a QSD for the sequence {XnN }
considered in this work, for each N € N. We begin with some preliminary estimates.
For r € N, consider

K ={xeA:x-1<r}, KN =K, NAY, @31
and let
o) =inf{keNo: X} e dAN},
™V =inf{keNo: XY ekY}, o) =inf{k:X} ek)},
and
tN =N Al 6N =oN Aol

Lemma 25. Fix A € (0, 00). There exist c(Ag) € (0, 00) and ro > 0 such that for all r > ro and
A< Ao,

E, (&&ﬁ") <e"le(hg)  forallxe A%, and N € N.

Furthermore, if r > ro, then
E, (e-ﬁffv) <é"le(rho) forallxe A%y and N € N.

Proof. Let a =max; ||Fi||oo. Given u € N™'N, consider the random variable V,, that repre-
sents the number of particles among Nu initial particles that die in N steps, when at each step
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any particle can die independently of the remaining particles with probability 1/N. Note that
Vi, ~ Bin(Nu, y(N)), where
1 N
y(N)=1— (1 ——) .

Let U ~ Poi(Nad) be independent of V. Then, under P,
- 1
(%) =) -1 <g S (U= Vi),

where for two real random variables Z1, Z, we write Z| <y Z» if P(Z> > u) > P(Z; > u) for all
u € R. Also,
E[en @Y ] = Cy(he 0 O,

where Cy(1) :E(exp {%,U}) and
1 CUN(1
E exp {—NV“} =¢ Voxl,
Note that for x € (K¥ U dAy)°,
Py (6-rN > 1) <E, (65(11‘1.1 16[’>1) = x'l]Ex (e(f({\’—x)-l lfrrN>1>

:ex'ICN(])efvév(l)xl SemlCN(l)er(])V(l)r'

By a recursive argument, for n € N,

P, (67 > n) < o1 (rVY (h=tog ey () 32)
Note that
log Cy(1) = Nad(e'™ —1).
Also,
E exp {_11\7 x-l} _ [1 —y(N)(l B e—l/N)]N(xl) ’
and thus

V(1) = —Nlog [1 —y(N(1 - e—l/N)] .
Combining the above observations, we have
log Cy(1) Nad(e'N —1) ad(e'N —1) e!\IN
— < =ad .
V() —Nlog [1 = y(N)(1 — e~ /M)] = y(N)(1 — e~ !/N) Y(N)

Since y(N) — (1 — e~ 1), we can assume without loss of generality that for all N € N,

log Cy(1) _ 2ade®
Vi) Te—1

1
=0, V(D= S(1—e"H =g

Thus, for r > rp = (% + 19),

,nvg(1)<%+1},w

_ N1y N ) _UN(1\A
. n(rvy) (1—log Cy(1)) e ) < Vit _
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Combining this with (32), forall N e N, x € (K£v Ua)‘and Ag < A,

2o _ p(Ao—A)
AO&}V) P e
E, (e e T

This proves the first statement in the lemma. The second statement follows on noting that
tN < N6 foreachr e Ry and N € N. O

Lemma 26. Fix 1 € (0, 0c0) and let ro be as in Lemma 25. Then for each A € (0, Lo) and r > ry,

~N
sup sup K, (]E;(N (e“” ) 11<0p/> < 00.
NeN yek¥ ! 9

Furthermore, for every N € N,

A 2N
sup E, (E N<€NT’)1 N)<OO.
Iz)v )’( X I<ty
yek;

Proof. We only prove the first statement. The second statement is shown in a similar
manner. Fix r > rg and A < Ag. For notational simplicity, denote Kﬁv by K. Then, for y € K,

AN 6N
By (E)"({V (6 o ) 11<oy) =Ey (]E;?IN (6 7 ) Loy (15(11\’61( + 15(1Nez<c))
)\AN
= 1+ Ey (]EX{V (e 7 ) 11<U§,V IXIIVGKC)) .
Let a = max; ||Fi||oo and U ~ Poi(Nad). Then with c(Lo) as in Lemma 27 we have
AN TN .
Ey (E)?,N (6“’ ) 11<agv1wez<c)> =E, (C(f\o)ex o 1)~(’|Ve[<f)
< c(ho)Ey (EY-H-%U)
1
— ey-lc()\o)edNa(eNfl).

Since supycy N(e!/N — 1) <e, the result follows.
The following lemma will be used to verify the condition (B2)(d) of Theorem 10.

Lemma 27. There exists r1 € (0, o0) such that

6, = inf inf inf P, (XN e kN0 > 1) >0.
2 r=ri NengKfV x(] r 9 )

Furthermore, for each N € N, there exists ry € (0, co) such that

6>(N) = inf inf Py (XY ekY; 7)Y > 1) > 0.

rzri xekN

Proof. Once again, we only prove the first statement. Consider, for z € N/N, a collection
of Nz particles of a single type, where each particle, independently of all other particles, has a
1/N chance of dying at each time step. Then the probability that all Nz particles are dead in N

time steps is
1 N\ Nz
AN)=[1-(1—-— .
p(z, N) ( ( N))
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Note that for any K C A°, xe KN Ay,and N > 1, min x; > %, and so

1<i<d

1
P(x~1,N)§p(dN_1,N)=|:1_(1_]T/> i| )

In particular,

P (o) <1)=P, (z) <N) < [1_ <1_1%/>NT7

and so for any K C A°,

d
sup sup Py (7)) <N) < (1 —efz) = ay.
N>1xekK
Thus, for K C A?,
P, (5(?] EKC;aéV > 1)
P, (aév > 1)

Py (XY eKlo) > 1) =1-P; (XY €K|o) > 1) =1~

and

- sup sup P, (XN e K¢ oY > 1
P, (X’lV eKC;oé\’ > 1) N}; xe}; x( 1 3 )
sup sup <

N>1xeK Py (o) > 1) B 1 —a

We will now argue that for some r; € (0, 00),

sup sup sup Py (5(11\' € (Kﬁv)c ;O’év > l) <1 —op. (33)

r=ri N>1 ek

Fix r>0 and let x € Kﬁv As before, let a = max; || Fi|l~. Fix k € N and define, for a; €
(0, 00),
m:m(N,k,al)imax{l §j§k:X]N-1§a1}.

Let YY) =X} - 1. Then
k

1
YIICV:Y"IY+N > () 1<da1+—{ln<11<xk}z (U — V)
j=m—+1

where U; are i.i.d. Poi(ad), V; are i.i.d. Bin(Nay, 1/N), and {U;, V/, j, j € N} are mutually
independent. For a > ay,
k
Py (Y) >ap) <P max (Uj—Vj) =N (a2 —ay)
<[<
===

k

k
ZP Z U'—V/)ZN(Clz—al)

I=1 j=I
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Thus, for each y > 0, by Markov’s inequality,

k
By (V) > ay) < - W@r-a 3 et JAH D[ k15
=1

Ee'UiEe—Y"1 (1 — (Bevr Ee—vvl)k)

1 —EeYUiEe—YVi

— ¢ YN(ay—ar)

Note that for each N > 1,

11\ -
(]EeVUl Ee—yvl) —etde =D (= L < ptd(e’=1) ,~ar(1—€77)
N~ Nev

ad(e’—1) ri(e™V=1)/2 _

Let 71 be large enough so that e % and

log (1 — ap)
. .

r > -2
If we fix r > ry and let ap = r and a; = r/2, then
P () 2r) <e ™2 <o < (1 —ag) < (1 - ).
This proves (33) and hence

inf inf inf P, (5(11\7 eKﬁV | 05\7 > 1) =co > 0.
r=ri N>1 xek¥

Finally, for all N > 1, rZrl,andxerv,
Px()?llveKiv;aév> 1)=]Px()~(llveKﬁv|o§V> I)PX(U§V> l)zco(l—ao)>0.

The result follows.
Denote by OV the collection of all € P(AR) such that for every c € (0, 0o), there exists
an r € (0, co) such that

E, (ec‘;ﬁv ) < 00.
The following result gives the existence of QSD for the chain X" for each N and provides an
important characterization of these QSD.

Theorem 11. There is a probability measure juy on A%, such that for all xy € AR,

—8XNP£1V — UN
SXNPnN (1A7v>

in the total variation distance. For each N € N, the measure uy is a QSD for {X,Ilv ). It is the
unique QSD for {X,'lv } that belongs to Q.

Proof. Fix N e Nandletr; € (0, c0) and 6, € (0, 1] be as in the second statement in Lemma
27.Fixrn>ri,let K= Kg, and define 7: AR, — Ry by ¢r(x) = 1g(x).
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Fix an arbitrary 0; € (0, 87). From Lemma 25 there is an r3 > ry such that for any fixed
r=rs,

. —&N 0
01(x) = E, (91 ) <00 forallxe AY. (34)

We now verify the conditions of Theorem 10 with the above choice of K, ¢1, ¢z, 61, and 65.
It is clear that the condition (B1) is satisfied with ny(x) = 1. Also, (B2)(b) is satisfied, since
@2(x) =1 for each x € K. Since 61 € (0, 1),

inf p1(x)>1.
XeAY,

Also, since K C Kﬁv,
sup 1 (x) =1,

xeK

and so (B2)(a) holds. Next, an application of Lemma 26 and the Markov property show that
(B2)(c) holds with

€2 =sup Ey ((pl (lev) 1{U§V>l}) :
yek ¢

Finally, the validity of (B2)(d) follows from Lemma 27.
Also, since
inf P, (XY =x)= 0,
Jinf Py (X7 =x) =i >

the inequality in (30) is satisfied with C =« ! Thus, from Theorem 10 it follows that there
exists a QSD uy for {X,IlV } that satisfies

N Sy PY
E,x (01 o ) <oo, andpy= lim 1

— eK. 35
n— 00 (SxNP{y(lAON) oF any v (35)

We now show that uy € QV. Fix ¢ € (0, 00). Let ¢, 6, and K be as above. Choose 0f €
(0, 63 A ™). From the second statement in Lemma 25, there exists an r4 > r3 such that

~N
@1(x) =Ey ((Gf‘)_rr‘*) <oo forallxe AR.
Then from the previous argument, there is a QSD iy for {X,Ilv } such that
2N _ 2N
Eqy (e”’4> <Ejy ((9]*) f'4) <00

and

for any xy € K.

From (35) we now see that uy = iy and that
~N
E.y (ecr,4) < 00.

Since ¢ > 0 is arbitrary, it follows that uy € Q. Also, since 5 > ry is arbitrary, we see (by
choosing a larger K if needed) that the convergence in (35) holds for all xy € AY,.
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Finally we argue unigueness. Let iy € Q" be a QSD for {Xflv }. Choose r5 > rq such that
fin(KY) > 0. Consider K = KL and ¢, = 1. Fix 6; € (0, 6,) and let r > r5 be such that

Exy ((91)_er) <00, andE, ((91)_fﬁv) <oo forallx € AR.
Then by the previous argument (and Theorem 10),
_zN ~
E,, ((91) g ) <00 and  py(K)> 0.

But since the above two properties are also satisfied by fiy, from Theorem 10 we must have
UN = [AN. O
8.6. Tightness of quasi-stationary distributions

We now prove the tightness of the sequence of QSD {uy} given in Theorem 11.

Theorem 12. For N € N, let uy be as given in Lemma 11. Then the sequence {jy} is tight.

Proof. Recall the definition of PY from (7), and let PV iPyN. From Lemma 11, for all
Xy €AY,
Sxy PN
lim — " = .
n—00 6XNP£IV(1A”)
Thus, to show that the sequence {uy} is tight, it suffices to show that the collection
ey PN
{ — 1 n Ne N} (36)

Sey PN (1p0)”

is tight for some sequence {xy}, where xy € AX/ for each N. For this it suffices to show that for
every € > 0, there is an L; € (0, co) such that

sup sup Py, (5(,]:/ 1>1, |G$v>n) <e.
NeN neN

From Lemma 27, for all r > ry,

05 = inf inf P (5(11\/ IS Kr;aév > N) >0, >0,
N>1 xekK,

so for every r > ry, with ¢} (x) = ¢2(x) = I, (x), for each N € N,
PYh(x) > 6 (x)  forall x € AY.

Recall that @ = maxj<j<4 [|Fi|lco < 00 and 5(kN =X%k for k € N. We now consider a cou-
pling between the sequence of d-dimensional random variables {X}'} and a sequence {Z,]{v } of
N/N-valued random variables that preserves certain monotonicity properties. Note that {X}'}
can be constructed as follows. Consider a collection of i.i.d. random fields {(U,ICV x), V,iv x), xe
A }ken where U,’{V (x) is a d-dimensional random variable with mutually independent coordi-
nates distributed as Poisson random variables with means Ffv x),ief{l,...,d}, and V,ICv (x) is
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a d-dimensional random variable, independent of UkN (x), of mutually independent binomial

random variables with parameters (Nx;, 1/N),i€ {1, ..., d}. Then
1
XN =xN+— (UY, (xXN) =V (x})), k € Ny,
Tt 1 k+N(k+l(k) e (X)) 0 (37)
Xév=xN,

gives a construction for the Markov chain {Xj'}. We can then construct, along with the above

i.i.d. random fields, i.i.d. fields {(AQ’ ). BY (z)) ze N/N}k , such that
€

A¥(x- 1) ~ Poi(ad — F(x) - 1), and DY (x) =AY (x- 1) + UY (x) - 1 ~Poi(ad), forall x € A%,
and

BY(z) ~ Bin(Nz, 1/N),

and whenever z>x - 1, (Biv(z)—V,’:(x)-l)fz—x-l, forx € AY and z € N/N.

For zy € N/N with zy > xy - 1, define
1
o=+ DO B (@], A=

The sequence Z,ICV describes the evolution of the (scaled) population size of a single-type pop-
ulation in which at each time step any particle can die with probability 1/N independently of
other particles, and Poi(ad) new particles are born. Let Y,’cv iX,iV - 1. Then, by construction,
Z]](v > Y]iv for all k,N.

Fix r > r; and let x be in K, N Ay for each N. Also, let zy = xy - 1. To prove the tightness
of the collection in (36) it suffices to show that for every ¢ > 0, there is an L € (0, oo) such
that

sup sup Py, (5(,]:/ 1>1 |o£v>n) <e.
NeN neN

Let ZlY = ZN, for n € Ny, N € N, and define

oM =inf{neNoZ) <r}, oV =inf{n:Z) =0}.
Using similar arguments as in the proofs of Lemmas 25 and 26, we can assume without loss of
generality that r is large enough so that there is a 6; € (0, 6>) such that for

U,N‘ZA%Z’N

oV =E. (91‘( )), LeNJN.

. —(G,N’Z/\aaZ‘N)
C=sup sup [Ey[Ez|06 L_,zv ).
N>1yeN/N,y<r ! ?

and

we have C < oo and

Ec (o (2)) 1,25.,) =010Y @ +Clp),  zeN/N, NeN.
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For fixed L < oo, there is an L; € (rg, 00) such that for all z > L;, we have ¢ N(z) > L for all
N € N. Then, with ¢, = <p2 ,

Pyy ()N(,]:] 1>1 |0§]>n) <Px (Z,Iyle |oév>n) SIP’(@}]V (2,11\]) 2L|0N>n)

E ((pl (Zrllv) 10N>n)
P (aév > n)

<L 'E ((pllv (Z,IIV) |<réV > n) =L

_E (‘/’1 () Loy >n>

E (92 (%) 1op-n)

where the last inequality uses the property ¢, < 1. Also,

Eay (02 (%) 1020) 2 02y (92 (0001) 1ot ) )= 02Fuy (Lo (R4 1) 1oy
and, with F,, = J{Xk, Zk, k <n},

Ey ((pl (ZN) 1<7N>n) ( <(,01

) >n<7>n1|]:n1))

_EN(EXN(W '11\7) a>n|]:” 1) (7>n l)
<]EXN (EXN ((pllv( rllv) 1 ZN>n |fn—l) 1(7(.§V>n7]>
<91EXN (goi\/ ~111\]71 10§V>n—l) + C]EXN (1[0,’”] (erzvfl) laév>n—l)

(Z-1)
= O1Exy (ﬁﬂiv (Z) laf,v>n7]> + CEyy (1[o,r] (Xf\f,_n ' 1) 10§V>n71> :
Thus,
By (901 () 10N>n) 91 (‘P{V (Z-1) la§V>n—1) C
By (‘/)2 (X ) ]UN>n> 62 By ( (5(,]:/—1) la§V>n—1) o

Iterating this inequality, we have

IA

E,y ((pl (ZN) 10_N>n> (ﬁ)n @iV(ZN) . E 1

E, <¢2< )10N>n)> 6] @0n) 62 1—(61/62)

Since xy € K, for each N,

- C
PXN(XLV-lzL1|aéV>n)§L71 |:1+92_01].

Tightness follows. (]

8.7. Completing the proof of Theorem 2

We can now complete the proof of Theorem 2. We will apply Theorem 1. From Sections
8.1, 8.2, 8.3, and 8.4 it follows that Assumptions 1, 2, 3, and 4 are satisfied. From Section 8.5
it follows that there is a v € P(AY;) such that for every N € N and xy € A%,

8uy Phy
S PV (1%)
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converges to uy in the total variation distance as n — oo. Furthermore, the measure py is a
QSD for {XV}. From Section 8.5 the sequence {/ux}nen is relatively compact as a sequence of
probability measures on A. Theorem 2 is now immediate from Theorem 1.
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