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Abstract

We consider a collection of Markov chains that model the evolution of multitype biolog-
ical populations. The state space of the chains is the positive orthant, and the boundary
of the orthant is the absorbing state for the Markov chain and represents the extinction
states of different population types. We are interested in the long-term behavior of the
Markov chain away from extinction, under a small noise scaling. Under this scaling,
the trajectory of the Markov process over any compact interval converges in distribu-
tion to the solution of an ordinary differential equation (ODE) evolving in the positive
orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in
this scaling regime. Our main result shows that, under conditions, the limit points of the
QSD are supported on the union of interior attractors of the flow determined by the ODE.
We also give lower bounds on expected extinction times which scale exponentially with
the system size. Results of this type when the deterministic dynamical system obtained
under the scaling limit is given by a discrete-time evolution equation and the dynamics
are essentially in a compact space (namely, the one-step map is a bounded function)
have been studied by Faure and Schreiber (2014). Our results extend these to a setting
of an unbounded state space and continuous-time dynamics. The proofs rely on uniform
large deviation results for small noise stochastic dynamical systems and methods from
the theory of continuous-time dynamical systems.

In general, QSD for Markov chains with absorbing states and unbounded state spaces
may not exist. We study one basic family of binomial-Poisson models in the positive
orthant where one can use Lyapunov function methods to establish existence of QSD
and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The
results from the first part are then used to characterize the support of limit points of this
sequence of QSD.
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Convergence of QSD in unbounded domains 65

1. Introduction

In this work we study discrete-time Markov chains with values in the d-dimensional pos-
itive orthant that are absorbed upon hitting the boundary of the orthant. Such processes are
well suited to model biological and ecological systems [9, 11] where each coordinate rep-
resents the population size of individuals of a given type/species. One of the fundamental
issues in mathematical biology is to characterize the conditions for a population of interacting
species to coexist, that is, to survive for a long time with no extinctions. Many real-world
systems are certain to go extinct eventually, yet appear to be stationary over any reason-
able time scale. Generally, the finite nature of the resources available prevents the system
from growing without limit. Thus, provided we wait long enough, a sufficiently strong down-
ward fluctuation in population size is bound to occur. We are interested in studying the
long-term behavior of such systems away from extinction, under a suitable scaling of the
system.

The processes we consider have a natural scaling parameter (N) representing the system
size. From standard results, as N → ∞, the linearly interpolated trajectory of the state process
XN , over any compact time interval [0, T], converges in distribution in C([0, T]:Rd

+) (the space
of continuous functions from [0, T] to Rd

+, equipped with the uniform topology) to the solu-
tion of an ordinary differential equation (ODE) of the form ϕ̇(t)=G(ϕ(t)), ϕ(0)= x (see (4)).
Our goal is to analyze the limiting behavior of the steady states of XN , conditioned on non-
extinction, as N → ∞, in terms of the properties of the flow determined by the above ODE.
The steady state of a Markov chain conditioned on non-extinction is made precise through the
notion of a quasi-stationary distribution (QSD) (see Definition 1). We refer the reader to [14]
for a comprehensive background and survey of results in the theory of QSD. QSD are impor-
tant objects in biological models, and discussions of applications in biology can be found in
[1, 7, 8, 15, 16].

Our first main result (Theorem 1) studies asymptotics of QSD of XN (denoted by µN), as
N → ∞, provided they exist and the sequence {µN} is tight. Specifically, in Theorem 1 we
show that, under Assumptions 1, 2, 3, and 4, any limit point µ of the sequence of QSD {µN} is
invariant under the flow determined by the ODE (4) and is supported on the union of interior
attractors of the flow. We also provide lower bounds on the probability of non-extinction over
a fixed time horizon that scale exponentially in system size. These bounds readily give similar
lower bounds on expected time to extinction.

In general, Markov chains with absorbing states and an unbounded state space may fail
to have a QSD. Conditions for existence of QSD have been studied in [5, 18, 19]; how-
ever, these results are not easily applicable to the models considered in this work. We instead
make use of the recent work of Champagnat and Villemonais [2], which gives general and
broadly applicable Lyapunov-function-based Foster-type criteria for existence of QSD (see
Theorem 10). In our second main result we consider a basic family of Markov chains, to
which we refer as binomial-Poisson models, where the results of [2] can be applied to
give existence of QSD. Using the stability properties of these Markov chains we obtain
bounds on exponential moments of certain hitting times that allow us to construct suit-
able Lyapunov functions (and related objects) for which the conditions in Theorem 10 are
satisfied, thus establishing the existence of a QSD µN for each N. In fact, this QSD can
be characterized as the limit, as n→ ∞, of the law of XN

n , conditioned on non-extinction,
starting from an arbitrary initial condition in the interior. Using this characterization, and
similar moment estimates as used in the construction of the Lyapunov functions, we then
argue that the sequence of QSD is tight. Finally, from these results and other properties of
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66 A. BUDHIRAJA ET AL.

the model, we establish our second main result (Theorem 2), which says that the binomial-
Poisson model introduced in Section 2.3 satisfies all the conditions in Theorem 1 and
therefore provides an important class of Markov chains where the conclusions of Theorem 1
hold.

1.1. Approach and idea of proof
We now comment on the proof of Theorem 1. Our results are motivated by the work of

Faure and Schrieber [4] (see also the unpublished manuscript of Marmet [13]), which consid-
ers analogous problems for a class of Markov chains where the deterministic dynamical system
obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics
are essentially in a compact space (namely, the one-step map is a bounded function). As in [4],
one of the important ingredients in the proof is an analysis of the large deviation behavior of the
sequence of small noise Markov chains in Section 2.1. However, because of the continuous-
time setting here, one needs to study large deviation principles on suitable path spaces. One of
the issues that arise in the large deviation analysis is that transition probabilities of the Markov
chain behave in a degenerate manner near the boundaries. For this reason, the associated
local rate functions have poor regularity properties, which in turn makes establishing a global
large deviation principle on the path space technically challenging. Another issue arises from
the unboundedness of the state space. In particular, the moment generating functions of the
noise sequences can become arbitrarily large as the system state becomes large. In order to
handle these issues, we instead consider large deviation principles for a collection of modi-
fied chains in Rd. These modified chains behave identically to the original chain until exiting
from a given compact set K in the interior of the orthant; upon exiting, the modified chains
change their behavior to a more regular dynamics in an appropriate sense. The large devia-
tion estimates that are needed for our analysis can be obtained by piecing together such large
deviation principles associated with all such compact sets K. A similar approach, in a setting
where the state space is compact, has been proposed in [13]. Another important point in the
analysis is that one needs large deviation estimates that are uniform in initial condition in com-
pact sets, in the sense of Freidlin and Wentzell [6, Chapter 3.3, pp. 91–92]. For this we use
results on uniform Laplace principles for small noise stochastic difference equations that have
been developed in [3, Section 6.7]. The recent work [17] shows that a uniform Laplace prin-
ciple implies a uniform large deviation principle in the sense of Freidlin and Wentzell. These
results together allow us to establish uniform probability estimates that are needed in our large
deviation analysis (see Section 4).

The proof of Theorem 1, analogous to [4], also requires a detailed analysis of the dynamical
system properties of the flow associated with the ODE (4). In particular, a careful understand-
ing of the properties of continuous-time analogues of absorption-preserving pseudo-orbits (in
the terminology of [4]) and those of the associated recurrence classes are key to the proof (see
Section 3). Although some of the arguments are similar to those of [4], there are new challenges
that arise due to the unboundedness of the state space and the continuous-time dynamics. To
handle these features we exploit the stability properties of the underlying ODE and develop
several a priori estimates for pseudo-orbits that are uniform in time and/or space. The dynami-
cal systems results in Section 3 and the large deviation estimates in Section 4 take us most of the
way to the proof of Theorem 1. In particular, in Section 5, using these results, we establish the
lower bound on probabilities of non-extinction given in Theorem 1 and also that the limit points
µ of the QSD are invariant under the flow, they do not charge the boundary, and in fact that they
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Convergence of QSD in unbounded domains 67

are supported on the union of absorption-preserving recurrence classes in the interior. The final
step is to show that the support in fact lies in the union of the interior attractors. For this, fol-
lowing [4], we reformulate the notion of recurrence in terms of the quasipotential associated
with the rate functions in the underlying large deviation principles. Section 6 introduces the
quasipotential and this alternative notion of recurrence and proves the equivalence between
these two definitions of recurrence classes. The second definition is better suited to the analy-
sis and allows the use of the large deviation estimates of Section 4 in studying the behavior of
the stochastic dynamical system in terms of the properties of the recurrence classes. Combining
the results of Section 6 with the results of Section 4 and the properties of absorption-
preserving pseudo-orbits studied in Section 3, we complete the proof of the main result in
Section 7.

1.2. Organization
The paper is organized as follows. In Section 2 we introduce the model of interest, state

the assumptions, and present the main results of the paper. In Section 3 we introduce some
notions from the theory of dynamical systems, and study properties of recurrence points and
associated (pseudo-) orbits for the dynamical system associated with the law-of-large-numbers
limit of the underlying sequence of scaled Markov chains. In Section 4 we establish some
key large deviation estimates. In Section 5 we give some important asymptotic properties
of QSD (provided they exist) for the Markov chains considered in this work. In Section 6
we introduce the quasipotential V that governs the large deviation behavior of the model
and study the properties of V-chain recurrence. In Section 7 we complete the proof of our
first main theorem, namely Theorem 1. Finally, in Section 8 we prove our second main
result, Theorem 2, which gives an important family of models for which Theorem 1 can be
applied.

1.3. Notation
Let " .=Rd

+, "
o .= {x ∈ ":x> 0}, where inequalities for vectors are interpreted componen-

twise, and ∂"
.=" \"o. For N ∈N, let "N

.=" ∩ 1
NZ

d, ∂"N
.= ∂" ∩ 1

NZ
d, and "N

.="o ∩
1
NZ

d. For x, y ∈Rd, 〈x, y〉 .=∑d
i=1 xiyi. For x ∈Rd and A⊂Rd, dist(x, A) .= infy∈A ‖x− y‖. We

denote by N ε(A) the ε-neighborhood of a set A in ", namely N ε(A) .= {x ∈ ":dist(x, A)< ε}.
For r> 0 and x ∈Rd, Br(x) will denote the open ball of radius r centered at x. Denote by P(S)
the space of probability measures on a Polish space S, equipped with the topology of weak
convergence. For a µ ∈P(S) and µ-integrable f :S→R, we write

∫
fdµ as µ(f ). The support

of µ ∈P(S) will be denoted by supp(µ). For a signed measure η on S, ‖η‖TV denotes its total
variation norm, namely

‖η‖TV = sup
f

∣∣∣∣

∫
fdη

∣∣∣∣ ,

where the supremum is taken over all measurable maps f :S→R such that supx∈S |f (x)|≤ 1.
For a bounded F:S→R, we denote supx∈S |F(x)| by ‖F‖∞. We denote by K the collection of
all convex compact subsets with a nonempty interior that are contained in "o. For T <∞, we
denote by C([0, T]:S) the space of continuous functions from [0, T] to S, equipped with the
uniform topology. For φ ∈C([0, T]:Rd), let ‖φ‖∗,T

.= sup0≤t≤T ‖φ(t)‖. Given a metric space
S1 and a Polish space S2, a stochastic kernel x ,→ θ (dy|x) on S2 given S1 is a measurable map
from S1 to P(S2).
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68 A. BUDHIRAJA ET AL.

2. Statement of results

2.1. The model
Consider the sequence {XN

k }k∈N0 of "N-valued random variables defined as

XN
k+1 = XN

k + 1
N

ηNk+1
(
XN
k
)
, k ∈N0,

XN
0 = xN,

(1)

where for each x ∈ "N , ηNk (x) is a Zd-valued random variable with distribution θN(·|x) such
that supp(θN( · |x))⊂ ∏d

i=1 [−Nxi,∞).
We will denote by PN

ν the probability measure under which the Markov chain
{
XN
k

}
has the

initial distribution ν, namely PN
ν

(
XN
0 ∈ A

)
= ν(A). If ν = δx, we write PN

ν as simply PN
x .

Definition 1. A probability measure µN on "o
N is said to be a quasi-stationary distribution

(QSD) for the Markov chain {XN
k } if for every n ∈N

PµN

[
XN
k = j

∣∣XN
k ∈ "o

N
]
=µN(j), for all j ∈ "o

N and k ∈N.

2.2. Definitions and assumptions
Consider the continuous-time process X̂N obtained from a linear interpolation of XN , given

as

X̂N(t)= XN
n +

[
XN
n+1 − XN

n
]
(Nt − n), t ∈ [n/N, (n+ 1)/N], n ∈N0, (2)

The following assumption on the law-of-large-numbers behavior of X̂N will play a central role
in our study of asymptotic properties of QSD of XN .

Assumption 1. There is a Lipschitz function G:" →Rd such that for any sequence xN → x
with xN ∈ "N for every N ∈N,

PxN

(

sup
0≤t≤T

‖X̂N(t)− ϕt(x)‖> ε

)

→ 0, as N → ∞, for every T ∈ [0,∞) and ε > 0, (3)

where {ϕt(x)}t≥0 is the solution of the ODE

ϕ̇(t)=G(ϕ(t)), ϕ(0)= x. (4)

We now introduce the notion of absorption-preserving pseudo-orbits for the flow associated
with the ODE (4). Discrete-time analogues of these were introduced in [4].

Definition 2. Given δ, T > 0, consider a family of points ξ = (ξ0 = x, . . . , ξn = y) ∈ "n+1 and
a collection of times T ≤ T1, . . . , Tn−1 such that

• ‖ξ0 − ξ1‖< δ;

• whenever ξi ∈ ∂", ξi+1 ∈ ∂";

• ‖ξi+1 − ϕTi (ξi)‖< δ for 1≤ i≤ n− 1.

The piecewise continuous path

(x, {ϕt(ξ1):t ∈ [0, T1]}, {ϕt(ξ2):t ∈ [0, T2]}, . . . , {ϕt(ξn−1):t ∈ [0, Tn−1]}, y)
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Convergence of QSD in unbounded domains 69

is said to be a (δ, T) absorption-preserving pseudo-orbit (AP–pseudo-orbit) from x to y.
Occasionally, we will also refer to the sequence {ξi}ni=0 as a (δ, T) AP–pseudo-orbit from x
to y.

Definition 3. For two points x, y ∈ ", we say that x<AP y if for all δ, T > 0 there is a (δ, T)
AP–pseudo-orbit from x to y. If x<AP y and y<AP x, we write x∼AP y. If x∼AP x, then x is said
to be an AP–chain recurrent point. Let RAP denote the set of AP–chain recurrent points, and
note that ∼AP is an equivalence relation on RAP. For x ∈RAP, the equivalence class [x]AP of
all y ∈RAP such that y∼AP x is said to be an AP–basic class. Such a class is called maximal if,
whenever for some y ∈RAP, x<AP y, we have y ∈ [x]AP. A maximal AP–basic class is called an
AP–quasiattractor. We let R∗

AP
.=RAP ∩ "o.

The following will be our main assumptions on the dynamical system {ϕt(x)}. Parts (c) and
(d) say that the velocity fields decay as the boundaries are approached but not at too fast a rate.
Part (e) is our main stability assumption on the dynamics. Parts (a) and (b) are requirements on
recurrence classes for the flow that are satisfied quite broadly.

Assumption 2.

(a) There are a finite number of AP–basic classes contained in "o, which are denoted
by {Ki}vi=1. Each Ki is a closed set. Additionally, for some l< v, {Ki}li=1 are
AP–quasiattractors and {Ki}vi=l+1 are non-AP–quasiattractors.

(b) For each i= 1, . . . , v there is an xi ∈Ki such that, for every T > 0, {ϕt(xi):t ≥ T} is
dense in Ki.

(c) There exist ε > 0 and m> 0 such that for every i= 1, . . . , d, Gi(x)>mxi whenever
x ∈ "o and xi ≤ ε.

(d) For every i= 1, . . . , d, as δ → 0, sup
x∈":xi≤δ

Gi(x)→ 0.

(e) For some κ ∈ (0,∞) and M ∈ (1,∞), 〈x,G(x)〉 ≤ −κ‖x‖2 for all x ∈ " with ‖x‖ ≥M.

We will need certain assumptions on the moment generating functions of θN( · |x).
Assumption 3.

(a) For every N ∈N, ζ ∈Rd, and x ∈ "o
N

HN(x, ζ ) .= log
∫

Rd
exp{〈ζ, y〉}θN(dy|x)<∞.

(b) There exists a stochastic kernel θ (dy|x) on Rd given "o such that the following hold:

(i) For every x ∈ "o, the convex hull of supp(θ ( · |x)) equals Rd.

(ii) The map x ,→ θ ( · |x) is a continuous map from "o to P(Rd).

(iii) For every ζ ∈Rd and K ∈K, supx∈K H(x, ζ )<∞, where

H(x, ζ ) .= log
∫

Rd
exp{〈ζ, y〉}θ (dy|x).
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70 A. BUDHIRAJA ET AL.

Furthermore, as N → ∞,

sup
x∈K∩"N

∣∣HN(x, ζ )−H(x, ζ )
∣∣ → 0.

We introduce one final assumption to provide a lower bound on the probability that XN is
absorbed when its initial state is sufficiently close to ∂".

Assumption 4.

i. For each N ∈N and x, y ∈ "o
N, there is a k ∈N such that PN

y (X
N
k = x)> 0.

ii. For every γ ∈ (0,∞) and T ∈N, there is an open neighborhood Uγ of ∂" in " such that

lim inf
N→∞

inf
x∈Uγ∩"N

1
N

log Px
(
X̂N(T) ∈ ∂"

)
≥ −γ.

We now present our main results.

2.3. Main results
It is easy to see that under Assumption 2, for all x ∈ " and t ≥ 0, ϕt(x) ∈ ". In particular, ϕt

is a measurable map from " to itself for every t ≥ 0. We recall the definition of an invariant
measure for the flow {ϕt}.
Definition 4. A probability measure µ on " is {ϕt}-invariant if µ(ϕ−1

t (A))=µ(A) for every
measurable A⊆ " and t> 0.

Theorem 1. Suppose that for every N ∈N, there exists a QSD µN for {XN
n }n∈N0 , and the

sequence {µN} is relatively compact as a sequence of probability measures on "o. Suppose
that Assumptions 1, 2, 3, and 4 are satisfied. Then any weak limit point µ of this sequence is
{ϕt}-invariant and is supported on ∪l

i=1Ki. Moreover, letting

λN
.=

[
PµN

(
XN
1 ∈ "o)]N , (5)

there is a c> 0 and N0 ∈N such that λN ≥ 1− e−cN for all N ≥N0.

We now introduce a basic family of Markov chains, which we refer to as the binomial-
Poisson models, for which Theorem 1 can be applied.

Consider a population with d types of particles evolving in discrete time, in which, at each
time step, any given particle dies with probability 1/N, and given that the population size
at previous time step was Nx= (Nxi)di=1, the number of particles of type i that are produced
at the next time step follows a Poisson distribution with mean Fi(x) distribution for some
F:" →Rd

+. Denote the total number of particles of type i at time k by NXN,i
k . The evolution

of XN
k = (XN,1

k , . . . , XN,d
k ) is then given by (1), where, for each N, θN(dy|x)≡ θN,∗(dy|x) is the

distribution of U − V , where U = (Ui)di=1, V = (Vi)di=1, {Ui, Vj, i, j= 1, . . . , d} are mutually
independent, Ui ∼ Poi(Fi(x)) (namely, a Poisson random variable with mean Fi(x)), and Vi ∼
Bin(Nxi, 1

N ) (namely a binomial random variable with Nxi trials and probability of success
1/N).

Define
τN∂

.= inf
{
k ∈N0:XN

k ∈ ∂"N
}
. (6)
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Convergence of QSD in unbounded domains 71

For a bounded and measurable f :"N →R,

PN
n f (x)

.=Ex
[
f
(
XN
n
)
; τN∂ > n

]
. (7)

Theorem 2. Suppose that, for each N, XN is given by (1) with θN ≡ θN,∗. Further suppose that
F is a bounded Lipschitz map and Parts (a)–(d) of Assumption 2.2 are satisfied with G(x)=
F(x)− x. Then there is a µN ∈P("o

N) such that for every N ∈N and xN ∈ "o
N,

δxNP
N
n

δxNPN
n (1"o

N
)

converges to µN in the total variation distance as n→ ∞. The measure µN is a QSD for
{
XN}

.
The sequence {µN}N∈N is relatively compact as a sequence of probability measures on ", and
any weak limit point µ of this sequence is {ϕt}-invariant and is supported by ∪l

i=1Ki. Finally,
letting λN

.= [PµN (X
N
1 ∈ "o)]N, there is a c> 0 and N0 ∈N such that λN ≥ 1− e−cN for all

N ≥N0.

Theorem 1 is proved in Section 7 while Theorem 2 is established in Section 8.

3. Absorption-preserving pseudo-orbits

In this section we present some basic facts on absorption-preserving pseudo-orbits that will
be used to prove Theorem 1. Throughout the section we will take Assumptions 1 and 2 to hold.

The proofs of many of these results are similar to those found in [4] for discrete-time flows,
but we provide the details for completeness. Recall that the solution of the ODE (4) with initial
value ϕ(0)= x is denoted by {ϕt(x)}t≥0. The following lemma is a consequence of the stability
condition in Assumption 2(e).

Lemma 1. For every T > 0 and compact A⊂ ", there is a δ0 > 0 and a compact A1 ⊂
" such that for any (δ0, T) AP–pseudo-orbit {ξi}n+1

i=0 with ξ0 ∈ A, we have ξi ∈ A1 for all
i= 0, . . . , n+ 1.

Proof. For fixed x ∈ ", ‖ϕt(x)‖2 solves the ODE
d
dt

‖ϕt(x)‖2 = 2〈G(ϕt(x)), ϕt(x)〉.

From Assumption 2(e), when ‖x‖ ≥M

2〈G(x), x〉 ≤ −2κ‖x‖2.

This implies the following two facts:

(a) If for any R≥M, x ∈ BR
.= {z:‖z‖ ≤ R}, then ϕt(x) ∈ BR for every t ≥ 0.

(b) Given T > 0, define δ0 = δ0(T)
.= κT

2 ∧ 1. Then for any δ ≤ δ0, and any R≥M, whenever
x ∈ BR+δ , we have that ϕt(x) ∈ BR for all t ≥ T .

Now fix T > 0 and a compact A⊂Rd
+. Without loss of generality assume that there is an R≥

M such that A⊂ BR. Let δ0 = δ0(T) be as defined above and consider a (δ0, T) AP–pseudo-orbit
{ξi}n+1

i=0 with ξ0 ∈ A. Then the above two facts imply that ξi ∈ BR+1 for all i= 0, 1, . . . , n+ 1.
The result follows on taking A1 = BR+1. !
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72 A. BUDHIRAJA ET AL.

As a consequence of Lemma 1 we get the following result on the boundedness of AP–basic
classes.

Lemma 2. The AP–basic classes are bounded.

Proof. Fix x ∈RAP and y ∈ [x]AP. Let T > 0 and A= {x}. From Lemma 1, there is a δ0 > 0
and a compact A1 in " such that for each δ ≤ δ0, any (δ, T) AP–pseudo-orbit starting at x is
contained in A1. Since y ∈ [x]AP, there must exist a (δ, T) AP–pseudo-orbit from x to y, which
means that y must lie in A1. The result follows. !

For x ∈ "o, we denote the forward orbit of ϕ by γ+(x) .= {ϕt(x)|t ≥ 0}. From Assumption
2(b) and arguments as in Lemma 1 the following result is immediate.

Lemma 3. The following hold:

(a) There exists α0 ∈ (0, 1) such that if for some α ∈ (0, α0] and x ∈ "o, dist(x, ∂")≥ α,
then for all t ≥ 0, dist(ϕt(x), ∂")> α.

(b) There exists M0 ∈ (0,∞) such that if for some M ≥M0 and x ∈ "o, ‖x‖ ≤M, then for
all t ≥ 0, ‖ϕt(x)‖<M.

(c) For every A ∈K, there exist T > 0, A1, A2 ∈K such that A1 ⊃ A, A2 ⊂ A1,
dist(A2, ∂A1)> 0, and for all x ∈ A1 and t ≥ T, ϕt(x) ∈ A2.

(d) For every A0 ∈K, there is an A1 ∈K such that for every x ∈ A0, the forward orbit
γ+(x)⊂ A1.

The proof of the next lemma follows from the observation (a) in the proof of Lemma 1.

Lemma 4. For each compact K ⊂ ", sup
x∈K

sup
t≥0

‖ϕt(x)‖<∞.

We say a (δ, T) AP–pseudo-orbit described by a collection of points ξ = (ξ0, . . . , ξn) ∈
"n+1 and a collection of times T ≤ T1, . . . , Tn−1 intersects a set A⊂ ", if for some j ∈
{1, . . . , n− 1} and t ∈ [0, Tj], ϕt(ξj) ∈ A. We say such an orbit lies in A if its intersection with
Ac is empty. The following lemma shows that for small δ and large T, (δ, T) AP–pseudo-orbits
starting from the interior stay away from the boundary.

Lemma 5. Suppose A ∈K. Then there exist ε0 > 0, T > 0, δ > 0 such that any (δ, T)
AP–pseudo-orbit {ξk}nk=0 with ξ0 ∈ A does not intersect Eε0

.= {x ∈ ":xi ≤ ε0 for some i=
1, . . . , d}. In particular, there is an A1 ∈K such that any such AP–pseudo-orbit starting in
A lies in A1.

Proof. Let ε1
.= dist(A, ∂") and let ε and m be as in Assumption 2(c). Let ε0

.= (ε ∧ ε1)/4.
Note that for any x ∈ " and i= 1, . . . , d,

d
dt
([ϕt(x)]i)2 = 2[ϕt(x)]iGi(ϕt(x))> 2m([ϕt(x)]i)2 whenever [ϕt(x)]i ≤ ε. (8)

Since m> 0, we can choose a T > 0 such that for any x ∈ " and i= 1, . . . , d with xi ≥ ε0, we
have [ϕt(x)]i > 3ε0 for all t ≥ T . Fix δ ∈ (0, ε0). Consider a (δ, T) AP–pseudo-orbit {ξk}nk=0 with
ξ0 ∈ A and associated time instants T ≤ T1, . . . , Tn−1. Clearly ξ0 4∈ E2ε0 , and by (8), ϕt(ξ0) 4∈
E2ε0 for all t ∈ [0, T1]. Also, by our choice of T , ϕT1 (ξ0) 4∈ E3ε0 and consequently ξ1 4∈ E2ε0 .
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A recursive argument now shows that the pseudo-orbit has no intersection with Eε0 . The result
follows. !

We now recall a definition from the theory of dynamical systems.

Definition 5. The ω-limit set of B⊂ " is

ω(B) ·=
{
x ∈ ":there is a sequence tn ↑ ∞ and a sequence xn ∈ B such that ϕtn (xn)→ x

}
,

so for x ∈ ",

ω(x) .=
{
y ∈ ": there is a sequence tn ↑ ∞ such that ϕtn (x)→ y

}
.

The result below follows from classical arguments and on observing that under Assumption
2(b), if x ∈ "o, then ω(x)⊂ "o. For a proof of the lemma in the discrete-time setting see [4].
The proof for the continuous-time setting considered here is similar, so we omit details.

Lemma 6. For any x ∈ ", ω(x)⊂RAP.

The following lemma gives a useful property of an AP–quasiattractor.

Lemma 7. If [x]AP is maximal, then x<AP z if and only if z ∈ [x]AP.

Proof. Suppose that x<AP z. In order to show that z ∈ [x]AP, it is enough to show that z<AP

x. Note that ω (z) is nonempty. Let z′ ∈ ω (z). From Lemma 6, z′ ∈RAP. We now show that
z<AP z′. Since z′ ∈ ω (z), there is a sequence Ti ↑ ∞ such that ϕTi (z)→ z′. Fix δ, T > 0. Then
we can find T ′ > T such that ‖ϕT′ (z)− z′‖< δ. This shows that (z, z, z′, z′) is a (δ, T) AP–
pseudo-orbit from z to z′. Since δ, T > 0 are arbitrary, we have z<AP z′. Combining this with
x<AP z, we now see that x<AP z′. Since z′ ∈RAP and [x]AP is maximal, we must have z′ ∈ [x]AP,
and therefore z<AP x. This completes the proof of the lemma. !

The following lemma provides an important invariance property of AP–classes under the
flow {ϕt}.
Lemma 8. Any AP–basic class [x]AP is positively ϕt-invariant for all t ≥ 0: ϕt([x]AP)⊂ [x]AP.
Additionally, if [x]AP ⊂ "o, then [x]AP is ϕt-invariant for all t ≥ 0: ϕt([x]AP)= [x]AP.

Proof. Let y ∈ [x]AP. To begin, fix t, δ, T > 0, and let T ′ > T + t. We can find some δ0
.=

δ0(y)< δ such that if ‖y− x0‖< δ0, then ‖ϕt(y)− ϕt(x0)‖< δ. Since y ∈RAP, there is a (δ0, T ′)
AP–pseudo-orbit from y to y, which we denote by ξ = (y, ξ1, . . . , ξn−1, y), with corresponding
time instants (T1, . . . , Tn−1). Then ξ̃

.= (ϕt(y), ϕt(ξ1), ξ2, . . . , ξn = y) is a (δ, T) AP–pseudo-
orbit from ϕt(y) to y with corresponding time instants (T1 − t, T2, . . . , Tn−1), since

‖ϕt(x)− ϕt(ξ1)‖< δ, and ‖ϕT1−t(ϕt(ξ1))− ξ2‖= ‖ϕT1 (ξ1)− ξ2‖< δ.

Thus ϕt(y)<AP y.
Next, define ξ̃

.= (y, ξ1, . . . , ξn−1, ϕt(y)), and note that ξ̃ is a (δ, T) AP–pseudo-orbit from y
to ϕt(y) with time instants (T1, . . . , Tn−2, Tn−1 + t), since

‖ϕTn−1 (ξn−1)− y‖< δ0,

which ensures that

‖ϕTn−1+t(ξn−1)− ϕt(y)‖= ‖ϕt(ϕTn−1 (ξn−1))− ϕt(y)‖< δ.
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74 A. BUDHIRAJA ET AL.

We have shown that ϕt(y)∼AP y, and so ϕt(y) ∈ [y]AP = [x]AP. Since y ∈ [x]AP is arbitrary,
ϕt([x]AP)⊂ [x]AP. This proves the first part of the lemma.

For the second part, suppose now that [x]AP ⊂ "o. In order to see that [x]AP ⊂ ϕt([x]AP) for
each t ≥ 0, let y ∈ [x]AP and fix t> 0. We need to show that there is some z ∈ [x]AP such that
ϕt(z)= y. Fix a sequence (δk, Tk) such that δk ↓ 0 and Tk ↑ ∞. Since y ∈RAP, we can find a
sequence of (δk, Tk) AP–pseudo-orbits with corresponding time instants {Tk

i }
n(k)−1
i=0 from y to

y, which we denote by ξ k = (ξ k0 , . . . , ξ
k
n(k)). We assume without loss of generality that Tk > t

for all k and let T̃k .= Tk
n(k)−1 − t. From Lemma 1 there is a compact K̃ in " such that for all

sufficiently large k, ξ ki ∈ K̃ for all i ∈ {0, . . . , n(k)}. From Lemma 4 we then have that, for all
such k, ϕT̃k (ξ kn(k)−1) lies in some compact set K̃′. Thus (passing to a subsequence) we may

assume that ϕT̃k (ξ kn(k)−1)→ z ∈ K̃′. Since

ϕt

(
ϕT̃k

(
ξ kn(k)−1

))
= ϕTk

n(k)−1

(
ξ kn(k)−1

)
→ y,

the continuity of ϕt ensures that ϕt(z)= y. Now we show that z ∈ [x]AP. Fix δ, T > 0, and
let k be large enough so that δk < δ,

∥∥ϕT̃k

(
ξ kn(k)−1

)
− z

∥∥< δk, Tk > T , and T̃k > T . Then(
ξ k0 , . . . , ξ

k
n(k)−1, z

)
is a (δ, T) AP–pseudo-orbit from y to z with corresponding time instants(

Tk
1, . . . , T

k
n(k)−2, T̃

k), so y<AP z. Now, fix t̃>max{t, T}, and note that

ϕt̃(z)= ϕt̃−t(ϕt(z))= ϕt̃−t(y).

Since y ∈ [x]AP, it follows from the positive ϕt-invariance of [x]AP that ϕt̃−t(y) ∈ [x]AP, so there
is a (δ, T) AP–pseudo-orbit from ϕt̃−t(y) to y, which we denote by (ξ0, . . . , ξn). Denote the
corresponding time instants by T1, T2, . . . , Tn−1. Then ξ̃

.= (z, z, ξ1, . . . , ξn) is a (δ, T) AP–
pseudo-orbit from z to y with time instants (t̃, T1, . . . , Tn−1), so z<AP y and z ∈ [x]AP. !

We now recall the definition of an attractor for the flow {ϕt}.
Definition 6. A compact set A is an attractor for the flow {ϕt} if ϕt(A)= A for each t ≥ 0 and
there is some neighborhood U of A such that

lim
t→∞ sup

x∈U
dist(ϕt(x), A)= 0.

The neighborhood U is referred to as a fundamental neighborhood for the attractor A.

The proof of Corollary 1 follows from the proof of [12, Proposition 4.2].

Corollary 1. If [x]AP ⊂ "o is an AP–quasiattractor, then [x]AP is an attractor.

Proof. Recall that R∗
AP denotes the collection of all AP–chain recurrent points in "o. Note

that, from Assumption 2(a) and Lemma 2, for each z ∈R∗
AP, [z]AP is a compact set. Choose

δ > 0 such that N δ([x]AP) is an isolating neighborhood of [x]AP with closure contained in "o.
Then, from Lemma 4 and Assumption 2(b), there is a compact K0 ⊂ "o such that for all z ∈
N δ([x]AP), ϕt(z) ∈K0 for all t ≥ 0. Let

ε∗ .= inf
y∈RAP\[x]AP

dist([y]AP, [x]AP).

For ε ≤ ε∗, let

Kε .=K0 \




⋃

y∈R∗
AP\[x]AP

N ε([y]AP)



 .
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We claim that there exist ε ≤ ε∗ and δ0 ≤ δ such that

for all z ∈N δ0 ([x]AP), ϕt(z) ∈Kε for all t ≥ 0. (9)

We argue via contradiction. Suppose the claim is false; then, since there are finitely many
AP–basic classes in R∗

AP, there exist δn ↓ 0, εn ↓ 0, zn ∈N δn([x]AP), tn ≥ 0, y ∈R∗
AP \ [x]AP,

such that ϕtn (zn) ∈N εn ([y]AP). Passing to a subsequence we may assume that zn → z and
ϕtn (zn)→ u. Then z ∈ [x]AP and u ∈ [y]AP. We consider two cases: (I) along a further subse-
quence tn converges to some t∗ <∞; (II) tn → ∞. In Case I, u= ϕt∗(z) and so by Lemma 8 u ∈
[x]AP. But this is a contradiction since y /∈ [x]AP. In Case II, for every δ, T > 0, there is a (δ, T)
AP–pseudo-orbit from z to u, which means that z<AP u. Since [x]AP is a quasiattractor, from
Lemma 7, u ∈ [x]AP, which is once more a contradiction to the fact that y /∈ [x]AP. Thus we have
the claim. Now fix δ0 ≤ δ∗ and ε ≤ ε∗ so that (9) holds.

We now argue that

for some δ1 ∈ (0, δ0), whenever y ∈N δ1 ([x]AP), we have ϕt(y) ∈N δ0 ([x]AP) for all t ≥ 0.
(10)

Once more we proceed via contradiction. Suppose the statement is false. Then there exist
δn ↓ 0, yn ∈N δn ([x]AP), tn ≥ 0 such that ϕtn (yn) ∈

(
N δ0 ([x]AP)

)c. We can find a subsequence
along which yn → y and ϕtn (yn)→ u. We must have y ∈ [x]AP and u ∈

(
N δ0 ([x]AP)

)c. Once
again we consider two cases as above. In Case I, u= ϕt∗ (y) ∈ [x]AP, which contradicts the
fact that u ∈

(
N δ0 ([x]AP)

)c. In Case II, y<AP u, and so as before, u ∈ [x]AP. Once more this
is a contradiction. Thus we have shown (10). Now fix δ1 ∈ (0, δ0) such that (10) holds. Let
U0

.=N δ0 ([x]AP) and U1
.=N δ1 ([x]AP).

We will now show that
lim
t→∞ sup

y∈U1

dist(ϕt(y), [x]AP)= 0. (11)

Together with Lemma 8 we will then have that [x]AP is an attractor, completing the proof of the
result. In order to show (11) we will show that for each open neighborhoodO of [x]AP,O⊂U1,
there is some t(O)<∞ such that ϕt(U1)⊂O for all t ≥ t(O). For any such O, let O1 ⊂⊂O be
an open neighborhood of [x]AP such that for all y ∈O1, ϕt(y) ∈O for all t ≥ 0. Here, for open
sets G1,G2, we write G1 ⊂⊂G2 if Ḡ1 ⊂G2. Existence of such an O1 is shown in a similar
manner as (10). It suffices to show that

t(O) .= inf{t:ϕt(U0)⊂O}<∞,

since then for each t ≥ t(O),

ϕt(U1)= ϕt(O)(ϕt−t(O)(U1))⊂ ϕt(O)(U0)⊂O,

which will complete the proof.
In order to see that t(O)<∞ for each such O, we argue by contradiction. Suppose that

there is some O (with the associated O1) such that t(O)=∞. Then we can find sequences
{zn}⊂U0 and Tn ↑ ∞ such that ϕTn (zn) ∈Oc. From the definition of O1, this says that ϕt(zn) ∈
Oc
1 for all 0≤ t ≤ Tn. Suppose that zn → z along a subsequence. Then ϕt(z) ∈Oc

1 for all t> 0.
Also, since z ∈N δ0 ([x]AP), by (9), ϕt(z) ∈Kε for all t ≥ 0. Thus we have ω(z)⊂Kε \O1. The
final statement of Lemma 1 implies that for each x ∈ "o, ω(x) 4= ∅ and therefore ω(z) is a
nonempty subset of R∗

AP. Thus we have that (K
ε \O1)∩R∗

AP is nonempty, which contradicts
the definition of Kε and O1. Thus we have that t(O)<∞, and the result follows. !
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76 A. BUDHIRAJA ET AL.

The following lemma shows that suitable AP–pseudo-orbits come arbitrarily close to
AP–recurrence classes.

Lemma 9.

(a) For each δ > 0 and compact A ∈ ", there is a δ0 ∈ (0, 1] and TA ∈ (0,∞) such that any
(δ0, TA) AP–pseudo-orbit that starts in A intersects Nδ(RAP).

(b) For each δ > 0 and A ∈K, there is a T∗
A ∈ (0,∞) such that for every x ∈ A, there is a

t0 ∈ [0, T∗
A] with ϕt0 (x) ∈Nδ(R∗

AP).

Proof. Consider first Part (a). Fix δ > 0 and a compact A ∈ ", and let T = 1. With this
choice of A and T , let δ0 and A1 be as given in Lemma 1. For x ∈ ", let Tδ(x) ·= inf{t ≥ 0:ϕt(x) ∈
Nδ(RAP)}. Since ω(x) is a nonempty subset of RAP, Tδ(x)<∞ for each x ∈ ". We now claim
that Tδ is an upper semicontinuous function on ". For this it suffices to argue that for each
α > 0, the level set Lα

·= {x ∈ ":Tδ(x)≥ α} is closed. Let {xn}⊂ Lα be a sequence converg-
ing to some x ∈ ", and note that for each t ≥ 0, lim

n→∞ ϕt(xn)= ϕt(x). For t< α, ϕt(xn) ∈
(
Nδ(RAP)

)c, which is closed, so ϕt(x) ∈
(
Nδ(RAP)

)c. Since this holds for all t< α, we
have that x ∈ Lα . This shows that the level sets of Tδ are closed and thus establishes the
claim. Since an upper semicontinuous function achieves its supremum over any compact set,
T1 = supx∈A1 T

δ(x)<∞. Let TA
.= T1 ∨ 1. Then, from Lemma 1, any (δ0, TA) AP–pseudo-

orbit given by a collection of points ξ = (ξ0 = x, . . . , ξn = y) ∈ "n+1 and a collection of times
TA ≤ T1, . . . , Tn−1, with x ∈ A, must satisfy ξi ∈ A1 for every i ∈ {0, . . . , n}. Also, by the def-
inition of TA, we must have that for each i ∈ {1, . . . , n− 1}, there is a t ∈ [0, Ti] such that
ϕt(ξi) ∈Nδ(RAP). The result in Part (a) follows.

The proof of Part (b) can be completed in a similar manner on observing that from
Lemma 3, for every x ∈ A, the forward orbit γ+(x) is contained in a compact subset of "o.
We omit the details. !

The following lemma gives key properties of pseudo-orbits in relation to their visits to
neighborhoods of AP–quasiattractors and non-quasiattractors.

Lemma 10.

(a) For every θ > 0, there are δ = δ(θ )< θ and T = T(θ )> 0 with the property that if there
is a (δ, T) AP–pseudo-orbit ξ .= (ξ0, . . . , ξn) with

ξ0 ∈Nδ(Ki), ξn ∈Nδ(Ki′ ), and ξj ∈
(
Nθ (Ki)

)c for some j ∈ {1, . . . , n− 1}, (12)

then we must have i 4= i′.

(b) There exist δ, T > 0 such that if for some i, i′ ∈ {1, . . . , v} there is a (δ, T) AP–pseudo-
orbit ξ

.= (ξ0, . . . , ξn) such that ξ0 ∈Nδ(Ki) and ξn ∈Nδ
(
Ki′

)
, then we must have that

Ki ≤AP Ki′ .

Proof. For the first statement in the lemma we will argue via contradiction. By Lemma 5 we
can choose δ̄ > 0, T̄ > 0, and K̃ ∈K such that any (δ̄, T̄) AP–pseudo-orbit starting from N δ̄(Ki)
lies in K̃ for every i= 1, . . . , v. Henceforth we only consider (δ, T) AP–pseudo-orbits with
δ < δ̄ and T > T̄ . Fix θ > 0 and suppose that there is a sequence θ > δk ↓ 0 and Tk ↑ ∞, such
that for every k there is a (δk, Tk) AP–pseudo-orbit ξ k .= (ξ k0 , . . . , ξ

k
n(k)) that satisfies (12) (with
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ξ, δ, n replaced by ξk, δk, n(k)), with i= i′. Let j(k) ∈ {1, . . . , n(k)− 1} be such that ξ kj(k) ∈
(Nθ (Ki))c. By passing to a subsequence if necessary, we can find x, y ∈Ki and z ∈ (Nθ (Ki))c ∩
K̃ such that ξ k0 → x, ξ kn(k) → y, and ξ kj(k) → z.

In order to see that x≤AP z, fix δ, T > 0 and let k be large enough so that

δk <
δ

2
, Tk > T,

∥∥x− ξ k0
∥∥<

δ

2
, and

∥∥ξ kj(k) − z
∥∥<

δ

2
.

Then ‖x− ξ k1‖ ≤ ‖x− ξ k0‖+ ‖ξ k0 − ξ k1‖< δ, and
∥∥∥ϕTk

j(k)−1

(
ξ kj(k)−1

)
− z

∥∥∥ ≤
∥∥∥ϕTk

j(k)−1

(
ξ kj(k)−1

)
− ξ kj(k)

∥∥∥+
∥∥∥ξ kj(k) − z

∥∥∥< δ,

and so ξ̃
.=

(
x, ξ k1 , . . . , ξ

k
j(k)−1, z

)
is a (δ, T) AP–pseudo-orbit from x to z. Thus x<AP z.

Similarly, z<AP y, which shows that z ∈Ki. However, since z ∈ (Nθ (Ki))c, this is a contra-
diction. This proves (a).

Now consider Part (b). Fix i, i′ ∈ {1, . . . , v} and suppose that for each δ, T > 0 there is some
(δ, T) AP–pseudo-orbit ξ

.= (ξ0, . . . , ξn) such that ξ0 ∈Nδ(Ki) and ξn ∈Nδ(Ki′ ). Let δk ↓ 0
and Tk ↑ ∞ and let ξ k

.=
(
ξ k0 , . . . , ξ

k
n(k)

)
be a (δk, Tk) AP–pseudo-orbit such that ξ k0 ∈Nδk (Ki)

and ξ kn ∈Nδk
(
Ki′

)
. Passing to subsequences if necessary, we can find x ∈Ki and y ∈Ki′ such

that ξ k0 → x and ξ kn(k) → y. Thus, for any fixed δ, T > 0, when k is sufficiently large, ξ̃
.=(

x, ξ k1 , . . . , ξ
k
n(k)−1, y

)
is a (δ, T) AP–pseudo-orbit from Ki to Ki′ , showing that Ki ≤AP Ki′ . So

if for some i, i′, Ki ≤AP Ki′ does not hold, there must exist δ̄ = δ(i, i′)> 0 and T̄ = T(i, i′)<∞
such that there is no (δ̄, T̄) AP–pseudo-orbit ξ .= (ξ0, . . . , ξn) with the property that ξ0 ∈N δ̄(Ki)
and ξn ∈Nδ(K̄i′). Define δ =min(i,i′) δ(i, i

′) and T =max(i,i′) T(i, i
′). Clearly, the statement in

Part (b) holds with this choice of (δ, T). !

The final result of this section is a consequence of Lemma 9 and Lemma 10. It summarizes
key properties of AP–pseudo-orbits in relation to AP–recurrent classes. This result will be used
in Section 7 in the proof of Theorem 1.

Lemma 11. For each δ, T > 0 and compact set A⊂ "o, there is a collection of open neigh-
borhoods {Vi}vi=1 of {Ki}vi=1, with V̄i ⊂Nδ(Ki)∩ "o, along with δ0 ∈ (0, δ), T0 ∈ (T,∞), and
n ∈N, such that the following hold:

1. Nδ0 (Ki)⊂ Vi for each i ∈ {1, . . . , v}.
2. For each i ∈ {1, . . . , l}, if ξ

.= (ξ0, . . . , ξn) is a (δ0, T0) AP–pseudo-orbit with ξ0 ∈ Vi,
then ξj ∈ Vi for all j ∈ {1, . . . , n}.

3. If ξ
.= (ξ0, . . . , ξn) is a (δ0, T0) AP–pseudo-orbit with corresponding time instants

(T1, . . . , Tn−1) such that ξ0 ∈Nδ0 (Ki) and ξn ∈Nδ0 (Kj) for some i, j ∈ {1, . . . , v}, and
there is m ∈ {1, . . . , n− 1} such that ξm ∈ Vc

i , then i 4= j and Ki ≤AP Kj.

4. If ξ
.= (ξ0, . . . , ξn) is a (δ0, T0) AP–pseudo-orbit with ξ0 ∈ A, then there is some k ∈

{1, . . . , n− 1} and t ∈ [0, Tk] such that ϕt(ξk) ∈Nδ(RAP ∩ "o).

Proof. Fix δ, T ∈ (0,∞) and a compact A ∈ "o. Since Ki is an attractor for each i ∈
{1, . . . , l}, there is a bounded open neighborhood Oi of Ki, with Ōi ⊂Nδ(Ki)∩ "o, such that

lim
t→∞ sup

x∈Oi

dist(ϕt(x),Ki)= 0. (13)
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78 A. BUDHIRAJA ET AL.

For each i ∈ {l+ 1, . . . , v}, let Oi be an arbitrary bounded, open, and isolating neighborhood
of Ki such that Ōi ⊂Nδ(Ki)∩ "o. Denote the (δ, T) given by Lemma 10(b) by (δ∗

1 , T
∗
1 ),

and denote the (δ0, TA) given by Lemma 9(a) by (δ∗
2 , T

∗
2 ). Let θ > 0 be small enough so

that Nθ (Ki)⊂Oi for each i ∈ {1, . . . , v}. From Lemma 10 we can find δ1 <min{θ, δ∗
1 , δ

∗
2}

and T1 >max{T, T∗
1 , T

∗
2 } such that if ξ

.= (ξ0, . . . , ξn) is a (δ1, T1) AP–pseudo-orbit with
ξ0 ∈Nδ1 (Ki) and ξn ∈Nδ1 (Kj) such that ξm ∈ (Nθ (Ki))c for some m ∈ {1, . . . , n− 1}, then i 4= j
and Ki ≤AP Kj.

Now, let Vi
.=Nθ+ε(Ki), where ε > 0 is small enough so that Vi ⊂Oi for all i ∈ {1, . . . , v},

and let δ2 < δ1 be small enough so that Nδ2 (Vi)⊂Oi. Thus, for every i ∈ {1, . . . , v}

Ki ⊂Nδ2 (Ki)⊂⊂Nθ (Ki)⊂⊂ Vi ⊂⊂Nδ2 (Vi)⊂⊂Oi,

where, as before, for open sets G1,G2, we write G1 ⊂⊂G2 if Ḡ1 ⊂G2.
From (13), there is some T2 > T1 such that if t ≥ T2, then for each i ∈ {1, . . . , l},

sup
u∈Oi

dist(ϕt(u),Ki)< δ2.

Then Parts 1 and 2 hold when δ0
.= δ2 and T0

.= T2. Additionally, Part 3 holds from the property
of (δ1, T1) AP–pseudo-orbits noted above, since Vc

i ⊂ (Nθ (Ki))c for each i ∈ {1, . . . , v}. Finally,
since T0 ≥ T∗

2 and δ0 ≤ δ∗
2 , from Lemma 9, Part 4 holds as well. !

4. Large deviation estimates

Throughout this section we will assume that Assumption 3 is satisfied. We will give some
key uniform large deviation bounds that will be used in Sections 5, 6, and 7.

For α ∈ (0, 1) let Vα
.= {x ∈ "o:dist(x, ∂")> α}. For each compact K ∈K, let Vα,K

.= Vα ∩
K, and let πα,K denote the projection map from Rd to V̄α,K , defined as

πα,K(x)
.= argminy{‖y− x‖:y ∈ V̄α,K}.

Similarly, denote by πN
α,K the projection map from Rd to V̄α,K ∩ "N . Let θN,α,K be a transition

probability kernel on Rd defined by

θN,α,K( · |x) .= θN
(
·|πN

α,K(x)
)
.

Let
{
XN,α,K
n

}
be an Rd-valued chain defined as in (1) but with θN replaced with θN,α,K . We

consider continuous-time processes X̂N,α,K associated with {XN,α,K
n } as

X̂N,α,K(t)= XN,α,K
n +

[
XN,α,K
n+1 − XN,α,K

n

]
(Nt − n), t ∈ [n/N, (n+ 1)/N], n ∈N0.

We now present a basic large deviation result for X̂N,α,K . Recall the stochastic kernel θ (dy|x)
from Assumption 3(b). For x, ζ ∈Rd, define

Hα,K(x, ζ )
.= log

∫

Rd
exp{〈ζ, y〉}θ (dy|πα,K(x)),

and let
Lα,K(x, β)

.= sup
ζ∈Rd

{〈ζ, β〉 −Hα,K(x, ζ )}.
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We note that for every β, ζ ∈Rd, Hα,K(x, ζ )=H
α
′
,K′ (x, ζ ) and Lα,K(x, β)= L

α
′
,K′ (x, β)

whenever πα,K(x)= x= π
α′,K′ (x). For x ∈ "o and β, ζ ∈Rd, define

L(x, β) .= Lα,K(x, β), H(x, ζ ) .=Hα,K(x, ζ ) if x ∈ Vα,K .

For α > 0, x ∈Rd, K ∈K, T ∈ (0,∞), and φ ∈C([0, T]:Rd), define

Sα,K(x, T, φ)
.=

{∫ T
0 Lα,K(φ(t), φ̇(t))dt if φ is absolutely continuous,

∞ otherwise.

Note that if, for α, α′ > 0 and K,K′ ∈K, φ ∈C([0, T]:V̄α,K)∩C([0, T]:V̄
α′,K′ ), then

Sα,K(φ(0), T, φ)= S
α′,K′ (φ(0), T, φ). Thus, for φ ∈C([0, T]:Rd) that satisfies φ(0)= x and

φ(t) ∈ "o for all t ∈ [0, T], we define

S(x, T, φ)= Sα,K(x, T, φ) if φ ∈C([0, T]:V̄α,K) for some α > 0 and K ∈K. (14)

The following uniform large deviation principle will be used several times in this work.

Theorem 3. Suppose Assumption 3 is satisfied. Fix T ∈ (0,∞), α > 0, and K,K′ ∈K. For each
a ∈ (0,∞), let

3x,α,K′
,T (a)

.=
{
φ ∈C

(
[0, T]:Rd):S

α,K′ (x, T, φ)≤ a
}
.

(a) (Compact level sets.) For every a ∈ (0,∞), the set
⋃
x∈K

3x,α,K′
,T (a) is compact.

(b) (Upper bound.) Given δ, γ ∈ (0, 1) and L ∈ (0,∞), there is some N <∞ such that

Px

(∥∥∥X̂n,α,K′ − φ
∥∥∥

∗,T
< δ

)
≥ exp

(
− n

(
S
α,K′ (x, T, φ)+ γ

))

for all n≥N, x ∈K ∩ "N, and φ ∈ 3x,α,K′
,T (L).

(c) (Lower bound.) Given δ, γ ∈ (0, 1) and L ∈ (0,∞), there is some N <∞ such that

Px

(
d

(
X̂n,α,K′

,3x,α,K′
,T (l)

)
≥ δ

)
≤ exp (− n(l− γ))

for all n≥N, x ∈K ∩ "N, and l ∈ [0, L].

Proof. We will apply [3, Theorem 6.7.5]. For x, ζ ∈Rd, let

HN
α,K(x, ζ )

.= log
∫

Rd
exp{〈ζ, y〉}θN

(
dy|πN

α,K(x)
)
.

By Assumption 3(b)(iii), for each compact A⊂Rd and ζ ∈Rd,

sup
N∈N

sup
x∈Rd

HN
α,K(x, ζ )<∞, sup

x∈Rd
Hα,K(x, ζ )<∞, (15)

and
sup
x∈A

∣∣∣HN
α,K(x, ζ )−Hα,K(x, ζ )

∣∣∣ → 0 as N → ∞. (16)

Furthermore, from Assumption 3(b)(ii), x ,→ θ (dy|πα,K(x)) is a continuous map from Rd to
P

(
Rd). Thus, Conditions 6.2.1 and 6.7.2 of [3] are satisfied. Next, since from Assumption
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80 A. BUDHIRAJA ET AL.

3(b)(i) the convex hull of the support of θ (dy|πα,K(x)) is all of Rd, [3, Condition 6.7.4] is sat-
isfied as well. Thus, from [3, Theorem 6.7.5] we have that, for every T ∈ (0,∞), {X̂N,α,K}N∈N
satisfies a Laplace principle, uniformly on compact subsets of Rd, in the sense of [3, Definition
1.2.6], with rate function Sα,K(x, T, ·). It is shown in [17, Theorem 4.3] that a uniform Laplace
principle of the form given in [3, Theorem 6.7.5] implies a uniform large deviation principle
in the sense of Freidlin and Wentzell [6], which means that Parts (a)–(c) of the theorem hold.
The result follows. !
Lemma 12. For every α ∈ (0, 1) and a compact K ∈ "o, (x, β) ,→ Lα,K(x, β) is a continuous
map on Rd ×Rd.

Proof. The proof follows from [3, Lemma 6.5.2] on noting that, by Assumption 3(b) for
every x ∈Rd, the convex hull of the support of θ (dy|πα,K(x)) is Rd, and supx∈Rd Hα,K(x, ζ )<
∞ for every ζ ∈Rd. !

An important consequence of the above uniform large deviation principle is the following
uniform upper bound for closed sets F in C([0, T]:Rd).

Theorem 4. Fix T ∈ (0,∞), α > 0, and K,K′ ∈K. Then, for every closed set F in
C([0, T]:Rd),

lim sup
N→∞

1
N

log sup
x∈K∩"N

Px

(
X̂N,α,K′ ∈ F

)
≤ − inf

x∈K
inf
φ∈F

S
α,K′ (x, T, φ).

Proof. Fix T, α,K,K′ as in the statement of the theorem. We begin by showing that for
each s≥ 0 and δ > 0 there is some ε

.= ε(δ) ∈ (0, 1) such that for all x, y ∈K with ‖x− y‖ ≤ ε,

{
φ ∈C

(
[0, T]:Rd): d

(
φ,3x,α,K′

,T (s)
)

≤ δ
}

⊇
{
φ ∈C

(
[0, T]:Rd):d

(
φ,3y,α,K′,T

(
s− δ

4

))
≤ δ

2

}
. (17)

Let κ0
.= 1+ supx∈K,‖β‖≤1 L(x, β). From Lemma 12, κ0 <∞. Since

∪y∈K3y,α,K′
,T

(
s− δ

4

)

is a compact set, we can find ε ∈
(
0, δ

8κ0

)
such that for all

ψ ∈ ∪y∈K3y,α,K′
,T

(
s− δ

4

)

and 0≤ t1 ≤ t2 ≤ T with |t1 − t2|≤ ε, we have ‖ψ(t2)− ψ(t1)‖ ≤ δ
8 .

Fix y ∈K and φ in the set on the right side of (17). Then there is a ψ1 ∈ 3y,α,K′
,T

(
s− δ

4

)

such that

‖φ − ψ1‖∗,T ≤ δ

2
+ δ

8
= 5δ

8
.

Note in particular that ψ1(0)= y. Fix x ∈K such that ‖y− x‖ ≤ ε. Let t0
.= ‖x− y‖ and define

the function ηx,y:[0, t0]→Rd as

ηx,y(t)
.= x+ (y− x)

‖y− x‖ t. (18)

.77���  ��/���� ������� ������������
�
0/�.����20/2��
:�	�1
�/�����2/����/7:�
����



Convergence of QSD in unbounded domains 81

Define ψ2:[0, T]→Rd as

ψ2(s)
.= ηx,y(s)1[0,t0](s)+ψ1(s− t0)1(t0,T](t).

Note that ψ2(0)= x and

S
α,K′ (x, T,ψ2)=

∫ t0

0
L

α,K′ (ψ2(t), ψ̇2(t))dt+
∫ T

t0
L

α,K′ (ψ2(t), ψ̇2(t))dt

≤ εκ0 + s− δ

4
= δ

8
+ s− δ

4
≤ s.

Thus ψ2 ∈ 3x,α,K′
,T (s). Furthermore,

‖φ − ψ2‖∗,T ≤ ‖φ − ψ1‖∗,T + ‖ψ1 − ψ2‖∗,T ≤ 5δ
8

+ ‖ψ1 − ψ2‖∗,T .

Also, for t ∈ (t0, T],

‖ψ1(t)− ψ2(t)‖= ‖ψ1(t)− ψ1(t − t0)‖ ≤ δ

8
,

and for t ∈ [0, t0],

‖ψ1(t)− ψ2(t)‖ ≤ ‖ψ2(t)− y‖+ ‖ψ1(t)− ψ1(0)‖ ≤ ε + δ

8
≤ δ

8
+ δ

8
= δ

4
.

Thus

‖φ − ψ2‖∗,T ≤ 5δ
8

+ δ

4
≤ δ.

Since ψ2 ∈ 3x,α,K′
,T (s), we have d

(
φ,3x,α,K′

,T (s)
)

≤ δ, and thus φ is in the set on the left
side of (17). This proves the inclusion in (17).

Now fix a closed set F in C([0, T]:Rd). If

inf
x∈K

inf
φ∈F

S
α,K′ (x, T, φ)= 0,

then the result clearly holds, so we assume that

S̄ .= inf
x∈K

inf
φ∈F

S
α,K′ (x, T, φ)> 0.

Fix s ∈
(
0, S̄

)
, and let {xn}⊂K and ε ↓ 0. Since K is compact, we may pass to a subsequence

and assume that xn → x̃ for some x̃ ∈K. Since

inf
φ∈F

S
α,K′ (x̃, T, φ)> s,

F ∩ 3x̃,α,K′
,T (s)= ∅. This, along with the facts that 3x̃,α,K′

,T (s) is compact and F is closed,
ensures that there is some δ ∈ (0, s) such that

F ⊂
{
φ ∈C

(
[0, T]:Rd

)
:d

(
φ,3x̃,α,K′ (s)

)
> δ

}
.
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Let ε = ε(δ)> 0 be chosen as above (17). Without loss of generality we assume that ‖x̃− xn‖ ≤
ε for all n. Then, for every n ∈N,

F ⊂
{
φ ∈C

(
[0, T]:Rd:d

(
φ,3x̃,α,K′

,T (s)
)
> δ

}

⊂
{
φ ∈C

(
[0, T]:Rd:d

(
φ,3xn,α,K

′
,T

(
s− δ

4

))
>

δ

2

}
.

From the upper bound in Theorem 3(c) we see that

lim sup
N→∞

1
N
log PxN

(
X̂N,α,K′∈ F

)
≤ lim sup

N→∞

1
N

log PxN

(
d

(
X̂N,α,K′

,3xN ,α,K
′
,T

(
s− δ

4

))
>

δ

2

)

≤ −
(
s− δ

4

)
.

The result follows from letting δ → 0 and s→ S̄. !

5. Asymptotic behavior of QSD

In this section we assume that Assumptions 1, 2, 3, and 4 are satisfied. Using these assump-
tions we will provide several exponential probability estimates and use them to deduce some
asymptotic properties of the QSD {µN} (when they exist). For N ∈N and T ∈ (0,∞), let

DN
T

·= sup
0≤t≤T

∥∥∥X̂N(t)− ϕt
(
XN
0
) ∥∥∥=

∥∥∥X̂N − ϕ·
(
XN
0
) ∥∥∥

∗,T
.

The estimates obtained in Lemma 13 and Lemma 14 are the key steps in the proof of

Theorem 5, which gives the asymptotics of λN
.=

[
PµN

(
XN
1 ∈ "o

)]N
, where µN is a QSD

for {XN}. Recall the definition of Vα from Section 4.

Lemma 13. For each α > 0, compact set K ⊂ Vα , ε > 0, and T > 0, there is a c ∈ (0,∞) and
N0 ∈N such that for every N ≥N0,

sup
x∈K∩"N

Px
[
DN
T ≥ ε

]
≤ exp (−Nc).

Proof. Let α > 0 and let K ⊂ Vα be compact. For each ε ∈ (0, α), let

Fε =
{

ψ ∈C
(
[0, T]:Rd): sup

0≤t≤T
‖ψ(t)− ϕt(ψ(0))‖ ≥ ε

}

.

Using Lemma 3 we can (and will) assume without loss of generality that ε is small enough so
that the compact set

K′ .=Nε
(
ϕ[0,∞)(K)

)
⊂ "o.

Note that

sup
x∈K∩"N

Px
[
DN
T ≥ ε

]
= sup

x∈K∩"N

Px

[

sup
0≤t≤T

∥∥∥X̂N,α,K′
(t)− ϕt

(
X̂N,α,K′

(0)
)∥∥∥ ≥ ε

]

.
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Since Fε is closed, Theorem 4 says that for each δ > 0, there is an Nδ ∈N such that for all
N ≥Nδ ,

log sup
x∈K∩"N

Px

[

sup
0≤t≤T

‖X̂N,α,K′
(t)− ϕt(x)‖ ≥ ε

]

= log sup
x∈K∩"N

Px

(
X̂N,α,K′ ∈ Fε

)

≤ −N
[
inf
x∈K

inf
ψ∈Fε

S
α,K′ (x, T,ψ)− δ

]
.

To prove the result, it suffices to show that

inf
x∈K

inf
ψ∈Fε

S
α,K′ (x, T,ψ)> 0.

Arguing by contradiction, suppose that this infimum is 0. Then there are sequences {xn}⊂K
and {ψn}⊂C([0, T]:Rd) such that ψn ∈ Fε for each n and

lim
n→∞ S

α,K′ (xn, T,ψn)= 0.

Since S
α,K′ (x, T, φ)<∞ if and only if φ(0)= x, we can assume without loss of generality that

xn =ψn(0) for every n. For each ε′ > 0,

ψn ∈
{
φ ∈C

(
[0, T]:Rd):S

α,K′ (y, T, φ)≤ ε′ for some y ∈K
}

whenever n is sufficiently large. Since K is compact, Theorem 3 ensures that {ψn} is pre-
compact in C([0, T]:Rd), and so there is a convergent subsequence of {ψn}. Denoting this
subsequence by {ψnk} and its limit by ψ , we have that

lim
k→∞

(ψnk , xnk )= lim
k→∞

(ψnk ,ψnk (0))= (ψ,ψ(0)).

Since φ ,→ S
α,K′ (φ(0), T, φ) is lower semicontinuous, it follows that

S
α,K′ (ψ(0), T,ψ)≤ lim

k→∞
S
α,K′

(
ψnk (0), T,ψnk

)
= 0,

which says that ψ(t)= ϕt(ψ(0)). However, this is a contradiction, since ψ ∈ Fε. The result
follows. !

Lemma 14. Let U be a fundamental neighborhood of an attractor A⊂ "o such that Ū ⊂ "o.
Then for every T0 ∈ (0,∞), there are c0 ∈ (0,∞), T ∈ (T0,∞), and N0 ∈N such that

sup
x∈U∩"N

Px

(
XN

<NT= ∈Uc
)

≤ exp (−c0N)

for all N ≥N0.

Proof. Let α
.= dist(A,Uc). Since U is a fundamental neighborhood of the attractor A, we

can find T > T0 such that
sup
t≥T

sup
x∈U

dist(ϕt(x), A)< α/2.

Let K ∈K be a compact set containing U. From Lemma 3 there exists a σ ∈ (0, α/4) and a
K′ ∈K such that Nσ (γ+(U))⊂K′, where γ+(U)=∪x∈Uγ+(x). Then for each x ∈U ∩ "N , we
have
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Px

(
XN

<NT= ∈Uc
)

≤ Px

(
dist

(
XN

<NT=, A
)
> α

)
≤ Px

(∥∥∥XN
<NT= − ϕT (x)

∥∥∥> α/2
)

≤ Px

(∥∥∥XN
<NT= − X̂N(T)

∥∥∥+
∥∥∥X̂N(T)− ϕT (x)

∥∥∥> α/2
)

≤ Px

(
DN
T > σ

)
+ Px

(∥∥∥XN
<NT= − X̂N(T)

∥∥∥> α/4,DN
T ≤ σ

)
.

(19)

Using the Markov property, we have

Px

(∥∥∥XN
<NT= − X̂N(T)

∥∥∥> α/4,DN
T ≤ σ

)
≤ Px

(∥∥∥XN
<NT= − XN

<NT=+1

∥∥∥> α/4,DN
T ≤ σ

)

≤ sup
x∈K′∩"N

Px

(∥∥∥XN
1 − x

∥∥∥> α/4
)
.

From Assumption 3 we have that for every λ> 0,

C(λ) .= sup
N∈N

sup
x∈K′∩"N

Ex

(
eλN

∥∥XN
1 −x

∥∥)
<∞.

Thus, for any λ> 0,

sup
x∈K′∩"N

Px

(∥∥∥XN
1 − x

∥∥∥> α/4
)

≤ c(λ)e−λNα/4.

The result follows on using the above estimate and Lemma 13 in (19). !

The following lemma says that for every open U ⊂ "o, the support of µN (when it exists)
has a nonempty intersection with U when N is sufficiently large.

Lemma 15. Suppose that for each N ∈N, XN has a QSD µN. Then for each open U ⊂ "o,
there is some N0 ∈N such that µN(U)> 0 for all N ≥N0.

Proof. Let N0 be large enough so that U ∩ "o
N is nonempty for all N ≥N0. Fix N ≥N0,

x ∈U ∩ "o
N , and w ∈ "o

N with µN(w)> 0. From Assumption 4(a), there is a k ∈N such that
Pw(XN

k = x)> 0. Then

µN(U)≥µN(x)=

∑

y∈"o
N

µN(y)Py
(
XN
k = x

)

∑

z∈"o
N

∑

y∈"o
N

µN(y)Py
(
XN
k = z

) ≥ µN(w)Pw
(
XN
k = x

)
∑

z∈"o
N

∑

y∈"o
N

µ(y)Py
(
XN
k = z

) > 0.

!
The following lemma quantifies the asymptotic behavior of the sequence {λN} introduced

in (5).

Theorem 5. Suppose that for each N ∈N, XN has a QSD µN. Then there exist c, c′ ∈ (0,∞)
such that for all N ∈N,

0≤ 1− λN ≤ c′ exp (− cN).

Proof. From Assumption 2 and Corollary 1 there exists an attractor A in "o. Let U ⊂ "o be
a fundamental neighborhood of A. From Lemma 14 there are c0 ∈ (0,∞) and T,N1 ∈N such
that for all N ≥N1,

sup
x∈U∩"N

Px
(
XN
NT ∈Uc) ≤ exp (−c0N) . (20)
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From Lemma 15 there is an N2 ∈N such that for all N ≥N2, µN(U)> 0. Fixing N ≥N1 ∨N2,
we have

λTNµN(U)=
∑

x∈"o
N

Px
(
XN
NT ∈U

)
µN(x)

≥
∑

x∈U∩"o
N

Px
(
XN
NT ∈U

)
µN(x)

≥ inf
x∈U∩"o

N

Px
(
XN
NT ∈U

) ∑

x∈U∩"o
N

µN(x)

= inf
x∈U∩"o

N

Px
(
XN
NT ∈U

)
µN(U).

Thus, for all N ≥N1 ∨N2,

λN ≥ λTN ≥ inf
x∈U∩"o

N

Px
(
XN
NT ∈U

)
= 1− sup

x∈U∩"o
N

Px
(
XN
NT ∈Uc) ≥ 1− exp (−c0N) ,

where the last inequality uses (20). The result follows. !

For δ > 0, T ∈N, and K ∈K, let

βN
δ,K(T)

.= sup
x∈"N∩K

Px
[∥∥X̂N − ϕ·(x)

∥∥
∗,T ≥ δ

]
. (21)

The following lemma gives a different lower bound on λN . This bound will be needed in
the proof of Theorem 6 below.

Lemma 16. Suppose that for each N ∈N, XN has a QSD µN. Let A be an attractor in "o,
Ũ ⊂ "o an open set containing A, and K ∈K such that Ũ ⊂K. Then there exist δ > 0 and
T,N0 ∈N such that λTN ≥ 1− βN

δ,K(T) for each N ≥N0.

Proof. Since A is an attractor, there is a fundamental neighborhood U of A contained in Ũ.
Thus we can find a δ > 0 and T ∈N such that Nδ(ϕT (U))⊂U. From Lemma 15 we can find an
N0 ∈N such that µN(U)> 0 for all N ≥N0. Following the proof of Theorem 5, we see that

λTNµN(U)≥
(

1− sup
x∈U∩"o

N

Px
(
XN
NT ∈Uc)

)

µN(U).

From our choice of U and δ it now follows that

λTN ≥ 1− sup
x∈U∩"o

N

Px

(
XN
NT ∈

(
Nδ

(
ϕT (U)

))c) ≥ 1− βN
δ,K(T).

!

A key consequence of the following theorem is that the support of any weak limit point of
µN is contained in "o. This, along with a further characterization of the support of such weak
limit points given in Corollary 2, is a key element in the proof of Theorem 1.
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86 A. BUDHIRAJA ET AL.

Theorem 6. Suppose that for each N ∈N, XN has a QSD µN. Then, for every δ > 0, T ∈N,
and K ∈K, there exists an open neighborhood VK of ∂" in " such that

lim sup
N→∞

µN(VK)≤ lim sup
N→∞

βN
δ,K(T)

infx∈VK∩"N Px
[
X̂N(T) ∈ ∂"

] = 0. (22)

Suppose in addition that µN converges along some subsequence to some probability measure
µ on ". Then there is an open neighborhood V0 of ∂" in " such that µ(V0)= 0.

Proof. Fix δ, T,K as in the statement of the theorem. Let

δ0
.= 1
2

inf
t∈[0,T]

inf
x∈K

dist(ϕt(x), ∂")

and let K′ .=Nδ0 (ϕ[0,T](K)), and consider the closed set

F .=
{
φ ∈C

(
[0, T]:Rd):‖φ − ϕ·(φ(0))‖∗,T ≥ δ0

}
.

Fix α ∈ (0, δ0) and K1 ∈K that contains some open neighborhood of K′. Then from
Theorem 4,

lim sup
N→∞

1
N

log sup
x∈K∩"N

Px
(
X̂N ∈ F

)
= lim sup

N→∞

1
N

log sup
x∈K∩"N

Px
(
X̂N,α,K1 ∈ F

)

≤ − inf
x∈K

inf
φ∈F

Sα,K1 (x, T, φ)
.=−c(K).

Clearly c(K)> 0. From Assumption 4(b) we can find an open neighborhood VK of ∂" such
that

lim inf
N→∞

inf
x∈VK∩"N

1
N

log Px
(
X̂N(T) ∈ ∂"

)
≥ −c(K)/4.

Combining last two displays, we can find an N1 ∈N such that for all N ≥N1,

βN
δ,K(T)

infx∈VK∩"N Px
[
X̂N(T) ∈ ∂"

] =
sup

x∈"N∩K
Px

(∥∥X̂N − ϕ·(x)
∥∥

∗,T ≥ δ
)

inf
x∈VK∩"N

Px
[
X̂N(T) ∈ ∂"

] ≤ exp (−Nc(K)/2),

which converges to 0 as N → ∞. This proves the last equality in (22).
Next, from Assumption 2 and Corollary 1 there exists an attractor A in "o. Let Ũ ∈ "o be

an open set containing A, and let K ∈K be such that Ũ ⊂K. Then from Lemma 16 there exist
δ > 0 and T,N0 ∈N such that

λTN ≥ 1− βN
δ,K(T) for each N ≥N0.

Since µN("o
N)= 1, we have, with VK given as in the first part of the theorem,

1− βN
δ,K(T)≤ λTNµN("o

N)

=
∑

x∈"o
N

(
1− Px

(
XN
NT ∈ ∂"

))
µN(x)

=
∑

x∈VK∩"o
N

(
1− Px

(
X̂N(T) ∈ ∂"

))
µN(x)+

∑

x∈"o
N\VK

(
1− Px

(
X̂N(T) ∈ ∂"

))
µN(x)
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≤
(

1− inf
x∈VK∩"o

N

Px
(
X̂N(T) ∈ ∂"

)
)

µN(VK)+µN("o
N \ VK)

= 1− inf
x∈VK∩"o

N

Px
(
X̂N(T) ∈ ∂"

)
µN(VK).

Rearranging the previous inequality, we obtain

µN(VK)≤
βN

δ,K(T)

inf
x∈VK∩"o

N

Px
(
X̂N(T) ∈ ∂"

) .

This proves the first inequality in (22).
Finally, let V0 be an open neighborhood of ∂" such that V̄0 ⊂ VK . From the first part of the

theorem, taking the limit along the convergent subsequence,

µ(V0)≤ lim inf
N→∞

µN(V0)≤ lim inf
N→∞

µN(VK)= 0.

The result follows. !

The following theorem proves the invariance of µ under the flow {ϕt}.
Theorem 7. Suppose that for each N ∈N, XN has a QSD µN, and suppose that µN converges
along some subsequence to some probability measure µ. Then µ is invariant under {ϕt}. In
particular, µ(ϕ−1

t (B))=µ(B) for each measurable set B⊂ " and t ≥ 0.

Proof. From Corollary 1, for each i ∈ {1, . . . , l}, Ki is an attractor. Fix 1≤ i≤ l, δ > 0, and
K ∈K such that Nγ(Ki)⊂K for some γ> 0. Let βN

δ,K be as in (21). It suffices to show that for
any continuous and bounded f :" →R and t> 0, µ(f )=µ(f ◦ ϕt). Fix f and t as above and let
ε > 0 be arbitrary. Using the fact that {µN} (considered along the convergent subsequence) is
tight, we can assume that the K chosen above satisfies

sup
N≥1

µN(Kc)≤ ε

2‖f‖∞
.

Let tN = <Nt=/N. Note that tN → t as N → ∞, and from Theorem 5, λtNN → 1 as N → ∞. For
a bounded g:"o →R and k ∈N, let

PN
k f (x)

.=Ex
[
f
(
XN
k
)
;τN∂ > k

]
, x ∈ "o

N,

and
PN,∗
k f (x) .=Ex

[
f
(
XN
k
)]
, x ∈ "o

N .

Then
µN(f )= λ

−tN
N µN

(
PN

<Nt=f
)
.

In particular, as N → ∞,
∣∣∣µN(f )−µN

(
PN

<Nt=f
) ∣∣∣ ≤ ‖f‖∞

∣∣∣1− λ
tN
N

∣∣∣ → 0.

Also,
∣∣∣µN

(
PN

<Nt=f
)

−µN
(
f ◦ ϕt

)∣∣∣ ≤ ε

2‖f‖∞
2‖f‖∞ + sup

x∈K

∣∣∣PN
<Nt=f (x)− f ◦ ϕt(x)

∣∣∣ .
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88 A. BUDHIRAJA ET AL.

For each x ∈K ∩ "N ,
∣∣∣PN

<Nt=f (x)− f ◦ ϕt(x)
∣∣∣ ≤

∣∣∣PN,∗
<Nt=f (x)−PN

<Nt=f (x)
∣∣∣+

∣∣∣PN,∗
<Nt=f (x)− f ◦ ϕt(x)

∣∣∣

≤ ||f ||∞Px
(
τN∂ ≤ <Nt=

)
+

∣∣∣PN,∗
<Nt=f (x)− f ◦ ϕt(x)

∣∣∣ ,

and Assumption 1 ensures that as N → ∞,

sup
x∈K

∣∣∣PN,∗
<Nt=f (x)− f ◦ ϕt(x)

∣∣∣ → 0.

Let δ̃
.= infx∈K,0≤s≤t dist(ϕs(x), ∂")> 0, and note that Assumption 1 ensures that as N → ∞,

sup
x∈K

Px
(
τN∂ ≤ <Nt=

)
≤ sup

x∈K
Px

(∥∥XN − ϕ·(x)
∥∥

∗,t > δ̃
)
→ 0.

Combining the two previous convergence properties, we see that as N → ∞,
∣∣∣PN

<Nt=f (x)− f ◦ ϕt(x)
∣∣∣ → 0,

and therefore that

|µ(f )−µ(f ◦ ϕt)|≤ lim sup
N→∞

|µN(f )−µN(f ◦ ϕt)|≤ ε.

Since ε > 0 is arbitrary, the result follows. !

We now recall the definition of the Birkhoff center of {ϕt}.
Definition 7. The Birkhoff center of {ϕt:t ≥ 0} is

BC(ϕ) .= {x ∈ ":x ∈ ω(x)}.

Lemma 17. The Birkhoff center of {ϕt:t ≥ 0} is contained in the closure ofRAP. Furthermore,
BC(ϕ)∩ "o ⊂R∗

AP.

Proof. Let δ, T > 0 and suppose that x ∈ ω(x). There is a sequence of time instants ti ↑ ∞
such that ϕti(x)→ x, so if we let

j=min{i:ti > T and ‖ϕti (x)− x‖< δ},

then (x, x, φtj(x), x, x) is a (δ, T) AP–pseudo-orbit from x to x. Since δ, T are arbitrary, x ∈RAP.
This proves the first part of the lemma. The second part is now immediate on using Assumption
2(a). !

We will use the PoincarÉ recurrence theorem given below. For a proof see [10, Theorem
4.1.19].

Theorem 8. Let ν be a measure which is invariant under {ϕt}. Then for each measurable B⊂ "

and T > 0,
ν({x ∈ B:{ϕt(x)}t≥T ⊂ " \ B})= 0.
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The next result is a consequence of Lemma 17 and Theorem 8. It shows that the support of
µ is contained inR∗

AP.

Corollary 2. Suppose that for each N ∈N, XN has a QSD µN, and suppose that µN converges
along some subsequence to some probability measure µ. Then supp (µ)⊂R∗

AP.

Proof. From Theorem 7, µ is invariant under {ϕt}. Enumerate the d-dimensional rationals
in " as Qd .= {q1, q2, . . . }, and for m, n ∈N, denote the ball of radius n−1 centered at qm by
B(qm, n−1). Then for each m, n ∈N, Theorem 8 says that

µ
(
B̃
(
qm, n−1))=µ

(
B
(
qm, n−1)),

where

B̃
(
qm, n−1) .=

{
x ∈ B

(
qm, n−1): there exist tk ↑ ∞ with ϕtk (x) ∈ B

(
qm, n−1) for all k ∈N

}
.

Let R .=∩∞
n=1 ∪∞

m=1 B̃
(
qm, n−1); then

1=µ
(
∩∞
n=1 ∪∞

m=1 B
(
qm, n−1

))
=µ

(
∩∞
n=1 ∪∞

m=1 B̃
(
qm, n−1

))
=µ(R),

which together with Theorem 6 implies that supp(µ)⊆ R∩ "o. Furthermore, if x ∈ R, then
x ∈ ω(x), so R⊆BC(ϕ), and consequently R̄∩ "o ⊂BC(ϕ)∩ "o. It now follows from Lemma
17 that

supp(µ)⊆ R∩ "o ⊆BC(ϕ)∩ ∩"o ⊆R∗
AP.

!
Combining the results of Corollary 2, Theorem 7, and Theorem 5, we have most of Theorem

1. In particular, we have the lower bound on probabilities of non-extinction given in Theorem
1, and we also have that the limit points µ of the QSD are invariant under the flow and are
supported on the union of absorption-preserving recurrence classes in the interior. The final
step is to show that the support in fact lies in the union of the interior attractors. For this
we will introduce another notion of recurrence which is given in terms of the quasipotential
associated with the rate functions in the underlying large deviation principles.

6. Quasipotential and chain recurrence

In this section we suppose that Assumptions 1, 2, and 3 are satisfied. Recall the rate function
S introduced in (14). For x, y ∈ "o, let C(x, y, T) .= {φ ∈C([0, T]:"o):φ(0)= x, φ(T)= y}, and
define

V(x, y) .= lim inf
T→∞

inf
φ∈C(x,y,T)

S(x, T, φ). (23)

For x, y ∈ "o, we say x leads to y in "o if V(x, y)= 0, and we write x<V y. We say x ∈ "o

is V-chain recurrent if x<V x. The collection of V-chain recurrent points is denoted by RV .
For x, y ∈ "o we say x∼V y if x<V y and y<V x. Equivalence classes under ∼V will be called
V-basic classes, and the equivalence class associated with an x ∈RV will be denoted by [x]V .
For x, y ∈RV we say [x]V ≺ [y]V if x<V y. A V-basic class [x]V is said to be maximal if,
whenever y ∈RV satisfies [x]V ≺ [y]V , we have that y ∈ [x]V . A maximal V-basic class is a
called a V-quasiattractor. The following is the main result of this section.

Theorem 9. We have R∗
AP =RV , and for each x ∈RV , [x]V = [x]AP. In particular there are

finitely many V-chain recurrent points, and for every x ∈RV , [x]V is a closed set. Furthermore,
Ki for i= 1, . . . , l is a V-quasiattractor, while Ki for i= l+ 1, . . . , v is not a V-quasiattractor.
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90 A. BUDHIRAJA ET AL.

Before proving Theorem 9 we will establish some basic results regarding V(·, ·) and RV .
The following lemma is a consequence of the stability properties of the ODE (4) stud-
ied in Lemma 3 and the property that low-cost trajectories closely follow the solution of
the ODE.

Lemma 18. Let α ∈ (0,∞) and K ∈K. Let T0 ∈ (0,∞) and suppose Tn ∈ [T0,∞) for all
n ∈N. Let φn ∈C([0, Tn]:"o) be such that φn(0) ∈ Vα,K for each n≥ 1. Suppose that
S(φn(0), Tn, φn)→ 0 as n→ ∞. With α0 and M0 as in Lemma 3, let α1 = α

2 ∧ α0 and K1 =
BM1 (0), where M1 = 1+ (M0 ∨ supx∈K ‖x‖). Then, for some k ≥ 1, φn(t) ∈ Vα1,K1 for all n≥ k
and t ∈ [0, Tn].

Proof. For n≥ 1, let

τ (φn)
.= inf{t ∈ [0, Tn] : dist(φn(t), ∂")≤ α1 or ‖φn(t)‖ ≥M1},

where the infimum is taken to be Tn if the above set is empty. Note that the result holds trivially
if the above set is empty for all but finitely many n. Now, arguing by contradiction, suppose
the set is nonempty for infinitely many n. Consider the subsequence along which the above
sets are nonempty, and denote the subsequence once more by {n}. Also assume without loss of
generality that γn

.= S(φn(0), Tn, φn)≤ 1 for every n.
We claim that there is a δ > 0 and k0 ∈N such that τ (φn)≥ δ for all n≥ k0. Indeed, other-

wise, by passing to a further subsequence (once more denoted by {n}) we can find a sequence
δn → 0 such that for every n,

φn(0) ∈ Vα,K, φn(δn) ∈ [Vα1,K1 ]
c.

Since S(φn(0), Tn, φn)≤ γn ≤ 1, we must have from the compactness-of-level-sets property in
Theorem 3 that φn(0) and φn(δn) converge along a subsequence to the same limit, which is a
contradiction.

Let δ > 0 be such that τ (φn)≥ δ for all sufficiently large n. For each such n let τ̂n
.= τ (φn)−

δ, and define φ∗
n :[0, δ]→ "o as φ∗

n (t)= φn(t+ τ̂n), t ∈ [0, δ]. Then φ∗
n ∈C([0, δ]:Vα1,K1 ). Also,

∫ δ

0
Lα1,K1 (φ

∗
n (t), φ̇

∗
n (t))dt=

∫ δ

0
L(φ∗

n (t), φ̇
∗
n (t))dt

≤
∫ Tn

0
L(φn(t), φ̇n(t))dt= γn ≤ 1. (24)

In particular,
{φ∗

n }⊂ ∪x∈K13x,α1,K1,δ(1).

From Theorem 3, the latter set is compact, and so, along some subsequence, φ∗
n converges to

some φ∗ in C([0, δ]:Vα1,K1 ). Using the compactness of level sets again, we have from (24) and
the fact that γn → 0 that ∫ δ

0
Lα1,K1 (φ

∗(t), φ̇∗(t))dt= 0.

In particular, φ∗(t) solves the ODE (4), namely φ∗(t)= ϕt(φ∗(0)) for t ∈ [0, δ]. Since φ∗(0) ∈
Vα1,K1 , in view of Lemma 3, we must have that ‖φ∗(δ)‖<M1 and dist(φ∗(δ), ∂")> α1.
However, from the definition of τ (ϕn), we have that for each n, φ∗

n (δ) satisfies either
dist(φ∗

n (δ), ∂")≤ α1 or ‖φ∗
n (δ)‖ ≥M1. This is a contradiction, since φ∗

n converges to φ∗ (along
some subsequence). The result follows. !

.77���  ��/���� ������� ������������
�
0/�.����20/2��
:�	�1
�/�����2/����/7:�
����



Convergence of QSD in unbounded domains 91

Corollary 3. Let K ∈K and T0 > 0. Then there exist a γ> 0 and an A1 ∈K such that whenever
for some x ∈K we have Tx ∈ [T0,∞) and φx ∈C([0, Tx]:"o)with φx(0)= x and S(x, Tx, φx)≤
γ, we have φx(t) ∈ A1 for all t ∈ [0, Tx].

Proof. Let α ∈ (0,∞) be such that K = Vα,K . Let α1,K1 be as in Lemma 18. We argue by
contradiction. Suppose the statement in the corollary is false. Then there are sequences γn ↓
0, xn ∈K, time instants Txn ∈ [T0,∞), trajectories φxn ∈C([0, Txn ]:"o), and sets Bn = {x ∈
"o:‖x‖ ≤ n, dist(x, ∂")≥ 1/n} such that S(φxn (0), Txn , φxn)≤ γn and φxn (tn) ∈ Bc

n for some
tn ∈ [0, Txn ]. However, from Lemma 18, there exists a k ∈N such that φxn (t) ∈ Vα1,K1 for all
n≥ k and all t ∈ [0, Txn ], which is clearly a contradiction since we can find an n0 > k such that
Vα1,K1 ⊂ Bn for all n≥ n0. !

The following continuity property of V , which is a consequence of the continuity of Lα,K
shown in Lemma 12, will be needed in the proof of Theorem 9.

Lemma 19. Suppose xn, x ∈ "o are such that xn → x as n→ ∞. Then for every y ∈ "o,
V(xn, y)→ V(x, y) and V(y, xn)→ V(y, x).

Proof. Fix x ∈ "o and let G⊂ "o be a bounded open ball containing x such that Ḡ⊂ "o.
Without loss of generality assume that xn ∈G for every n. Choose α ∈ (0, 1) and K ∈K such
that Vα,K ⊃ Ḡ. Since Ḡ is compact, from Lemma 12, we have that

sup
z∈Ḡ,‖β‖≤1

Lα,K(z, β)
.= κ0 <∞,

where B1(0) is the unit ball in Rd. Let ε ∈ (0,∞) be arbitrary. Take x1, x2 ∈G such
that x1 4= x2 and ‖x1 − x2‖ ≤ ε/(2κ0). Also, fix y ∈ "o. From the definition of V(x2, y)
we can find a sequence Tk → ∞ and φk ∈C([0, Tk]:"o) such that for all k, φk(0)= x2,
φk(Tk)= y, and

S(x2, Tk, φk)≤ V(x2, y)+ ε/2.

Let δ = ‖x1 − x2‖, β .= (x2−x1)
‖x2−x1‖ , T̃k

.= Tk + δ, and for t ≤ T̃k define

φ̃k(t)=
{
x1 + βt, t ≤ δ,

φk(t − δ), t ≥ δ.

Then

S(x1, T̃k, φ̃k)=
∫ T̃k

0
L(φ̃k(t),

˙̃φk(t))dt

=
∫ δ

0
L(φ̃k(t),

˙̃φk(t))dt+ S(x2, Tk, φk)

=
∫ δ

0
Lα,K(x1 + βt, β)dt+ S(x2, Tk, φk)

≤ κ0
ε

2κ0
+ V(x2, y)+

ε

2
= V(x2, y)+ ε.

Thus V(x1, y)≤ V(x2, y)+ ε, which proves the convergence V(xn, y)→ V(x, y). The proof of
V(y, xn)→ V(y, x) is similar and is omitted. !
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The following result is a consequence of the compactness-of-level-sets property in
Theorem 3 and the uniqueness of the path where the rate function vanishes.

Lemma 20. Fix T ∈ (0,∞) and a K ∈K. For each δ > 0, there is some ε
.= ε(K, T, δ)> 0 such

that for any φ ∈C([0, T]:Vα,K) and x ∈K, if Sα,K(x, T, φ)≤ ε, then

sup
0≤t≤T

‖φ(t)− ϕt(x)‖< δ.

Proof. Arguing via contradiction, suppose that there is some δ > 0 such that for all ε > 0,
there exist x ∈K and φε ∈C([0, T]:Vα,K) such that Sα,K(x, T, φε)< ε but ‖φε(t)− ϕx(t)‖ ≥ δ

for some t ∈ [0, T]. Using the compactness-of-level-sets property in Theorem 3(a) and recalling
that Sα,K(x, T, φ)= 0 if and only if φ(t)= ϕt(x) for t ∈ [0, T], we see that

c .= inf{Sα,K(x, T, φ):x ∈K, sup
t∈[0,T]

‖φ(t)− ϕt(x)‖ ≥ δ}> 0.

Thus c≤ Sα,K(x, T, φε)< ε for all ε > 0. Letting ε ↓ 0, we obtain c= 0, which is a contradic-
tion. !

As an intermediate step we now prove a somewhat weaker statement than that in
Theorem 9.

Lemma 21. Suppose that x ∈RV . Then x ∈R∗
AP and [x]V ⊂ [x]AP.

Proof. Let y ∈ [x]V . Then there exist time instants Tn ↑ ∞ and φn ∈C([0, Tn]:"o) such that
for all n≥ 1, φn(0)= x, φn(Tn)= y, and S(x, Tn, φn)< 1

n . From Lemma 18 there exist k ∈N,
α1 > 0, and K1 ∈K such that, for all n≥ k, φn ∈C([0, Tn]:Vα1,K1 ).

Now fix T, δ > 0. From Lemma 20 there is an ε > 0 such that, with T∗ = T and T∗ = 2T ,
the following holds:

if, for some φ ∈C([0, T∗], Vα1,K1 ) and z ∈ Vα1,K1 , Sα1,K1 (z, T
∗, φ)≤ ε,

then ‖φ − ϕ·(z)‖∗,T∗ < δ.
(25)

Choose n0 such that 1/n0 ≤ ε and Tn0 ≥ T . Write Tn0 =mT + t0, where m ∈N and t0 ∈ [0, T).
Then from (25), with φ = φn0 ,

‖φ(jT)− ϕT (φ((j− 1)T))‖< δ for j= 1, . . . ,m− 1,

and
‖φ(mT + t0)− ϕT+t0 (φ((m− 1)T))‖< δ.

Thus, with ξ0 = ξ1 = x, ξ2 = φ(T), . . . , ξm = φ((m− 1)T), ξm+1 = φ(Tn0 ), the sequence ξ =
(ξ0, . . . , ξm+1) along with time instants (T, T, . . . , T + t0) defines a (δ, T) AP–pseudo-orbit
from x to y. Since δ, T > 0 are arbitrary, x<AP y. Similarly, y<AP x, showing that x ∈RAP and
y ∈ [x]AP. This shows that [x]V ⊂ [x]AP and completes the proof. !

From Lemma 21 and Assumption 2 (see also Lemma 2), the closure ofRV is a compact set
in "o.

We now complete the proof of Theorem 9 by establishing the reverse inclusion from the
one established in Lemma 21.

Proof of Theorem 9. From Lemma 21, if x ∈RV , then x ∈R∗
AP and [x]V ⊂ [x]AP. Now sup-

pose that x ∈R∗
AP. From Assumption 2 there is an x∗ ∈ [x]AP such that {ϕt(x∗);t ≥ T} is dense
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Convergence of QSD in unbounded domains 93

in [x]AP for every T > 0. Fix y ∈ [x]. For n ∈N, let tn, t̃n ∈ (0,∞) be such that tn ↑ ∞, t̃n ↑ ∞
as n→ ∞, and for every n,

‖ϕtn (x
∗)− x‖ ≤ 1/n, ‖ϕtn+t̃n (x

∗)− y‖ ≤ 1/n.

Using Lemma 19 it follows that x<V y. This shows that x ∈RV and that [x]AP ⊂ [x]V . We thus
have that R∗

AP =RV , and for all x ∈RV =RAP, [x]AP = [x]V . Similar arguments show that [x]
is a V-quasiattractor if and only if it is an AP–quasiattractor. The result follows.

In view of Theorem 9, henceforth we will use the qualifiers ‘V’ and ‘AP’ interchangeably
when referring to recurrence classes and quasiattractors in "o.

7. Proof of Theorem 1

In this section we assume that Assumptions 1, 2, 3, and 4 are satisfied. The following lemma
shows that there are low-cost trajectories that take any given point in a recurrence class to any
other point in the same class.

Lemma 22. For any γ> 0 and K ∈RV , there is a T ∈ (1,∞) such that for all x, y ∈K, there
exist Tx,y ∈ (1, T) and φx,y ∈C([0, Tx,y]:"o) with

S(x, Tx,y, φx,y)≤ γ, φx,y(0)= x, φx,y(Tx,y)= y.

Proof. Fix γ ∈ (0, 1) and K ∈RV . Let γ0
.= supz∈K,‖β‖≤1 L(z, β). Let k ∈N and

v1, . . . , vk ∈K be such that for any x ∈K, there exists 1≤ i≤ k with ‖x− vi‖ ≤ γ/(4κ0). For
i, j ∈ {1, . . . , k}, let T̃i,j ∈ (1,∞) and ψi,j ∈C([0, T̃i,j]:"o) be such that ψi,j(0)= vi, ψi,j(T̃i,j)=
vj and S(vi, T̃i,j,ψi,j)≤ γ/2. Let x, y ∈K be arbitrary and select i, j ∈ {1, . . . , k} such that
‖x− vi‖ ≤ γ/(4κ0) and ‖y− vj‖ ≤ γ/(4κ0). Consider the continuous trajectory φx,y in "o

defined over the time interval of length Tx,y = ‖x− vi‖+ T̃i,j + ‖y− vj‖ as follows:

x
lin

−→
‖vi−x‖ vi

ψi,j−→
T̃i,j

vj
lin

−→
‖vj−y‖ y (26)

In the above display, for a term of the form a
c

−→
d

b, the trajectory connects the points a and
b in time length d in a manner described by c. When c= lin, the trajectory is just a linear
path connecting a and b; when c=ψi,j, the trajectory is defined by ψi,j introduced above.
Clearly S(x, Tx,y, φx,y)≤ γ, φx,y(0)= x and φx,y(Tx,y)= y. Also, Tx,y ≤max1≤i,j≤k T̃i,j + 2 .= T .
The result follows. !

Recall that for a set B⊂ ", τNB
.= inf{t ≥ 0:X̂N(t) 4∈ B}. The following lemma gives an

upper bound on the probabilities of long residence times of the Markov chain near non-
quasiattractors.

Lemma 23. Suppose that Kj ∈RV is not a quasiattractor. Then we can find some λ> 0 such
that for all γ> 0, there is some N0

.=N0(γ) and ζ
.= ζγ:N→R satisfying lim

n→∞ ζγ(n)= 0 such

that
sup

x∈Nλ(Kj)
Px

(
τNNλ(Kj)

> exp (Nγ)
)

≤ ζγ(N)

for all N ≥N0.

Proof. Since Kj is not a quasiattractor, there exist λ0 ∈ (0, 1), u1 ∈Kj, y1 ∈ "o ∩[
N2λ0

(
Kj

)]c such that u1 <V y1. Choose λ1 ∈ (0, λ0) such that, for some A0 ∈K, y1 ∈ A0,

.77���  ��/���� ������� ������������
�
0/�.����20/2��
:�	�1
�/�����2/����/7:�
����



94 A. BUDHIRAJA ET AL.

∪v
k=1N

λ1 (Kk)⊂ A0, and for each i, k ∈ {1, . . . , v} such that i 4= k, dist(Nλ1 (Kk),Nλ1 (Ki))≥ λ1.
From Lemma 3 we can find A1 ∈K such that the forward orbit γ+(x)⊂ A1 for every x ∈ A0.
Let

sup
z∈A1,‖β‖≤1

Lα,K(z, β)
.= κ0.

Let γ> 0 be given and let γ0 = γ/6. Fix δ ∈
(
0, λ1 ∧ γ0

κ0

)
. Then, denoting by ηx,y the linear

trajectory from x to y,

for x∗, y∗ ∈ A1 with ‖x∗ − y∗‖ ≤ δ, S(x∗, ‖y∗ − x∗‖, ηx∗,y∗ )≤ γ0.

With δ as above, choose T∗
A1

as in Lemma 9(b) (with A replaced by A1). Then, in view of
Theorem 9, for every x ∈ A1, there exists a t0 ∈ [0, T∗

A1
] such that ϕt0 (x) ∈Nδ(RV ).

Define for x ∈Nλ1 (Kj) the continuous trajectory φ
γ
x ( · ) according to the following two cases:

Case I, ϕt0 (x) ∈Nδ(Ki) for some i 4= j; Case II, ϕt0 (x) ∈Nδ(Kj).
In Case I, we simply take φ

γ
x (t)= ϕt(x) for t ∈ [0, t0]. In particular, Tγ

x
.= t0 is the length of

the time interval over which the trajectory is defined.
For Case II we proceed as follows. Taking K = A0 and T0 = 1 in Corollary 6, denote

by (γ∗, A∗) the (γ, A1) given by the corollary. Let u0 ∈Kj be such that ‖u0 − ϕt0 (x)‖ ≤ δ.
Then u0 <V u1 <V y1. Let t1(x) ∈ [1,∞) and φ1 ∈C([0, t1(x)]:"o) be such that φ1(0)= u0,
φ1(t1(x))= y1, and S(u0, t1(x), φ1)≤ γ∗ ∧ γ/3. Using Lemma 22 we can assume without loss
of generality that supw∈Nλ(Kj) t1(w)

.= t̄1 <∞. From Corollary 3, φ1(t) ∈ A∗ for all t ∈ [0, t1(x)].
Consider the continuous trajectory φ

γ
x in "o that connects x and y1 in the following manner:

x
flow
−→
t0

ϕt0 (x)
lin

−→
‖u0−ϕt0 (x)‖

u0
φ1−→
t1(x)

y1

The above display is interpreted similarly to (26), with a term of the form a
c

−→
d

b, when c=
flow, representing the segment of ϕt(a) until it reaches b. In this case let Tγ

x = t0 + ‖u0 −
ϕt0 (x)‖+ t1(x) denote the length of the time interval over which φ

γ
x is defined.

Note that in both cases,

Tγ .= sup
x∈Nλ1 (Kj)

Tγ
x ≤ t0 + 1+ t̄1 <∞.

Also, in both cases, φγ
x (t) ∈ A1 ∪ A∗ .= A2 for all t ∈ [0, Tγ

x ]. Furthermore, in Case II,

S
(
x, φγ

x , T
γ
x
)
≤ 0+ γ0 + γ/3= γ/2,

and in Case I the cost on the left side of the above display is 0.
Let λ ∈ (0, λ1), α′ > 0 be such thatK′ .=Nλ(A2)⊂ "o andK′ = V

α
′
,K′ . Extend the trajectory

φ
γ
x from [0, Tγ

x ] to [0, Tγ] by defining φ
γ
x
(
t+ Tγ

x
) .= ϕt

(
φ

γ
x
(
Tγ
x
))

for t ∈ (Tγ
x , Tγ]. The bound

from Theorem 3(b) ensures that for each δ̃ ∈ (0, 1) there is some N0(δ̃) ∈N such that, whenever
N ≥N0(δ̃),

Px

(∥∥∥φγ
x − X̂N

∥∥∥
∗,Tγ

x
< λ

)
= Px

(∥∥∥φγ
x − X̂N,α,K′∥∥∥

∗,Tγ
x
< λ

)
≥ Px

(∥∥∥φγ
x − X̂N,α,K′∥∥∥

∗,Tγ
< λ

)

≥ exp
(
−N

(
S(x, Tγ, φγ

x )+ δ̃/4
))

= exp
(
−N

(
S

(
x, Tγ

x , φ
γ
x
)
+ δ̃/4

))

≥ exp
(
−N

(
γ/2+ δ̃/4

))

for all x ∈Nλ(Kj).
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It follows that for each x ∈Nλ(Kj), if N ≥N0(γ), then

Px

(
τNNλ(Kj)

> Tγ
)

≤ 1− Px

(
‖φγ

x − X̂N‖∗,Tγ
x
< λ

)

≤ 1− exp (−N(γ/2+ γ/4)).

Using the Markov property we see that, if N ≥N0(γ) and x ∈Nλ(Kj), then

Px

(
τNNλ(Kj)

> exp (Nγ)
)

≤ Px

(
τNNλ(Kj)

>

⌊
exp (Nγ)

Tγ

⌋
Tγ

)

≤ (1− exp (− 3Nγ/4))
⌊
exp (Nγ)

Tγ

⌋

.

We can assume without loss of generality that N(γ) is large enough so that
⌊
exp (Nγ)

Tγ

⌋
>

exp (Nγ)
2Tγ

.

Then for all N ≥N0(γ),

sup
x∈Nλ(Kj)

Px

(
τNNλ(Kj)

> exp (Nγ)
)

≤ (1− exp (− 3Nγ/4))
exp (Nγ)
2Tγ

= exp
(
log (1− exp (− 3Nγ/4)))

exp (Nγ)
2Tγ

)

≤ exp
(

−exp (Nγ)
2Tγ

exp (− 3Nγ/4)
)

= exp
(

−exp (Nγ/4)
2Tγ

)
.

The result follows from taking

ζγ(N)
.= exp

(
−exp (Nγ/4)

2Tγ

)
.

!

Proof of Theorem 1. Recall that we assume that Assumptions 1, 2, 3, and 4 are satisfied.
Also, by assumption, for every N ∈N, there exists a QSD µN for {XN}, and the sequence {µN}
is relatively compact. From Theorem 5 there are a1, c1 ∈ (0,∞) such that

λN ≥ 1− a1e−c1N for all N ∈N.

Let µ be a limit point of µN . From Theorem 7, µ is invariant under the flow {ϕt}. From
Corollary 2, supp (µ)⊂R∗

AP. Thus, to finish the proof, it suffices to show that for every j ∈
{l+ 1, . . . , v}, there is a neighborhood Vj of Kj such that µ(Vj)= 0. Fix ε > 0 and choose
F0 ∈K such that µN(Fc

0)< ε for every N ∈N. This can be done in view of Theorem 6 and our
assumption that the sequence {µN} is relatively compact.

Using Lemma 3(c) we can assume that F0 is large enough so that for some T1 ∈ (0,∞) and
δ̂ > 0, ϕt(x) ∈ F1 for all t ≥ T and x ∈ F0, where F1 ⊂ F0 is such that dist(F1, ∂F0)> δ̂.

.77���  ��/���� ������� ������������
�
0/�.����20/2��
:�	�1
�/�����2/����/7:�
����



96 A. BUDHIRAJA ET AL.

Let λ be as in Lemma 23. Fix δ = λ ∧ δ̂. From Lemma 11, we can choose δ0 ∈ (0, δ), an
integer T0 > T1, and open sets Vi with V̄i ⊂Nδ(Ki)∩ "o such that Parts 1–3 of Lemma 11
hold.

Consider
βN

δ0,T0,F0
.= sup
x∈"N∩F0

Px
[∥∥X̂N − ϕ·(x)

∥∥
∗,T0 ≥ δ0

]
.

Then from Lemma 13 there exist c2 > 0 and a2 ∈ (0,∞) such that

βN
δ0,T0,F0 ≤ a2e−Nc2 .

Define c∗ =min{1, c1, c2}. With γ= c∗/8, let ζ (N, γ) .= ζ ∗(N) be as in Lemma 23. Then, for
some a3 ∈ (0,∞),

sup
x∈Nλ(Kj)

Px

(
τNNλ(Kj)

> exp (Nc∗/8)
)

≤ a3ζ ∗(N) for all N ∈N.

Define mN = exp (Nc∗/2) and m′
N = exp (Nc∗/4).

Define the events

EN =
{(
X̂N(0), X̂N(T0), X̂N(2T0), . . . , X̂N(mNT0)), (T0, T0, . . . , T0),

defines a (δ0, T0)AP–pseudo-orbit
}

and

E ′
N =

{
for any i ∈

{
l+ 1, . . . , v

}
and any q≥m′

N, and p≥ 0,

if X̂N(pT0) ∈Nδ0 (Ki), then X̂N((p+ q)T0) 4∈Nδ0 (Ki)
}
.

Without loss of generality we can assume that mN > (b+ 2)(m′
N + 1). Then, for x ∈ "o,

Px
(
X̂N(

mNT0
)
∈ Vi

)
≤ Px

(
X̂N(

mNT0
)
∈ Vi, EN, E ′

N
)
+ Px

(
EN,

(
E ′

N
)c)+ Px

((
EN

)c).

For α = 1, . . . , b+ 1, define tNα = <αmN/(b+ 2)=. Then, from Part 2 of Corollary 11 and the
definition of E ′

N , with K =∪v
j=1Kj,

Px

(
X̂N (mNT0) ∈ Vi, EN, E ′

N

)
≤

b+1∑

α=1

Px

(
X̂N (

tNα T0
)
∈

[
Nδ0 (K)

]c ∩ "o
)
.

Using Part 3 of Lemma 11, for every x ∈ "o,

Px(EN, (E ′
N)c)≤

v∑

i=l+1

sup
x∈Nδ0 (Ki)

Px
(
τNVi > T0m′

N
)

≤
v∑

i=l+1

sup
x∈Nδ(Ki)

Px

(
τNNδ(Ki)

> exp (Nc∗/4)
)

≤ bζ ∗(N).

From our choice of δ0, T0 we see that if for some k, X̂N((k − 1)T0) ∈ F0, then ϕT0 (X̂
N((k −

1)T0)) ∈ F1, and if in addition
∥∥X̂N(kT0)− ϕT0

(
X̂N(

(k − 1)T0
))∥∥ ≤ δ0,
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then X̂N(kT0) ∈ F0. Using this observation, we see that, with

k∗ .=min
{
1≤ k ≤mN :

∥∥X̂N(kT0)− ϕT0
(
X̂N(

(k − 1)T0
))∥∥> δ0

}
,

for every x ∈ F0,

Px
((
EN

)c)= Px
(∥∥X̂N(

kT0
)
− ϕT0

(
X̂N(

(k − 1)T0
))∥∥ ≥ δ0 for some k= 1, . . . ,mN

)

= Px
(
k∗ ≤mN

)

≤
mN∑

k=1

Px
(∥∥X̂N(

kT0
)
− ϕT0

(
X̂N(

(k − 1)T0
))∥∥ ≥ δ0, X̂N(

(k − 1)T0 ∈ F0
)

≤mN sup
x∈F0

Px
(∥∥X̂N(

T0
)
− ϕT0

(
X̂N(0)

)∥∥ ≥ δ0
)

≤mNβN
δ0,T0,F0 ≤ a2 exp (Nc∗/2) exp (−Nc∗)= a2 exp (−Nc∗/2).

Thus, from our choice of F0,

λ
mNT0
N µN(Vj)=

∫
µN(dx)Px

(
X̂N(mNT0) ∈ Vj

)

≤
∫

µN(dx)Px(EN, (E ′
N)c)+

b+1∑

α=1

∫
µN(dx)Px

(
X̂N (

tNα T0
)
∈

[
Nδ0 (K)

]c ∩ "o
)

+
∫

F0
µN(dx)Px((EN)c)+ ε

≤ bζ ∗(N)+ (b+ 1)µN
([
Nδ0 (K)

]c)+ a2 exp (−Nc∗/2)+ ε.

Note that µN([Nδ0 (K))]c)→ 0, in view of Theorem 6 and Corollary 2. Since λN ≥ 1− a1e−c1N

andmNe−c1N ≤ e−c∗N/2 → 0, λmNT0
N → 1. Thus, sending N → ∞ in the above display, we have

µ(Vj)≤ ε. Since ε > 0 is arbitrary, the result follows. !

8. Proof of Theorem 2

In this section we prove Theorem 2. For this we first show that when θN = θN,∗, under the
conditions of the theorem, Assumptions 1, 2, 3, and 4 are satisfied. These assumptions are
verified in Sections 8.1, 8.2, 8.3, and 8.4, respectively. We then argue in Section 8.5 that, for
every N, XN has a QSD µN of the form in the statement of Theorem 2. In Section 8.6 we
show that the sequence {µN} is tight. Finally, in Section 8.7 we combine the results of previous
sections to complete the proof of Theorem 2.

8.1. Verification of Assumption 2.1
We need to show that if θN = θN,∗, and xN → x, then (3) holds. The proof follows by a

standard application of Grönwall’s lemma and from moment formulas of Poisson and binomial
random variables, and thus we only give a sketch. First, using the relation (1) and the discrete-
time GrÖnwall inequality it is easy to verify that for every T <∞,

sup
N∈N

ExN max
0≤k≤<NT=

∥∥XN
k

∥∥2 <∞. (27)

Next, using the relation

ηNk+1(x)=G(x)+
[
ηNk+1(x)−E

(
ηNk+1(x)

)]
, x ∈ ",
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98 A. BUDHIRAJA ET AL.

and the Lipschitz property of G, it can be checked that

X̂N(t)= xN +
∫ t

0
G

(
X̂N(s)

)
ds+MN(t)+ RN(t), t ∈ [0, T], N ∈N, (28)

where MN is a martingale and sup0≤t≤T ‖RN(t)‖ converges to 0 in probability as N → ∞.

Standard moment estimates show that E
(
sup0≤t≤T

∥∥MN(t)
∥∥2) → 0 as N → ∞. Next, using

the moment bound (27) and the convergence properties noted above, it can be checked that X̂N

is tight in C([0, T]:"). Finally, if X̂N converges in distribution along a subsequence to X̂, then
from (28) it follows that X̂ must satisfy

X̂(t)= x+
∫ t

0
G

(
X̂(s)

)
ds, t ∈ [0, T].

From the unique solvability of the ODE in (4), which is a consequence of the Lipschitz prop-
erty of G, it now follows that X̂(t)= ϕt(x) for all t ∈ [0, T], almost surely. This proves the
convergence in (3). !

8.2. Verification of Assumption 2
Parts (a)–(d) hold by assumption. We now verify Part (e). Since G(x)= F(x)− x, for each

x ∈ " 〈x,G(x)〉= 〈x, F(x)〉 − ‖x‖2. As F is bounded, takingM .= 2‖F‖∞, we see that ‖F(x)‖ ≤
‖x‖/2 for all ‖x‖ ≥M. Thus

〈x,G(x)〉 ≤ 1
2
‖x‖2 − ‖x‖2 =−1

2
‖x‖2 for all x ∈ " with ‖x‖ ≥M.

Thus Assumption 2(e) holds with κ = 1/2 and M as above. !

8.3. Verification of Assumption 3
Part (a) of the assumption is immediate from the fact that for x ∈ "o, θN,∗( · |x) is the prob-

ability law of UN − VN , where UN =
(
UN
i

)d
i=1 and VN =

(
VN
j

)d
j=1 are d-dimensional random

variables such that
{
UN
i , V

N
j , i, j= 1, . . . , d

}
are mutually independent and UN

i ∼ Poi(Fi(x)),
VN
j ∼Bin(Nxj, 1/N), for i, j= 1, . . . , d.
To verify Part (b), for x ∈ "o define θ ( · |x) as the probability law of U − V , where U =

(Ui)di=1 and V = (Vj)dj=1 are d-dimensional random variables such that {Ui, Vj, i, j= 1, . . . , d}
are mutually independent and Ui ∼ Poi(Fi(x)), Vj ∼ Poi(xj), for i, j= 1, . . . , d. Then with this
choice of θ , Parts (i) and (ii) of Assumption 3(b) are clearly satisfied. Finally, Part (iii) is a
consequence of the observation that if zN → z ∈ (0,∞), then for every λ ∈R, as N → ∞,

[(
1− 1

N

)
+ 1

N
eλ

]NzN
→ ez(e

λ−1).

!

8.4. Verification of Assumption 4
Part (a) of the assumption is clearly satisfied (in fact with k= 1). Part (b) is verified in the

following lemma.
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Lemma 24. Suppose that θN = θN,∗. Then, for every γ ∈ (0,∞) and T ∈N, there is an open
neighborhood Uγ of ∂" in " such that

lim inf
N→∞

inf
x∈Uγ∩"N

1
N

log Px
(
X̂N(T) ∈ ∂"

)
≥ −γ.

Proof. For x ∈ "o, let
ix

.= arg min
1≤i≤d

xi.

From Assumption 2(d) we can find δ0 > 0 such that

sup
y∈Nδ0 (∂")

F(y)iy <
γ

2T
.

Let
δ1

.= γ

2(T − log (eT − 1))
,

δ
.=min{δ0, δ1}, and Uγ

.=Nδ(∂"). Fix x ∈Uγ ∩ "o
N , and note that, under Px,

X̂N(T)= x+ 1
N

NT∑

j=1

ηNj

(
XN
j−1

)
,

where ηNj
(
XN
j−1

)
=Uj − Vj and the conditional distribution of

(
Uj − Vj) given that XN

j−1 = x is
that of (UN, VN) as in Section 8.3. Thus

Px(X̂N(T) ∈ ∂")≥ Px



xix +
1
N

NT∑

j=1

(
Uj
ix − Vj

ix

)
= 0





≥ Px



U1
ix = · · · =UNT

ix = 0,
NT∑

j=1

Vj
ix =Nxix



 .

Let Ũ1, . . . , ŨNT be independent and identically distributed (i.i.d.) Poisson random vari-
ables with mean γ/2T , and let Ṽ1, Ṽ2, . . . , ṼNT be i.i.d. geometric random variables with
probability of success 1/N such that {Ũj, Ṽk;j, k} are mutually independent. Then

Px



U1
ix = · · · =UN

ix = 0,
N∑

j=1

Vj
ix =Nxix





= Px

(
U1
ix = · · · =UN

ix = 0, by time instant NT all initial Nxix type ix particles die
)

≥ Px

(
Ũ1 = · · · = ŨNT = 0, Ṽ1 ≤NT, Ṽ2 ≤NT . . . , ṼNxix ≤NT

)

= [P(Ũ1 = 0)]NT
(

1−
(
1− 1

N

)NT
)Nxix

= exp
(
−NT

γ

2T

) (

1−
(
1− 1

N

)NT
)Nxix

.
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100 A. BUDHIRAJA ET AL.

Combining the last two displays,

1
N

log Px(X̂N(T) ∈ ∂")≥ 1
N



log
(
exp

(
−N

γ

2

))
+ log




(

1−
(
1− 1

N

)NT
)Nxix









=−γ

2
+ xix log

(

1−
(
1− 1

N

)NT
)

≥ −γ

2
+ δ log

(

1−
(
1− 1

N

)NT
)

,

and thus from our choice of δ,

lim inf
N→∞

inf
x∈Uγ∩"N

1
N

log Px
(
X̂N(T) ∈ ∂"

)
≥ −γ

2
+ δ

(
−T + log

(
eT − 1

))
≥ −γ.

!

8.5. Existence of quasi-stationary distributions
In this section we prove the existence of a QSD µN for the Markov chain {XN

n }, for each
N ∈N, and show that the sequence {µN} of QSD is relatively compact in P("). For some
uniform bounds needed for the tightness proof in Section 8.6, it will be convenient to consider
the N-step processes {X̃N

n }n∈N0 , where

X̃N
n

.= XN
nN, n ∈N0, N ∈N. (29)

Recall the definition of τN∂ and PN
n from (6) and (7).

For existence of QSD, we will use the following result from [2].

Theorem 10. ([2, Theorem 2.1, Proposition 3.1].) Fix N ∈N. Suppose that there are
θ1, θ2, c1 ∈ (0,∞), functions ϕ1, ϕ2:"o

N →R+, and a measurable subset K ⊂ "o
N such that

the following hold:
(B1) For each x ∈K, for some n2(x) ∈N,

Px
(
XN
n ∈K

)
> 0 for all x ∈K and n≥ n2(x).

(B2)We have θ1 < θ2, and

(a) inf
x∈"o

N

ϕ1(x)≥ 1, sup
x∈K

ϕ1(x)<∞;

(b) inf
x∈K

ϕ2(x)> 0, sup
x∈"o

N

ϕ2(x)≤ 1;

(c) PN
1 ϕ1(x)≤ θ1ϕ1(x)+ c11K(x) for all x ∈ "o

N;

(d) PN
1 ϕ2(x)≥ θ2ϕ2(x) for all x ∈ "o

N.

Suppose also that there exist C ∈ (0,∞) and n0,m0 ∈N such that n0 ≤m0 and

Px
(
XN
n0 ∈ ·∩K

)
≤CPy

(
XN
m0

∈ ·
)

for all x ∈ "o
N and y ∈K. (30)
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Convergence of QSD in unbounded domains 101

Then there exist C1 ∈ (0,∞), α ∈ (0, 1), and a probability measure µN on "o
N such that for all

n ∈N, ∣∣∣∣∣∣

∣∣∣∣∣∣
µPN

n

µPN
n

(
1"o

N

) −µN

∣∣∣∣∣∣

∣∣∣∣∣∣
TV

≤Cαnµ(ϕ1)
µ(ϕ2)

for all probability measuresµ on"o
N which satisfyµ(ϕ1)<∞ andµ(ϕ2)> 0. Moreover,µN is

the unique QSD of {XN} that satisfies µN(ϕ1)<∞ and µN(ϕ2)> 0. Additionally, µN(K)> 0.

Remark 1. The above theorem combines two different results from [2]. Proposition 3.1 of
[2] shows that under the assumptions of Theorem 10, for some c2 ∈ (0,∞), n1 ∈N, and a
probability measure ν supported on K, we have

Px
(
XN
n1 ∈ ·

)
≥ c2ν( ·∩K) for all x ∈K.

This proposition also shows that for some c3 ∈ (0,∞),

sup
n∈N0

sup
y∈K

Py
(
n< τN∂

)

inf
y∈K

Py
(
n< τN∂

) ≤ c3.

Using these facts, it then follows that, under the assumptions of Theorem 10, all the conditions
of Theorem 2.1 in [2] are satisfied, which gives the existence of QSD µN with the properties
stated in the above theorem.

In Lemma 11 we use the above result to establish existence of a QSD for the sequence {XN
n }

considered in this work, for each N ∈N. We begin with some preliminary estimates.
For r ∈N, consider

Kr
.=

{
x ∈ "o : x · 1≤ r

}
, KN

r
.=Kr ∩ "o

N, (31)

and let
σN

∂
.= inf

{
k ∈N0 : X̃N

k ∈ ∂"N
}
,

τNr
.= inf

{
k ∈N0 : XN

k ∈KN
r
}
, σN

r = inf
{
k : X̃N

k ∈KN
r
}
,

and
τ̂Nr

.= τNr ∧ τN∂ , σ̂N
r

.= σN
r ∧ σN

∂ .

Lemma 25. Fix λ0 ∈ (0,∞). There exist c(λ0) ∈ (0,∞) and r0 > 0 such that for all r ≥ r0 and
λ ≤ λ0,

Ex

(
eλσ̂N

r

)
≤ ex·1c(λ0) for all x ∈ "o

N and N ∈N.

Furthermore, if r ≥ r0, then

Ex

(
e

λ
N τ̂Nr

)
≤ ex·1c(λ0) for all x ∈ "o

N and N ∈N.

Proof. Let a=maxi ‖Fi‖∞. Given u ∈N−1N, consider the random variable Vu that repre-
sents the number of particles among Nu initial particles that die in N steps, when at each step
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102 A. BUDHIRAJA ET AL.

any particle can die independently of the remaining particles with probability 1/N. Note that
Vu ∼Bin(Nu, γ(N)), where

γ(N)= 1−
(
1− 1

N

)N

.

Let U ∼ Poi(Nad) be independent of Vx. Then, under Px,

(
X̃N
1 − x

)
· 1≤d

1
N
(U − Vx·1),

where for two real random variables Z1, Z2, we write Z1 ≤d Z2 if P(Z2 ≥ u)≥ P(Z1 ≥ u) for all
u ∈R. Also,

Ex
[
e

1
N (U−Vx·1)

]
=CN(1)e−VN

0 (1)x·1,

where CN(1)=E
(
exp

{
1
NU

})
and

E exp
{
− 1
N
Vx·1

}
= e−VN

0 (1)x·1.

Note that for x ∈ (KN
r ∪ ∂"N)c,

Px
(
σ̂N
r > 1

)
≤Ex

(
eX̃

N
1 ·11σ̂N

r >1

)
= ex·1Ex

(
e
(
X̃N
1 −x

)
·11σ̂N

r >1

)

= ex·1CN(1)e−VN
0 (1)x·1 ≤ ex·1CN(1)e−VN

0 (1)r.

By a recursive argument, for n ∈N,

Px
(
σ̂N
r > n

)
≤ ex·1e−n

(
rVN

0 (1)−logCN (1)
)
. (32)

Note that
logCN(1)=Nad

(
e1/N − 1

)
.

Also,

E exp
{
− 1
N
Vx·1

}
=

[
1− γ(N)

(
1− e−1/N)]N(x·1)

,

and thus
VN
0 (1)=−N log

[
1− γ(N)

(
1− e−1/N)]

.

Combining the above observations, we have

logCN(1)

VN
0 (1)

= Nad
(
e1/N − 1

)

−N log
[
1− γ(N)(1− e−1/N)

] ≤ ad
(
e1/N − 1

)

γ(N)(1− e−1/N)
= ad

e1/N

γ(N)
.

Since γ(N)→ (1− e−1), we can assume without loss of generality that for all N ∈N,

logCN(1)

VN
0 (1)

≤ 2ade2

e− 1
.= ϑ, VN

0 (1)≥
1
2
(1− e−1) .= ς .

Thus, for r ≥ r0
.=

(
λ
ς + ϑ

)
,

e−n
(
rVN

0 (1)−logCN (1)
)
≤ e

−nVN
0 (1)

(
λ
ς +ϑ− logCN (1)

VN0 (1)

)

≤ e−nVN
0 (1)

λ
ς ≤ e−nλ.
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Convergence of QSD in unbounded domains 103

Combining this with (32), for all N ∈N, x ∈ (KN
r ∪ ∂)c and λ0 < λ,

Ex

(
eλ0σ̂

N
r

)
≤ ex·1

eλ0 − e(λ0−λ)

1− e(λ0−λ) .

This proves the first statement in the lemma. The second statement follows on noting that
τ̂Nr ≤Nσ̂N

r for each r ∈R+ and N ∈N. !
Lemma 26. Fix λ0 ∈ (0,∞) and let r0 be as in Lemma 25. Then for each λ ∈ (0, λ0) and r ≥ r0,

sup
N∈N

sup
y∈KN

r

Ey

(
EX̃N

1

(
eλσ̂N

r

)
11<σN

∂

)
<∞.

Furthermore, for every N ∈N,

sup
y∈KN

r

Ey

(
EXN

1

(
e

λ
N τ̂Nr

)
11<τN∂

)
<∞.

Proof. We only prove the first statement. The second statement is shown in a similar
manner. Fix r ≥ r0 and λ< λ0. For notational simplicity, denote KN

r by K. Then, for y ∈K,

Ey

(
EX̃N

1

(
eλσ̂N

r

)
11<σN

∂

)
=Ey

(
EX̃N

1

(
eλσ̂N

r

)
11<σN

∂

(
1X̃N

1 ∈K + 1X̃N
1 ∈Kc

))

≤ 1+Ey

(
EX̃N

1

(
eλσ̂N

r

)
11<σN

∂
1X̃N

1 ∈Kc )
)
.

Let a .=maxi ||Fi||∞ and U ∼ Poi(Nad). Then with c(λ0) as in Lemma 27 we have

Ey

(
EX̃N

1

(
eλσ̂N

r

)
11<σN

∂
1X̃N

1 ∈Kc )
)

≤Ey

(
c(λ0)eX̃

N
1 ·111<σN

∂
1X̃N

1 ∈Kc

)

≤ c(λ0)Ey

(
ey·1+

1
N U

)

= ey·1c(λ0)e
dNa

(
e
1
N −1

)
.

Since supN∈N N
(
e1/N − 1

)
≤ e, the result follows.

The following lemma will be used to verify the condition (B2)(d) of Theorem 10.

Lemma 27. There exists r1 ∈ (0,∞) such that

θ2
.= inf
r≥r1

inf
N∈N

inf
x∈KN

r

Px
(
X̃N
1 ∈KN

r ; σ
N
∂ > 1

)
> 0.

Furthermore, for each N ∈N, there exists r1 ∈ (0,∞) such that

θ2(N)
.= inf
r≥r1

inf
x∈KN

r

Px
(
XN
1 ∈KN

r ; τ
N
∂ > 1

)
> 0.

Proof. Once again, we only prove the first statement. Consider, for z ∈N/N, a collection
of Nz particles of a single type, where each particle, independently of all other particles, has a
1/N chance of dying at each time step. Then the probability that all Nz particles are dead in N
time steps is

p(z,N) .=
(

1−
(
1− 1

N

)N
)Nz

.
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104 A. BUDHIRAJA ET AL.

Note that for any K ⊂ "o, x ∈K ∩ "N , and N ≥ 1, min
1≤i≤d

xi ≥ 1
N , and so

p(x · 1,N)≤ p(dN−1,N)=
[

1−
(
1− 1

N

)N
]d

.

In particular,

Px
(
σN

∂ ≤ 1
)
= Px

(
τN∂ ≤N

)
≤

[

1−
(
1− 1

N

)N
]d

,

and so for any K ⊂ "o,

sup
N>1

sup
x∈K

Px
(
τN∂ ≤N

)
≤

(
1− e−2

)d .= α0.

Thus, for K ⊂ "o,

Px
(
X̃N
1 ∈K|σN

∂ > 1
)
= 1− Px

(
X̃N
1 ∈Kc|σN

∂ > 1
)
= 1− Px

(
X̃N
1 ∈Kc; σN

∂ > 1
)

Px
(
σN

∂ > 1
) ,

and

sup
N>1

sup
x∈K

Px
(
X̃N
1 ∈Kc; σN

∂ > 1
)

Px
(
σN

∂ > 1
) ≤

sup
N>1

sup
x∈K

Px
(
X̃N
1 ∈Kc; σN

∂ > 1
)

1− α0
.

We will now argue that for some r1 ∈ (0,∞),

sup
r≥r1

sup
N>1

sup
x∈KN

r

Px

(
X̃N
1 ∈

(
KN
r
)c
; σN

∂ > 1
)
< 1− α0. (33)

Fix r> 0 and let x ∈KN
r . As before, let a=maxi ‖Fi‖∞. Fix k ∈N and define, for a1 ∈

(0,∞),
m=m(N, k, a1)

.=max
{
1≤ j≤ k:XN

j · 1≤ a1
}
.

Let YN
k

.= XN
k · 1. Then

YN
k = YN

m + 1
N

k∑

j=m+1

ηNj
(
XN
k
)
· 1≤d a1 +

1
N

max
{1≤l≤k}

k∑

j=l

(
Uj − Vj

)
,

where Uj are i.i.d. Poi(ad), Vj are i.i.d. Bin(Na1, 1/N), and {Uj, Vj
′, j, j′ ∈N} are mutually

independent. For a2 > a1,

Px
(
YN
k ≥ a2

)
≤ P



 max
{1≤l≤k}

k∑

j=l

(
Uj − Vj

)
≥N (a2 − a1)





≤
k∑

l=1

P




k∑

j=l

(
Uj − Vj

)
≥N (a2 − a1)



 .
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Convergence of QSD in unbounded domains 105

Thus, for each γ> 0, by Markov’s inequality,

Px
(
YN
k ≥ a2

)
≤ e−γN(a2−a1)

k∑

l=1

[
EeγU1

](k−l+1)[Ee−γV1
](k−l+1)

= e−γN(a2−a1)
EeγU1Ee−γV1

(
1−

(
EeγU1Ee−γV1

)k)

1−EeγU1Ee−γV1
.

Note that for each N ≥ 1,

(
EeγU1Ee−γV1

)
= ead(e

γ−1)
(
1− 1

N
+ 1

Neγ

)Na1
≤ ead(e

γ−1)e−a1(1−e−γ).

Let r1 be large enough so that ead(e
γ−1)er1(e

−γ−1)/2 < 1
2 and

r1 >−2
log (1− α0)

γ
.

If we fix r ≥ r1 and let a2 = r and a1 = r/2, then

Px
(
YN
k ≥ r

)
≤ e−γN r

2 ≤ e−γN r1
2 < (1− α0)N ≤ (1− α0).

This proves (33) and hence

inf
r≥r1

inf
N>1

inf
x∈KN

r

Px
(
X̃N
1 ∈KN

r | σN
∂ > 1

) .= c0 > 0.

Finally, for all N > 1, r ≥ r1, and x ∈KN
r ,

Px
(
X̃N
1 ∈KN

r ; σ
N
∂ > 1

)
= Px

(
X̃N
1 ∈KN

r | σN
∂ > 1

)
Px

(
σN

∂ > 1
)
≥ c0 (1− α0) > 0.

The result follows.
Denote by QN the collection of all µ ∈P("o

N) such that for every c ∈ (0,∞), there exists
an r ∈ (0,∞) such that

Eµ

(
ecσ̂

N
r

)
<∞.

The following result gives the existence of QSD for the chain XN for each N and provides an
important characterization of these QSD.

Theorem 11. There is a probability measure µN on "o
N such that for all xN ∈ "o

N,

δxNP
N
n

δxNPN
n

(
1"o

N

) →µN

in the total variation distance. For each N ∈N, the measure µN is a QSD for {XN
n }. It is the

unique QSD for {XN
n } that belongs to QN.

Proof. Fix N ∈N and let r1 ∈ (0,∞) and θ2 ∈ (0, 1] be as in the second statement in Lemma
27. Fix r2 ≥ r1, let K =KN

r2 , and define ϕ2:"o
N →R+ by ϕ2(x)

.= 1K(x).
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106 A. BUDHIRAJA ET AL.

Fix an arbitrary θ1 ∈ (0, θ2). From Lemma 25 there is an r3 > r2 such that for any fixed
r ≥ r3,

ϕ1(x)
.=Ex

(
θ

−τ̂Nr
1

)
<∞ for all x ∈ "o

N . (34)

We now verify the conditions of Theorem 10 with the above choice of K, ϕ1, ϕ2, θ1, and θ2.
It is clear that the condition (B1) is satisfied with n2(x)= 1. Also, (B2)(b) is satisfied, since
ϕ2(x)= 1 for each x ∈K. Since θ1 ∈ (0, 1),

inf
x∈"o

N

ϕ1(x)≥ 1.

Also, since K ⊂KN
r ,

sup
x∈K

ϕ1(x)= 1,

and so (B2)(a) holds. Next, an application of Lemma 26 and the Markov property show that
(B2)(c) holds with

c2
.= sup
y∈K

Ey

(
ϕ1

(
XN
1
)
1{σN

∂ >1}
)
.

Finally, the validity of (B2)(d) follows from Lemma 27.
Also, since

inf
x,y∈K

Py
(
XN
1 = x

) .= κ1 > 0,

the inequality in (30) is satisfied with C= κ−1
1 . Thus, from Theorem 10 it follows that there

exists a QSD µN for {XN
n } that satisfies

EµN

(
θ

−τ̂Nr
1

)
<∞, and µN = lim

n→∞
δxNP

N
n

δxNPN
n (1"o

N
)
, for any xN ∈K. (35)

We now show that µN ∈QN . Fix c ∈ (0,∞). Let ϕ2, θ2, and K be as above. Choose θ∗
1 ∈

(0, θ2 ∧ e−c). From the second statement in Lemma 25, there exists an r4 > r3 such that

ϕ̃1(x)
.=Ex

(
(θ∗

1 )
−τ̂Nr4

)
<∞ for all x ∈ "o

N .

Then from the previous argument, there is a QSD µ̃N for {XN
n } such that

Eµ̃N

(
ecτ̂

N
r4

)
≤Eµ̃N

((
θ∗
1
)−τ̂Nr4

)
<∞

and

µ̃N = lim
n→∞

δxNP
N
n

δxNPN
n

(
1"o

N

) for any xN ∈K.

From (35) we now see that µN = µ̃N and that

EµN

(
ecτ̂

N
r4

)
<∞.

Since c> 0 is arbitrary, it follows that µN ∈QN . Also, since r2 ≥ r1 is arbitrary, we see (by
choosing a larger K if needed) that the convergence in (35) holds for all xN ∈ "o

N .
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Finally we argue uniqueness. Let µ̃N ∈QN be a QSD for {XN
n }. Choose r5 ≥ r1 such that

µ̃N(KN
r5 )> 0. Consider K̃ =KN

r5 and ϕ̃2 = 1K̃ . Fix θ1 ∈ (0, θ2) and let r> r5 be such that

Eµ̃N

(
(θ1)−τ̂Nr

)
<∞, and Ex

(
(θ1)−τ̂Nr

)
<∞ for all x ∈ "o

N .

Then by the previous argument (and Theorem 10),

EµN

(
(θ1)−τ̂Nr

)
<∞ and µN(K̃)> 0.

But since the above two properties are also satisfied by µ̃N , from Theorem 10 we must have
µN = µ̃N . !

8.6. Tightness of quasi-stationary distributions
We now prove the tightness of the sequence of QSD {µN} given in Theorem 11.

Theorem 12. For N ∈N, let µN be as given in Lemma 11. Then the sequence {µN} is tight.
Proof. Recall the definition of PN

n from (7), and let P̃N
n

.= PN
nN . From Lemma 11, for all

xN ∈ "o
N ,

lim
n→∞

δxN P̃
N
n

δxN P̃N
n (1"o )

=µN .

Thus, to show that the sequence {µN} is tight, it suffices to show that the collection
{

δxN P̃
N
n

δxN P̃N
n (1"o )

, n,N ∈N
}

(36)

is tight for some sequence {xN}, where xN ∈ "o
N for each N. For this it suffices to show that for

every ε > 0, there is an L1 ∈ (0,∞) such that

sup
N∈N

sup
n∈N

PxN
(
X̃N
n · 1≥ L1 | σN

∂ > n
)
≤ ε.

From Lemma 27, for all r ≥ r1,

θ r2
.= inf
N≥1

inf
x∈Kr

Px
(
X̃N
1 ∈Kr;σN

∂ >N
)
≥ θ2 > 0,

so for every r ≥ r1, with ϕr
2(x)= ϕ2(x)

.= 1Kr (x), for each N ∈N,

PN
1 ϕr

2(x)≥ θ2ϕ
r
2(x) for all x ∈ "o

N .

Recall that a=max1≤i≤d ‖Fi‖∞ <∞ and X̃N
k = XN

Nk for k ∈N. We now consider a cou-
pling between the sequence of d-dimensional random variables {Xn

k } and a sequence {ZN
k } of

N/N-valued random variables that preserves certain monotonicity properties. Note that {Xn
k }

can be constructed as follows. Consider a collection of i.i.d. random fields {(UN
k (x), V

N
k (x)), x ∈

"o
N}k∈N where UN

k (x) is a d-dimensional random variable with mutually independent coordi-
nates distributed as Poisson random variables with means FN

i (x), i ∈ {1, . . . , d}, and VN
k (x) is
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a d-dimensional random variable, independent of UN
k (x), of mutually independent binomial

random variables with parameters (Nxi, 1/N), i ∈ {1, . . . , d}. Then

XN
k+1 = XN

k + 1
N

(
UN
k+1

(
XN
k
)
− VN

k
(
XN
k
))

, k ∈N0,

XN
0 = xN,

(37)

gives a construction for the Markov chain {Xn
k }. We can then construct, along with the above

i.i.d. random fields, i.i.d. fields
{(

AN
k (z), B

N
k (z)

)
;z ∈N/N

}

k∈N
such that

AN
k (x · 1)∼ Poi(ad − F(x) · 1), and DN

k (x)
.= AN

k (x · 1)+UN
k (x) · 1∼ Poi(ad), for all x ∈ "o

N,

and

BN
k (z)∼Bin(Nz, 1/N),

and whenever z≥ x · 1,
(
BN
k (z)− Vn

k (x) · 1
)
≤ z− x · 1, for x ∈ "o

N and z ∈N/N.

For zN ∈N/N with zN ≥ xN · 1, define

ZN
k+1 = ZN

k + 1
N

[
DN
k

(
XN
k
)
− BN

k
(
ZN
k
)]
, ZN

0 = zN .

The sequence ZN
k describes the evolution of the (scaled) population size of a single-type pop-

ulation in which at each time step any particle can die with probability 1/N independently of
other particles, and Poi(ad) new particles are born. Let YN

k
.= XN

k · 1. Then, by construction,
ZN
k ≥ YN

k for all k,N.
Fix r ≥ r1 and let xN be in Kr ∩ "N for each N. Also, let zN = xN · 1. To prove the tightness

of the collection in (36) it suffices to show that for every ε > 0, there is an L1 ∈ (0,∞) such
that

sup
N∈N

sup
n∈N

PxN
(
X̃N
n · 1≥ L1 | σN

∂ > n
)
≤ ε.

Let Z̃N
n

.= ZN
nN for n ∈N0, N ∈N, and define

σN,Z
r

.= inf
{
n ∈N0:Z̃N

n ≤ r
}
, σ Z,N

∂
.= inf

{
n : Z̃N

n = 0
}
.

Using similar arguments as in the proofs of Lemmas 25 and 26, we can assume without loss of
generality that r is large enough so that there is a θ1 ∈ (0, θ2) such that for

ϕN
1 (z)

.=Ez

(
θ

−
(
σ
N,Z
r ∧σ

Z,N
∂

)

1

)
, z ∈N/N,

and

C .= sup
N≥1

sup
y∈N/N,y≤r

Ey

(
EZ̃N1

(
θ

−
(
σ
N,Z
r ∧σ

Z,N
∂

)

1 11<σ
Z,N
∂

))
,

we have C<∞ and

Ez

(
ϕN
1

(
Z̃N
1
)
1
σ
Z,N
∂ >1

)
≤ θ1ϕ

N
1 (z)+C1B(z), z ∈N/N, N ∈N.
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For fixed L<∞, there is an L1 ∈ (r0,∞) such that for all z≥ L1, we have ϕN
1 (z)≥ L for all

N ∈N. Then, with ϕ2 = ϕ
r0
2 ,

PxN
(
X̃N
n · 1≥ L1 | σN

∂ > n
)
≤ PzN

(
Z̃N
n ≥ L1 | σN

∂ > n
)
≤ P

(
ϕN
1

(
Z̃N
n
)
≥ L | σN

∂ > n
)

≤ L−1E
(
ϕN
1

(
Z̃N
n
)
| σN

∂ > n
)
= L−1

E
(
ϕN
1

(
Z̃N
n
)
1σN

∂ >n

)

P
(
σN

∂ > n
)

≤ L−1
E

(
ϕN
1

(
Z̃N
n
)
1σN

∂ >n

)

E
(
ϕ2

(
X̃N
n
)
1σN

∂ >n

) ,

where the last inequality uses the property ϕ2 ≤ 1. Also,

ExN

(
ϕ2

(
X̃N
n
)
1σN

∂ >n

)
≥ θ2ExN

(
ϕ2

(
X̃N
n−1

)
1σN

∂ >n−1

)
)= θ2ExN

(
1[0,r]

(
X̃N
n−1 · 1

)
1σN

∂ >n−1

)
,

and, with Fn = σ {X̃k, Z̃k, k ≤ n},

ExN

(
ϕN
1

(
Z̃N
n
)
1σN

∂ >n

)
=ExN

(
E

(
ϕN
1

(
Z̃N
n
)
1σN

∂ >n1σN
∂ >n−1 |Fn−1

))

=ExN

(
ExN

(
ϕN
1

(
Z̃N
n
)
1σN

∂ >n |Fn−1

)
1σN

∂ >n−1

)

≤ExN

(
ExN

(
ϕN
1

(
Z̃N
n
)
1
σ
Z,N
∂ >n |Fn−1

)
1σN

∂ >n−1

)

≤ θ1ExN

(
ϕN
1

(
Z̃N
n−1

)
1σN

∂ >n−1

)
+CExN

(
1[0,r]

(
Z̃N
n−1

)
1σN

∂ >n−1

)

≤ θ1ExN

(
ϕN
1

(
Z̃N
n−1

)
1σN

∂ >n−1

)
+CExN

(
1[0,r]

(
X̃N
(n−1) · 1

)
1σN

∂ >n−1

)
.

Thus,

ExN

(
ϕN
1

(
ZN
n
)
1σN

∂ >n

)

ExN

(
ϕ2

(
X̃N
n
)
1σN

∂ >n

) ≤ θ1

θ2

ExN

(
ϕN
1

(
ZN
n−1

)
1σN

∂ >n−1

)

ExN

(
ϕ2

(
X̃N
n−1

)
1σN

∂ >n−1

) + C
θ2
.

Iterating this inequality, we have

ExN

(
ϕN
1

(
ZN
n

)
1σN

∂ >n

)

ExN

(
ϕ2

(
X̃N
n

)
1σN

∂ >n)

) ≤
(

θ1

θ2

)n ϕN
1 (zN)

ϕ2(xN)
+ C

θ2

1
1− (θ1/θ2)

.

Since xN ∈Kr for each N,

PxN
(
X̃N
n · 1≥ L1 | σN

∂ > n
)
≤ L−1

[
1+ C

θ2 − θ1

]
.

Tightness follows. !

8.7. Completing the proof of Theorem 2
We can now complete the proof of Theorem 2. We will apply Theorem 1. From Sections

8.1, 8.2, 8.3, and 8.4 it follows that Assumptions 1, 2, 3, and 4 are satisfied. From Section 8.5
it follows that there is a µN ∈P("o

N) such that for every N ∈N and xN ∈ "o
N ,

δxNP
N
n

δxNPN
n

(
1"o

N

)
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converges to µN in the total variation distance as n→ ∞. Furthermore, the measure µN is a
QSD for {XN}. From Section 8.5 the sequence {µN}N∈N is relatively compact as a sequence of
probability measures on ". Theorem 2 is now immediate from Theorem 1.
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