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Abstract

We introduce and study the basic properties of two ergodic stochastic control problems associated
with the quasistationary distribution (QSD) of a diffusion process X relative to a bounded domain. The
two problems are in some sense dual, with one defined in terms of the generator associated with X
and the other in terms of its adjoint. Besides proving wellposedness of the associated Hamilton—Jacobi—
Bellman equations, we describe how they can be used to characterize important properties of the QSD.
Of particular note is that the QSD itself can be identified, up to normalization, in terms of the cost
potential of the control problem associated with the adjoint.
©2021 Elsevier B.V. Allrights reserved.
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1. Introduction

Consider a time homogeneous Markov process {X(t),f > 0} with state space R¢, and
an open subset G C R?. Suppose the process is started with a distribution y, and that
if we condition on the process remaining in G for any interval [0,¢], ¢ € (0, co0), then
the conditioned distribution of X(¢) is also y. Such a distribution, if it exists, is called a
quasistationary distribution (QSD) for X and G. As with ordinary stationary distributions,
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QSDs are of interest in that, under appropriate uniqueness and communication conditions,
they can characterize (conditional) behavior over long time intervals when starting with
more general initial distributions. However, QSDs are in some ways more complicated than
stationary distributions. For example, assuming that the probability to remain in G decays,
then characterizing the QSD will also involve characterizing this decay rate A > 0. As another
example, it turns out that uniqueness issues are in general more subtle for QSDs, in that even
for very nice sets and for processes whose communication properties guarantee that there is
only one stationary distribution, it can nonetheless happen that there are many quasistationary
distributions. For general references we refer to the book [8], the survey paper [16] and the
recent work [7].

The purpose of this paper is to identify and study the basic properties of two stochastic
control problems that characterize important quantities associated with a QSD when G is a
bounded domain. The two problems are in some sense dual, with one defined in terms of the
generator associated with X and the other in terms of its adjoint. Both problems identify the
rate A with an optimal average cost per unit time (or ergodic cost). In both of these control
problems the admissible controls are absolutely continuous non-anticipative processes under
which the state process remains within G at all times a.s. As a consequence the controls are
necessarily unbounded and the associated Hamilton—Jacobi-Bellman equations are given in
terms of a boundary condition which requires the solution to diverge to oo at the boundary
of G. We prove the wellposedness of these equations and characterize the solutions as the
optimal cost and the cost potential (also referred to as the value function) of the associated
ergodic control problems.

Next, we identify the optimally controlled state processes corresponding to the two control
problems. The optimally controlled dynamics for the problem phrased in terms of the generator
of X has appeared in previous works and, under suitable conditions on the model (see [17]
and Remark 2.5), can be identified as the associated Q-process (see [6]) for the underlying
diffusion. To the best of our knowledge the optimally controlled diffusion for the ergodic
control problem associated with the adjoint of the generator of X has not appeared in previous
works on quasistationary distributions and Q-processes, although a direct construction of the
semigroup of this Markov process can be found in [11, Section 3]. The two optimally controlled
state processes are closely related in that the second process is simply the time reversal of the
first when initialized with its unique stationary distribution (see Remark 2.7(3) for a detailed
discussion). For the second ergodic control problem, we show that the value function for the
control problem identifies the QSD, at least up to normalization.

Two recent papers [1,5] have studied certain stochastic control problems that are closely
connected with quasistationary distributions. However, the formulations of the control problems
and goals of these papers are different from those in our work. Specifically, the stochastic
control problems considered in [1,5] consider controlled state dynamics with extinction states
and a cost criteria given in terms of some expectation conditioned on nonextinction. In contrast,
in the setting considered in the current work there are no extinction states but rather states that
are forbidden for the dynamics which leads to different types of stochastic control problems.
Furthermore, our goal here is not to model a controllable system where one is interested in
optimizing performance using a stochastic control formulation, but rather to use stochastic
control methods as tools for computing quantities associated with quasistationary distributions.

In forthcoming work we will make two interesting uses of the representations. One
application is to the study of the non-uniqueness issues mentioned previously, which can occur
when the domain G is unbounded. We expect that different QSDs for the same process and
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domain can be distinguished according to different classes of controls and costs that are allowed
in the ergodic control problem, in a way reminiscent of other well known examples of non-
uniqueness in control theory and the calculus of variations [12]. The other application is to
numerical approximation. Using the Markov chain approximation method for stochastic control
problems [14], we will construct and prove the convergence of schemes for approximating the
rate A and the QSD y. There has been recent work on numerical approximations for QSD
for diffusions in bounded domains [3], however the use of Markov chain approximations for
stochastic control problems appears to be novel in the context of numerics for QSD. With
the goal of constructing efficient numerical schemes, in the current work we in fact study a
collection of ergodic control problems parametrized by a smooth strictly positive function ¢ on
R?. These control problems are associated with the adjoints of the generator of the underlying
diffusion on L2(R?, ¢(x)dx) for the different choices of ¢. It turns out (see Remark 2.7(2)) that
although the optimally controlled state process for all of these control problems is the same
irrespective of the choice of ¢, the state dynamics and the cost function depend on ¢ in an
important manner. One expects that the choice of ¢ will significantly impact the performance
of the numerical schemes based on the corresponding ergodic control problem. These issues
will be investigated in a systematic manner in our forthcoming work.

Although in this paper we focus on the case of diffusion process, the analogous results can
be formulated for continuous time jump-diffusions. The case of a countable state pure jump
Markov process is particularly simple, so long as the state space X C R? does not contain
accumulation points. The simplicity is due to the fact that in formulating control problems
one can simply restrict to feedback controls that do not allow the process to exit A N G. The
corresponding results will be needed for the numerical approximations mentioned previously,
and results analogous to those proved here for diffusions can be obtained with simpler proofs.

The paper is organized as follows. In Section 2 we present our main assumptions and results.
In particular, Section 2.1 introduces the two ergodic control problems that are the focus of this
work. Theorem 2.4 gives our main results for the ergodic control problem associated with
the generator of the diffusion while Theorem 2.6 gives our results for the ergodic control
problem for the adjoint of the generator. In Theorem 2.3 we collect some well known results for
Dirichlet eigenvalue problems for elliptic operators and their relationship with quasistationary
distributions and extinction rates. Proofs of our main results (i.e. Theorems 2.4 and 2.6) are
provided in Section 3.

1.1. Notation

The following notation will be used. By a domain G in R¢ we will mean an open connected
subset of R?. The boundary of such a domain will be denoted by dG. Distance between sets
A and B in R? is defined as inf{||x — y|| : x € A, y € B} and is denoted as dist(A, B). If A is
a singleton {x} we write the distance simply as dist(x, B). For a domain G in R?, @ € (0, 1]
the Holder space C%(G) consists of continuous real functions # on G which satisfy

e sp O EON
x,y€G,x#y llx — J’||“
and for k € Ny, the space C%(G) consists of real valued functions with continuous partial
derivatives up to kth order, and such that all the kth order partial derivatives are in C*(G). We
denote by Cg’“((-?) the collection of all u € C**(G) with u(x) = 0 for x € 3G. C3(G) denotes
the collection of all functions in C3(G) which along with its first two derivatives vanish as x
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approaches dG. For k € N and o € (0, 1], we say the 9G is Cke if 3G is a d — 1 dimensional
C%* manifold, namely, each point in G has a neighborhood in which 3G is the graph of
a Ck* function of d — 1 of the coordinates (cf. [10, Section 6.2]). For twice differentiable
h:RY - R, the gradient Dh(x) is the vector (hy (x), ..., hx,(x)) and the Hessian D?h(x) is
the d x d matrix with the (i, j)th entry given as hy,x; (x), where hy, = 5-h and hyx; = %h
for 1 < i,j < d. Denote by Cg(Rd) the space of all real valued functions on R4 that are
twice continuously differentiable with the function and the derivatives vanishing at co. The
trace of a square matrix A will be denoted as tr(A). For z € C, Re(z) is the real part of z.
For a Polish space §, denote by P(S) the space of probability measures on S equipped with
the topology of weak convergence. Denote by C([0, T] : S) (resp., C([0, 00) : §)) the space
of S-valued continuous functions on [0, T] (resp., [0, oc)) equipped with the uniform (resp.,
locally uniform) topology.

2. Assumptions and main results

Let (2, F, P,{F:}:>0) be a filtered probability space equipped with an m-dimensional
standard {J;}-Brownian motion {B(¢)};>o. Consider the d-dimensional stochastic differential
equation (SDE) given as

dX(t) =b(X())dt + o(X()dB(t), X(0) = X, 2.1)
where X is a JFy-measurable random variable and » : R? — R and ¢ : R — R4*™ are
Lipschitz maps, namely for some «; € (0, co)

Ib(x) — b + llo(x) — a (W)l < k1 llx — yl| for all x, y € R, 22

Under (2.2) there is a unique pathwise solution of the SDE (2.1) for every JFy-measurable
random variable Xo. When X, has probability distribution © € PRY), we will write the
probability measure P as P,. When u = 8, for some x € RY, we will write P, simply
as P,. Let G be a bounded domain in RY. We are interested in the study of the QSD of the
Markov family (X(-), { P },cgre) On the domain G, which is defined as follows.

Definition 2.1. A probability measure y € P(G) is said to be a QSD of the Markov family
(X(-), {Pr} ere) on the domain G if

P,(X(t) e A| 1y >1)=y(A), for every ¢ € [0, 00) and A € B(G),
where 7; = inf{t > 0: X(t) € G}.

Frequently we will refer to ¢ simply as a QSD for X.
We now introduce additional assumptions on the coefficients and also a condition on the
domain. Let a = oo ”, where o7 denotes the transpose of o.

Assumption 2.2. The boundary 3G is C>* for some « € (0, 1] and the following hold for

some open set H that contains G.

1. For some a € (0,1], 0;; € C>*(H), and b; € C**(H) for all i = 1,...,d and
j=1,...,m.
2. There is a «y € (0, co) such that for every v € R4

inf v - a(x)v > kollv|%
xeH
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Consider the infinitesimal generator £ of the Markov process (2.1) which, when restricted
to CS(R""), is given as follows. For f € Cg(]Rd)

1
L(x) = bx)- Df(x) + Sula@)D* f(x)], x € R”.
The formal adjoint £* on COZ(Rd) of this operator is defined as follows. For f € C&(Rd)

1
L*f(x) = B(x) - Df(x) + itr[a(x)sz(x)] —c(0)f(x), x €RY,

where
d
Bi(x) = —bi(x) + ) (a;j(x));, 1<i=<d, (23)
j=1
and
1 d d
) = =5 Y@, + Y (Bi(0)) 24)

i,j=1 i=l1
It will be useful to consider the adjoint of £ with respect to measures other than the Lebesgue

measure. Let ¢ € CZ(RY) NC2Y(G) be such that ¢(x) > 0 for all x € RY. We denote by C* the
class of all such ¢. Consider the operator E; on C%(Rd) defined as follows. For f € Cg(]Rd),

LLF0) = —— L)), x € R, @5)
s(x)

Then L7 is the adjoint to £ on the space L*(cdx). Note that when ¢ = 1, Ly = L*. As noted
in the introduction, one of the motivations of our work is to develop numerical schemes for
computing the QSD y. Our approach for this is based on Markov chain approximation methods
for stochastic control problems (cf. [14]). Theorem 2.6 will show that there is a parametric
family of stochastic control problems, indexed by ¢ € C*, such that any stochastic control
problem in this family can be used to determine the QSD y and the decay rate A. However,
one expects that the behavior of numerical schemes for these stochastic control problems will
depend on the choice of ¢ with some choices being numerically advantageous. The function
¢ can be viewed as a design variable for the numerical scheme which may be chosen by an

algorithm developer suitably based on the problem specific data.
The following result on Dirichlet eigenvalue problems for £ and £} will be used in our
work. A A € C is a Dirichlet eigenvalue of —£ on the domain G, if for some nonzero

¢ € CHG)NC(G)
—Lop(x) =Ap(x), x€G,
P(x) =0, x € 0G.

The function ¢ is called a Dirichlet eigenvector of —L associated with the eigenvalue A.
Dirichlet eigenvalues and eigenvectors of —L7 are defined in a similar manner. Since we will
only be concerned with Dirichlet eigenvectors and eigenvalues for —£ and —L?, henceforth
we will drop the adjective “Dirichlet”.

Parts 1-5 of the following theorem are immediate consequences of well-known results.
Part 6 has been shown in [17, Proposition 1.10], under certain technical conditions on the
coefficients (see Hypothesis 2 and 3 therein) which, for example, are satisfied when a='b =
DU for some U € C3(G). We were unable to find a reference that covers part 6 in the generality
considered here. The proof of Theorem 2.3 is provided in Section 3.1.
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Theorem 2.3. Suppose Assumption 2.2 is satisfied. The following hold.

1. For any ¢ € C*, v is an eigenvector of —L7 associated with the eigenvalue z if and only
if, v = ¢U is an eigenvector of —L* associated with the eigenvalue z.

2. There exists a A € (O oo) which is an eigenvalue of —L and —L7 for every ¢ € C*,
and is such that Re(X) > A for any other eigenvalue A of —L or —L* where ¢ € C*.

3. There is a unique quasistationary distribution v for X.

4. There are ¥, @ € Cg’a((-?) such that ¥(x) > 0 and ¢(x) > 0 for all x € G, and
Y [resp., @] is an eigenvector of —L [resp., —L*] associated with the eigenvalue A.
Furthermore, f c¥x)dx =1 and f ¢ Y (x)v(dx) = 1. Any other eigenvector associated
with the eigenvalue ). of —L and —L* is a scalar multiple of v and @ respectively. For
any ¢ € C*, ¢ = ¢/¢ is an eigenvector of —L7 associated with the eigenvalue A.

5. The function \r characterizes the exit rate from G associated with the Markov process
(2.1) as follows. For all x € G

Y(x) = r1_1)1‘21o eMP.(1y > 1).

6. The unique quasistationary distribution v of the Markov family (X(-), {P¢},cre) on the
domain G can be characterized as v(dx) = @(x)dx.

2.1. Two ergodic control problems

We now introduce two ergodic control problems, one which is associated with the operator
L and the other associated with £ where ¢ € C*.
Consider the d-dimensional SDE on (2, F, P, {F}1>0)

dY(t)=bY()dt +o(Y()dB(t) + oY ())u(t)dt, Y(0) =y € G, (2.6)

where B(t) is a m-dimensional J;-Brownian motion, {u(z),0 <t < oo} is a R™-valued F;-
progressively measurable process satisfying fOT lu(2)||?dt < oo for every T < oc. The process
u is regarded as a control process modifying the original dynamics in (2.1). Such a control
process is called an admissible control (for initial condition y € G) if the following conditions
are satisfied.

C.1 There is a unique continuous, R?-valued, F;-adapted process Y that solves (2.6).
C2 P(Y(t)eGforallt e[0,00))=1.

We denote the collection of all admissible controls by .A(y). Although previously the
notation P, and E, was used for processes X that start from y, with an abuse of notation
we will continue to use this notation for probability measures (and expectations) under which
Y(0) = y. The cost associated with the control problem is defined as follows. For y € G and
u e Ay)

1 T 2
J(y,u)= hmsup E, —|lu(@®)||~ | dt.
T—oo 0 2
The optimal cost, which could in principle depend on the initial condition, is given as follows.
Fory e G

A 7o

1 rri
J(y)= inf J(y,u)= mf lim sup E f [—||u(t)||2] dt. 2.7
ueA(y) 0 2
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It will be shown in Theorem 2.4(5) that in fact J(y) is independent of y € G. This is a
well known fact for many types of ergodic control problems and the proof here is a variation
on classical arguments that accounts for the requirement C.2 of admissible controls and the
unboundedness of the control space. The theorem will also give a characterization of J in
terms of the following Hamilton—Jacobi—Bellman (HJB) equation:

1 2 : _ 1o el
2tr[cit(x)D I'x)]+ Iin [(b(x) +o(x)u)- DI'(x) + 2 flall ] =y, x€QG, 2.8)

I'(x) - oo as x —» 0G.

By a solution (I, y) of (2.8) we mean a I" € C*(G) and y € (0, oc) that satisfy the first line of
the equation for each x € G and such that the divergence statement in the second line holds.
In a more classical setup (see, for example, [2]) where either G = R? or perhaps a reflecting
boundary condition is used, y identifies the optimal ergodic cost regardless of the starting state,
while I', which is typically unique only up to an additive constant, gives what is called the
cost potential. Under suitable conditions, the cost potential generates through the equation an
optimal feedback control. The cost potential also indicates the impact of the initial condition
over finite but large time intervals, in that heuristically one expects (and can under conditions
show rigorously) that if Jr(x) is the minimal cost over [0, 7] when starting at x at time ¢t = 0,
namely,

!
= inf E ~lu@)|? | dt
= it E [ o]

then Jy(x) — Jr(y) = I'(x) — I'(y) as T — oo.
The following theorem relates the ergodic control problem (2.7) with the exit rate of the
Markov process X from the domain G.

Theorem 2.4. Suppose Assumption 2.2 is satisfied. Then the following hold.

1. Let Y and A be as given by Theorem 2.3. Define W = —logr. Then the pair (¥, \)
solves the HIB Egq. (2.8).

2. Suppose (fﬁ, i) € C%(G) x (0, o) is a solution of the HIB Eq. (2.8). Then A=A and
for some C € R, ¥(x)— fp(x) =C forall x € G.

3. Consider the control {u(t),0 <t < oo} defined in feedback form by

u(t) = —a(Y(@)'DUY (@), 0<t < o0, 2.9)
where Y is defined by (2.6) with this choice of u, namely
dY(t) =b(Y(#))dt + o(Y(1))dB(t) —a(Y()D ¥ (Y (t))dt, Y(0) =y e G. (2.10)

Then there is a unique solution to (2.10) which satisfies P(Y(t) € G forallt €
[0, o0)) = 1. In particular, u € A(y).
4. The process Y defines a Markov process on G that has a unique invariant probability
measure [ given by u(dx) = e(x)r(x)dx, where @ is from Theorem 2.3.
.Jy)=Aforall y € G.
6. The admissible control process defined by (2.9) is optimal, and in fact

o

T
A= lim %Ey f %[D!II(Y(t))-a(Y(t))D!P(Y(t))] dt.
0

T—o00
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Furthermore, the eigenvalue ) can be determined from the invariant measure | by the
formula

1
h=3 fG[D ¥ (y) - a(y)D ¥ (y)lp(dy). (2.11)

Remark 2.5. For fixed0 <t < T, let {Y T(s)}()sssr be a G-valued stochastic process with
probability law Q7' € P(C([0, t] : G)) given as

QMM(A)= P(X(eA |ty >T), AeBC(I0,1]:G)).

In [17] it is shown that under certain conditions on the coefficients (see Hypothesis 1 and 2
therein) which, for example, are satisfied when a b = DU for some U € Cl(é), as T — oo,
Q""" converges in P(C([0, t] : G)) to some Q', for every ¢t € (0, 00). This yields a probability
measure Q on C([0, c0) : G) such that the corresponding induced measure on C([0, ¢] : G) is Q'
for every t. Later works [6,11] have proved similar results under more general conditions. The
corresponding process whose probability law is O is sometimes referred to as the Q-process
(cf. [6]). The paper [17] shows that the Q-process has the same law as the diffusion ¥ defined
by (2.10) (see also [11] where the measure Q is characterized through the semigroup of the
associated Markov process). Thus the process given in (2.10) reduces, under conditions of [17],
to the Q-process associated with the diffusion (2.1) and the domain G.

We next introduce an ergodic control problem that can be used to determine the quasista-
tionary distribution of X.
Recall the operator £§ from (2.5). Then, for f € Cg(Rd)

~ 1
L7 f(x) = B(x)- Df(x)+ Etr[a(x)sz(x)] —Ex)f(x), x € RY, (2.12)
where
~ 1
B(x) = B(x) + ——a(x)Dg(x) (2.13)
s(x)
and
1 1
&(x) = c(x) — —=Bx) - Ds(x) — ~——trla(x)D*s(x)]. (2.14)
s(x) 26(x)
Consider the d-dimensional SDE on ({2, F, P, {F;};>0) given by
dZ(t) = B(Z@)dt + 6 (Z@#))dB(@) + o (Z())u(t)dt, Z0)=z € G. (2.15)

where {u(t),0 < t < oo} is a R™-valued F;-progressively measurable process satisfying
fOT lu(2)||?dt < oo for every T < oo. Such a control process is called an admissible control
(for initial condition z € G) if the following conditions are satisfied.

C’.1 There is a unique continuous, R%-valued, F, -adapted process Z that solves (2.15).
C'2 P(Z(t)ye G forallt € [0,00)) = 1.

We denote the collection of all admissible controls as .A*(z). Once again we will write P,
and E, for probabilities and expectations under which Z(0) = z a.s. The cost associated with
the control problem is defined as follows. For z € G and u € A*(2)

T
J*(z, u) = lim sup %Ez f [% lu()|? + 5(2(:))] dt, (2.16)
0

T—oo
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where ¢ is defined in (2.14). The optimal cost J* of the control problem is given as follows.
Forze G

1 T
J*(z) = inf J*(z,u)= inf limsup —E, f [— lu(e)||? + E(Z(t))] dt. (2.17)
ue A*(2) T o L2

ueA* () To00
Similar to the case of J(y) in (2.7) and part 5 of Theorem 2.4, in Theorem 2.6(5) it will

be shown that the quantity J*(z) is independent of z € G. Consider now the HIB equation
associated with the control problem (2.17):

%tr[a(x)DZF(X)] + m]gj [(5(x) +o(@u) - DI'(x) + c(x) + %llullz] =y, x€QG,

I'x) > oo as x — 0G.
(2.18)

As before, by a solution (I, y) of (2.18) we meana I" € C*(G) and y € (0, co) that satisfy the
first line of the equation for each x € G and such that the divergence statement in the second
line holds.

Together with Theorem 2.3, the following theorem relates this ergodic control problem with
the QSD of the Markov process X. We remind the reader that the function ¢ was introduced
in part 4 of Theorem 2.3 and the functions B, ¢ were defined in (2.13) and (2.14). All three
functions depend on our choice of ¢ but that dependence has been suppressed in the notation.

Theorem 2.6. Suppose that Assumption 2.2 is satisfied. Let ¢ € C*. Then the following hold.

1. Let ¢ and A be as given by Theorem 2.3. Define ¢ = —log @. Then the pair (D, 1)
solve the HIB Eq. (2.18).

2. Suppose (G-P, 2) € CHG) x (0, 00) is a solution of the HIB Eq. (2.8). Then A=A\ and
for some C € R, ;ﬁ(x) —dx) = C for all x € G.

3. Consider the control {u(t),0 <t < oo} defined in feedback form by

u(t) = —o(Z@) ' DB(Z(1)), 0 <t < oc (2.19)
where Z is defined by (2.15) with this choice of u, namely
dZ(t) = B(Z@®))dt + o (Z(1))d B(t) — a(Z()DB(Z(t))dt, Z0) =z € G. (2.20)

Then there is a unique solution to (2.20) which satisfies P,(Z(t) € G forallt €
[0, 00)) = 1. In particular, u € A*(z).

4. The process Z in (2.20) defines a Markov process on G that has a unique invariant
probability measure @ given by u(dx) = @x)y¥(x)dx, where ¢ and v are from
Theorem 2.3.

. The optimal cost satisfies J*(z) = A for all z € G.

6. The admissible control process defined by (2.19) is optimal, and in fact

n

T
A= lim %Ef [%D@(Z(I))-a(Z(t))D;ﬁ(Z(t))+E(Z(t))] dt.
0

T—o0

Furthermore, the eigenvalue ) can be determined from the invariant measure | by the
formula

1 - .
A= L [§D¢(y) ~a(y)D &(y) + E(y)] w(dy).
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Remark 2.7.

1. Although the G-valued diffusion ¥ in (2.10) has been previously studied in relation to
Q-processes (e.g. in [17]), to the best of our knowledge, the diffusion identified in (2.20)
has not appeared in previous literature on quasistationary distributions.

2. Note that for every z € G, with @ = —log g,

B(z) — a(2)D ¥(z) = B(z) — a(z)D &(2). (2.21)
Thus the equation for the process Z in (2.20) can be written as
dZ(t) = B(Z()dt +a(Z(t))dB(t) —a(Z(t)DP(Z(t))dt, Z0) =z € G. (2.22)

It follows that the optimally controlled process Z is the same for all ¢ € C*. However
note that the control problem formulated in (2.16)—(2.17) is different for different choices
of ¢. To see this we rewrite the controlled evolution as

dZ(t) = B(Z(0)dt + 6 (Z()dB(1) + o (Z(D))u(t)dt
= B(Z@))dt + o (Z(1))d B(1)

+a(Z(1)) [u(t) + aT(Z(t))Dg(Z(t))] dt
Ss(Z(1)
= B(Z))dt + o(Z(1))dB(t) + o (Z(t))u(t)dt

where

u(t) = u(t) + aT(Z(1)Dg(Z(1)).

S(Z(®)
The expectation of the integrand in the cost function can be rewritten as
2

u(t) — aT(Z(t)Ds(Z(1)

E, [%Ilu(t)ll2 + E(Z(:))] = E, B

s(Z(t))
B(Z(1)) - Ds(Z(1))

1
+c(Z(t) — “Z0)

- 2
2 t))tr[a(Z(t))D g(Z(f))]] .

With this rewriting, the controlled state dynamics is the same across all ¢ € C*, however
as seen from the above display, the cost function depends on the first two derivatives of
S.

3. We note the somewhat surprising fact, previously remarked on in [11], that according
to part 4 of Theorem 2.6 and part 4 of Theorem 2.4, the stationary distributions of the
two optimally controlled processes, one associated with £ and the other with L, are in
fact the same. Indeed, there is a close connection between the diffusions in (2.10) and
(2.20). Specifically, denoting the infinitesimal generators of the diffusions in (2.10) and
(2.20) by Ly and Lz, it can be checked that, for f € C2(G),

1
Lz(f)= Eﬁ”{a(nf), (2.23)
where n = @ is the invariant density of the two diffusions. To see this note that, for
f e CiG),

. 1
Ly(f)=B-Df + 5“[“D2f] —éf
152
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where
B=B+aD¥, ¢= Zd:(amv)i]x,
Thus -
L) = ;[ﬁ D(if) + tr[aDz(nf)]—cnf]

ﬁDf—i—;trMD fl1+ an aDf + — fﬁ*(n)

= BDf + %tr[aD f1—Df -aD®
= Lz(f),

where the third equality follows on recalling that 7 is the invariant density for ¥, and the
definitions of 8 and 7. The final equality follows on recalling that Lz is the generator
of Z and that the equation for Z can be written as in (2.22).

The equality in (2.23) suggests that the stationary optimal Y is simply the time-reversal
of the stationary optimal Z. More precisely, consider the processes Y (resp. Z) solving
(2.10) (resp. (2.20)) with Y(O) distributed as w (resp. Z(0) distributed as ). Fix T < o0
and for 0 < ¢t < T, define Z(t) = Y(T — t). Then the distributions of Z and Z on
C([0, T] : G) are the same. We give the following formal argument, which we believe
can be rigorized. For making the argument fully rigorous one needs to argue that CS(G)
is in the domain of the generator of the time reversed process Z and that it is a core for
the associated generator. It suffices to check that the generator of Z and Z restricted to
CZ(G) are the same. Denote the transition probability semigroups of ¥ and Z by {I}}
and {7} respectively. Then for 0 <s <t+s <T and f, g € C3(G)

Elg(¥(s) f(X (i + )] = fG ¢V, FOIn(y)dy = fG FOVEgm()dy.

Subtracting fG FMeg()n(y)dy from both sides and dividing by ¢ we get

[ s ELR=LON [ s e =00
G t G P

n(y)dy = n(y)dy.

Sending t — 0

fG gLy FOIM)dy = fG FOI 380y

where L is the generator of Z. Noting from (2.23) that

f ¢O)Ly FOMO)dy = f ﬁﬁ* g1 F NGy = [ L2800 F Oy
G G G

we now see that
f L2800 fO(y)dy = f FOIL 280Gy
G G

forall f,g € CS(G) which shows that the generator of Z and Z restricted to CS (G) are
the same.
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In particular when Ly is selfadjoint on L?(uw), it turns out that the processes Y in
(2.10) and Z in (2.20) are the same. As a simple example consider the one dimensional
diffusion on the bounded interval [0, K] with absorption at 0 and K, given as

X(@)=x+ B(t) —at, t € [0, 00).

In this example, it is easy to check that Ly is selfadjoint on L?(11) and both of the
optimally controlled processes ¥ and Z are governed by the stochastic differential
equation

rig T
dU(®) = = cot (EU(t)) dt + dB(?).

3. Proofs
3.1. Proof of Theorem 2.3

Part 1 is immediate from (2.5). From the Krein—Rutman theorem (cf. [9, Theorems 1.1-1.4])
it follows that there is a A € (0, co) which is a simple eigenvalue of both —£ and —L* and any
other eigenvalue A of these operators satisfies Re(A) > A. This together with part 1 proves part
2. For part 3 see [7, Theorem 1.1]. Next denote by ¥ and ¢ the unique eigenvectors of —L
and —L*, respectively, associated with A. Then again from the Krein—Rutman theorem (cf. [9,
Theorem 1.3]) these functions are strictly positive and (cf. [10, Theorem 6.14]) are in Cg’a((-?).
We normalize these eigenvectors such that

f p(x)dx =1 and / Yx)v(dx) =1.
G G

This together with part 1 completes the proof of part 4.

Part 5 follows from [7, Theorem 1.1] (see also [11, Theorem 3]) on recalling the normal-
ization used to define .

We now prove part 6. For this it suffices to show that for all f € Cg(G) (recall that CS(G)
denotes the collection of all functions in C*(G) which along with its first two derivatives vanish
as x approaches dG) and t > 0, with v(dx) = ¢(x)dx.

Eslf (X yei] -
Bl P GD

where (f, V) = [ f(x)D(dx).
To see that it suffices to work with f € CS(G), note that

Py(X(t) € 0G, 15 > t) =0 and ¥(3G) = 0.

Using the dominated convergence theorem, given any f that is bounded and measurable we
can approximate by functions with the same bound which are nonzero only in compact subsets
of G. These in turn can be approximated by elements of C3(G) using standard methods.

We now show (3.1) for f € Cé(G). Let XT(¢) be the process defined as Xt =X A1)

Then the process restricted to G admits transition subprobability densities p;r (x, ¥), namely for
feCiG),

ELf(XT(0)] = L £ x, y)dy.

Furthermore, pj(x, y) is the Green’s function of %—”t‘ = Lu on G with a Dirichlet boundary
condition on 3G (see [11, Proposition 1] for these facts). For a function A(x, y) in C*(G x G),
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denote by L£.h the function obtained by regarding £ as a differential operator in the variable
x. Define £,k in a similar fashion. Then for all x, y € G and for all > 0

L.pi(x,y) = Lipl(x,y). (32)

We sketch below the proof of (3.2) which was pointed out to us by Prof. Z.Q. Chen. Let
g,(x, y) denote the Green’s function of ?Tb: = L*u with a Dirichlet boundary condition on 3G.
For f € C(G) (the space of functions from G — R which are infinitely differentiable and
have a compact support), define

P,f(x):'fp:f(x,y)f(y)dy, 'Pff(x)ﬁ[ q:(x, ) f(y)dy, x €G, t>0.
G G

For « € (0, c0), define the corresponding resolvents as

o0

G f () = f P, f )1, GLf(r) = f P f)dt, x € G, f € CX(G).
0 0
Then by the resolvent identities, for f € C2°(G) and & > 0
(@«—=0OGf=f. (@=LNG,f = F.
This shows that, for f, g € C>(G)

f Go f(0)g(x)dx = f Go ()& — LG g (x)dx = f (@ — £)G, /()G g (x)dx
G G G
- f F)G g(x)dx.
G
This implies that, for all « > 0 and f, g € C°(G)

f f e plCx, y) F()g)dedydx =
GxG Y0

Since f, g € C°(G) are arbitrary, this shows that, for all x, y € G and « > 0,

f e g(x, y) f(0)g(y)didydsx.
0

GxG

oo 00
f e pl(x, y)dt = / e “q.(y, x)dt.
0 0

The claimed identity in (3.2) now follows by the uniqueness of the Laplace transforms.
Next note that for f € C}(G)

Elf(XT0)] = Es[f(X(t A Ta))] = (£, D) + Es [[0 a Ef(X(S))dS]

~ i+ | B [£FX (5] ds.
Thus
Eal F(X)eyor] = EsLF(XT ()]
=+ | t | [ £rowie avpesas

=+ [ [ [ ol dvewaras
0 GJG
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Using (3.2) we have
Es[f(X(t)1gy=e] = (f, V) +f0 L[Gf(y)ﬁxp;r(x, y)dyp(x)dxds

— () + f f £O) f pHex, WL o(x)dxdyds
0 G G
— (f,7) = A f f FO) f Pl e, Vo(x)dxdyds
0 G G

—(fi )~ A fﬂ EsLf (X()) 1oy, 1ds.
This shows that

Es[f(X()1gyn] = e (f, D). (3.3)

Now let g, € Cg(G) be such that sup, , |g,(x)| < co and g,(x) — 1 for all x € G. Then from
(3.3), for all n

E\")[gn(X(t))lra>r] = eim (gn, ﬁ)
Sending n — oo, by the dominated convergence theorem
PE(TB > t) = Eﬁ[1r3>t] = lim Eﬁ[gn(X(t))lr;gM] = e_M lim (gny ﬁ) = e_h-
h—00 n—0o0
Substituting this in (3.3) we obtain (3.1), showing that ¥ is a QSD. Recall from part 3 that
there is a unique QSD. This completes the proof of 6. [

3.2. A technical lemma

The following lemma will be used to show that certain stochastic differential equations with
drift functions given in terms of a solution of (2.8) or a solution of (2.18) have unique pathwise
solutions that remain in the domain G at all times.

Lemma 3.1. Under Assumption 2.2 the following hold.
(a) Let {Y(t)} solve the SDE
dY(t)=bY(t)dt +a(Y())dB(t) —a(Y())DI'(Y(2))dt,
where (I', y) is a solution of (2.8). For é € (0, 00) let
Ty = inf{¢t > 0 : dist(Y (¢), 0G) < 8}.

Then for y e G and any T € (0,00), Py{ts =T} - 0as§ — 0.
(b) Let {Z(t)} solve the SDE

dZ(t) = B(Z()dt +o(Z())dB(t) —a(Z()DI'(Z(1))dt,

where ﬁ is as in (2.13) and (I, y) is a solution of (2.18). For § € (0, 00) define t;
as in part (a) but with Y replaced with Z. Then for z € G and any T € (0, 00),
Plts;<T}—-0asé— 0.

Proof. Consider first part (a). Fix y € G. The argument is based on constructing an appropriate
martingale. We use that

I'(x;) 1 oo whenever x; — x € 0G with x; € G, 34
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and that I" is C*> on G. Let

f',l"(x) =b(x)-DI'(x) —a(x)DI'(x)- DI'(x) + %tr[a(x)sz(x)], xeq.
Note that, for x € G,

min [(b(x) +o(x)u)- DI'(x) + ;IIMIIZ] = (b(x) — %a(X)DF(X)) - DI'(x).
Using this and since I" solves (2.8) we get that, for x € G,

y = %tr[a(x)DZF(x)] + DI'(x)-b(x) — %a(x)DF(x) - DI'(x)

> %tr[a(x)DzF(x)] + DI'(x) - b(x) — a(x)DI'(x) - DI'(x) = £LT'(x),

where the second line follows on recalling that a is nonnegative definite. Without loss of
generality we also assume I' > 0. Fix T < oo and suppose that

}il’f{l)Py{Tg <T}=«k>0. (3.5)

Note that the above limit exists as the probability on the left side is non-increasing in §. Choose
M € (0, co) such that I'(y) + yT < %K‘M. From (3.4) we can find §; € (0, co) so that

I'(x) = M whenever x € G, dist(x, 3G) < &.

Then, for any § > 0,
5 AT -
E\[I'Y(ts AT)]— I'(y) = Ey/ LY (s)ds <yT
0
and therefore for any 0 <8 < 4
1
MPy(zs <T) 2 EJ\[I'Y (@s)yy<r] S EJT'Y (s AT = T'()+yT < EKM'

In particular, lims_.oPy{ts < T} < «/2 which contradicts (3.5). The result follows.
The proof of part (b) is similar on using the fact that sup,.; |C(x)| = co < o¢ and that, if
(I', y) is a solution of (2.18), then

~ ~ 1
LI(x)=Bx)-DI'(x)—a(x)DI'(x)- DI'(x)+ itr[a(x)Dzl’(x)] <(y+cp) forx € G.
Indeed, the above estimate gives, for any § > 0 and z € G,
Ts AT -
EI'(Z(ts ATN]I - I'(2) = Ez/ LI'(Z(s)ds < (y + co)T.
0
The remaining proof is as for part (a). We omit the details. [

3.3. Proof of Theorem 2.4

Recall that ¢ satisfies the equation
Ly(x) = -Ay(x), x €G,

(3.6)
Y(x)=0, x €dG.
It is easy to verify that ¥ = —log ¢ satisfies
Dy =—y DV, Y, =Y (U, — ¥y, ¥r) 3.7
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forall 1 <i, j <d. Thus

LY() = b) - DY) + 5 rla(@D Y (0]

=—y (b(x) DU (x)+ %U:[a(x)D2 V(x)] — %D ¥(x)-a(x)D Q/(x)) .

Substituting this in the first line of (3.6) and recalling that ¥(x) > 0 for x € G, we have

b(x)- DU (x)+ %tr[az(x)D2 U(x)] — %D U(x)-ax)D¥(x)=2A, forallx e G. (3.8)
Note that, for any v € R?

min [(b(x) Folw vt g ||u||2] = b@) v = 2v-atw,
Using this in (3.8) we have

%tr[a(}c)D2 LP(x)]—I—ﬂr; [(b(x) +o(x)u) - D¥(x) + % ||u||2] =A, forall x € G. (3.9)

Also, since Y¥r(x) — 0 as x — 3G, we have that ¥(x) — oo as x — 9G. Combining these
facts we have part 1 of the theorem.

Now consider part 2. Let (@, i) € C*(G) x (0, co) be a solution of the HIB equation in
(2.8). Let ¥(x) = e Y™ for x € G and Y/(x) = 0 for x € dG. Then ¥ (x) € CX(G) N C(G)
satisfies @(x) > 0 for all x € G; also it is easily verified that (1@ X) solve (3.6). By the Krein—
Rutman theorem once more (cf. [9, Theorem 1.3]) we must have that for some «, € (0, 00),
W(x) = koY (x) for all x € G and A = A. This proves part 2 with C = —logkp.

Consider now part 3. For § € (0, 00), let

G; = {x € G : dist(x, 9G) = 8}.

Then, from our assumptions on the coefficients it follows that for every y € G; there is a
continuous {F,} -adapted process Y°(t) that is unique in the strong sense [13] such that if
73 = inf{t > 0: Y?(t) € 3Gs}, then for all 0 < ¢ < 75,

t t t
Y@ =y + f bV (s))ds + f o (V*(5))dB(s) — f a(Y*())D W (Y (s))ds.
0

0 0
From the uniqueness it follows that for 0 < §; < 2 < oc,

Yi(r) =Y%2(t) forall 0 < 7 < 15,.

Also, note that G = Us..0G;. In order to complete the proof of part 3 it suffices to show that,
for every 0 <t < oo,

Py(t;, <t) > 0as é — 0.

However this is an immediate consequence of Lemma 3.1. This proves 3.

From the uniform non-degeneracy condition in Assumption 2.2(2) it follows that ¥ defined
in (2.10) has at most one invariant distribution. In order to show that wu(dx) = @(xWWr(x)dx is
an invariant measure for Y, it suffices to show that

(Lyley(x) =0 forall x € G,
158
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where L} is the formal adjoint of the infinitesimal generator Ly of the Markov process ¥ in
(2.10). To simplify notation we suppress the independent variable x. Then for f € C3(G)

1
Lyf=b-Df —Df -aDV + 5tr[apzf],
and therefore for h € C3(G)
- 1
Lyh=p-Dh+ Etr[apzh] — Ch,

where with 8 is as defined in (2.3)

. 1 . 1
=B——aDy, fi=—b——
B=8 v v, B v

and with ¢ is defined in (2.4)

d d d d
@i + Y (i), — Y Y laij ¥y 1y,
=1

i=1 i=1 j=1
d d

d
Zaij '-pxixj - ZZ(aij)x,- wxj-

1 j=1 i=1 j=1

d
@D¥)i + Y (@), (3.10)
j=1

>
I

1
2

s

(3.11)

1
Cc —

J
d

We will use ¥y, = —; /¥, as well as the identity

d
o Y ay U, = —ptlaD>y] + %Dw -aDY,

i,j=1

To show L3 [e¥] =0, since LY = —Ay and L*¢ = —Ag is suffices to establish

A 1 N4
B - Dlpy]+ Etr[aDzmo] — 8oy = YL 0 — oLy,

where ? indicates that the equality is not yet established. Expanding derivatives and using the
definitions of £ and £* gives the equivalent statement

VB - Do+ - DY + %wtr[aDzrp] + %qotr[avzvf] + D¢ -aDy — épyr
9 1 1
=vyp- Dy + EWTI[Hchp] —cp¥ — @b - DY — E(ptr[aDzw].

Cancellation of %wtr[athp] and then substitution from (3.10) gives the statement

d
YB- Dy —aDys - Dy — gb - Dyr — %auw DY+ Y (@

i,j=1

1 N
+ irptr[athlf] + D¢ -aDy — épyr

2 1
=yB- Dy —coy —gb- DY — Etptr[aDzm-
159
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Next we cancel where obvious, bring the %gotr[a DZW] term to the right hand side, substitute
for ¢ and use (3.11) to get

d
- %aw DY+ Y @)V, — co¥ — pulaDY] + gw -aDy

i,j=1
d
—0 ) (@) ¥, = —cpy — ptrlaD*y].
i,j=1

Cancellation now gives the desired result. This completes the proof of part 4.
Now let Y be as given in part 3 and for § € (0, co) let

73 = inf{t > 0 : dist(Y(¢), dG) < §). (3.12)

By It6’s formula, and since ¥ satisfies (3.8), for any ¢t > 0
t

v(Y (@) — ¥(¥(0) = forb(Y(S))-DW(Y(S))a'S—Irf0 DY (Y(s)) - o(Y(s)dB(s)
- [0 t D¥(Y(s)) - a(Y(s))D ¥(Y(s))ds
+ % fo rtr[D2 T(Y (s)a(¥ (s))]ds (3.13)
_ [0 DY) - o(Y(s)dBs)

- % f [D¥(Y(s))-a(Y(s)DW¥(Y(s))]ds + At.
0

Applying the above identity with t = T A 15, taking expectations, and dividing by T throughout

1 TAz E,[T A5
—E, f DU(Y(s)) - a(Y(s))D (Y (s))ds = 22— 2=
27 7 J, T

+ U(y) — Ey['p(Y(T A T3))] (3.14)

T
P(y) + sup, . (¥(¥))-

<A+ 7

Sending § — 0, we have by the monotone convergence theorem that

Y(y) + sup,c(¥(y))-
T .

Recalling that the process u defined in part 3 is in A(y), we now have that

T
%Ey/ [D¥(Y(5))-a(Y(s)DE(Y(s))]ds <A+
0

T—o00

1 T
J() SlimsupﬁEy / lu(s)||>ds
0

T
= limsup %Ey f [DW(Y(s)) - a(Y(s)D ¥ (Y(s))]ds < A. (3.15)
T—o0 0

We now consider the reverse direction. Suppose that u € A(y) and consider the correspond-
ing state process Y defined according to (2.6). Under Assumption 2.2, it follows from [15]
that in terms of the function dist(x, G) we can define a sequence of bounded domains {G,},cn
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such that dist(GS, G) - 0 asn — oo, and for all n € N, G, D Gn1 D G, dist(GE, G) > 0,
G, is C>* for some « € (0, 1] that is independent of n.

Forn € N, let A, € (0, co) be the principal eigenvalue of —L associated with the domain G,
(so that any other eigenvalue X,l of —L associated with the domain G, satisfies A, < Re(in)).
It is known that A, is an increasing sequence (cf. [4, Proposition 2.3]) and as n — oo A, — A.
The latter property follows, for example, from [4, Theorem 1.10].

Let i, be a strictly positive eigenvector associated with the eigenvalue A, and let ¥, =
—log ¥r,.. Note that ¥, € C%(G,) and so in particular its restriction to G is in C%(G). Applying
1td ’s formula to ¥,(¥(¢)), and noting that (3.9) is satisfied with (¥, A, G) replaced with
(¥, An, G,), we have, for any T > 0,

T T
U, (¥(T)) — U,(¥(0)) = f B(¥(s)) - D U,(¥(s))ds + f DU, (Y(s)) - o (¥(s))dB(s)
0 0
T
+ f DY (5)) - o (¥ (s))u(s)ds
0

T
+% f [ D Uo(Y (s))a(¥ (s))ds
0

T T
> f D!Ifn(Y(s)).a(Y(s))dB(s)—% f lu(s)*ds + A,T.
0 0

Thus taking expectations, and dividing by T throughout, we have

1 4 1
—Eyjo llu(s)l*ds > A, + F(Wn(y) — E,[¥,(Y(T))D. (3.16)

2T
Finally, sending T — oo and recalling that ¥, is bounded on G and Y(T) € G as.,
1 T
J(y)= inf limsup ——E u(s)||*ds > A,.
0) = inf timsup - E, [ u(o)lds > 4,

Sending n — oo we get that J(y) > A which completes the proof of part 5.

Part 6 is now immediate from part 5 and the inequality in (3.15) and (3.16).

Finally, the proof of (2.11) can be completed as in (3.14) and in (3.16) by taking ¥ to be as
given by the equation in (2.10) but with ¥ (0) distributed according to the stationary distribution
@ (and observing that fG | ¥ (y)|u(dy) < oc0). O

4. Proof of Theorem 2.6

Since many arguments are similar to that in the proof of Theorem 2.4, we will omit some
details. Recall from Theorem 2.3 that (@, A) satisfy

—L7@(x) = Ap(x), xeG

@(x) =0, x € 4G. @D

Note that, with d = — log @, (3.7) holds with (v, ¥) replaced with (@, &5). Thus, recalling
(2.12),

~ 1
LE@(x) = p(x) - Do(x) + Etr[a(X)szﬁ(X)] — ¢(x)@(x)

= —@(x) (E(x) .DJ + %u[a(x)pzé(x)] - %D&S(x) -a(x)Dd(x) + E(x)) )
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Since @(x) > 0 for all x € G, we have from (4.1) that

B(x)-D® + %tr[a(x)Dz (x)] — %D@(x) ~a(x)D®(x) + &(x) = A

for all x € G from which part 1 of the theorem follows as in the proof of Theorem 2.4.
Parts 2 and 3 follow exactly as in Theorem 2.4 by using Krein—Rutman theorem (cf. [9,
Theorem 1.3]) and Lemma 3.1(b).
Now we consider part 4. It suffices to show that

(L5 [e¥])(x) =0 for all x € G,

where L% is the formal adjoint of the infinitesimal generator Lz of the Markov process Z in
(2.20). As in the last section, we simplify notation by suppressing the independent variable.
For f € C%(G)

- ~ 1 1
L;f=B-Df —Df -aD® + Etr[asz] =B.-Df —Df -aD® + 5tr[asz],
where the second equality is from (2.21), and therefore for h € C3(G)
1
Lih = B*- Dh + Etr[aDzh] —c*h,
where using (2.3)
B*=b+aD?

and
d

1 1 ©x;
cf=—c+ —tr[athp] — —Dg-aDgp + Z(afj)x, =,
@ ¢ ij=1 ¢

Using D& = — %qu, it follows that
1
B*=b— —aDey.
@
To show L% [¢¥] =0, since Ly = —Ay and L*¢ = —Ag it suffices to show

1 9
B Dlpy] + SulaD*[pY]l - c*o¥r = Ly — Y L7,

where again the ? indicates the equality has yet to be established. Substituting for the generators
and expanding gives the equivalent statement

1 1
Wb - Do+ @b - Dy — ZaDgo -Dg —aDg - Dy + iwu[aach] + iwtr[abzw]

d
+ D¢ -aDy + coyr — yu[D’pal + %Dw -aDg — ¥ Y (@) ¢x,;
ij=1
; J
? 1 2 1 2
=¢b- Dy + SotlaD ™y ]+ yb- Dy — D (@), 05, — S VtlaD gl + cpyr.

ij=1
Cancellations then give the statement
—aDg - DY + Dy -aDyr 2z 0,
and the result follows from the symmetry of a. This completes the proof of 4.
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For proof of 5 we first argue J*(z) < A and then J*(z) > A. For the first inequality we
introduce 75 as in (3.12) with ¥ replaced with Z and apply It6’s formula to #(Z(¢)) in a
manner similar to (3.13). Then as in (3.14) we see that

TAts . ~
& [ (%D@(Z(s)) -a(Z(s))Ddi(Y(s))Jra(Z(s))) ds
0

D(y) + sup, . (2(¥))-

T .
The inequality J*(z) < A follows as in the proof of Theorem 2.4. For the reverse inequality
we once more consider domains G, O G,4+1 O G as in Theorem 2.4 and pn'ncigle eigenvalue—
(zigenvector pair (A,, @,) associated with —E"g‘. We then apply It6’s formula to @,(Z(¢)) where

¢, = —log@, and Z is given by (2.15) with an arbitrary u# € A*(z). Then as in the proof of
(3.16) we get

<A+

1 T 1 - -
;Ezf (Ellu(s)ll2 + E(Z(s))) ds > A, + f(@n(y) — E, [2,(Y(T))D.
0

The proof of the inequality J*(z) > A is now concluded as in the proof of Theorem 2.4. This
completes the proof of part 5. Part 6 is now immediate from part 5. [
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