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Abstract—State-of-the-art federated learning (FL) paradigms
utilize data collected and stored in massively distributed clients
to train a global machine learning (ML) model, in which local
datasets never leave the devices and the server performs simple
model aggregation for better privacy protection. In reality,
however, the parameter server often has access to certain
(possibly small) amount of data, and it is computationally
more powerful than the clients. This work focuses on analyzing
the convergence behavior of hybrid federated learning that
leverages the server dataset and its computation power for
collaborative model training. Different from standard FL where
stochastic gradient descent (SGD) is always computed in a
parallel fashion across all clients, this architecture enjoys both
parallel SGD at clients and sequential SGD at the server, by
using the aggregated model from clients as a new starting point
for server SGD. The main contribution of this work is the
convergence rate upper bounds of this aggregate-then-advance
hybrid FL design. In particular, when the local SGD keeps
an O(1/t) stepsize, the server SGD must adjust its stepsize to
scale no slower than O(1/t2) to strictly outperform local SGD
with strongly convex loss functions. Numerical experiments are
carried out using standard FL tasks, where the accuracy and
convergence rate advantages over clients-only (FEDAVG) and
server-only training are demonstrated.

I. INTRODUCTION

Modern machine learning (ML) paradigms largely reside

at two extremes. The first category is the centralized model

training, where the training/validation (and even testing) data

are completely accessible by a server, which is also equipped

with sufficient computation resources to carry out complex

deep neural network (DNN) model training tasks. This cen-

tralized learning paradigm has been the de facto architecture

in deep learning, but also has two major shortcomings. First,

overfitting often happens when the server does not possess

large amount of data. In this case, the limited data do not pro-

vide sufficiently accurate statistical information, which leads

to many popular optimization methods such as stochastic

gradient descent (SGD) to converge to suboptimal models.

Second, the sequential nature of SGD may significantly slow

down the convergence time, especially compared with the

linear speedup distributed SGD enjoys [1].

To address the issues of centralized training, the second

category of distributed model training has received a lot of

The work is partially supported by the National Science Foundation under
Grant ECCS-2033671.

interest over the past years [2]. In fact, real-world large-scale

problems often rely on distributed computing architectures

[3], [4], such as the server/clients paradigm in parallel SGD

[1], local SGD [5], and federated learning (FL) [6]. This

architecture is the opposite of the first category: the clients

have all the training data and carry out the heavy workload

of computing stochastic gradients over local data, while the

server simply aggregates the updated model periodically. The

distributed paradigm has several attractive properties such as

the (often linear) speedup in model convergence [5], [7], [8],

better data privacy [6], and easy scalability to adding new

clients and new local data [9]. The downside, however, is that

the server is relegated to performing very simple calculations,

which is a significant waste of its computation resources.

This paper focuses on analyzing the convergence behavior

of a hybrid federated learning paradigm, which assumes that

the parameter server also has some amount of data that can

be potentially used for ML model training. In particular, we

focus on the convergence analysis of a simple aggregate-

then-advance hybrid design, which we call cascading local-

global SGD (CLG-SGD). This paradigm sequentially con-

catenates the standard local SGD with an episode of server

SGD that starts with the latest averaged global model and

advances the model using the server dataset. This simple

and yet intuitive design allows the server to utilize its strong

computational power and available (possibly limited) dataset

to improve the global model. However, its convergence anal-

ysis is substantially more difficult due to the heterogeneous

mixture of local SGD and server-only SGD.

The main contribution of this paper is the convergence

analysis of CLG-SGD that highlights its convergence advan-

tage over local SGD. The analysis establishes that when the

local SGD keeps an O(1/t) stepsize, the server SGD must

adjust its stepsize to scale no slower than O(1/t2) to strictly

outperform local SGD with strongly convex loss functions.

In addition to the theoretical analysis, we also carry out

numerical experiment using standard MNIST and CIFAR-

10 classification tasks to evaluate the empirical benefits of

CLG-SGD over FEDAVG and server-only training.

The remainder of this paper is organized as follows. The

system model and problem formulation are presented in

Section II. CLG-SGD is given in Section III and analyzed
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in Section IV. Numerical experiment results are reported in

Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The optimization problem. We consider the standard

empirical risk minimization problem

min
x∈Rd

f(x) = min
x∈Rd

1

m

∑

z∈D
l(x; z), (1)

where f : R
d → R is the differentiable loss function

averaged over the total dataset D with size m, x ∈ R
d is

the machine learning model variable that one would like to

optimize, and l(x; z) is the loss function evaluated at data

sample z and model x. We assume that there are n distributed

clients in the system. The problem (1) can be rewritten as

min
x∈Rd

f(x) = min
x∈Rd

n
∑

i=1

mi

m
fi(x), (2)

where fi : Rd → R is the local loss function for client i,
averaged over its local dataset Di with mi data samples, and
∑

i mi = m, i.e.,

fi(x) =
1

mi

∑

z∈Di

l(x; z), ∀i = 1, · · · , n.

For simplicity, we assume that mi = mj , ∀i 6= j for the

remainder of this paper. Furthermore, let f∗ and f∗
i be the

minimum values of f and fi, respectively, i.e.,

x∗ := argmin
x∈Rd

f(x), f∗ := f(x∗);

x∗
i := argmin

x∈Rd

fi(x), f
∗
i := fi(x

∗
i ), ∀i = 1, · · · , n.

In this conference paper, the convergence analysis focuses

on the IID dataset setting across both clients and server, and

we leave the analysis of non-IID local client datasets to the

journal version. The IID setting assumes all local datasets

{Di} are sampled IID from D with distribution ν, which is

the underlying data distribution for D.

Local SGD. We assume that each client runs an (inde-

pendent) SGD sequence with E SGD steps (iterations) in

every communication round. We use T to denote the total

communication rounds. At the t-th round, client i receives

the latest global model xt from the parameter server, and

starts E SGD steps of stochastic gradient evaluations:

xi
t,0 = xt;x

i
t,τ+1 = xi

t,τ − ηt∇fi(xi
t,τ ), τ = 0, · · · , E − 1.

To simplify the notation we use fi(x) = l(x; ξi) to denote

the loss function of model x with a random data sample ξi
at client i (or equivalently, the i-th parallel SGD sequence).

After E steps of the parallel SGD, client i has the local

model xi
t+1 = xi

t,E and the parameter server collects the

local models {xi
t+1}i∈[n] and computes a simple aggregation

xt+1 = 1
n

∑n

i=1 x
i
t+1. Local SGD then moves on to the

(t+ 1)-th round.

Server-only SGD. We assume that the server has access to

a “local” (i.e., only by the server) dataset Ds with size ms,

and the server can perform model training on this dataset.

The latent distribution that generates the server dataset is

the same ν so that we have a consistent (in expectation)

optimization problem as (1), i.e., every data sample z ∈ Ds

is drawn IID from distribution ν.

With the server dataset Ds, the ML model can be trained

at the server to solve the following problem:

min
x∈Rd

fs(x) = min
x∈Rd

1

ms

∑

z∈Ds

l(x; z). (3)

This problem can be efficiently solved via SGD, which

computes the gradient using one random data sample each

time. However, when ms ≪ m, solving problem (3) often

does not solve the original problem (1).

III. CASCADING LOCAL AND GLOBAL SGD

Algorithm 1: CLG-SGD

1 Initialization: Server initializes x0;

2 for t = 0 to T − 1 do

// Server action

3 Server broadcasts xt to all clients;

// Clients actions in parallel

4 for client i ∈ [n] do

5 xi
t,0 ← xt;

6 for τ = 0 to E − 1 do

7 xi
t,τ+1 = xi

t,τ − ηt∇fi(xi
t,τ )

8 end

9 xi
t+1 ← xi

t,E ;

10 Uploads xi
t+1 to the server;

11 end

// Server action after clients upload

12 Server aggregates xs
t+1 = 1

n

∑n

i=1 x
i
t+1;

13 xs
t+1,0 ← xs

t+1;

14 for τ = 0 to K − 1 do

15 xs
t+1,τ+1 = xs

t+1,τ − γt∇fs(xs
t+1,τ )

16 end

17 xt+1 ← xs
t+1,K ;

18 end

Output: xT

A simple extension of local SGD [5] is presented in

Algorithm 1 to utilize the server computation power and

dataset. We note that this routine can be easily extended

to account for other characteristics, such as partial clients

participation and imbalanced/non-IID local datasets in fed-

erated learning, but we choose to keep it as is to facilitate

its theoretical analysis. In Algorithm 1, the client and server

gradient computations are carried out in a cascading fashion,

with model aggregation mixed in between. In particular, after

receiving the locally updated models from clients {xi
t}i∈[n]

and aggregating to have an updated global model xs
t+1, the

server uses this new model as a new starting point and
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proceeds to advance the global model to xt+1 by running

SGD for K steps. We consider the data center setting where

both local and global SGDs can uniformly randomly sample

the training dataset. However, the server may choose a

stepsize that can be different from the clients. Then, the

server broadcasts the aggregated-then-advanced global model

xt+1 to clients for round t+ 1.

Intuitively, CLG-SGD should improve the performance of

local SGD for the same number of communication rounds,

which generally dominate the overall cost of the system [10]

and thus must be carefully controlled. This intuition will be

made precise in the subsequent convergence analysis. We

also comment that since the server training has to wait for

the aggregation of client model update to complete, CLG-

SGD has greater wall-clock delay than local SGD. However,

since the parameter server is often much more computation-

ally powerful than clients, this additional model training to

advance the global model from xs
t+1 to xt+1 incurs much

smaller delay compared with client model training.

IV. CONVERGENCE ANALYSIS

It is well-known that the key difficulty in analyzing local

SGD-type algorithms lies in proving that they can decrease

the variance of the global model across communication

rounds, and the degree of variance reduction determines the

convergence rate. For the analysis of CLG-SGD, however,

this aspect of variance reduction must be characterized

over a heterogeneous concatenation of both parallel and

serial SGDs in one communication round. More generally,

this can be viewed as analyzing variance reduction of the

concatenation of a n-level local SGD (small variance) and

a 1-level server SGD (large variance). Notably, the n local

SGD processes do not share the same starting point as the

1-level server SGD, which is fundamentally different than

the many convergence analyses on local SGD/FedAvg and

their variants [1], [5], [7], [8], [11]–[13].

In this section, we present a convergence analysis of CLG-

SGD. Both strongly convex and non-convex loss functions

are analyzed. The analyses for both categories start with E =
1 (recall E is the number of iterations for local SGD) and

then extend to E > 1. The reason to explicitly analyze E = 1
is that this is a rather simple configuration which allows

us to focus on the key technical challenges associated with

cascaded local and global SGD1. In addition, this simple case

enables a rigorous comparison of CLG-SGD against vanilla

local SGD under the same configuration, and we are able

to prove that, by choosing the server stepsize γt carefully,

CLG-SGD can strictly outperform local SGD for the same

communication rounds. For both categories of loss functions,

we always assume K = 1 to simplify the analysis, i.e., the

server only runs one iteration of SGD. Extension to K > 1
can be done in a way similar to how we extend from E = 1

1In fact, E = 1 can be viewed as cascading parallel SGD [3], [4] and
server SGD.

to E > 1. Due to the space limitation, we omit the technical

proofs, which will be provided in the journal version.

A. Strongly Convex Loss Functions

We limit our attention to L-smooth and µ-strongly convex

loss functions in this subsection, as stated in Assumptions 1

and 2. In addition, we assume that the stochastic gradients

are unbiased and the variance is bounded in Assumption 3.

Assumption 1 l(x, ξ) is L-smooth: ‖∇l(x, ξ)−∇l(y, ξ)‖ ≤
L‖x− y‖ for any x, y ∈ R

d and any ξ ∈ D.

Assumption 2 l(x, ξ) is µ-strongly convex: 〈∇l(x, ξ) −
∇l(y, ξ), x − y〉 ≥ µ‖x − y‖2 for any x, y ∈ R

d and any

ξ ∈ D.

Assumption 3 SGD is unbiased: E∇l(x, ξ) = ∇L(x), and

its variance is bounded: E‖∇l(x, ξ)−∇L(x)‖2 ≤ σ2.

Our main result is given in Theorem 1.

Theorem 1 Let Assumptions 1 to 3 hold. For E = 1 and set

the stepsizes for both local and server SGD as ηt = γt =
1
µt
,

there exists a constant t0 = L2

µ2 such that for any t > t0, the

convergence of CLG-SGD satisfies

E‖xt − x∗‖2 ≤ t0
t
E‖xt0 − x∗‖2 + C0

t
, (4)

where C0 , 2σ2

µ2 (1 + 1
n
).

Theoretical comparison of CLG-SGD and local SGD.

A straightforward evaluation of Eqn. (4) reveals the same

O (1/(nt)) asymptotic convergence behavior, which has the

same well-known linear speedup in n. The important and

probably more interesting question regarding Theorem 1 is

how it compares with the convergence rate of local SGD. Our

derivation can recover the known convergence rate of local

SGD by removing the server training component. We note,

however, that setting the same stepsize of ηt = γt = 1/(µt)
as in Theorem 1 cannot produce a definitive comparison

of the two convergence rate upper bounds. This is because

although the convergence coefficient reduces in CLG-SGD,

the overall SGD noise power increases due to additional SGD

steps at the server. This calls for a more careful investigation

into the choice of server stepsize γt, which leads to the

following result.

Proposition 1 Let Assumptions 1 to 3 hold. For E = 1
and set the clients stepsize as ηt = 1

µt
, the convergence

rate upper bound of CLG-SGD in Theorem 1 is no larger

than that of local SGD under the same communication

configurations when the server stepsize satisfies

γt ≤
2

(L2 + 1)nµt2
∼ O

(

1

t2

)

. (5)

Eqn. (5) states that the scaling of stepsize should be no

slower than O(1/t2). We note that it is well established that
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local SGD only requires the stepsize to scale at O(1/t) for

strongly convex loss functions [1], [5], [7], [11]. Indeed,

Theorem 1 states that this is still sufficient to achieve

the O(1/t) convergence rate for CLG-SGD. However, if

we further require that CLG-SGD outperforms local SGD,

the server stepsize has to be more stringently controlled

to simultaneously reduce the convergence coefficient and

overall SGD noise, which leads to Eqn. (5).

Building on Theorem 1, we now relax the assumption of

E = 1 and study multiple SGD steps (E > 1) at the clients.

The main result is presented in Theorem 2.

Theorem 2 Assume Assumptions 1 to 3 hold and E > 1. If

the stepsizes are set as ηt = γt =
4
µt

, there exists a constant

t0 = 4L2

µ2 such that for any t > t0, the convergence of CLG-

SGD with strongly convex loss functions satisfies

E‖xt − x∗‖2 ≤ t0
t
E‖xt0 − x∗‖2 + D1

t
+

D2

t2
+

D3

t3
, (6)

where with D0 = 2 + 64L2

µ2 , we define

D1 =
16σ2(1 + E2

n
)

µ2
,

D2 =
256EL2σ2

∑E−1
τ=1

∑τ−1
j=0 D

j
0

µ4
,

D3 =
1028EL2σ2

∑E−1
τ=1

∑τ−1
j=0 D

j
0

µ4
.

We note that relaxing to E > 1 does not fundamentally

change the convergence behavior of CLG-SGD – the con-

vergence behavior of O(1/(nt)) is maintained. In addition,

as stated at the beginning of this section, we can extend

Theorem 2 for K > 1 and obtain the SGD noise term
(

K2 + E2/n
)

, which generalizes the (1 + 1/n) noise term

in C0 of Theorem 1. In fact, Theorem 2 can recover

Theorem 1 if we keep the same stepsize configuration and

set E = 1.

B. Non-convex Loss Functions

Non-convex loss functions are often used in training

deep neural networks. We now analyze the convergence

behavior of CLG-SGD with non-convex loss functions, i.e.,

we remove Assumption 2 from the analysis. We note that

for non-convex loss functions, it is well-known that SGD

may converge to a local minimum or saddle point, and it is

a common practice to evaluate the expected gradient norms

as an indicator of convergence. In particular, an algorithm

achieves an ǫ-suboptimal solution if

1

T

T−1
∑

t=0

E‖∇f(xt)‖2 ≤ ǫ, (7)

which guarantees the convergence to a stationary point [11].

Theorem 3 Suppose Assumptions 1 and 3 hold. When the

stepsize is set as ηt = γt =
1

L
√
T

, the convergence of CLG-

SGD with E = 1 and non-convex loss functions satisfies

1

T

T−1
∑

t=0

E‖∇f(xt)‖2 ≤
2L(f(x0)− f∗)√

T
+

σ2

√
T

(

1 +
1

n

)

.

The asymptotic convergence can be directly obtained from

Theorem 3 as O(1/
√
nT )., which matches the known result

for local SGD without server training [14]. However, we note

that a comparison to local SGD under the same configuration

is much more involved than the case of strongly convex

loss function. Fundamentally, this is due to the objective

function in Eqn. (7), which does not guarantee convergence

to the same (sub)optimal model. A detailed examination has

revealed that it is possible to prove CLG-SGD outperforms

local SGD in the early phases when both start at the same

initial model. However, they may then converge to different

stationary points as the learning process advances, making it

impossible to analytically comparing their convergence be-

havior. We will examine their performances via experiments

in Section V.

Theorem 4 reaffirms that the same O(1/
√
nT ) conver-

gence rate under non-convex loss function can be maintained

for E > 1.

Theorem 4 Suppose Assumptions 1 and 3 hold. When the

stepsize is set as ηt = γt =
1

LE
√
T

and when

T ≥ 4

(
√
n2 + 4− n)2

,

the convergence of CLG-SGD with non-convex loss functions

satisfies

1

T

T−1
∑

t=0

E‖∇f(xt)‖2 ≤
2L(f(x0)− f∗)√

T

+
σ2(E − 1)(2E − 1)

6nE2T
+

σ2

√
T

(

1

n
+

1

E2

)

.

We note that Theorem 4 recovers Theorem 3 if we

set E = 1. However, the additional requirement T ≥
4/(
√
n2 + 4− n)2 has to be enforced, while Theorem 3 does

not have any constraint on T , suggesting that it is a tighter

bound for E = 1.

V. EXPERIMENTAL RESULTS

A. Setup

Objectives. We have two goals in the experiments. First,

we would like to corroborate the theoretical analysis in

Section IV for CLG-SGD and compare with local SGD. To

do this, we construct a data center setting in the experiment,

where all parties can access the same dataset, and focus on

the CIFAR-10 image classification task. In this setting, at

each round, all the clients and the server sample a mini-

batch of data samples from the dataset independently and
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uniformly at random. We vary the number of clients as

n ∈ {2, 4, 8, 16}, local SGD iterations as E = {4, 8}, and

global SGD iterations as K = {4, 8}.
Second, we would like to evaluate the performance of

CLG-SGD in applications that are beyond data center. For

this, we choose to implement the cross-device federated

learning setting in [6] with MNIST and CIFAR-10. The total

dataset D for each task is partitioned (IID or non-IID) and

stored in different parties (clients and server) before model

training. We note, however, that we always assume the server

data shares the same distribution as the total dataset, i.e.,

Ds is always sampled IID from the total dataset with the

true distribution ν. This is necessary because otherwise the

bias in the server dataset would always derail the model

convergence, no matter how well local SGD performs at the

clients. We represent the size of server dataset as GD, which

is defined as the ratio of the actual server dataset size over the

local dataset size at each client. We assume that each client

has the same size of local dataset, and focus on varying GD
at the server to evaluate the impact of large or small server

datasets on CLG-SGD. We also vary the SGD iterations K
on the server.

Baselines. We compare CLG-SGD against the following

baseline methods: (1) Server only: server trains the ML

model by only using server training data. Note that this

case has no communication, and the plotted convergence

against communication rounds should be interpreted as the

corresponding SGD steps (i.e., the model is evaluated every

E iterations). (2) Local SGD [5]: this is also known as

FEDAVG in FL [6]. (3) Local SGD+: an enhanced version

of local SGD/FedAvg that treats the server as an additional

client. In other words, we add one more “client” that also

participates local SGD/FedAvg. Note that the aggregation

weight becomes unequal when the datasets are imbalanced,

as discussed in [6].

B. Results for SGD Theory

Fig. 1. CLG-SGD vs local SGD.

The experiment setting for Fig. 1 largely matches the

requirement of Theorems. 3 and 4, which have established

the same O(1/
√
nT ) convergence rate as local SGD but did

not prove the performance advantage of CLG-SGD. We now

see from the experiment results in Fig. 1(a) that CLG-SGD

substantially improves the convergence over local SGD, not

only in terms of the final test accuracy but also the conver-

gence rate. The former also corroborates our conjecture that

since the convergence for non-convex loss functions does not

necessarily converge to the optimal model, different methods

may converge to different stationary points. We also see

that as n increases, the gain of CLG-SGD over local SGD

diminishes, which is as expected since larger n boosts the

advantage of parallelism over the cascaded server SGD.

We further vary K with n and evaluate the impact on the

performance of CLG-SGD. Fig. 1(b) shows that for small

number of clients (n = 2), the gain of CLG-SGD over local

SGD is substantial, but further increasing the server SGD

iterations K only brings marginal benefit. This, however, is

not true for larger n = 16, where increasing K leads to more

notable gain.

C. Results for Federated Learning

We now evaluate CLG-SGD in the federated learning

framework. Local SGD, CLG-SGD and server-only are

compared for various tasks. One difference to the previous

experiment is that we now allow clients and server to

only access the data samples that are locally stored (hence

satisfying the requirement of FL). We also normalize E
and K to represent the epochs of model training on the

corresponding dataset, which is proportional to the SGD

steps when we fix the mini-batch size.

MNIST. When the local datasets are IID, Fig. 2 shows

that even when the server has 20% of total training samples

(which is a large amount for the MNIST dataset), training

at the server alone does not have the same accuracy (on the

validation set) as local SGD and CLG-SGD. On the other

hand, we see clearly that CLG-SGD with a modest choice

of K = 3 (purple line) achieves the best performance that has

more than 3× convergence improvement over the standard

local SGD/FedAvg, while increasing the value to K = 5
(brown line) is more beneficial at the beginning of training

but plateaus towards the end. Local SGD+ also has improved

performance over local SGD, which is not surprising since

it has one more “super client” that has significant amount of

data. Nevertheless, this gain is not as good as CLG-SGD.

Fig. 2. IID MNIST. Left: test accuracy; Right: training loss.

If the dataset is non-IID at clients (but server still has an

IID dataset), CLG-SGD has very noticeable advantage over

other methods as shown in Fig. 3. If the clients only contain

non-IID data samples, the performance of local SGD drops

drastically from the IID case. Local SGD+, with the addition
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Fig. 3. Non-IID MNIST. Left: test accuracy; Right: training loss.

of a “super client”, can recover some of the losses due to non-

IID data partition. However, even with a limited utilization of

server training (e.g., K = 3), CLG-SGD already outperforms

all of the local SGD-based algorithms. A larger utilization

of server training would further improve the accuracy and

move it closer to the IID performance.

CIFAR-10. This is a much harder task than MNIST.

When the server has a large portion of the total dataset,

Fig. 4 shows that the server-only baseline is not as bad as

in the MNIST task. Nevertheless, CLG-SGD still has the

best overall performance for the case of IID local dataset

partitioning. However, for the case of non-IID, the large

dataset at the server leads to dominating performance in

the early stages of model training, which diminishes the

potential gain of local SGD and CLG-SGD – we still see

from Fig. 5 that CLG-SGD with GE = 5 has the best overall

performance, but the gain is marginal.

Fig. 4. IID CIFAR-10. Left: test accuracy; Right: training loss.

Fig. 5. Non-IID CIFAR-10. Left: test accuracy; Right: training loss.

VI. CONCLUSIONS

Based on a simple observation that the parameter server

typically has, large or small, some amount of data that can

be used to help federated learning, we have analyzed the

convergence performance of a cascading local and global

SGD design that naturally combines the benefits of both

centralized and distributed SGD. This cascading structure

complicated the analysis of CLG-SGD, and we have proved

the convergence behavior under both strongly convex and

non-convex loss functions. The advantage of CLD-SGD

over vanilla local SGD was established when the stepsizes

were chosen properly. Extensive experiments using standard

MNIST and CIFAR-10 datasets were carried out, which not

only corroborated the theoretical analysis but also empiri-

cally demonstrated the performance advantage of CLG-SGD

over various baselines.
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