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Abstract—State-of-the-art federated learning (FL) paradigms
utilize data collected and stored in massively distributed clients
to train a global machine learning (ML) model, in which local
datasets never leave the devices and the server performs simple
model aggregation for better privacy protection. In reality,
however, the parameter server often has access to certain
(possibly small) amount of data, and it is computationally
more powerful than the clients. This work focuses on analyzing
the convergence behavior of hybrid federated learning that
leverages the server dataset and its computation power for
collaborative model training. Different from standard FL where
stochastic gradient descent (SGD) is always computed in a
parallel fashion across all clients, this architecture enjoys both
parallel SGD at clients and sequential SGD at the server, by
using the aggregated model from clients as a new starting point
for server SGD. The main contribution of this work is the
convergence rate upper bounds of this aggregate-then-advance
hybrid FL design. In particular, when the local SGD keeps
an O(1/t) stepsize, the server SGD must adjust its stepsize to
scale no slower than O(1/t?) to strictly outperform local SGD
with strongly convex loss functions. Numerical experiments are
carried out using standard FL tasks, where the accuracy and
convergence rate advantages over clients-only (FEDAVG) and
server-only training are demonstrated.

I. INTRODUCTION

Modern machine learning (ML) paradigms largely reside
at two extremes. The first category is the centralized model
training, where the training/validation (and even testing) data
are completely accessible by a server, which is also equipped
with sufficient computation resources to carry out complex
deep neural network (DNN) model training tasks. This cen-
tralized learning paradigm has been the de facto architecture
in deep learning, but also has two major shortcomings. First,
overfitting often happens when the server does not possess
large amount of data. In this case, the limited data do not pro-
vide sufficiently accurate statistical information, which leads
to many popular optimization methods such as stochastic
gradient descent (SGD) to converge to suboptimal models.
Second, the sequential nature of SGD may significantly slow
down the convergence time, especially compared with the
linear speedup distributed SGD enjoys [1].

To address the issues of centralized training, the second
category of distributed model training has received a lot of
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interest over the past years [2]. In fact, real-world large-scale
problems often rely on distributed computing architectures
[3], [4], such as the server/clients paradigm in parallel SGD
[1], local SGD [5], and federated learning (FL) [6]. This
architecture is the opposite of the first category: the clients
have all the training data and carry out the heavy workload
of computing stochastic gradients over local data, while the
server simply aggregates the updated model periodically. The
distributed paradigm has several attractive properties such as
the (often linear) speedup in model convergence [5], [7], [8],
better data privacy [6], and easy scalability to adding new
clients and new local data [9]. The downside, however, is that
the server is relegated to performing very simple calculations,
which is a significant waste of its computation resources.

This paper focuses on analyzing the convergence behavior
of a hybrid federated learning paradigm, which assumes that
the parameter server also has some amount of data that can
be potentially used for ML model training. In particular, we
focus on the convergence analysis of a simple aggregate-
then-advance hybrid design, which we call cascading local-
global SGD (CLG-SGD). This paradigm sequentially con-
catenates the standard local SGD with an episode of server
SGD that starts with the latest averaged global model and
advances the model using the server dataset. This simple
and yet intuitive design allows the server to utilize its strong
computational power and available (possibly limited) dataset
to improve the global model. However, its convergence anal-
ysis is substantially more difficult due to the heterogeneous
mixture of local SGD and server-only SGD.

The main contribution of this paper is the convergence
analysis of CLG-SGD that highlights its convergence advan-
tage over local SGD. The analysis establishes that when the
local SGD keeps an O(1/t) stepsize, the server SGD must
adjust its stepsize to scale no slower than O(1/t?) to strictly
outperform local SGD with strongly convex loss functions.
In addition to the theoretical analysis, we also carry out
numerical experiment using standard MNIST and CIFAR-
10 classification tasks to evaluate the empirical benefits of
CLG-SGD over FEDAVG and server-only training.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in
Section II. CLG-SGD is given in Section III and analyzed
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in Section IV. Numerical experiment results are reported in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The optimization problem. We consider the standard
empirical risk minimization problem

min f(x
min f(z)

6]

- i 3 01)
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where f : R? — R is the differentiable loss function
averaged over the total dataset D with size m, = € RY is
the machine learning model variable that one would like to
optimize, and I(x; z) is the loss function evaluated at data
sample z and model x. We assume that there are n distributed
clients in the system. The problem (1) can be rewritten as

n

min f(

x) = min
z€R4
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where f; : R — R is the local loss function for client 7,
averaged over its local dataset D, with m; data samples, and
> mi =m, e,

1
— Z lz;2),Vi=1,--- n.
i z€D;

For simplicity, we assume that m; = m;,Vi # j for the
remainder of this paper. Furthermore, let f* and f be the
minimum values of f and f;, respectively, i.e.,

& = argmin f(z), * 1= f(");
R

v} = argmin fy(2), fi = fi(a}), Vi = 1,-
r€R4

In this conference paper, the convergence analysis focuses
on the IID dataset setting across both clients and server, and
we leave the analysis of non-IID local client datasets to the
journal version. The IID setting assumes all local datasets
{D;} are sampled IID from D with distribution v, which is
the underlying data distribution for D.

Local SGD. We assume that each client runs an (inde-
pendent) SGD sequence with E SGD steps (iterations) in
every communication round. We use 7' to denote the total
communication rounds. At the t-th round, client 7 receives
the latest global model z; from the parameter server, and
starts 2 SGD steps of stochastic gradient evaluations:

- ntvfi(xi,q—%T = 07 e 7E

To simplify the notation we use f;(x) = I(z;¢;) to denote
the loss function of model = with a random data sample &;
at client ¢ (or equivalently, the ¢-th parallel SGD sequence).
After E steps of the parallel SGD, client ¢ has the local
model z},, = x}  and the parameter server collects the
local models {z? +1}ien) and computes a simple aggregation
Tip1 = = >0 xi,y. Local SGD then moves on to the
(t 4+ 1)-th round.

i i —
L0 = Tt5 Tt r41 = LT pr - L

Server-only SGD. We assume that the server has access to
a “local” (i.e., only by the server) dataset D, with size mg,
and the server can perform model training on this dataset.
The latent distribution that generates the server dataset is
the same v so that we have a consistent (in expectation)
optimization problem as (1), i.e., every data sample z € D;
is drawn IID from distribution v.

With the server dataset D, the ML model can be trained
at the server to solve the following problem:

min = min —
z€eR4 fS( )

3)

This problem can be efﬁciently solved via SGD, which
computes the gradient using one random data sample each
time. However, when m; < m, solving problem (3) often
does not solve the original problem (1).

III. CASCADING LOCAL AND GLOBAL SGD

Algorithm 1: CLG-SGD

1 Initialization: Server initializes xq;
2fort=0toT —1do

// Server action
3 Server broadcasts z; to all clients;

// Clients actions in parallel
4 for client i € [n] do
5 a:jg,o — Xy
6 for r=0to £ —1do

i _ i
7 ‘Tt,T—l-l =Ty — ntvfi(xt,'l')
8 end
i i .

9 Thy1 S Ty g
10 Uploads i, to the server;
11 end

// Server action after clients upload
12 | Server aggregates x5,, = = > "

ggreg Tiv1 = w22 133t+1’
S S .
13 Tit10 & Tip1s
14 for r=0to K —1do
S J— S S
15 Tig1,r41 = Tig1,r — ’thfs(xtﬂ,r)
16 end
17 Tit1 < Tl g
18 end
Output: =z

A simple extension of local SGD [5] is presented in
Algorithm 1 to utilize the server computation power and
dataset. We note that this routine can be easily extended
to account for other characteristics, such as partial clients
participation and imbalanced/non-IID local datasets in fed-
erated learning, but we choose to keep it as is to facilitate
its theoretical analysis. In Algorithm 1, the client and server
gradient computations are carried out in a cascading fashion,
with model aggregation mixed in between. In particular, after
receiving the locally updated models from clients {2} };c(n)
and aggregating to have an updated global model zj 4, the
server uses this new model as a new starting point and
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proceeds to advance the global model to z;4; by running
SGD for K steps. We consider the data center setting where
both local and global SGDs can uniformly randomly sample
the training dataset. However, the server may choose a
stepsize that can be different from the clients. Then, the
server broadcasts the aggregated-then-advanced global model
Zy41 to clients for round ¢ + 1.

Intuitively, CLG-SGD should improve the performance of
local SGD for the same number of communication rounds,
which generally dominate the overall cost of the system [10]
and thus must be carefully controlled. This intuition will be
made precise in the subsequent convergence analysis. We
also comment that since the server training has to wait for
the aggregation of client model update to complete, CLG-
SGD has greater wall-clock delay than local SGD. However,
since the parameter server is often much more computation-
ally powerful than clients, this additional model training to
advance the global model from xj,; to z;11 incurs much
smaller delay compared with client model training.

IV. CONVERGENCE ANALYSIS

It is well-known that the key difficulty in analyzing local
SGD-type algorithms lies in proving that they can decrease
the variance of the global model across communication
rounds, and the degree of variance reduction determines the
convergence rate. For the analysis of CLG-SGD, however,
this aspect of variance reduction must be characterized
over a heterogeneous concatenation of both parallel and
serial SGDs in one communication round. More generally,
this can be viewed as analyzing variance reduction of the
concatenation of a n-level local SGD (small variance) and
a 1-level server SGD (large variance). Notably, the n local
SGD processes do not share the same starting point as the
1-level server SGD, which is fundamentally different than
the many convergence analyses on local SGD/FedAvg and
their variants [1], [5], [7], [8], [11]-[13].

In this section, we present a convergence analysis of CLG-
SGD. Both strongly convex and non-convex loss functions
are analyzed. The analyses for both categories start with £/ =
1 (recall F is the number of iterations for local SGD) and
then extend to ' > 1. The reason to explicitly analyze I/ = 1
is that this is a rather simple configuration which allows
us to focus on the key technical challenges associated with
cascaded local and global SGD!. In addition, this simple case
enables a rigorous comparison of CLG-SGD against vanilla
local SGD under the same configuration, and we are able
to prove that, by choosing the server stepsize ~; carefully,
CLG-SGD can strictly outperform local SGD for the same
communication rounds. For both categories of loss functions,
we always assume K = 1 to simplify the analysis, i.e., the
server only runs one iteration of SGD. Extension to K > 1
can be done in a way similar to how we extend from £ = 1

n fact, E = 1 can be viewed as cascading parallel SGD [3], [4] and
server SGD.

to £ > 1. Due to the space limitation, we omit the technical
proofs, which will be provided in the journal version.

A. Strongly Convex Loss Functions

We limit our attention to L-smooth and p-strongly convex
loss functions in this subsection, as stated in Assumptions 1
and 2. In addition, we assume that the stochastic gradients
are unbiased and the variance is bounded in Assumption 3.

Assumption 1 [(x,&) is L-smooth: |Vi(x,&)—Vi(y,&)|| <
L||z — y| for any z,y € R? and any ¢ € D.

Assumption 2 [(x,&) is p-strongly comvex: (Vi(x,§&) —
Vi(y, &),z —y) > pllr - y”Q Jor any z,y € R? and any
£eD.

Assumption 3 SGD is unbiased: EVi(x,€&) = VL(x), and
its variance is bounded: E||Vi(z,£) — VL(z)|]? < o2

Our main result is given in Theorem 1.

Theorem 1 Let Assumptions 1 to 3 hold. For E = 1 and set
the stepsizes for both local cmci server SGD as ny = v = ﬁ7
there exists a constant to = L5 such that for any t > tg, the

convergence of CLG-SGD satisfies
Bl - o"[? < CBlles, — o'+ 22, @)
2
where Cy = %(1 +1).

Theoretical comparison of CLG-SGD and local SGD.
A straightforward evaluation of Eqn. (4) reveals the same
O (1/(nt)) asymptotic convergence behavior, which has the
same well-known linear speedup in n. The important and
probably more interesting question regarding Theorem 1 is
how it compares with the convergence rate of local SGD. Our
derivation can recover the known convergence rate of local
SGD by removing the server training component. We note,
however, that setting the same stepsize of 7, = v = 1/(ut)
as in Theorem 1 cannot produce a definitive comparison
of the two convergence rate upper bounds. This is because
although the convergence coefficient reduces in CLG-SGD,
the overall SGD noise power increases due to additional SGD
steps at the server. This calls for a more careful investigation
into the choice of server stepsize <;, which leads to the
following result.

Proposition 1 Let Assumptions 1 to 3 hold. For E = 1
and set the clients stepsize as 1y = ﬁ the convergence
rate upper bound of CLG-SGD in Theorem 1 is no larger
than that of local SGD under the same communication
configurations when the server stepsize satisfies
<
RARS (

2 1
—~0( = ]. 5
L? 4+ 1) nut? <t2) ©)
Eqgn. (5) states that the scaling of stepsize should be no
slower than O(1/t%). We note that it is well established that
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local SGD only requires the stepsize to scale at O(1/t) for
strongly convex loss functions [1], [5], [7], [11]. Indeed,
Theorem 1 states that this is still sufficient to achieve
the O(1/t) convergence rate for CLG-SGD. However, if
we further require that CLG-SGD outperforms local SGD,
the server stepsize has to be more stringently controlled
to simultaneously reduce the convergence coefficient and
overall SGD noise, which leads to Eqn. (5).

Building on Theorem 1, we now relax the assumption of
FE =1 and study multiple SGD steps (E > 1) at the clients.
The main result is presented in Theorem 2.

Theorem 2 Assume Assumptions ] to 3 hold and E > 1. If

the stepsizes are set as Ny = Yy = m f, there exists a constant

to = AL% cuch that for any t > tg, the convergence of CLG-
SGD wzth strongly convex loss functions satisfies
t D D D
Elle: —a*|* < DEllae, — 2" + =5+ - + 5 (6)
where with Dy = 2 + fo, we define
160%(1 4 £2)
Dl = /142 & )
256 EL%02 Y0 ST D}
D2 - 4 ’
I
1028EL%0% Y77 37770 Dﬂ
D3 = e

We note that relaxing to £ > 1 does not fundamentally
change the convergence behavior of CLG-SGD - the con-
vergence behavior of O(1/(nt)) is maintained. In addition,
as stated at the beginning of this section, we can extend
Theorem 2 for K > 1 and obtain the SGD noise term
(K% + E?/n), which generalizes the (1 + 1/n) noise term
in Cy of Theorem 1. In fact, Theorem 2 can recover
Theorem 1 if we keep the same stepsize configuration and
set B = 1.

B. Non-convex Loss Functions

Non-convex loss functions are often used in training
deep neural networks. We now analyze the convergence
behavior of CLG-SGD with non-convex loss functions, i.e.,
we remove Assumption 2 from the analysis. We note that
for non-convex loss functions, it is well-known that SGD
may converge to a local minimum or saddle point, and it is
a common practice to evaluate the expected gradient norms
as an indicator of convergence. In particular, an algorithm
achieves an e-suboptimal solution if

T-1

= Z E|Vf(z)|? <e, 7

which guarantees the convergence to a stationary point [11].

Theorem 3 Suppose Assumptions 1 and 3 hold. When the
stepsize is set as ny = vy = ﬁ, the convergence of CLG-
SGD with E = 1 and non-convex loss functions satisfies

S o 2L(f(w) =) o® (]
F 3 Bl < R0 (14 D),

The asymptotic convergence can be directly obtained from
Theorem 3 as O(1/v/nT)., which matches the known result
for local SGD without server training [14]. However, we note
that a comparison to local SGD under the same configuration
is much more involved than the case of strongly convex
loss function. Fundamentally, this is due to the objective
function in Eqn. (7), which does not guarantee convergence
to the same (sub)optimal model. A detailed examination has
revealed that it is possible to prove CLG-SGD outperforms
local SGD in the early phases when both start at the same
initial model. However, they may then converge to different
stationary points as the learning process advances, making it
impossible to analytically comparing their convergence be-
havior. We will examine their performances via experiments
in Section V.

Theorem 4 reaffirms that the same O(1/v/nT) conver-
gence rate under non-convex loss function can be maintained
for £ > 1.

Theorem 4 Suppose Assumptions I and 3 hold. When the

stepsize is set as Ny = vy = T{/T and when

4
2
(Vn?+4+4—n)?
the convergence of CLG-SGD with non-convex loss functions
satisfies
T—1

< 2L (o) = 17)

T Z]Ellvf )|” < T

oc2(E-1)2E-1) o2 (1 1
6nE2T +ﬁ< +E?)

We note that Theorem 4 recovers Theorem 3 if we
set £ = 1. However, the additional requirement 7" >
4/(v/n? + 4 — n)? has to be enforced, while Theorem 3 does
not have any constraint on 7', suggesting that it is a tighter
bound for £ = 1.

V. EXPERIMENTAL RESULTS
A. Setup

Objectives. We have two goals in the experiments. First,
we would like to corroborate the theoretical analysis in
Section IV for CLG-SGD and compare with local SGD. To
do this, we construct a data center setting in the experiment,
where all parties can access the same dataset, and focus on
the CIFAR-10 image classification task. In this setting, at
each round, all the clients and the server sample a mini-
batch of data samples from the dataset independently and
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uniformly at random. We vary the number of clients as
n € {2,4,8,16}, local SGD iterations as E = {4, 8}, and
global SGD iterations as K = {4, 8}.

Second, we would like to evaluate the performance of
CLG-SGD in applications that are beyond data center. For
this, we choose to implement the cross-device federated
learning setting in [6] with MNIST and CIFAR-10. The total
dataset D for each task is partitioned (IID or non-IID) and
stored in different parties (clients and server) before model
training. We note, however, that we always assume the server
data shares the same distribution as the total dataset, i.e.,
Dy is always sampled IID from the total dataset with the
true distribution v. This is necessary because otherwise the
bias in the server dataset would always derail the model
convergence, no matter how well local SGD performs at the
clients. We represent the size of server dataset as GD, which
is defined as the ratio of the actual server dataset size over the
local dataset size at each client. We assume that each client
has the same size of local dataset, and focus on varying GD
at the server to evaluate the impact of large or small server
datasets on CLG-SGD. We also vary the SGD iterations K
on the server.

Baselines. We compare CLG-SGD against the following
baseline methods: (1) Server onmly: server trains the ML
model by only using server training data. Note that this
case has no communication, and the plotted convergence
against communication rounds should be interpreted as the
corresponding SGD steps (i.e., the model is evaluated every
E iterations). (2) Local SGD [5]: this is also known as
FEDAVG in FL [6]. (3) Local SGD+: an enhanced version
of local SGD/FedAvg that treats the server as an additional
client. In other words, we add one more “client” that also
participates local SGD/FedAvg. Note that the aggregation
weight becomes unequal when the datasets are imbalanced,
as discussed in [6].

B. Results for SGD Theory

==== 2 _E4 Local SGD
. — 2 K4 E4 (LG SGD
=17 ——- n4_E4 Local SGD
— m_Kd_E4_CLG SGD

n8 E4 Local 56D

18 K4 E4 CLG SGD
i -=- n16_E4 Local SGD
4 — nl6 K4 E4 CLG S6D

-=- n2_E4_Local SGD
— n2_K4_E4_CLG SGD
—:= n2_K4_EB_CLG SGD
-=- nl6_EB Local SGD

— nl6_K4_EB_CLG_SGD
—:= nlé KB E§ CLG SGD

testing accuracy

20 0 0 80 100 0 40 0 80 100
communication rounds communication rounds

Fig. 1. CLG-SGD vs local SGD.

The experiment setting for Fig. 1 largely matches the
requirement of Theorems. 3 and 4, which have established
the same O(1/+/nT) convergence rate as local SGD but did
not prove the performance advantage of CLG-SGD. We now
see from the experiment results in Fig. 1(a) that CLG-SGD
substantially improves the convergence over local SGD, not
only in terms of the final test accuracy but also the conver-

gence rate. The former also corroborates our conjecture that
since the convergence for non-convex loss functions does not
necessarily converge to the optimal model, different methods
may converge to different stationary points. We also see
that as n increases, the gain of CLG-SGD over local SGD
diminishes, which is as expected since larger n boosts the
advantage of parallelism over the cascaded server SGD.

We further vary K with n and evaluate the impact on the
performance of CLG-SGD. Fig. 1(b) shows that for small
number of clients (n = 2), the gain of CLG-SGD over local
SGD is substantial, but further increasing the server SGD
iterations K only brings marginal benefit. This, however, is
not true for larger n = 16, where increasing K leads to more
notable gain.

C. Results for Federated Learning

We now evaluate CLG-SGD in the federated learning
framework. Local SGD, CLG-SGD and server-only are
compared for various tasks. One difference to the previous
experiment is that we now allow clients and server to
only access the data samples that are locally stored (hence
satisfying the requirement of FL). We also normalize E
and K to represent the epochs of model training on the
corresponding dataset, which is proportional to the SGD
steps when we fix the mini-batch size.

MNIST. When the local datasets are IID, Fig. 2 shows
that even when the server has 20% of total training samples
(which is a large amount for the MNIST dataset), training
at the server alone does not have the same accuracy (on the
validation set) as local SGD and CLG-SGD. On the other
hand, we see clearly that CLG-SGD with a modest choice
of K = 3 (purple line) achieves the best performance that has
more than 3Xx convergence improvement over the standard
local SGD/FedAvg, while increasing the value to K = 5
(brown line) is more beneficial at the beginning of training
but plateaus towards the end. Local SGD+ also has improved
performance over local SGD, which is not surprising since
it has one more “super client” that has significant amount of
data. Nevertheless, this gain is not as good as CLG-SGD.

06 — Server onlyE=5

~- Server anly,E=3

— Local SGD.E=3

~=- Local 5GD.E=5
CLG_SGD,GD=20,E=3K=3

CLG_SGD,GD=20,E=5,k=5
—— Local SGD+,6D=20,E=3 =3
03 === Local SGD+,GD=20,E=5 K=5

— Serveronly,E=5
-- Serveranly,E=3
— Loeal SGDLE=3
- Local SGOLE=5

testing accuracy
training loss

QLG_SGD,GD=20E=3K=3
€1G_56D,GD=20,E=5K=5

—— Local 5GD+,GD=20,F=3,K=3 o1 E—
-~ Local SGD+ GD=20,E=5,K=5 e —
—

75 00 125 150 175 200 25 50 75 100 125 150 175 200
communication rounds communication rounds

Fig. 2. IID MNIST. Left: test accuracy; Right: training loss.

If the dataset is non-IID at clients (but server still has an
IID dataset), CLG-SGD has very noticeable advantage over
other methods as shown in Fig. 3. If the clients only contain
non-IID data samples, the performance of local SGD drops
drastically from the IID case. Local SGD+, with the addition
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communication rounds
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=

g. 3. Non-IID MNIST. Left: test accuracy; Right: training loss.

of a “super client”, can recover some of the losses due to non-
IID data partition. However, even with a limited utilization of
server training (e.g., i = 3), CLG-SGD already outperforms
all of the local SGD-based algorithms. A larger utilization
of server training would further improve the accuracy and
move it closer to the IID performance.

CIFAR-10. This is a much harder task than MNIST.
When the server has a large portion of the total dataset,
Fig. 4 shows that the server-only baseline is not as bad as
in the MNIST task. Nevertheless, CLG-SGD still has the
best overall performance for the case of IID local dataset
partitioning. However, for the case of non-1ID, the large
dataset at the server leads to dominating performance in
the early stages of model training, which diminishes the
potential gain of local SGD and CLG-SGD - we still see
from Fig. 5 that CLG-SGD with GE = 5 has the best overall
performance, but the gain is marginal.

— Server anly,E=5
=== Server anly,E=3
— Local SGD,E=3
20 === Local SGD,E=5
CLG_SGD,GD=5E=3,k
18 (CLG_SGD,GD=!
— Local SGD+,6D=5,E=3,K=3
~-= Local SGD+,6D=5,E=5K=5

— Serveronly,E=5
-=- Serveronly,E=3
—— Local SGD.E=3
-~ Local SGD,E=S
CLG_SGD,GD=5E=3K=3
€LG_SGD,GD=5 5

— Local 56D+,GD=5,E=3,K=3 10
--- Local 56D+,60=5,E=5.K=5

testing accuracy
training loss

75 00 125 150 175 200 3 50
communication rounds

75100 125 150 175 200
communication rounds

Fig. 4. 1ID CIFAR-10. Left: test accuracy; Right: training loss.
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Fig. 5. Non-IID CIFAR-10. Left: test accuracy; Right: training loss.

VI. CONCLUSIONS

Based on a simple observation that the parameter server
typically has, large or small, some amount of data that can
be used to help federated learning, we have analyzed the

convergence performance of a cascading local and global
SGD design that naturally combines the benefits of both
centralized and distributed SGD. This cascading structure
complicated the analysis of CLG-SGD, and we have proved
the convergence behavior under both strongly convex and
non-convex loss functions. The advantage of CLD-SGD
over vanilla local SGD was established when the stepsizes
were chosen properly. Extensive experiments using standard
MNIST and CIFAR-10 datasets were carried out, which not
only corroborated the theoretical analysis but also empiri-
cally demonstrated the performance advantage of CLG-SGD
over various baselines.

REFERENCES

[1] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223—
311, 2018.

[2] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Computing Surveys (CSUR), vol. 53, no. 2, pp. 1-33, 2020.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems, 2012.

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in USENIX OSDI,
October 2014, pp. 583-598.

[5] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. ICLR, 2018.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proceedings of the 20th AISTATS, Apr. 2017, pp. 1273—
1282.

[7]1 P.Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2525-2536.

[8] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” arXiv:1905.03817, 2019.

[9]1 K. Bonawitz et al., “Towards federated learning at scale: System

design,” in SysML Conference, 2019.

D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and

V. Saligrama, “Federated learning based on dynamic regularization,”

in International Conference on Learning Representations, 2021.

[11] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for

the design and analysis of communication-efficient SGD algorithms,”
in ICML Workshop on Coding Theory for Machine Learning, 2019.

[12] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the

convergence of FedAvg on non-IID data,” in International Conference

on Learning Representations, 2020.

Z. Li and P. Richtdrik, “A unified analysis of stochastic gradient

methods for nonconvex federated optimization,” arXiv:2006.07013,

2020.

H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-

vergence and less communication: Demystifying why model averaging

works for deep learning,” in Proc. AAAI, vol. 33, 2019, pp. 5693-5700.

[10]

[13]

[14]

Authorized licensed use limited to: University of Virginia Libraries. DownlcA&d on June 12,2022 at 00:10:09 UTC from IEEE Xplore. Restrictions apply.



