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Abstract

We present a Bayesian nonparametric model for conditional distribution estimation
using Bayesian additive regression trees (BART). The generative model we use is based
on rejection sampling from a base model. Typical of BART models, our model is flexible,
has a default prior specification, and is computationally convenient. To address the
distinguished role of the response in the BART model we propose, we further introduce
an approach to targeted smoothing which is possibly of independent interest for BART
models. We study the proposed model theoretically and provide sufficient conditions for
the posterior distribution to concentrate at close to the minimax optimal rate adaptively
over smoothness classes in the high-dimensional regime in which many predictors are
irrelevant. To fit our model we propose a data augmentation algorithm which allows
for existing BART samplers to be extended with minimal effort. We illustrate the
performance of our methodology on simulated data and use it to study the relationship
between education and body mass index using data from the medical expenditure panel
survey (MEPS).

1 Introduction

We consider here the Bayesian nonparametric estimation of a conditional distribution of a
response Y; based on predictors X;. A common strategy is to introduce a latent variable b,
and set Y; ~ h(y | X;,b,0) given b, where h(y | z,b,0) is a parametric model. This includes
mixture models where b is a latent class indicator and f(y | ) = > oo wk(z) h(y | z,6k)

(Dunson and Xing, 2009; Rodriguez and Dunson, 2011; Dunson and Park, 2008; MacFEachern,



1999), as well as Gaussian process latent variable/covariate models where b is continuous
(Wang and Neal, 2012; Kundu and Dunson, 2014; Dutordoir et al., 2018).

A conceptually simpler approach models f(y | z) by tilting a base model:
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We refer to h(y | x,0) as the base model and ®(u) as the link function. When r(y,z) is
a constant, this model reduces to the base model, allowing the user to center the model
on a desired parametric model. A special case of (1) takes ®(u) = e* and r(y,z) to be
a Gaussian process (Tokdar et al., 2010). In the context of (marginal) density estimation,
Murray et al. (2009) proposed the Gaussian process density sampler (GP-DS), which sets
®(11) to be a sigmoidal function such as a logistic function ®(u) = (14+e7#)~!. Methods based
on Gaussian processes have elegant theoretical properties (van der Vaart and van Zanten,
2008) but are somewhat difficult to work with due to the integral in the denominator of (1)
and the need to compute, store, and invert an N x N matrix. The goal of this paper is to

propose a method based on (1) with the following desirable properties.
e Algorithms for posterior inference are straight-forward to implement.

e The posterior possesses strong theoretical properties, obtaining posterior convergence

rates close to the best possible.

e For routine use, a default prior can be used which empirically obtains good practical

performance.

e It is easy to shrink towards the base model h(y | x,0) so that the model naturally

adapts to the complexity of the data.

We propose a modification of the Bayesian additive regression trees (BART) model of Chip-
man et al. (2010) which we refer to as the SBART density sampler (SBART-DS). We choose

r(y,x) to be a soft decision tree (Linero and Yang, 2018; Irsoy et al., 2012) which smooths
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in a targeted fashion on the the response variable y (Starling et al., 2018). A benefit of the
BART framework is that we are able to develop default priors based on well-known heuristics
and show that these default priors perform well in practice.

To construct inference algorithms, we restrict the choice of ®(u) to the logit, probit,
or t,-link functions. Our proposal is similar to the GP-DS, but is adapted to conditional
distribution estimation. We construct an efficient MCMC algorithm to sample from the
posterior distribution by combining a data augmentation scheme of Rao et al. (2016) with
an additional layer of data augmentation. After performing this data augmentation, we
can update the parameters of the model using the same Bayesian backfitting algorithm as
Chipman et al. (2010). Given that one has the ability to perform Bayesian backfitting, the
algorithms we construct are simple to implement.

We present theoretical results which show that suitably-specified SBART-DS priors attain
convergence rates which are close to the best possible. Simplifying slightly, we show that
in the high-dimensional sparse setting, where only D — 1 < P of the P predictors are

relevant, SBART-DS can obtain the oracle rate of convergence ¢, = n~—2¢/(a+D)

up-to a
logarithmic term where « is related to the smoothness level of the true conditional density.
In a simulation study we show that these theoretical results are suggestive of what occurs in
practice, as SBART-DS is capable of filtering out irrelevant predictors.

In Section 2 we review BART/SBART and describe a naive version of SBART-DS; we
then describe our approach for targeted smoothing which centers the prior on r(-,x) on a
desired Gaussian process. In Section 3 we provide data augmentation algorithms for fitting
(1) when the link function ®(u) is the probit, logit, or Student’s ¢, link. In Section 4 we
present our theoretical results. In Section 5 we conduct a simulation study which shows that
SBART-DS outperforms a method based on Dirichlet process mixtures when the number of
predictors is moderate. We then apply SBART-DS to data from the Medical Expenditure
Panel Survey (MEPS) to study the relationship between educational attainment and body

mass index in adult women. We conclude in Section 6 with a discussion.
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Figure 1: Schematic which shows how a decision tree induces a regression function. Asso-
ciated to the decision tree on the left is a partition of [0, 1]* with the function g(z; 7, M)

returning iy, pt2, Or 3.

2 Model Description

2.1 Review of Bayesian Additive Regression Trees

The Bayesian additive regression trees (BART) framework models a function r(z) as a sum
of regression trees r(z) = Z%zl g(x; Ty, M,,) where Ty, denotes the topology and splitting
rules of a binary decision tree and M,,, = {fim1, - - -, fmr,, } gives a prediction for each of the
L,, terminal (leaf) nodes of 7,,. Figure 1 gives a schematic which shows how predictions are
obtained from a given (single) tree. Chipman et al. (2010) specify a prior w7 for the tree
topologies and a prior ma on the p,’s given 7T,,. We write r ~ BART (77, mr¢) to denote
that r has the associated BART prior. Typically, we set i, ~ Normal(0, JZ /M) so that
Var{r(z)} = o7, regardless of the number of trees used in the model.

A problem with methods based on decision trees is that realizations of r ~ BART (77, m)
will not be continuous in x. This is particularly problematic for density estimation, as we
generally prefer estimates of the density to be continuous. A smooth variant of BART called
soft BART (SBART) was introduced by Linero and Yang (2018). This takes the tree Ty,
to be a smooth decision tree, where observations are assigned a weight ¢,,,(z) to leaf node

¢ of tree m. As a point of comparison, non-soft decision trees use the weights p,,.(z) =



[1e a,, 1 (zj, < Cy) B I(x;, > Cy)™, where A,,, denotes the collection of branches which
are ancestors of leaf ¢ of tree m, j, denotes the coordinate along which b splits, C}, denotes
the cutpoint of branch b, and R} is the indicator that the path from the root to the leaf goes

right at b. A soft decision tree instead takes

ome(x) = [T @ Com)™ {1 = (a; Gy, 1)},

beA, v

where ¢ (x; ¢, 7) is the cumulative distribution function of a location-scale family with location
c and scale 7. If ¢(z) = I(z < 0) (or, equivalently, as 7 — 0) we get a standard decision
tree. If we instead take i(z) to be a smooth function then r(y, z) will also be smooth. The
parameter 7 is analogous to a bandwidth parameter, with larger values of 7 giving smoother
functions. Like Linero and Yang (2018) we will take ¢)(z) = (1+e7%)~! and use tree-specific
bandwidths 7,,,. We write r ~ SBART (77, o) to denote that r has an SBART prior, where
77 is now a prior over the soft trees 7,,.

For completeness, we describe the prior over the tree structures we will use. We assume
that each coordinate x; of the predictors has been scaled to lie in [0, 1]. This can be done,
for example, by applying the empirical quantile transform to a subset of the observed values
for each predictor and then interpolating the remaining values. A tree 7, is sampled in the

following steps.
1. Initialize 7, with an single node of depth D,,, = 0.

2. For all nodes of depth D,,, make that node a branch node, with a left and right child

of depth D,, + 1, with probability a(1 + D,,)~?; otherwise, make the node a leaf node.

3. For all branch nodes b of depth D,,, sample the splitting coordinate j, ~ Categorical(s)
and a splitting point Cj, ~ Uniform(L,,, U;,) where Hle[Lj, U,] denotes the hyperrect-

angle of z-values which lead to node b.

4. If all nodes of depth D,, are leaf nodes, terminate; otherwise, set D,, < D,, + 1 and



return to Step 2.

The distribution of the splitting coordinate j, ~ Categorical(s) determines how relevant
a-priori we expect predictor to be; for example, if s; = 0.99 we expect most splitting rules
to use x;, whereas if s; = 107!° we expect none of the splitting rules to use x;. Linero
(2018) took advantage of this fact to perform automatic relevant determination (Neal, 1995)
for BART models by using a sparsity-inducing Dirichlet prior s ~ Dirichlet(a/P, ..., a/P)
for some a < P. We also use this prior for the splitting proportion, which will allow us to
perform automatic relevance determination in the density regression setting. This prior is

crucial for proving that the posterior adapts to the presence of irrelevant predictors.

2.2 The Soft BART Density Sampler

Our modeling strategy is based on the representation (1) f(y | ) o< h(y | z,0) ®{r(y,z)}
where ®(u) is a continuous, non-negative, monotonically increasing link function. Taking
r(y,z) = Y{f(y | x)/h(y | ,0)} we see that (1) is valid whenever h(y | x,0) and f(y | z)
have the same support for all z.

A naive approach is to set r(y, z) ~ BART (77, ma¢). This specification has two problems.
First, r(y, ) will not be smooth in y so that draws from the prior and posterior of f(y | z)
will also not be smooth. The smoothness problem can be addressed by setting r(y, z) ~
SBART (w7, mp) instead. It is this model that we study the theoretical properties of in
Section 4.

Setting 7(y,z) ~ SBART(mr,mr) is still naive because of the way in which BART
shrinks r(y, z) towards additive models such that r(y, z) = Zz‘)/:l ro(y, x) where each r,(y, x)
depends on a small subset of the coordinates of (y,z) (Linero and Yang, 2018; Rockova and
van der Pas, 2017). In the regression setting, we often expect that an underlying regression
function will have exactly this form; in the case of sparse additive models (Ravikumar et al.,
2007) for example, each r,(y,x) would depend on exactly one coordinate. This type of

shrinkage-towards-additivity is not appropriate for conditional density estimation due to the

6



distinguished nature of the response y; we instead want the predictors to interact with y.
To see why we want to force interactions with y, consider the strictly additive function
r(y,x) =ry(y) +Z§:1 rp(x,). If we take ®(1) = e#, a massive cancellation occurs in (1) and
the model reduces to f(y | z) = h(y | z,0) ®{ry(y)}/ [ h(y | z,0) ®{ryv(y)} dy, effectively
eliminating the predictors from the model. More generally, any trees which do not split on
Y; will have no effect on f(y | ). While exact cancellation is unique to the exponential link,
it occurs in an approximate form for the logistic link as well. At the other extreme, SBART-
DS uses a prior which favors utilizing a small number of coordinates. If y is eliminated,
massive cancellation occurs irrespective of the link function, and gives f(y | z) = h(y | z, ).
Combined with a Dirichlet prior for s, this approach encodes prior information that f(y | x)

is exactly equal to h(y | z,0) with high probability.

2.3 Targeted Smoothing via Random Basis Function Expansions

We use the “targeted smoothing” approach of Starling et al. (2018) to overcome the problems
of the naive SBART-DS prior. They set r(y,z) = v+ Z%zl 9(y; x, Trn, My,) where each leaf
node is associated with a Gaussian process; that is, for fixed x, we have g(y; z; Tm, My,) ~
GP{0,3(-, )} where GP{0, X(-,-)} denotes a mean-0 Gaussian process with covariance func-
tion X(y,y').

Starling et al. (2018) consider the case where the number of unique values y takes, N,,
is small. When N, is large this is no longer practical due to the need to store and invert an
N, x N, matrix for all m trees. For SBART-DS we cannot guarantee that this is the case.
Instead, we set r(y,z) = v+ 2%21 B..(y) g(x; T, M,,) where each B, is a random basis
function.

To construct our approximation, consider the case where 7, us a non-soft decision tree.
For fixed z we can write 7(y,z) = v + M~Y/2 Z%zl tm Bm(y) where the pu,,’s are iid
Normal(O,afL) random variables. Under mild regularity conditions on the distribution of

the B,,’s, as M — oo a functional central limit theorem will hold and this will converge



weakly to a Gaussian process with mean « and covariance function

S(y,y') = o B{Bi(y) Bi(¥)}. (2)

This is the same as the distribution of r(-,x) used by Starling et al. (2018). Rather than
directly choose the basis functions B,,, we specify 3(y,y’) and derive a distribution for B,,
which matches (2). We make use of the following proposition, which follows from Bochner’s

Theorem, and is stated for completeness.

Proposition 1. Let ¥(y,y') = 0.0(y — v/') be a shift-invariant kernel with 6(0) = 1. Then
there exists a distribution P(dw) such that X(y,y') = o E{2 cos(wy + b) cos(wy’ + b)} where
w ~ P(dw) and b ~ Uniform(0, 27). Moreover, §(-) is the characteristic function of P(dw),
i.e., 8(t) = [exp{iwt} P(dw).

The approach of using random Fourier features in this fashion was introduced by Rahimi
and Recht (2008). It follows from Proposition 1 that we can take B,,(y) = v/2 cos(wmy + by,

where wy, P(dw) and by, s Uniform(0, 27). We list some possible choices below.
e w,, ~ Normal(0,p?) corresponds to the squared exponential covariance X(y,y’) =
anexp{—(y —y')*/(20°)}.

e Setting w,, ~ t, with location 0 and scale p~! gives the Matern kernel

1 Voly =y |\ Voly — |
2
B.y) = T1902=1(1/2) ( p Berz p

where K, (-) is a modified Bessel function of the second kind. The exponential kernel

YX(y,y) = 03 exp{—|y — ¢/|/p} is a special case (v =1).

e In general, P(dw) = p(w) dw can be obtained from the inversion formula p(w) =
o [e7™ §(t) dt. For example, inverting a Cauchy kernel 6(¢) = {1+ t2/p*} ! shows
that we can get a Cauchy kernel by sampling from the Laplace distribution p(w) =

L o—plwl
ce .



2.4 Shrinking Towards the Base Model

A desirable feature of mixture models is the ability to center the prior on a parametric
submodel. Consider the infinite mixture > -, mx(z) h(y | z,0x). If we choose the prior so
that 71(z) &~ 1 with high probability, then we are encoding prior knowledge that h(y | z,6)
is itself highly likely to give an adequate representation of the data. For models based
on Dirichlet process mixtures f(z,y) = [h(x,y | 8) F(df) with F' ~ Dirichlet(a, Fp), for
example, this can be accomplished by choosing a prior which shrinks « heavily towards 0.
We can accomplish a similar goal with SBART-DS. Note that if ®{r(y,x)} is a constant
then it can be canceled in (1) so that f(y | z) reverts to h(y | ,0). One approach is to use
a prior which encourages o7, to be close to 0, so that ®{r(y,z)} ~ ®(v), which is constant.
A second approach is to use a prior which encourages v to be large and positive, so that
O{r(y,z)} ~ 1.

To quantify these observations, let A, = sup, | 2%:1 B (y) 9(z; T, Min) /0,4, let (1)
satisfy Condition L in Section 4, and let H(f,g) and K(f,g) denote the Hellinger distance
and Kullback-Leibler divergence respectively. Note that the distribution of A, is free of o,,.
An application of Lemma 1 shows that H(f,g) = O,(0,) and K(f,g) = Op(ai). It can
further be shown that K{h(y | z,0), f(y | x)} < —log ®(y —0,A,), so that choosing a prior
which makes v—o0,A, large will also make the Kullback-Leibler divergence small; this can be
accomplished by centering ~ far away from 0. More quantitative results might be obtained

from concentration inequalities for A,, but we do not pursue this here.

2.5 Default Prior Specification

In our illustrations we use the following default prior specification. Following Chipman et al.
(2010), we fix the parameters « = 0.95 and 5 = 2 in the prior for w7 and set fi,, ~
Normal(O,ai /M). We fix M = 50; in general, we recommend trying multiple values of
M. We set 0, ~ Half-Cauchy(0,1.5) to learn an appropriate value of o, from the data.

By having mass near o, = 0, this also allows us to revert to the base model h(y | z,0). To
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induce further shrinkage to the base model, we set v ~ Normal(1, 1). This has the additional
benefit of making the prior prefer models for which ®{r(y,z)} is close to 1, which reduces
the number of latent variables we need to introduce when fitting the model by MCMC (see
Section 3). We use tree-specific bandwidths 7, which are exponentially distributed with
mean 0.1. To perform variable selection we specify s ~ Dirichlet(a/P,...,a/P) and use a
hyperprior a/(a + P) ~ Beta(0.5,1).

For targeted smoothing, we approximate the squared exponential kernel by setting w,, ~
Normal(0, p=2). We set p? ~ Gam(a,, 3,) to allow the length scale to be learned from the
data. As a default, we set o, = 1 and 3, = 7%/4 after scaling the Y;’s to have unit variance.
This choice is based on the expected number of times a Gaussian process with length-scale
p is expected to cross 0 on the interval (—1,1): the expected number of crossings is 2/(mwp)
so that if p? = 4/7% the expected number of crossings is 1. Smaller values of p? correspond
to more wiggly functions. Because our prior has positive density at 0, setting a, = 1 allows
for the possibility that the function is very wiggly while defaulting to the prior belief that it
is not.

We choose the base model to be a Gaussian linear model with h(y | z,0) = ¢(y |
g+ 2 By, 09) Where ©(y | p, o) is the density of a Gaussian random variable with mean p

1

2. In our examples we set (g, By, o) x 0y .

and variance o We can also shrink towards

a semiparametric Gaussian model by setting h(y | x,0) = o{y | ro(z), 09} where ry(x) ~

SBART (7%, 7%,) and the default prior of Linero and Yang (2018) is specified for (7%, 7%,).

3 Posterior Computation

3.1 Rejection Sampling Data Augmentation

We use a two-layer data augmentation scheme which removes both the intractable integral
in the denominator of (1) and the link function ®(u) from the likelihood. Our approach is

based on the following method for sampling from f(y | ).
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S h(y | x,0) and sample A; P

Proposition 2. Suppose that we sample Y1,Ys, Y3, ...
Bernoulli[®{r(Y;,z)}]. Let Z denote the Y; associated with the smallest index J + 1 for
which Ay = 1. Then conditional on {J,A; : 1 <j < J+1}, Z is a draw from f(y | z)

h(y | z,0)®{r(y,z)} and Y1,...,Y; are draws from f(y | z) < h(y | x,0)[1 — ®{r(y, z)}].
We make use of Proposition 2 by augmenting the latent index J and the sequence of

rejected points. Associated to each observation Y; = Y;o we sample Y;; ~ h(y | X;,0) and

Ay; ~ Bernoulli[®(r(Y;;, X;)] until we reach the first iteration J; 4+ 1 such that A;j,41) = 1.

We then work with the augmented state {Y;; : 1 <i < N,0 < j < J;}, which has likelihood
; N Ji
T X0 < ] (‘D{T(Yz’oyXi)}H[l — {r(Yy, )H) : (3)
1=1j=0 i=1 j=1

For more details on the derivation of this expression, see Rao et al. (2016), who consider
the GP-DS model. At this stage Rao et al. (2016) propose the use of Hamiltonian Monte
Carlo to sample from the posterior distribution. This is not an option for us, as the 7,,’s are

discrete parameters.

3.2 Bayesian Backfitting for Probit, Logit, and Student’s {, Links

We now apply data augmentation strategy of Albert and Chib (1993). Suppose that ®(u) is
cdf of either the probit, logit, or Student’s ¢, link. We can then associate to each A;; from

Section 3.1 a random variable

Zij = (Y5, Xi) + €5, ;; ~ Normal(0, A\ ), Aij ~ g(A).

Y z]

Setting A;; = I(Z;; > 0) recovers the Bernoulli|®{r(Y;;, X;)}] model. This model captures

the three links we consider:

e For the probit link, )\;jl has a point-mass distribution at 1.

e When ®(p) = T, (p) is the Student’s ¢ link with v degrees of freedom, \;; ~ Gam(v/2,v/2).
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e When ®(u) = (1 + e )71 is the logistic link, )\;jl/2/2 has a Kolmogorov-Smirnov
distribution (Holmes and Held, 2006).

Compared to (3), introducing the latent variables (Z;;, \;;) leads to a more tractable likeli-
hood:

N J;

T2V | Xi.6) x Normal{ Z; | r(Yij, X), A3'} % g(s)). (4)

i=1 j=0
After reaching expression (4) we can apply a Bayesian backfitting algorithm to update r(y, x).
While the Bayesian backfitting algorithm originally proposed by Chipman et al. (2010) does
not account for heteroskedasticity in the Z;;’s, several recent works have shown how to
accommodate this (Bleich and Kapelner, 2014; Pratola et al., 2017; Linero et al., 2018).
Consider the prior v ~ Normal(/s, )\;1) and let R;; = Zij—’y—zm#k, B (Yi) 9(Xi; Ty M.

When updating 7y it suffices to consider the backfit model

Rz‘j = Bkz(}/z]) g(Xz, 77“ Mk) + Eij, Cij ~ Normal(O /\4_1), (5)

) 7,]'

where recall that pg(X;) is the weight associated to leaf ¢ of tree k at X;. Let ¢r(X;) be
a vector with /™ entry ¢g(X;). Then we can rewrite (5) as Ri; = Bi(Yi;) (X)) pr +
€;; or, in multivariate form, R ~ Normal(Byu, A™') where the rows of By correspond to
Bi(Yi;)ee(X;)" and A is diagonal with entries A;;. If y1, ~ Normal(0, ') where A, = M/o?.

then it follows from standard properties of the multivariate Gaussian distribution that

R ~ Normal(0, A" + BB /A\,)]  and 6
6
[t | R] ~ Normal(VB, AR, V) where V = (B, ABj, + A\, 1)~

After applying the Woodbury matrix identity and the matrix determinant lemma (Brookes,

2011, matrix identities), the likelihood of 7}, after integrating out iy is given by

N
(2m) N2 T A2 det(I+ B{ ABi/A,) exp —% {R'AR — 6" (1+ Bl ABy/\) 'Y (7)

=1
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Algorithm 1 An iteration of the data augmentation algorithm for SBART-DS

1. Fori=1,...,N,set Yjo = Y; and sample Y1, Y, ... ~ h(y | X;,0) and A;, Aig, ... ~
Bernoulli[®{r(Y;;, X;)}] until A;;,11) = 1. Retain the samples Yo, ..., Y.

k3

2. Make an update to # which leaves the full conditional 7(6 | —) oc w(6) [T, ; (Y35 | Xi, 0)
invariant.

3. Sample Z;; ~ f(z | pij) truncated to (0,00) for j = 0 and (—o00,0) for j > 0 where
wi; = r(Yi;, X;) and f(2 | pi;) is a normal, logistic, or Student’s ¢, distribution with
location j;; and scale 1 for the probit, logit, and 7, links respectively.

4. Sample \;; from its full conditional given Z;; forall 1 <¢ < N and 0 < j < J,.
e Lor the probit link, A;; = 1.
e For the Student’s ¢, link, \;; ~ Gam{(v + 1)/2, (v + [Z;; — r(Yy;, Xi)]*)/2}.

e For the logit link, sample )\;jl using the rejection sampling algorithm of Holmes
and Held (2006).

5. Form =1,..., M update (T, M, B,,,) using the Metropolis-Hastings algorithm given
in Algorithm 2.

where § = B] AR. The value of (7) is that it avoids taking the determinant of and inverting
the N x N matrix A~' + BB} /\,. The marginal likelihood L (T, B) given by (7) is used
to update both the tree topology Ty and the random basis function By (y) using Metropolis-
Hastings.

Our final MCMC scheme is summarized in Algorithm 1, which calls Algorithm 2 to
update (T, B, My). The Markov transition function Q(7x — 7") used to propose new tree
topologies is a mixture of the BIRTH, DEATH, and CHANGE proposals described by Chipman

et al. (1998) and a PRIOR proposal which samples 7’ from the prior.

4 Theoretical Results

We show that SBART-DS attains close to the minimax-optimal concentration rate for
(P + 1)-dimensional functions r(y,z) in the high-dimensional sparse setting. All proofs

are deferred to the appendix. We consider the case where r(y,z) depends on only D
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Algorithm 2 Metropolis-Hastings update for (7, My, B)

1. Compute R as in (5).
2. Propose a tree 7' from a Markov transition kernel Q(7, — T7).
3. Set T, = T’ with probability

min { WT(T,) Lk(Tla Bk)
WT('E) Lk('ﬁc,Bk)

QT — Tr) 1}
Q(ﬁ N 7-/) 9 .
Otherwise, do not change 7.

4. Sample a basis function B'(y) = v/2cos(w'y + ') by sampling ' ~ P(dw) and b ~
Uniform(0, 27). Then set By, = B’ with probability

min{M 1}.
Lk(77€76k)’

5. Sample ji; ~ Normal(VBAR,V) where V = (Bl AB,, +1/A,)"" and A\, = M/o?.

Otherwise, do not change Bj.

coordinates of (y,x)" where the relevant subset is unknown and must be learned from
the data. Following Pati et al. (2013) we study concentration with respect to the inte-
grated Hellinger distance. Let H(f, fo) = {[(\/foly | z) — /F(y | #)* dy Fx(dz)}"/? de-
note the Fx-integrated Hellinger distance between fo(y | x) and f(y | x). The covariates
X, are assumed to be iid from F'x, which is not assumed to be known. We similarly de-
fine an Fx-integrated Kullback-Leibler neighborhood. Define K(fo, f) = [ fo log dy dF'x
and V(fo. f) = [ fo <log ) dy dFx. Then the integrated Kullback-Leibler neighbor-
hood is given by K(¢) = {f: K(fo, f) <€ and V(fo, f) < €*}. Let D,, denote the data
{X;,Y; i =1,...,n} and let II denote a prior distribution on r and additional hyperpa-
rameters. We say that the posterior has a convergence rate of at least ¢, if there exists a
constant C' > 0 such that II{H(f,, fo) > Ce€, | D,} — 0 in probability. To simplify the
theoretical results, we assume that X; and Y; take values in [0, 1]+, We additionally make

the following assumptions about the true data generating process Fy.
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Condition F (on Fy): The true conditional density fo(y | ) can be written as f,,(y | x)
for some g € C*E([0, 1]7*1) where C*£([0, 1]) is the ball of radius R in the space of a-Holder

smooth functions on [0, 1]7*1, where f.(y | x) is defined as

h(y) ®{r(y,x
bl A0S0
J @) @{r(y, )} dy
for some density h(y) on [0,1]. Additionally, we can write ro(y,x) = 7(y, xs) where zs =
{z;:j €S} and S is a subset of {1,..., P} of cardinality D — 1. That is, ro(y, ) depends
on at most D coordinates of (y,x)". The number of predictors P = P, depends on n but is

such that log(P + 1) < C,n" for some 7 € (0, 1).

Remark 1. For simplicity, we consider ¥ and S to be independent of n; in particular, we do
not consider D diverging with n. There exists some 1o such that f, = f,, by taking ro(y |
z) = &Y fo(y | z)/h(y)}, provided that h(y) and fo(y | x) have common support. When
h(y) = 1, the assumption that 7 is continuous on [0, 1]7+! implies that O~ < fo(y | ) < C

for some constant C, i.e., fo(y | ) is bounded and bounded away from 0.

Condition L (on ®): The link function ®(yx) is strictly increasing and is the cumulative
distribution function of a random variable Z which is symmetric about 0 and has density

o(p) satisfying ¢(u)/®(u) < K for all p and some constant /.

Remark 2. We show in the appendix that Condition L holds for the logit (K = 1) and ¢,

(K = /v) links, but fails for the probit link.

Condition P (on II): The function r is given an SBART (7, mp) prior with M trees,

conditional on (7, g, M). Additionally, the prior II satisfies the following conditions.

(P1) There exists positive constants (Cysq, Ca2) such that the prior on the number of trees

M in the ensemble is II(M = t) = Cyy exp{—Chpatlogt}.

(P2) A single bandwidth 7, = 7 is used and its prior satisfies II(1 > x) < C,y exp(—2°72)
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and TI(77! > 2) < Crzexp(—z) for some positive constants C,q, ..., 4 for all
sufficiently large z, with C\9, Cy < 1. Moreover, the density of 77! satisfies m,-1(z) >

C,5e= 7% for large enough = and some positive constants Cr5 and Cg.

(P3) The prior on the splitting proportions is s ~ Dirichlet(a/P*, ..., a/P*%) for some £ > 1

and a > 0.

(P4) The jime’s are iid from a density m,(u) such that m,(u) > C,1e~%21l for some coeffi-
cients Cy1, C\2. Additionally, there exists constants C),3, Cyq such that II(|pme| > t) <

C3 exp{—t“m} for all ¢.

(P5) Let D, denote the depth of tree 7,,. Then II(D,, = k) > 0 for all £ = 0,1,...,2D
and II(D,, > dy) = 0 for some dy > D.

(P6) The gating function ¢ : R — [0, 1] of the SBART prior is such that sup, |¢/'(x)| < oo
and the function p(z) = ¥ (z){1—1(z)} is such that [ p(z) dz > 0, [ |z]™p(z) dz < oo
for all integers m > 0, and p(x) can be analytically extended to some strip {z : |3(z)| <

U} in the complex plane.

Remark 3. Conditions other than Condition P might also be used. Recent work of Rockova
and van der Pas (2017), for example, studies concentration results for BART using different
sets of conditions, and the conditions overall are weaker than the conditions presented here.
A downside of these results is they apply only when non-smooth decision trees are used,
which induces non-smooth densities. Condition P2 holds when 7 is given an inverse-gamma
prior truncated from above, while Condition P4 holds when the p,,,’s are given a Laplace
prior, although as noted by Linero and Yang (2018) this could potentially be weakened to
allow a Gaussian prior with a hyperprior on o, (we do not pursue this here). Condition
P6 holds for the logistic gating function ¢ (z) = {1 + exp(—x)} !, which is used by default.
Condition P5 holds if we truncate the prior of Chipman et al. (2010) at some large dy, which

is extremely unlikely to affect the MCMC in practice. Hence, satisfying P5 is not a practical
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concern. Condition P1 is problematic because BART implementations do not use a prior on
M. In practice, we find that selecting M by cross validation is more reliable than using a
prior; we recommend either (i) using cross validation to select M or (ii) fixing M at a default

value such as M = 200 (recommended by Chipman et al., 2010) or M = 50 (used here).

Theorem 1. Suppose that Condition L, Condition F, and Condition P hold. Then there
exists a positive constant C such that II{H(fo, fr) > Ce, | D,} — 0 in probability, where

€n = n~% D) (Jog n)t + w andt =a(D+1)/(2a + D).

We prove Theorem 1 by checking (a)—(c) in Proposition 3, which are analogous to conditions

of Ghosal et al. (2000).

Proposition 3. Let 11 denote a prior for a conditional density f(y | =) and let €, and
€. be sequences of positive numbers such that €,,¢, — 0, ne2 — oo, and €, < &,. Let
N(e, F, H) denote the e-covering number of F with respect to H (i.e., the number of balls of
radius € required to cover F). Suppose that there exists positive constants C,Cx such that
for all sufficiently large n there exist sets of conditional densities F,, satisfying the following

conditions:
(a) Entropy Bound: log N(&,, Fn, H) < Cyné.
(b) Support Condition: TI(F¢) < exp{—(C + 4)ne2}.
(¢) Prior Thickness: TI{f € K(e,)} > exp(—Cne?).
Then TI{H (fo, ) > A€, | D,,} — 0 in probability for some constant A > 0.

The proof that our SBART prior satisfies these conditions is similar to the proof of
Theorem 3.1 of van der Vaart and van Zanten (2008), who established posterior convergence
rates for density estimation using logistic Gaussian processes. We use a collection of results of
Linero and Yang (2018), who established results similar to (a)—(c) for a regression function

r ~ SBART (77, ) with respect to the supremum norm |7 — rollee = sup,, |[7(y,z) —
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ro(y, x)|. We then use the following lemma, which links the supremum-norm neighborhoods
of rq with the integrated Hellinger and Kullback-Leibler neighborhoods of fy; this allows
us to convert results about the || - ||ooc-norm neighborhoods to results about the integrated
neighborhoods. This lemma is similar to Lemma 3.1 of van der Vaart and van Zanten (2008),

but with exponential link ®(u) = e* replaced with a link satisfying Condition L.

Lemma 1. Let ®(u) be a link function satisfying Condition L. Then for any measurable

functions u,v : [0, 1]P1 — R we have the following:
o H*(fu, fo) < K2|lu — |5, exp(Kllu — vlloo);
o K(fu,fo) S llu—vlZ exp(Kllu —vljoc)(1 4+ 2K[Ju — v]|); and
o V(fu, fo) S llu—vllZ exp(Kllu — vloc) (1 4 2K]Ju — v][ ).
The expression a < b here denotes that a < Cb for some constant C' depending only on K.

More generally, one expects that Theorem 1 can be improved to allow for additive de-
compositions 7o(y, x) = ijl 10j(y, ) where the r;’s are functions which are D;-sparse and
ozj-HAﬁ[lder continuous. Results in this framework (Linero and Yang, 2018; Rockova and

van der Pas, 2017; Yang and Tokdar, 2015) suggest that we should be able to obtain a rate

€n = ijl n~2/2ei+Di) Jog(n)t + \/n~1D;log(P + 1), which is a substantial improvement
on Theorem 1. One difficulty with extending these results is that Condition P2 only allows
a single bandwidth, while different 7’s will be optimal for different a;’s. Unlike the non-
parametric regression setting, however, it is unclear how one would interpret the additivity

assumption for SBART-DS. We leave examining the additive framework to future work.
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Figure 2: (Left) Plot of realized values of X;; against Y; for a single replication of the
experiment, with solid black line indicating the true mean, light blue line indicating the
estimated posterior mean, and the dashed green lines indicating 95% credible bands for the
mean function. (Right) The posterior distribution of the number of rejected points estimated
via Markov chain Monte Carlo.

5 Illustrations

5.1 Simulation Study

We now assess the performance of the SBART-DS using the simulation example described

by Dunson et al. (2007). The response Y; is sampled from a mixture model

Y; ~ e *Normal(x,0.1%) + (1 — e **)Normal(z*, 0.2%) given X;; = x.

We set N = 500 and have P — 1 additional predictors which do not influence the response.
The marginal density of the X;’s is uniform on [0, 1]¥. For SBART-DS we use the default prior
with M = 50 and the probit link. We do not make any attempt to tune the hyperparameters
(a,0,,p, o, B,7) beyond this. We take the base model to be a normal linear regression model
h(y | z,0) = Normal(y | ag + 34 x,02). We consider moderate dimensions P for illustrative
purposes, but in higher dimensions one might wish to induce sparsity (.

Figure 2 displays a scatterplot of the relationship between Y; and X;; as well as the
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posterior mean and credible band for the function r(z) = E(Y; | X; = x) with P = 5. We
compare SBART-DS to a Dirichlet process mixture model described by Jara et al. (2011) as
implemented in the function DPcdensity in the DPpackage package in R; we use this as a
comparison because there is publicly available software implementing this methodology and
Jara et al. (2011) show that it performs similarly to the approach of Dunson et al. (2007).

This model uses the joint specification

Mg Exa: Zmy

T
(X;,Y;) ~ /Normal \ ; dG(p, X),

Y Moy Zyw 2yy

where G ~ DP(aGy) is a Dirichlet process with a normal-inverse-Wishart base measure
Go = Normal(p | m, keX) IW(X | v, ¥). The conditional density of [Y; | X; = z] can be

estimated from an infinite mixture model as

flyl o) =) wi(z) Normal(y | juyje, Sy)
k=1

where wi(z) o< mgNormal(z | fip, Xos)s fyle = by + Syados (T — pe), and Sy, = 3, —
Yy Xa Ney. We use the same prior specification as Jara et al. (2011) but with a larger value
of v to accommodate the fact that v > P — 1 is required.

Figure 3 shows the fitted density for several fixed values of X;; with all other predictors
frozen at the value X;; = 0.5 (as these predictors were correctly filtered out of the model,
their particular value is irrelevant). We see SBART-DS successfully captures variability
in the location, shape, and scale of the densities, and produces 95% credible bands which
accurately account for uncertainty in the estimates. SBART-DS also captures the mean
response accurately (left panel of Figure 2). Additionally, the number of rejected points is
not prohibitively large, and fitting SBART-DS was faster than fitting the Dirichlet process
mixture model using DPcdensity.

Table 1 compares SBART-DS to the Dirichlet process mixture over 100 replications of the
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Figure 3: Posterior mean (blue), 95% credible bands for the density (dashed black)
and true density function (green) for the simulated data, for the values X;; €
{0.14,0.28,0.42,0.58,0.72,0.86}.

above experiment with P = 20. We compare methods using the integrated total variation

distance

winh = [ [ 1w n - f o) dy i

This integral can be approximated via Monte Carlo integration by averaging over a large
out-of-sample test set of X;’s and computing the dy integral numerically. We see that the
Dirichlet process mixture performs substantially worse than SBART-DS as measured by
total variation distance from the true data generating mechanism. It is somewhat surprising
that SBART-DS outperforms a Dirichlet process mixture for this example, as the true model
is a mixture model with a structure that one would expect a Dirichlet process mixture to be
primed to detect. The reason that SBART-DS performs better is that the BART prior we
used performs variable selection and is capable of eliminating the 19 irrelevant predictors,
whereas the Dirichlet process mixture is not designed to detect sparsity. We expect that any

method which does not explicitly try to detect sparsity, such as the probit stick-breaking
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Method Normalized Average TV (f, f) 25 percentile 75 percentile

SBART-DS 1.00 0.94 1.05
Dirichlet Process Mixture 1.74 1.71 1.78

~

Table 1: Average of the integrated total variation distance TV(fy, f) over 100 replications
of the simulation study; to give a sense of stability, we also give the 25" and 75" quantiles
of these quantities over the 100 replications. For interpretability, we normalized both scores
by the average integrated total variation distance of the SBART-DS model.
prior with Gaussian processes proposed by Rodriguez and Dunson (2011) or the kernel-based
approach of Dunson et al. (2007) would also be outperformed by SBART-DS, although we
were unable to assess this due to a lack of publicly available software for these approaches.
Summarizing our simulation study, we find that the ability of SBART-DS to perform
variable selection allows it to outperform Dirichlet process mixtures. While we only con-
ducted a formal simulation study for the P = 20 case, we found similar behavior for small

values of P as well. Unlike other Bayesian nonparametric density regression approaches, the

ability to perform variable selection is automatic for SBART-DS.

5.2 Analysis of MEPS Data

We apply SBART-DS to data from the Medical Expenditure Panel Survey (MEPS) from
the year 2015. MEPS is an ongoing survey in the United States which collects data on
families/individuals, their medical providers, and employers, with a focus on the cost and
use of health care.

There is a large literature which has considered the relationship between socioeconomic
status, education, and obesity. Educational attainment relates to obesity in a complex
fashion, with the effect modified by the overall income of a region, gender, and other factors
(Cohen et al., 2013). We examined this relationship on a subset of the MEPS dataset
consisting of responses from 1452 women aged between 25 and 35 years old, controlling for
log-income (measured as a percentage of the poverty line), age, and race. Existing research

predicts that higher educational attainment will be associated with lower obesity levels in
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Figure 4: Density estimates and 95% credible bands for f(y | ) for different educational
levels for white women aged between 25 and 35, fixing log-income and age at their median
values.

this group.

In Figure 4 we display the estimated density as the level of educational attainment is
varied from less-than-high-school to graduate degree for white women with all other covari-
ates frozen at their median value. We see that as educational attainment increases the bulk
of the distribution remains concentrated near 0 (the overall mean level of BMI) but goes
from roughly symmetric to being highly right-skewed. The nature of this relationship is
that, while the modal value BMI is fairly stable as education level changes, highly educated
women are less likely to be highly obese.

Each predictor j is associated to two coefficients: the base model coefficient 3y; and the
splitting proportion s;. The posterior median, density, and a (66%, 95%)-credible interval
is given for each coefficient in Figure 5. Interestingly, education level is the only relevant

predictor in the selection model ®{r(y, x)} so that the overall shape of the density is primarily

determined by education. Intuitively, one might expect that education is only relevant
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Figure 5: Left: Posterior medians, (66%, 95%)-credible intervals, and density estimates for
the regression coefficients of the base mode 5. Right: posterior medians, credible intervals,
and density estimates for the splitting proportions s; for each predictor.

through its indirect effect on income, however our results suggest this is not the case. Log-
income has a strong presence in the base model as well, while race and age have weaker

effects.

6 Discussion

In this paper we proposed a new method for density regression based on Bayesian additive re-
gression trees. SBART-DS is suitable for routine use — it has a simple default specification,
strong theoretical properties, and can be fit using a tuning-parameter-free Gibbs sampling
algorithm. On simulated data we illustrated how SBART-DS is capable of filtering out irrel-
evant variables automatically, giving empirical support to the theoretical results supporting
a faster posterior concentration rate when the rejection model ®{r(y,z)} is sparse. Using
data from MEPS we showed how SBART-DS can capture the effect of education level on
the conditional distribution of body mass index.

The general strategy of defining a prior using a rejection sampling model can be used
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to extend that SBART-DS model to other domains. For example, this approach can be
extended to survival analysis by modeling the hazard function A(y | ) as the hazard of a
thinned Poisson process A(y | ) = Ao(y | ) ®{r(y,z)}. We will pursue this direction in

future work.

A Proof of Auxiliary Results

Proof of Lemma 1. For posterity, we note that Condition L implies ﬁlog O(pu) < K; inte-

grating both sides on an interval [L, U] gives

(L P
—K({U-L) < ( ) < (g) <€IC(U7L). (8)

Let a = /®{u(y,z)} and b = /®{v(y,z)} and let ||al|? denote the squared Lo-norm

[ a*(y, ) h(y) (which implicitly depends on z). Then

a b
H u,U:/‘——— Fx(dx).
el = [ alls ™ o, (%
Two applications of the triangle inequality gives
2[la — bl[n
H(fof) < [ A () < 2]1 = bal ©)

The first inequality follows from the triangle inequality while the second follows from the
inequality [la — b||} = [a*(y,2){1 — b(y,z)/a(y,z)}* h(y) < |la|} - |1 — b/a|%. Next,

write v(y,x) = u(y,z) + A(y,z). Applying (8) and Taylor expanding the function g(x) =
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V(i + ) /(1) we get

 [efetyon L) ) 0Tt ) B
: @{u(w)}ig’“y’ )28 ) 7 }\/ ey
< Sl -l [M]

where A;(y,z) is between 0 and A(y,z). Combining this with (9), H(fy, f,) < Kl|lu —
V|0 exp(K||u — v[|/2). By Lemma 8 of Ghosal and Van Der Vaart (2007), we have

) and

fu
fo
Ju
fo

K(fur f2) < H(fur 1) (1 T log

V(fur ) S H2(fu f2) (1 T log

Using (8) we have

fuly | z)  ®{uly,0)} [ 1(G) Tt ofu(y, o)} dj
folylo) — @fu(y.2)} [h() ®{u(y,2)} dy

< exp(2Ku — v]0).

Hence log [ fu/ fulloo < 2K[Ju = vl N

Proof of Proposition 3. Consider an extended prior IT on the joint distribution of (X;,Y;)
which places a point mass at Fx. We now have that f. is contained in the integrated
Hellinger and Kullback-Leibler neighborhoods whenever (f,., Fx) are in the usual Hellinger
and Kullback-Leibler neighborhoods of Fy(dz, dy) = fo(y | ) dy Fx(dz), so that the problem
reduces to the setting of iid random vectors. The conditions (a)—(c) match one-to-one with
the conditions of the variant of Theorem 2.1 of Ghosal et al. (2000) used by Shen et al. (2013,

page 627), and hence suffice to establish the desired rate of convergence. O
We now prove that Condition L holds for the logit and ¢, links.

Proposition 4. If ®(u) = e /(1 + ") then Condition L holds with IC = 1. If ®(u) = T, (1)

where T,, is the distribution function of a t, random wvariable then Condition L holds with
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K = \/v. Conversely, suppose Z is symmetric and has distribution function ®(u) and Z is
light-tailed in the sense that for all K we have Pr(Z > z) < e ™ for sufficiently large z.

Then Condition L fails for ®(u). In particular, Condition L fails for the probit link.

Proof. For the logistic link it is straight-forward to check that ¢(u)/®(pu) =1 — &(p) < 1.
To prove the result for the 7, link we begin by deriving a lower bound for the survival
function T, ( f t,(z) dx for ;> 0. Note that the density is t,(u) = ¢/(1 + p?/v)?
where p = (v + 1)/2 and c is a normalizing constant. Define zy = 1 + p?/v, z = 1 + 2%/v,

6 = arcsin(1/,/Z0) and 6 = arcsin(1/+/z). Then after routine substitutions we have

Tl,(,u):/ sz\/—T P dz-c\/_/ sin®~2(0) df

0o
>c\/_/ sin®~2(0) cos(#) df = Vv PR

op—1°0

Using this, the symmetry of the ¢, distribution, and substituting 2p — 1 = v, we have

For the converse, set U = 0 and L = —z in (8) to get Pr(Z > 2) > ®(0)e ™* for some K.
In particular, Pr(Z > z) > exp(—2Kz) for large enough z. In the case of the probit link, no

such K can exist because Pr(Z > z) < e=%/2, O

The proof of Theorem 1 also requires a tail probability bound for the number of trees in

the ensemble.

Proposition 5. Let II(M = t) satisfy Condition P1. Then there exist constants C';, and

C'yo such that TI(M > t) < Cf 4 exp{—C, ot logt}.

Proof. By the geometric series formula we have

o0

_ Chn exp{—Chatlo t} Chn exp{—Chu2(t — 1) lo t}
— Cusklogh o M1 XD M2t 10g M1 €XP M2 g
(M > t) = Cypy »_ e Oehloek < o e

k=t
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For t > 2V 2Y/Cm2 this gives [I(M > t) < Oy exp{—(Cyr/2)tlogt}. The result follows
by taking C';5 = Cyo/2 and C};; to be the maximum of Cyyy and exp{(Chs2/2)tlogt} for

t <2V ot/ Cuz, O

B Proof of Theorem 1

For completeness, we state two results of Linero and Yang (2018) which will be used in
the proof. These two propositions capture the features of SBART that make it useful in

high-dimensional sparse settings with smooth regression functions.

Proposition 6. Suppose that Condition F and Condition P are satisfied and t > a(D +
1)/(2ac + D). Then there ezist constants B and C' independent of (n, P) such that for all

sufficiently large n the prior satisfies

2

II(||r — ro|| < Bey) > e~ Cen,

where €, = n~%/ D) Jog(n)t 4+ \/Dlog(P + 1) /n.

Proof. This is implied by Theorem 2 of Linero and Yang (2018); the only modification
required is that Condition P1 and Condition P2 are modified from Linero and Yang (2018),

but these modifications do not change the proof strategy. O]

Proposition 7. For fixed positive constants €, 01,09, T, A and integers n, H,d define the set

T
g :{f() = Zg(-;ﬁ,/\/lt) . T < Ané€®, each tree has depth at most H,
t=1

the common bandwidth parameter T satisfies o < 77 < 09,
the total number of splitting directions is at most d out of P + 1,

for each (t,0), pe € [—U, U]}
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Then there exists a constant Cy, depending only the gating function ¢ of the SBART prior

satisfying Condition P such that the following holds:

1. Covering entropy control: log N(G, Cye, ||||oo) < dlog(P+1)+3Ane? 2" log (d oy o2 Ane 2HU) ;

and

2. Complement probability bound: if H > dy, thenT1(G®) < C';, exp{—C;, Ane?log(Ane®)}+
21 Ane? -[exp{—E dlog(P+1)}+C, exp{-U%=2}]+Cry exp{—o; “}+Cryexp{—05™"}

for some constant E > 0 depending only on hyperparameter & > 1 in the Dirichlet prior.

Proof. The proof is the same as the proof of Lemma 1 of the supplementary material of
Linero and Yang (2018), except that Proposition 5 is used in the complementary probability
bound. O

Proof of Theorem 1. Let B and C' be chosen as in Proposition 6. By Lemma 1, note that
for sufficiently large n, we have {f, : ||[r — ro|| < Be,} C K(BCke,) and {f, : ||[r — 10| <

ent CH{fr: H(fr, fry) < Cxen} where Ck is a constant depending only on K. Hence

2

I{f € K(BCxe,)} > e .

To lighten notation, we redefine €, throughout the rest of the proof to be ¢, BCx and C' to
be C/(BCk)? so that we have II{f € K(e,)} > e ©"%. This verifies (¢) of Proposition 3
using the modified choice of ¢,.

Next, for a large constant x to be chosen later, set A = r/logn, o7 = o5 = UCh2 =

kne2, H = dy, and d = |kne2/log(P + 1)] for the set G, in Proposition 7. Plugging

n’

these constants into the covering entropy bound, for sufficiently large n this implies that for

p1 =2+ 0;21 +Cot +2C and py = 2p; — 1 we have

3 . 9do 9do D1 (P2
10g N (G, Cpensy ||+ lloo) < Kme2 14+ log () e < K'nez
logn logn

for some k' larger than x depending only on x and the constants in Condition P. Define
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Fo =A{fr : v € G,}. By Lemma 1, for large enough n any Cye,-net G, for G, can be

converted into a CixCype,-net Fper = {fr : 7 € Gpet } for F,,. Hence we also have the bound

log N (Fy, CxCen, H) < 1og N(Gn. Cocns | - 1) < 1'me?

which establishes condition (a) of Proposition 3 with €, = CxCye, and Cy = k'/(CxcCy)*.
Finally, we show condition (b) holds. Applying the complementary probability bound we
can make II(F¢) < exp{—(C + 4)ne?} for any choice of C' by taking x sufficiently large. To
see why, note for example that ne2 > an® for some positive constants (a, b) so that for large

n we have

Ane? log(Ane?) > kne {

n

log(k/logn) + loga N b} > I{_bnGZ
logn 2

Using similar arguments, for large n we can bound each term of the complementary prob-
ability bound by exp{—rdne?/2} for some § depending only on the constants in Condition
P. Taking  sufficiently large we can make the total bound less than exp{—(C + 4)ne?} for

arbitrary C'. This proves condition (b). O
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