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Low-Dimensional Subject Representation-Based
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Abstract—Recently, the advances in passive brain-
computer interfaces (BCIs) based on electroencephalo-
gram (EEG) have shed light on real-world neuromonitoring
technologies. However, human variability in the EEG ac-
tivities hinders the development of practical applications
of EEG-based BCI. To tackle this problem, many transfer-
learning techniques perform supervised calibration. This
kind of calibration approach requires task-relevant data,
which is impractical in real-life scenarios such as drowsi-
ness during driving. This study presents a transfer-learning
framework for EEG decoding based on the low-dimensional
representations of subjects learned from the pre-trial EEG.
Tensor decomposition was applied to the pre-trial EEG of
subjects to extract the underlying characteristics in sub-
ject, spatial, and spectral domains. Then, the proposed
framework assessed the characteristics to obtain the low-
dimensional subject representations such that the subjects
with similar brain dynamics can be identified. This method
can leverage the existing data from other users, and a
small number of data from a rapid, non-task, unsupervised
calibration from a new user to build an accurate BCI. Our
results demonstrated that, in terms of prediction accu-
racy, the proposed low-dimensional subject representation-
based transfer learning (LDSR-TL) framework outperformed
the random selection, and the Riemannian manifold ap-
proach in cognitive-state tracking, while requiring fewer
training data. The results can greatly improve the practica-
bility, and usability of EEG-based BCI in the real world.

Index Terms—Brain-computer interface, transfer learning
and tensor decomposition.
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I. INTRODUCTION

RECENTLY, passive brain-computer interfaces (BCIs)
based on electroencephalogram (EEG) decoding of brain

activities have enabled many non-invasive neuromonitoring ap-
plications including emotion recognition [1], [2], psychiatric di-
agnosis [3], cognitive load estimation [4], alertness tracking [5],
etc. A neuromonitoring BCI usually involves a data-driven EEG
decoding model that characterizes EEG patterns associated with
brain states of interest [6]. However, pervasive and elusive
variability in the EEG data poses an inevitable challenge to
deploying a neuromonitoring BCI into practical uses. Conven-
tional BCIs rely on individual user’s calibration data prior to
each usage that can train a model for a new user. In the training
phase, a sufficient amount of EEG data relevant to a specific BCI
task was collected in a programmed process. Such a calibration
procedure could be time-consuming or impractical, depending
on the content and the type of a BCI task. Further, some of
the brain states cannot be easily available or reproducible. The
attempt of applying a neuromonitoring BCI to a new user could
easily fail due to the unavailability of individualized calibration
data related to specific brain states.
While deploying a neuromonitoring BCI to routine uses might
suffer from the notorious calibration process before each use,
efforts have been made to seek alternatives that bypass the
individualized calibration and/or obviate the human variability
in EEG data. Transfer-learning techniques have been applied to
tackle cross-domain problems in a variety of EEG-based BCI
systems. In brief, transfer learning is a sub-field of machine
learning that includes approaches of transferring knowledge
from the source domain to the target domain, where the source
domain contains sufficient labeled data, and the target domain
often lacks labeled data [7], [8]. Often the variability of EEG data
across users deteriorates the robustness of EEG decoding, and
meanwhile performing individualized calibration for a new user
may not be practical if ever possible. Transfer learning herein
serves as an alternative solution that leverages the knowledge
learned from other users to facilitate EEG decoding for a new
user with zero/minimal calibration.
Recently, subject-transfer approaches have been developed to
tackle the issues in cross-subject learning in BCI [5], [9]–[12].
These approaches aim at transferring the labeled training data
from existing subjects to a new subject who has limited labeled
data. The underlying assumption is that subjects might share
a trained model with a minor loss of accuracy if they exhibit
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comparable brain responses to the same conditions/events. The
similarity in the brain responses among subjects refers to “sub-
ject similarity” in this study. Previous studies have shown that the
subject similarity could facilitate cross-subject transfer learning,
resulting in improved BCI performance [5], [9].
The measurement of the subject similarity is an important

step, but it is challenging because of the high dimensionality
of the EEG space. A straightforward approach is to calcu-
late the power spectral density (PSD) of each channel and
then convert them into a two-dimensional array. Then, the Eu-
clidean distance can be used to calculate the similarity. How-
ever, this approach has two major problems. First, the vectors
(#channel×#frequency) falls onto a very high dimensional
space, where the concepts of distance and proximity become
meaningless [13]. This phenomenon is thecurse of dimension-
alitythat has been reported as a major problem in many machine-
learning studies [14], [15]. Secondly, the two-dimensional repre-
sentation is the flattened result of the channel×frequency data,
which omits the information of the spatial-frequency interaction.
This study proposes a low-dimensional subject-representation
(LDSR) approach based on tensor decomposition [16], [17].
Although tensor decomposition is a well-known dimensionality-
reduction technique for multi-way data, applying tensor de-
composition in the field of EEG decoding has less seen in the
literature. In [18], the authors provided a comprehensive survey
of using tensor decomposition for EEG analysis. However, most
of the works focused on discovering the characteristics of EEG
but neglected that the outcomes of decomposition can be used
for obtaining subject similarity. To our best knowledge, our
proposed method, LDSR-Transfer Learning (or LDSR-TL) is
the first work to apply tensor decomposition for subject transfer.
We apply tensor decomposition to reduce the dimensions of the
subject representation while preserving the spatial-frequency
interaction. We first form the pre-trial EEG of all subjects into
a three-mode tensor (subject×channel×frequency), and
then perform tensor decomposition to obtain low-dimensional
vectors as representations of subjects. As a result, the data
are reduced to a low-dimensional space, and common distance
matrices can be applied to assess the subject similarity. The
contributions of this paper are two folds:

A low-dimensional subject representation-based transfer
learning approach is developed for EEG categorization,
where tensor decomposition was used to solve the curse
of dimensionality. Thus, labeled data of existing subjects
can be reused on decoding the EEG of a new user.
A working subject-transfer system is implemented for
driver drowsiness detection. This system is used to evalu-
ate the performance of the three considered methods. We
learn that the proposed method improves the performance
of accuracy up to 8% and requires 40% fewer training data
to reach the performance plateau.

This study implemented the proposed representation learning
model under a subject-transfer framework to evaluate the
drowsiness-detection accuracy. The dataset for evaluation
was collected from a sustained lane-keeping driving task.
Twenty-five subjects participated in a total of 54 simulated

Fig. 1. Related works categorization in a binary tree.

driving sessions, in which simultaneous driving behaviors and
30-channel EEG recordings were measured, synchronized,
and recorded. The proposed framework was evaluated by the
performance of drowsiness detection based on EEG decoding.
The remaining parts of this paper are organized as follows.
Section II introduces the related works of transfer learning on
BCI. This section provides an overview of current methods and
shows how our approach stands out from others. Section III
gives a background of the proposed method. Section IV presents
the proposed method and the subject-transfer framework in
detail. Section V shows the results and discussions of the
leave-one-subject-out (LOSO) cross-validation on a real dataset.
Section VII presents our conclusion of this study.

II. RELATEDWORKS

This section reviews the related works on transfer learning
techniques for EEG-based BCI. Although some research aimed
at intra-subject-cross session transfer [33], this study will mainly
focus on the review of inter-subject transfer research.Fig. 1cat-
egorizes the proposed framework and its related works.Table I
contrasts the proposed method with the pre-existing works.
In the early stage of development, researchers achieved
transfer learning by finding an invariant feature set that is
robust across subjects. This type of approach is called the
feature-representation-learningin the field of transfer learning.
Kanget al.developed a weighted common spatial filter (CSF)
that can be applied to all subjects [34]. Tu and Sun proposed
a method that can extract both robust CSFs for all the sub-
jects and adaptive CSFs for a single subject [10]. Recently,
Özdenizciet al.aimed at discovering the subject-independent
features across subjects by using convolutional neural networks
and adversarial training [21]. Zhanget al.and Jeonet al.were
developing methods for learning the invariant data representa-
tions with deep learning approach [29], [31].
Later, aparameter-transferapproach was developed to trans-

fer pre-trained models to the target one. Parameter transfer
includes two phases: 1) Train models with parameters learned
from all subjects; 2) Adjust a subset of parameters that are
subject-dependent arising from individual differences. In [19],
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TABLE I
COMPARISONBETWEENTRANSFERLEARNINGMETHODS ONBCI

a learning framework was developed to learn a set of shared
parameters from the entire group while tuning subject-dependent
parameters individually. Jayaramet al.demonstrated a general
transfer-learning framework for spatiotemporal feature learning
that adapts pre-trained models to a new subject/session based on
newly collected calibration data [20].
Recently,feature-transformationdeveloped an approach to
transform the features of the source and/or target and reduce
the differences. There are two types of feature transforma-
tions for BCI, namelybaseline-aligning-basedanddistribution-
matching-based.First,thebaseline-aligning-basedtransforma-
tion method aligns the features of data by removing subject-
specific baselines so that the model can be trained from all
the aligned data [24], [25], [28]. TheDistribution-matching-
basedtransformation method aims to transform the features
of the domain into a latent subspace, where the differences of
the feature distributions are small [12], [22], [26], [27], [32].
Also, both approaches can be integrated together to reduce the
differences [23].
Theinstance-transferapproach weights the existing labeled
data according to their values to the new subject. Dagoiset al.and

Zhanget al.evaluated the values by measuring the differences
in data distributions between the two subjects [11], [30].
The above-mentioned works assumed that the data of each

label are available during the learning and are used as a prior
knowledge to link two domains, which is a plausible assumption
in the laboratory environment. However, it is not practical in the
real-world BCIs. In the real world, transfer learning needs to
be applied to detecting rare events of unseen users, such as the
driver’s drowsiness and the seizure onset of an outpatient. These
are rare life-threatening events that might be difficult, if ever
possible, to collect sufficient samples from each user/patient.
Therefore, we proposed an instance transfer-based method,
which learns the representations of subjects from the pre-trial
space (e.g., data collected when the drivers are alert) and uses
the subject-transfer approach to transfer the data.

III. MAPPINGEEG ONTOLOW-DIMENSIONALSPAC E S

A. Background for Tensor and Tensor Decomposition

Tensors are a higher-order generalization of vectors and ma-
trices, where theorderrepresents the number of axes of the
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Fig. 2. Illustration of a CP decomposition. We approximated the tensor
with a rank-R tensor, where a rank-R tensor refers to a tensor that is the
summation of R rank-one tensor.

data, also known as themulti-way arrays. Tensors can store
data in various domains as real-world data commonly present
a multi-way nature [35]. For instance, tensor comes in handy
when we store the EEG of a group of subjects. The PSD of EEG
can form a three-order tensor, where each element represents the
power of a frequency at a channel of a subject. In this case, the
three axes are frequency, channel, and subject. Tensors provide
an intuitive way to store and index these high-dimensional data.
Tensor decomposition is the factorization of a tensor into
smaller matrices. Each matrix is considered a latent factor, which
corresponds to the context of an axis in the original tensor, and
the row vectors are the low-dimensional representations of the
items along this axis. The following section introduces several
types of tensor decomposition.
Notations:To be consistent with the literature, a tensor is

represented in boldface caligraphic letters (e.g.,T). A matrix
is represented by boldface uppercase letters (e.g.,A), and the
rth column vector of the matrix is represented by its boldface
lowercase letter withras subscript (e.g.,ar). Thejth column
vector of a matrixAis represented asAj:. A scalar is represented
by lowercase letters (e.g.,c). We useTi,j,kto refer to the(i, j, k)
entry of a third-order tensorT.
To deal with different kinds of data, tensor decomposition

and algorithms come in many forms. Among them, canonical
polyadic decomposition (CPD) is one of the most common
methods due to easy interpretation.Fig. 2illustrates the CPD
decomposition. Given a third-order tensorT∈RI×J×K,we
can decompose it into three latent-factor matricesA,B,Cby
minimizing the loss function:

min
A,B,C

T−

R

r

ar◦br◦cr

2

F

, (1)

whereRis the specified rank number and◦represents the
operation of the outer-product. MatrixA∈RI×Ris interpreted
as a latent factor corresponding to the first data mode, and the
same concept applies toBandCas well. The row vectors in
the matrices represent objects in the tensor axis. Finally, we can
perform vector mathematical manipulation for comparing the
objects with some metrics, such as distance metrics that can be
applied to the vectors to obtain their similarity.
Besides getting the latent factors of tensor data, tensor decom-

position has three other advantages. First, by applying tensor
decomposition, large tensor data are compressed into compact
latent factors, which implicitly keeps the main underlying com-
ponents and eliminates the noise by a certain degree. Secondly,
constraints may be imposed on the latent factors for model

Fig. 3. Tensor decomposition decompose a session into weights of
frequency-channel interactions that are the components of composing
other sessions.

complexity control such as the sparsity of latent factors [36].
Lastly, tensor decomposition allows us to explore multi-way
data without flattening the data and losing information. In other
words, tensor decomposition can capture multi-way interactions
in the data, which provides more information than the standard
pairwise analysis [37]. We will provide a visualized explanation
about the tensor decomposition on EEG in Section IV.

B. Tensor Decomposition on EEG

This section demonstrates the effect of applying CP decom-
position to a real EEG dataset. The dataset is composed of 54
sessions collected from 25 subjects, forming a54×60×30
tensor, where 54 stands for the number of sessions, 60 stands
for the number of frequency bins and 30 stands for the number
of channels. We applied a CP decomposition of rank 10 on the
tensor and obtained the latent factors as we described above.
Take the latent factor that corresponds to the session axis as
an example, thenth row vector represents thenth session in
the latent space. The elements of the vector are the weights of
components of the EEG, where the components are the patterns
of channel-frequency interactions, as shown inFig. 3.Every
session is composed of many components with different weights.
The same interpretation also applies to the latent factors of other
modes.
To conduct a sanity check, we calculated the pairwise Pearson
correlation on the subjects’ latent factors, and visualize the
results through a heat mapFig. 4. The brighter color indicates
higher correlations between the two sessions. The average corre-
lation of the latent factors is 0.45 for within subject, and -0.02 for
cross subject. Generally speaking, the sessions from the same
subject are more similar to each other and resulting brighter
blocks along the diagonal line. This implies that the intra-subject
variability is usually smaller than inter-subject variability, which
is consistent with other literature [25]. However, this does not
hold for every session. Some sessions of the same subjects
have lower similarity, S5-2 and S5-3 for example, and some
sessions across subjects have high similarity, 22-4 and 4-1 for
example.
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Fig. 4. Correlation of latent representations of sessions/subjects visu-
alized on a heat map. The brighter color represents higher correlations
between two sessions. The sessions from the same subject are more
similar to each other.

Fig. 5. The flow diagram of the proposed subject-transfer framework.

IV. REPRESENTATION-BASEDSUBJECT-TRANSFER
FRAMEWORK

The proposed subject-transfer framework transfers the labeled
data from pre-existing subjects to the new subject (the target)
based on their similarities. Assuming that a group of similar
subjects can share a set of labeled data for model training, the
proposed framework discovers similar subjects by first learning
the representations of subjects and then calculating the similarity
with the new subject based on the representations. Finally, it can
transfer suitable labeled data for the new subject based on the
similarity.
Fig. 5shows the workflow diagram of the subject-transfer

framework.
First, the pre-trial EEG data are collected from each subject
in the source pool and target.

Fig. 6. The pre-trial EEG are stacked into a tensor and then de-
composed to obtain low-dimensional subject representations. First, the
pre-trial EEG PSD data are tensorized. The three modes of the tensor
are the subjects, channels and frequency bins. An element ofXijkis
the Log-power measurement of thekth frequency bin atjth channel of
theith subject. Then, tensor decomposition is applied to the tensor for
learning the low-dimensional representations of subjects.

Then, the pre-trial EEG data are processed into low-
dimensional representations in our framework to learn the
similarities among subjects.
After obtaining the similarities of subjects, the framework
performs data transfer based on the results, and train a
prediction model for the new subject with these labeled
data.

This section provides detailed information about each step of
this framework.

A. Pre-trial EEG Tensorization

Pre-trial EEG is adopted to measure subject similarity in a
recent study [5]. By “pre-trial EEG,” this study refers to the EEG
data collected while the subjects were not performing tasks. We
adopted it as the baseline for predicting individual differences
and further select the best set of subjects for transfer learning.
According to our previous study, within-subject variability exists
in the dataset, indicating that the sessions within a subject might
have different similarity to the target. Hence, each session in the
source pool has a baseline for the similarity calculation. There
are two advantages of using pre-trial EEG as a baseline. First, it
can be collected without performing any tasks. Second, it only
takes a short period to collect them. In our simulated driving
task, collecting the pre-trial data only took two minutes for each
new subject.
After obtaining the pre-trial EEGs, they are averaged and
processed into logarithmic PSD to form a matrix for each subject,
where the axes are channels and frequency bins. By stacking the
matrices of existing subjects and the new subject all together,
a three-mode tensor is formed, where the modes correspond
to subjects, channels, frequency bins. The pre-trial EEG tensor
is denoted byX∈R(N+1)×E×F, whereNis the number of
existing subjects,Eis the number of channels andFis the
number of frequency bins. In other words, an elementXijkis
the Log-power measurement of thekth frequency bin at the
jth channel of the ith subject. The one added dimension on the
subject axis is contributed by the new subject.Fig. 6shows the
tensorized EEG PSD data.
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B. Tensor-Decomposition-based Model for Learning
Subject Representation

We applied tensor decomposition to the tensor that was ob-
tained from the pre-trial EEG for learning subject representa-
tions, as shown inFig. 6. Several research works have applied
tensor decomposition to multi-way EEG data to obtain the
features of prediction tasks [18], [38]. However, none of the
previous works have used the latent factor to represent subjects
and calculate their similarities. In fact, latent factors from ma-
trix/tensor decomposition are heavily used in recommendation
systems to discover users with similar behaviors [39], [40]. We
apply this idea to our transfer learning framework for BCI to
identify similar subjects who exhibit similar brain responses
under the same conditions.
After forming a pre-trial EEG tensor, we now formulate
the tensor decomposition model to obtain the low-dimensional
representations of subjects. The objective function of our model
is:

L(U,V,W)=
1

2
X −[U,V,W]2

+
λ1
2
(U 2

F+ V
2
F+ W

2
F), (2)

where[U,V,W]denotes the tensor reconstructed by the matri-
cesU,V,W, and subject latent factorsU∈R(N+1)×R, chan-
nel latent factorV∈RE×Rand frequency factorW ∈RF×R

with CP form. The first term in the objective function makes the
reconstructed tensor and the original tensor as close as possible.
The second term is a regularization term that regularizes the
complexity of the model.
Minimizing this objective function is a non-convex optimiza-

tion problem. We implemented an iterative gradient descent al-
gorithm to solve it. The algorithm will iterate over a finite number
of epochs to update the variables. In each epoch, the variables
are updated by their gradients. We obtain partial gradients for
all variables:

∇UL=−(X(1)−[[U,V,W]](1)·(W V)) +λ1U (3)

∇VL=−(X(2)−[[U,V,W]](2)·(W U)) +λ1V (4)

∇W L=−(X(3)−[[U,V,W]](3)·(V U)) +λ1W.(5)

The partial gradients for CANDECOMP/PARAFAC (CP) de-
composition term can be obtained from [41]. After obtaining the
gradients, we implemented an iterative algorithm to approach the
solution, as shown in Algorithm 1. The iterative algorithm has
been studied and applied for solving tensor models in recent
works [42]–[44]. Basically, the algorithm updates the latent
factor matrices according to a proportion of their gradient in each
iteration (Line 5). The proportion is referred to as the learning
rate. This study implemented a decaying learning rate that was
reduced by half after everystep_sizeiterations, which allowed
the algorithm to approach the minimum in smaller steps. At
the end of each iteration, the error between the original tensor
and the tensor constructed with the latent factors was calculated
by the Frobenius norm. The iteration was repeated until the
error improvement was smaller than the tolerance, so-called
converge.

Finally, the proposed model learns the low-dimensional repre-
sentationsUof the subjects from the original high dimensional
data. Now we can use these representations to discover similar
subjects of the target. The next section introduces the method
for similarity calculation and subject selection.

C. Subject Selection

When performing the same task, subjects with similar charac-
teristics in a pre-trial EEG may have similar EEG characteristics.
The low-dimensional representationsUare learned from the
pre-trial EEG, so we can discover the subjects similar to the new
subject by checkingU, and transfer their data to train the
new subject model. In our framework, Pearson correlation is
adopted to calculate the similarity between two latent factors.
We calculate the correlation between the new subject and every
other subject in the source pool. Then, the sessions in the pool are
sorted by their similarities in descending order. After calculating
the similarity ranking fromU, we start to transfer training data
from the similar sessions to the new subject. First, we select the
mmost similar subjects by looking up the ranking, wheremis
an integer parameter specified by the experts and is referred to
as the selection number in the following. Then, the labeled data
of the selected subjects are collected to form a training dataset
for the new subject to train a prediction model. The process of
selecting subjects, gathering the data and training model is called
subject-transfer.

V. PERFORMANCEEVALUATION

This section evaluates the proposed method with a LOSO
test, and compares the results with the baseline performance
and the latest research. First, we introduce the dataset used for
the evaluation. Second, we will briefly introduce the baseline
and state-of-the-art methods. Finally, we will present the details
of the experimental settings and their numerical results. The
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Fig. 7. Overview of the driving experiment. Participants must drive
the car and keep it in-lane by steering the steering wheel. Multiple
drift events occur randomly, and the subject must steer the car back to
the cruising position. The time elapsed between drift onset and subject
steering back is called the reaction time. The EEG in the three-seconds
window will be recorded with the reaction time as a trial.

evaluation framework and the proposed and baseline methods
were implemented by Python 3.6. The results were visualized
by Jupyter Notebook.

A. Dataset and Preprocessing

This study exploits a public EEG dataset of a lane-keeping
experiment in a simulated driving environment [45]. In this
experiment, participants must drive the car and keep it in-lane
by steering the steering wheel. During the experiment, multiple
drift events occur randomly, and the subject must steer the car
back to the cruising position. The time elapsed between drift
onset and subject steering back is called the reaction time,
which is related to the drivers’ drowsiness level. We further
transform the reaction time toDrowsiness Index(DI), which is
a standardization indicator of the drowsiness level. Throughout
the experiment, a Quick-30 headset recorded the subject’s EEG
at a sampling rate of 128 Hz. We segment the EEG in the
three-second window before the car starting to drift.Fig. 7shows
an overview of the driving experiment. The task is to predict the
reaction time by EEG before the drift events occur. In real-world
applications, the system continuously monitors and processes
the user’s EEG data to predict the driver’s drowsiness level to
mitigate drowsiness and prevent accidents.
Definitions of Terms:A trial refers to a three-second window

of EEG data before a car-drift event and the corresponding
reaction time. Each subject was allowed to participate in this
experiment multiple times, so there are multiple sessions from
the same subject in the dataset.
The dataset contains 79 sessions collected from 37 healthy

subjects. To evaluate the proposed method by a prediction task,
some of the sessions which have insufficient trials were elimi-
nated before the experiment. The requirements were as below:
(1) The session has to contain at least 10 drowsy trials (i.e. the
react time exceeds1.5×μ0, whereμ0denotes the median react
time of the first 10 trials). (2) The first 10 trials (the baseline)
are all not drowsy trials (i.e. the react time does NOT exceed
1.5×μ0). As a result, the trimmed dataset includes 54 sessions
from 25 different subjects, and a total of 15,516 3 s trials.
The dataset was preprocessed by band-passed filtering and

PSD estimation. First, the dataset is epoched into 3 s trials prior
to drift onsets. Each trial contains 384 data points because the

Fig. 8. The spectrogram of sorted PSD trials, showing that there exists
a relation between PSD and reaction time in some but not all of the trials.

sampling rate is 128 Hz. Second, the EEG trials were converted
into PSD, where PSD features are the power magnitude at
each frequency bin. To obtain PSD, we adopted an open-source
neurophysiological data analysis library - MNE [46], [47]. Third,
we normalized each trial by subtracting the median PSD of the
first 15 trials of the session. Fourth, we took the first 10 trials
of a session as the pre-trial baseline, which were used for the
subject-similarity calculation. To visualize the trials after pre-
processing,Fig. 8shows the spectrogram of all the trials sorted
by their reaction time. This figure shows systematic changes in
the PSD as a function of reaction time. Finally, all of the trials
in the sessions that were selected by the subject-similarity test
were used to train the drowsiness-prediction model (i.e. instance
transfer).

B. Procedures to Validate the Proposed Subject Transfer

We conducted a LOSO cross-validation to evaluate the per-
formance of the proposed method and the competitors. In this
evaluation study, each subject was designated as the target
subject once, and other subjects were added to the source pool.
The pre-trial EEG of the target was taken out as the baseline
for finding similar subjects/sessions, and the same baseline was
used for testing all methods. It is worth mentioning that when
a session was selected as the target, all of the sessions from the
same subject were excluded from the source pool. That is, the
sessions would not be used as the training data.Fig. 9shows an
overview of the validation procedure.
To investigate the impacts of the number of sessions on the
BCI performance using transfer learning, this study systemat-
ically varied the numbers of sessions to be selected from the
source pool based on the subject similarity. This study com-
pared the proposed method with two methods briefly introduced
below:
1) Random selection:Random selection is the baseline

method of this comparison. It randomly selects a specified
number of sessions as training data. For each target, the selection
test process was repeated 20 times and then averaged out as a
result.
2) Bolagh and Clifford [9]:This study adopted a similar

instance-transfer approach to select existing labeled data for
new subjects. Bolagh and Clifford [9] mapped the subjects’
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Fig. 9. The overview of our LOSO cross-validation. Each subject was
designated as the target once, and other subjects were added to the
source pool. If multiple sessions were recorded from the same subject,
each session was set as the target once and other sessions from the
same subject were excluded from the source pool.

covariance onto the Riemannian manifold to obtain subjects
representation and applied Riemannian geometry to calculate
subject similarity. Then, the labeled data from similar subjects
were transferred for model training. Appendix A presents more
information about covariance and Riemannian manifold.

VI. RESULTS ANDDISCUSSIONS

This section presents the experimental results of drowsiness
prediction obtained by the proposed subject-transfer method.
We compare the LDSR-TL method with the other methods
by using the common source pool. The drowsiness-prediction
performance was measured by the Pearson correlation coeffi-
cient of the predicted DIs (̂Y) and the actual DIs (Y), where

corr(Y,Ŷ)=cov(Y,̂Y)σYσ̂Y
. The Pearson correlation coefficient can

measure the normalized linear relationship between two numer-
ical sequences, which can reflect how close the predicted DI
sequence is to the actual DI sequence. We then compare the
averaged Pearson correlation coefficient across all subjects for
the Riemannian manifold method and random selection method.
The paired t-test was adopted in this study for testing the sta-
tistical significance of the results. The results of a method were
the accuracies that were obtained from the LOSO experiment,
which contains 54 measurements since each session was selected
as target once. In each test, the results of two methods were
paired together to test if the proposed method has significantly
improved the prediction performance.

A. Overall Performance Comparison

The overall performance of the three methods was assessed
by the averaged correlation coefficients over all subjects based
on LOSO cross validation.Fig. 10plots the results of each
method as a function of selection numbers. The results were
obtained with using Bayesian Regression as regressor. The pro-
posed method significantly outperformed the random selection
(baseline) case at every selection number (p<0.05), indicating

Fig. 10. Performance comparison of the proposed method and two
baselines under using Bayesian Regression as regressor. These curves
show the overall performance in the DI prediction against the number
of transferred sessions that are selected by the proposed method and
others. In general, the performance of all three approaches grows with
more sessions being selected and transferred. Significant differences
(p<0.05) in the overall performance assessed by paired t-test were
marked by “*” (LDSR-TL VS random) and “#” (LDSR-TL vs [9]). Our
method showed its superiority when the training data were limited (8
selected sessions).

that the proposed method can improve the performance in most
settings. The prediction performance obtained by the proposed
method can be 17% higher than that of the random selection
baseline when the number of transferred sessions was equal to
eight. Comparing with the Riemannian manifold method, the
proposed method performed significantly better with limited
training data (p<0.05), where the selection numbers were eight
and nine. The prediction performance can be improved up to 8%
from the results obtained by the Riemannian manifold method
when the selection number of transferred sessions was equal to
eight. This result suggests that when the source data are limited,
the proposed subject-transfer method works better than other
approaches on selecting highly informative training data for
efficient transfer learning.
Moreover, the proposed method reached the performance
plateau rapidly as the training samples increased because the
informative data have been all selected. The proposed method
took the least number of selected sessions to reach the plateau,
indicating it only required a small portion of the source pool
to learn a good model for a new subject, and the additional
data will not improve the prediction performance.Fig. 10shows
the proposed method reachedcorr(Y,Ŷ)=0.51when the se-
lected number of transferred sessions equaled nine, whereas
the Riemannian manifold method reachedcorr(Y,Ŷ)=0.51
at the selected number of transferred sessions reached 15. This
result implied that the proposed LDSR-TL can reduce 40% of
training data compared to the Riemannian manifold method.
Therefore, the emerging machine learning techniques, such as
deep learning, can benefit from LDSR-TL because they are time-
and computation-consuming at the training stage. When a larger
dataset is available in the future, we will further investigate the
effect of the size of the source pool. The performance decreased
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Fig. 11. A comparison of the overall drowsiness-prediction perfor-
mance across different regressors. The number of selected sessions
was fixed at eight. Significant differences (*p<0.05) in the overall per-
formance were assessed by paired t-test.

as the selected sessions continued to increase, implying that
there are no more good sessions left in the source pool. Hence,
the proposed method was forced to select the bad sessions.
As the selection number continued to increase, the prediction
performance of the three methods converged because the number
of selected sessions was close to the size of the source pool. Note
that corrections for multiple comparisons was not made because
the goal of the experiment in this paper was to investigate the
variation of prediction performance with respect to the number
of transferred sessions. As the number of transferred sessions
increases, the results of the paired t-test in this experiment
become less significant because the size of the source pool was
limited as mentioned above.

B. Performance Stability

There are many kinds of learning algorithms that can learn
models with different approaches. It is important to understand
whether the transferred data are informative for the learning
algorithms.Fig. 11shows the stability of the proposed methods.
In this test, we used the three methods to select labeled data from
eight similar subjects, and then trained the drowsiness-detection
models with four different regressors, including Linear Re-
gression, Bayesian Regression, Support Vector Regression and
Random Forest Regression. The results showed that Bayesian
Regression had the best overall prediction accuracy, followed
by Support Vector Regression, Random Forest Regression and
then Linear Regression. In the Bayesian Regression and Support
Vector Regression tests, the proposed method performed best
and the random selection performed worst. In the Random
Forest Regression test, the performance differences were not
obvious, but the proposed method had a better average prediction
accuracy. In the Linear Regression test, the overall performance
was relatively low, and the random selection and the Riemannian
manifold methods were unable to distinguish from each other.
The proposed method still outperformed the other two methods.
Overall, the proposed method outperformed the other two meth-
ods in each case (p<0.05), indicating that the proposed method
can transfer informative data for any kind of regressors.

Fig. 12. Subject selection for session S5-3. The low-dimensional
representations of subjects are visualized by t-SNE and the selected
sessions are marked by an asterisk. The background is the similarity
calculated by the proposed method. The figure shows that most of
the selected sessions are close to S5-3, which indicates the proposed
method is able to select the sessions with smaller variability with the new
subject.

C. Low-Dimensional Representation Visualization

To elucidate the effectiveness of the proposed subject-transfer
framework, we take the session S5-3 as an example. By de-
composing the pre-trial tensor, we can get the latent factors
of the subjects. We select 10 sessions for subject transfer in
this example. We can map the latent factors onto a 2-D space
by t-distributed stochastic neighbor embedding (t-SNE) visu-
alization [48], as shown inFig. 12. The labels are the session
indices and the selected sessions are marked by asterisks. The
background is the similarity of subject representation between
the target session and others. We can find that the representations
of sessions from the same subject tend to be close to each
other, indicating that intra-subject variability is smaller than
inter-subject variability for some of the subjects. The distribution
of the subject representations shows that the low-dimensional
representation learned by tensor decomposition can preserve
the similarity of EEG responses among subjects. The red point
represents the new session S5-3. The figure shows that most of
the selected sessions are close to S5-3, which indicates that the
proposed method is able to select the sessions that are smaller
to the new subject because they are proximate to S5-3 in the
figure.

D. Demonstration

Fig. 13shows the drowsiness-prediction results obtained by
the transfer-learning method for S5-3. The figure also plots the
ground truth and the results from the other two methods for
comparison. The DI increased and then decreased twice in this
session as shown in the figure. The proposed method estimates
the DI quite well because the time courses of the estimated DI
matched closely with the measured DI (ground truth). The results
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Fig. 13. Prediction results of proposed and baseline methods for the target session, S5-3. The red line is the predicted DI by the proposed method.
The blue line is predicted by [9]. The gray line is predicted by the random selection method. The black line is the ground truth, the DI derived from the
subject’s behavioral responses. The correlations between the actual and predicted DIs are also listed. The proposed method selected the subjects
who have similar EEG characteristics for transfer learning, so that the trained model was able to recognize drowsy episodes of the new subject.

showed that the proposed method had a 0.72 correlation with the
ground truth, whereas [9] and random selection had 0.53 and
0.44, respectively. The proposed method selected the subjects
who have similar EEG characteristics for transfer learning, so
that the trained model could recognize drowsy events of the new
subject.
In summary, the proposed method outperformed others in

selecting sessions that could improve transfer learning on new
subjects. Furthermore, fewer sessions were required to train an
accurate prediction model for a new subject, thereby avoiding
the expensive cost of collecting a large amount of labeled data
and reducing model-training time.

VII. CONCLUSION

This study proposed a low-dimensional subject
representation-based approach for transfer learning (LDSR-TL)
in EEG decoding. The proposed LDSR-TL method transferred
the existing labeled data based on the similarity among
subjects, which is estimated according to the distance between
the subject representations extracted by tensor decomposition
of the pre-trial EEG data. Tensor decomposition can factorize
a subject’s EEG data into the weights of channel-frequency
components. As such, we designed a subject-transfer framework
to leverage the low-dimensional representations in calculating
the similarity between the new subject with the existing subject.
Therefore, a new BCI user can benefit from the existing data
collected from other users and a small number of data from
a rapid, non-task, and unsupervised calibration. This study
showed that the proposed LDSR-TL method outperformed the
state-of-the-art Riemannian manifold method and the random
selection baseline method. The results show that LDSR-TL can
improve the prediction accuracy by up to 8% compared to the
Riemannian manifold method.
The proposed method is a promising tool for both eliminating

the requirements of supervised, task-relevant calibration data for
a new BCI user and improving BCI performance. The future
work includes applying the proposed LDSR-TL approach to
other biomedical data analysis and applications, such as the
electrocardiography (ECG) analysis that suffers from human
variability.

APPENDIXA
CHANNELCOVARIANCE ANDRIEMANNIANGEOMETRY

Channel covariance is a feature which measures the correla-
tion of channels which is a way of representing EEG signals. It
has been reported as a good feature for classification tasks [49]–
[52]. A trial of EEG is represented by a covariance matrix, where
each element represents the correlation of two channels. The
matrices live on the Riemannian manifold where Riemannian
geometry is applied. Therefore, the distance between two data
points is calculated by Riemannian distance instead of Euclidean
distance. The distance is further used for classifying brain activ-
ities. In the following, we will briefly introduce how to obtain
covariance matrices and calculate Riemannian distance.
Given a trial of EEG dataX∈RE×n, whereErepresents the

number of electrodes andnrepresents the number of data points
in the corresponding trial. The covariance matrixCof the trial
is calculated by:

C=
1

n−1
XXT. (6)

To calculate the distance between trials on the Riemannian
manifold, Riemannian distance is adopted. The distance between
two trials (two covariance matricesC1,C2) is calculated by:

δ(C1,C2)=
2

i
log2λi(C

−1
1 C2), (7)

whereλi(·)represents theith eigenvalue of·. Note that all
covariance matrices are symmetric positive definite (SPD) ma-
trices, and the inverse of SPD matrix is also a SPD matrix. In
addition, the product of two SPD matrices does not have negative
eigenvalues. Therefore, no errors will ever be induced by the
log(·)function.
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