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Abstract
Objective. This study aims to establish a generalized transfer-learning framework for boosting the
performance of steady-state visual evoked potential (SSVEP)-based brain–computer interfaces
(BCIs) by leveraging cross-domain data transferring. Approach. We enhanced the state-of-the-art
template-based SSVEP decoding through incorporating a least-squares transformation
(LST)-based transfer learning to leverage calibration data across multiple domains (sessions,
subjects, and electroencephalogram montages).Main results. Study results verified the efficacy of
LST in obviating the variability of SSVEPs when transferring existing data across domains.
Furthermore, the LST-based method achieved significantly higher SSVEP-decoding accuracy than
the standard task-related component analysis (TRCA)-based method and the non-LST naive
transfer-learning method. Significance. This study demonstrated the capability of the LST-based
transfer learning to leverage existing data across subjects and/or devices with an in-depth
investigation of its rationale and behavior in various circumstances. The proposed framework
significantly improved the SSVEP decoding accuracy over the standard TRCA approach when
calibration data are limited. Its performance in calibration reduction could facilitate plug-and-play
SSVEP-based BCIs and further practical applications.

1. Introduction

A brain-computer interface (BCI) is an immedi-
ate pathway that provides an intuitive interface for
users, especially disabled ones, to translate their
intention into commands to control external devices
[1]. Among various neuroimaging modalities, elec-
troencephalogram (EEG) has been widely used for
developing BCI applications for the sake of unob-
trusiveness, low cost, and high temporal resolu-
tion [1]. Researchers have attempted to develop a
variety of real-world applications of an EEG-based
BCI such as spellers that allow disabled users to
communicate with others. Farewell and Donchin
demonstrated a P300-based BCI as the first-ever BCI
speller in the 1980s [2]. Since then, BCI spellers
based on visual-evoked brain responses have been
improved by different advancements in the decod-
ing techniques. Recently, steady-state visual evoked

potentials (SSVEPs), a type of neural responses to
repetitive visual stimulation, have attracted increas-
ing attention and been used in high-speed BCI
spellers as the acquisition of SSVEP is relatively stable
[3–5]. The performance of SSVEP-based BCIs has
been significantly improved by advances in system
design, signal processing, and decoding algorithms in
the past decade [6].

As SSVEPs are oscillatory fluctuations that
respond to flickering visual stimuli, an SSVEP-based
BCImeasures the user’s SSVEP and uses an algorithm
to identify the corresponding stimulus based on the
SSVEP data. Analyzing SSVEPs in the frequency-
domain has been an intuitive approach to detect
the frequency peaks in the spectral response of
SSVEP that correspond to the flickering frequency
of stimuli. For example, power spectral density ana-
lysis [3] that uses features in frequency-domain was
proposed to decode SSVEPs. Canonical correlation
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analysis (CCA) [7, 8] that compares a test trial
with computer-generated SSVEP models/templates
consisting of sine-cosine signals for each target [9]
was also proved to work on SSVEPs. However, these
methods failed to maintain consistent performance
across users because the individual differences in
the SSVEP data were not taken into account [10].
Later studies exploited individualized training data,
or SSVEP templates, and developed training-based
SSVEP decoding schemes that better characterize
individual SSVEP patterns using personalized cal-
ibration data. The training-based methods usu-
ally outperform the aforementioned calibration-free
methods [11–16].

The success of training-based SSVEP decoding
has significantly boosted the efficiency of SSVEP-
based BCI spellers. Nonetheless, the calibration
procedure is often laborious and time-consuming,
hindering practical and wide-spread applications of
BCIs in our daily life. Several studies have attemp-
ted to adopt transfer-learning techniques to reduce
the individual-variability or session-variability so that
a model for SSVEP can be tuned with existing data
without repeat collections of calibration data before
each use [17]. For instance, Yuan et al and Wong
et al proposed subject-to-subject transfer-learning
methods that transfer SSVEP data from existing sub-
jects to new ones using a spatial filtering approach
[18, 19]. Rodrigues et al also proposed a cross-
subject transfer learning method using a Riemannian
geometrical transformation [20]. Waytowich et al
applied a convolutional neural network to train a
subject-independent classifier for detecting SSVEPs
[21]. In another study, Nakanishi et al proposed
a session-to-session and device-to-device transfer-
learning method using spatial filtering [22, 23]. Sue-
fusa et al adopted a frequency shifting technique to
synthesize calibration data at arbitrary frequencies
from existing calibration data [24].

The transfer learning approaches have succeeded
either in improving classification accuracy of SSVEPs
compared with calibration-free methods without any
calibration process or compared with fully-calibrated
methods with reduced calibration cost. However,
such methods focused only on transferring data
across one domain such as cross-subject or cross-
session transferring. For example, the aforemen-
tioned subject-to-subject transfer learning methods
implicitly assumed that their subjects, stimulus para-
meters, and EEG devices are the identical between
calibration and target data [18–21]. Similarly, the
cross-session and the cross-device transfer learning
methods proposed in our previous studies implicitly
required calibration data to be from the same subjects
and stimulus parameters with target data [22, 23].
Table 1 compares and summarizes current transfer-
learning schemes for SSVEP-based BCIs. It is worth
noting that a generalized transfer learning approach

that can handle transferring existing data across mul-
tiple domains has yet to be proposed.

The goal of this study is to propose a generalized
framework of transfer learning that can leverage
SSVEP data across multiple domains including sub-
jects, sessions, and devices toward a practical BCI
application.

Our preliminary study demonstrated that apply-
ing LST to the existing SSVEP datasets acquired from
other users can augment the size of calibration data
for new users and in turn enhance decoding per-
formance without acquiring extra calibration pro-
cess [25]. However, although the LST-based method
could technically be employed to transfer SSVEPs
across any domain such as cross-session and cross-
device transferring, the effectiveness of such scenarios
has not been investigated in our previous work [25].

Therefore, the generalizability of the LST-based
method, especially in a real-world scenario where
EEG data from different users are more likely recor-
ded by different types of EEG recording systems, still
remains unknown. The discrepancy among recording
montages has posed a grand challenge in consolidat-
ing EEG data across domains and hindered the trans-
lation of BCI technologies toward practical applica-
tions. This study investigated the feasibility and the
effectiveness of the LST-based method in transfer-
ring SSVEPs across multiple domains using the data-
set acquired frommultiple subjects and sessions with
multiple EEG devices collected in our previous study
[23]. This work further examined and compared the
characteristics of data from different subjects with
and without the LST-based transferring in feature
spaces. In addition, this study also investigated the
effects of parameters such as the number of data
transferred via the LST on the classification accuracy.

2. Methods

2.1. EEG data
This study used the EEG data recorded and reported
in a previous study [23]. The dataset consisted of the
EEG recordings from ten healthy adults.

During the experiment, 40 visual stimuli were
presented on a 27- inch liquid-crystal display. Each
stimulus was modulated by a sampled-sinusoidal
stimulationmethodwith joint frequency-phasemod-
ulation [6, 12]. The stimulation frequencies ranged
from 8 to 15.8 Hz with an interval of 0.2 Hz. The
initial phase values started from 0 rad and the phase
interval was 0.35 π rad.

In the experiment, the subjects performed two
sessions of simulated online experiments [26]. The
procedure of tasks in both sessions were identical
except that the EEG signals were recorded with
two different devices. The two devices were an Act-
iveTwo system (BioSemi, Inc.) as a high-density
laboratory-oriented system and a Quick-30 (Q30)

2
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Table 1. Comparison between different transfer learning methods for SSVEP-based BCIs.

Domain transferred

Study Year Calibration data 1 Transferring approach Subjects Sessions Devices Stimuli

[18] 2015 Not required Spatial filtering Yes No No No
[22] 2016 Not required Spatial filtering No Yes No No
[24] 2017 Not required Frequency shifting No No No Yes
[21] 2018 Not required Convolutional Yes No No No

neural network
[20] 2019 Not required Geometrical Yes No No No

transformation
[23] 2019 Not required Spatial filtering No No Yes No
[25] 2019 Required Channel-wise Yes No No No

projection
[19] 2020 Required Spatial filtering Yes No No No

1Additional calibration data from a target session

system (Cognionics, Inc.) as a mobile and wire-
less system for real-life applications. Figure 1 lists
the characteristics of the two devices. The Q30 sys-
tem was always tested in the first session, and the
ActiveTwo system was tested in the second one to
avoid the skin preparation required for the wet (gel)
electrodes.

In each session, the subjects wore either one of
the EEG devices and performed eight blocks of sim-
ulations. In each block, the subjects were asked to
gaze at one visual stimulus indicated by the stimulus
program for 1.5 s at a time until all 40 stimuli were
gazed once. Therefore, the subjects performed 40 tri-
als corresponding to 40 stimuli in a block, and the
data consisted of eight trials per stimulus from each
subject.

2.2. Preprocessing
Six channels (PO3, PO4, PO7, PO8, O1, O2) and
eight channels (POz, PO3, PO4, PO7, PO8, Oz, O1,
O2) of EEG signals were extracted from the record-
ings collected by the Q30 and the ActiveTwo systems,
respectively. The signals extracted from both devices
were resampled at 256 Hz (from 500 and 2048 Hz for
the Q30 and the ActiveTwo system respectively) and
then re-referenced to the Fz electrode. We employed
a conventional sampling-rate conversion method,
which includes upsampling, anti-aliasing filtering,
and downsampling, to resample the data at a rational
ratio between the original and the new sampling rates
[27]. This process can be done by using the resample
function in MATLAB. The re-referencing was done
by simply subtracting the signals at target channels by
that at the reference channel Fz.

The data were then extracted in [L s, L + 1.5 s],
where time zero indicates the stimulus onset and L
indicates latency delay in the experimental environ-
ment and the human’s visual system. The latency L
was set to 0.17 and 0.15 for the Q30 and the Activ-
eTwo systems, respectively, according to the previous
study [23]. After epoching, the 60-Hz line noise was
suppressed by applying an infinite impulse response
notch filter to each epoch.

2.3. TRCA-based SSVEP detection
TRCA is a data-driven method aiming to find a spa-
tial filter that maximizes the reproducibility in each
trial during task periods [12, 28]. The task-related
components extracted by the spatial filter obtained
by TRCA have been shown to provide better SNR
which can significantly improve the performance
of training-based SSVEP detections [12]. In addi-
tion, the TRCA-based method could successfully be
combined with the filter bank analysis, which decom-
poses EEG signals into multiple sub-band com-
ponents so that independent information embed-
ded in the harmonic components can be efficiently
extracted [29].

In the procedure of the TRCA-basedmethod with
filter bank analysis, individual calibration data for
the nth stimulus are denoted as xn ∈ RNC×NS×NT ,
n= 1, 2, ...,NF . Here NC is the number of channels,
NS is the number of sampling points in each trial,NT

is the number of trials for each stimulus, and NF is
the number of visual stimuli (i.e. 40 in this study).
In the training phase, the calibration data are divided
into NK sub-bands by a filter bank and become xkn ∈
RNC×NS×NT , k= 1, 2, ...,NK . TheNK was set to five in
this study. In the following parts of this paper, the
ith trial of stimulus n in sub-band k will be denoted
as xkn,i. Spatial filters in each sub-band are obtained
to maximize the sum of the inter-trial covariance
after projecting the multi-channel signals into single-
channel oneswith the spatial filter. Therefore, the goal
is finding the channel weights wk

n ∈ RNC to maximize
the term

Vk
n =

NT∑
i,j
i̸=j

Cov
(
(wk

n)
Txkn,i,(w

k
n)

Txkn,j

)

= (wk
n)

T

 NT∑
i,j
i̸=j

Cov
(
xkn,i,x

k
n,j

)wk
n

= (wk
n)

TSknw
k
n. (1)

Here, Skn is the sum of cross-covariance matrices
between all pairs of trials of stimulus n in sub-band k.
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Figure 1. Specifications of two EEG devices used in this study.

To avoid arbitrary scaling with the weights, instead of
finding the wk

n that maximizes Vk
n, a constraint term

is needed:

Ck
n =

NT∑
i

Var
(
(wk

n)
Txkn,i

)
= (wk

n)
T

(
NT∑
i

Cov
(
xkn,i
))
wk

n

= (wk
n)

TQk
nw

k
n

= 1. (2)

Finally, the weights can be calculated as:

wk
n = argmaxw

Vk
n

Ck
n

= argmaxw
wTSknw

wTQk
nw

. (3)

The solution of equation (3) is equal to the eigen-
vector of the matrix Q−1S with the largest eigven-
value.

In the ensemble TRCA as an extension version of
TRCA, the final spatial filters for each sub-band wk ∈
RNC×NF are obtained by concatenating all the weights
in each stimulus:

wk =
[
wk
1,w

k
2, . . . ,w

k
NF

]
. (4)

After obtaining the spatial filters, individual templates
x̄kn ∈ RNC×NS are prepared. The training trials for nth
stimulus in sub-band k are first averaged across trials
as:

x̄kn =
1

NT

NT∑
i

xkn,i. (5)

In the testing phase, single-trial testing data x̂ ∈
RNC×NS are first pre-processed by the filter banks to
be decomposed into NK sub-bands as well. Then,

the spatial filters wk obtained in training phase are
applied to the testing signals x̂k ∈ RNC×NS in each sub-
band. Feature values ρkn are calculated as correlation
coefficients between the testing signals and the indi-
vidual templates as

ρkn = r
(
(wk)Tx̂k,(wk)Tx̄kn

)
, (6)

where r(a,b) indicates the Pearson’s correlation ana-
lysis between two variables a and b. A weighted sum
of the ensemble correlation coefficients correspond-
ing to all the sub-bands was calculated as the final fea-
ture for target identification as:

ρn =

NK∑
k=1

α(k) · ρkn, (7)

where α(k) was defined as α(k) = k−1.25 + 0.25
according to [29]. Finally, the target stimulus τ can
be identified as

τ = argmaxnρn. (8)

2.4. LST-based cross-domain transferring
This work proposes a transformation of SSVEP
signals from one domain and another. Let x ∈
RNC×NS and x́ ∈ RN ′

C×NS be the single-trial SSVEP
data obtained in a domain and in another domain
(i.e. subject, session, and/or device), respectively.
Then, we aim to find a transformation matrix P ∈
RNC×N ′

C such that x(t) = Px́(t)+ ϵ, where x(t), x́(t)
represent the t-th column of x, x́, and ϵ ∈ RNC is
an error vector. Note that the numbers of channels
NC and N ′

C are not necessary to be equal between
two domains. The transformation matrix P can be
obtained by minimizing the error term ϵ in the afore-
mentioned equation with a multivariate least-squares
regression given x and x́ as follows:

P = argminpTr
[
(x− px́)(x− px́)T

]
. (9)
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This problem can be solved as follows:

P = xx́T(x́x́T)−1. (10)

Because several studies have shown that trial-
averaging can significantly improve the SNR of
SSVEPs comparedwith single-trial SSVEPs by remov-
ing background EEG activities [11, 12], we used it to
improve the transferability of SSVEPs across different
domains. In the proposed method, therefore, instead
of using the single-trial signals of the new domain
x, we use the averaged signals x̄ across several trials
of the signals obtained from the new domain as the
target of transformation from existing training pool.
These calibration trials obtained from a new user are
called transformation targets. Every trial of the exist-
ing domains in the training pool will be transformed
to signals x́ which should be comparable to the trans-
formation target x̄, i.e. x̄≈ x́i = Px́i (i is a trial index).
Finally, all trials from the new domain x, which are
used to construct the transformation targets, and in
the existing data pool x́ are concatenated to form a lar-
ger training set than the one used in the conventional
template-based algorithm (i.e. x).With the new train-
ing set, the aforementioned TRCA-based method is
performed to identify target stimuli. The procedure
of the LST is also illustrated in figure 2.

2.5. Performance evaluation
To validate the efficacy of the proposed LST-based
method in transferring SSVEPs, we compared the
performance of detecting SSVEPs using the following
three schemes (figure 3):

(a) BASELINE: A self-decoding approach in
which all the calibration data are collected from a new
user (i.e. the conventional individual-template-based
method).

(b) Transfer without LST (w/oLST): A cross-
domain transferring approach in which the calibra-
tion data consist of calibration trials from the new
domain and from other domains without any trans-
formation.

(c) Transfer with LST (w/LST): A cross-domain
transferring approach in which the calibration data
consist of calibration trials from the new domain
and from other domains transformed using LST. The
transformation targets are obtained from the data
obtained in the new domain.

This study ran a series of simulations to test
the performance of the proposed LST-based method
as a cross-domain transfer learning for an SSVEP-
based BCI. A leave-one-subject-out cross-validation,
in which a subject is treated as a new (i.e. target)
user and all the other subjects are treated as exist-
ing (i.e. non-target) users, was employed to investig-
ate the effectiveness of the proposed method under
the cross-subject scenario. When one session of the
new user is being tested, the eight trials for each stim-
ulus was randomly divided into five and three as

a calibration set and a testing set. We then trained
three models including the TRCA-based spatial filter-
ing and individualized template using different pools
of training trials for each scheme. In the BASELINE,
2–5 calibration trials for each of 40 stimuli from a
target subject are used to form training sets. In the
w/oLST, all the eight trials for each stimulus from all
nine non-target subjects (72 trials in total for each
stimulus) are simply merged with the training sets
used in the BASELINE. In the w/LST, the data from
the non-target subjects are first transformed via the
LST and then merged with the training sets used in
the BASELINE. Then, three models were evaluated
with SSVEP-decoding performance on the 120-trial
(i.e. three trials × 40 stimuli) testing set. The w/LST
scheme was further evaluated under the cross-device
scenario. In the scenario, the leave-one-subject-out
cross validation was also employed. In addition, dif-
ferent EEG devices were selected between target and
non-target subjects. Note that the w/oLST cannot be
applied to the cross-device scenario because the num-
bers of electrodes of the two EEG systems are differ-
ent across devices. The random separation of the tem-
plate/test set was repeated ten times. The decoding
performance of each target subject was estimated by
the average of ten repeats.

Lastly, the classification accuracy was statistically
tested by factorial nonparametric permutation-based
repeated measures analysis of variances (ANOVAs)
[30]. The number of permutation was set to 5000. In
the post-hoc analyses, different schemes were com-
pared pair-wisely using Wilcoxon signed-rank tests.

3. Results

Figure 4 shows, for the three schemes, the averaged
SSVEP-decoding accuracy across subjects with differ-
ent numbers (from two to five) of calibration trials
per stimulus under the cross-subject and cross-device
scenarios. In general, the w/LST-based scheme out-
performed the other two schemes regardless of the
number of calibration trials.

In the cross-subject scenario, a three (schemes)
× four (the number of calibration trials) two-way
nonparametric permutation-based repeated meas-
ures ANOVA showed significant main effects of both
schemes (Q30: p< 0.001; ActiveTwo: p= 0.006) and
the number of calibration trials (Q30: p< 0.001;
ActiveTwo: p< 0.001). The two-way ANOVA also
showed a significant interaction between schemes and
the number of calibration trials (p< 0.001). In the
cross-device scenario, when transferring data from
the ActvieTwo to the Q30 systems, a two (schemes)×
four (the numbers of calibration trials per stimulus)
two-way ANOVA showed significationmain effects of
both schemes (p< 0.001) and the number of calib-
ration trials (p< 0.001), and a significant interaction
between them (p< 0.001). On the other hand, when
transferring from the Q30 to the ActiveTwo system,
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(In one sub-band of each stimulus)

New domain

Transformation targets: 

average across trials

Existing domains

Multivariate
least-squares
regession

Final and for TRCA

BASELINE

w/LST

Figure 2. The procedure of transferring SSVEPs based on the least square error transformation. wk
n refers to the TRCA-based

spatial filer for nth stimulus in kth sub-band (see equation (3)).

1 2 3 4 5 6 7 8

3 5 8 6 1 7 2 4Shuffled permutation

Training & testing set
Training trials Testing trials

Scheme 1: BASELINE

Scheme 2: w/oLST

Scheme 3: w/LST

Data of a target user
(from the Q30 or the ActiveTwo)

Calibration trials
(size grows from 2 to 5)

Calibration trials

Calibration trials Training trials from existing users
transformed with LST

Training trials from existing users
(from the Q30 or the ActiveTwo)

Shuffle

Split

prepare training data

TRCA models

repeat ten times

(calibration trials as transformation targets)

Figure 3. The flowchart of the preparation of the
calibration data for three schemes.

the two-way ANOVA showed significant main effects
of the number of calibration trials (p< 0.001), but
no significant main effect of schemes (p= 0.137) and
interaction between them (p= 0.149).

The post-hoc Wilcoxon signed-rank tests showed
that the w/LST scheme consistently and significantly
outperformed the others regardless of the number
of calibration trials in the cross-subject scenario. In
the cross-device scenario, when transforming the sig-
nals from the ActiveTwo system to the Q30 system,
the signed-rank tests also showed that the w/LST
scheme had significantly higher accuracy than the
BASELINE regardless of the number of calibration
trials. However, there was no statistically significant
difference between w/LST and the BASELINE when

transforming signals from the Q30 system to the Act-
iveTwo system.

Figures 5(a) and (b) show the decoding per-
formance for each subject under the cross-subject
and cross-device scenarios, respectively, with differ-
ent numbers of calibration trials. The performance
is represented as a logarithmic error rate in the 40-
class classification. In figures 5(a) and (b), most of
the data points fall within the lower right region
(i.e. below the diagonal dashed line), which indicates
the w/LST outperformed both the method w/oLST
and the BASELINE schemes under most of the cir-
cumstances. In particular, when the testing data are
from Q30, the w/LST consistently has lower error
rates than the BASELINE among nearly all subjects.
As for the circumstances when the testing data are
from the ActiveTwo system, the w/LST can still out-
perform the BASELINE among most of the subjects
when the size of transformation targets is small.When
compared to the method w/oLST, the w/LST has
higher accuracy under nearly all circumstances.

4. Discussions

This study demonstrated the efficacy of the LST-based
transfer-learningmethod inmitigating the variability
of SSVEP data acrossmultiple domains. Figures 4 and
5 suggest that the LST-based method (i.e. w/LST) is
capable of boosting the performance of the template-
based SSVEP decoding with TRCA especially when
the amount of calibration data from the target subject
(new user) is insufficient. In addition, study results
indicate the negative effects of using the naive transfer
learning (w/oLST), compared to the standard TRCA
(BASELINE) scheme. These results can be observed
from the aspect of the signal characteristics. Figure 7
shows the scatter plots of sample EEG data recorded
with the ActiveTwo system in two schemes (w/ and

6
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Figure 4. The averaged classification accuracy of different schemes across ten target subjects and ten cross-validation iterations at
different numbers of calibration trials per stimulus. ‘∗’ indicates p< 0.05 of the Wilcoxon signed-rank test between two schemes.
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Figure 5. The comparison of the log error rate of different schemes when each of ten subjects plays as the target subject under: (a)
cross-subject scenarios, and (b) cross-device scenarios. The number in the hollow dots indicates the subject id serving as the target
subject. Four dots starting from the hollow dots are cases of number of calibration trials per stimulus starting from two to five.

w/oLST). The subject 1 served as the target subject
in both cases, and the sizes of transformation targets
were two and five trials per stimulus for the upper
and lower plot respectively. The original EEG data
and the EEG data transformed by LST onto the trans-
formation targets were pooled together. All EEG tri-
als were first averaged across channels and then pro-
cessedwith t-SNE [31] to reduce the dimension to 2D.
The plots suggested that the LST can enhance the sim-
ilarity between trials in the same stimulus across all
subjects and reduce similarities across different stim-
uli. For better visualization, figure 7 only plots the tri-
als of the first two of 40 stimuli (correspond to two
colors, please see the figure caption).

The improvement in the similarity was also reflec-
ted in the EEG spectra. Figure 8 shows themean spec-
tra of the means across all EEG signals in response to
the 12 Hz stimulus in three schemes when subject 1
was the target subject. First, the peak of the spectrum
of the BASELINE scheme when the number of calib-
ration trials per stimulus was two (the top panel) did
not appear in the target frequency due to lack of train-
ing trials, while the peak became centered at 12 Hz
when the number was increased to five (the bottom
panel). Note that this phenomenon was reflected in
the classification accuracy (figure 5(b)). Furthermore,
the fact that the increment in training trials resulted
in a more steady spectrum demonstrated the benefit
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Figure 6. The averaged classification accuracy of different schemes across ten target subjects and ten iterations using different
numbers of supplementary subjects. The number of trials per stimulus was fixed to five. ‘∗’ indicates p< 0.05 of the Wilcoxon
signed-rank test between two schemes.

provided by the w/LST scheme. Because the w/LST
schememakes pooling a large number of training tri-
als possible, the SNR can be significantly increased.
On the other hand, it can be seen that because the
w/oLST scheme simply pooled many trials with high
variability, the peak at the target frequency was less
prominent. This implies that only with proper trans-
formation on the trials of an existing domain, pooling
these trials could lead to positive transfer and improve
the SNR. Finally, figure 9 shows the averaged Pear-
son’s correlation coefficients of time-domain signals
across channels between training and testing trials
in all cases. The similarity in the frequency domain
matched themagnitude of the correlation coefficients
in the time domain. The trend in figure 9 alsomatches
the one in the classification accuracy (figure 4).

The classification results shown in figures 4
and 5 suggest the efficacy of the proposed LST-
based method, which significantly enhanced SSVEP-
decoding performance, particularly when the per-
formance of the original model (BASELINE) was
limited. While the leading-edge SSVEP-decoding
method, template-based method with TRCA-based
spatial filtering [12], struggles with time-consuming
calibration sessions, the LST-basedmethod can lever-
age existing data from other domains (subjects and
recording devices) and improve decoding perform-
ance. As shown in the figures, when the number of
template trials was limited in all four scenarios, the
w/LST scheme offered high accuracy without requir-
ing many templates.

Comparable performance was found using the
conventional TRCA approach (BASELINE) and the
w/LST scheme in some cases when testing trials were
from the ActiveTwo system (figure 5(a), the lower-left
panel). In the cross-subject scenarios with the Activ-
eTwo system, as the number of calibration trials per
stimulus was large enough (four and five), the per-
formance of the BASELINEmodel nearly reached the
ceiling, and therefore, the LST-based method could

not improve the performance, suggesting that lever-
aging a large amount of data from other subjects
has no observable benefit when newly collected indi-
vidual calibration trials are sufficient. This is in line
with the rationale of training-based SSVEP methods,
which emphasizes the importance of individualized
calibration for SSVEP decoding.

In comparison with the naïve transferring
(w/oLST), for most of the subjects, the perform-
ance of the LST-based method improved along with
acquiring additional calibration trials from the target
user while the w/oLST scheme did not. In addition,
another big advantage of the LST is that the numbers
and locations of the EEG channels of new calibration
data and supplementary data can be different. In the
cross-device scenario, while the naïve data pooling
is not even allowed, the LST could help expand the
number of training trials.

In the cross-device scenario, when the EEG signals
of the target subjects were from the ActiveTwo system
and the ones of the existing subjects were from the
Q30 system, the increment in accuracy that the LST
can bring was less than transferring within the Act-
iveTwo system (figure 4, the second and the fourth
panel from the left). This implies the limitation of the
LST-based method that it still relies on the supple-
mentary data from existing domains with good qual-
ity. Nonetheless, the LST did not bring any negative
impact either. In a more practical scenario, in which
the dry-EEG-based Q30 was used as the recording
device for a new target subject, the LST can lever-
age the existing data collected from other subjects
using a standard wet-electrode-based EEG system in
a well-controlled laboratory to improve the SSVEP-
decoding accuracy (figure 4, the third panel from the
left). In other words, if there is sufficient data col-
lected by gel-based EEG systems in well-controlled
laboratories or even from the publicly available data-
sets on the Internet, the LST can leverage these data
and a small number of calibration data collected from
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Five calibration trials per stimulus

Two calibration trials per stimulus

w/oLST (1st stimulus)
w/LST   (2nd stimulus)
w/LST   (1st stimulus)

w/oLST (2nd stimulus)

Figure 7. The scatter plot of EEG trials after dimension
reduction with t-SNE. For the easiness of visualization, only
trials of the first two stimuli are plotted. The triangular dots
with darker colors are trials after the LST (subject 1 as the
target subject), and the circular dots with lighter colors are
original trials. The circles with solid or dashed lines indicate
the medians and the standard deviation of trials w/ or
w/oLST with corresponding colors. The Silhouette scores of
w/oLST and w/LST are 0.0287 and 0.2262 when the
number of calibration trials per stimulus is two, and are
−0.0071 and 0.1386 when the number of calibration trials
per stimulus is five.

the test subject to build a practical SSVEP BCI, sig-
nificantly improving the practicality of real-world
SSVEP BCIs.

In the two scenarios, the cross-subject transfer-
ring within the ActiveTwo system and the cross-
device transferring from the ActiveTwo to the Q30
system, the accuracy of the w/LST with two calibra-
tion trials per stimulus was equal to or higher than
that of the BASELINE with five calibration trials per
stimulus. Therefore, in such cases, 60% of calibra-
tion time could be saved. Assuming a 40-command
BCI speller, the proposed method could save 5 min
to collect training data with a trial length of 2.5 s
(Stimulation time: 1.5 s; Inter-stimulus interval (ISI):
1.0 s; Three trials per stimulus).
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Five calibration trials per stimulus

Figure 8. Normalized spectra of averaged EEG signals
across all training trials in each scheme (subject 1 as the
target subject) and testing trials.

In addition to the simulation validating the LST-
based method with different numbers of calibra-
tion trials, another simulation study that varied the
number of supplementary subjects was also conduc-
ted. In this simulation, a leave-one-subject-out cross-
validationwas also employed, but when preparing the
calibration data of the w/oLST and w/LST schemes,
different numbers (1, 3, 5, 7, and 9) of other subjects
were randomly selected as the supplementary sub-
jects. For each number of supplementary subject, the
random selectionswere repeated ten times. Unlike the
first simulation, the number of trials per stimulus was
fixed to five, and the first five trials were always used to
form the calibration data and the last three rials were
used as testing trials. As figure 6 shows, the perform-
ance of the w/LST scheme method improved slightly
as the number of supplementary subjects increased,
while the w/oLST scheme did not. These results sug-
gested that the number of supplementary subjects
does not heavily affect the performance of the LST-
based method but the more the better. These res-
ults are important for the practical scenarios, because
in real-world, the number of supplementary subjects
(i.e. existing users) is not limited, and it is important
to show that the LST-based method does not rely on
very specific parameters.

In the comparison of the proposed method with
existing approaches listed in table 1, our work stands
out as the only generalized framework for multiple
cross-domain transfer learning for SSVEP decod-
ing. Although some of the methods do not require
any additional calibration data from a target ses-
sion, the others require a small amount of calibra-
tion data from a target session. In general, the meth-
ods that do not require additional data can achieve
higher accuracy than the calibration-free method,
but they are far inferior to fully-calibrate methods
such as the TRCA-based method [23]. The ones
that require calibration data including the LST-based
method employ transfer learning to achieve better
performance than fully-calibration methods. Most
importantly, the most of existing transfer learning
methods can only transfer SSVEPs across one domain
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Figure 9. Pearson’s correlation coefficients of time domain signals averaged across channels between training trials and testing
trials. The correlation is computed by averaging across all target subjects.

such as either cross-subject, cross-session or cross-
device scenarios, whereas this study validated that the
LST-based method can transfer SSVEPs across mul-
tiple domains except cross-stimulus transferring. It
indicates that any user could reach a higher accuracy
than fully-calibrated methods with a small amount
of calibration data collected from his/her own EEG
device even if it was the first time for him/her to use
the system.

It is also worth noting that the classification
accuracy obtained in the simulated online ana-
lysis could be generalized to actual online perform-
ance. The preprocessing pipeline including notch and
band-pass filters was applied to each data epoch sep-
arately after the data were segmented. In addition, the
ISI was set to 1.0 s in the experiment, which has been
commonly and reasonably used in previous studies
with online analyses [6, 12].

The main limitation of the proposed method is
that it still requires a small number of calibration tri-
als from the new user, and therefore, it is still yet a
calibration-free method. In addition, when the qual-
ity of the supplemental data is worse than the tar-
geting data, the improvement from the LST-based
method is limited. However, in practice, it is more
likely that the supplemental data have better signal
quality since they can be prepared in a well-controlled
environment while the data of the targeting user can
be acquired in any general environment.

In a nutshell, the LST enables an effective consol-
idation of EEG data across users and devices and con-
sistently outperforms the standard TRCA approach
and the naive integration of data without LST. Our
results suggest using the LST-based method should
be taken into account for augmenting calibration data
when using TRCA-based SSVEP spellers.

5. Conclusions

This study proposed a cross-domain transfer method
based on the LST for transforming SSVEP data across

users and devices. The experimental results demon-
strated the efficacy of the LST-based method in alle-
viating the inter-subject and inter-device variability
in the SSVEPs. The LST-based method also improved
the SSVEP-decoding accuracy by leveraging data from
other subjects and/or devices and a small number of
calibration data from a new subject. These findings
considerably improve the practicality of a real-world
SSVEP BCI.
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