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Abstract— A visual stimulator plays an important role in
a steady-state visual evoked potential (SSVEP)-based brain-
computer interface (BCI). In conventional BCI studies, SSVEPs
have been elicited by either a single stimulus whose flickering
frequency varies across trials or multiple stimuli flickering
at different frequencies simultaneously. It has been implicitly
assumed that the SSVEPs generated by the single- and multiple-
target stimulation methods are comparable. However, no study
has directly compared their efficacy in eliciting SSVEPs. This
study, therefore, performed a quantitative comparison of signal-
to-noise ratio (SNR) and classification accuracy using 4-class
SSVEPs generated by these two methods. The classification
accuracy was estimated by three commonly-used target identi-
fication algorithms including calibration-free canonical correla-
tion analysis (CCA)-based method and template-based methods
with CCA- and task-related component analysis (TRCA)-based
spatial filters. The results showed that the single-target stimu-
lation method led to significantly higher SNR and classification
accuracy than its multi-target counterpart.

I. INTRODUCTION

A steady-state visually evoked potential (SSVEP) is the
brain’s electrical response to repetitive visual stimulation
[1]. The SSVEP has been widely used in implementing an
electroencephalogram (EEG)-based brain-computer interface
(BCI) due to its high communication rate and little user
training [2]. In an SSVEP-based BCI, users are asked to gaze
at one of the multiple visual stimuli, which are modulated
by different frequencies and/or phases, presented on a com-
puter monitor. By analyzing the elicited SSVEPs, the target
stimulus, which the user is gazing at, could be identified. In
this way, an SSVEP-based BCI can translate users’ intention
into commands to control external devices. The performance
of an SSVEP-based BCI has been rapidly increasing in the
past decade [3], [4].

The visual stimulator plays a vital role in an SSVEP-based
BCI. Visual stimuli can be presented using flashing light-
emitting diodes (LEDs) or flickers on a computer monitor.
Most of the recent studies employ a computer monitor as
a visual stimulator, which enables us to implement and
configure visual-stimulation parameters flexibly without re-
lying on any hardware modifications [5]. With the advances
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in stimulus-presentation techniques, the number of visual
stimuli that can be presented on a computer monitor has been
significantly increased, leading to a large number of BCI
commands. For instance, frequency approximation methods
made it possible to render robust SSVEPs at flexible frequen-
cies with a high-frequency resolution [6]-[8]. More recently,
hybrid frequency and phase modulation methods have been
widely used in implementing multi-command SSVEP-based
BCIs [3], [4], [9].

In early proof-of-concept studies, it used to be common
to present a single visual stimulus at a time, which is
modulated by several different frequencies across trials, to
a subject and apply target identification algorithms to the
sequentially-recorded SSVEPs to investigate classification
accuracy [5], [7], [10]. More recently, as a computer-monitor-
based stimulator becomes popular, researchers started to
present multiple visual stimuli simultaneously, whose layout
is designed according to their target applications, to assess
its simulated online performance [3]. In the literature, it has
been implicitly assumed that the two stimulation approaches
— single-target and multiple-target stimulation methods —
are comparable in their ability to elicit SSVEPs. However,
no study has performed a systematic and quantitative com-
parison between the two approaches. Therefore, it remains
unclear whether the results obtained in previous studies using
the two approaches can be directly translated to each other.

This study aims to perform a quantitative comparison of
the single-target and multiple-target stimulation approaches.
To this end, we collected 4-class frequency-modulated
SSVEPs elicited by the two types of stimulus presentation
approaches from eight subjects. This study compared the am-
plitude, signal-to-noise ratio (SNR), and frequency-detection
accuracy of the elicited SSVEPs. The frequency detection
accuracy was assessed by three popularly-used algorithms: 1)
calibration-free canonical correlation analysis (CCA)-based
method, 2) template-based method with CCA-based spatial
filtering, and 3) template-based method with task-related
component analysis (TRCA)-based spatial filtering.

II. METHODS

A. Experiment

1) Subjects: Eight healthy adults with normal or
corrected-to-normal vision participated in this experiment.
Each participant read and signed an informed consent form
approved by the Human Research Protections Program of
University of California San Diego before the experiment.
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Fig. 1. Illustrations of the two stimulus layouts: (a) single-target stimulus
presentation, and (b) multi-target stimulus presentation.

2) Stimulus Design: The experiment consisted of two
stages. In both stages, visual stimuli were presented on a
virtual-reality (VR) head-mounted display (HMD) Odyssey
(Samsung Electronics Co., Ltd.). In the first stage, the single-
target stimulation method, in which a single visual stimulus
was presented at the center of the screen, was tested (Fig.
1(a)). The participants were asked to gaze at the visual
stimulus that was modulated by four frequencies (9, 10,
11, and 12 Hz) assigned randomly in every single trial.
The subjects performed twelve trials (4 frequencies x 3
times) of 2-s gazing tasks with an interval of 1s in a block
and completed three blocks. In the second stage, the multi-
target stimulus presentation was tested. That is, four visual
stimuli modulated by the four frequencies were presented
simultaneously (Fig. 1(b)). The subjects were asked to gaze
at a target stimulus indicated by the stimulus program in
a random order for 2s. At the beginning of each trial, a
pink square marker appeared for 1s at the position of the
target stimulus. As is the case in the single-target stimulation
method, the subjects completed three blocks consisting of
twelve trials. After each block, there was a short break lasting
for several minutes. Therefore, each subject completed 36
trials (4 frequencies x 9 trials) for each stimulation method.
The stimulus program was developed using a Unity game
engine (Unity Technologies).

3) EEG Recording: EEG data were recorded with the ten
Ag/AgCl electrodes covering the occipital area (Pz, PPO1h,
PPO2h, PO3, POz, PO4, POO1, POO2, and Oz) and Cz
using a BioSemi ActiveTwo system (Biosemi, Inc.). EEG
data were digitized at a sampling rate of 2,048 Hz. The VR
headset was put over the EEG cap. The event triggers that
indicated the onsets of visual stimulation were sent from a
parallel port of a computer to the EEG amplifier and recorded
on an event channel synchronized to the EEG data.

B. Target Identification Algorithms

1) Preprocessing: The EEG data were epoched with a 1-
s window starting from 0.15 s after the stimulus onset of
each trial. The nine Occipital channels mentioned in II-A.3
were re-referenced to the channel Cz and down-sampled to
256 Hz. Finally, a band-pass filter from 4 Hz to 120 Hz was
applied.

2) CCA-based method: CCA has been widely used to de-
tect the frequency of SSVEPs [11], [12]. In an SSVEP-based
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BCI, CCA measures the underlying correlation between
multi-channel EEG recordings X € R¥*Ns and reference
signals for n-th stimulus ¥, € RV>Ns by finding the weight
vectors w, and w,, which maximize the correlation between
those projections as follows:

E [w§ Xy’ wy]

r, = max .
\/ E[WIXXTw,] E [w]Y, Y] w,]

Wi, Wy

(D

Here, N, is the number of channels, N; is the number
of sampling points per epoch, and N, is the number of
harmonics (N, = 3 in this study) to be considered in the
analysis. The reference signals are constructed by sine-cosine
waveforms as:

sin(27 ft)
con(2m fut
( : ) 1 2 N
Y, = : e )
) Fy F; Fy
sin(2Ny, fut)
con(2aNy, ft)

where F; refers to the sampling rate and f;, is the stimulation
frequency. The frequency of the reference signals which
maximize the correlation r, was selected as the frequency
of SSVEPs.

3) Template-based method: The template-based target
identification algorithm was first proposed in our previous
study [9]. When using the method, users first need to collect
individual training data for each visual stimulus to construct
spatial filters and templates. The individual training data
for n-th stimulus are denoted by a three-way tensor ¥,
(Xn) jun € RN*NsxNe Here, j indicates the channel index, k
indicates the index of sample points, % indicates the index
of training trials, and N, is the number of training trials.
For each visual stimulus, individual templates %, € RN->Ns
can be obtained by averaging multiple training trials as
(Xn) i = Ni, Zﬁ:”zl (Xn) jup- Spatial filters wy, € RN can also be
derived from the training data for each stimulus as described
later, and then they are applied to the individual templates
and input EEG data X to enhance the SNR of SSVEPs. After
spatial filtering, the correlations r, between the input data
and templates are calculated as feature values as follows:

3)

where p(a,b) indicates the Pearson’s correlation analysis
between two signals a and b. The template that maximizes
the correlation r,, is selected as the one corresponding to the
target stimulus.

In an SSVEP-based BCI, the effectiveness of the template-
based method can be further improved by applying spatial
filters. In recent studies, the CCA- and TRCA-based spatial
filters have been widely used [4], [9], [13]. The CCA-based
spatial filters can be derived as w, which is obtained when
inputting the individual templates J, into the equation (1)
instead of X. TRCA is the method that extracts spatial
filters that maximize the reproducibility during the task
period [4], [14]. Considering an observed multi-channel EEG
signal x(t) € Re, the TRCA finds a linear coefficient vector

n=p (XTWmZnTWy) ,
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Fig. 2. (a) Time series and (b) amplitude spectra of SSVEPs elicited by a
visual flicker at 10 Hz presented using the two stimulation methods from a
subject.

w € R to maximize inter-trial correlation of its projections
t(t) = wi'x(¢), which is called a task-related component.
The h-th trial in the observed EEG signals and task-related
components are described as x") € RN*Ns and y®) ¢ RMs,
respectively. The covariance Cy, j, between h;-th and h;-th

trials of y is described as:

Cov <y<h1>’y<h2>)

N,
Z wjle2C0V(
J1:2=1

Chl o

(h1) ¢ (h2)
le1 ’Xj22

“4)

).

All possible combination of N; trials are summed as:

V vy (h) (ko)
_ 3 . 1 2
Z Chiy = Z Z wjwj, Cov (le Xj )
hyhy=1 hphy=1 ji,ja=1
Iy #hy hy#hy
= w/Sw. (5)
Here, the matrix S € RV*Ne is defined as:
N
_ (h1) (h2)
(S)lez - Z Cov (Xh Xj ) 6)
hy.hp=1
hl#hz

To obtain a finite solution, the variance of y(¢) is constrained
as:

Ne
Z wjwj,Cov (le (t)vsz (1)
J1:2=1

wi Qw=1.

Var (y(z))

(7

The constrained optimization problem can be solved as:

wlSw
wlQw

The optimal coefficient vector is obtained as the eigenvector
of the matrix Q~'S. The eigenvector corresponding to the
largest eigenvalue is selected as the spatial filter to extract
task-related components.

®)

W = argmax
w
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Fig. 3. Averaged (a) amplitude and (b) SNR of SSVEPs across subjects

elicited by the two stimulation methods.

C. Data analysis

This study first compared the signal characteristics of
SSVEPs such as their amplitudes and SNRs between the
two stimulus presentation methods. The SNR was computed
as the ratio of the amplitude of SSVEPs to the mean
amplitude of neighboring frequencies with a range of 2
Hz [5]. In addition, this study used the aforementioned
three algorithms (i.e., the CCA-based method, the template-
based method with CCA- and TRCA-based spatial filtering)
with a filter bank analysis (the number of sub-bands = 5)
[15] to identify target stimuli. The classification accuracy
was estimated by a leave-one-out cross validation (LOOCYV)
except for the calibration-free CCA-based method. This
study also employed factorial repeated measures analysis of
variances (ANOVAs) to investigate the statistical difference
in classification accuracy between the two visual stimulation
methods.

III. RESULTS

Fig. 2 depicts an example of time series and amplitude
spectra of SSVEPs elicited by the single-target and multiple-
target stimulation methods, and Fig. 3 shows averaged am-
plitude and SNRs of SSVEPs across subjects. In general,
the single-target stimulation method led to higher amplitude
and SNR than the multiple-target stimulation method. Two
(stimulation approaches) x four (stimulus frequencies) x
four (harmonics) three-way ANOVAs showed significant
main effect of stimulation approaches in amplitude (F(1, 233)
= 77.77, p < 0.001) and in SNR (F(1, 233) = 13.04, p <
0.001).

Fig. 4 shows the averaged classification accuracy across
subjects using the three methods as functions of data length
for the two stimulus-presentation methods. Regardless of the
target identification algorithms, the single-target stimulation
method achieved higher classification accuracy than the
multiple-target stimulation method. Indeed, a two (stimula-
tion approaches) x three (target identification algorithms)
x ten (data lengths) three-way ANOVA showed significant
main effect of stimulation approaches (F(1, 438) = 31.82,
p < 0.001).
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Fig. 4. The averaged classification accuracy of SSVEPs generated by the single- and multiple-target stimulus presentation across subjects estimated by (a)
the CCA-based method, (b) the template-based method with CCA-based spatial filtering, and (c) the template-based method with TRCA-spatial filtering.
The error bars indicate the standard errors. The dashed lines indicate the chance-level accuracy (i.e., 25%).

IV. DISCUSSIONS AND CONCLUSIONS

To the best of our knowledge, this preliminary work
is the first study to quantitatively investigate the effect
of using single-target or multi-target stimulus presentation.
The study results (Fig. 4) revealed that the single-target
stimulation method can elicit SSVEPs with significantly
higher SNR than the multiple-target stimulation method,
leading to higher classification performance in all the three
algorithms. This difference in SNR might be because the
subjects were less distracted by the surrounding non-target
stimuli under the single-target condition. The time series
of SSVEPs in Fig. 2(a) clearly showed higher amplitudes
of rhythmic signals (i.e., SSVEPs) under the single-target
condition. The spectral amplitude of the SSVEPs in Fig.
2(b) also showed that the spectra had greater peaks at both
fundamental and second harmonic frequencies (i.e., 10 and
20 Hz) under the single-target condition than under the
multi-target one. Note that, in practical applications, multiple
visual stimuli need to be presented simultaneously to provide
users multiple BCI commands. Therefore, the SNR and
classification accuracy of SSVEPs elicited by the single-
target stimulation method cannot be an indicator of those in
real-world applications. Nonetheless, since the single-target
stimulation method can elicit SSVEPs with high SNR, this
approach could be employed to acquire better training data
for training machine-learning models than the multiple-target
stimulation method. In our future work, we will investigate
whether such machine-learning models could enhance the
classification accuracy in an online BCI experiment.

The main limitation of this study is that the order of the
two stages in the experiment was fixed. That is, the stage of
the single-target stimulation was always used in the first half
of the experiment, and the multi-target one was always at the
later half. Therefore, the difference in the SNR of SSVEPs
between the methods might be caused by the change of
fatigue level, motivation, etc. Our future work will randomize
the order of the two conditions. We also plan to explore the
effect of the size and layout of visual stimuli on the SNR of
SSVEPs and BCI performance.
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