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Abstract

We propose a mechanistic explanation of how working memories (WM) are built and
reconstructed from the latent representations of visual knowledge. The proposed model features
a variational autoencoder with an architecture that corresponds broadly to the human visual
system and an activation-based binding pool of neurons that links latent space activities to
tokenized representations. The simulation results revealed that new pictures of familiar types of
items can be encoded and retrieved efficiently from higher levels of the visual hierarchy
whereas, truly novel patterns are better stored using only early layers. Moreover, a given
stimulus in WM can have multiple codes, representing visual detail, in addition to categorical
information. Finally, we validated our model’s assumptions by testing a series of predictions
against behavioral results obtained from WM tasks. The model provides a demonstration of how

visual knowledge yields compact visual representation for efficient memory encoding.
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Introduction

In the study of cognition, working memory (WM) is thought to be responsible for temporarily
holding and manipulating information to enable complex cognitive operations. Characterizing
WM is an integral part of the birth of cognitive psychology, as decades of research have centered

on the question of discovering the capacity and nature of this short-term memory system!'.

One of the central issues in many discussions over the structure of WM is how it is affected by
previously learned knowledge?’. Knowledge that emerges from long-term familiarity with
particular shapes, or statistically common featural combinations enables us to recognize and
remember complex objects (i.e., the prototypical shape of a car, or the strokes that comprise a
digit). It is widely acknowledged that such information is crucial for building WM
representations ', but there has been little attempt to mechanistically implement the role of
visual knowledge in WM models in spite of abundant behavioral research in this domain '°18,
For instance, performance on immediate recall of a list of words is limited by the number of pre-

11,12,19

learned chunks represented in long-term knowledge , and readers trained to read Chinese

are better able to remember Chinese characters than other readers .

Even prior to these findings, there has been extensive theoretical discussion of the necessity to
link WM to long-term memory representations. The modal model of memory 2° proposed that
representations in long-term memory could be transferred to a short-term storage. Later, the
multicomponent model of WM suggested that the short-term storage of visual information (i.e.,
2122

visuospatial sketchpad) is dependent on visual semantics and episodic long-term memory

This idea is also carried by theories of activated long-term memory account »>”%23_ In such
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accounts WM representations are built by activating pre-existing representations within long-

term memory.

The above accounts imply that WM is integrated with long-term knowledge, but their lack of
computational specificity has made it challenging to understand this integration. To fill this gap,
we implemented a computational WM model in conjunction with a visual knowledge system.
This model is named Memory for Latent Representations (MLR) and it provides a new
conceptualization of WM that achieves a range of functional benchmarks and forces us to
formally specify our intuitions about how visual information is represented in the mind ?*. Our

approach is abductive, in which a likely explanation is proposed for a set of data.

We consider the problem of WM models to exist in the M-open class (as opposed to M-closed
and M-complete classes 2° ), in which a true model is unattainable due to its extreme complexity
but it is possible to build and test approximations that are constrained by behavior and biology to

formalize our account of memory structure and function.

The proposed MLR model simulates how latent representations of items embedded in the visual
knowledge hierarchy are encoded into WM depending on their familiarity. For the purposes of
this work, we define familiar as stimuli that the model has not been previously trained on, but are
from the same distribution(s) that the model has been trained on. Novel stimuli are drawn from a

distribution that is very different from the training distribution(s).

After memoranda have been encoded in WM, they can be retrieved by reactivating those same

latent representations in the visual knowledge system. Functional constraints for the model are

7,26

inspired in part by previous works "“* and include the following capabilities.
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Information about the shape of remembered objects can be regenerated 2728 A familiar stimulus
can be represented by different codes, varying from visual details up to

abstract categorical information ?°.Specific attributes of a given stimulus can be stored depending
on their relevance for a task *°. WM performance is more efficient for familiar types of stimuli'’,
but it is possible to remember novel shapes?’. WM can store multiple items (even repeated
items), each consisting of a bound combination of stimulus attributes and these can be
individually retrieved according to the content of those attributes->!. There is storage interference
between stored memoranda which degrades the memory of constituent attributes according to the

number of items stored in memory. 2.
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Results

To build a model that exhibits these capabilities, we have created the MLR model which consists
of a variational autoencoder’ (i.e., VAE) to represent the visual knowledge hierarchy, and a

binding pool*®

to store token-bound representations of the VAE’s latent spaces. We modified the
VAE (mVAE) to represent the color and shape distinctively in the network’s compact latents and
trained it on the MNIST?* and fashion-MNIST?> datasets using a modified version of the original
VAE objective function. Figure 1 illustrates the MLR’s model simplified architecture, and the

correspondence of the mVAE to the visual ventral stream.

Simulation results

The mVAE disentanglement prior to memory encoding: Classification accuracies of trained
support vector machines*® (SVM) of shape and color have been summarized in Table 1 in the no-
encoding condition. The results of the mean classification accuracies for 10 trained models and
10 repetitions for each model show that color and shape representations were successfully
disentangled in their corresponding maps (Extended Data Figure 1). This is a coarse
approximation of the general finding that the ventral visual stream has specialization of cortical
maps for different types of information®”-8. The benefit of such anatomical disentanglement in
the context of a memory model like MLR is that it permits top-down modulation to easily select
particular kinds of information for promotion to WM, because the control signals only need to
operate on the scale of selecting regions of cortex, rather than individual neurons. The nearly
complete disentanglement of color and shape as we achieve here is an exaggeration of the visual

system but is helpful for demonstrating the principles of encoding attributes selectively.
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The Binding Pool can encode and retrieve information: Projecting information from any
given latent representation into the BP and then back to the mVAE allows us to store and
reconstruct the original activity pattern of any layer in the encoder or shape/color maps. Figure
2a illustrates examples of single items encoded individually and then reconstructed using the
mVAE. Table 1 indicates the classifiers’ accuracies of 10 randomly generated BPs for each
model across 10 separately trained models for determining the shape and color of items
according to which layer of the mVAE was encoded and then retrieved. According to the
simulation results, memory retrieval from shape and color maps is more precise than
reconstructions from L; and L,. Hence, compression by deeper layers allowed more accurate
memory retrieval due to the relative ease of reconstructing the precise activity pattern on the
smaller latent spaces of the shape and color maps. In other words, the BP encoding is lossy,

particularly for layers that have more neurons, such as L and Lo.

Storing multiple attributes and codes of one stimulus: The MLR can flexibly store specific
attributes of a given stimulus such that BP representations are more efficiently allocated for a
particular task®**’. According to Table 1, the classification accuracy of retrieving color was
improved when the shape information was not stored even for a set size of one. The reverse
relationship was shown also. The randomized weights between the latent spaces and the BP
result in overlapping activation patterns for different attributes and therefore interference,
however the impact of interference on accuracy depends on the number of BP nodes as well as
the number of attributes that are being encoded. For instance, decreasing the size of the BP from
2,500 to 1000 resulted in increased interference (82% vs 76% accuracy of classifying a retrieved

stimulus).
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Encoding of Novel stimuli: In the preceding simulations, MLR was tested on specific MNIST
images that it had not been trained on, but were from the same distribution as the training set. In
this sense, they were new pictures of familiar kinds of stimuli. MLR also can store and retrieve
truly novel shapes from a distribution that does not overlap with its training set (i.e., Bengali
characters*’). This is done by encoding the L, latent into the BP and retrieving it via the skip
connection. The skip connection is critical to reconstruct novel forms, since the nature of the
compressed representations in the shape and color maps force any representations that pass

through those maps to resemble familiar shapes (Figure 2b).

One might ask how does the MLR model know whether to use a skip connection or the
shape/color latents to store and retrieve objects. MLR can estimate the novelty of a given
stimulus according to the reconstruction error, with large errors indicating novelty (see the

section “Detectability of novel vs familiar shapes” in methods)

The accuracy of detecting a familiar item was 99.5% (SE = .23), whereas detecting a novel shape
was 96.42% (SE = .58). Such novelty detection could be used to implement control mechanisms
that determine which latent representations are used for memory storage although such control
signals are not implemented in this version of MLR. Note that all the simulation results we

reported here do not include novelty detection for the sake of simplicity.

Encoding multiple visual items. Tokens allow individuation of different items in memory*!? ,

by linking each token to a random subset of the binding pool as introduced in an earlier work™®.
Accordingly, tokens have overlapping memory representations, such that multiple items stored in
memory interfere with one another causing a progressive degradation of memory quality as

memory load increases®? (Figure 2c).
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Note that we are reconstructing the actual shape and specific colors of the items, not just their
categorical designations and the color/shape of the retrieved items are biased toward the other
items as set size increases, reflecting the overlap in representation between the different items.
This is emblematic of the interference observed in storing multiple visual stimuli**, and is also
consistent with previous studies that showed misbinding of colors between stored stimuli as a
form of interference with increased set size*. Classification accuracies of retrieved items are

shown in Figure 3 condition 1.

Multiple codes for multiple objects: When appropriate for a given task, MLR can store
categorical labels of information alongside the visual information in a combined memory
trace’®***_ By converting the output of a classifier into a localist (i.e., one-hot representation in
which the estimated category has the value of 1, and other categories are set to zero)
representation, a neural code of the categorical label can be stored into the BP, summing with the
representations of the shape and color maps. Thus, a localist representation of category can be
stored in the BP alongside the memory for the visual details of a given item within a single token
just by adding the BP activation values together. This brings additional interference; however,
the categorical codes are fundamentally dissimilar in character to the codes within the shape and

color maps and thus do not systematically bias the memory for visual details.

To assess the accuracy of memory retrievals for visual and categorical information as a function
of set size we consider five encoding conditions replicated for set sizes 1-4. All the conditions’

results are summarized in Figure 3 (See Supplementary Table 1).

In condition 1 (encode visual, retrieve visual) shape and color map activations are stored together

in the BP for each item; Then, either shape is retrieved (1s) or color is retrieved (1c). The
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retrieval accuracy was estimated by the same classifiers trained on the shape and color map

representations (SVMss and SVM cc).

In condition 2 (encode visual + categorical, retrieve visual), shape and color map activations are
stored together in the BP along with shape and color labels for each item; either shape is
retrieved (2s) or color is retrieved (2¢). The retrieval accuracy was estimated as in condition 1.
When both shape and color maps are stored as visual information in the BP along with the
localist labels, the visual information was not greatly perturbed (see condition 1 vs. 2 in Figure 3)

suggesting that there is little cost to remembering labels along with visual details.

In condition 3 (encode visual + categorical, retrieve categorical) shape and color map activations
are stored in the BP alongside shape and color labels; either shape label is retrieved (3s) or color
label is retrieved (3c). The retrieval accuracy of labels was computed by comparing the pre-
encoding localist representations estimated by the classifiers for each item when it was first
classified with the labels reconstructed from the BP. Note that accuracy for remembered labels in
condition 3 for larger set sizes is higher compared to condition 2. This is because the labels are

akin to a digital form of encoding that can more easily be reconstructed in the presence of noise.

In condition 4 (encode 50% visual + categorical, retrieve categorical) the encoding is similar to
condition 3 except that the encoding parameters for the visual maps was set at 0.5, meaning that
activations of these maps were multiplied by .5 prior to encoding. This simulates prioritizing
categorical information over visual details. This simulation reveals that we can parametrically
adjust the relative proportion of visual details stored, producing a progressive improvement in

the accuracy of retrieved labels (compared condition 4 to condition 3) at higher set sizes.

10
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These simulation results match the common finding that people are able to remember several
distinct familiar objects that have well-learned categorical labels (i.e., digits or familiar colors)
with high accuracy up through approximately 3-5 items, while working memory for specific

shape details is more limited'®.

In condition 5 (encode categorical, retrieve categorical) we simulate a case in which no visual
details are stored at all. This might not be a realistic condition, as it is hard to imagine that there
is absolutely no trace of visual information when people are shown a series of objects (i.e., this
would preclude any memory of relative size, position, orientation, etc.). As shown in Figure 3,
the capacity for encoding pure categorical information is high compared to the previous
conditions when more items are stored. Note that while there is only a miniscule falloff in
accuracy with set size here, interference does continue to increase beyond set size 4 (see

Extended Data Figure 2).

BP binding and content addressability: Token individuation allows content addressability?!,
such that if two colored digits are stored in memory using the shape or color representations,
memory can be probed by showing just the shape of one of the items and retrieving the token
associated with that item. That token can then be used to retrieve the complete representation of

the stimulus, including its color (Extended Data Figure 3).

When the two digits were from two different digit categories (e.g., a “2” and a “3”’) the mean
accuracy of retrieving the correct token across the 10 trained models was 88% (SD=1.73) against
a 50% chance. Tokens were used to retrieve the color map activation, which was then classified
into a label, which resulted in an accuracy of 53% (SD = 2.1) with chance being 10% across

correct and incorrect token retrievals. For the same MNIST digits (e.g., two 2’s with a slightly

11
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different shape), the mean accuracy of retrieving the correct token across the 10 trained models is
73% (SD= 3.03), notably worse than when the digits were different but still far better than
chance. The accuracy of retrieving the correct color from these tokens as estimated by the
classifiers was 49% (SD = 2.42). This is a demonstration of retrieving a memory based on subtle
variations in shape between categorically identical stimuli. This capacity is one of the
predictions of the model, which is that human WM is able to bind features to subtle variations in
the shape of a highly familiar stimulus type for multiple stimuli (see Experiment 4 below for the

human data).

More efficient storage of familiar information. Human memory has higher memory capacity
for familiar items drawn from long-term knowledge than novel stimuli'"!*!”. Based on studies
on familiarity, we assume that natural images and their variations are familiar, because they can
be mapped onto compact latent representations that are easier to remember. This means that a
new picture of a familiar kind of object can be represented more efficiently than a new picture of
an unfamiliar kind of object. Similarly, in the MLR model, familiar items for all simulations
were drawn from the testing set of MNIST and f-MNIST images, such that the model was not
trained on those specific images. Thus, those are new pictures of digits or fashion items but come
from a familiar distribution. The MLR model shows how familiar items are stored more
efficiently than unfamiliar ones, and therefore have less degradation of representations in WM as
the set size increases. As shown earlier, the BP better encodes the compressed shape and color
representations for familiar items (Figure 2a) because it can use the smaller shape and color
maps, whereas novel types of shapes must be encoded from the larger L; latent and the
reconstruction, then passes through the skip connection (Figure 2B). To quantify the memory

performance for familiar and novel stimuli, we compared the pixelwise cross-correlation of input

12
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and retrieved images as the function of set size, with familiar shapes being encoded from the
shape/color maps and novel shapes are encoded from L; and retrieved from the skip connection.
The result of the cross-correlations for 500 repetitions are illustrated in Table 2 (Data

visualization in Extended Data Figure 4).

The correlation value always declines as the set size increases, but more steeply for novel than
familiar stimuli. Using cross-correlation, we also measured the memory performance for when
familiar items are encoded from L; and retrieved via the skip connection, versus when novel
items are encoded from the shape/color maps. The values have been summarized in Table 2.
Note that the baseline cross-correlation between an input and the reconstructed pattern for a
familiar stimulus passing through the shape and color maps is 0.85 (SD = .027) when there is no
binding pool involved, therefore, the reason that the cross correlation is not closer to 1.0 for a set
size of one is primarily due to the compression inherent in the mV AE, rather than memory

encoding/retrieval.

The shape/color map memory retrievals of the novel shapes have correlations of .15 for all the
set sizes, indicating that novel configurations cannot be represented by the highly compressed
maps at the center of the mVAE. The results also revealed that the L encoding of familiar
shapes and retrieving it via the skip connection yielded a lower performance across all the set
sizes compared to encoding of shape and color map representations. Hence, the compressed
shape and color representations achieved by training allows for more precise memory
representation for familiar shapes, whereas this efficient representation does not exist for novel

configurations. Therefore, the model relies on the early-level representations of L; to store novel

13
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shapes, though the quality of these memories is lower than for familiar shapes using the shape

and color maps.

Behavioral experiment results

In partial validation of the model, we provide predictions with empirical tests about the
capabilities of working memory in storing visual information. These capabilities were derived
from the general properties of the MLR model and key assumptions that we have made in its
construction. Figure 4 shows the summary of the experiments and the results while methods are
provided at the end of the paper. All group averages are reported alongside a 95% bootstrapped

confidence interval (bCI).

Experiment 1 results: 20 participants from Pennsylvania State University were shown Bengali
characters and given no warning about the nature of the stimuli or that there was going to be a
memory test. The stimulus was always different in trial 1 and 2. The mean accuracy on the first
trial, where the target was foiled by 3 Bengali characters from different categories at 95%, bCI =
[85%,100%], significantly greater than chance (25%). Participants were also highly accurate on
the second trial which required them to find the target image from 3 foils of the same category,
M =90%, bCI =[75%,100%]. This supports the assumption that the pathways used to build
memories of novel stimuli are always available and can be recruited on the fly with no advanced

preparation.

Experiment 2 results: 20 participants were again given minimal instructions as in Experiment 1,
but were now shown a single MNIST digit instead of a Bengali character. Accuracy on the first

trial when the memory test was unexpected was 85%, 95% bCI = [60%, 95%], significantly

14
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greater than chance (25%). Accuracy on subsequent trials was 85% (bCI = [70%,100%]), 90%
(bCI = [75%, 100%]), 100%, and 100%. This supports our assumption that even highly familiar
stimuli are encoded with memory of visual details in the absence of expectation of what specific

question will be asked.

Experiment 3 results: 20 participants were led to expect that only category memory was
required for report by showing them 50 trials in which they reported the categorical identity of an
MNIST digit. The mean accuracy of identifying the target was 97% during these pre-surprise
trials, bCI = [96%, 98.3%]. On trial 51, participants were unexpectedly asked to choose the
specific visual form of the digit they saw, and accuracy dropped to 15%, bCI = [0%, 30%]. On
the next trial, when participants now expected to report visual details, the accuracy of reporting
the shape of the digit elevated to 100%. This difference was statistically significant according to
a one-tailed permutation test, difference = 85%, p <.0001, bCI = [70%, 100%]. This
demonstrates that memory encoding parameters are flexible and can be tuned to minimize visual
detail information when only category is expected to be relevant. These parameters can also be

rapidly modified to re-enable visual detail memory, within the span of just one trial.

Experiment 4 results: 20 Participants recruited from Prolific completed 20 trials in which they
were shown two colored MNIST digits from the same category and were then asked to report the
color of one digit, cued by its specific shape. Overall, participants correctly reported the target
color 81.5% of the time, bCI = [75.5%, 87.25%], with swap errors (reporting the color of the
other MNIST digit) occurring on average 9% of the time, bCI = [4.75%, 14%]. Importantly, 17
of 20 participants (85%) reported the correct color on trial one, bCI = [70%, 100%], which was

significantly above chance (10%). This finding shows that visual details can be used for binding

15
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and retrieval of item representations even for overtrained stimuli that belong to the same

category.

Discussion

The MLR model provides a plausible account of rapid memory formation that utilizes a limited
neural resource to represent visual and categorical information in an active state. The model
mechanistically illustrates how WM representations could build on long-term knowledge traces
to store familiar items more efficiently, while also preserving the ability to encode novel visual
patterns. Using a generative model such as a VAE, we were able to build a knowledge system
based on synaptic plasticity trained with gradient descent using back propagation. The VAE
shares similarities with the hierarchical structure of the visual ventral stream (Figure 1) with
more generic representations at the early level and more compressed representations at higher
levels that can only represent familiar stimuli. In a VAE the decoder corresponds roughly to the
extensive feedback projections that extend backwards down the ventral stream from higher to

lower order areas*~°.

When paired with a binding pool model of working memory?®, the MLR model was able to build
generative memories of small visual images for both familiar and novel stimuli and it also
exhibited the ability to tradeoff memory for visual details against memory for categorical
information. Furthermore, the MLR is a cognitive model of human WM, in that it fulfills

numerous requirements as proposed by Oberauer (2009).
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For instance, MLR can build new structural representations, which refers to the ability to quickly
link or dissolve representations that bind existing representations together into novel
configurations. MLR can store novel spatial arrangements of line segments (i.e., Bengali

characters).

MLR can manipulate structural representations which refers to the ability to access information
that is currently stored in memory and to implement cognitive operations on it. As a pure
memory model MLR does not represent complex cognitive operations, but it has tunable
parameters that control the flow of information to determine what specific attribute(s) or labels
are encoded into WM and also allows for regeneration of the original input stimulus based on

select attributes which is essential for some kinds of manipulation.

MLR has flexible reconfiguration which refers to findings that WM is a general-purpose
mechanism that can be reconfigured to perform a variety of tasks. This flexibility is at the heart
of MLR’s mechanism for weighting which latent spaces are projected into the binding pool and
can be accomplished quickly by nonspecific modulation of connection strengths along a pre-

existing pathway.

MLR representations are partially decoupled from long-term memory, meaning that WM must
be able to store and retrieve information in a way that is distinct from information stored in long-
term memory. The binding pool exhibits this property by creating active representations that are

separate from the latent spaces embedded in the visual knowledge.
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MLR draws on long-term memory by building efficient memories using existing long-term
knowledge representations when they are available. The BP in MLR can use the most compact

latent space that is available to encode a familiar stimulus.

MLR allows for the transfer of useful information into long-term memory. It must be possible to
convert or “train” WM representations into long-term memory representations. This capability is
enabled by the generative aspect of MLR. Memory consolidation could occur by regenerating
remembered representations and then using those to drive perceptual learning (or gradient
descent in an artificial neural network). To maintain the previously learned knowledge,
techniques such as interleaving previous samples or using generative replay can be used °'.
Alternatively, copies of the binding pool could serve as compressed representations to be

encoded into episodic memory.

In addition to these functional requirements, we also consider the architectural benefits of the
MLR which is that clustering neural activity associated with memory into a binding pool of
general-purpose storage neurons provides a straightforward path for higher order processes to
control memory function, allowing them to be sustained, deleted, or instantiated into constituent
cortical areas. Binding information between different attributes within distinct objects is also
simpler to implement in a binding pool architecture because the memories are physically
clustered in a well-defined population of neurons instead of being distributed across a large

expanse of sensory cortex.

MLR is not intended as a complete model of working memory as there are many functional,
empirical, and computational aspects that have not yet been considered. These limitations

include accounting for spatial locations, temporal effects, attention, and executive control. Their
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omission is not intended to signal that they are unimportant, but rather is an admission that a
formal implementation of a cognitive function so flexible as WM is beyond the scope of any
single paper (see "*3275 for extensive discussion on other aspects of WM). Rather, the MLR
model is intended as a nucleus of a storage mechanism to store memories in a way that is linked
to visual knowledge and that is extensible to a broader range of empirical phenomena and

capacities.

MLR gives us a working implementation of how memories can exploit long-term knowledge
using either or both of compression and categorization. When images are drawn from MNIST or
f-MNIST datasets as familiar stimuli, the visual knowledge provides a compressed representation
in the shape map and also learned categorical labels derived from the shape map. In contrast,
entirely novel shapes could leverage only the less compressed, generic representations at early
layers to encode them into WM. Subsequently, we demonstrated that the advantage of storing
compressed format of known shapes is having less interference between items compared to when
early level representations of novel shapes are stored in memory. Moreover, we showed attribute
binding for individual items by encoding two instances of the same digit with different colors in
WM and cuing one of the shapes to retrieve the whole item. Finally, we demonstrated that the
MLR could leverage the existing knowledge to detect the novelty or familiarity of a presented

stimulus.

Figure 5 illustrates the diagram of hypothetical compressed and categorical representations of a
handwritten digit ‘5’ as it is being processed by the visual system. The key point here is that with
increasing depth into the ventral stream the visual form is represented by progressively fewer

neurons, but the loss of detail is minimal as the stimulus is drawn from a distribution that the
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system has been trained on, or has experience with. Moreover, this visual representation can
elicit a separate categorical representation that is even more compact than the visual

representation, though it lacks all visual details.

We also provided empirical evidence in Experiments 1 and 2 of the incredible flexibility of
building memory representations from appropriate latent representations by showing that naive
subjects can retrieve the specific shape of both novel and familiar stimuli at the very first trial
without being aware of the nature of the task, as no specific instructions or examples were
provided prior to the brief exposure. This is important in validating the MLR model, as it
demonstrates that the existing pathways for building memories of novel or highly familiar
shapes, do not need to be recruited over multiple experiences or with forewarning. On the other
hand, Experiment 3 results showed that building expectations that only categorical information is
important for a task can diminish the memory of visual details, but this expectation can be
rapidly readjusted to store the visual details on the trial immediately after the surprise test. In the
model, this is achieved by tuning the model’s weights for visual and categorical pathways.
Finally, in Experiment 4 we showed that WM stores shape-color bindings, allowing subtle shape
differences to be used as a cue for retrieving a specific color, even for members of the same

category of highly overtrained stimulus types like digits.
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Methods

All the experimental designs involving human participants were approved by IRB at the
Pennsylvania State University. All subjects participated for course credit and acknowledged
consent electronically prior to participation. In the behavioral experiments, no statistical
methods were used to pre-determine sample sizes but our sample sizes are similar to those
reported in previous publications using similar methodology>%°. Furthermore, in Experiments 1-
2 subjects were blind to the nature of the task, and in Experiment 3 they were not aware of the
surprise trial. Since each experiment consisted of only one group of subjects, no randomized

assignment was performed.

The Architecture of MLR

The model is composed of two components: a modified variational autoencoder (mVAE)
operating as visual knowledge and a binding pool (BP), the memory storage that holds one or

more objects or features.

mVAE: The VAE?? is an hourglass shape fully connected neural network consisting of three
main elements — the encoder, bottleneck and the decoder— which are trained by using a colorized
variant of MNIST?** and fashion-MNIST?* stimulus sets prior to any memory storage
simulations. The code for the original VAE was retrieved from a GitHub repository at:

https://github.com/lyeoni/pytorch-mnist-V AE/blob/master/pytorch-mnist-VAE.ipynb.

We modified the original VAE by dividing the bottleneck into two separate maps — a color map

and a shape map — to represent each feature distinctively.

21



438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

Encoder: Translates information from a pixel representation into compressed latent spaces as

series of transitions through lower dimensional representations.

Shape and Color maps: Typically, the bottleneck layer of a VAE that has the smallest number
of neurons consists of one map. To generate distinct feature maps, we divided the bottleneck into
two separate maps: one for representing shape and the other one for representing color. Each of

the two maps is fully connected to the last layer of the encoder and the first layer of the decoder.

Decoder: Translates information from the compressed shape and color maps into pixel images
through progressively higher dimensional representations. We consider the decoder to be
analogous to the feedback pathways in the visual system that descend back down to primary
visual cortex from deeper areas like inferotemporal cortex. Generation of a remembered
stimulus at the output is not considered analogous to a motoric reconstruction but rather a

reconstruction of details in an imagined visual representation.

Skip Connection: To allow memory reconstruction of novel stimuli without involving the shape
and color maps, a skip connection was added to the mV AE that linked the first layer to the last
layer. Anatomically, this would be the equivalent of a projection between layers within V1

cortex”’.

Categorical labels: In order to apply categorical labels to a given stimulus, we used a standard
support vector machine classifier®. The SVM maps representations in the latent spaces onto

discrete labels for different stimulus attributes such as shape or color.

Binding Pool (BP): The BP uses a modified formulation of the model described in the original

binding pool paper?® and is similar to a Holographic Reduced Representation®®. It is a one-
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dimensional matrix that is bidirectionally connected to each layer of the encoding pathway (L1,
L, shape and color maps) as well as the outputs of the SVM classifiers which provide one-hot or
localist (i.e., the estimated category has the highest value of 1, while other categories are set to
zero) representation of categorical labels of shape and color. The BP stores a combined
representation of the information from each of these sources for one or more stimuli in
individuated representations indexed by tokens. The bidirectional connections allow information
to be encoded into the BP, stored as a pattern of neural activity, and then projected back to the
specific layers of the mVAE to produce selective reconstruction of the encoded items. The
connection between the BP and the latents is accomplished through randomized, normally
distributed, fixed weights. These are not trained through gradient descent but are assigned at the

beginning of the simulation for a given model.

Tokens: The tokens function as object files>%° for each specific stimulus (e.g., token 1 stores
stimulus 1). Having tokens allows multiple items to be stored within a single pool of neurons.
The tokens only indicate which neurons of the BP are associated with an object representation,

and do not actually store item-specific information.

The MLR implementation

Architecture: The mVAE consists of 7 layers. Input layer (Li; dim= 28 x 28 x 3), Layer 1 (L1;
dim= 256), Layer 2 (L»; dim= 128), bottleneck (color map, dim= 8; shape map, dim = §8), Layer 4
(L4; dim= 128), Layer 5 (Ls; dim= 256) and the output layer (Lo; dim=28 x 28 x 3). A skip
connection was added from L; to Ls. The size of the shape and color maps were chosen to be
equal for simplicity, but one can adopt optimization methods to determine the dimension of each

map based on the complexity of representations. The BP layer is connected to the encoder layers
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of mVAE bidirectionally (Extended Data Figure 5). Multiple tokens were connected to the
binding pool nodes to individuate the items stored in memory, and there is no limit to the number
of tokens one can add, although storing information in more tokens will cause increasing
interference. Two layers of 20 and 10 neurons were allocated to represent the categorical
information of shape and color labels estimated by the SVMss and SVMcc respectively and these

were also connected to the binding pool.

Dataset: Training was done using the MNIST>* stimulus set consisting of 70,000 images of 10
categories of digits (0-9) and fashion-MNIST?>? set, which has the same structure but for 10
categories of clothing (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneakers, Bag
and Ankle boot). To add an additional attribute to the dataset, we colorized all images that were
originally grey using 10 distinct colors applied uniformly to the images — red, blue, green,
purple, yellow, cyan, orange, brown, pink, teal — with minor variations. Color values were [[0.9,
0.1, 0.1], [0.1, 0.9, 0.1], [0.2, 0.2, 0.9], [0.8, 0.2, 0.8], [0.9, 0.9, 0.2], [0.1, 0.9, 0.9], [0.9, 0.5,
0.2],[0.6, 0.4, 0.2], [0.9, 0.7, 0.7], [0.1, 0.5, 0.5]]. The color of each image was chosen by first
selecting a prototype color and then adding uniform random variation to each of the RGB
channels from the range [-.1, .1]. One triple of red-green-blue color values were generated for a
given image and then multiplied by the greyscale value of that image such that all non-black
pixels had the same ratio of red, green and blue color values. While the mV AE major pathway
was trained on the MNIST and f-MNIST, the skip connection was trained on the same images
that were transformed by random rotations of +/- 90 degrees and random crop of size 28 with

padding to be 8 (Extended Data Figure 6).
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Training and testing the mVAE: The mVAE was trained on 120,000 images from MNIST and
f-MNIST with 200 epochs and a batch size of 100. Three objective functions were used to train
the shape and color maps and the skip connection. Each batch was selected to train based on one
of these three objective functions, and this was repeated for the entire training set for each epoch.
It should be noted that with autoencoders training occurs without explicit labels or supervision,

akin to how a child can learn to see through exposure to patterned information.

All three objectives to train the mVAE were derived from Equation 1. In this equation, @ and 8
are the variational parameter and the generative parameter respectively. qg(z|x) represents the
probabilistic encoder (posterior probability) by generating a distribution on the latent factor, z
given the observed value of x. f is the regulation coefficient (8 = 1 corresponds to the
original VAE?®). P, (x|z) represents the probabilistic decoder (likelihood probability) by
estimating the distribution over x, given the latent factor, z. Finally, the first term

(Eqy(zix)[l0g Pg (x]2)]) is the reconstruction loss (i.e., expected log likelihood of the probability
distribution over the data points) and the second term (D, (qp(z|x)||Py (2)) is the Kullback-

Leibler divergence between the encoder’s distribution and the prior probability of P(z) to

measure how close these two distributions are.

L(6,0;x,z,B) = —Eqyzix)[log Py (x|2)] + B * D1 (99 (z|2)]|P(2)) [1]

Skip objective function: This function minimizes the reconstruction error for the input x
represented by equation 2, where [1 is the activation of the first layer. This objective adjusted
only the weights connecting the input to L, the skip connection to Ls and connection from Ls to

the output.
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L(e, ?; x, ll) = _qu)(lll.X') [lOgPQ (XIll)] [2]

Shape objective function: This function converted the output images into grey scale images by
averaging across the three RGB channels. Then the following objective was minimized with § =
1. This objective adjusted the weights connected to L1, L2, shape map, L4 and Ls, while the color

map and the skip connection were detached.
L(G; ?; x, Zs,y ,8) = _Eq(D(ZS|x)[log PB (X|ZS)] + :8 * DKL (q(b(zslx)llp(zs)) [3]

Color objective function: This function computes the maximum color value of RGB channels
for each output image and converts the entire image to that color uniformly. That results in
replacing each image with a uniform color patch containing no shape information. Then, it
minimized the Equation 4 with f = 1. This objective adjusted the weights connected to L1, Lo,

color map, L4 and Ls, while the shape map and the skip connection were detached.
L(6,0;x,2.,B) = _Eq@(Zc|x) [log Py (x|z)] + B * Dy, (Q(Z)(chx)llp(zc)) [4]

The activation functions were ReLU (rectified linear unit) for the encoder and decoder, and

sigmoid function for the last layer of the decoder.

BP memory encoding of latents: Once the mVAE was trained, memories could be constructed
by projecting information from the latent spaces into the BP which had 2500 neurons in total.
The effective number of neurons representing each item was 1000 since 40% of the BP was
allocated to each token. The size of the BP was determined such that it could accommodate the
storage of multiple latents of the mVAE, and store multiple items, including novel stimuli.

However, future works can explore optimizing the BP size, such as by encouraging sparsity.
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Such memories are constructed with a matrix multiplication of the activation values of a given
latent space (i.e., L1, L2, shape and color map) or one-hot categorical labels, by a randomly
generated and fixed (i.e., untrained by gradient descent), normally distributed set of weights with
the mean = 0 and standard deviation of 1.0. The weights are randomly re-generated for each

simulated trial. However, they remain fixed each time that the binding pool function is called.

This multiplication produces a level of activation for each neuron in the BP. Multiple attributes
can be combined into one representation in the BP by summing the activation values from
multiple encodings and then normalizing them. Equation 5 demonstrates the encoding of
activations in the BP, where Bp represents each node in the BP, N; g represents the connection
matrix between the BP nodes and the token, which consists of ones and zeros such that a
randomly selected 40% of the weights between a given token and the binding pool are set to 1,
and the remainder are set to zeros.Xy represents the activations in a given latent space, n is the
number of neurons in the latent space that is being stored in the BP, and Ly g is the connection
matrix between the latent space and the BP as modified by the task dependent encoding
parameter. Summing over the binding pool nodes, we could compute the binding pool activation

for all the neurons.

BP memory encoding of categorical labels. The color and shape category labels estimated by
an SVM classifier, as an analog of categorical representations, could also be encoded into the
BP. The shape labels were extracted from SVMss (i.e., an SVM trained to decode shape labels
from the shape map) and the color labels were extracted from SVMcc. (i.e., an SVM trained to

decode color labels from color map). Shape was a localist (i.e., one-hot) code in a vector of
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length 20 (10 digits and 10 fashion items), while color used a vector of length 10. Either or both
vectors could be added to a BP representation through matrix multiplication described above.

Reconstructions from the BP were converted into a one-hot vector with a max function.

One-shot encoding of novel shapes in BP: Novel shapes were 6 examples of colorized Bengali
characters*’. The colorization of Bengali characters was similar to that of MNIST and f-MNIST.
The colored novel images were used as inputs to the model, and activations from L and shape
and color maps were encoded and retrieved from the BP to compare the efficiency of encoding
from these layers. Due to the limited number of images for Bengali characters as novel shapes,
we augmented the data by doing slight rotation (random from —10° to +10° rotation) and random
crop with padding =8 on the 6 characters. This enabled us to do the permutations test for

measuring cross-correlation.

Storing multiple items: Each token contacts a random, fixed proportion of the binding pool,
effectively enabling those units for memory encoding while that token is active. Each token is
connected to a random set of 40% (i.e., 1000) of total nodes (i.e., 2500). This means that when a
given token is active, the subset of BP nodes it is connected to can be used to store and retrieve
information, the remaining BP nodes will still hold their activation state, but can neither be
encoded to, nor retrieved from. The subset of BP nodes associated with each token overlap with
one another so that for any given token, 40% of its nodes overlap with any other token. As a
result, with an increasing number of tokens stored in memory, the likelihood of interference
between objects increases due to the overlap between token connectivity to the BP. There is no
limit on the number of tokens, but the binding pool is assumed to be fixed in size. Given the

fixed size of the binding pool, the interference between two items can be manipulated by
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increasing the subset of neurons allocated to each token. For instance, if we increased the token
connectivity from 40% to 70%, the memory interference between two items would have been
expected to increase accordingly. This mechanism enables multiple distinct sets of attributes to
be stored in each token, effectively binding those attributes into one object. The tokens can be
retrieved individually and in any order. Once stored in this way, a token can reactivate its portion
of the BP to reconstruct the attributes associated with it. Moreover, tokens enable content
addressable recall in that a given attribute (e.g., the shape or color of a digit) can be used as a
retrieval cue to determine which of several tokens was associated with that specific attribute.
Then, that token can be activated to retrieve the other attributes associated with it (see?® for more

details).

Memory Maintenance in BP: The binding pool is a simple implementation of a persistent-trace
model that holds the vector of activation produced by the encoding operation(s). This is
consistent with self-excitatory neural attractors, or silent synaptic storage®!. The silent synaptic
storage could be implemented by arranging small ensembles in the BP with interconnecting
synapses that can store information through intracellular currents, and then reconstructing the
attractor states via a trigger. The specific mechanism of trace-maintenance was not a crucial
question in this implementation as there was no time course or delay of activity over time and the

biophysical details of the neurons were not implemented.

Token Retrieval: To determine which token was linked to a cued visual form (e.g., a shape map
representation), information can be passed from a given latent through the BP to determine
which token has the strongest representation of that particular latent. Equation 6 illustrates the

retrieval activation of a given token Z;.Other parameters are similar to that of Equation 5.
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Zt = Zg:lBﬁNt—,ﬁ Z?=1Xfo 'ﬁ (6)

To test the binding accuracy, 500 digit-pairs were stored in the BP one at a time using the color
and shape maps and two tokens. Afterwards, a grayscale MNIST was used as a retrieval cue to
determine how often the model successfully retrieved the correct token based on this cue

(Extended Data Figure 2).

Memory Reconstruction and model’s evaluation. Memory reconstructions to any given latent
or one-hot (i.e., localist) vector were accomplished by retrieving the associated token and
multiplying the BP nodes that are linked to the corresponding token by the transpose of the same
fixed weight matrix that was used during the encoding of that representation. As represented by
Equation 7, the result is a noisy reconstruction of the original latent activity state, which can be
processed by feedforward activation through the rest of the mVAE . K is the normalization
factor that represents the sum of the active BP neurons for each item. To improve the L;
reconstructions for the novel shapes, we implemented an extra transformation by increasing the
difference between active and inactive nodes, such that we added 2.0 to the active neurons and
subtracted 3.0 from nodes that had a zero activation prior to encoding in the BP . Finally, when

the latent L; received back the activations from the BP, we set the negative neurons to zero.

Xr = 1/K(Z Xg=1 BgLs gNe p) (7)

Two methods were used to evaluate the quality of memory reconstructions of MLR. 1)
Representations in the shape and color maps were classified by radial basis support vector
machines®® (SVM), which were trained to decode shape (one of 20) or color (one of 10) using the

remaining 10,000 MNIST and 10,000 fashion MNIST as test set stimuli. The classification
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allowed us to assess the amount of shape and color information in the shape and color maps

before and after memory reconstruction.

SVMs were imported from the scikit-learn library as radial basis functions (kernel= ‘rbf’) with
the decision function parameters to be C=10 and gamma="scale’ respectively. For instance,
classifying the accuracy of the memory formed from the L, layer involves reconstructing the Lo
latent from the BP, then passing it forward to the shape and color maps and classifying those
map activations with the SVMs. We also used the same pre-trained classifiers to create the labels

and to assess memory performance.

2.) An alternative measure of the accuracy of reconstructing the original image was to correlate
the reconstructed pixels with the original stimulus. We used this approach to quantify
reconstructions of novel stimuli which have no pre-learned categories. Cross-correlations were

normally computed over 500 repetitions.

Detectability of novel vs familiar shapes: In all the simulations presented above, the model
does not decide whether the presented stimulus is familiar or novel. However, we built this
mechanism into the model as a novelty detectability feature. To do this, every stimulus is
reconstructed straight from the mVAE by passing through the latent space. We computed the
cross-correlation between an item and its reconstruction. The model categorizes the stimulus to
be familiar if the cross-correlation is above the .5 threshold. Accordingly, a given stimulus is
detected to be novel if the cross-correlation is less than .5. This was repeated for 100 repetitions

across the 10 trained models.
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Behavioral Experiment Methods

For Experiments 1 through 3, participants were Penn State University undergraduates who
participated in exchange for course credit. For Experiment 4, participants were recruited online
via Prolific and compensated $1 USD for their participation in this 5-minute study. All

participants provided informed consent before completing a study.

Experiment 1: 20 Penn State University undergraduates (Mean age = 19.55, 90% female, 20%
left-handed) participated in this experiment. On each trial, participants were shown one randomly
selected Bengali character and then asked to click on the exact character they remembered seeing
from a search array of four Bengali characters. Critically participants were only instructed to pay
attention and were otherwise uninformed about what would happen until after viewing the
image. The instructions occurring before trial 1 were as follows: "Thank you for participating in
this experiment. You will be completing two separate experiments! This 1st experiment will be a
very short, ONE TRIAL experiment where we show you some visual information. Because there
is only one trial we need your full attention, as you only get ONE SHOT. So, keep your eyes on
the fixation cross before the stimulus appears. Press the SPACEBAR when ready to begin.”
Participants were then shown a second trial beginning with the instructions: “That concludes our
first experiment! We will now begin the 2nd, equally fast ONE TRIAL experiment. We will
show you some new visual information. Again, we need your full attention, as you only get one
trial. Press the SPACEBAR when ready to begin.” Participants were not aware a 2" trial would
occur until after they completed the first, and the presented target on trial 1 was always different

from the trial 2 target.
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Five Bengali character categories were taken from the stimulus set downloaded from
www.omniglot.com, which includes multiple different exemplar drawings of a Bengali character
in grayscale. The experiment was developed in Psychopy (v2020.2.2, Peirce et al., 2019) before
being translated to JavaScript using the PsycholS package (v 2020.2) and run online via
Pavlovia®?. Each character was presented in the center of a grey screen (at size 0.15x0.15
Psychopy height units, a normalized unit designed to fill a certain portion of the screen based on
a predefined window size) for 1000ms, followed by a 1500ms delay. The response screen,
which consisted of the target image and 3 non-target Bengali characters was then presented to
the participants. The response screen varied between trial 1 and trial 2. On the first trial, non-
target answer options were selected from different Bengali character categories, and on trial 2
non-target answer options were different exemplars of the same character category. Accuracy
scores were considered significantly above chance if a 95% bootstrapped confidence interval

(95% bCI) did not include the chance baseline (25%).

Experiment 2: A new sample of 20 Pennsylvania State University undergraduates (Mean Age =
18.6, 90% female, 5% left-handed) participated in this online experiment for course credit.
Participants viewed one grayscale MNIST digit image (3, 4, 6, 7, and 9) on a black background
before being asked to click on the exact image they remembered seeing. Again, participants were
not informed there would be a memory task. The exact instructions were as follows: “This
experiment will be a very short experiment where we show you some visual information.
Because it is short and each of the 5 trials are unique, we need your full attention right from the
start. Keep your eyes on the fixation cross before the stimulus appears. Press the SPACEBAR
when ready to begin.". Thus, the first trial served as an unexpected memory test format. Non-

target options were exemplars from the same digit category (e.g., they saw four different
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instances of the digit 3, one of which was an exact match to what they had just seen). Participants
completed 5 trials in total, with a new digit category shown on each trial (i.e., digit categories
were never repeated within an individual). All other components of Experiment 2 were identical

to Experiment 1.

Experiment 3: A new sample of 20 Pennsylvania State University undergraduates (Mean Age
18.8, 95% female, 5% left-handed) participated in this online experiment for course credit. The
paradigm resembles that used in attribute amnesia studies (Chen & Wyble, 2015). Participants
viewed a grayscale MNIST digit (from any digit category 0 through 9), and were instructed to
report the category of the image by typing the respective digit on the keyboard. This task was
repeated for 50 trials before participants were asked a surprise question on Trial 51: instead of
identifying the image category, they had to select the specific category exemplar they
remembered seeing (e.g., which specific “2” among an array of four MNIST “2s”). On the
surprise trial, participants reported the specific shape of the digit they just saw by clicking on the
image that matches the target. The display response matched the design of Experiment 2: the
target was presented alongside 3 non-target distractors selected from the target’s category but

with different shapes.

Participants then completed 9 more exemplar identification trials (termed control trials).
Significance for accuracy changes on the surprise trial was assessed by comparing surprise trial
accuracy to accuracy on the 1% control trial via a one-tailed permutation test with 10,000

iterations®. All other parameters of this study were identical to Experiment 2.

Experiment 4: A sample of 20 participants (Mean Age 21.9, 45% female, 15% left-handed)

were recruited from the online website Prolific. Participants were tasked with reporting the color
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of an MNIST digit using its shape as the retrieval cue. On each trial, 2 MNIST exemplars from
the same digit category were presented sequentially to the participant. Each exemplar was
randomly colored from a list of 10 options (Red, Green, Blue, Pink, Yellow, Orange, Purple,
Teal, Cyan, and Brown), and colors did not repeat within a trial. Each digit was visible on screen
for 500 ms, with a blank 500 ms interval between exemplars and a 500 ms delay between the
second exemplar and the response screen. One of the exemplars (counterbalanced across trials)
was then presented to the participant in grayscale, and participants were instructed to click on the
color that was paired with this exemplar (10 alternatives; chance = 10%). Unlike in previous
experiments where no instruction was given, participants were explicitly instructed to remember
the color-shape pairing. Participants completed 20 trials in total. Accuracy scores were

considered significantly above chance if a 95% bCI did not include the chance baseline.
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Data availability

The datasets for the behavioral experiments that were analyzed in this study are publicly
available on the open science framework (OSF) [ https://osf.io/tpzqgk/]. Also, datasets that were
analyzed and generated the simulations for the model can be found through the GitHub link

[https://github.com/Shekoo93/MLR]

Code availability

The codes for the behavioral experiments, running the paradigm and analyzing the data are
publicly available on OSF [ https://osf.i0/tpzqk/]. All the code for the MLR model including the
simulations that generated the figures and the analysis presented in the tables are provided at the

GitHub link [https://github.com/Shekoo93/MLR].
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759 Tables

760 Table 1. Mean classification accuracy (%) of shape and color information of a single item stored and

761  retrieved from memory for encodings from different latents

Classifier type

SVMss SVMsc SVMcc SVMcs
Encoding conditions

No encoding 84.2 (.02) 21.9 (.03) 87.2 (.04) 14.7 (.02)
Shape map and Color map 82.7 (.14) 209 (.14) 79.6 (.44) 14.4 (.14)

Shape map only 83.5(.14) 21.5(.15) 9.6 (.06) 4.5 (.08)
Color map Only 5.1 (.08) 11.4 (.33) 83.2(.35) 14.5 (.13)
L2 74.3 (.32) 18.4 (.18) 71.3 (.65) 13.2 (.13)
L1 45.6 (.8) 13.3 (.22) 55.8 (1.1) 8.3(.17)

762 The table indicate means of classifier accuracies (%) after memory retrievals of a single stimulus from each layer for
763 10 BPs (10 random connections matrix from BP to mVAE) for each model across 10 independently trained models.
764 SVMs;s represents an SVM trained on shape labels using data from the shape map while SVMgc was trained to

765 decode color labels from the shape map. SVMccrepresents an SVM trained on color labels using data from the
766 color map, whereas SVMcs was trained to decode shape labels from the color map. Chance performance is 10% for
767 classifiers trained on color labels (SVMcc and SVMsc) and 5% for classifiers trained on shape labels (SVMss and

768 SVMcs). The values in parentheses indicate standard error. Rows correspond to different encoding conditions,
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showing which latent(s) were stored in the binding pool. In the top row, “No encoding”, corresponds to a
classification of the shape and color latents without storage into memory and this represents the theoretical
maximum that the memory encoding/retrieval could obtain. Shape map only and color map only indicates that only
shape or color of a stimulus was encoded and retrieved. L; and L, representations were passed forward to the shape

and color maps after being stored in the BP to be classified.

Table 2. The correlation values between input and retrieval stimuli as a function of set size

Stimuli type
Familiar Novel
Retrieval
S/C maps L1-skip S/C maps  L1-skip
Set size
1 84 (.03) 75 (.03) .15 (.06) 78 (.01)
o) 72 (.05) .66 (.04) .14 (.06) .65 (.03)
3 .65 (.05) 58 (.04) 14 (.06) 55 (.03)
4 58 (.06) 53 (.04) 14 (.06) 48 (.04)

The mean cross-correlation between stimuli and their retrievals for different set sizes across 10 trained models. S/C
maps stands for shape and color maps. The values in parentheses are standard errors. The correlation values were
measured in cases where the BP encoded the shape and color activations of the novel/familiar stimuli and then the
stimuli were retrieved via the decoder pathway (retrieval condition: S/C maps). The correlation values were also
measured in cases where the BP encoded the L; activations of the novel/familiar stimuli, and then the stimuli were

retrieved via the skip connection (retrieval condition: L;-skip).

Figures legends

Figl. The simplified architecture of MLR. The model has two major elements including visual knowledge

represented by mVAE and working memory shown as Binding Pool. We modified the bottleneck of a VAE to
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represent shape and color in separate maps. The figure also shows the architecture of the mVAE and its coarse
neuroanatomical correspondence. In the neuroanatomical projection, solid arrows correspond to feedforward
connections from V1 to IT cortex (or L1 to bottleneck in the VAE) and dashed arrows refer to feedback projections
in the reverse direction back down to V1. The inputs were either colorized version of MNIST or f-MNIST. Note

that model was shown one image at a time.

Fig2. Memory retrievals from the MLR. A. Memory reconstructions from different latents in a trained model for
familiar images. Selective shape or color map retrievals were achieved by setting the other map activations to zero.
Note that the familiar items’ reconstructions are visually less precise for memories formed from L, and L, latent
spaces compared to the shape and color maps. B. Reconstruction of novel items using the L1/Skip connections and
the shape/color maps. Novel shapes are reconstructed more accurately from the L latent and the skip connection.
Each item is stored individually in a separate BP, but the examples in A and B are combined into single images for
ease of visualization. C. Illustration of the storage and retrieval of 1, 2, 3 and 4 items in memory. The interference increases as

more items are stored in the BP. This results in inaccurate reconstructions of both shape and color.

Fig 3. Retrieval accuracies. Mean classifier accuracy (%) of retrieved items as a function of set size in conditions 1
and 2, and the mean accuracy of one-hot labels before and after storage in memory as a function of set size in
conditions 3, 4 and 5. Error bars represent standard errors computed over 10 independently trained models. In all
cases the accuracy declines as more items are stored in memory, however, labels are more resistant to interference as
shown in condition 4 and 5, especially when the amount of visual information stored in memory decreases. Each dot

represents the accuracy of a given model over 10,000 repetitions.

Fig4. Trial layout for all experiments conducted on human participants. In Experiment 1, participants saw a
grayscale Bengali stimulus before being asked to click which image they remembered seeing. The stimulus and foils
presented in the 4-afc varied between trial 1 and trial 2. They were not informed ahead of time that there would be a
memory task. Experiment 2 was identical to Experiment 1, except the stimuli used were MNIST digits. In
Experiment 3, participants viewed grayscale MNIST and were instructed to type in the category of the image (e.g.,
type 4’ in displayed trial) for 50 consecutive trials before being surprised with a question asking them to click on

the exact MNIST exemplar they remembered seeing. In Experiment 4, participants were instructed to remember the
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color-exemplar pairing of MNIST digits, before being cued with the specific exemplar and asked to click on the

color that exemplar was.

Fig5. The compression and categorical representation of a single stimulus. The trained visual pathway represents the
stimulus with specific visual details in all layers with little loss of visual specificities. The width of the cone reflects
the number of neurons involved in the representation at different stages of processing. The final representation at the

highest level would elicit a categorical representation that lacks the visual information.
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