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Abstract 18 

We propose a mechanistic explanation of how working memories (WM) are built and 19 

reconstructed from the latent representations of visual knowledge. The proposed model features 20 

a variational autoencoder with an architecture that corresponds broadly to the human visual 21 

system and an activation-based binding pool of neurons that links latent space activities to 22 

tokenized representations. The simulation results revealed that new pictures of familiar types of 23 

items can be encoded and retrieved efficiently from higher levels of the visual hierarchy 24 

whereas, truly novel patterns are better stored using only early layers. Moreover, a given 25 

stimulus in WM can have multiple codes, representing visual detail, in addition to categorical 26 

information.  Finally, we validated our model’s assumptions by testing a series of predictions 27 

against behavioral results obtained from WM tasks. The model provides a demonstration of how 28 

visual knowledge yields compact visual representation for efficient memory encoding.    29 
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Introduction 37 

In the study of cognition, working memory (WM) is thought to be responsible for temporarily 38 

holding and manipulating information to enable complex cognitive operations. Characterizing 39 

WM is an integral part of the birth of cognitive psychology, as decades of research have centered 40 

on the question of discovering the capacity and nature of this short-term memory system1. 41 

One of the central issues in many discussions over the structure of WM is how it is affected by 42 

previously learned knowledge2–7. Knowledge that emerges from long-term familiarity with 43 

particular shapes, or statistically common featural combinations enables us to recognize and 44 

remember complex objects (i.e., the prototypical shape of a car, or the strokes that comprise a 45 

digit). It is widely acknowledged that such information is crucial for building WM 46 

representations 7–9, but there has been little attempt to mechanistically implement the role of 47 

visual knowledge in WM models in spite of abundant behavioral research in this domain 10–18. 48 

For instance, performance on immediate recall of a list of words is limited by the number of pre-49 

learned chunks represented in long-term knowledge11,12,19 , and readers trained to read Chinese 50 

are better able to remember Chinese characters than other readers 17.  51 

Even prior to these findings, there has been extensive theoretical discussion of the necessity to 52 

link WM to long-term memory representations. The modal model of memory 20 proposed that 53 

representations in long-term memory could be transferred to a short-term storage. Later, the 54 

multicomponent model of WM suggested that the short-term storage of visual information (i.e., 55 

visuospatial sketchpad) is dependent on visual semantics and episodic long-term memory 21,22. 56 

This idea is also carried by theories of activated long-term memory account 3,5,7,8,23. In such 57 
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accounts WM representations are built by activating pre-existing representations within long-58 

term memory.  59 

The above accounts imply that WM is integrated with long-term knowledge, but their lack of 60 

computational specificity has made it challenging to understand this integration. To fill this gap, 61 

we implemented a computational WM model in conjunction with a visual knowledge system.  62 

This model is named Memory for Latent Representations (MLR) and it provides a new 63 

conceptualization of WM that achieves a range of functional benchmarks and forces us to 64 

formally specify our intuitions about how visual information is represented in the mind 24.  Our 65 

approach is abductive, in which a likely explanation is proposed for a set of data. 66 

We consider the problem of WM models to exist in the M-open class (as opposed to M-closed 67 

and M-complete classes 25 ), in which a true model is unattainable due to its extreme complexity 68 

but it is possible to build and test approximations that are constrained by behavior and biology to 69 

formalize our account of  memory structure and function.  70 

The proposed MLR model simulates how latent representations of items embedded in the visual 71 

knowledge hierarchy are encoded into WM depending on their familiarity. For the purposes of 72 

this work, we define familiar as stimuli that the model has not been previously trained on, but are 73 

from the same distribution(s) that the model has been trained on.  Novel stimuli are drawn from a 74 

distribution that is very different from the training distribution(s). 75 

After memoranda have been encoded in WM, they can be retrieved by reactivating those same 76 

latent representations in the visual knowledge system.  Functional constraints for the model are 77 

inspired in part by previous works 7,26 and include the following capabilities.  78 
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Information about the shape of remembered objects can be regenerated 27,28.A familiar stimulus 79 

can be represented by different codes, varying from visual details up to 80 

abstract categorical information 29.Specific attributes of a given stimulus can be stored depending 81 

on their relevance for a task 30.WM performance is more efficient for familiar types of stimuli17, 82 

but it is possible to remember novel shapes27. WM can store multiple items (even repeated 83 

items), each consisting of a bound combination of stimulus attributes and these can be 84 

individually retrieved according to the content of those attributes 31.There is storage interference 85 

between stored memoranda which degrades the memory of constituent attributes according to the 86 

number of items stored in memory. 32.  87 

 88 
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Results 97 

To build a model that exhibits these capabilities, we have created the MLR model which consists 98 

of a variational autoencoder33 (i.e., VAE) to represent the visual knowledge hierarchy, and a 99 

binding pool26 to store token-bound representations of the VAE’s latent spaces. We modified the 100 

VAE (mVAE) to represent the color and shape distinctively in the network’s compact latents and 101 

trained it on the MNIST34 and fashion-MNIST35 datasets using a modified version of the original 102 

VAE objective function. Figure 1 illustrates the MLR’s model simplified architecture, and the 103 

correspondence of the mVAE to the visual ventral stream.  104 

Simulation results 105 

The mVAE disentanglement prior to memory encoding: Classification accuracies of trained 106 

support vector machines36 (SVM) of shape and color have been summarized in Table 1 in the no-107 

encoding condition. The results of the mean classification accuracies for 10 trained models and 108 

10 repetitions for each model show that color and shape representations were successfully 109 

disentangled in their corresponding maps (Extended Data Figure 1).  This is a coarse 110 

approximation of the general finding that the ventral visual stream has specialization of cortical 111 

maps for different types of information37,38. The benefit of such anatomical disentanglement in 112 

the context of a memory model like MLR is that it permits top-down modulation to easily select 113 

particular kinds of information for promotion to WM, because the control signals only need to 114 

operate on the scale of selecting regions of cortex, rather than individual neurons. The nearly 115 

complete disentanglement of color and shape as we achieve here is an exaggeration of the visual 116 

system but is helpful for demonstrating the principles of encoding attributes selectively. 117 
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The Binding Pool can encode and retrieve information:  Projecting information from any 118 

given latent representation into the BP and then back to the mVAE allows us to store and 119 

reconstruct the original activity pattern of any layer in the encoder or shape/color maps. Figure 120 

2a illustrates examples of single items encoded individually and then reconstructed using the 121 

mVAE. Table 1 indicates the classifiers’ accuracies of 10 randomly generated BPs for each 122 

model across 10 separately trained models for determining the shape and color of items 123 

according to which layer of the mVAE was encoded and then retrieved.  According to the 124 

simulation results, memory retrieval from shape and color maps is more precise than 125 

reconstructions from L1 and L2. Hence, compression by deeper layers allowed more accurate 126 

memory retrieval due to the relative ease of reconstructing the precise activity pattern on the 127 

smaller latent spaces of the shape and color maps. In other words, the BP encoding is lossy, 128 

particularly for layers that have more neurons, such as L1 and L2.   129 

Storing multiple attributes and codes of one stimulus: The MLR can flexibly store specific 130 

attributes of a given stimulus such that BP representations are more efficiently allocated for a 131 

particular task30,39. According to Table 1, the classification accuracy of retrieving color was 132 

improved when the shape information was not stored  even for a set size of one.  The reverse 133 

relationship was shown also.  The randomized weights between the latent spaces and the BP 134 

result in overlapping activation patterns for different attributes and therefore interference, 135 

however the impact of interference on accuracy depends on the number of BP nodes as well as 136 

the number of attributes that are being encoded.  For instance, decreasing the size of the BP from 137 

2,500 to 1000 resulted in increased interference (82% vs 76% accuracy of classifying a retrieved  138 

stimulus). 139 
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Encoding of Novel stimuli:  In the preceding simulations, MLR was tested on specific MNIST 140 

images that it had not been trained on, but were from the same distribution as the training set. In 141 

this sense, they were new pictures of familiar kinds of stimuli.  MLR also can store and retrieve 142 

truly novel shapes from a distribution that does not overlap with its training set (i.e., Bengali 143 

characters40).  This is done by encoding the L1 latent into the BP and retrieving it via the skip 144 

connection. The skip connection is critical to reconstruct novel forms, since the nature of the 145 

compressed representations in the shape and color maps force any representations that pass 146 

through those maps to resemble familiar shapes (Figure 2b).  147 

One might ask how does the MLR model know whether to use a skip connection or the 148 

shape/color latents to store and retrieve objects.   MLR can estimate the novelty of a given 149 

stimulus according to the reconstruction error, with large errors indicating novelty (see the 150 

section “Detectability of novel vs familiar shapes” in methods) 151 

The accuracy of detecting a familiar item was 99.5% (SE = .23), whereas detecting a novel shape 152 

was 96.42% (SE = .58). Such novelty detection could be used to implement control mechanisms 153 

that determine which latent representations are used for memory storage although such control 154 

signals are not implemented in this version of MLR. Note that all the simulation results we 155 

reported here do not include novelty detection for the sake of simplicity. 156 

 Encoding multiple visual items: Tokens allow individuation of different items in memory41,42 , 157 

by linking each token to a random subset of the binding pool as introduced in an earlier work43.  158 

Accordingly, tokens have overlapping memory representations, such that multiple items stored in 159 

memory interfere with one another causing a progressive degradation of memory quality as 160 

memory load increases32 (Figure 2c).   161 
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Note that we are reconstructing the actual shape and specific colors of the items, not just their 162 

categorical designations and the color/shape of the retrieved items are biased toward the other 163 

items as set size increases, reflecting the overlap in representation between the different items. 164 

This is emblematic of the interference observed in storing multiple visual stimuli44, and is also 165 

consistent with previous studies that showed misbinding of colors between stored stimuli as a 166 

form of interference with increased set size45. Classification accuracies of retrieved items are 167 

shown in Figure 3 condition 1. 168 

Multiple codes for multiple objects: When appropriate for a given task,  MLR can store 169 

categorical labels of information alongside the visual information in a combined memory 170 

trace29,46–48.  By converting the output of a classifier into a localist (i.e., one-hot representation in 171 

which the estimated category has the value of 1, and other categories are set to zero) 172 

representation, a neural code of the categorical label can be stored into the BP, summing with the 173 

representations of the shape and color maps. Thus,  a localist representation of category can be 174 

stored in the BP alongside the memory for the visual details of a given item within a single token 175 

just by adding the BP activation values together. This brings additional interference; however, 176 

the categorical codes are fundamentally dissimilar in character to the codes within the shape and 177 

color maps and thus do not systematically bias the memory for visual details. 178 

To assess the accuracy of memory retrievals for visual and categorical information as a function 179 

of set size we consider five encoding conditions replicated for set sizes 1-4. All the conditions’ 180 

results are summarized in Figure 3 (See Supplementary Table 1). 181 

In condition 1 (encode visual, retrieve visual) shape and color map activations are stored together 182 

in the BP for each item; Then, either shape is retrieved (1s) or color is retrieved (1c). The 183 
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retrieval accuracy was estimated by the same classifiers trained on the shape and color map 184 

representations (SVMSS and SVM CC).  185 

In condition 2 (encode visual + categorical, retrieve visual), shape and color map activations are 186 

stored together in the BP along with shape and color labels for each item; either shape is 187 

retrieved (2s) or color is retrieved (2c). The retrieval accuracy was estimated as in condition 1. 188 

When both shape and color maps are stored as visual information in the BP along with the 189 

localist labels, the visual information was not greatly perturbed (see condition 1 vs. 2 in Figure 3) 190 

suggesting that there is little cost to remembering labels along with visual details. 191 

In condition 3 (encode visual + categorical, retrieve categorical) shape and color map activations 192 

are stored in the BP alongside shape and color labels; either shape label is retrieved (3s) or color 193 

label is retrieved (3c). The retrieval accuracy of labels was computed by comparing the pre-194 

encoding localist representations estimated by the classifiers for each item when it was first 195 

classified with the labels reconstructed from the BP. Note that accuracy for remembered labels in 196 

condition 3 for larger set sizes is higher compared to condition 2.  This is because the labels are 197 

akin to a digital form of encoding that can more easily be reconstructed in the presence of noise.    198 

In condition 4 (encode 50% visual + categorical, retrieve categorical) the encoding is similar to 199 

condition 3 except that the encoding parameters for the visual maps was set at 0.5, meaning that 200 

activations of these maps were multiplied by .5 prior to encoding. This simulates prioritizing 201 

categorical information over visual details. This simulation reveals that we can parametrically 202 

adjust the relative proportion of visual details stored, producing a progressive improvement in 203 

the accuracy of retrieved labels (compared condition 4 to condition 3) at higher set sizes.   204 
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 These simulation results match the common finding that people are able to remember several 205 

distinct familiar objects that have well-learned categorical labels (i.e., digits or familiar colors) 206 

with high accuracy up through approximately 3-5 items, while working memory for specific 207 

shape details is more limited10.  208 

In condition 5 (encode categorical, retrieve categorical) we simulate a case in which no visual 209 

details are stored at all.  This might not be a realistic condition, as it is hard to imagine that there 210 

is absolutely no trace of visual information when people are shown a series of objects (i.e., this 211 

would preclude any memory of relative size, position, orientation, etc.). As shown in Figure 3, 212 

the capacity for encoding pure categorical information is high compared to the previous 213 

conditions when more items are stored. Note that while there is only a miniscule falloff in 214 

accuracy with set size here, interference does continue to increase beyond set size 4 (see 215 

Extended Data Figure 2). 216 

BP binding and content addressability: Token individuation allows content addressability31, 217 

such that if two colored digits are stored in memory using the shape or color representations, 218 

memory can be probed by showing just the shape of one of the items and retrieving the token 219 

associated with that item.  That token can then be used to retrieve the complete representation of 220 

the stimulus, including its color (Extended Data Figure 3). 221 

When the two digits were from two different digit categories (e.g., a “2” and a “3”) the mean 222 

accuracy of retrieving the correct token across the 10 trained models was 88% (SD=1.73) against 223 

a 50% chance. Tokens were used to retrieve the color map activation, which was then classified 224 

into a label, which resulted in an accuracy of 53% (SD = 2.1) with chance being 10% across 225 

correct and incorrect token retrievals. For the same MNIST digits (e.g., two 2’s with a slightly 226 
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different shape), the mean accuracy of retrieving the correct token across the 10 trained models is 227 

73% (SD= 3.03), notably worse than when the digits were different but still far better than 228 

chance. The accuracy of retrieving the correct color from these tokens as estimated by the 229 

classifiers was 49% (SD = 2.42). This is a demonstration of retrieving a memory based on subtle 230 

variations in shape between categorically identical stimuli.   This capacity is one of the 231 

predictions of the model, which is that human WM is able to bind features to subtle variations in 232 

the shape of a highly familiar stimulus type for multiple stimuli (see Experiment 4 below for the 233 

human data).  234 

More efficient storage of familiar information: Human memory has higher memory capacity 235 

for familiar items drawn from long-term knowledge than novel stimuli11,13,17. Based on studies 236 

on familiarity, we assume that natural images and their variations are familiar, because they can 237 

be mapped onto compact latent representations that are easier to remember. This means that a 238 

new picture of a familiar kind of object can be represented more efficiently than a new picture of 239 

an unfamiliar kind of object. Similarly, in the MLR model, familiar items for all simulations 240 

were drawn from the testing set of MNIST and f-MNIST images, such that the model was not 241 

trained on those specific images. Thus, those are new pictures of digits or fashion items but come 242 

from a familiar distribution. The MLR model shows how familiar items are stored more 243 

efficiently than unfamiliar ones, and therefore have less degradation of representations in WM as 244 

the set size increases. As shown earlier, the BP better encodes the compressed shape and color 245 

representations for familiar items (Figure 2a) because it can use the smaller shape and color 246 

maps, whereas novel types of shapes must be encoded from the larger L1 latent and the 247 

reconstruction, then passes through the skip connection (Figure 2B).  To quantify the memory 248 

performance for familiar and novel stimuli, we compared the pixelwise cross-correlation of input 249 
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and retrieved images as the function of set size, with familiar shapes being encoded from the 250 

shape/color maps and novel shapes are encoded from L1 and retrieved from the skip connection. 251 

The result of the cross-correlations for 500 repetitions are illustrated in Table 2 (Data 252 

visualization in Extended Data Figure 4).  253 

The correlation value always declines as the set size increases, but more steeply for novel than 254 

familiar stimuli. Using cross-correlation, we also measured the memory performance for when 255 

familiar items are encoded from L1 and retrieved via the skip connection, versus when novel 256 

items are encoded from the shape/color maps. The values have been summarized in Table 2. 257 

Note that the baseline cross-correlation between an input and the reconstructed pattern for a 258 

familiar stimulus passing through the shape and color maps is 0.85 (SD = .027) when there is no 259 

binding pool involved, therefore, the reason that the cross correlation is not closer to 1.0 for a set 260 

size of one is primarily due to the compression inherent in the mVAE, rather than memory 261 

encoding/retrieval.  262 

The shape/color map memory retrievals of the novel shapes have correlations of .15 for all the 263 

set sizes, indicating that novel configurations cannot be represented by the highly compressed 264 

maps at the center of the mVAE. The results also revealed that the L1 encoding of familiar 265 

shapes and retrieving it via the skip connection yielded a lower performance across all the set 266 

sizes compared to encoding of shape and color map representations. Hence, the compressed 267 

shape and color representations achieved by training allows for more precise memory 268 

representation for familiar shapes, whereas this efficient representation does not exist for novel 269 

configurations. Therefore, the model relies on the early-level representations of L1 to store novel 270 
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shapes, though the quality of these memories is lower than for familiar shapes using the shape 271 

and color maps. 272 

Behavioral experiment results 273 

In partial validation of the model, we provide predictions with empirical tests about the 274 

capabilities of working memory in storing visual information. These capabilities were derived 275 

from the general properties of the MLR model and key assumptions that we have made in its 276 

construction. Figure 4 shows the summary of the experiments and the results while methods are 277 

provided at the end of the paper. All group averages are reported alongside a 95% bootstrapped 278 

confidence interval (bCI).  279 

Experiment 1 results:  20 participants from Pennsylvania State University were shown Bengali 280 

characters and given no warning about the nature of the stimuli or that there was going to be a 281 

memory test. The stimulus was always different in trial 1 and 2. The mean accuracy on the first 282 

trial, where the target was foiled by 3 Bengali characters from different categories at 95%, bCI = 283 

[85%,100%], significantly greater than chance (25%). Participants were also highly accurate on 284 

the second trial which required them to find the target image from 3 foils of the same category, 285 

M = 90%, bCI = [75%,100%]. This supports the assumption that the pathways used to build 286 

memories of novel stimuli are always available and can be recruited on the fly with no advanced 287 

preparation.   288 

Experiment 2 results: 20 participants were again given minimal instructions as in Experiment 1, 289 

but were now shown a single MNIST digit instead of a Bengali character.  Accuracy on the first 290 

trial when the memory test was unexpected was 85%, 95% bCI = [60%, 95%], significantly 291 
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greater than chance (25%). Accuracy on subsequent trials was 85% (bCI = [70%,100%]), 90% 292 

(bCI = [75%, 100%]), 100%, and 100%. This supports our assumption that even highly familiar 293 

stimuli are encoded with memory of visual details in the absence of expectation of what specific 294 

question will be asked.  295 

Experiment 3 results: 20 participants were led to expect that only category memory was 296 

required for report by showing them 50 trials in which they reported the categorical identity of an 297 

MNIST digit. The mean accuracy of identifying the target was 97% during these pre-surprise 298 

trials, bCI = [96%, 98.3%]. On trial 51, participants were unexpectedly asked to choose the 299 

specific visual form of the digit they saw, and accuracy dropped to 15%, bCI = [0%, 30%]. On 300 

the next trial, when participants now expected to report visual details, the accuracy of reporting 301 

the shape of the digit elevated to 100%. This difference was statistically significant according to 302 

a one-tailed permutation test, difference = 85%, p < .0001, bCI = [70%, 100%]. This 303 

demonstrates that memory encoding parameters are flexible and can be tuned to minimize visual 304 

detail information when only category is expected to be relevant.  These parameters can also be 305 

rapidly modified to re-enable visual detail memory, within the span of just one trial.   306 

Experiment 4 results: 20 Participants recruited from Prolific completed 20 trials in which they 307 

were shown two colored MNIST digits from the same category and were then asked to report the 308 

color of one digit, cued by its specific shape.  Overall, participants correctly reported the target 309 

color 81.5% of the time, bCI = [75.5%, 87.25%], with swap errors (reporting the color of the 310 

other MNIST digit) occurring on average 9% of the time, bCI = [4.75%, 14%]. Importantly, 17 311 

of 20 participants (85%) reported the correct color on trial one, bCI = [70%, 100%], which was 312 

significantly above chance (10%). This finding shows that visual details can be used for binding 313 
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and retrieval of item representations even for overtrained stimuli that belong to the same 314 

category.   315 

 316 

Discussion 317 

The MLR model provides a plausible account of rapid memory formation that utilizes a limited 318 

neural resource to represent visual and categorical information in an active state. The model 319 

mechanistically illustrates how WM representations could build on long-term knowledge traces 320 

to store familiar items more efficiently, while also preserving the ability to encode novel visual 321 

patterns. Using a generative model such as a VAE, we were able to build a knowledge system 322 

based on synaptic plasticity trained with gradient descent using back propagation. The VAE 323 

shares similarities with the hierarchical structure of the visual ventral stream (Figure 1) with 324 

more generic representations at the early level and more compressed representations at higher 325 

levels that can only represent familiar stimuli.  In a VAE the decoder corresponds roughly to the 326 

extensive feedback projections that extend backwards down the ventral stream from higher to 327 

lower order areas49,50. 328 

When paired with a binding pool model of working memory26, the MLR model was able to build 329 

generative memories of small visual images for both familiar and novel stimuli and it also 330 

exhibited the ability to tradeoff memory for visual details against memory for categorical 331 

information. Furthermore, the MLR is a cognitive model of human WM, in that it fulfills 332 

numerous requirements as proposed by Oberauer (2009)7.  333 
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For instance, MLR can build new structural representations, which refers to the ability to quickly 334 

link or dissolve representations that bind existing representations together into novel 335 

configurations.   MLR can store novel spatial arrangements of line segments (i.e., Bengali 336 

characters).  337 

MLR can manipulate structural representations which refers to the ability to access information 338 

that is currently stored in memory and to implement cognitive operations on it. As a pure 339 

memory model MLR does not represent complex cognitive operations, but it has tunable 340 

parameters that control the flow of information to determine what specific attribute(s) or labels 341 

are encoded into WM and also allows for regeneration of the original input stimulus based on 342 

select attributes which is essential for some kinds of manipulation.   343 

MLR has flexible reconfiguration which refers to findings that WM is a general-purpose 344 

mechanism that can be reconfigured to perform a variety of tasks.  This flexibility is at the heart 345 

of MLR’s mechanism for weighting which latent spaces are projected into the binding pool and 346 

can be accomplished quickly by nonspecific modulation of  connection strengths along a pre-347 

existing pathway.   348 

MLR representations are partially decoupled from long-term memory, meaning that WM must 349 

be able to store and retrieve information in a way that is distinct from information stored in long- 350 

term memory.  The binding pool exhibits this property by creating active representations that are 351 

separate from the latent spaces embedded in the visual knowledge. 352 
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MLR draws on long-term memory by building efficient memories using existing long-term 353 

knowledge representations when they are available. The BP in MLR can use the most compact 354 

latent space that is available to encode a familiar stimulus.  355 

MLR allows for the transfer of useful information into long-term memory. It must be possible to 356 

convert or “train” WM representations into long-term memory representations. This capability is 357 

enabled by the generative aspect of MLR. Memory consolidation could occur by regenerating 358 

remembered representations and then using those to drive perceptual learning (or gradient 359 

descent in an artificial neural network). To maintain the previously learned knowledge, 360 

techniques such as interleaving previous samples or using generative replay can be used 51. 361 

Alternatively, copies of the binding pool could serve as compressed representations to be 362 

encoded into episodic memory.  363 

In addition to these functional requirements, we also consider the architectural benefits of the 364 

MLR which is that clustering neural activity associated with memory into a binding pool of 365 

general-purpose storage neurons provides a straightforward path for higher order processes to 366 

control memory function, allowing them to be sustained, deleted, or instantiated into constituent 367 

cortical areas. Binding information between different attributes within distinct objects is also 368 

simpler to implement in a binding pool architecture because the memories are physically 369 

clustered in a well-defined population of neurons instead of being distributed across a large 370 

expanse of sensory cortex.  371 

MLR is not intended as a complete model of working memory as there are many functional, 372 

empirical, and computational aspects that have not yet been considered. These limitations 373 

include accounting for spatial locations, temporal effects, attention, and executive control.  Their 374 
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omission is not intended to signal that they are unimportant, but rather is an admission that a 375 

formal implementation of a cognitive function so flexible as WM is beyond the scope of any 376 

single paper (see 7,23,52–55 for extensive discussion on other aspects of WM).  Rather, the MLR 377 

model is intended as a nucleus of a storage mechanism to store memories in a way that is linked 378 

to visual knowledge and that is extensible to a broader range of empirical phenomena and 379 

capacities. 380 

MLR gives us a working implementation of how memories can exploit long-term knowledge 381 

using either or both of compression and categorization. When images are drawn from MNIST or 382 

f-MNIST datasets as familiar stimuli, the visual knowledge provides a compressed representation 383 

in the shape map and also learned categorical labels derived from the shape map. In contrast, 384 

entirely novel shapes could leverage only the less compressed, generic representations at early 385 

layers to encode them into WM. Subsequently, we demonstrated that the advantage of storing 386 

compressed format of known shapes is having less interference between items compared to when 387 

early level representations of novel shapes are stored in memory. Moreover, we showed attribute 388 

binding for individual items by encoding two instances of the same digit with different colors in 389 

WM and cuing one of the shapes to retrieve the whole item. Finally, we demonstrated that the 390 

MLR could leverage the existing knowledge to detect the novelty or familiarity of a presented 391 

stimulus.  392 

Figure 5 illustrates the diagram of hypothetical compressed and categorical representations of a 393 

handwritten digit ‘5’ as it is being processed by the visual system. The key point here is that with 394 

increasing depth into the ventral stream the visual form is represented by progressively fewer 395 

neurons, but the loss of detail is minimal as the stimulus is drawn from a distribution that the 396 
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system has been trained on, or has experience with. Moreover, this visual representation can 397 

elicit a separate categorical representation that is even more compact than the visual 398 

representation, though it lacks all visual details. 399 

We also provided empirical evidence in Experiments 1 and 2 of the incredible flexibility of 400 

building memory representations from appropriate latent representations by showing that naïve 401 

subjects can retrieve the specific shape of both novel and familiar stimuli at the very first trial 402 

without being aware of the nature of the task, as no specific instructions or examples were 403 

provided prior to the brief exposure. This is important in validating the MLR model, as it 404 

demonstrates that the existing pathways for building memories of novel or highly familiar 405 

shapes, do not need to be recruited over multiple experiences or with forewarning. On the other 406 

hand, Experiment 3 results showed that building expectations that only categorical information is 407 

important for a task can diminish the memory of visual details, but this expectation can be 408 

rapidly readjusted to store the visual details on the trial immediately after the surprise test.  In the 409 

model, this is achieved by tuning the model’s weights for visual and categorical pathways. 410 

Finally, in Experiment 4 we showed that WM stores shape-color bindings, allowing subtle shape 411 

differences to be used as a cue for retrieving a specific color, even for members of the same 412 

category of highly overtrained stimulus types like digits.   413 

 414 

 415 

 416 

 417 
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Methods 418 

All the experimental designs involving human participants were approved by IRB at the 419 

Pennsylvania State University. All subjects participated for course credit and acknowledged 420 

consent electronically prior to participation.  In the behavioral experiments, no statistical 421 

methods were used to pre-determine sample sizes but our sample sizes are similar to those 422 

reported in previous publications using similar methodology30,56. Furthermore, in Experiments 1-423 

2 subjects were blind to the nature of the task, and in Experiment 3 they were not aware of the 424 

surprise trial. Since each experiment consisted of only one group of subjects, no randomized 425 

assignment was performed.  426 

The Architecture of MLR 427 

The model is composed of two components: a modified variational autoencoder (mVAE) 428 

operating as visual knowledge and a binding pool (BP), the memory storage that holds one or 429 

more objects or features.  430 

mVAE: The VAE33 is an hourglass shape fully connected neural network consisting of three 431 

main elements – the encoder, bottleneck and the decoder– which are trained by using a colorized 432 

variant of MNIST34 and fashion-MNIST35 stimulus sets prior to any memory storage 433 

simulations. The code for the original VAE was retrieved from a GitHub repository at: 434 

https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/pytorch-mnist-VAE.ipynb. 435 

We modified the original VAE by dividing the bottleneck into two separate maps – a color map 436 

and a shape map – to represent each feature distinctively.  437 
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Encoder: Translates information from a pixel representation into compressed latent spaces as  438 

series of transitions through lower dimensional representations.  439 

Shape and Color maps: Typically, the bottleneck layer of a VAE that has the smallest number 440 

of neurons consists of one map. To generate distinct feature maps, we divided the bottleneck into 441 

two separate maps: one for representing shape and the other one for representing color.  Each of 442 

the two maps is fully connected to the last layer of the encoder  and the first layer of the decoder. 443 

Decoder: Translates information from the compressed shape and color maps into pixel images  444 

through progressively higher dimensional representations.  We consider the decoder to be 445 

analogous to the feedback pathways in the visual system that descend back down to primary 446 

visual cortex from deeper areas like inferotemporal cortex.  Generation of a remembered 447 

stimulus at the output is not considered analogous to a motoric reconstruction but rather a 448 

reconstruction of details in an imagined visual representation.   449 

Skip Connection: To allow memory reconstruction of novel stimuli without involving the shape 450 

and color maps, a skip connection was added to the mVAE that linked the first layer to the last 451 

layer. Anatomically, this would be the equivalent of a projection between layers within V1 452 

cortex57.   453 

Categorical labels:  In order to apply categorical labels to a given stimulus, we used a standard 454 

support vector machine classifier36. The SVM maps representations in the latent spaces onto 455 

discrete labels for different stimulus attributes such as shape or color.  456 

Binding Pool (BP):  The BP uses a modified formulation of the model described in the original 457 

binding pool paper26 and is similar to a Holographic Reduced Representation58. It is a one-458 
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dimensional matrix that is bidirectionally connected to each layer of the encoding pathway (L1, 459 

L2, shape and color maps) as well as the outputs of the SVM classifiers which provide one-hot or 460 

localist (i.e., the estimated category has the highest value of 1, while other categories are set to 461 

zero) representation of categorical labels of shape and color. The BP stores a combined 462 

representation of the information from each of these sources for one or more stimuli in 463 

individuated representations indexed by tokens. The bidirectional connections allow information 464 

to be encoded into the BP, stored as a pattern of neural activity, and then projected back to the 465 

specific layers of the mVAE to produce selective reconstruction of the encoded items.  The 466 

connection between the BP and the latents is accomplished through randomized, normally 467 

distributed, fixed weights. These are not trained through gradient descent but are assigned at the 468 

beginning of the simulation for a given model.   469 

Tokens: The tokens function as object files59,60 for each specific stimulus (e.g., token 1 stores 470 

stimulus 1). Having tokens allows multiple items to be stored within a single pool of neurons. 471 

The tokens only indicate which neurons of the BP are associated with an object representation, 472 

and do not actually store item-specific information.  473 

The MLR implementation  474 

Architecture: The mVAE consists of 7 layers. Input layer (Li; dim= 28 x 28 x 3), Layer 1 (L1; 475 

dim= 256), Layer 2 (L2; dim= 128), bottleneck (color map, dim= 8; shape map, dim = 8), Layer 4 476 

(L4; dim= 128), Layer 5 (L5; dim= 256) and the output layer (Lo; dim=28 x 28 x 3). A skip 477 

connection was added from L1 to L5. The size of the shape and color maps were chosen to be 478 

equal for simplicity, but one can adopt optimization methods to determine the dimension of each 479 

map based on the complexity of representations. The BP layer is connected to the encoder layers 480 
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of mVAE bidirectionally (Extended Data Figure 5). Multiple tokens were connected to the 481 

binding pool nodes to individuate the items stored in memory, and there is no limit to the number 482 

of tokens one can add, although storing information in more tokens will cause increasing 483 

interference. Two layers of 20 and 10 neurons were allocated to represent the categorical 484 

information of shape and color labels estimated by the SVMss and SVMcc respectively and these 485 

were also connected to the binding pool.  486 

Dataset: Training was done using the MNIST34 stimulus set consisting of 70,000 images of 10 487 

categories of digits (0-9) and fashion-MNIST35 set, which has the same structure but for 10 488 

categories of clothing (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneakers, Bag 489 

and Ankle boot). To add an additional attribute to the dataset, we colorized all images that were 490 

originally grey using 10 distinct colors applied uniformly to the images – red, blue, green, 491 

purple, yellow, cyan, orange, brown, pink, teal – with minor variations. Color values were [[0.9, 492 

0.1, 0.1], [0.1, 0.9, 0.1], [0.2, 0.2, 0.9], [0.8, 0.2, 0.8], [0.9, 0.9, 0.2], [0.1, 0.9, 0.9], [0.9, 0.5, 493 

0.2], [0.6, 0.4, 0.2], [0.9, 0.7, 0.7], [0.1, 0.5, 0.5]]. The color of each image was chosen by first 494 

selecting a prototype color and then adding uniform random variation to each of the RGB 495 

channels from the range [-.1, .1]. One triple of red-green-blue color values were generated for a 496 

given image and then multiplied by the greyscale value of that image such that all non-black 497 

pixels had the same ratio of red, green and blue color values. While the mVAE major pathway 498 

was trained on the MNIST and f-MNIST, the skip connection was trained on the same images 499 

that were transformed by random rotations of +/- 90 degrees and random crop of size 28 with 500 

padding to be 8 (Extended Data Figure 6). 501 
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Training and testing the mVAE: The mVAE was trained on 120,000 images from MNIST and 502 

f-MNIST with 200 epochs and a batch size of 100. Three objective functions were used to train 503 

the shape and color maps and the skip connection. Each batch was selected to train based on one 504 

of these three objective functions, and this was repeated for the entire training set for each epoch. 505 

It should be noted that with autoencoders training occurs without explicit labels or supervision, 506 

akin to how a child can learn to see through exposure to patterned information.  507 

All three objectives to train the mVAE were derived from Equation 1. In this equation, ∅ and 𝜃 508 

are the variational parameter and the generative parameter respectively.  𝑞∅(𝑧|𝑥) represents the 509 

probabilistic encoder (posterior probability) by generating a distribution on the latent factor, z 510 

given the observed value of x.  𝛽     is the regulation coefficient (𝛽 = 1   corresponds to the 511 

original VAE33). 𝑃𝜃  (𝑥|𝑧) represents the probabilistic decoder (likelihood probability) by 512 

estimating the distribution over x, given the latent factor, z. Finally, the first term 513 

(𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃  (𝑥|𝑧)]) is the reconstruction loss (i.e., expected log likelihood of the probability 514 

distribution over the data points) and the second term (𝐷𝐾𝐿(𝑞∅(𝑧|𝑥)||𝑃𝜃  (𝑧)) is the Kullback-515 

Leibler divergence between the encoder’s distribution and the prior probability of 𝑃(𝑧) to 516 

measure how close these two distributions are. 517 

𝐿(𝜃, ∅; 𝑥, 𝑧 , 𝛽) = −𝐸𝑞∅(𝑧|𝑥)[log 𝑃𝜃  (𝑥|𝑧)] +  𝛽 ∗ 𝐷𝐾𝐿(𝑞∅(𝑧|𝑥)||𝑃(𝑧))               [1] 518 

Skip objective function: This function minimizes the reconstruction error for the input x 519 

represented by equation 2, where 𝑙1 is the activation of the first layer. This objective adjusted 520 

only the weights connecting the input to L1, the skip connection to L5 and connection from L5 to 521 

the output.  522 
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 𝐿(𝜃, ∅; 𝑥, 𝑙1) = −𝐸𝑞∅(𝑙1|𝑥)
[log 𝑃𝜃  (𝑥|𝑙1)]                             [2]    523 

Shape objective function: This function converted the output images into grey scale images by 524 

averaging across the three RGB channels. Then the following objective was minimized with 𝛽 =525 

1. This objective adjusted the weights connected to L1, L2, shape map, L4 and L5, while the color 526 

map and the skip connection were detached.  527 

𝐿(𝜃, ∅; 𝑥, 𝑧𝑠, 𝛽) = −𝐸𝑞∅(𝑧𝑠|𝑥)[log 𝑃𝜃  (𝑥|𝑧𝑠)] +  𝛽 ∗ 𝐷𝐾𝐿(𝑞∅(𝑧𝑠|𝑥)||𝑃(𝑧𝑠))      [3] 528 

Color objective function: This function computes the maximum color value of RGB channels 529 

for each output image and converts the entire image to that color uniformly. That results in 530 

replacing each image with a uniform color patch containing no shape information. Then, it 531 

minimized the Equation 4 with 𝛽 = 1. This objective adjusted the weights connected to L1, L2, 532 

color map, L4 and L5, while the shape map and the skip connection were detached.  533 

𝐿(𝜃, ∅; 𝑥, 𝑧𝑐 , 𝛽) = −𝐸𝑞∅(𝑧𝑐|𝑥)[log 𝑃𝜃  (𝑥|𝑧𝑐)] +  𝛽 ∗ 𝐷𝐾𝐿(𝑞∅(𝑧𝑐|𝑥)||𝑃(𝑧𝑐))         [4] 534 

The activation functions were ReLU (rectified linear unit) for the encoder and decoder, and 535 

sigmoid function for the last layer of the decoder. 536 

BP memory encoding of latents:  Once the mVAE was trained, memories could be constructed 537 

by projecting information from the latent spaces into the BP which had 2500 neurons in total. 538 

The effective number of neurons representing each item was 1000 since 40% of the BP was 539 

allocated to each token. The size of the BP was determined such that it could accommodate the 540 

storage of multiple latents of the mVAE, and store multiple items, including novel stimuli. 541 

However, future works can explore optimizing the BP size, such as by encouraging sparsity. 542 
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Such memories are constructed with a matrix multiplication of the activation values of a given 543 

latent space (i.e., L1, L2, shape and color map) or one-hot categorical labels, by a randomly 544 

generated and fixed (i.e., untrained by gradient descent), normally distributed set of weights with 545 

the mean = 0 and standard deviation of 1.0. The weights are randomly re-generated for each 546 

simulated trial.  However, they remain fixed each time that the binding pool function is called.  547 

This multiplication produces a level of activation for each neuron in the BP. Multiple attributes 548 

can be combined into one representation in the BP by summing the activation values from 549 

multiple encodings and then normalizing them.  Equation 5 demonstrates the encoding of 550 

activations in the BP, where 𝐵𝛽 represents each node in the BP, 𝑁𝑡,𝛽 represents the connection 551 

matrix between the BP nodes and the token, which consists of ones and zeros such that a 552 

randomly selected 40% of the weights between a given token and the binding pool are set to 1, 553 

and the remainder are set to zeros.𝑋𝑓 represents the activations in a given latent space, n is the 554 

number of neurons in the latent space that is being stored in the BP, and 𝐿𝑓,𝛽 is the connection 555 

matrix between the latent space and the BP as modified by the task dependent encoding 556 

parameter. Summing over the binding pool nodes, we could compute the binding pool activation 557 

for all the neurons.  558 

𝐵𝛽 = 𝐵𝛽 + 𝑁𝑡,𝛽 ∑ 𝑋𝑓𝐿𝑓,𝛽
𝑛
𝑓=1      [5] 559 

BP memory encoding of categorical labels: The color and shape category labels estimated by 560 

an SVM classifier, as an analog of categorical representations, could also be encoded into the 561 

BP. The shape labels were extracted from SVMSS (i.e., an SVM trained to decode shape labels 562 

from the shape map) and the color labels were extracted from SVMCC. (i.e., an SVM trained to 563 

decode color labels from color map).  Shape was a localist (i.e., one-hot) code in a vector of 564 
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length 20 (10 digits and 10 fashion items), while color used a vector of length 10. Either or both 565 

vectors could be added to a BP representation through matrix multiplication described above.  566 

Reconstructions from the BP were converted into a one-hot vector with a max function.    567 

One-shot encoding of novel shapes in BP: Novel shapes were 6 examples of colorized Bengali 568 

characters40. The colorization of Bengali characters was similar to that of MNIST and f-MNIST. 569 

The colored novel images were used as inputs to the model, and activations from L1 and shape 570 

and color maps were encoded and retrieved from the BP to compare the efficiency of encoding 571 

from these layers. Due to the limited number of images for Bengali characters as novel shapes, 572 

we augmented the data by doing slight rotation (random from –10° to +10° rotation) and random 573 

crop with padding =8 on the 6 characters. This enabled us to do the permutations test for 574 

measuring cross-correlation. 575 

Storing multiple items: Each token contacts a random, fixed proportion of the binding pool, 576 

effectively enabling those units for memory encoding while that token is active. Each token is 577 

connected to a random set of 40% (i.e., 1000) of total nodes (i.e., 2500). This means that when a 578 

given token is active, the subset of BP nodes it is connected to can be used to store and retrieve 579 

information, the remaining BP nodes will still hold their activation state, but can neither be 580 

encoded to, nor retrieved from.  The subset of BP nodes associated with each token overlap with 581 

one another so that for any given token, 40% of its nodes overlap with any other token.  As a 582 

result, with an increasing number of tokens stored in memory, the likelihood of interference 583 

between objects increases due to the overlap between token connectivity to the BP. There is no 584 

limit on the number of tokens, but the binding pool is assumed to be fixed in size. Given the 585 

fixed size of the binding pool, the interference between two items can be manipulated by 586 
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increasing the subset of neurons allocated to each token. For instance, if we increased the token 587 

connectivity from 40% to 70%, the memory interference between two items would have been 588 

expected to increase accordingly. This mechanism enables multiple distinct sets of attributes to 589 

be stored in each token, effectively binding those attributes into one object. The tokens can be 590 

retrieved individually and in any order. Once stored in this way, a token can reactivate its portion 591 

of the BP to reconstruct the attributes associated with it. Moreover, tokens enable content 592 

addressable recall in that a given attribute (e.g., the shape or color of a digit) can be used as a 593 

retrieval cue to determine which of several tokens was associated with that specific attribute. 594 

Then, that token can be activated to retrieve the other attributes associated with it (see26 for more 595 

details).   596 

Memory Maintenance in BP:  The binding pool is a simple implementation of a persistent-trace 597 

model that holds the vector of activation produced by the encoding operation(s). This is 598 

consistent with self-excitatory neural attractors, or silent synaptic storage61. The silent synaptic 599 

storage could be implemented by arranging small ensembles in the BP with interconnecting 600 

synapses that can store information through intracellular currents, and then reconstructing the 601 

attractor states via a  trigger. The specific mechanism of trace-maintenance was not a crucial 602 

question in this implementation as there was no time course or delay of activity over time and the 603 

biophysical details of the neurons were not implemented.   604 

Token Retrieval:  To determine which token was linked to a cued visual form (e.g., a shape map 605 

representation), information can be passed from a given latent through the BP to determine 606 

which token has the strongest representation of that particular latent.  Equation 6 illustrates the 607 

retrieval activation of a given token 𝑍𝑡.Other parameters are similar to that of Equation 5.  608 
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𝑍𝑡 = ∑ 𝐵𝛽𝑁𝑡,𝛽 ∑ 𝑋𝑓𝐿𝑓 ,𝛽
𝑛
𝑓=1

𝑛
𝛽=1                          (6) 609 

To test the binding accuracy, 500 digit-pairs were stored in the BP one at a time using the color 610 

and shape maps and two tokens.  Afterwards, a grayscale MNIST was used as a retrieval cue to 611 

determine how often the model successfully retrieved the correct token based on this cue 612 

(Extended Data Figure 2).   613 

Memory Reconstruction and model’s evaluation: Memory reconstructions to any given latent 614 

or one-hot (i.e., localist) vector were accomplished by retrieving the associated token and 615 

multiplying the BP nodes that are linked to the corresponding token by the transpose of the same 616 

fixed weight matrix that was used during the encoding of that representation.  As represented by 617 

Equation 7, the result is a noisy reconstruction of the original latent activity state, which can be 618 

processed by feedforward activation through the rest of the mVAE . K  is the normalization 619 

factor that represents the sum of the active BP neurons for each item. To improve the L1 620 

reconstructions for the novel shapes, we implemented an extra transformation by increasing the 621 

difference between active and inactive nodes, such that we added 2.0   to the active neurons and 622 

subtracted 3.0  from nodes that had a zero activation prior to encoding in the BP . Finally, when 623 

the latent L1 received back the activations from the BP, we set the negative neurons to zero.  624 

𝑋𝑓 = 1/𝐾(𝑍𝑡 ∑ 𝐵𝛽𝐿𝑓,𝛽𝑁𝑡,𝛽)𝑛
𝛽=1                    (7)             625 

Two methods were used to evaluate the quality of memory reconstructions of MLR.  1)  626 

Representations in the shape and color maps were classified by radial basis support vector 627 

machines36 (SVM), which were trained to decode shape (one of 20) or color (one of 10) using the 628 

remaining 10,000 MNIST and 10,000 fashion MNIST as test set stimuli. The classification 629 
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allowed us to assess the amount of shape and color information in the shape and color maps 630 

before and after memory reconstruction.  631 

SVMs were imported from the scikit-learn library as radial basis functions (kernel= ‘rbf’) with 632 

the decision function parameters to be C=10 and gamma=’scale’ respectively. For instance, 633 

classifying the accuracy of the memory formed from the L2 layer involves reconstructing the L2 634 

latent from the BP, then passing it forward to the shape and color maps and classifying those 635 

map activations with the SVMs. We also used the same pre-trained classifiers to create the labels 636 

and to assess memory performance.  637 

 2.) An alternative measure of the accuracy of reconstructing the original image was to correlate 638 

the reconstructed pixels with the original stimulus. We used this approach to quantify 639 

reconstructions of novel stimuli which have no pre-learned categories. Cross-correlations were 640 

normally computed over 500 repetitions. 641 

Detectability of novel vs familiar shapes: In all the simulations presented above, the model 642 

does not decide whether the presented stimulus is familiar or novel. However, we built this 643 

mechanism into the model as a novelty detectability feature. To do this, every stimulus is 644 

reconstructed straight from the mVAE by passing through the latent space. We computed the 645 

cross-correlation between an item and its reconstruction. The model categorizes the stimulus to 646 

be familiar if the cross-correlation is above the .5 threshold. Accordingly, a given stimulus is 647 

detected to be novel if the cross-correlation is less than .5. This was repeated for 100 repetitions 648 

across the 10 trained models.  649 

 650 
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Behavioral Experiment Methods 651 

For Experiments 1 through 3, participants were Penn State University undergraduates who 652 

participated in exchange for course credit. For Experiment 4, participants were recruited online 653 

via Prolific and compensated $1 USD for their participation in this 5-minute study. All 654 

participants provided informed consent before completing a study. 655 

Experiment 1: 20 Penn State University undergraduates (Mean age = 19.55, 90% female, 20% 656 

left-handed) participated in this experiment. On each trial, participants were shown one randomly 657 

selected Bengali character and then asked to click on the exact character they remembered seeing 658 

from a search array of four Bengali characters. Critically participants were only instructed to pay 659 

attention and were otherwise uninformed about what would happen  until after viewing the 660 

image. The instructions occurring before trial 1 were as follows: "Thank you for participating in 661 

this experiment. You will be completing two separate experiments! This 1st experiment will be a 662 

very short, ONE TRIAL experiment where we show you some visual information. Because there 663 

is only one trial we need your full attention, as you only get ONE SHOT. So, keep your eyes on 664 

the fixation cross before the stimulus appears. Press the SPACEBAR when ready to begin.” 665 

Participants were then shown a second trial beginning with the instructions: “That concludes our 666 

first experiment! We will now begin the 2nd, equally fast ONE TRIAL experiment. We will 667 

show you some new visual information. Again, we need your full attention, as you only get one 668 

trial. Press the SPACEBAR when ready to begin.” Participants were not aware a 2nd trial would 669 

occur until after they completed the first, and the presented target on trial 1 was always different 670 

from the trial 2 target. 671 
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Five Bengali character categories were taken from the stimulus set downloaded from 672 

www.omniglot.com, which includes multiple different exemplar drawings of a Bengali character 673 

in grayscale. The experiment was developed in Psychopy (v2020.2.2, Peirce et al., 2019) before 674 

being translated to JavaScript using the PsychoJS package (v 2020.2) and run online via 675 

Pavlovia62. Each character was presented in the center of a grey screen (at size 0.15x0.15 676 

Psychopy height units, a normalized unit designed to fill a certain portion of the screen based on 677 

a predefined window size) for 1000ms, followed by a 1500ms delay.   The response screen, 678 

which consisted of the target image and 3 non-target Bengali characters was then presented to 679 

the participants. The response screen varied between trial 1 and trial 2. On the first trial, non-680 

target answer options were selected from different Bengali character categories, and on trial 2 681 

non-target answer options were different exemplars of the same character category. Accuracy 682 

scores were considered significantly above chance if a 95% bootstrapped confidence interval 683 

(95% bCI) did not include the chance baseline (25%).  684 

Experiment 2: A new sample of 20 Pennsylvania State University undergraduates (Mean Age = 685 

18.6, 90% female, 5% left-handed) participated in this online experiment for course credit. 686 

Participants viewed one grayscale MNIST digit image (3, 4, 6, 7, and 9) on a black background 687 

before being asked to click on the exact image they remembered seeing. Again, participants were 688 

not informed there would be a memory task. The exact instructions were as follows: “This 689 

experiment will be a very short experiment where we show you some visual information. 690 

Because it is short and each of the 5 trials are unique, we need your full attention right from the 691 

start. Keep your eyes on the fixation cross before the stimulus appears. Press the SPACEBAR 692 

when ready to begin.". Thus, the first trial served as an unexpected memory test format. Non-693 

target options were exemplars from the same digit category (e.g., they saw four different 694 
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instances of the digit 3, one of which was an exact match to what they had just seen). Participants 695 

completed 5 trials in total, with a new digit category shown on each trial (i.e., digit categories 696 

were never repeated within an individual). All other components of Experiment 2 were identical 697 

to Experiment 1.  698 

Experiment 3: A new sample of 20 Pennsylvania State University undergraduates (Mean Age 699 

18.8, 95% female, 5% left-handed) participated in this online experiment for course credit. The 700 

paradigm resembles that used in attribute amnesia studies (Chen & Wyble, 2015). Participants 701 

viewed a grayscale MNIST digit (from any digit category 0 through 9), and were instructed to 702 

report the category of the image by typing the respective digit on the keyboard. This task was 703 

repeated for 50 trials before participants were asked a surprise question on Trial 51: instead of 704 

identifying the image category, they had to select the specific category exemplar they 705 

remembered seeing (e.g., which specific “2” among an array of four MNIST “2s”).  On the 706 

surprise trial, participants reported the specific shape of the digit they just saw by clicking on the 707 

image that matches the target. The display response matched the design of Experiment 2: the 708 

target was presented alongside 3 non-target distractors selected from the target’s category but 709 

with different shapes. 710 

Participants then completed 9 more exemplar identification trials (termed control trials). 711 

Significance for accuracy changes on the surprise trial was assessed by comparing surprise trial 712 

accuracy to accuracy on the 1st control trial via a one-tailed permutation test with 10,000 713 

iterations63. All other parameters of this study were identical to Experiment 2. 714 

Experiment 4: A sample of 20 participants (Mean Age 21.9, 45% female, 15% left-handed) 715 

were recruited from the online website Prolific. Participants were tasked with reporting the color 716 
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of an MNIST digit using its shape as the retrieval cue. On each trial, 2 MNIST exemplars from 717 

the same digit category were presented sequentially to the participant. Each exemplar was 718 

randomly colored from a list of 10 options (Red, Green, Blue, Pink, Yellow, Orange, Purple, 719 

Teal, Cyan, and Brown), and colors did not repeat within a trial. Each digit was visible on screen 720 

for 500 ms, with a blank 500 ms interval between exemplars and a 500 ms delay between the 721 

second exemplar and the response screen. One of the exemplars (counterbalanced across trials) 722 

was then presented to the participant in grayscale, and participants were instructed to click on the 723 

color that was paired with this exemplar (10 alternatives; chance = 10%). Unlike in previous 724 

experiments where no instruction was given, participants were explicitly instructed to remember 725 

the color-shape pairing. Participants completed 20 trials in total. Accuracy scores were 726 

considered significantly above chance if a 95% bCI did not include the chance baseline.  727 

  728 
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Data availability 736 

The datasets for the behavioral experiments that were analyzed in this study are publicly 737 

available on the open science framework (OSF) [ https://osf.io/tpzqk/]. Also, datasets that were 738 

analyzed and generated the simulations for the model can be found through the GitHub link 739 

[https://github.com/Shekoo93/MLR]  740 

Code availability 741 
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publicly available on OSF [ https://osf.io/tpzqk/]. All the code for the MLR model including the 743 

simulations that generated the figures and the analysis presented in the tables are provided at the 744 

GitHub link [https://github.com/Shekoo93/MLR]. 745 
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Tables 759 

Table 1.  Mean classification accuracy (%) of shape and color information of a single item stored and 760 

retrieved from memory for encodings from different latents  761 

                                                            Classifier type  

 SVMSS SVMSC SVMCC SVMCS 

Encoding conditions     

No encoding  84.2 (.02) 21.9 (.03) 87.2 (.04)    14.7 (.02) 

Shape map and Color map 82.7 (.14) 20.9 (.14) 79.6 (.44) 14.4 (.14) 

Shape map only 83.5 (.14) 21.5 (.15) 9.6 (.06) 4.5 (.08) 

Color map Only 5.1 (.08) 11.4 (.33) 83.2 (.35) 14.5 (.13) 

L2 74.3 (.32) 18.4 (.18) 71.3 (.65) 13.2 (.13) 

L1 45.6 (.8) 13.3 (.22) 55.8 (1.1) 8.3 (.17) 

The table indicate means of classifier accuracies (%) after memory retrievals of a single stimulus from each layer for 762 

10 BPs (10 random connections matrix from BP to mVAE) for each model across 10 independently trained models. 763 

SVMSS represents an SVM trained on shape labels using data from the shape map while SVMSC was trained to 764 

decode color labels from the shape map.  SVMCC represents an SVM trained on color labels using data from the 765 

color map, whereas SVMCS was trained to decode shape labels from the color map. Chance performance is 10% for 766 

classifiers trained on color labels (SVMCC and SVMSC) and 5% for classifiers trained on shape labels (SVMSS and 767 

SVMCS). The values in parentheses indicate standard error. Rows correspond to different encoding conditions, 768 
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showing which latent(s) were stored in the binding pool.  In the top row, “No encoding”, corresponds to a 769 

classification of the shape and color latents without storage into memory and this represents the theoretical 770 

maximum that the memory encoding/retrieval could obtain.  Shape map only and color map only indicates that only 771 

shape or color of a stimulus was encoded and retrieved. L1 and L2 representations were passed forward to the shape 772 

and color maps after being stored in the BP to be classified. 773 

Table 2. The correlation values between input and retrieval stimuli as a function of set size 774 

                        Stimuli type 

 Familiar               Novel 

    Retrieval     

 S/C maps L1-skip S/C maps L1-skip 

Set size     

1 .84 (.03) .75 (.03) .15 (.06) .78 (.01) 

2 .72 (.05) .66 (.04) .14 (.06) .65 (.03) 

3 .65 (.05) .58 (.04) .14 (.06) .55 (.03) 

4 .58 (.06) .53 (.04) .14 (.06) .48 (.04) 

The mean cross-correlation between stimuli and their retrievals for different set sizes across 10 trained models. S/C 775 

maps stands for shape and color maps. The values in parentheses are standard errors.  The correlation values were 776 

measured in cases where the BP encoded the shape and color activations of the novel/familiar stimuli and then the 777 

stimuli were retrieved via the decoder pathway (retrieval condition: S/C maps). The correlation values were also 778 

measured in cases where the BP encoded the L1 activations of the novel/familiar stimuli, and then the stimuli were 779 

retrieved via the skip connection (retrieval condition: L1-skip). 780 

 781 

Figures legends  782 

Fig1. The simplified architecture of MLR. The model has two major elements including visual knowledge 783 

represented by mVAE and working memory shown as Binding Pool.  We modified the bottleneck of a VAE to 784 
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represent shape and color in separate maps. The figure also shows the architecture of the mVAE and its coarse 785 

neuroanatomical correspondence.  In the neuroanatomical projection, solid arrows correspond to feedforward 786 

connections from V1 to IT cortex (or L1 to bottleneck in the VAE) and dashed arrows refer to feedback projections 787 

in the reverse direction back down to V1.  The inputs were either colorized version of MNIST or f-MNIST. Note 788 

that model was shown one image at a time. 789 

Fig2. Memory retrievals from the MLR. A. Memory reconstructions from different latents in a trained model for 790 

familiar images.  Selective shape or color map retrievals were achieved by setting the other map activations to zero.  791 

Note that the familiar items’ reconstructions are visually less precise for memories formed from L1 and L2 latent 792 

spaces compared to the shape and color maps. B. Reconstruction of novel items using the L1/Skip connections and 793 

the shape/color maps. Novel shapes are reconstructed more accurately from the L1 latent and the skip connection. 794 

Each item is stored individually in a separate BP, but the examples in A and B are combined into single images for 795 

ease of visualization. C. Illustration of the storage and retrieval of 1, 2, 3 and 4 items in memory. The interference increases as 796 

more items are stored in the BP. This results in inaccurate reconstructions of both shape and color. 797 

Fig 3. Retrieval accuracies. Mean classifier accuracy (%) of retrieved items as a function of set size in conditions 1 798 

and 2, and the mean accuracy of one-hot labels before and after storage in memory as a function of set size in 799 

conditions 3, 4 and 5. Error bars represent standard errors computed over 10 independently trained models. In all 800 

cases the accuracy declines as more items are stored in memory, however, labels are more resistant to interference as 801 

shown in condition 4 and 5, especially when the amount of visual information stored in memory decreases. Each dot 802 

represents the accuracy of a given model over 10,000 repetitions. 803 

Fig4. Trial layout for all experiments conducted on human participants. In Experiment 1, participants saw a 804 

grayscale Bengali stimulus before being asked to click which image they remembered seeing. The stimulus and foils 805 

presented in the 4-afc varied between trial 1 and trial 2. They were not informed ahead of time that there would be a 806 

memory task. Experiment 2 was identical to Experiment 1, except the stimuli used were MNIST digits. In 807 

Experiment 3, participants viewed grayscale MNIST and were instructed to type in the category of the image (e.g., 808 

type ’4’ in displayed trial) for 50 consecutive trials before being surprised with a question asking them to click on 809 

the exact MNIST exemplar they remembered seeing. In Experiment 4, participants were instructed to remember the 810 
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color-exemplar pairing of MNIST digits, before being cued with the specific exemplar and asked to click on the 811 

color that exemplar was.  812 

Fig5. The compression and categorical representation of a single stimulus. The trained visual pathway represents the 813 

stimulus with specific visual details in all layers with little loss of visual specificities. The width of the cone reflects 814 

the number of neurons involved in the representation at different stages of processing. The final representation at the 815 

highest level would elicit a categorical representation that lacks the visual information. 816 
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