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The Burkhardt-Cottingham (BC) sum rule connects the twist-3 light-cone parton distribution function
(PDF) gr(x) to the twist-2 helicity PDF g, (x). The chiral-odd counterpart of the BC sum rule relates the
twist-3 light-cone PDF #; (x) to the twist-2 transversity PDF A, (x). These BC-type sum rules can also be
derived for the corresponding quasi-PDFs. We perform a perturbative check of the BC-type sum rules in
the quark target model and the Yukawa model, by going beyond the ultraviolet (UV) divergent terms. We
employ dimensional regularization (DR) and cutoff schemes to regulate UV divergences, and show that the
BC-type sum rules hold for DR, while they are generally violated when using a cutoff. This violation can
be traced back to the breaking of rotational invariance. We find corresponding results for the sum rule
relating the mass of the target to the twist-3 PDF e(x). Moreover, we supplement our analytical results with

numerical calculations.
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I. INTRODUCTION

Quarks and gluons, collectively denoted as partons, are
the fundamental degrees of freedom of quantum chromo-
dynamics (QCD). While partons cannot be observed
directly, QCD factorization theorems allow one to express
physical observables in terms of nonperturbative functions,
which contain information about partons inside nucleons
[1]. In this context, parton distribution functions (PDFs)
belong to the most important nonperturbative functions [2].
Not only can PDFs be extracted through high-energy
scattering experiments, but they can also be computed in
models and lattice QCD. PDFs can be grouped according to
their “twist,” which determines the order in the inverse hard
scale at which a PDF contributes to an observable. While
twist-2 PDFs provide the dominant contribution to physical
observables, higher-twist PDFs, such as the twist-3 PDFs,
suffer from kinematical suppressions, which precludes an
“easy” experimental extraction. At twist-2, a complete
(one-dimensional) description of nucleons in terms of
quarks can be obtained by means of three PDFs: the
unpolarized PDF f(x), the helicity PDF g,(x), and the
transversity PDF A, (x). On the other hand, at twist-3, one
has the three PDFs: e(x), gr(x), and h; (x). Twist-2 PDFs
have a probabilistic interpretation of representing
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momentum distributions of partons inside nucleons. On
the other hand, twist-3 PDFs do not represent densities, and
hence are conceptually intriguing because we are forced to
go beyond the simple parton model. For instance, they can
be shown to quantify multiparton correlations inside
nucleons [3,4]. Noteworthy is also the semiclassical inter-
pretation of x> moments of e(x) and g;(x) in terms of the
average transverse force experienced by quarks in deep
inelastic scattering (DIS) [5].

Lorentz invariance plays a central role in any relativistic
quantum field theory such as QCD. Certain sum rules are the
remarkable consequences of Lorentz invariance. Several
such sum rules are integral relations connecting PDFs of
different twists to one another. One example, the Burkhardt-
Cottingham (BC) sum rule, proposed about 50 years ago,
connects the twist-2 g, (x) to the twist-3 g(x) [6],

[ a0 = [ droro (1)

The chiral-odd counterpart of the BC sum rule, also known
as the h-sum rule, connects the twist-2 & (x) to the twist-3

hy(x) [7.8],
/dxhl(x) —/dth(x). (2)

These BC-type sum rules have been under scrutiny for
decades—see, for instance, Refs. [8—11]. One of the most
interesting features of the twist-3 PDFs concerns the
possible existence of singular zero-mode contributions
[8,10-15], that is, terms proportional to §(x), and their
potential impact on the sum rules. Obviously, a &(x)
contribution would preclude experimental checks of the

Published by the American Physical Society


https://orcid.org/0000-0001-8536-082X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.054027&domain=pdf&date_stamp=2022-03-25
https://doi.org/10.1103/PhysRevD.105.054027
https://doi.org/10.1103/PhysRevD.105.054027
https://doi.org/10.1103/PhysRevD.105.054027
https://doi.org/10.1103/PhysRevD.105.054027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SHOHINI BHATTACHARYA and ANDREAS METZ

PHYS. REV. D 105, 054027 (2022)

sum rule as the point x = 0 cannot be reached in experiment.
Put differently, measurements would suggest a violation of
the sum rule.

The checks of the BC-type sum rules include, in
particular, perturbative calculations in models such as
the quark target model (QTM) [8—11]. The final conclusion
reached in those studies was that the sum rules hold in the
models, provided that one takes into account the zero-mode
contributions. However, in those works, for analytical
simplicity, only the UV-divergent contributions were con-
sidered, and it was tacitly assumed that this is sufficient.
One may ask if this is really enough, and whether the UV-
finite terms satisfy the sum rules as well. To address those
questions is one of the main purposes of the present work.
To this end, we perform a check of the BC-type sum rules
by going beyond the UV-divergent terms at one-loop order.
We exploit two models for this analysis: the QTM and the
Yukawa model (YM). We use two regularization schemes
for the UV divergences: dimensional regularization (DR)
and a cutoff. For the IR divergences, we employ three
schemes: nonzero gluon mass m, # 0, nonzero quark mass
m, # 0, and DR. Our work suggests that it is indeed not
sufficient to limit the check of the BC-type sum rules to the
UV-divergent parts of the PDFs. In fact, the sum rules can
be expected to be violated for the UV-finite terms in
schemes that break rotational invariance. Specifically, the
sum rules are typically violated when using a cutoff, while
they hold in DR (which preserves rotational invariance). As
a by-product, we find that working with m, # 0 as an IR
regulator at twist-3 can in general cause problems.

The second major point of this work is the discussion of
BC-type sum rules for parton quasidistributions (quasi-
PDFs), which became key quantities for hadron structure
calculations in lattice QCD. For a long time, lattice-QCD
extractions of the full x dependence of the parton distribu-
tions were hindered by the explicit time dependence of the
underlying correlation functions. The quasi-PDF approach,
proposed by Ji in 2013, has sparked a new wave of interest
in extracting PDFs from lattice QCD [16,17]. This approach
relies on the extraction of matrix elements for boosted
nucleons involving spacelike separated fields. Over the
years, enormous progress has taken place on the extraction
of PDFs through such an approach from lattice QCD [18—
59]. (See Refs. [60-62] for reviews on quasi-PDFs.) While
for quite some time studies of quasi-PDFs were limited to
the twist-2 case, recently first studies appeared that are
related to twist-3 quasi-PDFs [63-66]. In this work, we
establish the BC-type sum rules for quasi-PDFs, both
through a model-independent analysis and through analyti-
cal as well as numerical model calculations. Like in the case
of the BC-type sum rules for light-cone PDFs, the corre-
sponding sum rules for quasi-PDFs are violated in the cutoff
scheme which breaks rotational invariance.

Finally, we calculate the twist-3 PDF e(x) and its
corresponding quasi-PDF. We also explore, in the QTM

and the YM, the sum rule which relates this function to the
target mass. The general finding of the model calculations
matches our study of the BC-type sum rules. While the sum
rule for e(x) holds trivially for the UV-divergent terms, care
must be taken in the case of finite terms.

We organize the manuscript as follows: In Sec. II we
provide definitions of the light-cone PDFs (g, (x), g7(x))
and (h;(x), by (x)), and of the quasi-PDFs (g, o (x), g7.o(x))
and (h o(x), hy o(x)). In that section, we give a model-
independent discussion of the BC-type sum rules for both
light-cone and quasi-PDFs. In Sec. III we present the one-
loop perturbative results for the light-cone PDFs (g;(x),
gr(x)) and (hy(x), hy(x)) in the QTM and the YM. With
the help of these results, we show analytically that the
BC-type sum rules are valid when one uses DR for the UV.
Besides, we draw attention to the explicit violation of these
sum rules for the UV-finite terms when one employs a
cutoff scheme. To the best of our knowledge, such an issue,
in the context of BC-type sum rules, has never been
reported before. We argue that the observed problem with
a cutoff scheme is the lack of rotational invariance which,
as mentioned before, is the key ingredient responsible for
the existence of the sum rules in the first place. In Sec. IV
we present the one-loop results for the quasi-PDFs
(91.0(x). gro(x)) and (A o(x), hy o(x)) in the two models.
Section V is dedicated to numerical results for the sum rules
for both light-cone and quasi-PDFs. In that section, we also
clarify when and why the moments of quasi-PDFs should
converge, and the impact of a twist-expansion on those
moments. In Sec. VI we calculate the light-cone PDF e(x),
and its corresponding quasi-PDF e (x) in the QTM and the
YM, and show that their moments agree. In particular, we
consider the relation between e(x) and the mass of the
target. We summarize our work in Sec. VII. The Appendix
contains a discussion about an issue that can arise when
applying DR to both UV and IR divergences, which is
(also) related to the breaking of rotational invariance.

II. DEFINITION OF PDFS AND OVERVIEW
OF BC-TYPE SUM RULES
A. PDF definitions

Light-cone PDFs are defined in terms of the correlation
function'

1 [dz
9 =3 [ 5o () (-5

Z
<o (2) Pz 3)

'For any generic four-vector v, we define the Minkowski
components by (22, v!, 92, »*) and the light-cone components by
-z 100 4 03 = — L0 _ .3
(v*,v7,0,), where 1)*—%(1) +0v), v —ﬁ(” —v°) and

v, = (v',v?).
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where, I is a generic gamma matrix. Color gauge invari-
ance of this nonlocal quark-quark correlator is ensured by
the Wilson line

7 Z
W(‘m)

= Pexp (—igs /T dy‘A*(O*,y‘,ﬁQ). (4)

77=0,Z,=0,

Here, P is a path-ordered exponential depending on A™,
which is the plus component of the gluon field, and g,
denotes the strong coupling constant. The state of the hadron

is characterized by the 4-momentum P* = (P*, P~,0, ) and
a covariant spin vector S for which one can write

Pt M

o

SH=(S+,57.5,) = <z
Here, 1 and M denote the helicity and the mass of the hadron,
respectively, and 7 is an index in the transverse space. By
definition, the spin vector satisfies the constraint P - S = 0.
The twist-2 light-cone PDFs g; (x) and £, (x) are defined as

o'l = Agy(x), @l =S hy(x),  (6)
while the twist-3 light-cone PDFs g;(x) and h;(x) are
defined as

q)[yirs]:ﬂgi (x)
Pt 19r\Xx),

o M
olie"rs) = FﬂhL(x). (7)
In the above expressions, o = £ (y*y* —y*y*) and s is
the matrix which anticommutes with other Dirac matrices.
As is evident from these expressions, longitudinal target
polarization is required to address g,(x) and A (x), while
transverse polarization is needed for 4, (x) and gr(x). The
light-cone PDFs depend on x = k™ /P* and have support in
the region —1 < x < 1.

Quasi-PDFs are defined through the spatial correlation
function [16,17]

[F] D3 _l dZ3 ik _ Z Z Z

¢ ,S,P = = — < P,S - = F A A

U2, 5. PY) 2/Zﬂe< (=5 ) g (-5 5
Z

v (3P Sogz . )

with the Wilson line

2z
Wa (‘ 2’ 5) |z°:0,a:6L

3
IPCXP<—igS / 23 dy*A’ (0, OL,y3)>- 9)

2

In this case, we write the 4-momentum of the hadron as
P* = (P°,0,,P?), and the spin vector as

- P~ P
= (S0 3= (21— —). 1
St =(8",8.,8) (lM’Sl’/IM> (10)

The quasi-PDFs g, o(x) and h; (x) are defined accord-
ing to

ic'ys i .
ol 7 = 1, 5y hy o(x: PP,
(11)

where 6y = /1 + M?/P3” so that P = §,P3. The factor
0p in the above equations is needed for getting the same
lowest moment of the quasi-PDFs and the corresponding
light-cone PDFs [67]. Note that one can choose to work
with the gamma matrix y%s for g; o(x), and ic”ys for
hy o(x) [67]. The conclusions of our present work are not
affected by these alternative choices. The quasi-PDFs
gr.o(x) and hy o(x) are defined as

3
d% 7 =280 g1 o(x; P%),

sl _ M : ) _ M :
q’thS = ESIJ_QT,Q(X’ P?), <I>£'f 7l :ﬁfth,Q(X, P?),

(12)

where, x = k*/P3. In contrast to the light-cone PDFs,
quasi-PDFs have support in the region —co < x < 0. (The
variable x for the quasi-PDFs should not be confused with
the momentum fraction for light-cone PDFs.) Note that the
quasi-PDFs have an explicit dependence on P3.

B. BC-type sum rules

The local axial current and tensor current define the axial
charge g, and the tensor charge gr, respectively, through

2M St g, = (P, S|p(0)r*ysw(0)
24P — $P¥) g7 = (P Sl (0)io™ sy (0)

P.S),
P.S).  (13)

These two equations are a consequence of Lorentz invari-
ance. It is now straightforward to show that

I ]
1 [ dxg(5) = 557 (P S O)r 75w 0)1P.S) = A
M 1 Ny
prSu [ dxgr(x) =5 (P.S[p(0)rysw(0)[P.S)

M .

which leads to

For convenience of notation, throughout our work we will be
using (P*)? - P3.
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k| p—k M|
M‘ ‘
(1a) (1b) (

One-loop real diagrams contributing to the light-cone PDFs and the quasi-PDFs in the QTM.

FIG. 1.

[asaw= [aram =g 03)

Equation (15) is known as the BC sum rule [6]. Since,
according to Eq. (13), the axial charge appears for both
longitudinal and transverse polarization, the BC sum rule
can be considered a consequence of rotational invariance.
For the chiral-odd functions /4, and h; we get

. 1 N
i [[av () = 3 (PSP sy O)|P.5)

= SilgT’
M I L
Ffl dx hy(x) = m‘ﬁ(P,Sh//(O)w rsw(0)[P.S)

M

which leads to

/dxhl(x) :/dth(x) = gr. (17)

Equation (17) is known as the h-sum rule [7,8].
A corresponding analysis for the quasi-PDFs readily
provides the sum rules

/dxgl,Q(x;P3) =/dng,Q(x;P3) = a»
/dxhl,Q(x;P3) = /dth_Q(x;P3) = gy, (18)

that is, the BC-type sum rules hold for quasi-PDFs as
well—see also the corresponding brief discussion in
Ref. [63]. The lowest moments of quasi-PDFs are P3
independent, and they agree with those for the correspond-
ing light-cone PDFs. This outcome is in line with a model-
independent calculation of moments for the twist-2 PDFs
and twist-2 generalized parton distributions (GPDs) [67].

III. ANALYTICAL RESULTS FOR THE LIGHT-
CONE PDFS AND THE BC-TYPE SUM RULES

This section focuses on the calculation of the sum rules
for the light-cone PDFs (g,(x), gr(x)) and (h;(x), hy (x)).
Explicit calculations to one-loop order are provided in two
models: the QTM and the YM. We use three different
schemes to regulate the infrared (IR) divergences: nonzero

T

1c)

gluon mass m, # 0, nonzero quark mass m, # 0, and
dimensional regularization. For the ultraviolet divergences,
we employ two schemes: DR and cutoff. Since our
calculations are at a partonic level, hereafter we will use
p as the momentum label for the target in both models.

A. Results in quark target model

Calculations within QTM can in principle be done in any
gauge. Here, we work in the Feynman gauge for which the
real and virtual diagrams have been shown in Fig. 1 and
Fig. 2, respectively.

1. BC sum rule

We start with the calculation of the real diagrams for
g1 (x). For the diagram in Fig. 1(a), we obtain the following
general expression, before the k| integration, in terms of
both m, # 0’ and m, # 0:

2 2¢ n—2
(1), _ _gsCF,u 1 — / d""ky
9 (x) o ( X) (2].[)11—2

—(1=e)ki + (1 —e)(1 + x*)m? + 2exm}
X .
(K3 + (1 = x)*m3 + xm3)?

(19)

Here, g, is the QCD coupling constant, Cr = (N2—1)/2N,
is the color factor and n =4 — 2¢. In Eq. (19), we have
applied DR to the transverse momentum integral in order to
regulate the UV divergences, and IR divergences present in
the case of working with zero partonic masses." For the UV
divergences, one must satisfy the condition € — eyy > 0
(and the corresponding subtraction scale is y — uyy > 0).
For the IR divergences, one must ensure the condition

*It is known that a nonzero gluon mass in QCD violates gauge
invariance. However, the calculations in this work do not involve
a gluon self-interaction and, therefore, are like QED treatments
(modulo a color factor). Generally, in QED a nonzero photon
mass can be used to isolate IR singularities. This feature is
sufficient for the purpose of our study.

*We have used Kreimer’s prescription for the treatment of y5 in
n dimensions, that is, before solving for the traces, we have
anticommuted the y5’s and used (y5)?> = 1 [68]. We did not have
to use any other property of ys in n dimensions. In particular, we
did not have to evaluate expressions such as Tr(y*y*y%y’ys). We
therefore believe that our conclusions are unaffected by the
choice of scheme for the treatment of ys in dimensional
regularization.
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€ = er < 0 (and u — pr > 0). For the analytical check of
the sum rules, we will not be working with the general
expression provided in Eq. (19). Rather, for the sake of
simplicity, we will be invoking different IR schemes.

|

However, for the numerical check of the sum rules, we will
recourse to the expression in Eq. (19). After regulating the
UV divergences in the DR scheme, we obtain the following
results for g; (x) with three different IR regulators:

€uv a, 0
o V)| = 52 (1 =) (Puy +Infi - 2).

m, 2n
a la € a 2 2
g(ll )(x)|€UV — gg )()C) ’:qv = JZiF (1 - )C) (PUV + ln(l—ﬂx%mé -2 - (%i—x)z)’ (20)
. € 2
00 =5 (1= x) (Poy = P+ i),
€IR IR
where
PUV/IR = +1n4ﬂ'—}’E.
€UV/IR

On the other hand, if a cutoff is applied on the &k, integral in Eq. (19), we get

Auv

9" (x)

la
i (x)[Ao =

with m, # 0 and m, # 0, respectively. We observe that the
coefficient of the UV poles, be it in the DR or in the cutoff
scheme, are exactly the same. However, the finite factors
are different in the two schemes. We will return to this point
later towards the end of this section.

It is straightforward to calculate the contribution of the
diagram in Fig. 1(b) to g;(x). We obtain the following
results when DR is used for the UV:

9(11b) ()| =t (PUV +111”L\§),

m, 2r 1—x xmyg

1b cuv aCF x IZJV
g§1b>(x)|€UV: 9(1 )(x) =l E(PUV"'lnu—ﬂxﬁ)’

m, my
(1b) €W _ aCp x My
g (xX)| =50 7)UV—PIR‘HHK ,

(22)

while in the cutoff scheme we find

(2a) (2b

aCr (] —@(1@%— 1),
A 1422 @)
UV, X~
(1=x) <ln(1—x)2mg —1- (1—x)2)’
o0 = e (ndy ),
g1 ()P = ’ (23)

Ay a.C A?
X ==L (In—%—).
m, 2 1-x (1=x)*mg

The diagram in Fig. 1(c) gives the same result as that of
Fig. 1(b). This outcome is due to the relevant trace algebra.
In fact, this pattern continues for all the other PDFs. The
diagram in Fig. 1(d) does not contribute to the light-cone
PDFs because the result is proportional to the square of the
unit light-cone vector [64].

We now proceed to the calculation of the virtual
diagrams. All those diagrams exhibit the factor §(1 — x)
which we include below when summing up the terms. The
contribution of the quark self-energy diagram, as shown in
Fig. 2(a), does not depend on the type of PDF under
discussion. In Ref. [64], we provided the results for this
diagram when DR was used for the UV. We quote the
results here for the sake of completeness,

ST

FIG. 2. One-loop virtual diagrams contributing to the light-cone PDFs and the quasi-PDFs in the QTM. The Hermitian conjugate

diagrams of (a) and (d) are not shown.
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B = el vy (Poy + Ity - 1),

o m,
o= 5 € _q, 2
o = B = - (P ). @
0 € _a i
—)(:);’i) 6::/ :CF fO dyy (PUV PIR + In I:;IJT;/)

We obtain the following results in the cutoff scheme:

9Z(p) AUv
9Z(p) Aoy = % |m,
oy d?);{)) Awv _ _a CF

The x integrals of the contributions from the diagrams
in Figs. 2(b) and 2(c) are exactly the same as Figs. 1(b) and
1(c) except for an overall sign, which is due to the reversed
direction for the momentum flow in the Wilson line. Just
like Fig. 1(d), the contribution from Fig. 2(d) drops out.
We now turn our attention to gy(x). In tje case of the
twist-3 PDFs, the result from Fig. 1(a) can be split into two
distinct parts: a singular part and a canonical part [64],

la la la
gt (x) = g (x) + gy (1), (26)

where the singular parts are related to the zero-mode 5(x)
contributions. The general expressions for the singular and
canonical parts, before the k| integration, are

g%CFﬂze dn—ZkJ_ €
- 5(x) n—2 (2 2y
2r (27)"=* (k7 + my)
g(la) (x) — g%CFﬂze / dn—ZkJ_
2n (27)"=2
xk3 = (1 = x*)mZ + xmj + (1 — x)m;
(K3 + (1 = x)*m3 + xm3)? '

(27)

The origin of the delta function is in the integral
[10,11,64,65,69]

/dk_( 1 _ iz 5(x)‘ (28)

K> —m2+ie)* ki +m) pt

After the k, integrals are carried out, for my # 0, one
obtains the following two expressions for the singular
parts [64]:

la €uv a.Cr
(12 oW, = =56,
IO =9 0 e (29)
91(s) (x) o 0.

-4 CF fo dy(
fo dy(

UV
yrg
A2

25
)In—8— —A) @)
—Y) S mE T 1)

|
As is evident from Eq. (28), the zero-mode contributions
originate exclusively from quark propagators. Therefore, to
regulate the associated IR divergence in the k| integral, one
is left with two options only: either work with m, # 0, or
apply DR. In other words, gluon mass never enters the
discussion of the zero-mode contributions, because of
which the associated IR divergence is left unguarded when
m, # 0. In Ref. [64], we suggested that one could in
principle keep working with m,, # O for the canonical part
and for all the other diagrams, provided one uses m, # 0
or a DR regulation for the zero-mode contributions.
(Nevertheless, strictly speaking one must conclude that
m, # 0 is an insufficient IR regulator for twist-3 PDFs. We
will return to this point below.) In the case of m, # 0, the
UV pole from the k| integral allows for a §(x) in g7. On the
other hand, when DR is applied for the IR, both UV and IR
poles allow for a §(x), but with opposite signs with respect
to one another, and hence the §(x) contribution drops out
[64]. For the canonical part, we get [64]

euv A C
mg 2

<x77UV + x1n MUV
m?2

g

+1-0). G0

with m,, # 0. The results for g;(x) with m, # 0 and DR for
the IR are [64]

la € la € la €
g )M = g )]+ g (0]
a,Crp a;,Crp
- 5(x) + o <X7DUV
2
HOv x*=2x-1
1 , 31
+xn(1—x)2 ; 1—x > (31
la € la € la €
g (@) = gh @ gpe [
IR IR IR
Cr
=0+% x(Pyy —Pr) +XIH'MUV (32)
2 Hir
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When a cutoff is used for the UV, the zero-mode con-
tribution drops out,

Auv

g =0, (33)

mgq

because of the overall proportionality to eyy. Therefore,
with m, # 0 the result for gr(x) reads

la Ayv 1 A 1 Ayv

g )™M = iy @™ + g @)

9

a,Cp A%JV
=0 - In—+ (1 - . 34
+ 2 <xnxm§+( *) (34)
Finally, with m, # 0, we get
Auy

Agy Agy
gt = gp O + g (x)

m,

(35)

Once again, we observe that the coefficient of the UV poles
are exactly the same in the two UV schemes. In contrast to
g1(x), the UV-finite pieces for gy(x) in the two UV
schemes exactly match.

For the diagram in Fig. 1(b), the results for g;(x) when
DR is used for the UV read [64],

(1b) ov __ a,Cr 14x iy
gy (x) = P PUV—HnW ,
g

b €

mg

O (Puv—wm"“)

€IR
(36)
while in the cutoff scheme we find
b AW, Cr14x A2
(1b) g(Tl )(x) mU 4C = (ln )
gr (x)[Mov = ' ) (37)

(1b) Aoy _ aCp 1+x ( Aby )
X == In ,
( ) m, 4r (1-x)*m;

gr

for the two IR regulators. Just as in the case of g;(x), the
diagram in Fig. 1(c) gives the same result as that of
Fig. 1(b), except for an overall sign. Moreover, the x integrals
of the contributions from Figs. 1(b) and 1(c) provide the very
same results as diagrams 2(b) and 2(c), except for an overall
sign. In the case of the cutoff scheme, our results for the UV-
divergent parts of g;(x) (h;(x)) and gy(x) (hy(x)) are in
agreement with the results of Refs. [9,10], where similar
calculations were provided in the light-cone gauge.’

’In Ref. [9], which employed a light-front Hamiltonian
approach, a 5(x) term was missed for A; (x).

a,Cr Ay x?=2x-1
1 .
2r (xn(l—x)2m§+ 1 —x

We are now in a position to check the BC sum rule. The
total result for g, (x) through one loop reads

= 5(1-x) + ¢ () + 6" ) + ' ()
ox c
+5(1-x) (—a;p )y g 4 g2 )>, (38)

g1(x)

where the first term represents the (trivial) tree-level
contribution. Upon taking the x integral of the above
equation, we see that Fig. 1(b) [Fig. 1(c)] cancels the
contribution from Fig. 2(b) [Fig. 2(c)], such that

Al dxg (x) =1+ Al dxg(lla>(x) +6§§9p)‘ (39)

[To understand the aforementioned point on cancellation,
see the paragraphs after the Eqgs. (23) and (25).] This
argument holds true for g;(x) as well. Since the contribu-
tion of the quark self-energy diagram is the same for both
g1(x) and gr(x), we immediately see that, as far as the
check of the sum rules are concerned, it suffices to consider
the contribution from Fig. 1(a). In the following sections we
will therefore provide the results for Fig. 1(a) only.

We begin our analysis in the instance that one does DR
for the UV. We find that in the case of m, # 0, the BC sum
rule is satisfied provided one handles the IR divergence
related to the zero-mode contributions with m, # 0.
Specifically, we have

1 C 1
(1a) eey  Cp Huv
d = In——-
/0 xg) (%) ” s ( Pyy+In P 4>
- 1d (1a) €uv d €Uv
= A ng(s)(JC) ” A xQT (x) "
(40)

On the other hand, if one applies DR for the IR of the zero-
mode contribution, the BC sum rule is violated. Put
differently, the recipe of using different IR regulators for
the canonical and the singular terms in twist-3 PDFs, in
general, fails, which reemphasizes that m, # 0 for twist-3
PDFs is problematic. (In fact, this issue is more severe for
hy (x) as we discuss in the next section.) In previous studies
[64,65] we had already mentioned that m, # O is prob-
lematic for the x-dependent results of the twist-3 PDFs. We
did not, however, abandon a nonzero gluon mass, but rather
proposed to work with either m, or DR for the singular
terms, as already mentioned above. This recipe worked
well for the calculation of matching coefficients,” in the
sense that these coefficients did not show a regulator

6“Matching” is a perturbative procedure that connects the
quasi-PDFs to the light-cone PDFs. We refer to the works in
Refs. [16,64—66,70-74] for more details on matching.
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dependence. However, in the context of the sum rules, we
observe that this recipe fails.
For my # 0, we find

1
PR

cov _ C
e F( Poy -+t 4 2 +1>
m, 2n my, p

7 a1 | d (1a
A ng(S)(X) " XI7(c) (x)

q
where f <0 denotes the x=1 pole present in
diagram 1(a).” Clearly, one has to include the contribution
from the &(x) term in order to satisfy the BC sum rule
[10,11]. When working with DR for the IR, we find that the
BC sum rule is satisfied, although, as mentioned before, the
8(x) term drops out from gz (x),

EUv

mq

(41)

1 . Cr (1 1
(1a) €uv a,Cr Huv
dx x =——|(z(Pyy —Pr) +zn
A 9 ( )em o <2( uv R) + ) /412R>
1 €]
— [ sty (42)

We note in passing that our results for g; and g7 in the QTM
allow us to make a comparison to the calculation of the
structure function g5%. for deep-inelastic scattering off a
quark target [75,76]. Specifically, the UV-divergent terms
can be compared to terms in g%‘f‘ (x, Q%) that are propor-
tional to In(Q?/m}), and we find complete agreement.
Furthermore, we refer to Appendix for a subtle point about
DR for IR when (e, eyy) are held finite.

In the cutoff scheme, one can basically read off from the
results that the UV divergent parts of g;(x) and g(x)
satisfy the BC sum rule—compare also Refs. [9,10].
However, for the first time, we observe a violation of
the BC sum rule for finite terms when using a cutoff
regulator. For m, # 0, we find

1 A a,C A 1
d (1a) wo_ YsHF uv | , 43
A 9 () m, 2r i m, + 4 ( )
1 A a,C A 1 1
d (1a) wo_ Y F uov - - , 44
/) xgr - (x) m, 2r n m, +4+2 (44)

while for m, # 0, we find

1 v aCr/ Aw 2 3
/ dxggla) (x) Aoy _ Gk <1 Ny cy ) (45)
0

mgy 2 ﬁ 2
"Note that Eq. (31) has a term ~1/1 — x. In order to carry out
its integral, we make the replacement 1/1 —x — 1/(1 — x)!*%,
with f < 0, leading to singularities proportional to 1/4. Such a
situation appears only for m, # 0. The singularities get cancelled
when combining the diagrams in Figs. 1(a) and 2(a).

1
| axd

It is worthwhile to pause and contemplate on why is there a
difference in the finite terms for the two UV schemes and,
in particular, why is there a violation in the cutoff scheme?
The underlying reason is rather simple. For cutoff and DR
to give the same result, one must have the same prefactor in
front of the UV-divergent integrals. If not, then the finite
terms will depend on scheme. For example, consider the

integrals8
o "2k, k2 1 U
2¢e 1— P, +1 uv _ >’
1= [ G g (P g
) @

/Auvd k| ki zi In A%IV
o (2r)2 (K3 +0%)? 4n 0

with 0% > 0. We see that the UV-divergent factors in the
two schemes coincide. The difference in the finite factor
can be attributed to an extra (—¢) term in DR. This is
exactly the reason why we find different finite factors in the
results for g(l]a) (x) in the two UV schemes, whereas the
result for the canonical part of g(x) remains unchanged.
We now pose a hypothetical situation: what if one con-
sistently carries out the algebra of the Dirac matrices in four
dimensions, and then switches on DR or cutoff only at the
time of carrying out the k| integrals? It is straightforward to
check that this approach leads to the same final result in the
two UV schemes, including the finite factors. But switching
on DR right from the start, that is, keeping properly the
factors in e, respects rotational invariance which underlies
the BC sum rule. This explains why the sum rule holds for
DR and fails for a cutoff.

Could we have avoided such a caveat with cutoff
schemes? If our goal was to “only” calculate the
moments/integrals of the PDFs, we could have right from
the start applied a cutoff to all four components of k, in the
same spirit as one does in textbooks on quantum field
theory. We will outline such an analysis in the context of the
h-sum rule in the next section. (The nontrivialities that stem
from such an analysis can be appreciated more in the case
of h-sum rule, which is the reason why we choose to
highlight this case. The qualitative outcome of this study is
however the same for both sum rules.)

Ayy asCF AUV 2 3 1
= In— 46

2. h-sum rule

We first take up the calculations for £ (x). The diagram
in Fig. 1(a) contributes to h;(x) as

¥By “divergent terms” in the two schemes, we mean Pyy +
ln_ufjv /Q? in DR, which translates to In A2y /Q? for a cutoff. By
“finite terms” we mean terms other than the aforementioned ones.
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h(la) (.X) _ _g%CF:uZS (1 _ X)/ dn_sz_ ( )k + 6(1 + x2)m?] + 2(1 B €>xm§ (48)
! 2r (27)"=2 (K3 + (1 = x)?m2 + xm3)? '

The final results in the DR scheme are

W@l = § Y @) = -5 (), (49)

1—x

and in the cutoff scheme we get
(1) mw)" =0
hy ()| Aov = ' (50)
la AUV _a,Cp
1) =~ ().

mg

The above results suggest that h(lm (x) is UV finite.
We now turn to &, (x). Before the k| integration is carried out, we find for the singular and canonical parts

h(la) (X) — _ggCF:uZE ( )/ dn_zki l-e
27 2r)" 2 (k3 +m2)’

1) () _ ECo [ Ay o+ (1=26)(1 = = (L= g b (=)=
L(c) x) = n—2 2 — 2,2 2 : )
2z (27) (k1 + (1 =x)"my + xmy)
For m, # 0, the singular part has two results [65]
€yy a 2
I 0| = =5 5(x) (Pyy + Iny - 1),
B ()] v = " B (52)
B )] = = 5226(x) (Poy = P+ ).
€IR IR
The result for the canonical part with m, # 0 is [65]
(1), \|eov  aCp poy | (1=x)(1 -2x)
hy o) (x) w2z <PUV +1In xm? t—) (53)
The results with m, # 0 and DR for the IR are [65]
la € la fuv la €
h M @) = g )|+ Ry [
q mq q
_a sCr ﬂUV a;Cr /4[2}\/ 2
= S 1 1 - -2(1-— ,
2 () (PUV T mq + 2w Puov + n(l —x)sz] 1—x ( %)
1 €uv 1 €uv €uv
B 0| = B ()| ()]
€IR €IR €IR
C C
—-% Fé(x) (PUV Pr + 1UHUV) + &or <PUV Pr + ln'qu) (54)
:uIR 2r ﬂIR

Note that the prefactors of the §(x) terms have an IR pole. In the cutoff scheme, the full result for A, (x) with m, # 0 is
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h(Lla) (x) AUV — h(la) <x>

m, L(s)

a,Cr A%JV
= 5 oy
2r (x) ( ! my

o,Cr Ay 1-x
1 . 55
T (n 2T (55)

XNty

Ayy Ayy

1
+ hi(i)) (x)

my

With my # 0, we get

a AUV a
)1 = il (x)

m, (s

AUV AUV

(1a)

+ e (%)
)
m2

q

a,Cp Ay 2
1 - . (56
+ 2n <n(1—x)2mé 1 —x (56)

We are now ready to check the i-sum rule. The h-sum
rule is violated for m, # 0, in both DR and cutoff schemes,
because the IR poles associated with the §(x) terms in
hy (x) contribute either In(m,) or 1/er, both of which are
clearly absent in 4, (x). For m, # 0, and with DR for the

UV, we find,
1 Cr (2
(1a) eov _ OLF
dxh = —+2
/ *h (X) mg 2r </B+ >

0
i
_ (1a)
—A dxhy) (x)

m m

q

— a0

q

2w

€uv
bl
my

(57)

€uv ] (1a)
+ ; dxhy ) (x)

my

where f# denotes the x = 1 pole present in diagram 1(a).
Therefore, the 4-sum rule holds provided one takes the &(x)
contribution into account. Similar studies in the past have
also advanced the necessity of including the zero-mode
contributions for the validity of the sum rules [10,11,77].
It is interesting to discuss the above result. Recall that

h(]]a) (x) is UV finite. In this context, we note that the

integrals of h(llﬂ) (x) and hila) (x) agree because the UV
poles from the (integral of the) singular and the canonical
terms exactly cancel. Also, the In(uyy/m,) terms, present

in hl(dl Y (x), cancel between these two terms. It is straight-
forward to verify that the s-sum rule holds when one does
DR for both UV and IR:

1
/ dxhgla) (x)

0

€Uv_0

1
_ (1a)
—A dthg)(x)

€IR

€uv

€IR €IR

€uy ! (1a)
+ [ dxhy (x)
0
(58)

We now proceed to check the validity of the s-sum rule
in the cutoff scheme. It is remarkable that the #-sum rule

continues to hold even in the cutoff scheme when one
works with m, # 0:

1 Aoy ,Crp (2
h(la) o _YsHF (< o)
/dx 1 (%) w " 2m /}—i—

0
1
— (1a)
—A dthé)(x)

Auv

1
fovy / dxh!?) (x)
my 0 mg

(59)

Let us now examine why the z-sum rule continues to hold
in the cutoff scheme, since the BC sum rule does not and
since both sum rules are based on rotational invariance.
First of all, note that, just as in the case of DR, the
In(Ayy/m,) terms, present in h(lel> (x), cancel between
the singular and the canonical terms. Now, notice that the
“extra” finite factors of §(x) and —2(1 — x) present in the
DR scheme [see the first expression in Eq. (54), and
compare with Eq. (56)] integrate to zero. Therefore, the
absence of these terms in the cutoff scheme does not cause
an issue for the #-sum rule. We therefore conclude that the
h-sum rule accidentally holds in the QTM for the cutoff
scheme. This conclusion is also supported by the fact that
the h-sum rule is violated in the YM for a cutoff, as we
discuss below in more detail.

We now want to discuss the application of DR and cutoff
to all components of k, and consequently its impact on sum
rules. We first go through the basic steps for the DR

scheme. Our starting point for the calculation of hgla) is

dk+ i la
/p—+51h<1 (k)

GG [ dk 1 2(1-y)
- 4p+ /(2”);1/; dy (k2_Q2)3Nhl(k)7 (60)

where

Ny (k) = 4(n — 4)51 p &2 = 8(n~ )5 K (k- p)
—8(n—4)pTk (k-s)+4(n —4)sj_p+m§(y2 -1)
+8s) ptmg((n—=2)y—(n—4)y?), (61)

Q% = ymj + (1 — y)*mZ, and y is the Feynman parameter.
By using

/ dk Kk <in (7[)’7/2F(2—n/2)>gw’

e g~ 4 Gy (7

(62)

and

d"k 1 i (m)"?T(3-n/2)
ey e @
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we find that the first three terms in N (k) cancel one
another, and the fourth term is proportional to eyy.
Therefore, the final result is given entirely by the last term
in N nl (k)

p+ (mg,my) 2w 0 Q

(64)

By taking the limits m, — 0 or m;, — 0, we get back our
results with DR applied to the transverse dimensions. Our

starting point for h(Lla) is

Akt md (1.
p—+p—q+ hy' (k")
: 2 2¢ n
igsCrp dk [t 2(1-y)
= 4p+ /(2”),1/)' dy (k2 _ Q2)3 N/’lL(k)’ (65)

where

Ny (k) = 4(n—4)Am k* + 8(n —4)s™k* (k- p)
—8(n—4)stk (k- p)—8(n—4)p~k*(k-s)
+8(n—4)pTk(k-s)+8(n—2)Am)y
—4(n —4)Am3 (1 + y?). (66)

The second, third, fourth, and the fifth terms in N, (k)
add up to cancel exactly the contribution from the
first term in N, (k). The seventh term is proportional
to eyy, and it is the sixth term only that contributes

to h’L (X) ’

dk* (1a) €uv asCF ! 2y<1 _y)mé
/ p_+hL (k%) oy~ 2m A dyigz :

(67)

This means that the h-sum rule is satisfied. A few
comments are in order: First, there is no need for a
separate discussion of the zero modes in this approach.
Since the sum rule is satisfied, the contribution of the
zero modes is automatically included in such an analysis.
Second, for m, # 0, it is clear from Eq. (67) that this
approach does not give the same final result for [/,
when compared to the case where we first extract the x
dependence and then calculate the moment; but, f hy
agrees. Third, in this approach, we observe that there is
no problem in using a nonzero gluon mass as an IR
regulator. This is different from the scenario when we
first extract the x-dependent results, and then calculate
their moments.

We now turn to the cutoff scheme. To evaluate the
integrals, we first perform a Wick rotation, which allows us

to carry out the integral in Euclidean space instead of
Minkowski space. By using

IR : A2
[Graar-me (ng-l)
&1 i1
/ Qo) (- 02 3222 QY (69)

dk k(k-a) a'[ i Ay
/ ) (E-0) 4 [327:2 <2ln 0 _3”

1
kY — Zgﬂl/kz, a = (p’ S), (70)
we find
dk* v Cpr 1 29(1 = y)m?
/—+h§la)(k+) My F/ dy ¥( 2y>mq,
p (mg.my) 2 0 Q
(71)
dk* (1a) Ayv
= [ —h; (k" 72
/p+ o >(mg,mq> (72)

Therefore, we see that the h-sum rule is satisfied when
cutoff is applied to all four components of k. This result is
not surprising, because obviously without a bias for any
specific direction, the rotational invariance is no longer
broken. Once again, with a cutoff, m, # 0 does not pose an
issue as an IR regulator.

B. Results in Yukawa model

The YM describes the pointlike interaction between
fermions and a scalar field. The diagrams in Figs. 1(a)
and 2(a), with the obvious replacement of the gluon
propagator by the propagator of the scalar, are the only
ones that contribute to the PDFs in this model.

1. BC sum rule

Figure 1(a) contributes to g;(x) as

A7) = D21 -

" / d" %k, (k] 4 (14 x)*m3) 73)
(22)"72 (K + (1 = x)?mg + xm3)?

where gy is the counterpart of g,, and m; is the mass of the
scalar particle. Applying DR for the UV, we obtain the
following results for g;(x) in three different IR schemes:
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A @[ = = (-2 (Poy + 0y - 1),
a 1 € a ZV x2
ggl ) (x)|eov = g§ Y (x) ”‘;V =-9(1-x) (PUV +ln(]_";)2m3 _2((11;)2))7 (74)
€yy a 12
ggla)(x) Y=g (1-) (PUV —Pr + ln%),
€IR IR

where ay is the counterpart of a,. Applying a cutoff for the UV, we get

o)™ = 2 (1) (n 1)),
(1) (A s )
91 (X)l W= 1 Apy A2 21422 (75)
o0 = =52 (1 =) (in e — 2.

For the sake of completeness, we mention the results for the fermion self-energy diagram in YM. In DR, we obtain

B = g [ ay(yPuv +yinly).
P20 o = 3 B =y (1= 5)Poy + (1= )i ). 76)
85)—55) :: == Jo dyy (PUV - Pr + ln’%),
while for a cutoff we find
[ L - -Balm) -
0 B o (- )b ).

q

Turning now to gy(x) in YM, we can once again split the contribution from Fig. 1(a) into a singular and a canonical part.
As a first step, one obtains the following expressions for the singular and canonical parts of g, (x):

2,2 n—2
(1a) gy "k, 1
:—5
916 = 32 209 / Qo) 2 (K +m))’

(13)( ) = g%(,uzg/ A2k, 2k3 — (1 —x)lk—_ie— 2(1 = x®)m2 + (1 + x)m?
¥ = 2(2n) ) (2z)"2 (K3 + (1 = x)*m2 + xm?)? '

(78)

Working with m # 0 leads to the following two results for the singular parts:

x| = X 5(x) (PUV + ln”%”),

la euy — mq mlzl
Iy ()| = 2 (79)
X = Z—Y(S(X) (PUV - PIR + In ”%) .

d HiR

€IR

2
oy Ay uogy 1—x
0 _—E<(1+x)PUV+(1+x)lnxm%+ - ) (80)

Finally, with m, # 0 and DR for the IR, we find
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€uv €uv

+9g

q

€uv

@)

1
9r 0y

T(s)

(1a)
T(c)

(x)

m

q q

(x)
ﬂ%v

)

ay

4

ay
—0
4 (x)

- 2

(PUV +In 2

€uv €uv

_ (1) +g

(1a)
= 97)

(x) T(c) (x)

€IR €IR

2
Huov

2
Hir

Qy

= Eé(x) (PUV —Pr +1In

For the singular part in the cutoff scheme, we find

With m, # 0, we get

We now proceed to check whether or not the BC sum rule
holds in the YM. First of all, notice that, in contrast to the
QTM, the zero-mode contributions survive in the YM. Also,
different from the QTM, the prefactors of these contributions
are IR divergent in the two UV schemes. A consequence of
this is that there is a violation of the BC sum rule when using
mg # 0 in both UV schemes. Furthermore, working with
mg # 0 leads to 1/x poles as x — 0 in the canonical part of
gr(x). Hence, the lowest moment of g7 (x) is not defined in
the YM with m, # 0. In fact, divergent terms like 1/x are
typically observed for m;,, # 0.In the QTM, these terms can
be seen in the canonical parts of /2 (x) [65]. When either m,,
or DR s used for the IR, it is straightforward to verify that the
BC sum rule holds when DR is applied for the UV and when
the zero-mode contributions are taken into account.
Specifically, we find

1
/ dxg
0

1
2

(1a)

€uv ay
1 -

() 47

my

)

(

a A
—ﬁ((l+x)lnx—:1\2’+(l—x)+

Ky
(1—x)*m

4

+X>PUv+(1 +X)1Il 3
s l1—x

(81)

).

Ay

2
4”<1 +x><7)UV - Pr ‘HH'MLZ\/)-

Hir

(82)

(83)

2 1—x

).

(85)

1

71'( 2
1
/dxg
0

Wi

(Puv—Pr) 22

3

€yv 1 a
+ /) dxuq(Tl(C))

R

(1a) o
T(s)

(x)

bl

(x)

(87)

where f denotes the pole at x = 1 present in diagram 1(a).

When cutoff is switched on for the UV, the BC sum
rule continues to hold for the UV divergent parts of ¢, (x)
and g7(x). Note that the finite factors for g, (x) in the two
UV schemes are exactly the same. On the other hand,
they change for the canonical part of g;(x). The source
of this change is the scheme dependence of the prefactor
for the UV divergent term in Eq. (78) (see the second
term in the canonical part). Due to the absence of a
similar “‘compensating” change elsewhere in Eq. (78), the
BC sum rule is violated for the finite parts. With m, # 0,
we find,
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1 (1a) \ 1 (1a) Auv 1 (1a) Aupv
| dxgy ' (x)] = | dxgro(¥)|  + ; dx g (x)
:a_Y(_l AUV_E_Z_E) (89)
4z m, p 2 2

q

Most of the above findings are in agreement with what
we see in the QTM. The case of m, # 0 is however
distinct for the two models. The difference can be traced
back to the IR finiteness of the prefactors of the zero-
mode terms in QTM.

2. h-sum rule

Figure 1(a) contributes to A;(x) as
2 ,2e n—2
(1a) gyH d""ky
h - -
v =50 1Y / (27)"2
(1 =2k + (1 +x)*mg

X . 90
(k2l+(1_ ) mq+xms)2 ( )
Using DR for the k| integrals, we obtain
Y[ = =1 -x),
W (e = 4 Al ) ;”V:z—;<“1t?2—<1—x>), 1)
K" (x)| " =o0.
€IR
Using a cutoff for the k| integrals, we find
(12 CRCIE
Ry () = (92)
1 Ayv a: 14x)2
m | = g ().

q

Just as in the QTM, the contribution from the diagram in
Fig. 1(a) to h;(x) is UV finite.

Moving on to h;(x), we obtain the following general
expressions for the singular and canonical parts:

) 2 2 dn—2k 1
a1 oy — s / L ’
19 =200)°Y) | Gay (@ 5 )
h(la) (x) _ g2 1‘426 dn_zkl
L(c) 2( ) (27[)"_2

2xk% = 2(1 = x*)mZ + (1 + x)m?
(k2 + (1 - x)2m(2] + xm?)?

(93)

As discussed, the singular part for m, # 0 has two results,

la W ay 2y
" h(us;(x) = mo) (PUV +1n"m—§),
h euv — q
L(s) (x)] pl12) v _ayg P P | Wy
L(s)(x) o =z (x)(Puy —Pr+ HK .

(94)
With m, # 0, we find for the canonical part

(I-x)(1 +2x))'

2
= —a—Y <2XPUV + 2.Xll'lluU\; +
4r X

mg s

(95)

With m, # 0 and DR for the IR, the full results for /; (x)
read

€uv

1 €uv 1 €yv
L TR ICo]

mg

_ oy /"UV _ay
= in 5(x) (PUV + In mq > in <2X7)UV
2(—x* +2x + 1))

2
+ 2x1In Hov
1—x

(1—x)*m;

(96)

héla)(x) fov _ h(la)( ) €uv

e L(s)

€UV+h(())( )

€IR

PIR + In ﬂUV)
ﬂIR
(97)

o) (Pov
——2x(

—Pg+In MUV)
/"IR

The full result for /; (x) in the cutoff scheme with m # 0 is

m @[ = a0

mg

mg

1—x)(1+2
L L=9{+20) x)). (98)
X
Finally, with m, # 0 we find
Ayy Ayy Ayy
la la la
Ul =R R ()
ay A%JV Ay A%JV
=—6(x)In— —— (2 In———
4r my  4n (1—x)*mg
2(=x*+2x+1)
- 99
1—x ) (99)

We now turn to the calculation of the 4-sum rule. We find
that, irrespective of the choice of the UV scheme, the §(x)
terms in /1 (x) are accompanied by prefactors that exhibit IR
divergence. The h-sum rule is therefore not valid when
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working with m # 0. Furthermore, with m # 0, there are
terms like 1/x, which make the x integrals diverge anyway.
These complications appear in the QTM as well. When m,,
or DR is employed for the IR, the #-sum rule holds provided
one applies DR for the UV. The corresponding results are

1 €uv 4
(1a) Ay (T
/0 dxh; ™ (x) ——47[( 5 4)

1
la
—[) dxhé(s)) (x)

€uv

’

€uv 1 (1a)
N + ; dxhy ) (x) i

(100)

where f reflects the x = 1 pole, and

1
/ dxh(lla) (x)

0

€uv

=0

1
— (1a)
= A dxhy g (x)

€IR

€uv

€uv 1 (1a)
+ | dxhy(x)
0

€IR

€IR

(101)

As is evident from the above results, it is mandatory to
include the zero-mode contribution for the validity of the
h-sumrule. In fact, these zero-mode contributions cancel the
UV poles and the In(m,) terms present in the canonical

terms, such that | dxh{" (x) is UV finite.

Perhaps the most interesting finding in the Yukawa
model is that the UV-finite parts in the cutoff scheme
violate the A-sum rule. With m, # 0, we find

1 Ayy 4 7
(1a) O!Y( )
dxh =—|(—=—=],
A i () 4z \ p 2

mg

(102)

1 (1a) Ayy 1 (1a) Auv 1 (1a) Ayy
A dxh; ™ (x) :Adth(s>(x) +/() dxhy ) (x)
ay/ 4 7 1)
=Y (2L o . 1
47:( B2 2 (103)

CD[F] (X; p3) _ _ ig?CF/ﬂe / dn_zkj_ / K0 ﬁ(p)(y”(k + mq)r(k + mq)yﬂ)u(p) .

2(27)* ) (2x)"2

The first term in the expression for 4 (x) [see Eq. (90)]
makes all the difference. Clearly, this is the term that gives
rise to a different finite factor in the cutoff scheme. On the
other hand, the result for h;(x) remains unchanged.
Obviously, in such a situation the sum rule could not have
been valid simultaneously in the two UV schemes, and we
indeed find a violation in the cutoff scheme. Let us mention
that by performing calculations in the YM, we have a
strong support to the picture that the i-sum rule is by no
means “superior” to the BC sum rule. The fact that the
h-sum rule holds in QTM can therefore be regarded as an
“accident.” Generally, our work shows that, contrary to
what is frequently assumed in the literature, it is not
sufficient to check the sum rules for only the UV-divergent
parts of the perturbative corrections. In fact, similar to what
we are reporting here, there may well exist other cases of
violation of relations that are based on Lorentz invariance
in schemes that break rotational invariance. We close this
section by mentioning that the sum rules hold in the YM if
the cutoff is applied in a rationally invariant manner. This
analysis can be preformed in exactly the same manner as
what we have shown in Sec. II A2. The (nontrivial)
observation of the sum rule holding with m, # 0 as pointed
out in the QTM, applies for YM as well.

IV. ANALYTICAL RESULTS FOR
THE QUASI-PDFS

This section provides analytical results for the quasi-
PDFs (g, (%), gr.o(x)) and (A o(x), by o(x)) in the QTM
and the YM. Once again, our focus will be on the diagram
in Fig. 1(a), which is sufficient for the check of the sum
rules—see Eq. (39) and the associated discussion.

A. Results in quark target, model

The correlator for the quasi-PDFs for Fig. 1(a) is
given by

The results for the quasi-PDFs can in general be cast in the form

qo(x: P?) = qqs) (x: P?) + qgo (x: p)

_Q%CF,MZG/ dn—ZkL N
2(2n)

(2ﬂ)n—2 q(s)

104
Drppr (164
~2C 2e dn—Zk N
_ ek / _g/dko 7). (105)
(2x) (27)" Dppr

Here, qq) is the singular term, which is relevant for g q(x) and i o(x) only, while g ) is the canonical term. The

numerators for the specific PDFs are
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2
Nore) = 5 {(1 = €)8p> (K*)* + 2k (emg — (1 = €)xp3) = (1 =€)y p* (k1 — x*p3 + mg)}, (106)
N ep’ (107)
g7 (s) (kzL +x2p§ +m3)3/2’
Nyrie) = 20 ((K°)? = x2p3 + m2 — em3), (108)
2 1
N = 5—0 {€5OP3(7<0)2 +2k°((1 = e)m%] - exp%) + €(1 - E) 50P3k2L + €byp’ (x2p§ + mtzz)}v (109)
(1-e)p’
Nirs) = , (110)
VTR P m)
Nire) = 2P ((K°)? = x*p3 + (=1 + 2e)k1 + mg — (1 — e)my), (111)
and the denominator is given as
Dyppr = (K> = m2 + ie)?((P — k)* — m2 + ie). (112)

In these expressions, 6y = /1 + m?, / p3. We perform the k° integral by means of contour integration. The k° poles in the
complex plane are given by

K, = k), =%\/x*p3 + ki +m] —ie, (113)

B = 60" £/ (1 =xPp3 + K+ m} e (114

Since the two quark propagators are identical, one has double poles arising from the quark lines. Choosing to close the
contour in the upper half plane, we pick up contributions from the (single) pole k3_ and the double pole k9_ = k9_. In the

specific case of g; q, the result after the k° integration reads

91.0(x; P’) = g%CFﬂze/ dn_Zk-lz [ 0 0 \2 ]\ggl (kgB) 2(1,0 0

2n (27)"= [(k3_ — Ky, ) (ks — ky_)*(k3_ — k3,)

., Ny () ) 2,1 (K))
(k(l)— - k(1)+)2(k(1)— - kg+)(k(1)— - kg—) (k(l)— - k(1)+)3(k(1)— - k(3)+)<k(1)— - kg—)

) Ny (k) ) Ny (k) s
(K. = kY PR — k8, )P (K = kS.) (K} — k)P (k) = kS, ) (K} — k5)?)

|
1 — d

where N|; = -5 N;. There is no need to carry out the k|
integral analytically. By keeping p° finite, we will be
evaluating the k, integral numerically using DR and a
cutoff. Note that the above form for the quasi-PDFs holds
true for any x. We want to mention at this point that for the
twist-2 light-cone PDFs one can use the cut-graph method,
which amounts to putting the gluon on-shell. However, this
is not the case for the quasi-PDFs. Although the first term in
the above equation corresponds exactly to the cut-graph
method, all of the other terms provide finite contribution to
the quasi-PDFs in all regions of x. Specifically, for the
twist-2 case, we pointed out that one cannot recover the

light-cone PDFs from quasi-PDFs for x < 0, even in the
limit p* — oo, if quasi-PDFs are calculated in the cut-graph
approach [78]. The problem with using the cut-graph
method is even more serious at twist-3. Calculation of
light-cone and quasi-PDFs in a cut-graph method excludes
the contribution from the zero modes, which by now we
know is crucial to satisfy the sum rules [10,77].

B. Results in Yukawa model

For quasi-PDFs in the YM, the general structure of the
singular term is

054027-16



BURKHARDT-COTTINGHAM-TYPE SUM RULES FOR LIGHT- ...

PHYS. REV. D 105, 054027 (2022)

(116)

2 .2 n—2
GyH A"k
Ry K

42z) | a2

while the canonical terms are given by Eqgs. (105) and (115),
but with an overall sign, and of course without the color
factors as well as the replacement of the coupling constant.
The numerators for the different PDFs are given by

3
p 2k
Ny = & {50(k0)2 T (xp3 —m3)

+50(—ki+x2p§+m,21)}, (117)
3
p
Nz = , (118)
9T (s) (kzL +x2p§ + m§)3/2
3 2
p k
Nyt = 2= (2my (K02 = 2mh +my—
q
—2m x*p} + 2m; — mqm%), (119)

3 0
p 2k
Npie) = 5 {50(k0)2 m (xp3 —m3)

1
+ (1 —1—_6)5018l + 8o(x*p3 + m%,)}, (120)

p3

Nupro = : 121
hL(s) (k3 + x*p3 +m2)3/? (121)
3
Ny = 2= 2mg(KO)? = 2m 2 p3 + 2m3 — mym?).
m
q
(122)

The caveats regarding working with cut-graph methods,
mentioned in the context of the QTM, also apply for
the YM.

C. Analytical proof of sum rules for quasi-PDFs
in quark target model

In this section, we show that the UV-divergent parts of
quasi-PDFs satisfy the BC-type sum rules. (For the sake
of analytical simplicity, we are limiting ourselves to the
UV-divergent parts only. However, in the next section, we
provide numerical results for the full results of the quasi-
PDFs.) We provide a sample calculation in the QTM, in the
instance that one works with m, # 0 as an IR regulator. We
provide the most important steps involved in this check
with g7 o and h; g as examples. We begin with g o which
is calculated as

MgSL (10 ig; Cpp™ /°° d"k Tr[(p +my) (L + sy (K + my)y'Lys(K + my)y,] 5(x B k_3> 1
- 3

3

pt 4 w (27)" (k* —mg + ie)*((p — k)* — mj + ie) P/ p
1 e
= G () + 9o (0): (123)
with
C 3
() = =55 (124)
’ 2n \/X2p} 4 m3
2
(o oy _aCr [T f(1=y) (1=y)&*=y*) (=y)+y)p,  eo(l—Y)

Ir.00) %) =~ A Mg T 207 - Ve L (125)

|
where the following steps for the sake of analytical simplicity:
combine the quark and gluon propagators via Feynman
B mf, 196 parametrization, then perform [ dk° via contour integral,
Pq = p_§ (126) and then, keeping p? finite, integrate over transverse parton

Q% =(y—x)*+ (1 -y)’p, (127)
In order to arrive at these expressions, we have taken a
slightly different route compared to what we have presented
in the previous sections. As long as we want to limit
ourselves to the UV-divergent terms, it is better to invoke

momenta. These steps yield Eq. (124) and Eq. (125). In the
end, we integrate over the Feynman parameter y. Analyzing
the large-x behavior of the resulting expression, we get

(1a) —
QTE(C)(X) = Ton 1 (128)

—5; X —00.

€
asCF { 2x X = +oo
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DR for the x integral in 1 — 2¢ dimensions yields,9

1
P C 4e X — +oo
dx (1a) X :as F{ uv 129
/ gr.Q(c)( ) 0 4€1UV X = —oo, ( )
while [ g(Tl. aQ)<s) is UV finite. Hence,
(la) . (1a) o asCF 1
/ dx g (x) = / dxgio () ==L ( 2€UV). (130)

It is straightforward to repeat the corresponding steps for
9g1.o» for which we obtain,

1
(1a) a,Cr [ 2« X = +0o
et 131
ddw =5 Ty
and hence,
—+0o0
(1a) a,Cp [Fey ¥ 7
dx X) = 132
o= {5 DL o
Therefore,
(la) o (1a) _asCF 1
[axd e = [axl§o) =55 (). a3
This means
[asdidw = [arigeo. 39

which establishes the BC sum rule for the UV-divergent
terms. We emphasize that our focus here is on the
asymptotic expressions for the quasi-PDFs since we are
interested in verifying the sum rules for the UV-divergent
terms only. Therefore, the symbol [dx in the above
expressions should not be misinterpreted as an x integral
over the entire range of x. In Sec. V we will provide a
numerical check of the sum rules by integrating over all x.
The equivalent of Eq. (124) and Eq. (125) for h; g is

_asCF P3

2r /xng +m‘21

B (x)_asCFA'dy{(l—y)+(1—y)(x2—y2)

(1a) _
hy o (x) =

(135)

LQ(e) 2% 20 203
_ (=945, (1= 2epv)(1 = y)}
20° 0 '

(136)

Note that we “shift” DR for the UV divergences to the x
integrals, just for the sake of analytical simplicity. More dis-
cussion regarding applying DR for the k, integrals or x integrals
can be found in the paragraph after Eq. (151).

Picking out the UV-divergent terms at the end points
X — oo, we obtain

1
(1a) a,Cp [~y X— +
hL,Q(S)( ) - 27[ {% X = —co, (137)
1
(1a) a,Cp [y X2+
h =3 138
L’Q(C)( ) 27 {—i X = —00. (138)
This means
1¢ la la
/ dx i (x) = / dx (h' 8 (x) + Ry 5 (%)) = 0.
(139)
A corresponding calculation for £, g yields
a Cr [O(e X — +00
i = [ e (140
2r. \ O(eyy) x = —oo,
and hence,
/dxhﬁla)(x) = /dthg(x) =0. (141
This means
/ dx h{'%) (x) = / dx {8 (x), (142)

which establishes the A-sum rule for the UV-divergent
terms. It is straightforward to generalize this analysis to
calculations in the YM. In a similar fashion, one can check
the validity of the sum rules for the UV-divergent parts in
the cutoff scheme.

V. NUMERICAL RESULTS FOR SUM RULES

We now proceed to discuss numerical results for the sum
rules. We will provide results in the QTM only, since the
same analysis can be repeated in a straightforward manner
in the YM. We set the coupling constant g, and the color
factor Cr to unity because our numerical checks do not
depend on the absolute values of these quantities. Our
“standard values” for the masses in the QTM are m, =
0.35 GeV and m, = 0.1 GeV. We will present our results
for the sum rules with eyy = (0.6,0.8) for the DR scheme,
and Ayy = (1,4) GeV for the cutoff scheme. We empha-
size that all the numerical results are for the exact
expressions of the PDFs, that is, the expressions which
are not expanded in the UV regulator. Now, it is clear that
conclusions from a model can only be considered robust if
different values of model parameters do not lead to
qualitatively different results. In order to establish this,
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TABLE L.

All the numerical results have been obtained for y = 1 GeV, my = 0.35 GeV, and m, = 0.1 GeV. The

BC sum rule is obeyed because the zero-mode contributions in gr(x) and gro(x) have been taken into account.

BC sum rule in QTM: DR for the UV

Parameters and moments of light cone PDFs P3 (GeV) f dx QI,Q( x) f dx QT_Q(X)
oy = 0.8 1 —3.241 —3.241
[dxgi(x) = -3.241 2 ~3.241 _3.41
d = -3.241 3 —-3.238 —3.241
[ dx gr(x) = -3. " v 3
€yy = 0.6 1 —0.8275 —0.8274
[ dx g, (x) = —0.8274 2 —0.8274 —0.8274
d = —0.8274 3 —0.8275 —0.8274
Jdvorl) =0 4 ~0.8274 ~0.8274

we will show some results with (extreme) values for the
gluon mass, m, = 0.01 GeV and m, = 0.7 GeV.

Table I shows results for the BC sum rule in the DR
scheme. These numerical results confirm that the sum rule
holds for both the light-cone and quasi-PDFs for finite
values of the DR parameter eyy. Specifically, one not only
has

/ dx gy o x: )| = / drgro(e plw,  (143)

which is the BC sum rule for quasi-PDFs, but one also has

0 1
/ dx gy olx: pP) | = / dx gy (),

) 1
/ dx gro(x; p?)|vv = A dx gr(x)|v.

[Se]

(144)

As also shown in a model-independent manner in Sec. II,
Eq. (144) confirms that the (explicit) p* dependence of the
quasi-PDFs drops out upon taking their lowest moment.
Results in Table I reflect that, for a complete match of
the moments between light-cone and quasi-PDFs, one

TABLE II.

has to take the zero-mode contributions into account.
Interestingly, the moments of the zero-mode terms exactly
match between the light-cone PDF g; and the quasi-PDF
grq- (We have illustrated this point analytically in the
context of &, o towards the end of this section.) Similarly,
we find an exact match in the moments of the canonical
terms between the two distributions. To sum up, we infer

&) 1
[ drarag el = [ arargeie.
) 1
/ dng.Q(c)(X;p3)|€Uv _A dx gr(cy(x)[VV. (145)

Calculation of moments can therefore be considered to be
an independent check of our analytical results. We find
these results to be very encouraging because they have been
obtained for the most general situation when one has all the
partonic masses in the picture, m, # 0 and m, # 0.

Table II demonstrates the violation of the BC sum rule
for both light-cone and quasi-PDFs when a cutoff is
applied. Although,

All the numerical results have been obtained for m, = 0.35 GeV and m, = 0.1 GeV. The BC sum rule

is violated for both light-cone and quasi-PDFs in the cutoff scheme.

BC sum rule in QTM: Cutoff for the UV

Parameters and moments of LC PDFs P3 (GeV) J dx g1o(x) Jdx grq(x)
_ 1 ~0.01082 ~0.004864
Apy = 1 GeV 2 ~0.01082 —0.004864
[ dx g;(x) = —0.01082
o 00486 3 ~0.01082 ~0.004864
[ dx gr(x) = -0. 4 —0.01082 —0.004864
B 1 0.005220 0.01153
Ayy =4 GeV 2 0.005220 0.01153
[ dx g;(x) = 0.005220
y oolies 3 0.005220 0.01153
Jdx gr(x) =0. 4 0.005220 0.01153
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/ dx gy o x; P #

(e8]

/ dx gr. oo p) M,
—00

1 1
/ dx gy (1) # / dx gr ()|, (146)
0 0
one still has
00 1
/ dx gy o(x: pP) [Ny = / dx gy (x) |,
0 1
/ dx g0 x: ) = /0 dlx g7 () M. (147)

The bottom line is that, whether or not the sum rules hold
among different quasi-PDFs, the moment of the quasi-
PDFs agrees with those of their light-cone counterparts.
This is a general statement, and is true at least for the
regulated results. We will return to this point at the end of
this section.

One can repeat the same exercise to obtain results for the
h-sum rule in the DR and cutoff schemes. Our numerical
results confirm

[ et = [ dvhgtupi, (49
which is the h-sum rule for quasi-PDFs, and
o 1
[t = [ dvmper,
—o0 0
o0 1
g = [ den(of. (149)
-0 0

More importantly, our numerical results reaffirm the
accidental validity of the h-sum rule for the light-cone
PDFs in the cutoff scheme. And, not surprisingly, this
accident is exactly reproduced by their corresponding
quasi-PDFs. We therefore infer the following relations:

TABLE IIL

/ ™ dx by g o; p) |y = / ™ dxhy g P,

1 1
/ dx by (x) o = / dx hy ()M, (150)
0 0
00 1
/ dx hLQ(x; p3)|AUV — / dx hl(X)\AUV,
—00 0
o) 1
[ g pipe = [ e o, (151)
—00 0

Table III confirms the robustness of the discussions we
have had in the context of the BC sum rule under the
variation of the gluon mass. We have also confirmed the
robustness of our results in the cutoff scheme. Finally, all
the discussions we have had in the context of the #-sum rule
remains valid if the gluon mass is changed. To summarize,
we find that the BC and the 4-sum rules hold in QTM when
DR is employed. And, it is the #-sum rule only that remains
accidentally valid in the cutoff scheme. We have repeated
the same analysis in the YM. The general results in the YM
are the same as in the QTM, with the exception that the
h-sum rule is violated in the cutoff scheme. We have also
verified that the results in the YM remain valid when
changing the model parameters.

We conclude this section by discussing two general
aspects related to the calculation of moments of quasi-
PDFs: (i) the convergence of such moments, and (ii) the
role of a twist expansion in the calculation of moments of
quasi-PDFs. Unlike in the case of light-cone PDFs, the & |
integral for quasi-PDFs is finite. However, when computing
the lowest x moment for quasi-PDFs, one encounters a
singularity due to the 1/|x| behavior of the quasi-PDFs as
|x| = oo, as we saw above in Sec. IV C. Instead, in our
numerical calculations we have used DR and a cutoff to the
k, integrals (despite the fact that those integrals are finite
without such “regulators”), but with the x integrals extend-
ing to infinity, leading to finite lowest moments for the
quasi-PDFs. In the following we will make explicit how
such a situation can arise. To this end we consider the

BC sum rule with variation of gluon mass in DR scheme. Note that 4 = 1 GeV.

BC sum rule in QTM: DR for the UV

Parameters and moments of LC PDFs P? (GeV) J dxg o(x) J dxgro(x)
1 —0.05117 —0.05117
eyy = 0.8(m,, m,) = (0.35,0.7) GeV > 005117 ~0.05117
Jdx gi(x) = —0.05117 3 ~0.05118 ~0.05117
Jdx gr(x) = =0.05117 4 ~0.05117 ~0.05117
cuy = 08(m,.m,) = (0.35.0.01) GeV ! ~169.99 ~169.99
2 ~169.94 ~169.99
Jdx gi(x) = —169.99 3 -169.97 ~169.98
Jdx gr(x) = —169.95 4 ~169.66 ~169.89
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integral which appears in the singular part of the twist-3
quasi-PDFs, and employ both DR and a cutoff to the k|
integral. We find that with DR,

© 31 1-2¢
/ dk, 2 pz 2l 2\3/2
0 (k1 +x*p3 + mg):
3
p “le
=z [C(1 = e)l(e + 1/2)(x*p3 + m2) ]
X—=00 1
- |x|1+2€, (152)
where € > 0, and with a cutoff,
A 3k
PKyL
dk |
A (K3 +x?p3 + mg)>2
1 1
= p3 —_
\/x2p§ +m} \/xzp% +mi + A?
X—00 /\2
3

Therefore, by providing regulation for the k| integrals, we
essentially alter the large-x behavior of the quasi-PDFs.
(In other words, by providing regulation for the &k
integrals, we automatically provide regulation for the x
integrals.) Specifically, with regulated &k, integrals, the
quasi-PDFs are forced to fall faster than 1/x, and hence
their lowest moments are well defined. This explains the
finiteness of the moments in all the tables that has been
presented so far. (If we calculate [dx of the above
expressions, and then take € & 0 or A & oo, we immediately
“recover” the poles in the moments for the quasi-PDFs,
which are in fact the same poles present in the light-cone
PDFs. See the next paragraph for this point.)

Let us now proceed to the second point. In matching-
type calculations, one calculates moments for the quasi-
PDFs after a twist expansion in powers of 1/p3. As shown
in Sec. II B, we expect the moments to match between
quasi- and light-cone PDFs before any twist expansion.
More specifically, we expect an agreement in the moments
for finite values of p3. To demonstrate the subtleties
involved in the calculation of moments after a twist
expansion, we (again) take as an example case the singular
terms for the quasi-PDFs, namely the one that appears for
hy o(x), which reads

h (x) _ _g%CFﬂ2e/ dn_zkl (1 - €)p3
L.Q(s) 2(27) (Zﬂ)n—Z (ki erzp% + m§)3/2

_ g%CFﬂQSPS (2_3+267[_5/2+€(—1 + €>1’*(1/2 + 6)
x (x?p3 + m2)71/2¢), (154)

Equation (154) is exact. Performing a twist expansion of
this expression provides

R gy Cpp** (x> p3 + mg) ™
8 <2—3+2€ﬂ—5/2+e<_1 4 €)F(1/2—|—€)
X

hL,Q(s) (X)

2—4+2eﬂ.—5/2+e(_1 4 6)1’*(1/2 4 €) mg

o

X D3
We immediately see that this expression cannot be inte-
grated upon x, since the leading term and the higher-order
terms have a pole at x = 0. (However, there is no problem
for the integral as x = £o00.) On the other hand, it is
possible to calculate directly the x integral of Eq. (154),
without encountering any divergence at all. The resulting
expression in the limit € — 0 is

(155)

o %C 2
/ dx iy o) (x) & 987; (—PUV — Ay 1), (156)

2

which exactly agrees with the moment of the light-cone
hy(s)(x) [see Eq. (52)]. The situation is the same for the case
of a cutoff. Specifically, after a twist expansion, the singular
part of /1 (x) reads

hy qs) (%)

:g%CF 3

1 1
822 ¥ <_ 2 2 2+ 22, .2 2>
\/x p3+my \/x p3tmg+A

(157)
2 2024 A4
P G B SO B cli T BN AR
167°x° p3 * 647°x° )2 s
(158)

which clearly reflects the nonintegrability at x = 0.
However, it is (again) possible to calculate directly the x
integral of Eq. (157). The result in the limit A — oo agrees
exactly with the moment of the light-cone & [see

2 2
© 9sCr. A
/ dx hy g (x) = — 87;2F In—.

© q

- (159)

The above analysis shows a nontrivial issue related to the
noncommutativity of two limits: performing a twist expan-
sion, and the calculation of [dx. We repeat that our
numerical results for the moments have been calculated
for finite values of p?, that is, without any twist expansion,
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and the regulated results are in complete agreement with the
corresponding moments of the light-cone PDFs. Note that,
in general, higher-twist terms may have divergences at the
end points x — 0 and x — 1, and therefore in such cases,
the moments will also be divergent. Specifically, these
types of divergences are bound to arise from the canonical
component of the quasi-PDFs. For example, h; g in
QTM shows a behavior like

In % x>1
C xp2
hﬁg@(x)z“;; b -2 0<x<1  (160)
In*t x<0
_aCpmy 1
87 p3x*(1—x)
202 —=x—=3-2x*(1—x)In=! x>1
x 2x3—x—3+2x2(1—x)ln(liil;iz O<x<l

“2x% 4+ x+34+2x%(1-x)In=t x<0

+0(pi§). (161)

VI. SUM RULE INVOLVING THE
TWIST-3 PDF e(x)

In this section, we shift our focus to the twist-3 PDF e(x).
Our goal is to address a particular sum rule which relates
e(x) to the target mass. We check this relation in both
models. We also provide the model results for the quasi-
PDF ¢ (x; p?) and confirm numerically that the light-cone
PDF ¢(x) and the quasi-PDF eq(x; p*) have the exact same
lowest moments, as it should be in a model-independent
manner. The light-cone PDF e(x) and its quasicounterpart
eq(x; p?) are defined as

m

ol = "4 (), q)g] :p—geQ(x;p3). (162)

By repeating the steps shown in Sec. II B, it is straightfor-
ward to check that the above definitions imply that

/dxe(x) = /der(x;p3).

This implies that the lowest moment of e, is also related to
target mass. (We repeat that in the QTM the target mass
coincides with the quark mass.)

(163)

A. Results in quark target model

It is known that loop corrections to the quark propagator
can be summed up into a renormalized propagator as

iGR(p) = i

o p-mr+ZR(p)’ (164

where Xp(p) denotes one-particle irreducible Feynman
diagrams together with contributions from counterterms.
For the renormalized self-energy one has
IR(p) = Z(p) + 62p — (62 + O)mg,  (165)
where X(p) is the result for the diagram in Fig. 2(a), 6, is the
counterterm entering the wave-function renormalization
factor Z, =1+6,, and m, is the bare mass of the quark
givenby m, = mg + 6,,mg. By choosing the counterterms as

c

5y =55 Ep (166)
47
3a,C

B = 2Py, (167)
47

in MS scheme, we obtain the following renormalized
expression for the self-energy:

Cr 3 2
Se(p =my) =2 F(—m n”UV+2mq), (168)

21 \2 T md

at the pole p = my. With these results, the relation between
the renormalized mass of the target and the bare quark mass
reads

. a,Cr /3.
mR|UV:mq[1—|— o <§ln%+2)]. (169)
q

In the cutoff scheme, we choose the counterterms as

2
_aCy nAUV

23 : (170)

dr P

_ 3asCF In A%V

5 b
" 4r U’

(171)

where p is an arbitrary scale introduced to render the
counterterms dimensionless. One can then show that
the relation between the renormalized mass of the target
and the bare quark mass is given by

aSCF <3 /lz

s 1). 172
22 2w ] (172)

mR|Auv — mq |:] +

There is a well-known sum rule that relates the lowest moment
of e(x) to the derivative of the renormalized target mass,

/dxe(x) = %.
q

In order to verify Eq. (173), we expect that e(x) should be
renormalized. However, it is known that the renormalization of

(173)

054027-22



BURKHARDT-COTTINGHAM-TYPE SUM RULES FOR LIGHT- ... PHYS. REV. D 105, 054027 (2022)

twist-3 PDFs is not diagonal, and a complete renormalization
program will therefore require one to involve quark-gluon- . Omgeg |0y
quark matrix elements, which goes beyond the scope of our "~ 9m
present work. Also, sum rules in general cannot be taken for
granted after switching on renormalization. Throughout this
work, our focus has been on the regulated PDFs. Therefore, a,Cr /3. A2
. o Auy — “In=% 1 (176)
below we will use a regulated mass to verify if [ e obeys the MReg.| =7 = My 2 2
relation in Eq. (173).
In order to calculate a regulated mass, we repeat the same

Ay CF

=1
+27‘[

( PUV+§n"mL:— ) (175)

q

steps as above, but we do not make a subtraction of the OMgeg |Auv a.Cr /3 A2
counterterms. In doing so, we arrive at a—eg =1+ 52 £ (?nizv— ) (177)
mg b1 my
) a, CF 3 ﬂUV
Mgeg |V = {1 + 7 ( Puov+5 1 m2 T 2) ' We now turn to the results for e(x) in the QTM. The
" starting expressions for the singular and canonical parts for
(174) e(x) are

e(la)(x) gsCFﬂ )/ d" sz_ I-e
27)" 7% (k3 +m3)’

e(la)(x) _ G Cru’e / d"2ky K = (1= x2)m3 4+ xml — (1 —e)(1 —x)m; (178)
(c) 2r (2m)"=2 (K3 + (1 —x)?m2 + xm2)? ’
From these equations, our final results for e(x) with m, # 0 reads [65]
e(1a> (x) €uv _ eEi)a) ()C) €uv + 68;0 ()C) €uv
a,Cr ,UUV a,Cr ﬂ%]v 2
= Puy +1 ) (Pov+1 -—) 179
2r ()( vt inT mg i 2r UV+H(1—x)2m%1 1—-x (179)
in the DR scheme. Therefore, the lowest moment of e(x) in DR is
1 dk+ fov - JX|euv a,C 3 ,u
dxs(1 — A ol (gt G2 & F( oy -1), 180
A o x)+/p+e ( )mq P, T GPuv gl m2 (180)

which exactly agrees with the DR result in Eq. (175), and hence the sum rule in Eq. (173) is satisfied. Note that this sum rule
holds only if one takes the zero modes into account. This was already pointed out in Ref. [10]. In the cutoff scheme, with
regularization applied to the transverse components only, our result for e(x) is

0| ), <A A
el )(x) mUV _ eES>)( ) mUV + E))( ) mUV
q q q
ast A uv Qa, C[: AIZ_IV 2
— 5TE 5 In (1 - ) 181
2r (x)In m T n(1 —x)*mi 1-x (181)

One can check that the above results do not satisfy the sum rule. Now, by applying a regularization to all components of &,
we obtain

dk+ Aw o q,Cp [1 A} y
R ey g+ =5 F/ dy(21—y)ln¢—4(l—y)——),
p* ) m 7 Jo ( (1—y)*mg 1—-y

q

ox|A Cr [1 A? 2y(2 —
OZ|Av  ay F/ dy(—yln(l WL ¥ y)),
0 - y

(9pmq 2z y)2mg y 1-
I dk* A O |Auy a.Cp /3. A2
dxs(1 — 9 o) o+ ][R F(f Aoy _ ) 182
PR il G = G (182)
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which exactly matches with our result in Eq. (177). In the
above equations, y is the Feynman parameter, and we refer
the reader to Sec. III A 2 for more details on calculations
with cutoffs applied to all directions without bias. Refer-
ences in the past have focused entirely on the UV-divergent
terms for both e and the target mass, see for example
[10,79]. Here, we see, for the first time, that there are (once
again) caveats with regard to the UV-finite terms in the
cutoff scheme.

For the sake of completeness, we also provide the
results for e(x) with nonzero gluon mass and DR as
the IR regulators. The singular terms for e(x) with
m, # 0 read [65]

» o (0" =5r5(0) (Poy-+ntiz 1),
a euv — my !
e(s) ('x)l (la) v __ a,Cp ﬂ%}v
e(g) (x) —’2—”5()(7) (pUV—PlR+lnT) )
s em PR

(183)
and the canonical part reads [65]

v aCp phy 1—x
- n#0Y —) . (184
2r (PUV + nxm2 X (184)

mg g

When DR is applied for the IR, we obtain [65]

a €uv 1
)| =el ()| + el (v)
a;Cr Moy
=——06(x) (PUV —Pr +1In T)
2r MR

sC t

+a 4 <PUV—'PIR+IH/¢L2V). (185)
2m HIR

When a cutoff is applied (transverse direction), the result
for e(x) with m, # O reads

(1a) Aypy _ (1a) Ayy (1a) Auv
)| =ey (X)) Feg (x)
C A} C A} 1-
— %EF 5(x) In U2V+as F (ln Uy — x)‘
2n my 2n xmy X

(186)

The general structure of the result for quasi-PDF eq(x) is
given by Eq. (105). The numerator for the singular and the
canonical parts are given by

(1-¢)p’
Ny = — : 187
O 2Py m2) (187)
Ne(c):2p3((k0)2—x2p§—ki+mé+(l—e)mz). (188)

TABLE IV. All the numerical results have been obtained for
u=1GeV, m, =0.35 GeV, and m, = 0.1 GeV.

Moments of e(x) and eg(x) in QTM: DR for the UV
Parameters and moments of LC PDFs  P3 (GeV) [dxeq(x)

oy — 0.8 1 ~2.705
[dxe(x) = -2.705 2 2705

3 —2.705

4 —2.705

oy = 0.6 ! ~0.4693
[ dx e(x) = —0.4687 2 —0.4693

3 —0.4693

4 —0.4693

Table IV confirms that the moment of e (x) agrees exactly
with that of e(x) when DR is applied for the UV. This
agreement holds true even in the cutoff scheme.

B. Results in Yukawa model

To derive the renormalized mass of the target in the YM,
we follow the procedure outlined in the previous section.
In the MS scheme, the counterterms are

6 = 5 Puv. (189)
T
3aY
5 =——2 , 190
m 8 PUV ( )

and we arrive at the following relation between the
renormalized mass of the target and the bare quark mass:

4z 2

3wty 7
s =142 (38 D). o
q

In the cutoff scheme, we choose the counterterms as

ay A%JV
5 =— , 192
2 ] n /42 ( )
3 A?
B = =X I 20V (193)
8t

and the relation between the two masses reads

a 3 2
— {1 + 35 (—5mEs- 2)] (194)
q

Once again, by repeating the above steps, and not sub-
tracting the counterterms, we arrive at the following
expressions for the regulated mass and its derivative:
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o ay [ 3 3. uby 7 Turning now to the results for e(x), the starting expres-
MReg | = mg |1+ dn <_§PUV ) —3 - 5) ’ sions for the singular and canonical terms are
(195) e(la)( gyﬂ )/ a2k, 1
5 , () 27)"=2 (k3 +mq)
m 3 3 1
'~ﬂ|€”V:1+a—Y(——PUV—_ nﬂsz__)’ (196) (1a) gy [ d" 7k,
om, 4\ 2 2 my 2 e (x)=— —_—
5 (c) 2(271-) (277:)11—2
s = my 1+ 37 (g -2) |07 2K —2(1 = )mg + (1 + x)m3
& a 47 2 m%, 2 2.2 2\2 (199)
(k1 + (1 = x)*my 4 xm3)
8’nReg Auv Ay 3 A2
e RS G LR R} 198 i i
om, Tar T 2 + (198)  The result for e(x) in the DR scheme is
|
()| =) el )
= N 5(x )(PUV + 1n”UV) _Y( 2Pyy —21n Hov 4 )
4r 4r (1-x)?m; 1-x
(200)
and we find that the lowest moment of e(x) is
I di* v Ox|ew ay [ 3 32y 1
dxs(1 - 9 o0 (gt dend I —Y(—— _2 ﬁ——), 201
A . xH/p*e ( )mq+8pmq Far TP Ty (20)

which is in agreement with Eq. (196). Hence the sum rule in Eq. (173) is exactly satisfied in the DR scheme. The result for
e(x) in the cutoff scheme, with regularization applied to the transverse components, is

Ayv la Auy la Auy
(x| = eEs))(x) + egc>) x)
my mg my
ay A2y Ay 4
— N 5(x) In 0¥ —< 20 ) 202
4r (x)In m2 Jr471 (1—x)2m3+1 - X (202)

Once again, we find that the sum rule is violated with the above results, but is satisfied provided f e and g—iare consistently
calculated with a regularization to all components of k. The results are

dict Av gy [ A} (1+y)?
| A ¢ d(-21- In— 0431 = )
e y y)n + y)+ )
/p+ ( )mq 4r Jo =) (1= y)*mg =0+
OZ[Awv  ay [ A 2y(1+y)
IET N [y (_ In2ov 7)
0P|, 4ﬂA Y yn(l—y)2m§+y 1—y
1 dk* Avv 9| Avy a 3. N
dxs(1 — el (et S = (S 1) 203
[ aot-n 4[4 COINEY = RS H b (203)
which exactly matches with our result in Eq. (198).
For my # 0, the singular part of e(x) has two results,
el ()" =2 5(x) (Puy + n#iy
(1) (s) w4 uv mi )’
e (x)[v = ' (204)
s) a) fuv Ay Ky
g (%) =3ro(x) (PUV —Pr +1In ﬂT)
€IR R
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while the canonical part is given by

2
la eyv (04 H 1—x
19 (x) e (27>UV +2In x";‘; - ) (205)
When DR is applied for the IR, we get
€ la € la
)| = e W) + el (v)

T (79 iy +1n”2ﬂ) _ 2oy (7? iy +1n”%—v) (206)

Ar uv IR /412R Ar uv IR ﬂ%R .

Finally, when a cutoff is applied to the transverse direction,
the result for e(x) with m, # 0 reads

A a A a Auv
e(la)(x) mUV _ eE:))(x) uv + eéi))(x) mU
ay Ay ay ( Aly 1 —x)
=—46(x)In———(21 .
dr (x)In m;  4n nxm? Ty

(207)

We refer the reader to Sec. IV B for the general structure
of the quasi-PDFs in YM. The numerators for the quasi-
PDF eq(x) are given by

p3

N, = , 208
® (k3 + x*p3 +m2)3/? (208)
3
Note) = 2= (2my (K92 = 2m K% = 2m 32 p} +2m3 = mym?).
m
q
(209)

We have confirmed numerically that our results for the
moment of eq(x) matches exactly with that of e(x).

VII. SUMMARY

In this paper, we have revisited BC-type sum rules which
relate the lowest moment of certain twist-2 and twist-3 PDFs.
While those sum rules have long been known in the case of
light-cone PDFs, we argue that they also hold for the
corresponding quasi-PDFs. We have also scrutinized the
sum rules through model calculations. Specifically, we have
calculated the light-cone PDFs (g,(x), gr(x)) and (h;(x),
hy (x)), and their quasi-PDF counterparts (g; o(x), gr.q(x))
and (1 o(x), hy o(x)) in the QTM and the YM, to lowest
order in perturbation theory. We have regulated the IR
divergences in three schemes: nonzero gluon mass m, # 0,
nonzero quark mass m, # 0, and DR. For the UV divergen-
ces, we have made use of two schemes: DR, and cutoff.

Related previous model calculations have focused on the
UV-divergent parts of (the perturbative corrections to) the
PDFs. As such, several works in the past have shown that
the BC-type sum rules are valid in cutoff schemes. Here, we

|
have presented the full results for the PDFs at one-loop
order, that is, we have calculated the UV-divergent and the
UV-finite parts of the PDFs. We have shown that the
BC-type sum rules hold for both the UV-divergent and
the UV-finite terms when DR is employed for the UV.
However, we have found that these sum rules are generally
violated for the UV-finite terms when a cutoft is employed.
The only exception is the A-sum rule in the QTM, which
“accidentally” remains valid in the cutoff scheme.
Violations of the sum rules can be expected in cutoff
schemes because they break rotational/Lorentz invariance
which is the reason why the BC-type sum rules exist in the
first place. We have also shown that working with m, # 0 at
twist-3 can lead to a violation of the BC-type sum rules.
Furthermore, we have clarified two important issues related
to the moments for quasi-PDFs—the moments are finite if a
regulator is applied to the k, integral (even though this
integral is finite for quasi-PDFs), and the moments of
quasi-PDFs diverge if calculated after a twist expansion.
Finally, we have calculated the light-cone PDF e(x), and its
corresponding quasi-PDF eq(x) in both the QTM and the
YM. In particular, we have scrutinized the sum rule which
relates the lowest moment of e(x) to the target mass. We
repeat that we have not considered renormalization, which
could give rise to additional complications when trying to
establish BC-type and related sum rules—see, for instance,
Ref. [80]. Nonetheless, the physics pertaining to the
regulated results, which we have presented in this work,
are fundamental for our concepts.

It is quite likely that there exist more instances in which
sum rules or other relations that are rooted in the Lorentz
invariance are spoiled in cutoff schemes. One potential
example are polynomial relations for GPDs [81]. An
important message of our work is that it is crucial to calculate
the perturbative corrections for the various partonic functions
beyond the UV-divergent parts. And if such a calculation
suggests a violation of a certain relation, one must check
carefully the cause of the violation.
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APPENDIX: AN INTERESTING POINT RELATED
TO DR WHEN APPLIED FOR IR DIVERGENCES

Typically, when DR is applied for both IR and UV
divergences, one introduces an arbitrary scale/cutoff, A,
to set the boundaries between the IR and UV regions

|

2k, 1

) = 2,010 i) [

27)" 2 k2

(0 < A < 00). In the following, through the example of
(91, gr) inthe QTM, we show that the BC sum rule is violated
if the regularization is applied to the transverse dimensions
and if (efr, €yy) are kept finite. The reason for this violation
can be traced back to the effect of the cutoff A which
continues to hold if (e, eyy) are kept finite. As we shall
show below, it is only after a Taylor expansion in powers of
(e1r, €yy) =0, that the logarithms in A drop out [at least for
the dominant IR pole and the finite term, thatis, O(el. )y )1,
such that the sum rules are exactly satisfied. This is the case
that we have discussed at length throughout our manuscript.
We first calculate g (x):

)

4r)~Iter(—1 + ¢ 2eR 4r)~Itewv(—1 4+ ¢ A \=2eyy
—20.C,(1 —x){—( )T (- IR)(MIR) (47) 2 uv) Goo) } (A1)
el (—er) gyl (—euv)
On the other hand, the singular and the canonical parts for g;(x) are
n—2
(la), \ e [d7k ]
gT(s)('x) - _2aSCF5(x) {/’tz €/ (2”)}1—2 E}
(4 ) 1+eIR( ) 2eR (4”) 1+€UV( ) 2eyy
= 2a,Cpé(x AR - oy }, A2
ol ){ (1 —er) (1 —eyy) (A2)
n—2
(1a) , d"k; 1
) (x) = zasch{ / (27)"~ -2 2 }
A I+er (LA ) —2eR A 1+-eyy —2eyy
= 2aSCFX{( ) ) (ﬂIR) - ( ) ) (ﬂUV) } (A3)
el (—€r) egvl (—euvy)
Therefore,
/ dx g (x) # / dx gi™( (A4)
However, in the limit of (e, eyy) — 0, the A dependence drops out:
(1a) 1 /1 1 1 A A
g —2a,C l—x{ (———)+—(1 ——ln—) , A5
) rl ) 4r \eyy € 2z HIR Huv (43)
() =0 (A6)
Irs)\*¥) =Y
(1a) 1 /1 1 1 A A
i =2 Con (o= Ly (o ) A7
T )< ) 4 €uv  €IR 2r Hir Huv (A7)

Clearly,

(x)- (A8)

/dxggla)

(x) = /dxg(Tla)
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result is rather simple: sum rules do not hold for finite
values of (e, eyy) because of the effect of the cutoff A,
which has been applied to the transverse dimensions to
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demarcate the IR and UV regions. Therefore, obviously, in
the process of creating boundaries between IR and UV
regions, we ended up breaking rotational invariance. We

It is also interesting to check if the above observation
changes when DR, for both IR and UV, is applied to all
components of the loop momenta. Such a case would

note in passing that due to this reason, we did not quote
numerical results for the moments with finite (er, eyy), as
we did in other instances with nonzero parton mass

require us to create boundaries between IR and UV by

introducing A on all components of the loop momenta. Our

starting point for gila) is

regulators.
|
dk* . (1a) igCpp [ d'k [ 2(1 - )
—Ag; (kT) =— / / dy-——== k A9
[ St ) = et [ [y B N, (A9)
where
N, (k) =4Ap*(n=2)k* —8m,(n —2)k* (k- s), (A10)
and Q? = 0. Using
dk 1 i 1 1 u
2(, 2 S uv All
K (n )/<27[) k4 87'[2 (eUV €1IR + nﬂIR)’ ( )
d'k k' (k- -2 d'k k> ist /1 1 2
uzf(n—z)/ Kk-S) _ egs (1 >/ = (-t mb), (A12)
(27[)” k n (277-')’1 k 32 €uv €IR MR
we obtain
dk*t (10 cwv  a,Cpl /1 1 u
—q; (k" L (———+ I Al3
00| = > (s em“um) (A13)
which agrees with Eq. (42). Our starting point for g(T1 Y is given by
dk™m sL igch,uze dk 1 2(1 - )
(13) o4y — / : / dy k Ald
" e @y Ve ot A
where
Nyr(k) = 4mys' (n —2)k* — 8my(n —2)k' (k- s5). (A15)

We see that the structure of the individual terms in N (k) and N (k) exactly agree. Therefore, prior to carrying out the
integrals explicitly, one can already see that the BC sum rule will be satisfied. A direct consequence of this term-by-term
equivalence is that the sum rule continues to hold also for finite values of (e, eyy). Specifically, we find the following

equality:
dk 1 Kt (XSCF { A —2eR 1 (—1 + €IR)
= 4)fr [ — -
p* ( )= (4x) (ﬂIR> (612RF(—€1R) erl"(3 - €IR)>
A —2eyy 1 (—1 + €UV) }
— (47)€uv —
() (ﬂUV) (GIZJVF(—eUV) euvl'(3 - €UV)>
dk*
= [ o). (A16)

which holds for arbitrary values of the cutoff A. Ultimately, all of these observations arise from the very same situation,
namely, whether or not we are applying a cutoff in a rotationally invariant manner. While our observation here is very
important and fundamental, we believe it is not widely known and, in fact, we are not aware of a paper which discusses this
point.
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