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The Burkhardt-Cottingham (BC) sum rule connects the twist-3 light-cone parton distribution function
(PDF) gTðxÞ to the twist-2 helicity PDF g1ðxÞ. The chiral-odd counterpart of the BC sum rule relates the
twist-3 light-cone PDF hLðxÞ to the twist-2 transversity PDF h1ðxÞ. These BC-type sum rules can also be
derived for the corresponding quasi-PDFs. We perform a perturbative check of the BC-type sum rules in
the quark target model and the Yukawa model, by going beyond the ultraviolet (UV) divergent terms. We
employ dimensional regularization (DR) and cutoff schemes to regulate UV divergences, and show that the
BC-type sum rules hold for DR, while they are generally violated when using a cutoff. This violation can
be traced back to the breaking of rotational invariance. We find corresponding results for the sum rule
relating the mass of the target to the twist-3 PDF eðxÞ. Moreover, we supplement our analytical results with
numerical calculations.
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I. INTRODUCTION

Quarks and gluons, collectively denoted as partons, are
the fundamental degrees of freedom of quantum chromo-
dynamics (QCD). While partons cannot be observed
directly, QCD factorization theorems allow one to express
physical observables in terms of nonperturbative functions,
which contain information about partons inside nucleons
[1]. In this context, parton distribution functions (PDFs)
belong to the most important nonperturbative functions [2].
Not only can PDFs be extracted through high-energy
scattering experiments, but they can also be computed in
models and lattice QCD. PDFs can be grouped according to
their “twist,” which determines the order in the inverse hard
scale at which a PDF contributes to an observable. While
twist-2 PDFs provide the dominant contribution to physical
observables, higher-twist PDFs, such as the twist-3 PDFs,
suffer from kinematical suppressions, which precludes an
“easy” experimental extraction. At twist-2, a complete
(one-dimensional) description of nucleons in terms of
quarks can be obtained by means of three PDFs: the
unpolarized PDF f1ðxÞ, the helicity PDF g1ðxÞ, and the
transversity PDF h1ðxÞ. On the other hand, at twist-3, one
has the three PDFs: eðxÞ, gTðxÞ, and hLðxÞ. Twist-2 PDFs
have a probabilistic interpretation of representing

momentum distributions of partons inside nucleons. On
the other hand, twist-3 PDFs do not represent densities, and
hence are conceptually intriguing because we are forced to
go beyond the simple parton model. For instance, they can
be shown to quantify multiparton correlations inside
nucleons [3,4]. Noteworthy is also the semiclassical inter-
pretation of x2 moments of eðxÞ and gTðxÞ in terms of the
average transverse force experienced by quarks in deep
inelastic scattering (DIS) [5].
Lorentz invariance plays a central role in any relativistic

quantum field theory such asQCD. Certain sum rules are the
remarkable consequences of Lorentz invariance. Several
such sum rules are integral relations connecting PDFs of
different twists to one another. One example, the Burkhardt-
Cottingham (BC) sum rule, proposed about 50 years ago,
connects the twist-2 g1ðxÞ to the twist-3 gTðxÞ [6],Z

dx g1ðxÞ ¼
Z

dx gTðxÞ: ð1Þ

The chiral-odd counterpart of the BC sum rule, also known
as the h-sum rule, connects the twist-2 h1ðxÞ to the twist-3
hLðxÞ [7,8], Z

dx h1ðxÞ ¼
Z

dx hLðxÞ: ð2Þ

These BC-type sum rules have been under scrutiny for
decades—see, for instance, Refs. [8–11]. One of the most
interesting features of the twist-3 PDFs concerns the
possible existence of singular zero-mode contributions
[8,10–15], that is, terms proportional to δðxÞ, and their
potential impact on the sum rules. Obviously, a δðxÞ
contribution would preclude experimental checks of the
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sum rule as the point x ¼ 0 cannot be reached in experiment.
Put differently, measurements would suggest a violation of
the sum rule.
The checks of the BC-type sum rules include, in

particular, perturbative calculations in models such as
the quark target model (QTM) [8–11]. The final conclusion
reached in those studies was that the sum rules hold in the
models, provided that one takes into account the zero-mode
contributions. However, in those works, for analytical
simplicity, only the UV-divergent contributions were con-
sidered, and it was tacitly assumed that this is sufficient.
One may ask if this is really enough, and whether the UV-
finite terms satisfy the sum rules as well. To address those
questions is one of the main purposes of the present work.
To this end, we perform a check of the BC-type sum rules
by going beyond the UV-divergent terms at one-loop order.
We exploit two models for this analysis: the QTM and the
Yukawa model (YM). We use two regularization schemes
for the UV divergences: dimensional regularization (DR)
and a cutoff. For the IR divergences, we employ three
schemes: nonzero gluon mass mg ≠ 0, nonzero quark mass
mq ≠ 0, and DR. Our work suggests that it is indeed not
sufficient to limit the check of the BC-type sum rules to the
UV-divergent parts of the PDFs. In fact, the sum rules can
be expected to be violated for the UV-finite terms in
schemes that break rotational invariance. Specifically, the
sum rules are typically violated when using a cutoff, while
they hold in DR (which preserves rotational invariance). As
a by-product, we find that working with mg ≠ 0 as an IR
regulator at twist-3 can in general cause problems.
The second major point of this work is the discussion of

BC-type sum rules for parton quasidistributions (quasi-
PDFs), which became key quantities for hadron structure
calculations in lattice QCD. For a long time, lattice-QCD
extractions of the full x dependence of the parton distribu-
tions were hindered by the explicit time dependence of the
underlying correlation functions. The quasi-PDF approach,
proposed by Ji in 2013, has sparked a new wave of interest
in extracting PDFs from lattice QCD [16,17]. This approach
relies on the extraction of matrix elements for boosted
nucleons involving spacelike separated fields. Over the
years, enormous progress has taken place on the extraction
of PDFs through such an approach from lattice QCD [18–
59]. (See Refs. [60–62] for reviews on quasi-PDFs.) While
for quite some time studies of quasi-PDFs were limited to
the twist-2 case, recently first studies appeared that are
related to twist-3 quasi-PDFs [63–66]. In this work, we
establish the BC-type sum rules for quasi-PDFs, both
through a model-independent analysis and through analyti-
cal as well as numerical model calculations. Like in the case
of the BC-type sum rules for light-cone PDFs, the corre-
sponding sum rules for quasi-PDFs are violated in the cutoff
scheme which breaks rotational invariance.
Finally, we calculate the twist-3 PDF eðxÞ and its

corresponding quasi-PDF. We also explore, in the QTM

and the YM, the sum rule which relates this function to the
target mass. The general finding of the model calculations
matches our study of the BC-type sum rules. While the sum
rule for eðxÞ holds trivially for the UV-divergent terms, care
must be taken in the case of finite terms.
We organize the manuscript as follows: In Sec. II we

provide definitions of the light-cone PDFs (g1ðxÞ; gTðxÞ)
and (h1ðxÞ;hLðxÞ), and of the quasi-PDFs (g1;QðxÞ; gT;QðxÞ)
and (h1;QðxÞ; hL;QðxÞ). In that section, we give a model-
independent discussion of the BC-type sum rules for both
light-cone and quasi-PDFs. In Sec. III we present the one-
loop perturbative results for the light-cone PDFs (g1ðxÞ;
gTðxÞ) and (h1ðxÞ; hLðxÞ) in the QTM and the YM. With
the help of these results, we show analytically that the
BC-type sum rules are valid when one uses DR for the UV.
Besides, we draw attention to the explicit violation of these
sum rules for the UV-finite terms when one employs a
cutoff scheme. To the best of our knowledge, such an issue,
in the context of BC-type sum rules, has never been
reported before. We argue that the observed problem with
a cutoff scheme is the lack of rotational invariance which,
as mentioned before, is the key ingredient responsible for
the existence of the sum rules in the first place. In Sec. IV
we present the one-loop results for the quasi-PDFs
(g1;QðxÞ; gT;QðxÞ) and (h1;QðxÞ; hL;QðxÞ) in the two models.
Section V is dedicated to numerical results for the sum rules
for both light-cone and quasi-PDFs. In that section, we also
clarify when and why the moments of quasi-PDFs should
converge, and the impact of a twist-expansion on those
moments. In Sec. VI we calculate the light-cone PDF eðxÞ,
and its corresponding quasi-PDF eQðxÞ in the QTM and the
YM, and show that their moments agree. In particular, we
consider the relation between eðxÞ and the mass of the
target. We summarize our work in Sec. VII. The Appendix
contains a discussion about an issue that can arise when
applying DR to both UV and IR divergences, which is
(also) related to the breaking of rotational invariance.

II. DEFINITION OF PDFS AND OVERVIEW
OF BC-TYPE SUM RULES

A. PDF definitions

Light-cone PDFs are defined in terms of the correlation
function1

Φ½Γ�ðx; SÞ ¼ 1

2

Z
dz−

2π
eik·zhP; Sjψ̄

�
−
z
2

�
ΓW

�
−
z
2
;
z
2

�

× ψ

�
z
2

�
jP; Sijzþ¼0;  z⊥¼  0⊥ ; ð3Þ

1For any generic four-vector v, we define the Minkowski
components by ðv0; v1; v2; v3Þ and the light-cone components by
ðvþ; v−;  v⊥Þ, where vþ ¼ 1ffiffi

2
p ðv0 þ v3Þ, v− ¼ 1ffiffi

2
p ðv0 − v3Þ and

 v⊥ ¼ ðv1; v2Þ.
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where, Γ is a generic gamma matrix. Color gauge invari-
ance of this nonlocal quark-quark correlator is ensured by
the Wilson line

W
�
−
z
2
;
z
2

�����
zþ¼0;  z⊥¼  0⊥

¼ P exp

�
−igs

Z z−
2

−z−
2

dy−Aþð0þ; y−;  0⊥Þ
�
: ð4Þ

Here, P is a path-ordered exponential depending on Aþ,
which is the plus component of the gluon field, and gs
denotes the strong coupling constant. The state of the hadron
is characterized by the 4-momentumPμ ¼ ðPþ; P−;  0⊥Þ and
a covariant spin vector S for which one can write

Sμ ¼ ðSþ; S−;  S⊥Þ ¼
�
λ
Pþ

M
;−λ

M
2Pþ ;  S⊥

�
: ð5Þ

Here, λ andM denote the helicity and themass of the hadron,
respectively, and i is an index in the transverse space. By
definition, the spin vector satisfies the constraint P · S ¼ 0.
The twist-2 light-cone PDFs g1ðxÞ and h1ðxÞ are defined as

Φ½γþγ5� ¼ λg1ðxÞ; Φ½iσiþγ5� ¼ Si⊥h1ðxÞ; ð6Þ

while the twist-3 light-cone PDFs gTðxÞ and hLðxÞ are
defined as

Φ½γi⊥γ5� ¼ M
Pþ Si⊥gTðxÞ; Φ½iσþ−γ5� ¼ M

Pþ λhLðxÞ: ð7Þ

In the above expressions, σμν ¼ i
2
ðγμγν − γνγμÞ and γ5 is

the matrix which anticommutes with other Dirac matrices.
As is evident from these expressions, longitudinal target
polarization is required to address g1ðxÞ and hLðxÞ, while
transverse polarization is needed for h1ðxÞ and gTðxÞ. The
light-cone PDFs depend on x ¼ kþ=Pþ and have support in
the region −1 ≤ x ≤ 1.
Quasi-PDFs are defined through the spatial correlation

function [16,17]

Φ½Γ�
Q ðx; S;P3Þ ¼ 1

2

Z
dz3

2π
eik·zhP; Sjψ̄

�
−
z
2

�
ΓWQ

�
−
z
2
;
z
2

�

× ψ

�
z
2

�
jP; Sijz0¼0;  z⊥¼  0⊥ ; ð8Þ

with the Wilson line

WQ

�
−
z
2
;
z
2

�
jz0¼0;  z⊥¼  0⊥

¼ P exp

�
−igs

Z z3
2

−z3
2

dy3A3ð0;  0⊥; y3Þ
�
: ð9Þ

In this case, we write the 4-momentum of the hadron as
Pμ ¼ ðP0;  0⊥; P3Þ, and the spin vector as

Sμ ¼ ðS0;  S⊥; S3Þ ¼
�
λ
P3

M
;  S⊥; λ

P0

M

�
: ð10Þ

The quasi-PDFs g1;QðxÞ and h1;QðxÞ are defined accord-
ing to

Φ½γ3γ5�
Q ¼ λδ0 g1;Qðx;P3Þ; Φ½iσi0γ5�

Q ¼ Si⊥δ0 h1;Qðx;P3Þ;
ð11Þ

where δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2=P2

3

p
2 so that P0 ¼ δ0P3. The factor

δ0 in the above equations is needed for getting the same
lowest moment of the quasi-PDFs and the corresponding
light-cone PDFs [67]. Note that one can choose to work
with the gamma matrix γ0γ5 for g1;QðxÞ, and iσi3γ5 for
h1;QðxÞ [67]. The conclusions of our present work are not
affected by these alternative choices. The quasi-PDFs
gT;QðxÞ and hL;QðxÞ are defined as

Φ½γi⊥γ5�
Q ¼ M

P3
Si⊥gT;Qðx;P3Þ; Φ½iσ30γ5�

Q ¼ M
P3

λhL;Qðx;P3Þ;
ð12Þ

where, x ¼ k3=P3. In contrast to the light-cone PDFs,
quasi-PDFs have support in the region −∞ ≤ x ≤ ∞. (The
variable x for the quasi-PDFs should not be confused with
the momentum fraction for light-cone PDFs.) Note that the
quasi-PDFs have an explicit dependence on P3.

B. BC-type sum rules

The local axial current and tensor current define the axial
charge gA and the tensor charge gT , respectively, through

2MSμgA ¼ hP; Sjψ̄ð0Þγμγ5ψð0ÞjP; Si;
2ðSμPν − SνPμÞgT ¼ hP; Sjψ̄ð0Þiσμνγ5ψð0ÞjP; Si: ð13Þ

These two equations are a consequence of Lorentz invari-
ance. It is now straightforward to show that

λ

Z
dxg1ðxÞ ¼

1

2Pþ hP;Sjψ̄ð0Þγþγ5ψð0ÞjP;Si ¼ λgA;

M
Pþ S

i⊥
Z

dxgTðxÞ ¼
1

2Pþ hP;Sjψ̄ð0Þγi⊥γ5ψð0ÞjP;Si

¼ M
Pþ S

i⊥gA; ð14Þ

which leads to

2For convenience of notation, throughout our work we will be
using ðP3Þ2 → P2

3.
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Z
dx g1ðxÞ ¼

Z
dx gTðxÞ ¼ gA: ð15Þ

Equation (15) is known as the BC sum rule [6]. Since,
according to Eq. (13), the axial charge appears for both
longitudinal and transverse polarization, the BC sum rule
can be considered a consequence of rotational invariance.
For the chiral-odd functions h1 and hL we get

Si⊥
Z

dx h1ðxÞ ¼
1

2Pþ hP; Sjψ̄ð0Þiσiþγ5ψð0ÞjP; Si

¼ Si⊥gT;
M
Pþ λ

Z
dx hLðxÞ ¼

1

2Pþ hP; Sjψ̄ð0Þiσþ−γ5ψð0ÞjP; Si

¼ M
Pþ λgT; ð16Þ

which leads toZ
dx h1ðxÞ ¼

Z
dx hLðxÞ ¼ gT: ð17Þ

Equation (17) is known as the h-sum rule [7,8].
A corresponding analysis for the quasi-PDFs readily

provides the sum rulesZ
dx g1;Qðx;P3Þ ¼

Z
dx gT;Qðx;P3Þ ¼ gA;Z

dx h1;Qðx;P3Þ ¼
Z

dx hL;Qðx;P3Þ ¼ gT; ð18Þ

that is, the BC-type sum rules hold for quasi-PDFs as
well—see also the corresponding brief discussion in
Ref. [63]. The lowest moments of quasi-PDFs are P3

independent, and they agree with those for the correspond-
ing light-cone PDFs. This outcome is in line with a model-
independent calculation of moments for the twist-2 PDFs
and twist-2 generalized parton distributions (GPDs) [67].

III. ANALYTICAL RESULTS FOR THE LIGHT-
CONE PDFS AND THE BC-TYPE SUM RULES

This section focuses on the calculation of the sum rules
for the light-cone PDFs (g1ðxÞ; gTðxÞ) and (h1ðxÞ; hLðxÞ).
Explicit calculations to one-loop order are provided in two
models: the QTM and the YM. We use three different
schemes to regulate the infrared (IR) divergences: nonzero

gluon mass mg ≠ 0, nonzero quark mass mq ≠ 0, and
dimensional regularization. For the ultraviolet divergences,
we employ two schemes: DR and cutoff. Since our
calculations are at a partonic level, hereafter we will use
p as the momentum label for the target in both models.

A. Results in quark target model

Calculations within QTM can in principle be done in any
gauge. Here, we work in the Feynman gauge for which the
real and virtual diagrams have been shown in Fig. 1 and
Fig. 2, respectively.

1. BC sum rule

We start with the calculation of the real diagrams for
g1ðxÞ. For the diagram in Fig. 1(a), we obtain the following
general expression, before the k⊥ integration, in terms of
both mg ≠ 0

3 and mq ≠ 0:

gð1aÞ1 ðxÞ ¼ −
g2sCFμ

2ϵ

2π
ð1 − xÞ

Z
dn−2k⊥
ð2πÞn−2

×
−ð1 − ϵÞk2⊥ þ ð1 − ϵÞð1þ x2Þm2

q þ 2ϵxm2
q

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

gÞ2
:

ð19Þ

Here, gs is the QCD coupling constant, CF¼ðN2
c−1Þ=2Nc

is the color factor and n ¼ 4 − 2ϵ. In Eq. (19), we have
applied DR to the transverse momentum integral in order to
regulate the UV divergences, and IR divergences present in
the case of working with zero partonic masses.4 For the UV
divergences, one must satisfy the condition ϵ → ϵUV > 0
(and the corresponding subtraction scale is μ → μUV > 0).
For the IR divergences, one must ensure the condition

FIG. 1. One-loop real diagrams contributing to the light-cone PDFs and the quasi-PDFs in the QTM.

3It is known that a nonzero gluon mass in QCD violates gauge
invariance. However, the calculations in this work do not involve
a gluon self-interaction and, therefore, are like QED treatments
(modulo a color factor). Generally, in QED a nonzero photon
mass can be used to isolate IR singularities. This feature is
sufficient for the purpose of our study.

4We have used Kreimer’s prescription for the treatment of γ5 in
n dimensions, that is, before solving for the traces, we have
anticommuted the γ5’s and used ðγ5Þ2 ¼ 1 [68]. We did not have
to use any other property of γ5 in n dimensions. In particular, we
did not have to evaluate expressions such as Trðγμγνγαγβγ5Þ. We
therefore believe that our conclusions are unaffected by the
choice of scheme for the treatment of γ5 in dimensional
regularization.
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ϵ → ϵIR < 0 (and μ → μIR > 0). For the analytical check of
the sum rules, we will not be working with the general
expression provided in Eq. (19). Rather, for the sake of
simplicity, we will be invoking different IR schemes.

However, for the numerical check of the sum rules, we will
recourse to the expression in Eq. (19). After regulating the
UV divergences in the DR scheme, we obtain the following
results for g1ðxÞ with three different IR regulators:

gð1aÞ1 ðxÞjϵUV ¼

8>>>>>><
>>>>>>:

gð1aÞ1 ðxÞ
���ϵUV
mg

¼ αsCF
2π ð1 − xÞ

�
PUV þ ln μ2UV

xm2
g
− 2
�
;

gð1aÞ1 ðxÞ
���ϵUV
mq

¼ αsCF
2π ð1 − xÞ

�
PUV þ ln μ2UV

ð1−xÞ2m2
q
− 2 − 1þx2

ð1−xÞ2
�
;

gð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼ αsCF
2π ð1 − xÞ

�
PUV − PIR þ ln μ2UV

μ2IR

�
;

ð20Þ

where

PUV=IR ¼ 1

ϵUV=IR
þ ln 4π − γE:

On the other hand, if a cutoff is applied on the k⊥ integral in Eq. (19), we get

gð1aÞ1 ðxÞjΛUV ¼

8>><
>>:

gð1aÞ1 ðxÞ
���ΛUV

mg

¼ αsCF
2π ð1 − xÞ

�
ln Λ2

UV

xm2
g
− 1
�
;

gð1aÞ1 ðxÞ
���ΛUV

mq

¼ αsCF
2π ð1 − xÞ

�
ln Λ2

UV

ð1−xÞ2m2
q
− 1 − 1þx2

ð1−xÞ2
�
;

ð21Þ

with mg ≠ 0 and mq ≠ 0, respectively. We observe that the
coefficient of the UV poles, be it in the DR or in the cutoff
scheme, are exactly the same. However, the finite factors
are different in the two schemes. We will return to this point
later towards the end of this section.
It is straightforward to calculate the contribution of the

diagram in Fig. 1(b) to g1ðxÞ. We obtain the following
results when DR is used for the UV:

gð1bÞ1 ðxÞjϵUV ¼

8>>>>><
>>>>>:

gð1bÞ1 ðxÞ
���ϵUV
mg

¼ αsCF
2π

x
1−x

�
PUVþ lnμ2UV

xm2
g

�
;

gð1bÞ1 ðxÞ
���ϵUV
mq

¼ αsCF
2π

x
1−x

�
PUVþ ln μ2UV

ð1−xÞ2m2
q

�
;

gð1bÞ1 ðxÞ
���ϵUV
ϵIR

¼ αsCF
2π

x
1−x

�
PUV−PIRþ lnμ2UV

μ2IR

�
;

ð22Þ

while in the cutoff scheme we find

gð1bÞ1 ðxÞjΛUV ¼
8<
:

gð1bÞ1 ðxÞ
���ΛUV

mg

¼ αsCF
2π

x
1−x

�
lnΛ2

UV
xm2

g

�
;

gð1bÞ1 ðxÞ
���ΛUV

mq

¼ αsCF
2π

x
1−x

�
ln Λ2

UV
ð1−xÞ2m2

q

�
:

ð23Þ

The diagram in Fig. 1(c) gives the same result as that of
Fig. 1(b). This outcome is due to the relevant trace algebra.
In fact, this pattern continues for all the other PDFs. The
diagram in Fig. 1(d) does not contribute to the light-cone
PDFs because the result is proportional to the square of the
unit light-cone vector [64].
We now proceed to the calculation of the virtual

diagrams. All those diagrams exhibit the factor δð1 − xÞ
which we include below when summing up the terms. The
contribution of the quark self-energy diagram, as shown in
Fig. 2(a), does not depend on the type of PDF under
discussion. In Ref. [64], we provided the results for this
diagram when DR was used for the UV. We quote the
results here for the sake of completeness,

FIG. 2. One-loop virtual diagrams contributing to the light-cone PDFs and the quasi-PDFs in the QTM. The Hermitian conjugate
diagrams of (a) and (d) are not shown.
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∂ΣðpÞ
∂=p jϵUV ¼

8>>>>>><
>>>>>>:

∂ΣðpÞ
∂p
���ϵUV
mg

¼ − αsCF
2π

R
1
0 dyy

�
PUV þ ln μ2UV

ym2
g
− 1
�
;

∂ΣðpÞ
∂p
���ϵUV
mq

¼ − αsCF
2π

R
1
0 dyð1 − yÞ

�
PUV þ ln μ2UV

ð1−yÞ2m2
q
− 1þy2

ð1−yÞ2
�
;

∂ΣðpÞ
∂p
���ϵUV
ϵIR

¼ − αsCF
2π

R
1
0 dyy

�
PUV − PIR þ ln μ2UV

μ2IR

�
:

ð24Þ

We obtain the following results in the cutoff scheme:

∂ΣðpÞ
∂=p jΛUV ¼

8>><
>>:

∂ΣðpÞ
∂p
���ΛUV

mg

¼ − αsCF
2π

R
1
0 dy

�
y ln Λ2

UV
ym2

g

�
;

∂ΣðpÞ
∂p
���ΛUV

mq

¼ − αsCF
2π

R
1
0 dy

�
ð1 − yÞ ln Λ2

UV
ð1−yÞ2m2

q
− 2y

1−y

�
:

ð25Þ

The x integrals of the contributions from the diagrams
in Figs. 2(b) and 2(c) are exactly the same as Figs. 1(b) and
1(c) except for an overall sign, which is due to the reversed
direction for the momentum flow in the Wilson line. Just
like Fig. 1(d), the contribution from Fig. 2(d) drops out.
We now turn our attention to gTðxÞ. In tje case of the

twist-3 PDFs, the result from Fig. 1(a) can be split into two
distinct parts: a singular part and a canonical part [64],

gð1aÞT ðxÞ ¼ gð1aÞTðsÞðxÞ þ gð1aÞTðcÞðxÞ; ð26Þ

where the singular parts are related to the zero-mode δðxÞ
contributions. The general expressions for the singular and
canonical parts, before the k⊥ integration, are

gð1aÞTðsÞðxÞ ¼ −
g2sCFμ

2ϵ

2π
δðxÞ

Z
dn−2k⊥
ð2πÞn−2

ϵ

ðk2⊥ þm2
qÞ
;

gð1aÞTðcÞðxÞ ¼
g2sCFμ

2ϵ

2π

Z
dn−2k⊥
ð2πÞn−2

×
xk2⊥ − ð1 − x2Þm2

q þ xm2
g þ ϵð1 − xÞm2

g

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

gÞ2
:

ð27Þ

The origin of the delta function is in the integral
[10,11,64,65,69]

Z
dk−

1

ðk2 −m2
q þ iεÞ2 ¼

iπ
k2⊥ þm2

q

δðxÞ
pþ : ð28Þ

After the k⊥ integrals are carried out, for mg ≠ 0, one
obtains the following two expressions for the singular
parts [64]:

gð1aÞTðsÞðxÞjϵUV ¼
8<
:

gð1aÞTðsÞðxÞ
���ϵUV
mq

¼ − αsCF
2π δðxÞ;

gð1aÞTðsÞðxÞ
���ϵUV
ϵIR

¼ 0:
ð29Þ

As is evident from Eq. (28), the zero-mode contributions
originate exclusively from quark propagators. Therefore, to
regulate the associated IR divergence in the k⊥ integral, one
is left with two options only: either work with mq ≠ 0, or
apply DR. In other words, gluon mass never enters the
discussion of the zero-mode contributions, because of
which the associated IR divergence is left unguarded when
mg ≠ 0. In Ref. [64], we suggested that one could in
principle keep working with mg ≠ 0 for the canonical part
and for all the other diagrams, provided one uses mq ≠ 0

or a DR regulation for the zero-mode contributions.
(Nevertheless, strictly speaking one must conclude that
mg ≠ 0 is an insufficient IR regulator for twist-3 PDFs. We
will return to this point below.) In the case of mq ≠ 0, the
UV pole from the k⊥ integral allows for a δðxÞ in gT . On the
other hand, when DR is applied for the IR, both UVand IR
poles allow for a δðxÞ, but with opposite signs with respect
to one another, and hence the δðxÞ contribution drops out
[64]. For the canonical part, we get [64]

gð1aÞTðcÞðxÞ
���ϵUV
mg

¼ αsCF

2π

�
xPUV þ x ln

μ2UV
xm2

g
þ ð1 − xÞ

�
; ð30Þ

with mg ≠ 0. The results for gTðxÞ with mq ≠ 0 and DR for
the IR are [64]

gð1aÞT ðxÞ
���ϵUV
mq

¼ gð1aÞTðsÞðxÞ
���ϵUV
mq

þ gð1aÞTðcÞðxÞ
���ϵUV
mq

¼ −
αsCF

2π
δðxÞ þ αsCF

2π

�
xPUV

þ x ln
μ2UV

ð1 − xÞ2m2
q
þ x2 − 2x − 1

1 − x

�
; ð31Þ

gð1aÞT ðxÞ
���ϵUV
ϵIR

¼ gð1aÞTðsÞðxÞ
���ϵUV
ϵIR

þ gð1aÞTðcÞðxÞ
���ϵUV
ϵIR

¼ 0þαsCF

2π

�
xðPUV −PIRÞþ x ln

μ2UV
μ2IR

�
: ð32Þ
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When a cutoff is used for the UV, the zero-mode con-
tribution drops out,

gð1aÞTðsÞðxÞ
����ΛUV

mq

¼ 0; ð33Þ

because of the overall proportionality to ϵUV. Therefore,
with mg ≠ 0 the result for gTðxÞ reads

gð1aÞT ðxÞ
���ΛUV ¼ gð1aÞTðsÞðxÞ

���ΛUV þ gð1aÞTðcÞðxÞ
���ΛUV

mg

¼ 0þ αsCF

2π

�
x ln

Λ2
UV

xm2
g
þ ð1 − xÞ

�
: ð34Þ

Finally, with mq ≠ 0, we get

gð1aÞT ðxÞ
���ΛUV

mq

¼ gð1aÞTðsÞðxÞ
���ΛUV

mq

þ gð1aÞTðcÞðxÞ
���ΛUV

mq

¼ 0þ αsCF

2π

�
x ln

Λ2
UV

ð1 − xÞ2m2
q
þ x2 − 2x − 1

1 − x

�
:

ð35Þ
Once again, we observe that the coefficient of the UV poles
are exactly the same in the two UV schemes. In contrast to
g1ðxÞ, the UV-finite pieces for gTðxÞ in the two UV
schemes exactly match.
For the diagram in Fig. 1(b), the results for gTðxÞ when

DR is used for the UV read [64],

gð1bÞT ðxÞjϵUV ¼

8>>>>><
>>>>>:

gð1bÞT ðxÞ
���ϵUV
mg

¼ αsCF
4π

1þx
1−x

�
PUVþ lnμ2UV

xm2
g

�
;

gð1bÞT ðxÞ
���ϵUV
mq

¼ αsCF
4π

1þx
1−x

�
PUVþ ln μ2UV

ð1−xÞ2m2
q

�
;

gð1bÞT ðxÞ
���ϵUV
ϵIR

¼ αsCF
4π

1þx
1−x

�
PUV−PIRþ lnμ2UV

μ2IR

�
;

ð36Þ
while in the cutoff scheme we find

gð1bÞT ðxÞjΛUV ¼

8>><
>>:

gð1bÞT ðxÞ
���ΛUV

mg

¼ αsCF
4π

1þx
1−x

�
lnΛ2

UV
xm2

g

�
;

gð1bÞT ðxÞ
���ΛUV

mq

¼ αsCF
4π

1þx
1−x

�
ln Λ2

UV
ð1−xÞ2m2

q

�
;

ð37Þ

for the two IR regulators. Just as in the case of g1ðxÞ, the
diagram in Fig. 1(c) gives the same result as that of
Fig. 1(b), except for an overall sign.Moreover, thex integrals
of the contributions fromFigs. 1(b) and 1(c) provide the very
same results as diagrams 2(b) and 2(c), except for an overall
sign. In the case of the cutoff scheme, our results for the UV-
divergent parts of g1ðxÞ (h1ðxÞ) and gTðxÞ (hLðxÞ) are in
agreement with the results of Refs. [9,10], where similar
calculations were provided in the light-cone gauge.5

We are now in a position to check the BC sum rule. The
total result for g1ðxÞ through one loop reads

g1ðxÞ ¼ δð1 − xÞ þ gð1aÞ1 ðxÞ þ gð1bÞ1 ðxÞ þ gð1cÞ1 ðxÞ

þ δð1 − xÞ
�∂ΣðpÞ

∂p þ gð2bÞ1 þ gð2cÞ1

�
; ð38Þ

where the first term represents the (trivial) tree-level
contribution. Upon taking the x integral of the above
equation, we see that Fig. 1(b) [Fig. 1(c)] cancels the
contribution from Fig. 2(b) [Fig. 2(c)], such that

Z
1

0

dx g1ðxÞ ¼ 1þ
Z

1

0

dxgð1aÞ1 ðxÞ þ ∂ΣðpÞ
∂p : ð39Þ

[To understand the aforementioned point on cancellation,
see the paragraphs after the Eqs. (23) and (25).] This
argument holds true for gTðxÞ as well. Since the contribu-
tion of the quark self-energy diagram is the same for both
g1ðxÞ and gTðxÞ, we immediately see that, as far as the
check of the sum rules are concerned, it suffices to consider
the contribution from Fig. 1(a). In the following sections we
will therefore provide the results for Fig. 1(a) only.
We begin our analysis in the instance that one does DR

for the UV. We find that in the case of mg ≠ 0, the BC sum
rule is satisfied provided one handles the IR divergence
related to the zero-mode contributions with mq ≠ 0.
Specifically, we have

Z
1

0

dxgð1aÞ1 ðxÞ
���ϵUV
mg

¼αsCF

2π

�
1

2
PUVþ ln

μUV
mg

−
1

4

�

¼
Z

1

0

dxgð1aÞTðsÞðxÞ
���ϵUV
mq

þ
Z

1

0

dxgð1aÞTðcÞðxÞ
���ϵUV
mg

:

ð40Þ

On the other hand, if one applies DR for the IR of the zero-
mode contribution, the BC sum rule is violated. Put
differently, the recipe of using different IR regulators for
the canonical and the singular terms in twist-3 PDFs, in
general, fails, which reemphasizes that mg ≠ 0 for twist-3
PDFs is problematic. (In fact, this issue is more severe for
hLðxÞ as we discuss in the next section.) In previous studies
[64,65] we had already mentioned that mg ≠ 0 is prob-
lematic for the x-dependent results of the twist-3 PDFs. We
did not, however, abandon a nonzero gluon mass, but rather
proposed to work with either mq or DR for the singular
terms, as already mentioned above. This recipe worked
well for the calculation of matching coefficients,6 in the
sense that these coefficients did not show a regulator

5In Ref. [9], which employed a light-front Hamiltonian
approach, a δðxÞ term was missed for hLðxÞ.

6“Matching” is a perturbative procedure that connects the
quasi-PDFs to the light-cone PDFs. We refer to the works in
Refs. [16,64–66,70–74] for more details on matching.
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dependence. However, in the context of the sum rules, we
observe that this recipe fails.
For mq ≠ 0, we find

Z
1

0

dxgð1aÞ1 ðxÞ
���ϵUV
mq

¼αsCF

2π

�
1

2
PUVþ ln

μUV
mq

þ2

β
þ1

�

¼
Z

1

0

dxgð1aÞTðsÞðxÞ
���ϵUV
mq

þ
Z

1

0

dxgð1aÞTðcÞðxÞ
���ϵUV
mq

;

ð41Þ

where β < 0 denotes the x ¼ 1 pole present in
diagram 1(a).7 Clearly, one has to include the contribution
from the δðxÞ term in order to satisfy the BC sum rule
[10,11]. When working with DR for the IR, we find that the
BC sum rule is satisfied, although, as mentioned before, the
δðxÞ term drops out from gTðxÞ,Z

1

0

dx gð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼ αsCF

2π

�
1

2
ðPUV − PIRÞ þ

1

2
ln
μ2UV
μ2IR

�

¼
Z

1

0

dxgð1aÞTðcÞðxÞ
���ϵUV
ϵIR

: ð42Þ

We note in passing that our results for g1 and gT in the QTM
allow us to make a comparison to the calculation of the
structure function gs:f:2 . for deep-inelastic scattering off a
quark target [75,76]. Specifically, the UV-divergent terms
can be compared to terms in gs:f:2 ðx;Q2Þ that are propor-
tional to lnðQ2=m2

qÞ, and we find complete agreement.
Furthermore, we refer to Appendix for a subtle point about
DR for IR when ðϵIR; ϵUVÞ are held finite.
In the cutoff scheme, one can basically read off from the

results that the UV divergent parts of g1ðxÞ and gTðxÞ
satisfy the BC sum rule—compare also Refs. [9,10].
However, for the first time, we observe a violation of
the BC sum rule for finite terms when using a cutoff
regulator. For mg ≠ 0, we find

Z
1

0

dx gð1aÞ1 ðxÞ
���ΛUV

mg

¼ αsCF

2π

�
ln
ΛUV

mg
þ 1

4

�
; ð43Þ

Z
1

0

dx gð1aÞT ðxÞ
���ΛUV

mg

¼ αsCF

2π

�
ln
ΛUV

mg
þ 1

4
þ 1

2

�
; ð44Þ

while for mq ≠ 0, we find

Z
1

0

dx gð1aÞ1 ðxÞ
���ΛUV

mq

¼ αsCF

2π

�
ln
ΛUV

mq
þ 2

β
þ 3

2

�
; ð45Þ

Z
1

0

dx gð1aÞT ðxÞ
���ΛUV

mq

¼ αsCF

2π

�
ln
ΛUV

mq
þ 2

β
þ 3

2
þ 1

2

�
: ð46Þ

It is worthwhile to pause and contemplate on why is there a
difference in the finite terms for the two UV schemes and,
in particular, why is there a violation in the cutoff scheme?
The underlying reason is rather simple. For cutoff and DR
to give the same result, one must have the same prefactor in
front of the UV-divergent integrals. If not, then the finite
terms will depend on scheme. For example, consider the
integrals8

μ2ϵð1−ϵÞ
Z

∞

0

dn−2k⊥
ð2πÞn−2

k2⊥
ðk2⊥þQ2Þ2≈

1

4π

�
PUVþ ln

μ2UV
Q2

−2

�
;

Z
ΛUV

0

d2k⊥
ð2πÞ2

k2⊥
ðk2⊥þQ2Þ2≈

1

4π

�
ln
Λ2
UV

Q2
−1

�
; ð47Þ

with Q2 > 0. We see that the UV-divergent factors in the
two schemes coincide. The difference in the finite factor
can be attributed to an extra (−ϵ) term in DR. This is
exactly the reason why we find different finite factors in the

results for gð1aÞ1 ðxÞ in the two UV schemes, whereas the
result for the canonical part of gTðxÞ remains unchanged.
We now pose a hypothetical situation: what if one con-
sistently carries out the algebra of the Dirac matrices in four
dimensions, and then switches on DR or cutoff only at the
time of carrying out the k⊥ integrals? It is straightforward to
check that this approach leads to the same final result in the
two UV schemes, including the finite factors. But switching
on DR right from the start, that is, keeping properly the
factors in ϵ, respects rotational invariance which underlies
the BC sum rule. This explains why the sum rule holds for
DR and fails for a cutoff.
Could we have avoided such a caveat with cutoff

schemes? If our goal was to “only” calculate the
moments/integrals of the PDFs, we could have right from
the start applied a cutoff to all four components of k, in the
same spirit as one does in textbooks on quantum field
theory. Wewill outline such an analysis in the context of the
h-sum rule in the next section. (The nontrivialities that stem
from such an analysis can be appreciated more in the case
of h-sum rule, which is the reason why we choose to
highlight this case. The qualitative outcome of this study is
however the same for both sum rules.)

2. h-sum rule

We first take up the calculations for h1ðxÞ. The diagram
in Fig. 1(a) contributes to h1ðxÞ as7Note that Eq. (31) has a term ∼1=1 − x. In order to carry out

its integral, we make the replacement 1=1 − x → 1=ð1 − xÞ1þβ,
with β < 0, leading to singularities proportional to 1=β. Such a
situation appears only for mq ≠ 0. The singularities get cancelled
when combining the diagrams in Figs. 1(a) and 2(a).

8By “divergent terms” in the two schemes, we mean PUV þ
ln μ2UV=Q

2 in DR, which translates to lnΛ2
UV=Q

2 for a cutoff. By
“finite terms”we mean terms other than the aforementioned ones.
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hð1aÞ1 ðxÞ ¼ −
g2sCFμ

2ϵ

2π
ð1 − xÞ

Z
dn−2k⊥
ð2πÞn−2

ð− ϵ2

1−ϵÞk2⊥ þ ϵð1þ x2Þm2
q þ 2ð1 − ϵÞxm2

q

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

gÞ2
: ð48Þ

The final results in the DR scheme are

hð1aÞ1 ðxÞjϵUV ¼

8>>>>><
>>>>>:

hð1aÞ1 ðxÞ
���ϵUV
mg

¼ 0;

hð1aÞ1 ðxÞ
���ϵUV
mq

¼ − αsCF
2π ð 2x

1−xÞ;

hð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼ 0;

ð49Þ

and in the cutoff scheme we get

hð1aÞ1 ðxÞjΛUV ¼

8>><
>>:

hð1aÞ1 ðxÞ
���ΛUV

mg

¼ 0;

hð1aÞ1 ðxÞ
���ΛUV

mq

¼ − αsCF
2π ð 2x

1−xÞ:
ð50Þ

The above results suggest that hð1aÞ1 ðxÞ is UV finite.
We now turn to hLðxÞ. Before the k⊥ integration is carried out, we find for the singular and canonical parts

hð1aÞLðsÞðxÞ ¼ −
g2sCFμ

2ϵ

2π
δðxÞ

Z
dn−2k⊥
ð2πÞn−2

1 − ϵ

ðk2⊥ þm2
qÞ
;

hð1aÞLðcÞðxÞ ¼
g2sCFμ

2ϵ

2π

Z
dn−2k⊥
ð2πÞn−2

xk2⊥ þ ð1 − 2ϵÞð1 − xÞk2⊥ − ð1 − x2Þm2
q þ xm2

g þ ð1 − ϵÞð1 − xÞm2
g

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

gÞ2
: ð51Þ

For mg ≠ 0, the singular part has two results [65]

hð1aÞLðsÞðxÞjϵUV ¼
8<
:

hð1aÞLðsÞðxÞ
���ϵUV
mq

¼ − αsCF
2π δðxÞ

�
PUV þ ln μ2UV

m2
q
− 1
�
;

hð1aÞLðsÞðxÞ
���ϵUV
ϵIR

¼ − αsCF
2π δðxÞ

�
PUV − PIR þ ln μ2UV

μ2IR

�
:

ð52Þ

The result for the canonical part with mg ≠ 0 is [65]

hð1aÞLðcÞðxÞ
���ϵUV
mg

¼ αsCF

2π

�
PUV þ ln

μ2UV
xm2

g
þ ð1 − xÞð1 − 2xÞ

x

�
: ð53Þ

The results with mq ≠ 0 and DR for the IR are [65]

hð1aÞL ðxÞ
���ϵUV
mq

¼ hð1aÞLðsÞðxÞ
����ϵUV
mq

þ hð1aÞLðcÞðxÞ
���ϵUV
mq

¼ −
αsCF

2π
δðxÞ

�
PUV þ ln

μ2UV
m2

q
− 1

�
þ αsCF

2π

�
PUV þ ln

μ2UV
ð1 − xÞ2m2

q
−

2

1 − x
− 2ð1 − xÞ

�
;

hð1aÞL ðxÞ
���ϵUV
ϵIR

¼ hð1aÞLðsÞðxÞ
���ϵUV
ϵIR

þ hð1aÞLðcÞðxÞ
���ϵUV
ϵIR

¼ −
αsCF

2π
δðxÞ

�
PUV − PIR þ ln

μ2UV
μ2IR

�
þ αsCF

2π

�
PUV − PIR þ ln

μ2UV
μ2IR

�
: ð54Þ

Note that the prefactors of the δðxÞ terms have an IR pole. In the cutoff scheme, the full result for hLðxÞ with mg ≠ 0 is
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hð1aÞL ðxÞ
���ΛUV

mg

¼ hð1aÞLðsÞðxÞ
���ΛUV þ hð1aÞLðcÞðxÞ

���ΛUV

mg

¼ −
αsCF

2π
δðxÞ

�
ln
Λ2
UV

m2
q

�

þ αsCF

2π

�
ln
Λ2
UV

xm2
g
þ 1 − x

x

�
: ð55Þ

With mq ≠ 0, we get

hð1aÞL ðxÞ
���ΛUV

mq

¼ hð1aÞLðsÞðxÞ
���ΛUV

mq

þ hð1aÞLðcÞðxÞ
���ΛUV

mq

¼ −
αsCF

2π
δðxÞ

�
ln
Λ2
UV

m2
q

�

þ αsCF

2π

�
ln

Λ2
UV

ð1 − xÞ2m2
q
−

2

1 − x

�
: ð56Þ

We are now ready to check the h-sum rule. The h-sum
rule is violated for mg ≠ 0, in both DR and cutoff schemes,
because the IR poles associated with the δðxÞ terms in
hLðxÞ contribute either lnðmqÞ or 1=ϵIR, both of which are
clearly absent in h1ðxÞ. For mq ≠ 0, and with DR for the
UV, we find,Z

1

0

dxhð1aÞ1 ðxÞ
���ϵUV
mq

¼αsCF

2π

�
2

β
þ2

�

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
���ϵUV
mq

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
���ϵUV
mq

;

ð57Þ
where β denotes the x ¼ 1 pole present in diagram 1(a).
Therefore, the h-sum rule holds provided one takes the δðxÞ
contribution into account. Similar studies in the past have
also advanced the necessity of including the zero-mode
contributions for the validity of the sum rules [10,11,77].
It is interesting to discuss the above result. Recall that

hð1aÞ1 ðxÞ is UV finite. In this context, we note that the

integrals of hð1aÞ1 ðxÞ and hð1aÞL ðxÞ agree because the UV
poles from the (integral of the) singular and the canonical
terms exactly cancel. Also, the lnðμUV=mqÞ terms, present

in hð1aÞL ðxÞ, cancel between these two terms. It is straight-
forward to verify that the h-sum rule holds when one does
DR for both UV and IR:Z

1

0

dxhð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼0

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
���ϵUV
ϵIR

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
���ϵUV
ϵIR

:

ð58Þ
We now proceed to check the validity of the h-sum rule

in the cutoff scheme. It is remarkable that the h-sum rule

continues to hold even in the cutoff scheme when one
works with mq ≠ 0:

Z
1

0

dxhð1aÞ1 ðxÞ
���ΛUV

mq

¼αsCF

2π

�
2

β
þ2

�

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
���ΛUV

mq

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
���ΛUV

mq

:

ð59Þ

Let us now examine why the h-sum rule continues to hold
in the cutoff scheme, since the BC sum rule does not and
since both sum rules are based on rotational invariance.
First of all, note that, just as in the case of DR, the

lnðΛUV=mqÞ terms, present in hð1aÞL ðxÞ, cancel between
the singular and the canonical terms. Now, notice that the
“extra” finite factors of δðxÞ and −2ð1 − xÞ present in the
DR scheme [see the first expression in Eq. (54), and
compare with Eq. (56)] integrate to zero. Therefore, the
absence of these terms in the cutoff scheme does not cause
an issue for the h-sum rule. We therefore conclude that the
h-sum rule accidentally holds in the QTM for the cutoff
scheme. This conclusion is also supported by the fact that
the h-sum rule is violated in the YM for a cutoff, as we
discuss below in more detail.
We now want to discuss the application of DR and cutoff

to all components of k, and consequently its impact on sum
rules. We first go through the basic steps for the DR

scheme. Our starting point for the calculation of hð1aÞ1 is

Z
dkþ

pþ si⊥h
ð1aÞ
1 ðkþÞ

¼ −
ig2sCFμ

2ϵ

4pþ

Z
dnk
ð2πÞn

Z
1

0

dy
2ð1 − yÞ
ðk2 −Q2Þ3Nh1ðkÞ; ð60Þ

where

Nh1ðkÞ ¼ 4ðn− 4Þsi⊥pþk2− 8ðn− 4Þsi⊥kþðk ·pÞ
− 8ðn− 4Þpþki⊥ðk · sÞþ 4ðn− 4Þsi⊥pþm2

qðy2 − 1Þ
þ 8si⊥pþm2

qððn− 2Þy− ðn− 4Þy2Þ; ð61Þ

Q2 ¼ ym2
g þ ð1 − yÞ2m2

q, and y is the Feynman parameter.
By using

Z
dnk
ð2πÞn

kμkν

ðk2 −Q2Þ3 ¼
�
i
4
Q2

ðπÞn=2
ð2πÞn

Γð2 − n=2Þ
ðQ2Þ3−n=2

�
gμν;

ð62Þ

and

Z
dnk
ð2πÞn

1

ðk2 −Q2Þ3 ¼ −
i
2

ðπÞn=2
ð2πÞn

Γð3 − n=2Þ
ðQ2Þ3−n=2 ; ð63Þ
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we find that the first three terms in Nh1ðkÞ cancel one
another, and the fourth term is proportional to ϵUV.
Therefore, the final result is given entirely by the last term
in Nh1ðkÞ:Z

dkþ

pþ hð1aÞ1 ðkþÞ
���ϵUV
ðmg;mqÞ

¼ −
αsCF

2π

Z
1

0

dy
2yð1 − yÞm2

q

Q2
:

ð64Þ

By taking the limits mq → 0 or mg → 0, we get back our
results with DR applied to the transverse dimensions. Our

starting point for hð1aÞL is

Z
dkþ

pþ
mqλ

pþ hð1aÞL ðkþÞ

¼ −
ig2sCFμ

2ϵ

4pþ

Z
dnk
ð2πÞn

Z
1

0

dy
2ð1 − yÞ
ðk2 −Q2Þ3NhLðkÞ; ð65Þ

where

NhLðkÞ ¼ 4ðn − 4Þλmqk2 þ 8ðn − 4Þs−kþðk · pÞ
− 8ðn − 4Þsþk−ðk · pÞ − 8ðn − 4Þp−kþðk · sÞ
þ 8ðn − 4Þpþk−ðk · sÞ þ 8ðn − 2Þλm3

qy

− 4ðn − 4Þλm3
qð1þ y2Þ: ð66Þ

The second, third, fourth, and the fifth terms in NhLðkÞ
add up to cancel exactly the contribution from the
first term in NhLðkÞ. The seventh term is proportional
to ϵUV, and it is the sixth term only that contributes
to hLðxÞ,Z

dkþ

pþ hð1aÞL ðkþÞ
���ϵUV
ðmg;mqÞ

¼ −
αsCF

2π

Z
1

0

dy
2yð1 − yÞm2

q

Q2
:

ð67Þ

This means that the h-sum rule is satisfied. A few
comments are in order: First, there is no need for a
separate discussion of the zero modes in this approach.
Since the sum rule is satisfied, the contribution of the
zero modes is automatically included in such an analysis.
Second, for mg ≠ 0, it is clear from Eq. (67) that this
approach does not give the same final result for

R
hL,

when compared to the case where we first extract the x
dependence and then calculate the moment; but,

R
h1

agrees. Third, in this approach, we observe that there is
no problem in using a nonzero gluon mass as an IR
regulator. This is different from the scenario when we
first extract the x-dependent results, and then calculate
their moments.
We now turn to the cutoff scheme. To evaluate the

integrals, we first perform a Wick rotation, which allows us

to carry out the integral in Euclidean space instead of
Minkowski space. By using

Z
d4k
ð2πÞ4

k2

ðk2 −Q2Þ3 ¼
i

32π2

�
2 ln

Λ2
UV

Q2
− 3

�
; ð68Þ

Z
d4k
ð2πÞ4

1

ðk2 −Q2Þ3 ¼ −
i

32π2
1

Q2
; ð69Þ

Z
d4k
ð2πÞ4

kμðk · aÞ
ðk2 −Q2Þ3 ¼

aμ

4

�
i

32π2

�
2 ln

Λ2
UV

Q2
− 3

�	

kμkν →
1

4
gμνk2; a ¼ ðp; sÞ; ð70Þ

we find

Z
dkþ

pþ hð1aÞ1 ðkþÞ
���ΛUV

ðmg;mqÞ
¼ −

αsCF

2π

Z
1

0

dy
2yð1 − yÞm2

q

Q2
;

ð71Þ

¼
Z

dkþ

pþ hð1aÞL ðkþÞ
���ΛUV

ðmg;mqÞ
: ð72Þ

Therefore, we see that the h-sum rule is satisfied when
cutoff is applied to all four components of k. This result is
not surprising, because obviously without a bias for any
specific direction, the rotational invariance is no longer
broken. Once again, with a cutoff, mg ≠ 0 does not pose an
issue as an IR regulator.

B. Results in Yukawa model

The YM describes the pointlike interaction between
fermions and a scalar field. The diagrams in Figs. 1(a)
and 2(a), with the obvious replacement of the gluon
propagator by the propagator of the scalar, are the only
ones that contribute to the PDFs in this model.

1. BC sum rule

Figure 1(a) contributes to g1ðxÞ as

gð1aÞ1 ðxÞ ¼ g2Yμ
2ϵ

2ð2πÞ ð1 − xÞ

×
Z

dn−2k⊥
ð2πÞn−2

ð−k2⊥ þ ð1þ xÞ2m2
qÞ

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

sÞ2
; ð73Þ

where gY is the counterpart of gs, and ms is the mass of the
scalar particle. Applying DR for the UV, we obtain the
following results for g1ðxÞ in three different IR schemes:
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gð1aÞ1 ðxÞjϵUV ¼

8>>>>><
>>>>>:

gð1aÞ1 ðxÞ
���ϵUV
ms

¼ − αY
4π ð1 − xÞ

�
PUV þ ln μ2UV

xm2
s
− 1
�
;

gð1aÞ1 ðxÞ
���ϵUV
mq

¼ − αY
4π ð1 − xÞ

�
PUV þ ln μ2UV

ð1−xÞ2m2
q
− 2ð1þx2Þ

ð1−xÞ2
�
;

gð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼ − αY
4π ð1 − xÞ

�
PUV − PIR þ ln μ2UV

μ2IR

�
;

ð74Þ

where αY is the counterpart of αs. Applying a cutoff for the UV, we get

gð1aÞ1 ðxÞjΛUV ¼
8<
:

gð1aÞ1 ðxÞ
���ΛUV

ms

¼ − αY
4π ð1 − xÞ

�
ln Λ2

UV
xm2

s
− 1
�
;

gð1aÞ1 ðxÞ
���ΛUV

mq

¼ − αY
4π ð1 − xÞ

�
ln Λ2

UV
ð1−xÞ2m2

q
− 2ð1þx2Þ

ð1−xÞ2
�
:

ð75Þ

For the sake of completeness, we mention the results for the fermion self-energy diagram in YM. In DR, we obtain

∂ΣðpÞ
∂=p jϵUV ¼

8>>>>><
>>>>>:

∂ΣðpÞ
∂p
���ϵUV
ms

¼ − αY
4π

R
1
0 dy

�
yPUV þ y ln μ2UV

ym2
s

�
;

∂ΣðpÞ
∂p
���ϵUV
mq

¼ − αY
4π

R
1
0 dy

�
ð1 − yÞPUV þ ð1 − yÞ ln μ2UV

ð1−yÞ2m2
q
þ 4y

1−y

�
;

∂ΣðpÞ
∂p
���ϵUV
ϵIR

¼ − αY
4π

R
1
0 dyy

�
PUV − PIR þ ln μ2UV

μ2IR

�
;

ð76Þ

while for a cutoff we find

∂ΣðpÞ
∂=p jΛUV ¼

8>><
>>:

∂ΣðpÞ
∂p
���ΛUV

ms

¼ − αY
4π

R
1
0 dy

�
y ln Λ2

UV
ym2

s

�
;

∂ΣðpÞ
∂p
���ΛUV

mq

¼ − αY
4π

R
1
0 dy

�
ð1 − yÞ ln Λ2

UV
ð1−yÞ2m2

q
þ 4y

1−y

�
:

ð77Þ

Turning now to gTðxÞ in YM, we can once again split the contribution from Fig. 1(a) into a singular and a canonical part.
As a first step, one obtains the following expressions for the singular and canonical parts of gTðxÞ:

gð1aÞTðsÞðxÞ ¼
g2Yμ

2ϵ

2ð2πÞ δðxÞ
Z

dn−2k⊥
ð2πÞn−2

1

ðk2⊥ þm2
qÞ
;

gð1aÞTðcÞðxÞ ¼ −
g2Yμ

2ϵ

2ð2πÞ
Z

dn−2k⊥
ð2πÞn−2

2k2⊥ − ð1 − xÞ k2⊥
1−ϵ − 2ð1 − x2Þm2

q þ ð1þ xÞm2
s

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

sÞ2
: ð78Þ

Working with ms ≠ 0 leads to the following two results for the singular parts:

gð1aÞTðsÞðxÞjϵUV ¼
8<
:

gð1aÞTðsÞðxÞ
���ϵUV
mq

¼ αY
4π δðxÞ

�
PUV þ ln μ2UV

m2
q

�
;

gð1aÞTðsÞðxÞ
���ϵUV
ϵIR

¼ αY
4π δðxÞ

�
PUV − PIR þ ln μ2UV

μ2IR

�
:

ð79Þ

For the canonical part with ms ≠ 0, we get

gð1aÞTðcÞðxÞ
���ϵUV
ms

¼ −
αY
4π

�
ð1þ xÞPUV þ ð1þ xÞ ln μ

2
UV

xm2
s
þ 1 − x

x

�
: ð80Þ

Finally, with mq ≠ 0 and DR for the IR, we find

SHOHINI BHATTACHARYA and ANDREAS METZ PHYS. REV. D 105, 054027 (2022)

054027-12



gð1aÞT ðxÞ
���ϵUV
mq

¼ gð1aÞTðsÞðxÞ
���ϵUV
mq

þ gð1aÞTðcÞðxÞ
���ϵUV
mq

¼ αY
4π

δðxÞ
�
PUV þ ln

μ2UV
m2

q

�
−
αY
4π

�
ð1þ xÞPUV þ ð1þ xÞ ln μ2UV

ð1 − xÞ2m2
q
−

4

1 − x

�
; ð81Þ

gð1aÞT ðxÞ
����ϵUV
ϵIR

¼ gð1aÞTðsÞðxÞ
����ϵUV
ϵIR

þ gð1aÞTðcÞðxÞ
����ϵUV
ϵIR

¼ αY
4π

δðxÞ
�
PUV − PIR þ ln

μ2UV
μ2IR

�
−
αY
4π

ð1þ xÞ
�
PUV − PIR þ ln

μ2UV
μ2IR

�
: ð82Þ

For the singular part in the cutoff scheme, we find

gð1aÞTðsÞðxÞ
����ΛUV

mq

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
: ð83Þ

The full result for gTðxÞ with ms ≠ 0 is

gð1aÞT ðxÞ
����ΛUV

ms

¼ gð1aÞTðsÞðxÞ
����ΛUV þ gð1aÞTðcÞðxÞ

����ΛUV

ms

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
−
αY
4π

�
ð1þ xÞ lnΛ

2
UV

xm2
s
þ ð1 − xÞ þ 1 − x

x

�
: ð84Þ

With mq ≠ 0, we get

gð1aÞT ðxÞ
����ΛUV

mq

¼ gð1aÞTðsÞðxÞ
����ΛUV

mq

þ gð1aÞTðcÞðxÞ
����ΛUV

mq

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
−
αY
4π

�
ð1þ xÞ ln Λ2

UV

ð1 − xÞ2m2
q
−

4

1 − x
þ ð1 − xÞ

�
: ð85Þ

We now proceed to check whether or not the BC sum rule
holds in the YM. First of all, notice that, in contrast to the
QTM, the zero-mode contributions survive in the YM.Also,
different from theQTM, the prefactors of these contributions
are IR divergent in the two UV schemes. A consequence of
this is that there is a violation of the BC sum rulewhen using
ms ≠ 0 in both UV schemes. Furthermore, working with
ms ≠ 0 leads to 1=x poles as x → 0 in the canonical part of
gTðxÞ. Hence, the lowest moment of gTðxÞ is not defined in
the YM with ms ≠ 0. In fact, divergent terms like 1=x are
typically observed forms=g ≠ 0. In theQTM, these terms can
be seen in the canonical parts of hLðxÞ [65]. When eithermq

orDR is used for the IR, it is straightforward to verify that the
BC sum rule holds when DR is applied for the UVand when
the zero-mode contributions are taken into account.
Specifically, we find

Z
1

0

dxgð1aÞ1 ðxÞ
����ϵUV
mq

¼αY
4π

�
−
1

2
PUV− ln

μUV
mq

−
4

β
−
7

2

�

¼
Z

1

0

dxgð1aÞTðsÞðxÞ
����ϵUV
mq

þ
Z

1

0

dxgð1aÞTðcÞðxÞ
����ϵUV
mq

;

ð86Þ

and

Z
1

0

dxgð1aÞ1 ðxÞ
����ϵUV
ϵIR

¼αY
4π

�
−
1

2
ðPUV−PIRÞ−

1

2
ln
μ2UV
μ2IR

�

¼
Z

1

0

dxgð1aÞTðsÞðxÞ
����ϵUV
ϵIR

þ
Z

1

0

dxgð1aÞTðcÞðxÞ
����ϵUV
ϵIR

;

ð87Þ

where β denotes the pole at x ¼ 1 present in diagram 1(a).
When cutoff is switched on for the UV, the BC sum

rule continues to hold for the UV divergent parts of g1ðxÞ
and gTðxÞ. Note that the finite factors for g1ðxÞ in the two
UV schemes are exactly the same. On the other hand,
they change for the canonical part of gTðxÞ. The source
of this change is the scheme dependence of the prefactor
for the UV divergent term in Eq. (78) (see the second
term in the canonical part). Due to the absence of a
similar “compensating” change elsewhere in Eq. (78), the
BC sum rule is violated for the finite parts. With mq ≠ 0,
we find,
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Z
1

0

dxgð1aÞ1 ðxÞ
����ΛUV

mq

¼αY
4π

�
−ln

ΛUV

mq
−
4

β
−
7

2

�
; ð88Þ

Z
1

0

dxgð1aÞT ðxÞ
����ΛUV

mq

¼
Z

1

0

dxgð1aÞTðsÞðxÞ
����ΛUV

mq

þ
Z

1

0

dxgð1aÞTðcÞðxÞ
����ΛUV

mq

¼αY
4π

�
−ln

ΛUV

mq
−
4

β
−
7

2
−
1

2

�
: ð89Þ

Most of the above findings are in agreement with what
we see in the QTM. The case of mg ≠ 0 is however
distinct for the two models. The difference can be traced
back to the IR finiteness of the prefactors of the zero-
mode terms in QTM.

2. h-sum rule

Figure 1(a) contributes to h1ðxÞ as

hð1aÞ1 ðxÞ ¼ g2Yμ
2ϵ

2ð2πÞ ð1 − xÞ
Z

dn−2k⊥
ð2πÞn−2

×
ð1 − 1

1−ϵÞk2⊥ þ ð1þ xÞ2m2
q

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

sÞ2
: ð90Þ

Using DR for the k⊥ integrals, we obtain

hð1aÞ1 ðxÞjϵUV ¼

8>>>>><
>>>>>:

hð1aÞ1 ðxÞ
���ϵUV
ms

¼−αY
4π ð1−xÞ;

hð1aÞ1 ðxÞ
���ϵUV
mq

¼ αY
4π

�
ð1þxÞ2
1−x −ð1−xÞ

�
;

hð1aÞ1 ðxÞ
���ϵUV
ϵIR

¼0:

ð91Þ

Using a cutoff for the k⊥ integrals, we find

hð1aÞ1 ðxÞjΛUV ¼

8>><
>>:

hð1aÞ1 ðxÞ
���ΛUV

ms

¼ 0;

hð1aÞ1 ðxÞ
���ΛUV

mq

¼ αY
4π

�
ð1þxÞ2
1−x

�
:

ð92Þ

Just as in the QTM, the contribution from the diagram in
Fig. 1(a) to h1ðxÞ is UV finite.
Moving on to hLðxÞ, we obtain the following general

expressions for the singular and canonical parts:

hð1aÞLðsÞðxÞ ¼
g2Yμ

2ϵ

2ð2πÞ δðxÞ
Z

dn−2k⊥
ð2πÞn−2

1

ðk2⊥ þm2
qÞ
;

hð1aÞLðcÞðxÞ ¼ −
g2Yμ

2ϵ

2ð2πÞ
Z

dn−2k⊥
ð2πÞn−2

×
2xk2⊥ − 2ð1 − x2Þm2

q þ ð1þ xÞm2
s

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

sÞ2
: ð93Þ

As discussed, the singular part for ms ≠ 0 has two results,

hð1aÞLðsÞðxÞjϵUV ¼

8>><
>>:
hð1aÞLðsÞðxÞ

���ϵUV
mq

¼ αY
4π δðxÞ

�
PUVþ lnμ2UV

m2
q

�
;

hð1aÞLðsÞðxÞ
���ϵUV
ϵIR

¼ αY
4π δðxÞ

�
PUV−PIRþ lnμ2UV

μ2IR

�
:

ð94Þ

With ms ≠ 0, we find for the canonical part

hð1aÞLðcÞðxÞ
����ϵUV
ms

¼−
αY
4π

�
2xPUVþ2x ln

μ2UV
xm2

s
þð1−xÞð1þ2xÞ

x

�
:

ð95Þ
With mq ≠ 0 and DR for the IR, the full results for hLðxÞ
read

hð1aÞL ðxÞ
���ϵUV
mq

¼ hð1aÞLðsÞðxÞ
���ϵUV
mq

þ hð1aÞLðcÞðxÞ
���ϵUV
mq

¼ αY
4π

δðxÞ
�
PUV þ ln

μ2UV
m2

q

�
−
αY
4π

�
2xPUV

þ 2x ln
μ2UV

ð1 − xÞ2m2
q
−
2ð−x2 þ 2xþ 1Þ

1 − x

�
;

ð96Þ

hð1aÞL ðxÞ
���ϵUV
ϵIR

¼ hð1aÞLðsÞðxÞ
���ϵUV
ϵIR

þ hð1aÞLðcÞðxÞ
���ϵUV
ϵIR

¼ αY
4π

δðxÞ
�
PUV − PIR þ ln

μ2UV
μ2IR

�

−
αY
4π

2x
�
PUV − PIR þ ln

μ2UV
μ2IR

�
: ð97Þ

The full result for hLðxÞ in the cutoff scheme withms ≠ 0 is

hð1aÞL ðxÞ
���ΛUV

ms

¼ hð1aÞLðsÞðxÞ
���ΛUV þ hð1aÞLðcÞðxÞ

���ΛUV

ms

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
−
αY
4π

�
2x ln

Λ2
UV

xm2
s

þ ð1 − xÞð1þ 2xÞ
x

�
: ð98Þ

Finally, with mq ≠ 0 we find

hð1aÞL ðxÞ
����ΛUV

mq

¼ hð1aÞLðsÞðxÞ
����ΛUV

mq

þ hð1aÞLðcÞðxÞ
����ΛUV

mq

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
−
αY
4π

�
2x ln

Λ2
UV

ð1 − xÞ2m2
q

−
2ð−x2 þ 2xþ 1Þ

1 − x

�
: ð99Þ

We now turn to the calculation of the h-sum rule. We find
that, irrespective of the choice of the UV scheme, the δðxÞ
terms in hLðxÞ are accompanied by prefactors that exhibit IR
divergence. The h-sum rule is therefore not valid when
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working with ms ≠ 0. Furthermore, with ms ≠ 0, there are
terms like 1=x, which make the x integrals diverge anyway.
These complications appear in the QTM as well. When mq

or DR is employed for the IR, the h-sum rule holds provided
one applies DR for the UV. The corresponding results are

Z
1

0

dxhð1aÞ1 ðxÞ
����ϵUV
mq

¼αY
4π

�
−
4

β
−4
�

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
����ϵUV
mq

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
����ϵUV
mq

;

ð100Þ

where β reflects the x ¼ 1 pole, and

Z
1

0

dxhð1aÞ1 ðxÞ
����ϵUV
ϵIR

¼0

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
����ϵUV
ϵIR

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
����ϵUV
ϵIR

:

ð101Þ

As is evident from the above results, it is mandatory to
include the zero-mode contribution for the validity of the
h-sum rule. In fact, these zero-mode contributions cancel the
UV poles and the lnðmqÞ terms present in the canonical

terms, such that
R
dxhð1aÞL ðxÞ is UV finite.

Perhaps the most interesting finding in the Yukawa
model is that the UV-finite parts in the cutoff scheme
violate the h-sum rule. With mq ≠ 0, we find

Z
1

0

dxhð1aÞ1 ðxÞ
����ΛUV

mq

¼αY
4π

�
−
4

β
−
7

2

�
; ð102Þ

Z
1

0

dxhð1aÞL ðxÞ
����ΛUV

mq

¼
Z

1

0

dxhð1aÞLðsÞðxÞ
����ΛUV

mq

þ
Z

1

0

dxhð1aÞLðcÞðxÞ
����ΛUV

mq

¼αY
4π

�
−
4

β
−
7

2
−
1

2

�
: ð103Þ

The first term in the expression for h1ðxÞ [see Eq. (90)]
makes all the difference. Clearly, this is the term that gives
rise to a different finite factor in the cutoff scheme. On the
other hand, the result for hLðxÞ remains unchanged.
Obviously, in such a situation the sum rule could not have
been valid simultaneously in the two UV schemes, and we
indeed find a violation in the cutoff scheme. Let us mention
that by performing calculations in the YM, we have a
strong support to the picture that the h-sum rule is by no
means “superior” to the BC sum rule. The fact that the
h-sum rule holds in QTM can therefore be regarded as an
“accident.” Generally, our work shows that, contrary to
what is frequently assumed in the literature, it is not
sufficient to check the sum rules for only the UV-divergent
parts of the perturbative corrections. In fact, similar to what
we are reporting here, there may well exist other cases of
violation of relations that are based on Lorentz invariance
in schemes that break rotational invariance. We close this
section by mentioning that the sum rules hold in the YM if
the cutoff is applied in a rationally invariant manner. This
analysis can be preformed in exactly the same manner as
what we have shown in Sec. III A 2. The (nontrivial)
observation of the sum rule holding withmg ≠ 0 as pointed
out in the QTM, applies for YM as well.

IV. ANALYTICAL RESULTS FOR
THE QUASI-PDFS

This section provides analytical results for the quasi-
PDFs (g1;QðxÞ; gT;QðxÞ) and (h1;QðxÞ; hL;QðxÞ) in the QTM
and the YM. Once again, our focus will be on the diagram
in Fig. 1(a), which is sufficient for the check of the sum
rules—see Eq. (39) and the associated discussion.

A. Results in quark target, model

The correlator for the quasi-PDFs for Fig. 1(a) is
given by

Φ½Γ�
Q ðx;p3Þ ¼ −

ig2sCFμ
2ϵ

2ð2πÞ2
Z

dn−2k⊥
ð2πÞn−2

Z
dk0

ūðpÞðγμð=kþmqÞΓð=kþmqÞγμÞuðpÞ
DPDF

: ð104Þ

The results for the quasi-PDFs can in general be cast in the form

qQðx;p3Þ ¼ qQðsÞðx;p3Þ þ qQðcÞðx;p3Þ

¼ −
g2sCFμ

2ϵ

2ð2πÞ
Z

dn−2k⊥
ð2πÞn−2NqðsÞ −

ig2sCFμ
2ϵ

ð2πÞ2
Z

dn−2k⊥
ð2πÞn−2

Z
dk0

NqðcÞ
DPDF

: ð105Þ

Here, qQðsÞ is the singular term, which is relevant for gT;QðxÞ and hL;QðxÞ only, while qQðcÞ is the canonical term. The
numerators for the specific PDFs are
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Ng1ðcÞ ¼
2

δ0
fð1 − ϵÞδ0p3ðk0Þ2 þ 2k0ðϵm2

q − ð1 − ϵÞxp2
3Þ − ð1 − ϵÞδ0p3ðk2⊥ − x2p2

3 þm2
qÞg; ð106Þ

NgTðsÞ ¼
ϵp3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð107Þ

NgTðcÞ ¼ 2p3ððk0Þ2 − x2p2
3 þm2

q − ϵm2
gÞ; ð108Þ

Nh1ðcÞ ¼
2

δ0



ϵδ0p3ðk0Þ2 þ 2k0ðð1 − ϵÞm2

q − ϵxp2
3Þ þ ϵ

�
1 −

1

1 − ϵ

�
δ0p3k2⊥ þ ϵδ0p3ðx2p2

3 þm2
qÞ
�
; ð109Þ

NhLðsÞ ¼
ð1 − ϵÞp3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð110Þ

NhLðcÞ ¼ 2p3ððk0Þ2 − x2p2
3 þ ð−1þ 2ϵÞk2⊥ þm2

q − ð1 − ϵÞm2
gÞ; ð111Þ

and the denominator is given as

DPDF ¼ ðk2 −m2
q þ iεÞ2ððP − kÞ2 −m2

g þ iεÞ: ð112Þ

In these expressions, δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

q=p2
3

q
. We perform the k0 integral by means of contour integration. The k0 poles in the

complex plane are given by

k01� ¼ k02� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2

3 þ k2⊥ þm2
q − iε

q
; ð113Þ

k03� ¼ δ0p3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2p2

3 þ k2⊥ þm2
g − iε

q
: ð114Þ

Since the two quark propagators are identical, one has double poles arising from the quark lines. Choosing to close the
contour in the upper half plane, we pick up contributions from the (single) pole k03− and the double pole k01− ¼ k02−. In the
specific case of g1;Q, the result after the k0 integration reads

g1;Qðx;p3Þ ¼ g2sCFμ
2ϵ

2π

Z
dn−2k⊥
ð2πÞn−2

�
Ng1ðk03−Þ

ðk03− − k01þÞ2ðk03− − k01−Þ2ðk03− − k03þÞ

þ Ng1
0ðk01−Þ

ðk01− − k01þÞ2ðk01− − k03þÞðk01− − k03−Þ
−

2Ng1ðk01−Þ
ðk01− − k01þÞ3ðk01− − k03þÞðk01− − k03−Þ

−
Ng1ðk01−Þ

ðk01− − k01þÞ2ðk01− − k03þÞ2ðk01− − k03−Þ
−

Ng1ðk01−Þ
ðk01− − k01þÞ2ðk01− − k03þÞðk01− − k03−Þ2

	
; ð115Þ

where N0
g1 ≡ d

dk0 Ng1. There is no need to carry out the k⊥
integral analytically. By keeping p3 finite, we will be
evaluating the k⊥ integral numerically using DR and a
cutoff. Note that the above form for the quasi-PDFs holds
true for any x. We want to mention at this point that for the
twist-2 light-cone PDFs one can use the cut-graph method,
which amounts to putting the gluon on-shell. However, this
is not the case for the quasi-PDFs. Although the first term in
the above equation corresponds exactly to the cut-graph
method, all of the other terms provide finite contribution to
the quasi-PDFs in all regions of x. Specifically, for the
twist-2 case, we pointed out that one cannot recover the

light-cone PDFs from quasi-PDFs for x < 0, even in the
limit p3 → ∞, if quasi-PDFs are calculated in the cut-graph
approach [78]. The problem with using the cut-graph
method is even more serious at twist-3. Calculation of
light-cone and quasi-PDFs in a cut-graph method excludes
the contribution from the zero modes, which by now we
know is crucial to satisfy the sum rules [10,77].

B. Results in Yukawa model

For quasi-PDFs in the YM, the general structure of the
singular term is
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qQðsÞðx;p3Þ ¼ g2Yμ
2ϵ

4ð2πÞ
Z

dn−2k⊥
ð2πÞn−2NqðsÞ; ð116Þ

while the canonical terms are given by Eqs. (105) and (115),
but with an overall sign, and of course without the color
factors as well as the replacement of the coupling constant.
The numerators for the different PDFs are given by

Ng1ðcÞ ¼
p3

δ0



δ0ðk0Þ2 −

2k0

p3
ðxp2

3 −m2
qÞ

þ δ0ð−k2⊥ þ x2p2
3 þm2

qÞ
�
; ð117Þ

NgTðsÞ ¼
p3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð118Þ

NgTðcÞ ¼
p3

mq

�
2mqðk0Þ2 − 2mqk2⊥ þmq

k2⊥
1 − ϵ

− 2mqx2p2
3 þ 2m3

q −mqm2
s

�
; ð119Þ

Nh1ðcÞ ¼
p3

δ0



δ0ðk0Þ2 −

2k0

p3
ðxp2

3 −m2
qÞ

þ
�
1 −

1

1 − ϵ

�
δ0k2⊥ þ δ0ðx2p2

3 þm2
qÞ
�
; ð120Þ

NhLðsÞ ¼
p3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð121Þ

NhLðcÞ ¼
p3

mq
ð2mqðk0Þ2 − 2mqx2p2

3 þ 2m3
q −mqm2

sÞ:

ð122Þ

The caveats regarding working with cut-graph methods,
mentioned in the context of the QTM, also apply for
the YM.

C. Analytical proof of sum rules for quasi-PDFs
in quark target model

In this section, we show that the UV-divergent parts of
quasi-PDFs satisfy the BC-type sum rules. (For the sake
of analytical simplicity, we are limiting ourselves to the
UV-divergent parts only. However, in the next section, we
provide numerical results for the full results of the quasi-
PDFs.) We provide a sample calculation in the QTM, in the
instance that one works with mq ≠ 0 as an IR regulator. We
provide the most important steps involved in this check
with gT;Q and hL;Q as examples. We begin with gT;Q which
is calculated as

mqsi⊥
p3

gð1aÞT;QðxÞ ¼ −
ig2sCFμ

2ϵ

4

Z
∞

−∞

dnk
ð2πÞn

Tr½ðpþmqÞð1þ γ5=sÞγμð=kþmqÞγi⊥γ5ð=kþmqÞγμ�
ðk2 −m2

q þ iεÞ2ððp − kÞ2 −m2
g þ iεÞ δ

�
x −

k3

p3

� 1

p3

¼ gð1aÞT;QðsÞðxÞ þ gð1aÞT;QðcÞðxÞ; ð123Þ

with

gð1aÞT;QðsÞðxÞ ¼ −
αsCF

2π

ϵUVp3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2

3 þm2
q

q ; ð124Þ

gð1aÞT;QðcÞðxÞ ¼
αsCF

2π

Z
1

0

dy


ð1 − yÞ
2Q

þ ð1 − yÞðx2 − y2Þ
2Q3

−
ð1 − yÞð1þ y2Þρq

2Q3
þ ϵUVð1 − yÞ

Q

�
; ð125Þ

where

ρq ¼
m2

q

p2
3

; ð126Þ

Q2 ¼ðy − xÞ2 þ ð1 − yÞ2ρq: ð127Þ

In order to arrive at these expressions, we have taken a
slightly different route compared to what we have presented
in the previous sections. As long as we want to limit
ourselves to the UV-divergent terms, it is better to invoke

the following steps for the sake of analytical simplicity:
combine the quark and gluon propagators via Feynman
parametrization, then perform

R
dk0 via contour integral,

and then, keeping p3 finite, integrate over transverse parton
momenta. These steps yield Eq. (124) and Eq. (125). In the
end, we integrate over the Feynman parameter y. Analyzing
the large-x behavior of the resulting expression, we get

gð1aÞT;QðcÞðxÞ ¼
αsCF

2π


 1
2x x → þ∞

− 1
2x x → −∞:

ð128Þ
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DR for the x integral in 1 − 2ϵ dimensions yields,9

Z
dx gð1aÞT;QðcÞðxÞ ¼

αsCF

2π


 1
4ϵUV

x → þ∞
1

4ϵUV
x → −∞;

ð129Þ

while
R
gð1aÞT;QðsÞ is UV finite. Hence,Z

dx gð1aÞT ðxÞ ¼
Z

dx gð1aÞT;QðxÞ ¼
αsCF

2π

� 1

2ϵUV

�
: ð130Þ

It is straightforward to repeat the corresponding steps for
g1;Q, for which we obtain,

gð1aÞ1;Q ðxÞ ¼
αsCF

2π


 1
2x x → þ∞

− 1
2x x → −∞;

ð131Þ

and hence,

Z
dx gð1aÞ1;Q ðxÞ ¼

αsCF

2π


 1
4ϵUV

x → þ∞
1

4ϵUV
x → −∞:

ð132Þ

Therefore,Z
dx gð1aÞ1 ðxÞ ¼

Z
dx gð1aÞ1;Q ðxÞ ¼

αsCF

2π

� 1

2ϵUV

�
: ð133Þ

This means Z
dx gð1aÞ1;Q ðxÞ ¼

Z
dx gð1aÞT;QðxÞ; ð134Þ

which establishes the BC sum rule for the UV-divergent
terms. We emphasize that our focus here is on the
asymptotic expressions for the quasi-PDFs since we are
interested in verifying the sum rules for the UV-divergent
terms only. Therefore, the symbol

R
dx in the above

expressions should not be misinterpreted as an x integral
over the entire range of x. In Sec. V we will provide a
numerical check of the sum rules by integrating over all x.
The equivalent of Eq. (124) and Eq. (125) for hL;Q is

hð1aÞL;QðsÞðxÞ ¼ −
αsCF

2π

p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2

3 þm2
q

q ; ð135Þ

hð1aÞL;QðcÞðxÞ ¼
αsCF

2π

Z
1

0

dy


ð1 − yÞ
2Q

þ ð1 − yÞðx2 − y2Þ
2Q3

−
ð1 − yÞð1þ y2Þρq

2Q3
þ ð1 − 2ϵUVÞð1 − yÞ

Q

�
:

ð136Þ

Picking out the UV-divergent terms at the end points
x → �∞, we obtain

hð1aÞL;QðsÞðxÞ ¼
αsCF

2π


− 1
x x → þ∞

1
x x → −∞;

ð137Þ

hð1aÞL;QðcÞðxÞ ¼
αsCF

2π


 1
x x → þ∞

− 1
x x → −∞:

ð138Þ

This meansZ
dx hð1aÞL ðxÞ ¼

Z
dx ðhð1aÞL;QðsÞðxÞ þ hð1aÞL;QðcÞðxÞÞ ¼ 0:

ð139Þ

A corresponding calculation for h1;Q yields

hð1aÞ1;Q ðxÞ ¼
αsCF

2π



OðϵUVÞ x → þ∞
OðϵUVÞ x → −∞;

ð140Þ

and hence, Z
dx hð1aÞ1 ðxÞ ¼

Z
dx hð1aÞ1;Q ðxÞ ¼ 0: ð141Þ

This meansZ
dx hð1aÞ1;Q ðxÞ ¼

Z
dx hð1aÞL;QðxÞ; ð142Þ

which establishes the h-sum rule for the UV-divergent
terms. It is straightforward to generalize this analysis to
calculations in the YM. In a similar fashion, one can check
the validity of the sum rules for the UV-divergent parts in
the cutoff scheme.

V. NUMERICAL RESULTS FOR SUM RULES

We now proceed to discuss numerical results for the sum
rules. We will provide results in the QTM only, since the
same analysis can be repeated in a straightforward manner
in the YM. We set the coupling constant gs and the color
factor CF to unity because our numerical checks do not
depend on the absolute values of these quantities. Our
“standard values” for the masses in the QTM are mq ¼
0.35 GeV and mg ¼ 0.1 GeV. We will present our results
for the sum rules with ϵUV ¼ ð0.6; 0.8Þ for the DR scheme,
and ΛUV ¼ ð1; 4Þ GeV for the cutoff scheme. We empha-
size that all the numerical results are for the exact
expressions of the PDFs, that is, the expressions which
are not expanded in the UV regulator. Now, it is clear that
conclusions from a model can only be considered robust if
different values of model parameters do not lead to
qualitatively different results. In order to establish this,

9Note that we “shift” DR for the UV divergences to the x
integrals, just for the sake of analytical simplicity. More dis-
cussion regarding applying DR for the k⊥ integrals or x integrals
can be found in the paragraph after Eq. (151).
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we will show some results with (extreme) values for the
gluon mass, mg ¼ 0.01 GeV and mg ¼ 0.7 GeV.
Table I shows results for the BC sum rule in the DR

scheme. These numerical results confirm that the sum rule
holds for both the light-cone and quasi-PDFs for finite
values of the DR parameter ϵUV. Specifically, one not only
has

Z
∞

−∞
dx g1;Qðx;p3ÞjϵUV ¼

Z
∞

−∞
dx gT;Qðx;p3ÞjϵUV ; ð143Þ

which is the BC sum rule for quasi-PDFs, but one also has

Z
∞

−∞
dx g1;Qðx;p3ÞjϵUV ¼

Z
1

0

dx g1ðxÞjϵUV ;Z
∞

−∞
dx gT;Qðx;p3ÞjϵUV ¼

Z
1

0

dx gTðxÞjϵUV : ð144Þ

As also shown in a model-independent manner in Sec. II,
Eq. (144) confirms that the (explicit) p3 dependence of the
quasi-PDFs drops out upon taking their lowest moment.
Results in Table I reflect that, for a complete match of
the moments between light-cone and quasi-PDFs, one

has to take the zero-mode contributions into account.
Interestingly, the moments of the zero-mode terms exactly
match between the light-cone PDF gT and the quasi-PDF
gT;Q. (We have illustrated this point analytically in the
context of hL;Q towards the end of this section.) Similarly,
we find an exact match in the moments of the canonical
terms between the two distributions. To sum up, we infer

Z
∞

−∞
dx gT;QðsÞðx;p3ÞjϵUV ¼

Z
1

0

dx gTðsÞðxÞjϵUV ;Z
∞

−∞
dx gT;QðcÞðx;p3ÞjϵUV ¼

Z
1

0

dx gTðcÞðxÞjϵUV : ð145Þ

Calculation of moments can therefore be considered to be
an independent check of our analytical results. We find
these results to be very encouraging because they have been
obtained for the most general situation when one has all the
partonic masses in the picture, mq ≠ 0 and mg ≠ 0.
Table II demonstrates the violation of the BC sum rule

for both light-cone and quasi-PDFs when a cutoff is
applied. Although,

TABLE II. All the numerical results have been obtained formq ¼ 0.35 GeV andmg ¼ 0.1 GeV. The BC sum rule
is violated for both light-cone and quasi-PDFs in the cutoff scheme.

BC sum rule in QTM: Cutoff for the UV

Parameters and moments of LC PDFs P3 (GeV)
R
dx g1;QðxÞ

R
dx gT;QðxÞ

ΛUV ¼ 1 GeVR
dx g1ðxÞ ¼ −0.01082R
dx gTðxÞ ¼ −0.004864

1 −0.01082 −0.004864
2 −0.01082 −0.004864
3 −0.01082 −0.004864
4 −0.01082 −0.004864

ΛUV ¼ 4 GeVR
dx g1ðxÞ ¼ 0.005220R
dx gTðxÞ ¼ 0.01153

1 0.005220 0.01153
2 0.005220 0.01153
3 0.005220 0.01153
4 0.005220 0.01153

TABLE I. All the numerical results have been obtained for μ ¼ 1 GeV,mq ¼ 0.35 GeV, andmg ¼ 0.1 GeV. The
BC sum rule is obeyed because the zero-mode contributions in gTðxÞ and gT;QðxÞ have been taken into account.

BC sum rule in QTM: DR for the UV

Parameters and moments of light cone PDFs P3 (GeV)
R
dx g1;QðxÞ

R
dx gT;QðxÞ

ϵUV ¼ 0.8R
dx g1ðxÞ ¼ −3.241R
dx gTðxÞ ¼ −3.241

1 −3.241 −3.241
2 −3.241 −3.241
3 −3.238 −3.241
4 −3.241 −3.241

ϵUV ¼ 0.6R
dx g1ðxÞ ¼ −0.8274R
dx gTðxÞ ¼ −0.8274

1 −0.8275 −0.8274
2 −0.8274 −0.8274
3 −0.8275 −0.8274
4 −0.8274 −0.8274
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Z
∞

−∞
dx g1;Qðx;p3ÞjΛUV ≠

Z
∞

−∞
dx gT;Qðx;p3ÞjΛUV ;Z

1

0

dx g1ðxÞjΛUV ≠
Z

1

0

dx gTðxÞjΛUV ; ð146Þ

one still has

Z
∞

−∞
dx g1;Qðx;p3ÞjΛUV ¼

Z
1

0

dx g1ðxÞjΛUV ;Z
∞

−∞
dx gT;Qðx;p3ÞjΛUV ¼

Z
1

0

dx gTðxÞjΛUV : ð147Þ

The bottom line is that, whether or not the sum rules hold
among different quasi-PDFs, the moment of the quasi-
PDFs agrees with those of their light-cone counterparts.
This is a general statement, and is true at least for the
regulated results. We will return to this point at the end of
this section.
One can repeat the same exercise to obtain results for the

h-sum rule in the DR and cutoff schemes. Our numerical
results confirm

Z
∞

−∞
dx h1;Qðx;p3ÞjϵUV ¼

Z
∞

−∞
dx hL;Qðx;p3ÞjϵUV ; ð148Þ

which is the h-sum rule for quasi-PDFs, and

Z
∞

−∞
dx h1;Qðx;p3ÞjϵUV ¼

Z
1

0

dx h1ðxÞjϵUV ;Z
∞

−∞
dx hL;Qðx;p3ÞjϵUV ¼

Z
1

0

dx hLðxÞjϵUV : ð149Þ

More importantly, our numerical results reaffirm the
accidental validity of the h-sum rule for the light-cone
PDFs in the cutoff scheme. And, not surprisingly, this
accident is exactly reproduced by their corresponding
quasi-PDFs. We therefore infer the following relations:

Z
∞

−∞
dx h1;Qðx;p3ÞjΛUV ¼

Z
∞

−∞
dx hL;Qðx;p3ÞjΛUV ;Z

1

0

dx h1ðxÞjΛUV ¼
Z

1

0

dx hLðxÞjΛUV ; ð150Þ

Z
∞

−∞
dx h1;Qðx;p3ÞjΛUV ¼

Z
1

0

dx h1ðxÞjΛUV ;Z
∞

−∞
dx hL;Qðx;p3ÞjΛUV ¼

Z
1

0

dx hLðxÞjΛUV : ð151Þ

Table III confirms the robustness of the discussions we
have had in the context of the BC sum rule under the
variation of the gluon mass. We have also confirmed the
robustness of our results in the cutoff scheme. Finally, all
the discussions we have had in the context of the h-sum rule
remains valid if the gluon mass is changed. To summarize,
we find that the BC and the h-sum rules hold in QTMwhen
DR is employed. And, it is the h-sum rule only that remains
accidentally valid in the cutoff scheme. We have repeated
the same analysis in the YM. The general results in the YM
are the same as in the QTM, with the exception that the
h-sum rule is violated in the cutoff scheme. We have also
verified that the results in the YM remain valid when
changing the model parameters.
We conclude this section by discussing two general

aspects related to the calculation of moments of quasi-
PDFs: (i) the convergence of such moments, and (ii) the
role of a twist expansion in the calculation of moments of
quasi-PDFs. Unlike in the case of light-cone PDFs, the k⊥
integral for quasi-PDFs is finite. However, when computing
the lowest x moment for quasi-PDFs, one encounters a
singularity due to the 1=jxj behavior of the quasi-PDFs as
jxj → ∞, as we saw above in Sec. IV C. Instead, in our
numerical calculations we have used DR and a cutoff to the
k⊥ integrals (despite the fact that those integrals are finite
without such “regulators”), but with the x integrals extend-
ing to infinity, leading to finite lowest moments for the
quasi-PDFs. In the following we will make explicit how
such a situation can arise. To this end we consider the

TABLE III. BC sum rule with variation of gluon mass in DR scheme. Note that μ ¼ 1 GeV.

BC sum rule in QTM: DR for the UV

Parameters and moments of LC PDFs P3 (GeV)
R
dxg1;QðxÞ

R
dxgT;QðxÞ

ϵUV ¼ 0.8ðmq;mgÞ ¼ ð0.35; 0.7Þ GeVR
dx g1ðxÞ ¼ −0.05117R
dx gTðxÞ ¼ −0.05117

1 −0.05117 −0.05117
2 −0.05117 −0.05117
3 −0.05118 −0.05117
4 −0.05117 −0.05117

ϵUV ¼ 0.8ðmq;mgÞ ¼ ð0.35; 0.01Þ GeVR
dx g1ðxÞ ¼ −169.99R
dx gTðxÞ ¼ −169.95

1 −169.99 −169.99
2 −169.94 −169.99
3 −169.97 −169.98
4 −169.66 −169.89
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integral which appears in the singular part of the twist-3
quasi-PDFs, and employ both DR and a cutoff to the k⊥
integral. We find that with DR,

Z
∞

0

dk⊥
p3k1−2ϵ⊥

ðk2⊥ þ x2p2
3 þm2

qÞ3=2

¼ p3ffiffiffi
π

p ½Γð1 − ϵÞΓðϵþ 1=2Þðx2p2
3 þm2

qÞ−1
2
−ϵ�

⟶
x→∞ 1

jxj1þ2ϵ ; ð152Þ

where ϵ > 0, and with a cutoff,

Z
Λ

0

dk⊥
p3k⊥

ðk2⊥ þ x2p2
3 þm2

qÞ3=2

¼ p3

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2p2
3 þm2

q

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2p2
3 þm2

q þ Λ2
q

3
75

⟶
x→∞ Λ2

2p2
3jxj3

: ð153Þ

Therefore, by providing regulation for the k⊥ integrals, we
essentially alter the large-x behavior of the quasi-PDFs.
(In other words, by providing regulation for the k⊥
integrals, we automatically provide regulation for the x
integrals.) Specifically, with regulated k⊥ integrals, the
quasi-PDFs are forced to fall faster than 1=x, and hence
their lowest moments are well defined. This explains the
finiteness of the moments in all the tables that has been
presented so far. (If we calculate

R
dx of the above

expressions, and then take ϵ ≈ 0 or Λ ≈∞, we immediately
“recover” the poles in the moments for the quasi-PDFs,
which are in fact the same poles present in the light-cone
PDFs. See the next paragraph for this point.)
Let us now proceed to the second point. In matching-

type calculations, one calculates moments for the quasi-
PDFs after a twist expansion in powers of 1=p3. As shown
in Sec. II B, we expect the moments to match between
quasi- and light-cone PDFs before any twist expansion.
More specifically, we expect an agreement in the moments
for finite values of p3. To demonstrate the subtleties
involved in the calculation of moments after a twist
expansion, we (again) take as an example case the singular
terms for the quasi-PDFs, namely the one that appears for
hL;QðxÞ, which reads

hL;QðsÞðxÞ ¼ −
g2sCFμ

2ϵ

2ð2πÞ
Z

dn−2k⊥
ð2πÞn−2

ð1 − ϵÞp3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
¼ g2sCFμ

2ϵp3ð2−3þ2ϵπ−5=2þϵð−1þ ϵÞΓð1=2þ ϵÞ
× ðx2p2

3 þm2
qÞ−1=2−ϵÞ: ð154Þ

Equation (154) is exact. Performing a twist expansion of
this expression provides

hL;QðsÞðxÞ ≈ g2sCFμ
2ϵðx2p2

3 þm2
qÞ−ϵ

×

�
2−3þ2ϵπ−5=2þϵð−1þ ϵÞΓð1=2þ ϵÞ

x

−
2−4þ2ϵπ−5=2þϵð−1þ ϵÞΓð1=2þ ϵÞ

x3
m2

q

p2
3

þO
�
1

p3
3

��
: ð155Þ

We immediately see that this expression cannot be inte-
grated upon x, since the leading term and the higher-order
terms have a pole at x ¼ 0. (However, there is no problem
for the integral as x ¼ �∞.) On the other hand, it is
possible to calculate directly the x integral of Eq. (154),
without encountering any divergence at all. The resulting
expression in the limit ϵ → 0 is

Z
∞

−∞
dx hL;QðsÞðxÞ ≈

g2sCF

8π2

�
−PUV − ln

μ2UV
m2

q
þ 1

�
; ð156Þ

which exactly agrees with the moment of the light-cone
hLðsÞðxÞ [see Eq. (52)]. The situation is the same for the case
of a cutoff. Specifically, after a twist expansion, the singular
part of hL;QðxÞ reads

hL;QðsÞðxÞ

¼g2sCF

8π2
p3

 
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2

3þm2
q

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p2

3þm2
qþΛ2

q
!

ð157Þ

≈ g2sCF

�
−

1

16π2x3
Λ2

p2
3

þ 3

64π2x5
ð2m2

qΛ2þΛ4Þ
p4
3

þO
�
1

p6
3

��
;

ð158Þ

which clearly reflects the nonintegrability at x ¼ 0.
However, it is (again) possible to calculate directly the x
integral of Eq. (157). The result in the limit Λ → ∞ agrees
exactly with the moment of the light-cone hLðsÞ [see
Eq. (56)],

Z
∞

−∞
dx hL;QðsÞðxÞ ≈ −

g2sCF

8π2
ln
Λ2

m2
q
: ð159Þ

The above analysis shows a nontrivial issue related to the
noncommutativity of two limits: performing a twist expan-
sion, and the calculation of

R
dx. We repeat that our

numerical results for the moments have been calculated
for finite values of p3, that is, without any twist expansion,
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and the regulated results are in complete agreement with the
corresponding moments of the light-cone PDFs. Note that,
in general, higher-twist terms may have divergences at the
end points x → 0 and x → 1, and therefore in such cases,
the moments will also be divergent. Specifically, these
types of divergences are bound to arise from the canonical
component of the quasi-PDFs. For example, hL;QðcÞ in
QTM shows a behavior like

hð1aÞL;QðcÞðxÞ ≈
αsCF

2π

8>>><
>>>:

ln x
x−1 x > 1

ln 4xp2
3

ð1−xÞm2
q
− 2

1−x 0 < x < 1

ln x−1
x x < 0

ð160Þ

−
αsCF

8π

m2
q

p2
3

1

x2ð1−xÞ

×

8>><
>>:
2x2−x−3−2x2ð1−xÞ lnx−1

x x>1

2x3−x−3þ2x2ð1−xÞ ln 4xp2
3

ð1−xÞm2
q
0<x<1

−2x2þxþ3þ2x2ð1−xÞ lnx−1
x x<0

þO
� 1

p4
3

�
: ð161Þ

VI. SUM RULE INVOLVING THE
TWIST-3 PDF eðxÞ

In this section, we shift our focus to the twist-3 PDF eðxÞ.
Our goal is to address a particular sum rule which relates
eðxÞ to the target mass. We check this relation in both
models. We also provide the model results for the quasi-
PDF eQðx;p3Þ and confirm numerically that the light-cone
PDF eðxÞ and the quasi-PDF eQðx;p3Þ have the exact same
lowest moments, as it should be in a model-independent
manner. The light-cone PDF eðxÞ and its quasicounterpart
eQðx;p3Þ are defined as

Φ½1� ¼ mq

pþ eðxÞ; Φ½1�
Q ¼ mq

p3
eQðx;p3Þ: ð162Þ

By repeating the steps shown in Sec. II B, it is straightfor-
ward to check that the above definitions imply thatZ

dxeðxÞ ¼
Z

dx eQðx;p3Þ: ð163Þ

This implies that the lowest moment of eQ is also related to
target mass. (We repeat that in the QTM the target mass
coincides with the quark mass.)

A. Results in quark target model

It is known that loop corrections to the quark propagator
can be summed up into a renormalized propagator as

iGRðpÞ ¼ i
p −mR þ ΣRðpÞ

; ð164Þ

where ΣRðpÞ denotes one-particle irreducible Feynman
diagrams together with contributions from counterterms.
For the renormalized self-energy one has

ΣRðpÞ ¼ ΣðpÞ þ δ2p − ðδ2 þ δmÞmR; ð165Þ

where ΣðpÞ is the result for the diagram in Fig. 2(a), δ2 is the
counterterm entering the wave-function renormalization
factor Z2¼1þδ2, and mq is the bare mass of the quark
givenbymq ¼ mR þ δmmR.By choosing thecounterterms as

δ2 ¼
αsCF

4π
PUV; ð166Þ

δm ¼ 3αsCF

4π
PUV; ð167Þ

in MS scheme, we obtain the following renormalized
expression for the self-energy:

ΣRðp ¼ mqÞ ¼
αsCF

2π

�3
2
mq ln

μ2UV
m2

R
þ 2mq

�
; ð168Þ

at the pole p ¼ mq. With these results, the relation between
the renormalized mass of the target and the bare quark mass
reads

mRjϵUV ¼ mq

�
1þ αsCF

2π

�3
2
ln
μ2UV
m2

q
þ 2
�	

: ð169Þ

In the cutoff scheme, we choose the counterterms as

δ2 ¼
αsCF

4π
ln
Λ2
UV

μ2
; ð170Þ

δm ¼ 3αsCF

4π
ln
Λ2
UV

μ2
; ð171Þ

where μ is an arbitrary scale introduced to render the
counterterms dimensionless. One can then show that
the relation between the renormalized mass of the target
and the bare quark mass is given by

mRjΛUV ¼ mq

�
1þ αsCF

2π

�3
2
ln

μ2

m2
q
þ 1
�	

: ð172Þ

There is awell-known sum rule that relates the lowestmoment
of eðxÞ to the derivative of the renormalized target mass,Z

dxeðxÞ ¼ ∂mR

∂mq
: ð173Þ

In order to verify Eq. (173), we expect that eðxÞ should be
renormalized.However, it is known that the renormalizationof
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twist-3 PDFs is not diagonal, and a complete renormalization
program will therefore require one to involve quark-gluon-
quark matrix elements, which goes beyond the scope of our
present work. Also, sum rules in general cannot be taken for
granted after switching on renormalization. Throughout this
work, our focus has been on the regulated PDFs. Therefore,
below we will use a regulated mass to verify if

R
e obeys the

relation in Eq. (173).
In order to calculate a regulated mass, we repeat the same

steps as above, but we do not make a subtraction of the
counterterms. In doing so, we arrive at

mReg:jϵUV ¼ mq

�
1þ αsCF

2π

�3
2
PUV þ 3

2
ln
μ2UV
m2

q
þ 2
�	

;

ð174Þ

∴
∂mReg:

∂mq

����ϵUV ¼ 1þ αsCF

2π

�3
2
PUV þ 3

2
ln
μ2UV
m2

q
− 1
�
; ð175Þ

mReg:jΛUV ¼ mq

�
1þ αsCF

2π

�3
2
ln
Λ2
UV

m2
q
þ 1
�	

; ð176Þ

∴
∂mReg:

∂mq

����ΛUV ¼ 1þαsCF

2π

�3
2
ln
Λ2
UV

m2
q
− 2
�
: ð177Þ

We now turn to the results for eðxÞ in the QTM. The
starting expressions for the singular and canonical parts for
eðxÞ are

eð1aÞðsÞ ðxÞ ¼
g2sCFμ

2ϵ

2π
δðxÞ

Z
dn−2k⊥
ð2πÞn−2

1 − ϵ

ðk2⊥ þm2
qÞ
;

eð1aÞðcÞ ðxÞ ¼
g2sCFμ

2ϵ

2π

Z
dn−2k⊥
ð2πÞn−2

k2⊥ − ð1 − x2Þm2
q þ xm2

g − ð1 − ϵÞð1 − xÞm2
g

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

gÞ2
: ð178Þ

From these equations, our final results for eðxÞ with mq ≠ 0 reads [65]

eð1aÞðxÞ
���ϵUV
mq

¼ eð1aÞðsÞ ðxÞ
���ϵUV
mq

þ eð1aÞðcÞ ðxÞ
���ϵUV
mq

¼ αsCF

2π
δðxÞ

�
PUV þ ln

μ2UV
m2

q
− 1
�
þ αsCF

2π

�
PUV þ ln

μ2UV
ð1 − xÞ2m2

q
−

2

1 − x

�
ð179Þ

in the DR scheme. Therefore, the lowest moment of eðxÞ in DR isZ
1

0

dxδð1 − xÞ þ
Z

dkþ

pþ eð1aÞðkþÞ
����ϵUV
mq

þ ∂Σ
∂p
����ϵUV
mq

¼ 1þ αsCF

2π

�3
2
PUV þ 3

2
ln
μ2UV
m2

q
− 1
�
; ð180Þ

which exactly agrees with the DR result in Eq. (175), and hence the sum rule in Eq. (173) is satisfied. Note that this sum rule
holds only if one takes the zero modes into account. This was already pointed out in Ref. [10]. In the cutoff scheme, with
regularization applied to the transverse components only, our result for eðxÞ is

eð1aÞðxÞ
���ΛUV

mq

¼ eð1aÞðsÞ ðxÞ
���ΛUV

mq

þ eð1aÞðcÞ ðxÞ
���ΛUV

mq

¼ αsCF

2π
δðxÞ lnΛ

2
UV

m2
q
þ αsCF

2π

�
ln

Λ2
UV

ð1 − xÞ2m2
q
−

2

1 − x

�
: ð181Þ

One can check that the above results do not satisfy the sum rule. Now, by applying a regularization to all components of k,
we obtain

Z
dkþ

pþ eð1aÞðkþÞ
����ΛUV

mq

¼ αsCF

π

Z
1

0

dy
�
2ð1 − yÞ ln Λ2

UV

ð1 − yÞ2m2
q
− 4ð1 − yÞ − y

1 − y

�
;

∂Σ
∂p
����ΛUV

mq

¼ αsCF

2π

Z
1

0

dy
�
−y ln

Λ2
UV

ð1 − yÞ2m2
q
þ yþ 2yð2 − yÞ

1 − y

�
;

Z
1

0

dxδð1 − xÞ þ
Z

dkþ

pþ eð1aÞðkþÞ
����ΛUV

mq

þ ∂Σ
∂p
����ΛUV

mq

¼ 1þ αsCF

2π

�3
2
ln
Λ2
UV

m2
q
− 2
�
; ð182Þ
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which exactly matches with our result in Eq. (177). In the
above equations, y is the Feynman parameter, and we refer
the reader to Sec. III A 2 for more details on calculations
with cutoffs applied to all directions without bias. Refer-
ences in the past have focused entirely on the UV-divergent
terms for both e and the target mass, see for example
[10,79]. Here, we see, for the first time, that there are (once
again) caveats with regard to the UV-finite terms in the
cutoff scheme.
For the sake of completeness, we also provide the

results for eðxÞ with nonzero gluon mass and DR as
the IR regulators. The singular terms for eðxÞ with
mg ≠ 0 read [65]

eð1aÞðsÞ ðxÞjϵUV ¼

8>><
>>:
eð1aÞðsÞ ðxÞ

���ϵUV
mq

¼αsCF
2π δðxÞ

�
PUVþ lnμ2UV

m2
q
−1
�
;

eð1aÞðsÞ ðxÞ
���ϵUV
ϵIR

¼αsCF
2π δðxÞ

�
PUV−PIRþ lnμ

2
UV
μ2IR

�
;

ð183Þ
and the canonical part reads [65]

eð1aÞðcÞ ðxÞ
����ϵUV
mg

¼ αsCF

2π

�
PUV þ ln

μ2UV
xm2

g
−
1 − x
x

�
: ð184Þ

When DR is applied for the IR, we obtain [65]

eð1aÞðxÞ
����ϵUV
ϵIR

¼ eð1aÞðsÞ ðxÞ
����ϵUV
ϵIR

þ eð1aÞðcÞ ðxÞ
����ϵUV
ϵIR

¼ αsCF

2π
δðxÞ

�
PUV − PIR þ ln

μ2UV
μ2IR

�

þ αsCF

2π

�
PUV − PIR þ ln

μ2UV
μ2IR

�
: ð185Þ

When a cutoff is applied (transverse direction), the result
for eðxÞ with mg ≠ 0 reads

eð1aÞðxÞ
����ΛUV

mg

¼ eð1aÞðsÞ ðxÞ
����ΛUV þ eð1aÞðcÞ ðxÞ

����ΛUV

mg

¼ αsCF

2π
δðxÞ lnΛ

2
UV

m2
q
þ αsCF

2π

�
ln
Λ2
UV

xm2
g
−
1− x
x

�
:

ð186Þ

The general structure of the result for quasi-PDF eQðxÞ is
given by Eq. (105). The numerator for the singular and the
canonical parts are given by

NeðsÞ ¼ −
ð1 − ϵÞp3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð187Þ

NeðcÞ ¼2p3ððk0Þ2−x2p2
3−k2⊥þm2

qþð1−ϵÞm2
gÞ: ð188Þ

Table IV confirms that the moment of eQðxÞ agrees exactly
with that of eðxÞ when DR is applied for the UV. This
agreement holds true even in the cutoff scheme.

B. Results in Yukawa model

To derive the renormalized mass of the target in the YM,
we follow the procedure outlined in the previous section.
In the MS scheme, the counterterms are

δ2 ¼
αY
8π

PUV; ð189Þ

δm ¼ −
3αY
8π

PUV; ð190Þ

and we arrive at the following relation between the
renormalized mass of the target and the bare quark mass:

mRjϵUV ¼ mq

�
1þ αY

4π

�
−
3

2
ln
μ2UV
m2

q
−
7

2

�	
: ð191Þ

In the cutoff scheme, we choose the counterterms as

δ2 ¼
αY
8π

ln
Λ2
UV

μ2
; ð192Þ

δm ¼ −
3αY
8π

ln
Λ2
UV

μ2
; ð193Þ

and the relation between the two masses reads

mRjΛUV ¼ mq

�
1þ αY

4π

�
−
3

2
ln

μ2

m2
q
− 2
�	

: ð194Þ

Once again, by repeating the above steps, and not sub-
tracting the counterterms, we arrive at the following
expressions for the regulated mass and its derivative:

TABLE IV. All the numerical results have been obtained for
μ ¼ 1 GeV, mq ¼ 0.35 GeV, and mg ¼ 0.1 GeV.

Moments of eðxÞ and eQðxÞ in QTM: DR for the UV

Parameters and moments of LC PDFs P3 (GeV)
R
dx eQðxÞ

ϵUV ¼ 0.8R
dx eðxÞ ¼ −2.705

1 −2.705
2 −2.705
3 −2.705
4 −2.705

ϵUV ¼ 0.6R
dx eðxÞ ¼ −0.4687

1 −0.4693
2 −0.4693
3 −0.4693
4 −0.4693
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mReg:jϵUV ¼ mq

�
1þ αY

4π

�
−
3

2
PUV −

3

2
ln
μ2UV
m2

q
−
7

2

�	
;

ð195Þ

∴
∂mReg:

∂mq
jϵUV ¼1þαY

4π

�
−
3

2
PUV−

3

2
ln
μ2UV
m2

q
−
1

2

�
; ð196Þ

mReg:jΛUV ¼ mq

�
1þ αY

4π

�
−
3

2
ln
Λ2
UV

m2
q
− 2
�	

; ð197Þ

∴
∂mReg:

∂mq

���ΛUV ¼ 1þ αY
4π

�
−
3

2
ln
Λ2
UV

m2
q
þ 1
�
: ð198Þ

Turning now to the results for eðxÞ, the starting expres-
sions for the singular and canonical terms are

eð1aÞðsÞ ðxÞ ¼
g2Yμ

2ϵ

2ð2πÞ δðxÞ
Z

dn−2k⊥
ð2πÞn−2

1

ðk2⊥ þm2
qÞ
;

eð1aÞðcÞ ðxÞ ¼ −
g2Yμ

2ϵ

2ð2πÞ
Z

dn−2k⊥
ð2πÞn−2

×
2k2⊥ − 2ð1 − x2Þm2

q þ ð1þ xÞm2
s

ðk2⊥ þ ð1 − xÞ2m2
q þ xm2

sÞ2
: ð199Þ

The result for eðxÞ in the DR scheme is

eð1aÞðxÞ
����ϵUV
mq

¼ eð1aÞðsÞ ðxÞ
����ϵUV
mq

þ eð1aÞðcÞ ðxÞ
����ϵUV
mq

¼ αY
4π

δðxÞ
�
PUV þ ln

μ2UV
m2

q

�
þ αY

4π

�
−2PUV − 2 ln

μ2UV
ð1 − xÞ2m2

q
þ 4

1 − x

�
;

ð200Þ
and we find that the lowest moment of eðxÞ is

Z
1

0

dxδð1 − xÞ þ
Z

dkþ

pþ eð1aÞðkþÞ
����ϵUV
mq

þ ∂Σ
∂p
����ϵUV
mq

¼ 1þ αY
4π

�
−
3

2
PUV −

3

2
ln
μ2UV
m2

q
−
1

2

�
; ð201Þ

which is in agreement with Eq. (196). Hence the sum rule in Eq. (173) is exactly satisfied in the DR scheme. The result for
eðxÞ in the cutoff scheme, with regularization applied to the transverse components, is

eð1aÞðxÞ
����ΛUV

mq

¼ eð1aÞðsÞ ðxÞ
����ΛUV

mq

þ eð1aÞðcÞ ðxÞ
����ΛUV

mq

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
þ αY

4π

�
−2 ln

Λ2
UV

ð1 − xÞ2m2
q
þ 4

1 − x

�
: ð202Þ

Once again, we find that the sum rule is violated with the above results, but is satisfied provided
R
e and ∂Σ

∂p are consistently
calculated with a regularization to all components of k. The results areZ

dkþ

pþ eð1aÞðkþÞ
����ΛUV

mq

¼ αY
4π

Z
1

0

dy
�
−2ð1 − yÞ ln Λ2

UV

ð1 − yÞ2m2
q
þ 3ð1 − yÞ þ ð1þ yÞ2

1 − y

�
;

∂Σ
∂p
����ΛUV

mq

¼ αY
4π

Z
1

0

dy
�
−y ln

Λ2
UV

ð1 − yÞ2m2
q
þ y −

2yð1þ yÞ
1 − y

�
;

Z
1

0

dxδð1 − xÞ þ
Z

dkþ

pþ eð1aÞðkþÞ
����ΛUV

mq

þ ∂Σ
∂p
����ΛUV

mq

¼ 1þ αY
4π

�
−
3

2
ln
Λ2
UV

m2
q
þ 1
�
; ð203Þ

which exactly matches with our result in Eq. (198).
For ms ≠ 0, the singular part of eðxÞ has two results,

eð1aÞðsÞ ðxÞjϵUV ¼

8>><
>>:

eð1aÞðsÞ ðxÞ
���ϵUV
mq

¼ αY
4π δðxÞ

�
PUV þ ln μ2UV

m2
q

�
;

eð1aÞðsÞ ðxÞ
���ϵUV
ϵIR

¼ αY
4π δðxÞ

�
PUV − PIR þ ln μ2UV

μ2IR

�
;

ð204Þ
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while the canonical part is given by

eð1aÞðcÞ ðxÞ
���ϵUV
ms

¼ −
αY
4π

�
2PUV þ 2 ln

μ2UV
xm2

s
þ 1 − x

x

�
: ð205Þ

When DR is applied for the IR, we get

eð1aÞðxÞ
���ϵUV
ϵIR

¼ eð1aÞðsÞ ðxÞ
���ϵUV
ϵIR

þ eð1aÞðcÞ ðxÞ
���ϵUV
ϵIR

¼ αY
4π

δðxÞ
�
PUV − PIR þ ln

μ2UV
μ2IR

�
−
2αY
4π

�
PUV − PIR þ ln

μ2UV
μ2IR

�
: ð206Þ

Finally, when a cutoff is applied to the transverse direction,
the result for eðxÞ with ms ≠ 0 reads

eð1aÞðxÞ
���ΛUV

ms

¼ eð1aÞðsÞ ðxÞ
���ΛUV þ eð1aÞðcÞ ðxÞ

���ΛUV

ms

¼ αY
4π

δðxÞ lnΛ
2
UV

m2
q
−
αY
4π

�
2 ln

Λ2
UV

xm2
s
þ 1 − x

x

�
:

ð207Þ
We refer the reader to Sec. IV B for the general structure

of the quasi-PDFs in YM. The numerators for the quasi-
PDF eQðxÞ are given by

NeðsÞ ¼
p3

ðk2⊥ þ x2p2
3 þm2

qÞ3=2
; ð208Þ

NeðcÞ ¼
p3

mq
ð2mqðk0Þ2−2mqk2⊥−2mqx2p2

3þ2m3
q−mqm2

sÞ:

ð209Þ
We have confirmed numerically that our results for the
moment of eQðxÞ matches exactly with that of eðxÞ.

VII. SUMMARY

In this paper, we have revisited BC-type sum rules which
relate the lowestmoment of certain twist-2 and twist-3 PDFs.
While those sum rules have long been known in the case of
light-cone PDFs, we argue that they also hold for the
corresponding quasi-PDFs. We have also scrutinized the
sum rules through model calculations. Specifically, we have
calculated the light-cone PDFs (g1ðxÞ; gTðxÞ) and (h1ðxÞ;
hLðxÞ), and their quasi-PDF counterparts (g1;QðxÞ; gT;QðxÞ)
and (h1;QðxÞ; hL;QðxÞ) in the QTM and the YM, to lowest
order in perturbation theory. We have regulated the IR
divergences in three schemes: nonzero gluon mass mg ≠ 0,
nonzero quark mass mq ≠ 0, and DR. For the UV divergen-
ces, we have made use of two schemes: DR, and cutoff.
Related previous model calculations have focused on the

UV-divergent parts of (the perturbative corrections to) the
PDFs. As such, several works in the past have shown that
the BC-type sum rules are valid in cutoff schemes. Here, we

have presented the full results for the PDFs at one-loop
order, that is, we have calculated the UV-divergent and the
UV-finite parts of the PDFs. We have shown that the
BC-type sum rules hold for both the UV-divergent and
the UV-finite terms when DR is employed for the UV.
However, we have found that these sum rules are generally
violated for the UV-finite terms when a cutoff is employed.
The only exception is the h-sum rule in the QTM, which
“accidentally” remains valid in the cutoff scheme.
Violations of the sum rules can be expected in cutoff
schemes because they break rotational/Lorentz invariance
which is the reason why the BC-type sum rules exist in the
first place. We have also shown that working withmg ≠ 0 at
twist-3 can lead to a violation of the BC-type sum rules.
Furthermore, we have clarified two important issues related
to the moments for quasi-PDFs—the moments are finite if a
regulator is applied to the k⊥ integral (even though this
integral is finite for quasi-PDFs), and the moments of
quasi-PDFs diverge if calculated after a twist expansion.
Finally, we have calculated the light-cone PDF eðxÞ, and its
corresponding quasi-PDF eQðxÞ in both the QTM and the
YM. In particular, we have scrutinized the sum rule which
relates the lowest moment of eðxÞ to the target mass. We
repeat that we have not considered renormalization, which
could give rise to additional complications when trying to
establish BC-type and related sum rules—see, for instance,
Ref. [80]. Nonetheless, the physics pertaining to the
regulated results, which we have presented in this work,
are fundamental for our concepts.
It is quite likely that there exist more instances in which

sum rules or other relations that are rooted in the Lorentz
invariance are spoiled in cutoff schemes. One potential
example are polynomial relations for GPDs [81]. An
important message of our work is that it is crucial to calculate
the perturbative corrections for the various partonic functions
beyond the UV-divergent parts. And if such a calculation
suggests a violation of a certain relation, one must check
carefully the cause of the violation.
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APPENDIX: AN INTERESTING POINT RELATED
TO DR WHEN APPLIED FOR IR DIVERGENCES

Typically, when DR is applied for both IR and UV
divergences, one introduces an arbitrary scale/cutoff, Λ,
to set the boundaries between the IR and UV regions

(0 < Λ < ∞). In the following, through the example of
(g1; gT) in theQTM,we show that theBCsum rule is violated
if the regularization is applied to the transverse dimensions
and if (ϵIR; ϵUV) are kept finite. The reason for this violation
can be traced back to the effect of the cutoff Λ which
continues to hold if (ϵIR; ϵUV) are kept finite. As we shall
show below, it is only after a Taylor expansion in powers of
(ϵIR; ϵUV) ≈0, that the logarithms in Λ drop out [at least for
the dominant IRpole and the finite term, that is,Oðϵ0IR; ϵ0UVÞ],
such that the sum rules are exactly satisfied. This is the case
that we have discussed at length throughout our manuscript.
We first calculate g1ðxÞ:

gð1aÞ1 ðxÞ ¼ 2αsCFð1 − xÞ


μ2ϵð1 − ϵÞ

Z
dn−2k⊥
ð2πÞn−2

1

k2⊥

�

¼ 2αsCFð1 − xÞ


−
ð4πÞ−1þϵIRð−1þ ϵIRÞð Λ

μIR
Þ−2ϵIR

ϵ2IRΓð−ϵIRÞ
þ
ð4πÞ−1þϵUVð−1þ ϵUVÞð Λ

μUV
Þ−2ϵUV

ϵ2UVΓð−ϵUVÞ
�
: ðA1Þ

On the other hand, the singular and the canonical parts for gTðxÞ are

gð1aÞTðsÞðxÞ ¼ −2αsCFδðxÞ


μ2ϵϵ

Z
dn−2k⊥
ð2πÞn−2

1

k2⊥

�

¼ 2αsCFδðxÞ

ð4πÞ−1þϵIRð Λ

μIR
Þ−2ϵIR

Γð1 − ϵIRÞ
−
ð4πÞ−1þϵUVð Λ

μUV
Þ−2ϵUV

Γð1 − ϵUVÞ
�
; ðA2Þ

gð1aÞTðcÞðxÞ ¼ 2αsCFx



μ2ϵ
Z

dn−2k⊥
ð2πÞn−2

1

k2⊥

�

¼ 2αsCFx


ð4πÞ−1þϵIRð Λ
μIR
Þ−2ϵIR

ϵ2IRΓð−ϵIRÞ
−
ð4πÞ−1þϵUVð Λ

μUV
Þ−2ϵUV

ϵ2UVΓð−ϵUVÞ
�
: ðA3Þ

Therefore, Z
dx gð1aÞ1 ðxÞ ≠

Z
dx gð1aÞT ðxÞ: ðA4Þ

However, in the limit of (ϵIR; ϵUV) → 0, the Λ dependence drops out:

gð1aÞ1 ðxÞ ¼ 2αsCFð1 − xÞ



1

4π

� 1

ϵUV
−

1

ϵIR

�
þ 1

2π

�
ln

Λ
μIR

− ln
Λ
μUV

��
; ðA5Þ

gð1aÞTðsÞðxÞ ¼ 0; ðA6Þ

gð1aÞTðcÞðxÞ ¼ 2αsCFx



1

4π

� 1

ϵUV
−

1

ϵIR

�
þ 1

2π

�
ln

Λ
μIR

− ln
Λ
μUV

��
: ðA7Þ

Clearly, Z
dx gð1aÞ1 ðxÞ ¼

Z
dx gð1aÞT ðxÞ: ðA8Þ

This point is very interesting, and the reasoning for such a
result is rather simple: sum rules do not hold for finite
values of (ϵIR; ϵUV) because of the effect of the cutoff Λ,
which has been applied to the transverse dimensions to
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demarcate the IR and UV regions. Therefore, obviously, in
the process of creating boundaries between IR and UV
regions, we ended up breaking rotational invariance. We
note in passing that due to this reason, we did not quote
numerical results for the moments with finite (ϵIR; ϵUV), as
we did in other instances with nonzero parton mass
regulators.

It is also interesting to check if the above observation
changes when DR, for both IR and UV, is applied to all
components of the loop momenta. Such a case would
require us to create boundaries between IR and UV by
introducing Λ on all components of the loop momenta. Our

starting point for gð1aÞ1 is

Z
dkþ

pþ λgð1aÞ1 ðkþÞ ¼ −
ig2CFμ

2ϵ

4pþ

Z
dnk
ð2πÞn

Z
1

0

dy
2ð1 − yÞ
ðk2 −Q2Þ3Ng1ðkÞ; ðA9Þ

where

Ng1ðkÞ ¼ 4λpþðn − 2Þk2 − 8mqðn − 2Þkþðk · sÞ; ðA10Þ
and Q2 ¼ 0. Using

μ2ϵðn − 2Þ
Z

dnk
ð2πÞn

1

k4
¼ i

8π2

� 1

ϵUV
−

1

ϵIR
þ ln

μ2UV
μ2IR

�
; ðA11Þ

μ2ϵðn − 2Þ
Z

dnk
ð2πÞn

kþðk · sÞ
k6

¼ μ2ϵsþ
ðn − 2Þ

n

Z
dnk
ð2πÞn

k2

k6
¼ isþ

32π2

� 1

ϵUV
−

1

ϵIR
þ ln

μ2UV
μ2IR

�
; ðA12Þ

we obtain Z
dkþ

pþ gð1aÞ1 ðkþÞ
����ϵUV
ϵIR

¼ αsCF

2π

1

2

� 1

ϵUV
−

1

ϵIR
þ ln

μ2UV
μ2IR

�
; ðA13Þ

which agrees with Eq. (42). Our starting point for gð1aÞT is given byZ
dkþ

pþ
mqsi⊥
pþ gð1aÞT ðkþÞ ¼ −

ig2CFμ
2ϵ

4pþ

Z
dnk
ð2πÞn

Z
1

0

dy
2ð1 − yÞ
ðk2 −Q2Þ3NgTðkÞ; ðA14Þ

where

NgTðkÞ ¼ 4mqsi⊥ðn − 2Þk2 − 8mqðn − 2Þki⊥ðk · sÞ: ðA15Þ
We see that the structure of the individual terms in NgTðkÞ and Ng1ðkÞ exactly agree. Therefore, prior to carrying out the
integrals explicitly, one can already see that the BC sum rule will be satisfied. A direct consequence of this term-by-term
equivalence is that the sum rule continues to hold also for finite values of ðϵIR; ϵUVÞ. Specifically, we find the following
equality: Z

dkþ

pþ gð1aÞ1 ðkþÞ ¼ αsCF

2π



ð4πÞϵIR

� Λ
μIR

�
−2ϵIR

� 1

ϵ2IRΓð−ϵIRÞ
−

ð−1þ ϵIRÞ
ϵIRΓð3 − ϵIRÞ

�

− ð4πÞϵUV
� Λ
μUV

�
−2ϵUV

� 1

ϵ2UVΓð−ϵUVÞ
−

ð−1þ ϵUVÞ
ϵUVΓð3 − ϵUVÞ

��

¼
Z

dkþ

pþ gð1aÞT ðkþÞ; ðA16Þ

which holds for arbitrary values of the cutoff Λ. Ultimately, all of these observations arise from the very same situation,
namely, whether or not we are applying a cutoff in a rotationally invariant manner. While our observation here is very
important and fundamental, we believe it is not widely known and, in fact, we are not aware of a paper which discusses this
point.
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