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1 Introduction

In QCD the phenomenon of confinement prevents quarks and gluons to appear in the physical
spectrum. Instead, one finds exclusively bound states of these elementary constituents.
Hadron masses can largely differ from the sum of its constituent masses. Understanding
how hadron masses arise is therefore of utmost importance.

Long ago, the nucleon mass has been decomposed in a frame-independent way into a
quark and a gluon contribution using the trace of the energy-momentum tensor (EMT)
operator gµνTµν [1, 2]. Later, a decomposition into four contributions based on the
component T 00 in the rest frame has been proposed in refs. [3, 4]. Leaving aside the precise
form of the underlying renormalized operators, both decompositions are mathematically
correct but provide quite different pictures of the nucleon mass, triggering debates within
the hadronic physics community about their physical meaning.

In order to clarify the situation, a general Poincaré-covariant and scheme-independent
analysis has recently been presented in ref. [5], which concluded that the above two
decompositions actually mix information about mass with the constraint of mechanical
equilibrium. Keeping these two aspects of the hadronic bound state physics separated,
one obtains in fact a natural decomposition of the hadron mass into a quark contribution
and a gluon contribution. Quarks being massive particles, the quark contribution can
be refined by separating the rest energy (i.e. quark mass) from the kinetic and potential
energies. A three-term decomposition of T 00 of this form has been discussed recently,
along with the corresponding renormalized operators in dimensional regularization (DR) in
minimal-subtraction-type (MS) schemes [6, 7].

While agreeing with the mathematical aspects of refs. [5–7], it is claimed in [8] that
the two-term and three-term energy decompositions miss “some fundamental insight on the
origin of the nucleon mass”, namely the role played by the trace anomaly. A key step to
obtain a four-term energy decomposition is to separate the EMT into traceless and trace
parts, motivated by the fact that these two parts do not mix under Lorentz transformations
and hence under renormalization. Focusing on T 00, it is found that the traceless part
provides three quarters of the nucleon mass and the trace part provides the remaining
quarter, a result referred to as a “virial theorem” in refs. [3, 4, 8–10]. Here we take a
fresh look at the virial theorem in the context of quantum field theory (QFT); see also
refs. [11–13]. In particular, we show that, for a closed system, the virial theorem coincides
with the constraint of mechanical equilibrium put forward in refs. [5, 14–16].

The present work is organized as follows. In section 2 we study in detail the QFT
version of the virial theorem. After elaborating in section 3 on the physical interpretation
of the EMT components, we analyze in section 4 the consequences for the problem of the
nucleon mass decomposition in the light of the arguments presented in refs. [8–10]. We
review in section 5 the renormalization of the EMT operators in DR in MS-type schemes and
the operator structure of the different mass terms in the four-term energy decomposition,
which has been under some discussion recently [6–10, 17, 18]. We also comment on the
role played by the trace anomaly and the related concept of “quantum anomalous energy”.
We show in section 6 the importance of preserving translation symmetry, and we argue
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that one should be particularly careful when providing physical interpretation to operators
appearing in a lattice-regulated theory. Our findings are then summarized in section 7. We
present further details on the virial theorem and its physical meaning in various contexts in
appendix A, and give a brief account of the DR approach in appendix B.

2 Virial theorem in quantum field theory

The virial theorem is essentially a statement about mechanical equilibrium in a bound state,
expressed as a stationarity condition on the energy under spatial dilatations. It has largely
been discussed in the context of classical and quantum mechanics (see appendix A for a
short review), but its proper transposition to field theories is less known. In this section, we
present first an original derivation of the virial theorem for stationary states in QFT, and
then obtain a stronger version based on the divergence of the EMT. We discuss afterwards
the relation with the plane-wave approach.

2.1 Dilatations

In a field theory, dilatations are associated with the current1 [19, 20]

jµD = Tµνxν . (2.1)

Note that we will not assume a priori that the system is closed, and hence that the EMT is
conserved. The corresponding charge

D =
∫

d3x j0
D = Ht−G (2.2)

with H =
∫

d3xT 00 and G =
∫

d3xT 0ixi generates spacetime dilatations

φ(x) 7→ eiκDφ(x)e−iκD = eκdφφ(eκx), (2.3)

or, in infinitesimal form,
1
i
[φ(x), D] = (xµ∂µ + dφ)φ(x), (2.4)

where φ(x) is a generic dynamical field appearing in the EMT and dφ is its scale dimension.
In the following, we will drop all surface terms, assuming as usual that their contributions
vanish for the physical states that we consider.

Using the Heisenberg equation of motion and the standard commutation relations with
the momentum operator P i =

∫
d3xT 0i, we can write2

1
i
[Pµ, D] = Pµ − gµ0 dD

dt . (2.5)

1In general there can be an additional term V µ called the virial current. It is however often possible to
redefine the EMT so that the virial current does not appear.

2Note that if the theory is invariant under dilatations, then dD/dt = 0 which implies 1
i
[H,D] = H. If a

stationary state exists, then 〈H〉 = 0. Eigenstates of the Hamiltonian with nonzero energy are therefore not
stationary. The only possibility is that they move at the speed of light, meaning that they must be massless.
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For µ = i, this relation indicates that dilatations simply rescale the momentum. For µ = 0,
the rescaling of the Hamiltonian is accompanied by another contribution arising from the
breaking of dilatation symmetry. The latter is measured by dD/dt and can be expressed as

dD
dt =

∫
d3x ∂0j

0
D =

∫
d3x (∂µjµD −∇ · jD) =

∫
d3xTµµ +

∫
d3xFµxµ, (2.6)

where the density of four-force is defined as Fµ = ∂λT
λµ. Under an infinitesimal dilatation

xµ 7→ (1 + δκ)xµ, the variation of the Hamiltonian is given by

δH = i[H,D] δκ =
[
−
∑
i

∫
d3xT ii −

∫
d3xF · x+ t

dH
dt

]
δκ. (2.7)

Note that only spatial dilatations (i.e. those generated by G) matter since [H,D] = −[H,G].
We could therefore have directly started with G instead of D, like in the case of point
particles treated in appendix A, but the spirit of relativistic field theories makes it a priori
more natural to consider spacetime dilatations rather than pure spatial dilatations.

Using the operator equation (2.7), we can write the mean variation of the energy as

〈δH〉 = −p̄ δV − f̄ δ`+
〈dH

dt

〉
δt, (2.8)

where 〈O〉 is the expectation value of the operator O in some properly normalized state, V
is the volume and ` is the radius of a sphere containing the system,

p̄ ≡ 1
3V

∑
i

〈
∫

d3xT ii〉 (2.9)

is the average isotropic stress or pressure,3 and

f̄ ≡ 1
`
〈
∫

d3xF · x〉 (2.10)

is the average radial force. The combination δW = p̄ δV + f̄ δ` represents the mean work
exerted by the system under the infinitesimal spatial dilatation. The last term in eq. (2.8)
represents dissipation.

2.2 Virial theorem for stationary states

Assuming that the Hamiltonian is time-independent, the QFT version of the virial theorem
follows directly from the expectation value of eq. (2.7) in a (normalized) stationary state
H|Ψ〉 = E|Ψ〉 ∑

i

〈Ψ|
∫

d3xT ii|Ψ〉+ 〈Ψ|
∫

d3xF · x|Ψ〉 = 0. (2.11)

It is a balance equation stating that in a stationary state the virtual work exerted by the
system under a spatial dilatation vanishes. In other words, the system is in mechanical
equilibrium.

3Since the momentum density 〈T 0i〉(x) does not vanish in general, p̄ includes a convective contribution
and should not be confused with hydrostatic pressure which is defined in the local rest frame of the medium.
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For a system of massive point particles, one can write∑
i

T ii(x) =
∑
k

vk(t) · pk(x) δ(3)(x− rk(t)),

F(x) =
∑
k

Fk(t, rk(t)) δ(3)(x− rk(t)),
(2.12)

where vk = drk/dt is the velocity of particle k, pk is its momentum, and Fk is the force acting
on it; see appendix A.3. Noting that for a non-relativistic system the total kinetic energy
is given by T = ∑

k
1
2 vk · pk, it is easy to see that eq. (2.11) reduces after integration to

〈Ψ|T |Ψ〉 = −1
2
∑
k

〈Ψ|rk · Fk|Ψ〉, (2.13)

which is the familiar form of the virial theorem in non-relativistic quantum mechanics.
For a closed system, the total EMT is conserved and the virial theorem reduces to∑

i

〈Ψ|
∫

d3xT ii|Ψ〉 = 0. (2.14)

This relation has largely been discussed in the QED context for an electron state [21–26],
and is a key aspect of the hadron mechanical structure [14–16] which impacts the hadron
mass decomposition [5]. It is however usually obtained from a different approach, and
therefore often not recognized as the virial theorem. The situation is different, e.g., in
plasma physics [27–29] where eq. (2.14) is well known as the virial theorem. Defining the
isotropic stress or pressure distribution as p(x) ≡ 1

3
∑
i〈Ψ|T ii(x)|Ψ〉, we see that the virial

theorem for a closed system amounts simply to the von Laue condition for mechanical
equilibrium [30] ∫

d3x p(x) = 0, (2.15)

derived long ago in the context of classical field theory.
We observe that there exists actually some confusion in the field theory literature about

the notion of virial theorem. For example, in the seminal paper [31] introducing the MIT
bag model two so-called “virial theorems” are derived using naive transpositions of the
point mechanics quantity G = ∑

k rk ·pk to continuum mechanics. The first one is based on
G 7→ Ω =

∫
d3xφ(x)φ̇(x), where φ(x) is a massless scalar field describing quarks inside the

bag and φ̇(x) is its time derivative. The second one is based on G 7→ Ω̄ =
∫

d3xφ(x)x·∇φ̇(x),
which is close to the correct transposition G 7→

∫
d3xT 0ixi =

∫
d3x φ̇(x)x ·∇φ(x). In a

subsequent paper [32], it has been observed that the key results derived from the combination
of d〈Ψ|Ω|Ψ〉/dt = 0 and d〈Ψ|Ω̄|Ψ〉/dt = 0 can in fact be obtained from the stationarity
of the system rest energy under spatial dilatations. This variational principle expresses
mechanical equilibrium and has been used later in the context of soliton models [15, 33, 34],
where it is commonly referred to as the virial theorem. We agree with the latter naming
since requiring stationarity under spatial dilatations amounts to using the correct form for
the generator of spatial dilatations G 7→

∫
d3xT 0ixi from which one usually derives the

virial theorem d〈Ψ|G|Ψ〉/dt = 0; see appendix A.
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Let us now consider a stronger version of the virial theorem which is most easily derived
without explicit reference to dilatations. To this end, let us generalize the approach followed
in refs. [11, 12, 15, 35, 36] and write the identity

∂0T
0µ = Fµ − ∂kT kµ. (2.16)

For a stationary state, the left-hand side vanishes using the Heisenberg equation of motion
and we can write

∂k〈Ψ|T kµ|Ψ〉 − 〈Ψ|Fµ|Ψ〉 = 0. (2.17)

Multiplying by xi and integrating over space gives for µ = j

〈Ψ|
∫

d3xT ij |Ψ〉+ 〈Ψ|
∫

d3xxiF j |Ψ〉 = 0. (2.18)

This is the QFT version of the so-called tensor virial theorem [37], whose spatial trace
reduces to the usual (scalar) virial theorem (2.11). It expresses the fact that a stationary
state is in mechanical equilibrium not only under isotropic dilatations, but more generally
under any (infinitesimal) spatial deformation. For a closed system, the tensor virial theorem
reduces to

〈Ψ|
∫

d3xT ij |Ψ〉 = 0. (2.19)

Since the virial theorem concerns only the stress tensor, one may wonder in what frame
it applies. Clearly it cannot be a generic frame for it would imply that the expectation value
of the total EMT must identically vanish. By a stationary state it is usually understood
a normalizable state, excluding therefore momentum eigenstates. It is easy to see that
the expectation value of total momentum P in a stationary state vanishes, meaning
that the system is in average at rest. One can indeed use, e.g., the center of energy
R = 1

H

∫
d3xxT 00 to define the position of a closed system. The velocity operator is then

given by dR/dt = P /H , whose expectation value in a stationary state vanishes using again
the Heisenberg equation of motion. So, in conclusion, the virial theorem simply expresses
the condition of mechanical equilibrium of a massive system in the system rest frame.

2.3 Virial theorem for momentum eigenstates

In particle physics, it is customary to work with four-momentum eigenstates instead of
normalizable stationary states. It is actually possible to obtain in a simple way the content
of the virial theorem for a closed system for such states, but the derivation turns out to
involve additional information that should be distinguished from the virial theorem.

Poincaré symmetry implies that the forward matrix elements of the total EMT must
have the form [38–40]

〈p|Tµν(x)|p〉 = 2pµpν , (2.20)

where |p〉 is covariantly normalized, i.e. 〈p′|p〉 = (2π)32p0δ(3)(p′ − p). (For simplicity, we
suppress the spin labels for the nucleon states throughout this work.) This ensures that the
total four-momentum is given by

〈p|
∫

d3xT 0µ(x)|p〉
〈p|p〉

= pµ. (2.21)
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The average total stress tensor then reads

〈p|
∫

d3xT ij(x)|p〉
〈p|p〉

= pipj

p0 . (2.22)

For a state at rest defined by pµrest = (M,0), we recover directly the tensor virial theorem
for a closed system

〈prest|
∫

d3xT ij(x)|prest〉
〈prest|prest〉

= 0. (2.23)

In the context of classical field theory, von Laue [30] showed that eq. (2.23) is a necessary
and sufficient condition for the total four-momentum to transform as a Lorentz four-vector.
The same condition must also hold in QFT [21, 23, 24] since it is just based on Lorentz
symmetry.

Clearly the tensor analysis approach, which is based on eq. (2.20), is very powerful and
arrives at eq. (2.19) in a very simple (though somewhat formal) way, with the advantage of
extending its expression to any Lorentz frame. The drawback is that it keeps the physical
meaning obscure, and in particular the fact that it includes automatically the virial theorem
which is associated with spatial dilatations. To clarify the physical meaning of eq. (2.20), we
first note that the tensor virial theorem for a closed system in eq. (2.23) can be expressed
in an arbitrary frame as

(uµuα − δµα)(uνuβ − δνβ) 〈p|
∫

dV Tαβ(x)|p〉
〈p|p〉

= 0, (2.24)

where uµ = pµ/M is the system four-velocity and dV = u0d3x is the Lorentz-invariant
proper volume element. It implies that

〈p|
∫

dV Tµν(x)|p〉
〈p|p〉

= 〈p|T
µν(0)|p〉
2M = Auµuν , (2.25)

where we used translation invariance and the fact that

〈p|p〉 = (2π)32p0δ(3)(0) = 2M (2π)3u0δ(3)(0) = 2M
∫

dV. (2.26)

Note that one arrives at the same conclusion using tensor analysis and the conservation of
the total EMT which excludes other possible Lorentz structures involving gµν or polarization
tensors [41]. We stress that the virial theorem does not require to know the coefficient A. The
latter is fixed by the additional requirement that the proper energy is the mass of the system

uµuν
〈p|
∫

dV Tµν(x)|p〉
〈p|p〉

= M (2.27)

or, equivalently, by the requirement of four-momentum conservation (2.21). This implies
that A = M , leading us back to eq. (2.20). This analysis shows clearly that the expres-
sion (2.20) combines in fact two distinct physical aspects of bound systems: one is the virial
theorem expressing mechanical equilibrium (2.24) and the other is that the mass of the
system is M (2.27).

– 6 –
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3 EMT matrix elements and their interpretation

Now that the QFT version of the virial theorem is well identified, we would like to add
further discussion about the physical interpretation of the EMT matrix elements. For our
purpose, it will be sufficient to work with the symmetric (or Belinfante) form of the EMT.
We will also assume that the total EMT can be written as the sum of partial EMTs

Tµν(x) =
∑
a

Tµνa (x) (3.1)

associated with the individual species of constituents in the system. In QCD, we will
typically separate the system into quark and gluon contributions. The quark contribution
can further be decomposed into flavor contributions. Note that vacuum expectation values
are always implicitly subtracted from these operators.

3.1 Parametrization

For a spin-1/2 target, the matrix elements of the symmetric (or Belinfante) EMT can be
parametrized in general as [38, 39, 42]

〈p′|Tµνa (0)|p〉 = u(p′)Γµνa (P,∆)u(p) (3.2)

with
Γµνa (P,∆) = P {µγν}

M
Aa(∆2) + P {µiσν}λ∆λ

2M Ba(∆2)

+ ∆µ∆ν − gµν∆2

M
Ca(∆2) +MgµνC̄a(∆2),

(3.3)

where a{µbν} = 1
2(aµbν + aνbµ), P = 1

2(p′ + p) is the average four-momentum, ∆ = p′ − p is
the four-momentum transfer, and a is just a generic label specifying the EMT contribution.
The gravitational form factors depend on ∆2 only and therefore are frame-independent. In
the forward limit, this parametrization reduces to

〈p|Tµνa (0)|p〉 = 2pµpνAa(0) + 2M2gµνC̄a(0). (3.4)

3.2 Spatial distributions

The expectation value of the EMT tensor in some physical nucleon state |Ψ〉 (not necessarily
stationary) at time t = 0 is given by

〈Ψ|Tµνa (0,x)|Ψ〉 =
∫ d3p′

(2π)3
d3p

(2π)3 Ψ̃∗(p′)Ψ̃(p) e−i(p′−p)·x 〈p′|Tµνa (0)|p〉√
2p′02p0 , (3.5)

where the momentum-space wave packet is defined as Ψ̃(p) = 〈p|Ψ〉/
√

2p0. Applying a
Wigner transform, this can be rewritten in a phase-space representation as [16, 43, 44]

〈Ψ|Tµνa (0,x)|Ψ〉 =
∫ d3P

(2π)3 d3RρΨ(R,P ) 〈Tµνa 〉(x−R,P ) (3.6)

with
ρΨ(R,P ) ≡

∫ d3q

(2π)3 e
−iq·R Ψ̃∗(P + q

2 )Ψ̃(P − q
2 ) (3.7)

– 7 –
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the nucleon Wigner distribution and

〈Tµνa 〉(r,P ) ≡
∫ d3∆

(2π)3 e
−i∆·r 〈P + ∆

2 |T
µν
a (0)|P − ∆

2 〉√
2p′02p0 (3.8)

the internal EMT distribution for a nucleon localized in the Wigner sense in phase space.
The average rest frame P = 0 is known as the Breit frame, where eq. (3.8) reduces to
the 3D EMT distributions introduced in ref. [14] and reviewed in ref. [15]. When P 6= 0
one can choose without loss of generality the z axis along P . Integrating over rz, one
obtains the 2D EMT distributions which become genuine probabilistic distributions in the
infinite-momentum limit [16, 45, 46]. In these two cases there is no energy transfer, p′0 = p0,
so that the spatial distributions are in fact static, i.e. time-independent. Relativistic spatial
charge distributions are constructed in a similar way using the charge current jµ(x) [47].

3.3 Four-momentum sum rules

Integrating eq. (3.5) over all space and using the parametrization (3.4), we arrive at

〈Ψ|
∫

d3xTµνa (0,x)|Ψ〉 =
∫ d3p

(2π)3 |Ψ̃(p)|2 p
µpνAa(0) +M2gµνC̄a(0)

p0 . (3.9)

For a state with well-defined momentum p, this reduces to

〈p|
∫

d3xTµνa (0,x)|p〉
〈p|p〉

= pµpνAa(0) +M2gµνC̄a(0)
p0 , (3.10)

which is also valid for t 6= 0 because |p〉 is an energy eigenstate. With the four-momentum
operator being defined as

Pµa (t) =
∫

d3xT 0µ
a (t,x), (3.11)

we obtain from eq. (3.10) the expression [48]

〈p|Pµa (t)|p〉
〈p|p〉

= pµAa(0) + M2

p0 g0µC̄a(0). (3.12)

Summing over all the contributions we should recover the four-momentum of the state,
leading therefore to a momentum sum rule for µ = i∑

a

Aa(0) = 1 (3.13)

and an energy sum rule for µ = 0

∑
a

[
Aa(0) + M2

(p0)2 C̄a(0)
]

= 1. (3.14)

Equation (3.14) must be true in any frame and we conclude that∑
a

C̄a(0) = 0. (3.15)
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3.4 Lorentz symmetry and physical interpretation

From the point of view of Lorentz symmetry, it is interesting to decompose the EMT
into a symmetric traceless contribution and a trace contribution [3, 4], since these belong
to different representations of the Lorentz group and hence do not mix under Lorentz
transformations. One can then rewrite eq. (3.10) as

〈p|
∫

d3xTµνa (x)|p〉
〈p|p〉

= 1
p0

[(
pµpν−M

2

4 gµν
)
Aa(0)+M2

4 gµν
(
Aa(0)+4C̄a(0)

)]
. (3.16)

Alternatively, we may note that the four-momentum of the system is a timelike four-vector
that can be used to provide a natural foliation of spacetime into spacelike hypersurfaces.
From the physical point of view, this means that pµ specifies in a covariant way the rest
frame of the system. We can then decompose the EMT into parallel and orthogonal
contributions to pµ [5, 49–51]

〈p|
∫

d3xTµνa (x)|p〉
〈p|p〉

= 1
p0

[
pµpν

(
Aa(0) + C̄a(0)

)
−
(
pµpν −M2gµν

)
C̄a(0)

]
. (3.17)

In the rest frame, we have in particular

〈prest|
∫

d3xTµνa (x)|prest〉
〈prest|prest〉

= M


Aa(0) + C̄a(0) 0 0 0

0 −C̄a(0) 0 0
0 0 −C̄a(0) 0
0 0 0 −C̄a(0)

 , (3.18)

which shows that the combination Aa(0)+C̄a(0) represents the fraction of the system rest en-
ergy carried by the subsystem a, and that −C̄a(0)M represents the rest isotropic stress of this
subsystem integrated over the volume. Dividing by the proper volume V of the system, one
can interpret Aa(0)+C̄a(0) as the average energy density and −C̄a(0) as the average isotropic
pressure, both defined in the rest frame of the system and expressed in units of M/V [5].

Thanks to eq. (3.18), we can easily understand the physical meaning of the sum
rule (3.15). It is simply the virial theorem derived in section 2, expressing the mechanical
equilibrium of the system [5]. The fact that we have in the forward limit two gravitational
form factors Aa(0) and C̄a(0) satisfying two independent sum rules (3.14) and (3.15) strongly
suggests that they correspond to two distinct aspects of the physics of bound states. This
is further motivated by the structure of the EMT which adopts its simplest form in the
nucleon rest frame (3.18).

Although the habit of interpreting expectation values of the EMT using the language
of continuum mechanics has a long history [14, 21–24, 26–29, 52–55], some concerns about
this picture have recently been expressed in ref. [8]. It is claimed that the interpretation in
terms of energy density and pressure makes sense only under some conditions. One of them
is that the particles mean free paths must be much smaller than the volume elements. It is
then concluded that “in QCD, only at high-temperature and density, a fluid description of
the combined quark and gluon plasma might make sense” [8]. We remind however that the
alluded conditions indicate in fact whether a macroscopic continuum description can be
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used when the microscopic degrees of freedom are discrete. They tell us, e.g., under what
circumstances one can describe a gas composed of a large number of particles as a classical
continuous medium from an effective macroscopic point of view.

In QFT the fundamental degrees of freedom are fields, and particles emerge as somewhat
localized excitations of the latter. Unlike classical field theory, which is usually seen as an
effective macroscopic description, QFT is a fundamental continuous description. Following
quantum mechanics, the expectation value 〈Ψ|Tµν(x)|Ψ〉 simply represents the quantum
mean value of the EMT at some spacetime point x. There is no coarse graining4 involved
and one can safely apply the language of continuum mechanics. We also point out that the
average energy density and pressure are here defined by dividing the total rest energy and
work by the whole proper volume of the nucleon, which is necessarily larger than the quark
and gluon mean free paths. The conditions of applicability of the effective macroscopic
description are therefore also satisfied.

Let us illustrate this with an example. If we consider an ideal gas from a macroscopic
point of view, the stress tensor will contain both a convective contribution and an internal
pressure contribution, but from the microscopic point-particle perspective both arise from
the motion of the particles and hence are purely convective. The macroscopic distinction
arises simply because of the coarse graining procedure, which defines an effective local
pressure by averaging over distances larger than the particles mean free paths. In QFT, the
situation is reversed since the microscopic degrees of freedom are not particles but quantum
fields. So on top of the convective contribution (i.e. kinetic energy), the microscopic stress
tensor will in general also receive some internal contribution. For a stationary state there
cannot be friction, so the internal stress is akin to a conservative potential energy and
can accordingly be interpreted as pressure. More precisely, average pressure5 is simply
understood in the sense of p̄ = −δE/δV where δE = 〈Ψ|δH|Ψ〉 is the variation of energy
associated with an infinitesimal change of volume δV , see section 2.1.

4 Tensor analysis of nucleon mass

Having discussed in detail the physical interpretation of EMT matrix elements, we now
address specifically the question of the nucleon mass decomposition. We will adopt here the
approach of ref. [5] which extends the work of Polyakov [14] to the non-conserved (partial)
EMTs of the partons. It is very general in the sense that it is based only on the components
of the EMT, and not on the particular form assumed by the latter in a given theory and
renormalization scheme. Note that this does not mean of course that the magnitude of the
individual contributions are renormalization-scheme independent. Again, we will consider
that the total EMT can be written as a sum of partial EMTs as in eq. (3.1).

4In reality, contributions to the EMT usually diverge in perturbation theory in terms of the bare degrees
of freedom, so that the theory has to be renormalized. In some sense renormalization is akin to coarse
graining since it amounts to defining effective finite degrees of freedom through the choice of particular
renormalization conditions and introducing a so-called renormalization scale.

5In this work we are talking about the non-thermal part of energy density and pressure. The thermal part
is defined in finite temperature field theory from the thermal average of the same components T 00 and T ii of
the EMT [56–58]. The non-thermal part has recently been investigated in lattice field theory in refs. [59–62].
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4.1 Proper energy decomposition

In special relativity, mass is defined by the equation pµpµ = M2, where pµ is the total
four-momentum of the system. In QFT, this becomes an operator identity

PµPµ = M2, (4.1)

with Pµ the total four-momentum operator. Since we can write

M |p〉 = PµPµ
M

|p〉 = Pµ|p〉uµ (4.2)

for a massive momentum eigenstate, we conclude that (invariant) mass is fundamentally the
proper energy of the system [5, 63], i.e. the Lorentz-invariant expression of the rest-frame
energy.6

A mass decomposition is therefore a proper energy decomposition. Using eq. (3.12), it
is given by the Lorentz-invariant relation

M =
∑
a

〈p|
∫

d3xT 0µ
a (x)|p〉

〈p|p〉
uµ =

∑
a

[
Aa(0) + C̄a(0)

]
M. (4.3)

In the rest frame, the nucleon four-velocity reduces to uµ = (1,0) and the proper energy
Pµuµ coincides with the energy P 0 =

∫
d3xT 00(x), which was the starting point of refs. [3, 4].

Nucleons being composed of quarks and gluons, it has been argued in ref. [5] that a natural
decomposition of the nucleon mass will consist of two terms,

M = Uq + Ug, (4.4)

where
Ua ≡

[
Aa(0) + C̄a(0)

]
M (4.5)

is interpreted as the internal proper energy associated with parton species a.
It is possible to refine this decomposition. An obvious and theoretically trivial refine-

ment would be to separate Uq into contributions from the different quark flavors. We do
not elaborate on this point which only matters when studying numerical values for the
contributions to the nucleon mass. Let us rather focus on another refinement. Since quarks
are massive particles we can write [5–7]

M = (Uq − Um) + Um + Ug, (4.6)

where
Um ≡

〈p|
∫

dV (ψmψ)(x)|p〉
〈p|p〉

= 〈p|
∫

d3x (ψmψ)(x)|p〉
〈p|p〉

u0 (4.7)

can be interpreted as the quark mass or rest-energy contribution, and therefore (Uq − Um)
as the quark proper kinetic and potential energies. This is motivated by the familiar
decomposition of a free-particle energy into kinetic and rest energy contributions,√

p2 +M2 =
(√

p2 +M2 −M
)

+M. (4.8)

6Similarly, proper time and proper length are the Lorentz-invariant expressions of rest-frame lapse
and distance.
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The three-term energy decomposition (4.6) has recently been obtained in DR [6, 7], and
will be discussed in more detail in section 5.

The pioneering four-term energy decomposition proposed in refs. [3, 4] has recently
been slightly reorganized in refs. [8, 64–66]. To obtain its modern form within the present
tensor analysis approach, we need to write

M = Mq +Mg +Mm +Ma, (4.9)

using the refinement

Mq ≡ Uq − cmMm − caMa,

Mg ≡ Ug − (1− cm)Mm − (1− ca)Ma,

Mm ≡ Um,

Ma ≡
1
4
〈p|
∫

dV
[ β

2g F
2 + γmψmψ

]
(x)|p〉

〈p|p〉
,

(4.10)

with cm,a two renormalization-scheme-dependent coefficients, γm the quark mass anomalous
dimension, β the QCD beta function, and Fµν the gluon field strength tensor. From the
tensor analysis perspective, we are unable to find any motivation for interpreting Mq,g as
the quark/gluon kinetic and potential energies, as was proposed in refs. [3, 4]. Without a
clear physical interpretation of Mq and Mg, the refinement (4.9) appears somewhat ad hoc,
leading to the conclusion in ref. [5] that the introduction of Mm and Ma in the nucleon
mass decomposition is in some sense arbitrary.

Contrary to the analysis of ref. [5], the derivation of the four-term energy decomposition
of refs. [3, 4] did actually not start from a decomposition of the total EMT into quark and
gluon contributions. Instead, the total EMT is first decomposed into

Tµν = T̄µν + T̂µν , (4.11)

where the traceless and trace parts are defined as

T̄µν ≡ Tµν − 1
4 g

µνT λλ,

T̂µν ≡ 1
4 g

µνT λλ.
(4.12)

Working for convenience in the rest frame, the proper energy density is simply given by the
µ = ν = 0 component so that

T 00 =
(

3
4 T

00 + 1
4
∑
i

T ii
)

+
(

1
4 T

00 − 1
4
∑
i

T ii
)

(4.13)

following the decomposition in eq. (4.11). Using now the virial theorem (2.23) and the
definition of mass (4.3), one concludes that the so-called “tensor” and “scalar” energies are
given by

ET ≡
〈prest|

∫
d3x T̄ 00(x)|prest〉
〈prest|prest〉

= 3
4 M,

ES ≡
〈prest|

∫
d3x T̂ 00(x)|prest〉
〈prest|prest〉

= 1
4 M.

(4.14)
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In refs. [3, 4] the result (4.14) was obtained using eq. (2.20) and was interpreted as
analogous to the virial theorem. In recent papers [8–10], the relation

ET = 3ES (4.15)

is now referred to as the “relativistic virial theorem”, motivated by the observation that
one can deduce from it the familiar non-relativistic expression 2〈Ψ|T |Ψ〉 = −〈Ψ|V|Ψ〉 in
the case of the positronium system in Coulomb gauge. Strictly speaking, this argument
does not prove that eq. (4.15) is the actual relativistic virial theorem. It only indicates
that eq. (4.15) contains the relativistic virial theorem. As stressed earlier, there is some
confusion in the literature about what the virial theorem is in field theory. In order to
clarify this point, we reviewed in appendix A its derivation in both classical and quantum
mechanics, and we extended explicitly the derivation to QFT in section 2. The result for a
closed system is given in eq. (2.23), and expresses the fact that the system is in mechanical
equilibrium [5, 14–16]. As shown in section 2.3, the virial theorem is already contained in
eq. (2.20) used to derive the relation (4.15). The latter should therefore be considered as
a corollary of the relativistic virial theorem (2.23) rather than the virial theorem per se.
Indeed, using the decomposition (4.11) and the virial theorem we have∑

i

〈prest|
∫

d3x T̄ ii(x)|prest〉
〈prest|prest〉

= −
∑
i

〈prest|
∫

d3x T̂ ii(x)|prest〉
〈prest|prest〉

. (4.16)

Now, from the definition of the traceless and trace parts (4.12) it follows that∑
i

T̄ ii(x) = T̄ 00(x),∑
i

T̂ ii(x) = −3 T̂ 00(x),
(4.17)

leading then to eq. (4.15).
While the decomposition (4.11) can certainly be motivated by the fact that T̄µν and

T̂µν do not mix under renormalization and Lorentz transformations, it comes at the price
of mixing T 00 and T ii components, as clearly indicated by eq. (4.13). We have seen that
the Lorentz-invariant definition of mass (4.3) requires only the four-momentum density
operator T 0µ. The stress tensor T ij has nothing to do with mass, so introducing it in the
mass decomposition means that one is mixing information about the proper energy content
with the requirement of mechanical equilibrium [5]. This can be seen directly from the
parametrization of the modern7 four-term energy decomposition

Mq = 3
4

(
a− b

1 + γm

)
M,

Mg = 3
4 (1− a)M,

Mm = b

1 + γm
M,

Ma = 1
4

(
1− b

1 + γm

)
M.

(4.18)

7In the original works [3, 4], the contribution arising from the anomalous quark mass dimension is
attributed to Hm =

∫
d3x T̂ 00

m (x), while in the modern form it is part of Ha =
∫

d3x T̂ 00
a (x).
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There are only two unknown numbers a and b (known as Ji’s parameters) for four terms.
There must therefore be two independent linear relations. One is obviously the mass sum
rule (4.9). The other independent relation is

Mq +Mg = 3Ma, (4.19)

which follows from the virial theorem (2.23) and the definition of the a and b parameters8

given in refs. [3, 4]

〈p|T̄µνq (0)|p〉 = 2a
(
pµpν − 1

4 g
µνM2

)
,

(1 + γm)〈p|(ψmψ)(0)|p〉 = 2bM2.

(4.20)

To sum up, there are two independent pieces of information encoded in the forward
matrix elements of the EMT. One is the mass of the system encoded in the rest frame
by the T 00 component. The other is the virial theorem, which expresses the mechanical
equilibrium of the system, encoded in the rest frame by the T ij components. A genuine mass
decomposition should not mix these two aspects. This is the case of the two-term energy
decomposition (4.4) proposed in ref. [5] and its three-term refinement (4.6) found in [6, 7].

4.2 The role of the trace anomaly in the origin of the nucleon mass

As a response to criticisms of the four-term energy decomposition, in ref. [8] it was argued
that “it is unclear what new insight can be brought to the understanding of the proton
mass through the process of regrouping if any. To the contrary, this rearrangement stands
to lose much”. It was concluded that the two-term and three-term energy decompositions
miss “the fundamental insight on the origin of the proton mass”. By “fundamental insight”,
we believe the role played by the trace anomaly in the nucleon mass was meant. In this
subsection we address this important point.

The trace of the EMT measures the breaking of dilatation symmetry due to the presence
of mass scales in the theory. Mass scales are generally provided at the classical level by the
constituent masses. At the quantum level, another scale appears through the process of
renormalization leading to anomalous contributions to the trace of the EMT.

At the operator level, there is no connection between the trace of the EMT Tµµ and the
mass of a physical state M2 = PµPµ with Pµ =

∫
d3xT 0µ(x). The connection can however

be made at the level of expectation values in a stationary state |Ψ〉 thanks to the virial
theorem 〈Ψ|

∫
d3xT ij(x)|Ψ〉 = 0 which implies [25, 26]

M = 〈Ψ|
∫

d3xTµµ(x)|Ψ〉. (4.21)

In the literature the relation is in fact usually derived in terms of four-momentum eigenstates
directly from the trace of eq. (2.20), leading to [1, 2]

〈p|Tµµ(0)|p〉 = 2M2. (4.22)
8Ji’s parameters can be expressed in terms of the EMT form factors introduced in section 3.1. We have

simply a = Aq(0), while the relation for b is more complicated and depends on the renormalization scheme,
see the discussion in section 5.1.
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This derivation is manifestly Lorentz invariant but hides the fact that it implicitly makes
use of the virial theorem, since eq. (2.20) can be obtained solely from Poincaré symmetry
arguments. As a result of this relation, there seems to be a deeply-rooted idea that the
trace anomaly must fundamentally be connected to the nucleon mass, and so one might
expect it to appear explicitly in the mass budget. We stress however that this appearance
can only be made through the use of the virial theorem, since matrix elements of ∑i T

ii are
necessarily involved. The virial theorem is useful because it allows one to relate the average
value of different quantities, like e.g. the average kinetic and potential energies in point
mechanics, and therefore to reexpress the total energy in a different way, see appendix A.2
for an example in Dirac theory. However, it does not provide any clue about the actual
origin of mass.

One can also understand this from the point of view of dilatations. Note that the EMT
can generally be interpreted as the response of the system to infinitesimal spacetime distor-
tions xµ 7→ xµ + εξµ(x) [67]. Indeed, the corresponding variation of the action is given by

δS = ε

∫
d4xTµν∂µξν . (4.23)

When the EMT is symmetric, we can write

δS = −1
2

∫
d4xTµνδgµν (4.24)

because an infinitesimal spacetime distortion can be seen as a diffeomorphism under which
the variation of the (symmetric) metric is given by δgµν = −ε(∂µξν + ∂νξµ). It follows that
temporal dilatations tell us something about the Hamiltonian and hence the mass of the
system, while spatial dilatations lead to the virial theorem and tell us something about
mechanical equilibrium. The trace anomaly, which is associated with isotropic spacetime
dilatations, then necessarily combines these two independent aspects of a bound system.

So, we do not consider that writing

M = 〈Ψ|
∫

d3xT 00(x)|Ψ〉 = 〈Ψ|
∫

d3x

(
T 00 − 1

4 T
µ
µ

)
(x)|Ψ〉+ 1

4 〈Ψ|
∫

d3xTµµ(x)|Ψ〉
(4.25)

brings any fundamental insight into the question of the origin of the nucleon mass [5]. It is
just a particular case of the more general relation

M = 〈Ψ|
∫

d3x
(
T 00 − αT µµ

)
(x)|Ψ〉+ α 〈Ψ|

∫
d3xTµµ(x)|Ψ〉 (4.26)

which is obviously true for any value of α, independently of the virial theorem.
We repeat that for α 6= 0 the two terms in eq. (4.26) correspond to different combinations

of EMT components, which is not a natural thing to do from the tensor analysis perspective
since the individual terms would then correspond to different physical quantities rather than
different contributions to the same physical quantity [5]. This is similar to what happens, e.g.,
in thermodynamics. One can define the notion of enthalpy H as the sum of internal energy
U and pressure-volume work W = pV . However, one does usually not consider that the
relation U = H−pV = (U+pV )−pV represents an actual decomposition of internal energy.
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As a final remark, we find it somewhat surprising that in section IV of ref. [8] it is
argued that using the relation (2.22) for the first term of eq. (4.26) in the case α = 1 does
not make a lot of sense physically, while in section II of the same paper the relation (2.22)
is used in the case α = 1/4 to provide some alleged fundamental insight, namely the fact
that 1/4 of the nucleon mass comes from the EMT trace. Once again, the main motivation
for the choice α = 1/4 is that the two terms do not mix with each other under Lorentz
transformations and renormalization, but without the virial theorem these terms have
separately no clear relation to mass. Only the two-term (4.4) and three-term (4.6) energy
decompositions make no use of the virial theorem, and can therefore be considered as
genuine mass decompositions.

4.3 Generalized mass decomposition

So far we insisted on the fact that each term appearing in a genuine mass decomposition
should have the meaning of a contribution to proper energy. If we relax this requirement
and simply demand that 1) the various terms have the dimension of energy and 2) the
sum of the corresponding expectation values gives the mass of the system, then we are led
to the concept of generalized mass decomposition, which allows one to treat within the
same framework various decompositions proposed in the literature. For ease of presentation
we will consider in this section only a decomposition of the EMT into quark and gluon
contributions, so that each term of the corresponding generalized mass decomposition has
the same expression in terms of form factors. It should however be kept in mind that further
refinements similar to the ones leading to the three and four-term energy decompositions
discussed in section 4.1 can naturally be considered.

For convenience, let us work in the nucleon rest frame where the total energy coincides
with mass. We have already seen that once we have defined a decomposition of the EMT
Tµν = ∑

a T
µν
a , a natural mass decomposition follows automatically by considering the

matrix elements of T 00 in the rest frame,

M =
∑
a

〈prest|
∫

d3xT 00
a (x)|prest〉

〈prest|prest〉
=
∑
a

[
Aa(0) + C̄a(0)

]
M. (4.27)

Combining this rest-frame energy decomposition with the virial theorem

0 =
∑
a

〈prest|
∫

d3xT ija (x)|prest〉
〈prest|prest〉

= gij
∑
a

C̄a(0)M, (4.28)

and the fact that discrete spacetime symmetries imply

0 = 〈prest|
∫

d3xT 0i
a (x)|prest〉

〈prest|prest〉
= 〈prest|

∫
d3xT i0a (x)|prest〉
〈prest|prest〉

, (4.29)

we can define a generalized mass decomposition as follows,

M =
∑
a

〈prest|
∫

d3x cµνT
µν
a (x)|prest〉

〈prest|prest〉
=
∑
a

[
Aa(0) + cµµC̄a(0)

]
M, (4.30)
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where the cµν are arbitrary coefficients with the constraint c00 = 1. Some notable examples
are:

• Energy decomposition: cµν = g0µg0ν ;

• Trace decomposition: cµν = gµν ;

• Enthalpy decomposition: cµν = (4g0µg0ν − gµν)/3;

• Tolman mass decomposition: cµν = 2g0µg0ν − gµν ;

• Light-front momentum decomposition: cµν = 2g−µg−ν ;

• Light-front energy decomposition: cµν = 2g−µg+ν .

Defining mass as the rest-frame energy naturally leads to the energy decompositions discussed
in refs. [3–7]. Mass being by definition a Lorentz scalar, some authors prefer to relate it to the
trace of the EMT, see e.g. refs. [1, 2, 18, 68–70]. Since it is the enthalpy that forms together
with the three-momentum a Lorentz four-vector in relativistic thermodynamics [71–73], one
could also argue that mass is the proportionality factor between four-momentum and four-
velocity and hence consider an enthalpy decomposition instead of an energy decomposition.
In the context of general relativity, defining the total mass of a system becomes an even more
delicate problem owing to contributions associated with the gravitational field. Tolman
mass is one of the standard notions of quasi-local mass commonly used because it has
“the great advantage that it can be evaluated by integrating over the region occupied by
matter or electromagnetic energy” [35, 74, 75]. In the context of high-energy scattering, it
is particularly convenient to switch to light-front components defined as a± = (a0± a3)/

√
2,

where the z-direction is the collision axis. In this formulation of relativistic dynamics, the
little group is Galilean and the longitudinal light-front momentum plays in the (x, y)-plane
the same role as mass does in the non-relativistic context [16, 46, 76, 77]. Finally, coming
back to the fact that mass can be seen as the rest-frame energy and noting that light-front
boosts are kinematical transformations, one may consider alternatively the light-front
version of the energy decomposition discussed e.g. in refs. [16, 78].

We note that the generalized mass decomposition introduced in eq. (4.30) can easily
be expressed in a Lorentz-invariant way according to

M =
∑
a

〈p|
∫

dV cµνTµνa (x)|p〉
〈p|p〉

=
∑
a

[
Aa(0) + cµµC̄a(0)

]
M, (4.31)

where dV = u0d3x is again the invariant proper volume element and the condition on
the coefficients is now cµνu

µuν = 1. For the notable examples presented above, it suffices
to apply the substitutions g0µ 7→ uµ and g±µ 7→ n±/(n± · u)

√
2 with n± = (1,±u/|u|).

This shows that Poincaré symmetry alone does not lead to a unique generalized mass
decomposition.

To sum up, while the genuine mass decomposition relies only on four-momentum
conservation ∑

a

〈p|
∫

d3xT 0µ
a (x)|p〉

〈p|p〉
= pµ, (4.32)
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a generalized mass decomposition requires the more general relation
∑
a

〈p|
∫

d3xTµνa (x)|p〉
〈p|p〉

= pµpν

p0 (4.33)

which includes the additional information of mechanical equilibrium expressed by the virial
theorem (2.24). The proper physical interpretation of the contribution associated with
subsystem a should therefore account for pressure effects when cµµ 6= 1 [5].

5 Operator structure of the energy decomposition

Mass decompositions are often motivated by their operator structures. Some controversy
arose recently concerning the form of the renormalized EMT operator in QCD. We discuss
in this section this important point, revisiting the structure of the operators in the MS and
MS schemes (hereafter, referred as MS-like schemes) in the framework of (conventional)
DR. For a concise description of conventional DR as well as of other DR procedures we
refer to appendix B, which is based on the original work of refs. [79–81]. We then review
the operator structure of the different mass terms in the four-term energy decomposition
proposed in ref. [4] and recently revised in refs. [6, 7]. Finally, we discuss the status of the
so-called “quantum anomalous energy” put forward in the recent works [8–10].

5.1 Renormalized QCD energy-momentum tensor

The EMT is a sum of composite operators, i.e. products of fields and their derivatives
evaluated at a single spacetime point. Composite operators are usually divergent in
perturbation theory even after Lagrangian renormalization, and require therefore additional
renormalization. MS-like renormalization schemes with DR appear to be particularly
convenient, since it has been shown that almost all usual algebraic manipulations done at
the level of unrenormalized operators remain valid in terms of the renormalized ones [81, 82].
Moreover, both Poincaré and gauge symmetries remain exact9 in the intermediate steps. In
the following, renormalized operators will be distinguished from unrenormalized ones by a
label R.

Nielsen [83] showed long ago that the total EMT in QCD is finite and does not require
additional renormalization, so that (Tµν)R = Tµν . Since the individual terms appearing in
Tµν do not depend on the spacetime dimension d, it follows from the linearity property of
MS-like renormalization schemes that [17, 18, 84, 85]

(Tµν)R =
(
ψγ{µ i2

↔
Dν}ψ

)
R
− (FµλF νλ)R + 1

4 g
µν(F 2)R. (5.1)

To keep the presentation simple, we omitted terms proportional to the equations of motion
(EOM) and the gauge non-invariant ones since they do not contribute to the physical matrix
elements. Note also that the vacuum expectation values are always implicitly subtracted.

9One might naively think that in DR the four-dimensional spacetime is reduced to a d-dimensional one
with d < 4, and hence that the original SO(1, 3) symmetry is lost. In fact, in order to define non-integer
dimensions, spacetime has to be extended to an infinite-dimensional space; see appendix B. The SO(1, 3)
symmetry is therefore preserved as a subgroup of a larger symmetry group.
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The trace of the QCD EMT is also finite and takes the form [83, 86, 87]

gµνT
µν = gµν(Tµν)R = β

2g (F 2)R + (1 + γm)(ψmψ)R. (5.2)

It differs from the classical trace gµνT
µν
class = ψmψ = (ψmψ)R by a term which is

renormalization-group invariant and called the trace anomaly

gµν(Tµν)R − (ψmψ)R = β

2g (F 2)R + γm(ψmψ)R. (5.3)

Looking at the structure of the renormalized EMT (5.1), it is natural to define the
renormalized quark and gluon contributions as

(Tµνq )R =
(
ψγ{µ i2

↔
Dν}ψ

)
R
,

(Tµνg )R = −(FµλF νλ)R + 1
4 g

µν(F 2)R.
(5.4)

Since the trace of the QCD EMT is given by

gµν(Tµν)R = gµν(Tµνq )R + gµν(Tµνg )R, (5.5)

we can write,10 following the notation of refs. [17, 18],

gµν(Tµνq )R = x (F 2)R + (1 + y)(ψmψ)R,

gµν(Tµνg )R =
(
β

2g − x
)

(F 2)R + (γm − y)(ψmψ)R,
(5.6)

where x and y are finite numbers of order O(αs) which parametrize how the anomalous
contributions to the trace are shared between the quark and gluon parts of the EMT.

5.2 Operator mixing

We sketch here the construction of the renormalized EMT operators in the MS-like schemes
with DR as defined in appendix B, and we refer to [7, 17, 18, 84, 85] for more details.
Renormalization through normal products (defining the finite part of composite operators)
and the emergence of the anomaly in DR have both been studied long ago in refs. [81–
83, 86–89]. An explicit application to the O(N) nonlinear sigma model in MS scheme is
given in ref. [90].

The renormalized operators are obtained from a basis of bare composite operators Oi
as follows,

(Oi)R =
∑
j

ZijOj . (5.7)

10One can in principle add a term ∝ (ψ i
2

↔
/Dψ)R on the right-hand side of both equations. It is however

irrelevant because of the EOM.
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As discussed in refs. [6, 7, 17, 18, 69, 85], the remormalization of the QCD EMT involves
four independent operators Oi with i = q, g, F,m that mix through eq. (5.7) via 10
renormalization constants. Explicitly, one has the following system of equations

(
ψγ{µ i2

↔
Dν}ψ

)
R

−(FµλF νλ)R
gµν(F 2)R
gµν(ψmψ)R

 =


Zqq Zqg ZqF Zqm
Zgq Zgg ZgF Zgm
0 0 ZFF ZFm
0 0 0 1



ψγ{µ i2

↔
Dν}ψ

−FµλF νλ
gµνF 2

gµνψmψ

 , (5.8)

where the operators with vanishing contribution to the physical matrix elements have
consistently been omitted.

Thanks to Lorentz symmetry, one can alternatively regroup the operators to form
scalar and symmetric traceless tensor representations of the Lorentz group which do not
mix under renormalization. This amounts to changing the operator basis in such a way
that the renormalization matrix in eq. (5.8) turns into a block-diagonal form, i.e.

(
ψγ{µ i2

↔
Dν}ψ

)
R
− gµν

d gαβ

(
ψγ{α i2

↔
Dβ}ψ

)
R

−(FµλF νλ)R + gµν

d gαβ(FαλF βλ)R
gµν(F 2)R
gµν(ψmψ)R



=


Zqq Zqg 0 0
Zgq Zgg 0 0
0 0 ZFF ZFm
0 0 0 1



ψγ{µ i2

↔
Dν}ψ − gµν

d gαβψγ
{α i

2
↔
Dβ}ψ

−FµλF νλ + gµν

d gαβF
αλF βλ

gµνF 2

gµνψmψ

 . (5.9)

By construction the renormalized operators remain finite in the limit d→ 4. As a result,
we can safely express the traceless operators as on the l.h.s. of eq. (5.9) with d replaced
by 4. Because of the linearity property of the renormalization (5.7), the two procedures in
eqs. (5.8) and (5.9) are perfectly equivalent. There is therefore in practice no distinction
between what the authors of ref. [10] call the “standard” and “non-standard” way of
renormalizing operators. The only crucial point is that one has to be careful with the way
of writing properly the renormalized traceless operators, an aspect that will be discussed in
more detail in section 5.3.

The EMT renormalization constants in the MS-like schemes have been derived up to
two and three loops in refs. [18, 69], and further discussed in refs. [6, 7, 17] in the context
of various mass sum rules. In these schemes, using DR and d = 4− 2ε, the structure of the
renormalization constants is

Zij
∣∣
MS = δij + αs

aij,1
ε

+ α2
s

(
bij,2
ε2

+ bij,1
ε

)
+ α3

s

(
cij,3
ε3

+ cij,2
ε2

+ cij,1
ε

)
, (5.10)

Zij
∣∣
MS = δij + αs

āij,1
ε

Sε + α2
s

(
b̄ij,2
ε2

+ b̄ij,1
ε

)
S2
ε + α3

s

(
c̄ij,3
ε3

+ c̄ij,2
ε2

+ c̄ij,1
ε

)
S3
ε , (5.11)

where the finite quantity Sε can follow different conventions [91, 92], with an expansion in
powers of ε that differs at O(ε2) and higher. We refrain from providing here the explicit
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form of the renormalization factors, but they can be found in refs. [17, 18], and also in [7]
in different MS schemes. We notice that, formally, the MS renormalization factors can be
obtained from the MS ones by simply setting Sε = 1.

When dealing with tensor operators, one has to pay particular attention to the ma-
nipulation of the trace and renormalization operations since, in general, they do not
commute [81, 89],

gµν(Oµν)R 6= (gµνOµν)R. (5.12)

In DR, this arises from the fact that the trace operation may change the pole structure and
hence the result of the normal product. The non-commutativity of these operations is a
reflection of the trace anomaly. In some other renormalization schemes, like for instance
BPHZ, these operations do commute but linearity is lost [81, 93]. The general message is
that because of the trace anomaly it is impossible to preserve all the algebraic manipulations
under renormalization. To clarify this point, we consider an explicit example. As outlined
in appendix B, any DR scheme is well-defined only in perturbation theory and consists of
replacing the four-dimensional loop integration with the map Id, and mapping all vectors
from the (eventually Wick rotated) four-dimensional Minkowski space into the infinitely-
dimensional QSd space. We remind that relations among operators are usually understood
as relations valid for the corresponding Green’s functions. Indeed, the relation

gµνψiD
µγνψ = ψi /Dψ (5.13)

has to be understood at the level of the matrix elements

gµν〈ψiDµγνψ〉 = 〈ψi /Dψ〉. (5.14)

For the bare operator, one has

gµνT
µν
q = ψ i

2

↔
/Dψ = ψmψ. (5.15)

For the renormalized operator, instead, one obtains, using eq. (5.8),

gµν(Tµνq )R = (Zqq + dZqm)ψmψ + (−Zqg + dZqF )F 2, (5.16)

which can be written as

gµν(Tµνq )R = (1 + c1)ψmψ + c2F
2 = gµνT

µν
q + c1ψmψ + c2F

2, (5.17)

where both c1 and c2 start at O(αs) in perturbation theory and are defined as

c1 = Zqq − 1 + dZqm, c2 = −Zqg + dZqF . (5.18)

The total contribution c1ψmψ + c2F
2 can be interpreted as a finite correction to the trace

of the bare operator.11

11A very similar example (with explicit one-loop calculations) is given in chapter 6.5 of ref. [81].
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5.3 Symmetric traceless operators

It appears that there is some confusion in the literature about the form of the symmetric
traceless operators. One reason is that many textbooks and papers do not spell out explicitly
the trace terms and simply write

Ōµν ≡ O{µν} − trace. (5.19)

This lack of explicitness can be understood from the observation that, in the context of
high-energy scatterings, one is often only interested in the specific light-front component
T++
a , representing the light-front density of longitudinal momentum. Since g++ = 0, one

does not need to worry in this case about the explicit form of the trace terms. The problem
arises however as soon as one considers components with a non-vanishing contribution from
the metric, like e.g. the energy density T 00

a .
The unambiguous definition of the symmetric traceless part of a generic rank-two tensor

operator in d-dimensional spacetime is

Ōµν ≡ O{µν} − 1
d
gµνgαβO

αβ . (5.20)

In particular, for a renormalized operator the explicit expression is [94]

(Ōµν)R ≡ (O{µν})R −
1
d
gµνgαβ(Oαβ)R. (5.21)

This tensor is manifestly traceless irrespective of whether the trace and renormalization
operations commute or not. Also, since the explicit d-dependence appears outside of the
normal product, we can safely replace d by 4.

Renormalization should preserve Lorentz symmetry, and so operators belonging to
different representations of the Lorentz group should not mix with each other. We can
therefore write [95]

(Ōµνi )R =
∑
j

ZijŌ
µν
j (5.22)

which is obviously compatible by linearity with eqs. (5.7), (5.20) and (5.21). The standard
shorthand notation (Ōµνi )R is however somewhat misleading, because it gives an incentive
to write

(Ōµν)R =
(
O{µν} − 1

d
gµνgαβO

αβ
)
R
, (5.23)

an expression which must be treated with great care. For example, while renormalized
operators are by construction finite in the limit d→ 4, one should in general refrain from
replacing directly d by 4 in eq. (5.23). Indeed, in MS-like schemes with DR the notation
(O)R means that one removes the contributions of the operator O which diverge as d→ 4.
The latter limit must then be considered at the very end of a calculation and cannot be
applied directly to the expression inside the brackets in eq. (5.23). For the same reason,
one must also pay attention that in general

(Ōµν)R 6= (O{µν})R −
1
d
gµν(gαβOαβ)R (5.24)

because of eq. (5.12).
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As a result of the above discussion, the renormalized symmetric traceless quark and
gluon operators are unambiguously given by [17, 18, 84, 85]

(T̄µνq )R =
(
ψγ{µ i2

↔
Dν}ψ

)
R
− gµν

4 gαβ

(
ψγ{α i2

↔
Dβ}ψ

)
R
,

(T̄µνg )R = −(FµλF νλ)R + gµν

4 gαβ(FαλF βλ)R,
(5.25)

and can alternatively be expressed as

(T̄µνq )R =
(
ψγ{µ i2

↔
Dν}ψ

)
R
− gµν

4
[
x (F 2)R + (1 + y)(ψmψ)R

]
,

(T̄µνg )R = −(FµλF νλ)R + gµν

4

[(
1 + x− β

2g

)
(F 2)R + (y − γm)(ψmψ)R

]
,

(5.26)

using eq. (5.6). One could also formally write

(T̄µνq )R = lim
d→4

(
ψγ{µ i2

↔
Dν}ψ − gµν

d
ψmψ

)
R
,

(T̄µνg )R = lim
d→4

(
−FµλF νλ + gµν

d
F 2
)
R
.

(5.27)

Once again, it is essential that the limit d→ 4 is taken after minimal subtraction.
Based on their explicit operator expressions in MS-like scheme with DR, we conclude

that there is in general no simple physical interpretation for (T̄ 00
q )R or (T̄ 00

g )R. We discuss
in the following the consequences for the energy decomposition.

5.4 Energy decomposition

Following the approach of the original works on the nucleon mass decomposition [3, 4], the
total renormalized EMT can be obtained by adding the renormalized traceless and trace parts

(Tµν)R = (T̄µν)R + gµν

4 gαβ(Tαβ)R. (5.28)

Using the incentive form for the renormalized traceless operators given in eq. (5.27), we
get explicitly

(Tµν)R = lim
d→4

(
ψγ{µ i2

↔
Dν}ψ − gµν

d
ψmψ

)
R

+ lim
d→4

(
−FµλF νλ + gµν

d
F 2
)
R

+ 1
4 g

µν
[
β

2g (F 2)R + (1 + γm)(ψmψ)R
]
.

(5.29)

In order to obtain a decomposition of energy at the operator level, we consider (T 00)R and
integrate over space. Following the original derivation [3, 4], the QCD Hamiltonian

H = HT +HS (5.30)

has been decomposed into a traceless (tensor) and trace (scalar) part as [8]

HT ≡
∫

d3x (T̄ 00)R = (Hq +Hg) + 3
4 Hm,

HS ≡
1
4

∫
d3x gαβ(Tαβ)R = Ha + 1

4 Hm,
(5.31)
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where
Ha = 1

4

∫
d3x

[
β

2g (F 2)R + γm(ψmψ)R
]
,

Hm =
∫

d3x (ψmψ)R,

Hq +Hg = lim
ε→0

∫
d3x

(
ψ†α · iD ψ + 2− 2ε

4− 2ε E
2 + 2

4− 2ε B
2
)
R

(5.32)

are three contributions that are separately renormalization group invariant. The expansion
of the last contribution in powers of ε gives

Hq+Hg =
∫

d3x

{
(ψ†α·iDψ)R+ (E2+B2)R

2 − 1
4

[
β

2g (F 2)R+γm(ψmψ)R
]}

, (5.33)

using the linearity property of MS-like scheme and the trace anomaly relation [83, 86, 87]

ε(E2 −B2) = − ε2 F
2 = β

2g (F 2)R + γm(ψmψ)R. (5.34)

In conclusion, (Hq+Hg) contains an anomalous contribution which compensates exactly
Ha in eq. (5.31). No anomalous contribution survives therefore in the energy budget, which
is then composed of three terms instead of four [6, 7]

H = H̃q + H̃g +Hm, (5.35)

with
H̃q =

∫
d3x (ψ†α · iD ψ)R =

∫
d3x (T 00

q )R −Hm,

H̃g =
∫

d3x
(E2 +B2)R

2 =
∫

d3x (T 00
g )R.

(5.36)

This structure follows also directly from eq. (5.1) without the need of decomposing first the
EMT into traceless and trace parts. Moreover, one can safely interpret H̃q and H̃g as the
quark and gluon kinetic+potential energies, in agreement with the tensor analysis approach.

5.5 Diagonal schemes

While agreeing formally with the results of the previous section, the authors of ref. [10]
complained that

(T 00
g )R = −(F 0λF 0

λ)R + 1
4 (F 2)R = (E2)R + 1

2(B2 −E2)R = 1
2(E2 +B2)R (5.37)

mixes the tensor and scalar representations of the Lorentz group, and claimed that the
notation 1

2(E2 +B2)R has commonly been reserved for (T̄ 00
g )R and not (T 00

g )R, referring to
the works [68, 96]. Our opinion is that the latter statement is a misrepresentation of what
can be found in the literature. In both papers [68, 96] the renormalized traceless gluon
operator indeed appears in its classical form, but we observe that neither the corresponding
quark operator nor the renormalization scheme are specified. These works are in fact
inspired by an old seminal paper of Voloshin and Zakharov [97], where it is suggested that
one can measure the gluonic part of the trace anomaly using quarkonia. It turns out that
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Voloshin and Zakharov used the relation gµνgαβ(FµαF νβ)R = (F 2)R to derive a low-energy
theorem. This indicates that they are not working in a MS-like renormalization scheme but
in another one where (T̄µνg )R = (Tµνg )R, so that the EMT trace (including the anomalous
contributions) arises solely from the quark sector gµν(Tµν)R = gµν(Tµνq )R. Other choices
have also been made in the literature. For example, in a comment to ref. [97], Novikov
and Shifman [98] wrote the total renormalized gluon EMT (Tµνg )R in the classical form, in
agreement with eq. (5.4) and refs. [99, 100], but they required that the trace is given by
gµν(Tµνg )R = βF

2g (F 2)R, where βF is the contribution to the beta function arising from gluon
loops only. This indicates that yet a different renormalization scheme has been chosen.12

This example shows the importance of clearly specifying the renormalization scheme, for
otherwise a comparison between different works may lead to apparent contradictions.

When discussing the form of the gluon operators and their properties, one must not
forget the quark sector. We have seen that in MS-like schemes the traces of the quark
and gluon contributions to the EMT (5.6) involve some mixing parametrized by two finite
numbers x and y. It follows from the unambiguous definition (5.21) that the renormalized
traceless quark and gluon operators can also be expressed in a way that involves explicitly
x and y, see eq. (5.26). The values of these parameters are directly determined by the
renormalization factors. Their explicit expressions in MS-like schemes with DR can be found
in refs. [7, 17, 18, 69]. They are quite cumbersome and indicate that due to operator mixing
the trace anomaly is shared in a nontrivial way between the quark and gluon contributions.

Simpler expressions for the renormalized operators can however be obtained by applying
a finite renormalization to the MS-like operators. The only effect of this finite renormaliza-
tion will be to reshuffle the anomalous contributions between gµν(Tµνq )R and gµν(Tµνg )R,
i.e. changing the values of x and y. The total anomaly remains however unchanged. It is
through such a finite renormalization that one can connect in principle the operators in
MS-like schemes with DR to the ones discussed in refs. [68, 96–98].

The so-called diagonal schemes [6, 7] keep the mixing between quark and gluon operators
under the trace operation as simple as possible. We present here three of the most meaningful
choices:

• D1 scheme — One may choose a scheme where the quark and gluon operators do not
mix under the trace operation [6]. It corresponds to the choice x = 0 and y = γm
so that

gµν(Tµνq )D1 = (1 + γm)(ψmψ)R,

gµν(Tµνg )D1 = β

2g (F 2)R,
(5.38)

which was the situation considered in ref. [5], allowing one to identify the quark and
gluon contributions to the EMT trace used in refs. [3, 4] with the corresponding traces
of the quark and gluon contributions to the EMT.

12Adding to the confusion, in a recent paper [101] the temporal component of the gluon part of the QCD
EMT is denoted T 00

g = 1
2 (E2 +B2) with a reference to the work of Novikov and Shifman [98], while at the

same time it is presented as a 2++ gluon operator, i.e. a symmetric traceless tensor, like in the work of
Voloshin and Zakharov [97].
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• D2 scheme — Since the whole anomaly
[ β

2g (F 2)R + γm(ψmψ)R
]
and (ψ̄mψ)R are

separately renormalization-group invariant, one may prefer to work with x = y β
2gγm .

The D2 scheme introduced in ref. [7] corresponds to the choice x = y = 0 and attributes
all the anomalous terms to the renormalized gluon contribution to the EMT,

gµν(Tµνq )D2 = (ψmψ)R,

gµν(Tµνg )D2 = β

2g (F 2)R + γm(ψmψ)R.
(5.39)

• D3 scheme — For completeness, we mention a third possibility corresponding to the
choice x = β

2g and y = γm,

gµν(Tµνq )D3 = β

2g (F 2)R + (1 + γm)(ψmψ)R,

gµν(Tµνg )D3 = 0,
(5.40)

which attributes all the anomalous terms to the renormalized quark contribution to
the EMT.

5.6 “Quantum anomalous energy”

In a series of recent papers [8–10], the concept of “quantum anomalous energy” (QAE) has
been emphasized as a key aspect of the nucleon mass structure. QAE finds its origin in the
four-term energy decomposition proposed in refs. [3, 4], where it has been argued that in
MS-like renormalization with DR the QCD Hamiltonian takes the form

H =
∫

d3x

[
(ψ†α · iD ψ)R + (ψmψ)R + (E2 +B2)R

2

]

+ 1
4

∫
d3x

[
β

2g (F 2)R + γm(ψmψ)R
]
. (5.41)

It seems therefore that the renormalized QCD Hamiltonian receives on top of its classical
form a new contribution equal to a quarter of the trace anomaly. This contribution is
unexpected and referred to as QAE.

The analysis of refs. [3, 4] has been revisited in refs. [6, 7] with the new conclusion
that no anomalous contributions actually survive in the Hamiltonian; see our discussion
in section 5.4. The difference between these two analyses can be traced back to the
renormalized traceless operators. While those operators did not appear explicitly in the
original works [3, 4], their precise form used in the context of the four-term decomposition
has been specified in a recent work [8]. Contrary to eq. (5.27), it appears that the d→ 4
limit is taken before the normal product, giving the impression that the traceless operators
can be written in the same way as in the classical case. As stressed in section 5.3, this
is an incorrect notation since it assumes that trace and renormalization are commuting
operations, a property that is not satisfied in general in MS-like schemes with DR.

Writing the renormalized QCD EMT as a sum of a traceless part with classical form
and a trace part with anomalous contributions like in refs. [3, 4, 8–10] may seem a priori
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attractive, since it gives the impression that the anomaly is distributed equally between
the diagonal components of the EMT. As a result, the Hamiltonian H =

∫
d3x (T 00)R is

expected to provide a quarter of the trace anomaly, considered in these papers as a “new”
form of energy. This picture is however inconsistent with Poincaré symmetry. Indeed, time
translation is an exact symmetry of the theory. The form of the corresponding generator,
i.e. the Hamiltonian, must then be the same as in the classical case as a consequence of the
quantum action principle [81, 82].

As indicated by its name, the trace anomaly is a pure quantum contribution associated
with the trace of the EMT, and not with its individual diagonal components. It expresses
the breaking of spacetime dilatations, and not a breaking of spacetime translations. At the
operator level, the trace anomaly has nothing to do with the Hamiltonian. Motivated by
Lorentz symmetry and deep-inelastic scattering experiments,13 one may of course decompose
the Hamiltonian into tensor and scalar parts as in eq. (5.30), but this does not bring much
fundamental insight since it just amounts to writing the Hamiltonian as

H = (H −HS) +HS , (5.42)

where HS contains anomalous contributions (see eq. (5.31)) while H does not. As already
stressed in section 4.2, the only way to relate non-trivially the Hamiltonian, and hence the
mass of a system, to the trace anomaly is at the level of matrix elements. Indeed, the virial
theorem (2.23) tells us that the expectation value of the stress tensor must vanish at rest.
As a result, we can write

M = 〈prest|
∫

d3x (T 00)R(x)|prest〉
〈prest|prest〉

= 〈prest|
∫

d3x gµν(Tµν)R(x)|prest〉
〈prest|prest〉

, (5.43)

which leads to the relation [6, 7]

〈prest|(ψ†α·iDψ)R+ 1
2 (E2+B2)R |prest〉= 〈prest|γm(ψmψ)R+ β

2g (F 2)R |prest〉. (5.44)

It is then clear that one can have a mass sum rule with contributions from either the parton
energies or the anomaly, but a sum rule with both contributions at the same time does not
appear naturally.

In summary, the renormalized Hamiltonian in QCD does not contain anomalous
contributions since it is protected by translation symmetry. The so-called QAE given by
the expectation value of Ha, defined as a quarter of the trace anomaly and appearing in
the “scalar” part of the Hamiltonian, does not provide clear fundamental insight since it is
exactly compensated by the same contribution with opposite sign from the “tensor” part
of the Hamiltonian. The latter does not appear in refs. [3, 4, 8–10] due to an unjustified
notation for the renormalized traceless operators in MS-like scheme with DR.

13We remind that in high-energy scattering experiments, one is mostly sensitive to the light-front component
(T++)R of the EMT. One can then use Lorentz symmetry to relate the matrix elements of (T++)R to those
of (T̄µν)R. The fact that the anomalous contributions do not appear in (T++)R as a consequence of g++ = 0
does not however imply that they should also be absent in (T̄µν)R.
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6 EMT decomposition on the lattice

Recent papers [8–10] try to justify the appearance of QAE in the nucleon mass budget based
on some works by Rothe [102, 103] in the context of lattice QCD (LQCD). It appears that
the question of the Hamiltonian in LQCD is an old and difficult problem. Contrary to DR,
lattice regularization allows one to renormalize the theory in a non-perturbative way. On
the other hand, Poincaré symmetry is broken by the introduction of a finite lattice spacing.
One must therefore pay particular attention that in the limit of vanishing lattice spacing the
Poincaré symmetry is correctly recovered. It also means that one has to be careful with the
physical interpretation of lattice expressions, since the breaking of Poincaré symmetry by the
regulator generates artifacts, especially in currents associated with spacetime symmetries
like the EMT. Unfortunately, this essential aspect of the problem has not been considered
in refs. [8–10]. We show in the following that taking it into account sheds light on the
results presented in these papers, and leads to the conclusion that the relevant LQCD
papers actually do not provide concrete support for the concept of QAE.

6.1 Lattice sum rules

Using the Wilson action [104], Michael found that the glueball mass can be expressed
as [105, 106]

M = dβ̂
d ln a

∑
�, (6.1)

where a is the symmetric lattice spacing, β̂ = 2N/g2
0 is the bare lattice coupling parameter

for the SU(N) gauge sector of the theory, and ∑� is the plaquette action in a one glueball
state (with the vacuum value implicitly subtracted) summed over all plaquettes at one time
slice. In the naive continuum limit, one can basically write

dβ̂
d ln a →

2β(g0)
g0

β̂,

β̂
∑

�→ 〈Ψ|
∫

d3x
1
4 F

2(x)|Ψ〉,
(6.2)

so that eq. (6.1) can be interpreted as the lattice version of eq. (4.21). We will denote this as

M = dβ̂
d ln a

∑
� ∼ 〈Ψ|

∫
d3xTµµ(x)|Ψ〉. (6.3)

As clearly shown by a recent variation of Michael’s derivation [10], the fact that one gets an
expression for the mass in terms of the EMT trace follows from an isotropic lattice scaling
transformation.

Further relations can be obtained by considering asymmetric lattices. Following the
formalism of ref. [107], a different lattice coupling parameter β̂µν must be attributed to
the different plaquette orientations �µν . In the case where one distinguishes the temporal
spacing a0 = at from the isotropic spatial spacing a1 = a2 = a3 = as, Michael arrived at
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the following two sum rules [105, 106],

M =
∑

(3S�t + 3U �s) ∼ 〈Ψ|
∫

d3xT 00(x)|Ψ〉, (6.4)

0 =
∑

[(2U + S)�t + (2S + U)�s] ∼ 〈Ψ|
∫

d3xT ii(x)|Ψ〉, (6.5)

where �t = �0i and �s = �ij with i, j 6= 0. The coefficients S and U are defined at the
symmetric point at = as = a by

∂β̂µν
∂ ln aλ

= S if λ = µ or λ = ν,

∂β̂µν
∂ ln aλ

= U if λ 6= µ and λ 6= ν.

(6.6)

Since eq. (6.4) is associated with temporal dilatations, it can be interpreted as the lattice
version of the energy sum rule [8–10]. Similarly, we observe that eq. (6.5) is associated with
spatial dilatations and can therefore be interpreted as the lattice version of the virial theorem.

Combining eqs. (6.4) and (6.5), Michael found two alternative expressions for the
glueball mass

M =
∑

2 (S + U)(3�t + 3�s) ∼ 〈Ψ|
∫

d3xTµµ(x)|Ψ〉, (6.7)

M =
∑ 2

3 (S − U)(3�t − 3�s) ∼
4
3 〈Ψ|

∫
d3x T̄ 00(x)|Ψ〉. (6.8)

Using the relation obtained by Karsch [107]

2(S + U) = dβ̂
d ln a (6.9)

and � = 3�t + 3�s, we see that eq. (6.7) derived from asymmetric lattices and evaluated
at the symmetric point is consistent with eq. (6.3) obtained directly from symmetric lattices.
In the weak-coupling limit β̂ →∞, one finds [107]

2(S − U) ≈ −4β̂ , (6.10)

so that one can write [106]

M ≈ 4
3
∑

β̂(−3�t + 3�s) ∼
4
3 〈Ψ|

∫
d3x T̄ 00(x)|Ψ〉. (6.11)

In the naive continuum limit, the lattice plaquettes are identified with the chromoelectric
and chromomagnetic contributions to field energy

∑
β̂(−3�t)→

∫
d3x

E2(x)
2 ,

∑
β̂(3�s)→

∫
d3x

B2(x)
2 .

(6.12)

We remind that the sign change in the chromoelectric contribution comes from the transition
from Euclidean space to Minkowski space. Using this identification, it appears that the
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classical form of field energy provides only 3/4 of the glueball mass [103, 106]. Massaging a
bit the energy sum rule (6.4), one has

M =
∑[

U − S
2 (−3�t + 3�s) + U + S

2 (3�t + 3�s)
]
∼ 〈Ψ|

∫
d3xT 00(x)|Ψ〉

≈
∑[

β̂(−3�t + 3�s) + 1
4

dβ̂
d ln a (3�t + 3�s)

]
. (6.13)

In the naive continuum limit, Rothe concluded that the missing 1/4 of the glueball mass
comes from the trace anomaly, in apparent agreement with the analysis of refs. [3, 4]. The
recent works [8–10] present a variation of this discussion and use it as a support to the
concept of QAE.

This result, however, has to be considered with a grain of salt, since it relies on both
the weak-coupling limit (6.10) and the naive continuum limit (6.12). Non-perturbative
evaluations at finite temperature of the combination 2(S − U) show in fact significant
deviations from the weak-coupling value [108–110]. This suggests that in general the
classical form of field energy on the lattice does not provide exactly 3/4 of the glueball mass,
and indicates that the lattice operators must be renormalized. This is to be expected since
(−3�t + 3�s) is not a Noether charge due to the breaking of Poincaré symmetry on the
lattice, where the hypercubic symmetry typically leads to more complicated mixing patterns
than in the continuum [56, 110–113]. In particular, the chromoelectric and chromomagnetic
contributions to the field energy mix under renormalization [114, 115], invalidating therefore
the naive continuum limit interpretation (6.12).

In conclusion, contrary to the suggestion of refs. [8–10] a careful inspection reveals that
the lattice energy sum rule does not provide a clear support to the concept of QAE. In
particular, it is essential to consider the renormalization of the lattice operators before
providing any physical interpretation. (Note that E2 and B2 in eq. (6.12) do not have
the same meaning as the corresponding renormalized operators in the continuum.) This is
crucial for the components of the EMT since the breaking of Poincaré symmetry on the
lattice is a source of artifacts, as we will see in the following.

6.2 Translation symmetry

How to construct the EMT on the lattice is a tough question that has been studied for over
30 years [60–62, 84, 85, 90, 111, 116–126]. For recent investigations of the hadron mass
structure on the lattice see also refs. [65, 66, 127–129]. A major difficulty is that lattice
regularization breaks translation symmetry and makes the construction and renormalization
of the EMT non-trivial. In particular, it turns out that any discretization of the classical
EMT, denoted Tµνtree, is not conserved in the quantum theory [111, 116–119],

∂µT
µν
tree = Rν +Xν . (6.14)

Here Rν is proportional to the lattice EOM and Xν is an operator that formally vanishes
when the lattice spacing a tends to zero. Because of radiative corrections, Xν provides
however finite contributions when inserted into Green’s functions. It vanishes for zero
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external momentum transfer and can thus be rewritten as Xν = −∂µTµνcorr. The conserved
EMT on the lattice is therefore defined as

Tµν = Tµνtree + Tµνcorr. (6.15)

The correction term Tµνcorr ensures that the translational Ward identities are satisfied. At the
same time it ensures that the trace anomaly is correctly reproduced.14 The fact that the
classical expression for the EMT must be corrected is consistent with the general observation
that once a genuine symmetry is broken by the regulator, one should expect to see the
appearance of additional symmetry-restoring counterterms [130–133].

In the recent work [10], the mass structure of a (1 + 1)-dimensional non-linear sigma
model in the large-N limit is studied at the one-loop level. It is found that the operator form
of the total Hamiltonian H =

∫
d3xT 00(x) depends on the choice of regularization scheme.

In particular, the classical Hamiltonian Hc =
∫

d3xT 00
tree(x) is regulator-dependent and

has no universal physical meaning. The authors observe that in symmetric regularization
schemes, where all directions are treated equally, the classical Hamiltonian coincides with
the traceless part HT =

∫
d3x T̄ 00(x), while in regularization schemes where the energy

integral can be rescaled back and forth (like e.g. dimensional regularization) the classical
Hamiltonian coincides with the total Hamiltonian.

These results can easily be understood from the point of view of translation symmetry.
Regularization schemes where the energy integral can be rescaled back and forth are precisely
those preserving translation symmetry in the temporal direction. It should therefore not be
surprising that the total Hamiltonian takes the same form as in the classical theory, since
this is a mere consequence of the quantum action principle [81, 82]. More generally, it has
been argued that translational Ward identities obtained with a cutoff procedure preserving
Poincaré symmetry cannot contain anomalies [20, 134]. On the other hand, when translation
invariance in the temporal direction is broken by the regulator, the total Hamiltonian must
necessarily involve additional contributions like in eq. (6.15) to restore translation symmetry.
These correction terms should be regarded as mere artifacts arising due to a poor choice
of symmetry-breaking regulator, and not as genuine physical contributions.15 They must
disappear in the process of renormalization to comply with Poincaré symmetry and the
quantum action principle.

The authors of ref. [10] observed that the one-loop contribution to the classical Hamil-
tonian vanishes only in symmetric regularization schemes. In other schemes, the naively
vanishing integral gives a finite contribution because of the asymmetric regulator, which
has been interpreted as a sign of their anomalous nature. In particular, in DR the one-loop
integral takes the form∫ dk4 d1−2εk1

(2π)2−2ε
k2

4 − k2
1

(k2 +m2)2 = ε

1− ε

∫ d2−2εk

(2π)2−2ε
k2

(k2 +m2)2 . (6.16)

14Interestingly, a similar structure was found in ref. [130] using Fujikawa’s method to derive the trace
anomaly from a path-integral approach.

15Similarly, if the regulator breaks gauge symmetry one usually needs to include a gauge boson mass
counterterm to restore the symmetry [132], and in particular to ensure that the physical gauge boson mass
vanishes.
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The symmetric integral generates a 1
4πε pole that cancels the explicit ε factor in front of it,

leading to a finite result. Since a similar mechanism is responsible for the trace anomaly in
DR, the authors of ref. [10] interpreted the non-vanishing of the one-loop contribution to
the classical Hamiltonian as of anomalous nature.

We disagree with this interpretation. The trace anomaly arises in DR from an evanescent
term of the form εO with O some operator. At the classical level, the operator O is finite
so that the evanescent term vanishes in the limit ε→ 0. At the quantum level, the operator
contains a 1

ε pole leading to the trace anomaly. In contradistinction, Hc is not an evanescent
operator and does not vanish at the classical level in the limit ε→ 0. The explicit ε factor
is not part of the definition of Hc but appears in eq. (6.16) only after a change of variables.
Despite the similitude with the trace anomaly mechanism, the one-loop contribution to Hc

is actually not anomalous.
Anomalies are usually associated with a pair of symmetries [135]. In the present case,

the pair consists of translation and dilatation symmetries. In the regularized theory, there
is no way of preserving at the same time both translation symmetry and the standard
definition of trace. In DR, Poincaré symmetry is preserved by distorting the classical
d = 4 spacetime into a d = 4 − 2ε one, affecting therefore the definition of trace; see
also appendix B. Pauli-Villars regularization also preserves Poincaré symmetry but adds
regulator fields which provide new contributions to the trace. Lattice regularization, on
the other hand, preserves the classical d = 4 spacetime but breaks Poincaré symmetry by
making it discrete. In this case the definition of trace is unaffected by the regularization
and the trace anomaly must appear in the form of correction terms to the EMT ensuring
that the translational Ward identities are satisfied.

To sum up, the appearance of trace anomaly contributions to the energy on the
lattice is a pure artifact associated with the breaking of translation symmetry by the
discretization. Translation symmetry being an exact symmetry at the quantum level,
this artifact should disappear in the process of renormalization to agree with the results
obtained using symmetry-preserving regularization schemes. In conclusion, we do not find
any concrete support to the concept of QAE from LQCD.

7 Conclusions

Understanding the decomposition of the nucleon mass in QCD in terms of contributions
from quarks and gluons is a topic of high interest and fundamental importance. Presently,
different opinions exist in this area, reflected by different mass decompositions in the
literature. Here we have concentrated on the mass decompositions which are based on
the component T 00 of the QCD EMT: a four-term decomposition originally proposed in
refs. [3, 4] and recently slightly modified in refs. [8–10, 64–66], a two-term decomposition
put forward in ref. [5], and a three-term decomposition arrived at in refs. [6, 7]. The latter
two are very closely related — by separating the total quark contribution to the nucleon
mass into quark kinetic plus potential energies and a quark mass term one obtains the
three-term decomposition starting from the two-term decomposition.
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One controversy concerns the proper expressions for the renormalized operators of the
mass decomposition. We have elaborated on this important point using DR and MS-type
schemes, and we re-confirm the findings of refs. [6, 7] in that regard, which to some extent
are based on the renormalization of the full EMT discussed in refs. [17, 18]. This implies,
in particular, that in DR the operator 1

2(E2 + B2)R has a unique meaning in terms of
components of the EMT. This operator corresponds to the total gluon contribution to
the nucleon mass. Furthermore, different points of view exist with regard to the physical
interpretation of the terms in the mass decompositions. We re-iterate the concern raised
in ref. [5] that the four-term decomposition contains mixtures of genuine energy terms
and pressure-volume terms. This feature is closely related to the fact that, in order to
derive the four-term decomposition, one must make use of the condition for mechanical
equilibrium of the nucleon. As we have shown, this condition actually coincides with the
virial theorem, which we have discussed at length. Both the two-term and the three-term
decomposition do not make use of the virial theorem, and their contributions have a
clean physical interpretation. One argument that was put forth in favor of the four-term
decomposition is that it contains the so-called “quantum anomalous energy”, which has
been suggested as a unique contribution to the nucleon mass [8–10]. We have explained
why, in our view, this term is not a genuine contribution to the mass decomposition.

Even though the two-term and three-term mass decompositions do not contain the
operator of the trace anomaly, it remains important to pursue attempts to measure (the
gluon contribution to) the trace anomaly [68, 69, 136–147]. Such measurements can help
obtaining a more robust phenomenology of the quark and gluon contributions to the EMT
trace. This in turn allows one to better pin down the quark mass term and as such the
numerics of all the terms of the nucleon mass decomposition. Finally, we would like to
emphasize that all the nucleon mass decompositions require the same phenomenological
input, namely two independent gravitational form factors.

Acknowledgments

We would like to dedicate this work to the memory of Maxim Polyakov, who sadly passed
away during the preparation of this manuscript. C.L. is grateful to Maxim Polyakov, Oleg
Teryaev, and Christoph Kopper for illuminating discussions. The work of A. M. has been
supported by the National Science Foundation under grant number PHY-2110472 and by
the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the
framework of the TMD Topical Collaboration. The work of B.P. and S.R. is part of a
project that has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement STRONG – 2020 – No. 824093.

– 33 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
1

A Virial theorem

In this appendix, we review the virial theorem in various contexts and discuss its physical
meaning.

A.1 Classical point mechanics

Originally, the virial theorem comes from classical point mechanics [148] where one considers
a system of discrete pointlike particles bound by potential forces. Denoting by rk and pk
the position and momentum of the kth particle, one introduces the quantity

G =
∑
k

pk · rk (A.1)

whose time derivative can be expressed as

dG
dt =

∑
k

(pk · vk + Fk · rk) , (A.2)

where the velocity of the kth particle is defined as vk = drk/dt and the net force acting
on it as Fk = dpk/dt. In both the relativistic and non-relativistic cases, the velocity of a
particle can be expressed as the derivative of the kinetic energy with respect to momentum.
Moreover, if the forces derive from a potential that depends only on the coordinates, we
can finally write

dG
dt =

∑
k

(
pk · ∂

∂pk
T ({pi})− rk · ∂

∂rk
V({ri})

)
, (A.3)

where T ({pi}) and V({ri}) are the total kinetic and potential energies depending on all
the momentum and position variables, respectively.

For convenience, we introduce a double square bracket notation

[[O]] ≡ lim
τ→∞

1
τ

∫ τ

0
dtO(t) (A.4)

to indicate that some quantity O is averaged over a long time. One can then write[[dG
dt

]]
= lim

τ→∞
G(τ)−G(0)

τ
. (A.5)

Now, for a bound system in the center-of-mass frame,16 particle coordinates and momenta
are expected to be bounded, so that Gmin ≤ G(t) ≤ Gmax for all t with both Gmin and
Gmax finite. In that case, one expects [[dG/dt]] = 0 and hence∑

k

[[
pk · ∂

∂pk
T
]]

=
∑
k

[[
rk · ∂

∂rk
V
]]
. (A.6)

This is a generic form of the virial theorem in classical point mechanics, valid for both
relativistic and non-relativistic theories [149, 150].

16It seems that the condition on the reference frame is often omitted in the literature. It is however
essential since G(t) receives a contribution from the center-of-mass motion that grows linearly with t for a
closed system, unless the total momentum vanishes.
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In particular, for a non-relativistic theory with a potential between any two particles i
and j of the form V(ri, rj) = Crn, where r is the relative distance and C is some constant,
the virial theorem reduces to a simple relation between the time-averaged total kinetic and
potential internal energies

2[[T ]] = n[[V]], (A.7)

and allows one to express e.g. the total center-of-mass energy purely in terms of [[V]]. The
kinetic energy being always positive, the sign of the constant C must be the same as the
sign of n for the bound system to exist. In other words, the net forces must be attractive.

More generally, one can write the virial theorem in non-relativistic point mechanics as

[[T ]] = −1
2
∑
k

[[rk · Fk]]. (A.8)

The quantity on the right-hand side is called the virial, derived from the latin word vis
meaning “force”, “energy” or “power”. This form of the virial theorem is very useful, e.g.,
for the description of gases. Indeed, for a non-relativistic gas contained in a box of volume
V at rest with a constant pressure p, the virial theorem tells us that [151]

[[T ]] = 3
2 pV −

1
2
∑
k

[[rk · F int
k ]], (A.9)

where the second term on the r.h.s. is the virial associated with internal forces only, and
the first term corresponds to the contribution arising from the external forces exerted by
the walls of the box

− 1
2
∑
k

[[rk · F ext
k ]] = 1

2 p
∫

dS · r = 1
2 p

∫
d3r∇ · r = 3

2 pV. (A.10)

For ideal gases there are no internal forces and so [[T ]] = 3
2 pV . If the gas is composed of N

particles, the equipartition theorem tells us that [[T ]] = 3
2 NkBT , where kB is the Boltzmann

constant and T is the temperature, and one obtains finally the ideal gas law pV = NkBT .

A.2 Quantum mechanics

The virial theorem also holds in quantum mechanics [152–154]. Indeed, similarly to classical
mechanics one defines the operator G as17

G = 1
2
∑
k

(rk · pk + pk · rk). (A.11)

According to Ehrenfest’s theorem, we can write

d
dt〈G〉 = 1

i
〈[G,H]〉 (A.12)

17In the literature, one uses sometimes a non-symmetric definition G =
∑

k
pk · rk in quantum mechanics.

The ambiguity associated with the ordering of operators will however be irrelevant. Indeed, the various
orderings differ only by a term proportional to the identity operator and give therefore the same commutators
of G with other operators, which are the only quantities needed for our presentation.
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with 〈O〉 the expectation value associated with some normalizable state. For a Hamiltonian
of the form

H =
∑
k

p2
k

2mk
+ V({rk}) (A.13)

we get
d
dt〈G〉 = 2〈T 〉 −

∑
k

〈rk · ∂
∂rk
V〉 (A.14)

with T = ∑
k p

2
k/2mk the usual non-relativistic kinetic energy operator.

Now, for a normalizable stationary state H|Ψ〉 = E|Ψ〉 we have d〈Ψ|G|Ψ〉/dt = 0,
leading to the quantum version of the non-relativistic virial theorem

2〈Ψ|T |Ψ〉 =
∑
k

〈Ψ|rk · ∂
∂rk
V|Ψ〉. (A.15)

If the potential between two particles is of the form V(ri, rj) = Crn, eq. (A.15) becomes
2〈Ψ|T |Ψ〉 = n〈Ψ|V|Ψ〉 which is the quantum-mechanical counterpart of eq. (A.7). Denoting
the center-of-mass position and momentum operators by rCM and pCM, we have also
0 = d〈Ψ|rCM|Ψ〉/dt = 〈Ψ|pCM|Ψ〉/m indicating that a stationary state is in average at
rest.18 This is consistent with the observation that eq. (A.15) cannot be valid in all
frames, since for a closed bound system the total kinetic energy increases with the total
momentum of the system, whereas the potential energy does not [155]. Note also that
if we work with a superposition of stationary states, the expectation value 〈Ψ|G|Ψ〉 will
generally depend on time. However, like in the classical case it may still be bounded, so
that [[d〈Ψ|G|Ψ〉/dt]] = 0 [156].

It was later realized that G is simply the generator of spatial dilatations UD = e−iκG,
as one can see from

U−1
D rkUD = λrk, U−1

D pkUD = λ−1pk (A.16)

with λ = eκ. This is also clear from
1
i
[H,G] = −

∑
k

pk · ∂
∂pk
T +

∑
k

rk · ∂
∂rk
V =

∑
k

(
rk · ∂

∂rk
− pk · ∂

∂pk

)
H, (A.17)

since pk · ∂
∂pk

and rk · ∂
∂rk

measure the degree of homogeneity in momentum and position
space, respectively. This observation leads to an interesting alternative derivation of
the virial theorem from a variational approach [154, 155, 157–159] which applies also to
relativistic quantum mechanics. Let us introduce the function

E(κ) = 〈Ψκ|H|Ψκ〉 = 〈Ψ|U−1
D HUD|Ψ〉, (A.18)

where |Ψ〉 is some state and |Ψκ〉 = UD|Ψ〉 is its dilated counterpart which depends on the
parameter κ. In a variational approach, we require that the eigenvalue E of a stationary

18One may argue that momentum eigenstates with non-vanishing momentum are also eigenstates of the
Hamiltonian. However, these states are non-normalizable and one cannot automatically conclude that
d〈G〉/dt = 0.
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state |Ψ〉 must be an extremum of E(κ) at κ = 0. In other words, we demand that

E(0) = E,

∂E

∂κ
(0) = 〈Ψ|∂(U−1

D HUD)
∂κ

∣∣∣∣
κ=0
|Ψ〉 = 0.

(A.19)

Using eq. (A.17), the stationarity condition under spatial rescaling gives directly the virial
theorem ∑

k

〈Ψ|pk · ∂
∂pk
T |Ψ〉 =

∑
k

〈Ψ|rk · ∂
∂rk
V|Ψ〉, (A.20)

recognized as the quantum-mechanical counterpart of eq. (A.6).
The connection between this derivation and the former one simply follows from the

identity
dG
dt = 1

i
[G,H] = −1

i
[H,G] = −∂(U−1

D HUD)
∂κ

∣∣∣∣
κ=0

(A.21)

which relates the breaking of dilatation symmetry to the behavior of the Hamiltonian
under dilatations. This shows that the virial theorem is fundamentally a statement about
mechanical equilibrium expressed by the stationarity of the system under spatial dilatations.
Note however that it does not say anything about stability since the latter is determined by
the second derivative w.r.t. κ.

The virial theorem is often used to simplify the calculation of the total energy of a
bound system. Let us consider for example a relativistic spin-1/2 particle in a static external
potential [160]. In the Dirac theory, we can write the particle energy as

E =
∫

d3r ψ†r ·∇V (r)ψ +m

∫
d3r ψ†βψ +

∫
d3r ψ†V (r)ψ, (A.22)

since the virial theorem (A.20) tells us that
∫

d3r ψ†α · pψ =
∫

d3r ψ†r ·∇V (r)ψ. For
a Coulomb potential VC(r) ∝ 1/r, we have r · ∇VC(r) = −VC(r) so that we get the
remarkably simple expression

E = m

∫
d3r ψ†βψ. (A.23)

Evaluating the r.h.s. of eq. (A.23) with a trial wave function provides, in a simple manner,
an upper bound for the energy of the system. For a free particle, the rest energy is E = m

and we recover from eq. (A.23) the expected normalization of the free Dirac wave function∫
d3r ψ†βψ = 1. For a bound particle, we expect E < m and hence

∫
d3r ψ†βψ < 1.

A.3 Link between field theory and point mechanics

As discussed in section 2.2 the virial theorem can be extended to a field-theoretical framework.
We show here how the continuum treatment reduces to the usual one in point mechanics.
For a point particle we can write the momentum density as T 0i(x) = pi(x) δ(3)(x− r(t)).
Its time derivative receives therefore two contributions,

∂0T
0i(x) = ∂0p

i(x) δ(3)(x− r(t))− pi(x)v(t) ·∇xδ
(3)(x− r(t)), (A.24)
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where v = dr/dt is the particle velocity. The net force acting on the particle is obtained by
integrating this equation over space

F i(t,r(t)) = d
dt

∫
d3xT 0i(x) = d

dtp
i(t,r(t)) = ∂

∂t
pi(t,r(t))+v(t) ·∇pi(t,r(t)). (A.25)

We recognize as expected the expression for the material derivative. We can then rewrite
eq. (A.24) as

∂0T
0i(x) = F i(t, r(t)) δ(3)(x− r(t))− v(t) ·∇T 0i(x). (A.26)

So the rate of momentum change ∂0T
0i(x) at a fixed spacetime location (Eulerian description)

is related to the rate of momentum change F i(t, r(t)) δ(3)(x− r(t)) = d
dtT

0i(x) of the fixed
material point (Lagrangian description) via the convective rate of momentum change
v(t) ·∇T 0i(x). Remembering now that G = ∑

i

∫
d3xT 0ixi, we get

G(t, r(t)) = r(t) · p(t, r(t)) (A.27)

and d
dtG(t, r(t)) = r(t) · F (t, r(t)) + v(t) · p(t, r(t)) (A.28)

which agree with the expressions found in point mechanics, where the explicit and implicit
time dependences of G, F and p are merged into a single total time dependence.

Comparing now eq. (A.26) with eq. (2.16) for µ = i, we find that

F i(x) = F i(t, r(t)) δ(3)(x− r(t)), (A.29)

as expected, but also
T ki(x) = vk(t)T 0i(x) (A.30)

which indicates that the stress tensor associated with a point particle is simply given by the
tensor product of the momentum density with the velocity. Put differently, the stress tensor
arises from the sole motion of the particle and has therefore purely convective contributions.
Since a point particle has no extension, it has no internal, that is, rest-frame pressure.

B Dimensional regularization

In this section, we summarize the main working principles of dimensional regularization
(DR), as described in the works of refs. [82, 84]. In particular, we will outline the properties
of the (infinite-dimensional) domain space in the DR approach and how the physical space
of a system can consistently be incorporated as a subspace of this domain.

DR is defined only in perturbation theory through the following general procedure: for
any given Green’s function, one inserts an expansion (of order n) of the exponential of the
action and replaces the usual momentum integration in 4 dimensions with a map Id which
is usually called ‘integration in d dimensions’. Since the momentum integration has changed,
it is natural that also the ‘momenta’ have changed their nature, from four-vectors to objects
with different dimensionality. These objects actually take different definitions depending
on the type of DR that one adopts. We can distinguish the following DR types (see, e.g.,
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ref. [79] for a comprehensive overview): the conventional DR (CDR), where one treats all
the vectors and tensors in d dimensions (see below for the proper definition of d-dimensional
vectors); the ’t Hooft-Veltman (HV) regularization, where one attributes d dimensions only
to the ‘singular’ or ‘internal’ vector (or tensor) fields and 4 dimensions to all other fields;
the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED), where one
treats the momenta in d dimensions and enlarges the space to ds = d+ nε dimensions to
treat the singular vector fields in ds dimension, working with the regular vector fields in 4
(within FDH) or ds (within DRED) dimensions.

A common misconception is that any DR scheme extends or contracts the Minkowski
momentum space S4 into a non-integer vector space. This is not how DR actually works
at a consistent theoretical level. DR extends S4 into an infinitely-dimensional vector
space, indicated as a quasi-d-dimensional space19 QSd, which may be further enlarged to a
quasi-ds-dimensional space, denoted by QSds , via a direct (orthogonal) sum with QSnε ,

QSds = QSd ⊕QSnε , S4 ⊂ QSd. (B.1)

The space QSd is the natural domain of CDR and of momentum integration in all the DR
schemes, and the claim that one works with d dimensions comes from the scaling property
of the map Id, which resembles the scaling property of a finite dimensional space with d
dimensions. We can briefly summarize the properties of the map Id which is at the core of
all the DR variants following the outline in refs. [80, 81]. Formally, Id is defined for scalar
‘integrands’ as the map from the direct product of space functions on QSd and QSd onto
complex numbers, i.e.

Id : F(QSd)⊗QSd → C,
(f,p) 7→ Id(f,p). (B.2)

In the following, we will assume that QSd is a Euclidean space. To translate the theory
from Minkowski space into Euclidean space one can either apply a Wick-rotation from the
very beginning or single out the time dimension by writing p = (p0, q)

Id(f,p) =
∫
dp0 Id−1(f(p0, q), q). (B.3)

The separation of Id into a standard one-dimensional integral and a residual d− 1 map is
allowed and consistent, as it will become evident from the discussion below. This is what is
meant when working in 1+(3-2ε) dimensions.20

The fundamental axioms for the map Id are:

1. Linearity: Id(af + bg,p) = aId(f,p) + bId(g,p);

2. Scaling: Id(f, sp) = s−dId(f,p), where this property sets the ‘dimension’ of the
spacetime to d;

19Usually one sets d = 4− 2ε.
20Similarly, using light-front variables, the choice d = 2 + (2 − 2ε) implies an integration over the ±

components in eq. (B.3).

– 39 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
1

3. Translational invariance: Id(fq,p) = Id(f,p) with fq(p) = f(p+ q);

4. Rotational invariance: Id(fR,p) = Id(f,p) with fR(p) = f(Rp), where R is an
arbitrary rotation matrix in QSd.

From these axioms, one has to prove the existence and uniqueness of the map Id. We start
with the uniqueness. Suppose that the map Id exists. From the linearity axiom, we can
expand any function in F(QSd) in terms of a set of basis functions which can be taken as [80]

fs,q(p) = f(s(p+ q)) = exp
(
−s2(p+ q)2

)
. (B.4)

Hence, Id(g,p) can be expressed, for any function g, as a superposition of the master integral

Id(e−p
2
,p), (B.5)

which is set by definition to
Id(e−p

2
,p) = πd/2. (B.6)

Therefore, up to a redefinition of the normalization of Id, if the map exists, it is also unique.
To prove the existence, one first assumes that all the external physical vectors qi in

QSd belong to a vector subspace V ⊂ QSd with dim(V ) = J < +∞. This assumption is
not restrictive, since any external vector should live in the physical Minkowski space of
the theory (for standard QED or QCD the physical space is 4-dimensional). Any vector
p ∈ QSd can then be written as p = p‖ + p⊥, where p‖ ∈ V and p‖ · p⊥ = 0. Within such
a decomposition, a generic scalar function is given by

f(p, {qi}i) ≡ f(p2, {p · qi}i, {qi · qj}i,j), (B.7)

and one defines the map Id to be the ordinary J-dimensional integral over p‖ performed
after the integration in one dimension over p⊥ = |p⊥| with a weight pd−J−1

⊥ , i.e.

Id
(
f(p2, {p · qi}i, {qi · qj}i,j),p

)
≡ 2π d−J2

Γ
(
d−J

2

) ∫ J∏
i=1

dpi‖

∫ ∞
0

dp⊥p
d−J−1
⊥ f(p2, {p · qi}i, {qi · qj}i,j). (B.8)

Such a definition is consistent with the fundamental axioms of the map Id and justifies the
commonly adopted nomenclature of ‘integration in d dimensions’. Furthermore, it works
independently of the dimension of V as long as dim(V ) < +∞. One can easily extend the
definition to the case of tensor integrals. For a generic tensor function, one can always write
down the following expansion into scalar functions fi(p2, q2,p · q),

f ij(p, q) = piqjf1(p2, q2,p · q) + qipjf2(p2, q2,p · q)
+ pipjf3(p2, q2,p · q) + qiqjf4(p2, q2,p · q) + gijf5(p2, q2,p · q), (B.9)

and then proceed with the integration term by term. If the index of the tensor function is
carried by one of the external momenta qi, then there is no ambiguity in the meaning of the
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index, since the external momenta live in the finite subspace V . Vice versa, if the index is car-
ried by p, one enlarges the space V for the integration of the corresponding term in eq. (B.9)
in such a way to include that explicit component of p in the parallel integration. As a final
result, one has that in CDR or HV the open indices either belong to the minimal subspace
V which contains all the external vectors — in such a case we usually have the identification
between V and the Wick-rotated Minkowski space — or to the metric tensor gµν .

The final step is to introduce a proper definition of the covariant tensor gµν in an
infinite-dimensional space. The naive construction as the inverse of gµν would lead to
gµνg

µν = +∞, which is not very useful. Instead, one can define gµν , and hence the dual
space of covariant tensor operators, through the map Id, by requiring that its action on the
generic tensor function T is

gµν(T ) =
dΓ
(
d
2

)
π
d
2
Id

δ(p2 − 1)
∑
i,j

T ijpipj ,p

 . (B.10)

For the special case T = gµν one obtains gµνgµν = d as one would expect in a ‘d-dimensional
space’.

Within the framework of any DR scheme discussed above, the standard meaning of a
component for any vector or tensor fails, notably if the component index is carried by the
metric tensor which inherently lives in the infinitely-dimensional space QSd. However, this
does not cause any trouble, since all physical observables are scalars. The component of a
physical quantity represented by a vector or a tensor comes into play only through scalar
products and assumes a particular value once a reference frame has been specified. With
this understanding, we have a clear interpretation also in the DR schemes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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