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Abstract

Evolutionary plasticity processes, such as ploughing and penetrating, widely exist

in many geotechnical engineering applications. The simulation of these pro-

cesses poses considerable challenges due to the occurrence of large deformations,

unsteady nature of the material free surface, and inherent coupling between me-

chanical response and material geometries. This paper explores the possibility of

simulating the first-order response of these processes by using sequential kinematic

method (SKM) in combination with simple deformation mechanism. The mech-

anism consists of rigid elements separated by velocity discontinuities. Computa-

tions based on the kinematic approach of limit analysis are sequentially performed

to evaluate the most likely deformation mode and update material geometries. An

r-adaptive kinematic formulation is used that captures versatile velocity fields by

optimizing the geometries of simple kinematicmechanism. Themodelingmethod-

ology is studied in detail for two typical evolutionary plasticity problems: wedge
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ploughing Tresca material and cylinder penetrating undrained clay. The numerical

results obtained by using the SKM are compared against existing analytical and

numerical solutions, as well as experimental evidence. The paper demonstrates

that evolutionary plasticity problems can be simulated in a conceptually simple

way using SKM and highlights the potential pitfalls of this technique.

Keywords: plasticity, large deformation, limit analysis, kinematic method,

r-adaptivity

1. Introduction1

Evolutionary plasticity processes are ubiquitous in geotechnical engineering2

problems. As an archetypal example, the process of cutting in dry sand emphasizes3

the essential characteristics of this type of problems (see Fig. 1). They include4

continuous failure of materials, large deformation, and significant changes in the5

material free surface. Similar phenomena have been observed from lateral buckling6

of seabed pipelines (Tian and Cassidy, 2010;White and Dingle, 2011), soil cutting7

and tillage (McKyes, 1985; Godwin and O’Dogherty, 2007), and locomotion of8

legged robots and vehicle mobility (Li et al., 2013; Recuero et al., 2017; Agarwal9

et al., 2019). From a theoretical viewpoint, modeling evolutionary plasticity10

processes poses considerable challenges due to nonlinearities introduced by large11

deformations, material plasticity, and contact interactions.12

Simple analytical models have been proposed to tackle the problems by con-13

sidering particular states within the entire deformation processes, mostly corre-14

sponding to the incipient failure and steady states. The first type of these models15

is developed within the context of tribology as a means to explain the role of16

asperities in frictional interactions between surfaces undergoing relative motion17
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Fig. 1. Deformation pattern and evolution of the material free surface in ploughing a dry sand

(Kashizadeh, 2017). Contours shows the intensity of the incremental shear strain interpreted by

the PIV analyses (White and Take, 2002; Stanier and White, 2013), with the cooler and warmer

colors indicating smaller and larger magnitudes, respectively.

(Collins, 1972; Challen and Oxley, 1979; De Vathaire et al., 1981; Petryk, 1983).18

These models focus on the steady-state motion characterized by invariant resis-19

tance and material surface geometry. The second group of models is developed as20

tools to predict the loads acting on tillage implements or geotechnical structures21

(Osman, 1964; Hettiaratchi and Reece, 1974; Perumpral et al., 1983; Godwin22

and O’Dogherty, 2007). Compared with the former group, these models are23

mainly interested in the forces required to initiate deformation. When interest is24

in simulating the complete deformation processes, numerical methods are nor-25

mally required. For this purpose, various numerical techniques have been used26

such as large deformation finite element analysis (Bil et al., 2004; Hambleton and27

Drescher, 2009; Zhang et al., 2015; Ducobu et al., 2016; Zhang et al., 2020; Zhu28

et al., 2020), discrete element method (Hryciw et al., 1997; Tsuji et al., 2012),29

and meshfree methods (Leon Bal et al., 2018; Agarwal et al., 2019; Afrasiabi30
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et al., 2019). These approaches achieve considerable success in handling large31

deformation and the evolving material free surface but tend to be computationally32

onerous and overly demanding for routine engineering practice.33

The sequential kinematic method (SKM) represents a compelling alternative34

strategy for modeling evolutionary plasticity processes due to its computational35

efficiency and stability. The technique regards a deformation process as a sequence36

of failure states, and in each state, the kinematic theorem of limit analysis (Drucker37

et al., 1952) is applied to compute an optimal velocity field that is subsequently38

used to update the material geometries. The computational efficiency and stability39

of SKM has been illustrated in different engineering problems such as structural40

collapse (Yang, 1993; Corradi and Panzeri, 2004), metal forming (Hwan, 1997;41

Raithatha and Duncan, 2009), structural geology (Cubas et al., 2008; Mary et al.,42

2013), and the simulation of penetration, ploughing, and cutting processes in43

soils (Hambleton, 2010; Hambleton and Drescher, 2012; Hambleton et al., 2014;44

Kashizadeh et al., 2015; Kong, 2015; Kong et al., 2018; Zhu et al., 2020). Existing45

SKM formulations evaluate deformations of the entire computational domain.46

However, in many problems with engineering relevance, the induced deformation47

tends to be confined to local regions adjacent to the moving object. In the example48

depicted in Fig. 1, strains are locally concentrated into a single shear band, and the49

majority of the bulk materials mainly remains stationary or undergoes rigid body50

motion. Therefore, the SKM formulation that accounts for the deformation within51

the entire material domain can be unnecessarily complex and computationally52

inefficient, especially when the primary interest is a quick prediction of the first-53

order response such as the forces and motion of the moving object.54

This paper explores the possibilities of performing a first-order analysis for55
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evolutionary plasticity problems by utilizing SKM in combination with simple56

kinematic mechanism. In the proposed approach, only deformation adjacent to57

the moving object is considered and represented by mechanism consisting of slid-58

ing rigid elements separated by velocity discontinuities. To allow for versatile59

velocity fields, the model incorporates an r-adaptive kinematic method operating60

on the simple mechanism (Shi and Hambleton, 2020). Rather than discretiz-61

ing the entire domain, the model relies on discretizing solely the material free62

surface. The modeling methodology is examined for two evolutionary plasticity63

problems: wedge ploughing Tresca material and cylinder penetrating undrained64

clay. The simplicity of these problems is appealing from fundamental perspective,65

and well-documented experimental observations as well as analytical and numer-66

ical solutions enable a detailed assessment of the strength and weakness of the67

proposed technique.68

2. General modeling strategy69

We employ the problem of wedge ploughing as an archetypal example for70

conveying the bases of the proposed SKM technique. An object (here a rigid71

wedge) is pushed into a Tresca solid (Fig. 2(a)), followed by a lateral movement72

that continuously deforms the cohesive material (Fig. 2(b)). We generally are73

interested in the forces acting on the moving object (i.e., # and ) in Fig. 2)74

and/or its trajectory. This benchmark problem contains mechanical features that75

are common to other evolutionary plasticity processes (e.g., see Fig. 2(c) and76

(d)). First, the material deformed and displaced by the wedge accumulate along77

the front flank that leads to changes in the free surface (see Fig. 2(b)), alters the78

deformation patterns of the plastic solid and eventually the resulting forces on the79

5



(a)
N

(b)

free surface
v

NT

v

NT

v

NT

v

(c) (d)

Fig. 2. Schematic illustrating (a) penetrating a plastic solid by a rigid wedge and (b) subsequent

ploughing process; (c) ploughing process with circular and (d) rectangular tools.

wedge. Second, the contact conditions between the wedge and its surrounding80

material evolve as the ploughing proceeds. The full attachment along both flanks81

during the initial indentation changes to a separation at the rear flank (see Fig. 2(b)).82

Our general strategies to tackle these challenges by utilizing SKM are summarized83

in the following. These general modeling strategies can be extended to other84

problems, as illustrated by the later example of cylinder penetration in undrained85

clay.86

As shown in Fig. 3, we describe the velocity fields of the materials surrounding87

the wedge by an assembly of rigid elements that only translate in space. The edges88

of these elements represent velocity discontinuities. In general, the mechanisms89

could be more complex (e.g., including deformable elements and discretizing90

entire material domain, see Kong et al. (2018); Zhu et al. (2020)). Nevertheless,91

the aforementioned deformation pattern reduces the number of unknowns required92

to constrain kinematic mechanism. It is also consistent with the patterns of93

concentrated deformation revealed in many evolutionary plasticity processes (e.g.,94
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Fig. 3. Schematic illustrating deformation mechanism: (a) at the initiation of wedge ploughing,

there are solid-tool interfaces at both front and rear flanks of the wedge; (b) after detaching from

solid, there is no interface at the rear flank.

see Fig. 1 or those shown by White and Dingle (2011), Xu and Zhang (2019)).95

Two types of control can be included in the SKM: prescribing wedge velocity96

and applying force. Under velocity control (also the common mode of running97

the SKM), the forces acting on the wedge are evaluated by applying the kinematic98

theorem of limit analysis. The corresponding material velocity fields are employed99

to update the material free surface. Under force control, the aforementioned100

running mode can be iteratively executed for different trial displacements until the101

targeted force application is reached. It is also possible to jointly control force102

and velocity for different degrees of freedom of the object (i.e., mixed control).103

Taking wedge ploughing as an example, the vertical force acting on the tool (i.e.,104

# in Fig. 3) and its horizontal velocity (i.e., EG in Fig. 3) can be prescribed, while105
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the vertical velocity (i.e., EH in Fig. 3) and horizontal force (i.e., ) in Fig. 3) are106

recovered as part of the solution.107

To actually solve the problem, we have made the following specific assump-108

tions. The plastic solid is assumed to be weightless, rigid-perfectly-plastic, and109

obeys the Tresca yield criterion and an associative flow rule. Although this110

constitutive relation is originally proposed for metals, it has been shown to also111

reasonably approximate the mechanical behavior of cohesive soils (e.g. undrained112

clay) (Randolph and Houlsby, 1984; Einav and Randolph, 2005; Kong et al., 2018;113

Zhu et al., 2020). Deformation is considered to be under plane strain conditions.114

Regarding the wedge ploughing example, this assumption applies to the cases115

where the out-of-plane dimension of the wedge is much larger than the penetration116

depth. On the other hand, plain-strain cylinder penetrating can be a reasonable117

representation of the T-bar penetrometer test used in geotechnical site exploration,118

where the longitudinal dimension of the penetrometer is often much greater than119

its in-plane ones.120

Detailed descriptions of the kinematic mechanisms utilized for the wedge121

ploughing problem are given in Fig. 3. In particular, Fig. 3(a) and (b) depict the122

mechanisms applying to the cases where the rear flank of the wedge (i.e., �� in123

Fig. 3) is in contact with the Tresca solid and the flank has been detached from124

its neighboring material, respectively. In light of experimental observation (e.g.,125

Challen et al. (1984)), this work postulates that the material adjacent to the rear126

flank of the wedge is rigid during ploughing (i.e., only material deformation at127

the front flank is described by the rigid block mechanism). Accordingly, the only128

difference between the kinematic mechanisms in Fig. 3(a) and (b) is that the edge129

�� is treated as a velocity discontinuity in the former case. It should be noted130

8



that the aforementioned simplification is made to retain the simplest form of the131

solution (e.g., less blocks in the mechanism) such that the most clarity on the132

possibilities and limitations of SKM can be obtained. Indeed, there is no difficulty133

in adopting a more complex mechanism that would allow for deformation within134

the material at both sides of the tool. In fact, our preliminary studies show that135

both simplified and complex mechanisms yield the same results and in the latter136

case practically zero-valued velocities are computed for the material adjacent to137

the rear flank of the wedge.138

In the following sections, detailed formulation of the SKM will be presented.139

Specifically, Section 3 discusses the r-adaptive kinematic method that is used to140

construct optimal velocity fields in combination with rigid block mechanism. The141

approach to update the material geometries based on computed velocity fields will142

be presented in Section 4.143

3. Formulation of r-adaptive kinematic method144

In this section, we will discuss, for the kinematic mechanism depicted in145

Figure 3, how an optimal velocity field and the corresponding forces acting on146

the wedge can be obtained by utilizing the r-adaptive kinematic method. The147

velocity field of Fig. 3 is constrained by two types of information: the geometries148

of the rigid elements and their velocities. In r-adaptive kinematic methods, both149

block velocities and their nodal positions are treated as variables subjected to150

optimization (Johnson, 1995; Milani and Lourenço, 2009; Hambleton and Sloan,151

2013). For this purpose, the proposed model constructs a nested optimization152

procedure that in the inner level determines the optimal velocities for a fixed153

mesh by second-order cone programming (SOCP), and at its outer level computes154
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an optimal set among variable nodal positions using non-linear optimization.155

Respectively, these two optimization layers are detailed in sections 3.1 and 3.2.156

This r-adaptive kinematic formulation closely resembles that described by Shi157

and Hambleton (2020) for computing limit states of three-dimensional plasticity158

problems with fixed material geometries.159

3.1. Optimization of velocity field for fixed mesh160

For a velocity field characterized by rigid elements, the total energy dissipation161

rate equals to the sum of those occurring at element edges (i.e., the velocity162

discontinuities). The latter, for a perfectly plastic material that obeys the Tresca163

yield criterion, can be expressed as (cf. Chen (1975)):164

¤3 = 2; |ΔEC | (1)

The variable ; denotes the length of discontinuity, 2 is the material cohesion,165

and ΔEC is the tangential velocity jump along element edge. The absolute value166

is prescribed so that the dissipated power is always positive, regardless of the167

shearing direction. In a plasticity system as considered by the current SKM168

formulation, plastic deformation all takes place in velocity discontinuities where169

strain rates are infinite (Chen, 1975). To account for strain rate effects, the present170

formulation might be extended by following the approach proposed by Randolph171

(2004) and Einav andRandolph (2005). The general idea is to introduce a thickness172

for velocity discontinuities such that finite strain rates can be defined. Then, a173

relationship between material cohesion (i.e., 2 in Eq. (1)) and strain rate (e.g.,174

see Dayal and Allen (1975), Ladd and Foott (1974), and Einav and Randolph175

(2005)) can be included. After including these additional relationships, the energy176

dissipation rate of Eq. (1) is a function of both the magnitude of velocity jump177
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and the aforementioned thickness. This latter geometry might be determined by178

seeking a minimization of the energy dissipation rate (i.e., following the principal179

of minimum work for this term in isolation) (see Randolph (2004) and Einav and180

Randolph (2005) for detailed discussions on this aspect).181

To preserve a linear objective function in the SOCP, |ΔEC | in Eq. (1) is replaced182

by a dummy variable `:183

¤3 = 2;`

` ≥
√
(ΔEC)2

(2)

The constraint specified in Eq. (2) is in the form of second-order cone (SOC)184

constraint, one of the types permitted in SOCP in addition to linear equality and185

inequality constraints (cf. Sturm (2002)). Eq. (2) recovers the exact energy186

dissipation relation when equality is achieved. For the problems presented in this187

paper, this condition is always satisfied. This, as will become readily apparent, is188

because that the SOCP is formed such that the dummy variable ` is minimized.189

For materials that obey the Tresca yielding criterion and associative flow rule,190

a kinematically admissible mechanism does not permit velocity jumps that are191

normal to element edges (Chen, 1975):192

ΔE= = 0 (3)

In accordance with the kinematic theorem of plasticity (Drucker et al., 1952),193

a bound on limit load can be obtained by equating the rate of energy dissipation ¤�194

computed from a kinematically admissible velocity field to the rate of work due to195

external forces ¤, constructed based on the same field. Such energy balance, for196

the system defined in Fig. 3, can be specified as197

¤, = )EG + #EH = ¤� =

#�∑
8=1

2;8`8 +
#�∑
9=1
20; 9` 9 (4)
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where EG and EH denote the velocity of the wedge along G-axis and H-axis, respec-198

tively, #� is the number of velocity discontinuities within plastic materials, and199

the subscript 8 is used to indicate quantities corresponding to the 8th discontinuity200

edge. The second energy dissipation term in Eq. (4) accounts for those occurring201

at the interfaces between the wedge and the plastic solid and thus implying that the202

wedge and the cohesive mass are treated as a composite dissipative mechanical203

system. The variable #� is the number of the interface segments. The dissipation204

at these interface segments is computed by replacing the cohesion 2 in Eq. (2) with205

the interface strength 20. Perfectly smooth and rough interfaces are characterized206

by 20 = 0 and 20 = 2, respectively. A simple contact search algorithm is used to207

determine the range of the interface, where the distance from nodes on the free208

surface to the wedge flanks is computed and those with a distance less than a209

tolerance (1.5 × 10−2 is employed for all simulations in this paper) are considered210

to be in contact with the wedge. Conversely, the separation of the wedge from211

neighboring plastic solid is naturally considered once the distance exceeds the212

tolerance mentioned above. To enable such no-tension interface, a jump condition213

that is slightly different than the one given in Eq. (3) is assigned to the interface214

segments:215

ΔE= ≥ 0 (5)

As depicted in Fig. 4(a), the velocity jump at the interface is measured from216

the wedge to the neighboring plastic material such that a positive value of ΔE=217

indicates the separation. The interface behavior described by using Eqs. (1) and218

(5) (see Fig. 4(b)) is similar to that obtained by imposing no-tension conditions219

with respect to the tractions along the surface of a Tresca solid (e.g., the Type220

A interface defined by Herfelt et al. (2021)). This approach is not perfect in221

12



velocity jump (measured 
from tool to Tresca solid)

Tresca solid

rigid tool

σ
n

τ

plastic flow 
direction failure envelop

(b)(a)

Fig. 4. Schematic illustrating the modeling of non-tension interface between rigid tool and Tresca

solid in SKM: (a) interface is treated as velocity jump (measured from tool to Tresca solid); (b)

plastic flow directions and failure envelop at the interface.

that it can imply tensile stress states within plastic solid and that shear stress is222

sustained (i.e., energy dissipation is non-zero) immediately after separation (i.e.,223

at the instance when ΔE= turns positive) (Herfelt et al., 2021; Houlsby and Puzrin,224

1999). Nevertheless, it provides a practical means to account for the no-tension225

interface via the types of constrains permitted by the SOCP. Lastly, it should226

be noted that the aforementioned limitations mainly influence the instance of227

separation, after which the interface does not exist any more and consequently is228

not included in the computation.229

By manipulating Eq. (4), we obtain the following optimization problem with230
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respect to the velocities of the rigid elements:231

<8= ) =
1
EG
(
#�∑
8=1

2;8`8 +
#�∑
9=1
20; 9` 9 − #EH)

>A

# =
1
EH
(
#�∑
8=1

2;8`8 +
#�∑
9=1
20; 9` 9 − )EG)

B.C. ΔE=8 = 0

`8 ≥
√
(ΔEC8)2 8 = 1, ..., #�

ΔE= 9 ≥ 0

` 9 ≥
√
(ΔEC 9 )2 9 = 1, ..., #�

(6)

Equation (6) represents a standard form of SOCP problems and depending on232

whether the ploughing or the indentation process is modeled, the first or the233

second objective function is employed. The SOCP is solved by the Mosek toolbox234

integrated with the MATLAB (Mosek, 2015). # and EH, ) and EG represent two235

work-conjugate pairs. In order to obtain feasible and bounded solutions from the236

SOCP, at least one variable in each pair should be specified (e.g., the normal force237

# and the horizontal velocity EG are usually the boundary conditions in modeling238

the ploughing). As only rate-insensitive materials are considered in this work,239

when setting boundary conditions by prescribing EG or EH, a velocity of unity is240

assigned for convenience.241

Equation (6) represents the inner layer of the nested optimization and the com-242

puted limit loads correspond to the rigid block mechanism with fixed geometries.243

The outer layer of the nested optimization, as detailed in the next section, seeks244

optimal nodal positions of the elements (i.e., nodes =1 to =4 in Fig. 3(a)) that245
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minimize the limit loads.246

3.2. Optimization of nodal positions of rigid elements (r adaptivity)247

To obtain a critical layout of the velocity discontinuities, we construct the248

following non-linear optimization problem:249

<8= � (G8 9 , () 8 = 1, 2 and 9 = 1, 2, 3

B.C. �: (G8 9 , () ≥ 0 : = 1, ..., 4

G;8 9 ≤ G8 9 ≤ GD8 9

( > 0

(7)

The objective function in Eq. (7) is the limit tangential or normal force computed250

for a given set of nodal positions G8 9 (the first subscript denotes the 8th component251

of the position vector, while the second subscript indicates the 9 th node), evaluated252

in precisely the same way as in the previous section. The coordinates of the nodes253

=4 in Fig. 3 cannot be regarded as independent unknowns in the optimization since254

this node has to lie on the material free surface. We implicitly define the location255

of this node by an auxiliary variable ( that measures the distance between the256

node =4 and the intersection point of the wedge and the free surface (i.e., the point257

� in Fig. 3). To prevent the inter-penetration of rigid elements and consequently258

ensure computational stability, the first set of constraints in Eq. (7) requires that259

element areas �: are always positive. The variables G;
8 9

and GD
8 9

appearing in260

the second set of inequality constraints define allowable limits for certain nodal261

position components. These constraints are set to ensure that the adjusted nodes262

do not go beyond the material free surface.263

As the objective function and constraints of Eq. (7) are both non-linear func-264

tions of the unknown variables, such problem falls within the general domain265
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of non-linear constrained optimization. In preliminary studies, two of the most266

widely employed algorithms, interior point method and sequential quadratic pro-267

gramming, are used to solve this optimization through the FMINCON solver of268

MATLAB. These initial investigations show that the interior point method can269

find a solution with fewer iterations and thus are selected for all computations270

presented in this paper. Three key parameters that can affect the performance of271

the interior point method are (1) step size factor ΔB in finite difference method that272

determines the perturbation amount of unknown variables for numerically com-273

puting the gradient of the objective function; (2) step tolerance )B that specifies274

the lower bound on the change of the norm of the vector containing all unknown275

variables; (3) the tolerance for the optimality )> that measures the proximity of the276

current solution to an optimal one. The first parameter affects the accuracy of the277

calculated gradient of the objective function, while the latter two mainly influence278

the accuracy of the solution as the optimization process will be terminated once279

either tolerance is triggered. For simulations performed in this work, we observe280

that the solutions are not particularly sensitive to the values of ΔB and )>, and their281

default values (i.e., ΔB = 1 × 10−6 and )> = 1 × 10−6) are adopted. The parameter282

)B, on the other hand, can noticeably influence the computed response, as it will283

be discussed more deeply in the following. For all examples considered in this284

work, )B = 1 × 10−4 to 1 × 10−5 are sufficient. Lastly, it should be noted that the285

algorithm used to solve the non-linear optimization is deemed as a local optimizer286

and therefore behave most effectively when the initial nodal positions of the rigid287

elements (e.g., Fig. 5(a)) are relatively close to optimal ones (e.g., Fig. 5(b)) or the288

objective function is convex.289
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(a): initial mechanism (b): optimized mechanism

Fig. 5. Typical evolution of kinematic mechanism during r-adaptive kinematic method.

4. Update of material free surface290

As shown in Fig. 6(a), deformation of the entire bulk material is tracked291

through a discretized free surface. By doing so, the need to repeatedly remesh292

the computational domain, as a means to handle severely distorted mesh, can be293

avoided. The surface initially has uniform nodal spacing denoted by ΔG. The294

optimal velocity fields obtained in accordance with the technique discussed in the295

previous section are used to update the displacements of the nodes along the free296

surface by explicit time integration. Consider a pseudo time increment Δ)= and297

let the superscripts = − 1 and = denote quantities at the pseudo time )=−1 and298

)= ()= = )=−1 + Δ)=), respectively. With one-step time-marching scheme, nodal299

displacements at the end of the increment Δ)= is found to be:300

3=8 9 = 3
=−1
8 9 + E=−1

8 9 Δ)= 8 = 1, 2 and 9 = 1, 2, ... (8)

where 38 9 and E8 9 denote the 8th component of the displacement and velocity301

vectors at the 9 th node. For nodes belonging to multiple blocks (e.g., the point �302

in Fig. 6), an averaged velocities of those blocks are assumed to be nodal velocity303

(see Fig. 6(b)). Similarly, the position of the rigid wedge is updated according to304

3=8F = 3
=−1
8F + E=−1

8F Δ)= 8 = 1, 2 (9)

where 38F and E8F represent the displacement and velocity vectors of the rigid305

wedge. Once the geometry of the free surface and the position of the wedge have306
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been updated, the contact between the wedge and its neighboring materials is307

checked based on the searching algorithm discussed in Section 3 and the portions308

of the material free surface that are in contact with the wedge are treated as velocity309

discontinuities within the kinematic mechanism.310

As the size of the time increment is finite, some nodes on the free surface may311

penetrate the object after the update described above, thus requiring correcting the312

free surface. Following Kong (2015), those nodes that invade into the interior of313

the object are mapped back to the boundary of the object along a direction normal314

to the boundary, as illustrated in Fig. 7(a). Another type of free surface that requires315

appropriate correction is the sharp inverse corner depicted in Fig. 7(b). Without316

treatment, the computed boundary between the deforming and stationary materials317

can be forced to pass the tip of the corner, which represents a local minimum for318

the objective function (recall that the nature of the selected algorithm is a local319

(a)

original free surface 

d=v1 T

d=v4 T

updated free surface
d=(v1+v2+v3+v4)/4 T

x
B

(b)

v1
v2

v3
v4

vw

Fig. 6. Schematic illustrating the update of the material free surface according to the computed

velocity field: (a) velocity field obtained for geometry configuration at step =; (b) updated free

surface and geometry configuration at step = + 1.

18



before correction
after correction

(a) wedge

3

before correction

after correction

1

2

4

(b)

A

B

C

Fig. 7. Schematic illustrating the correction of the material free surface for: (a) penetration into

the tool; (b) sharp inverse corner.

optimizer). This behavior prevents searching for better deformation mechanisms,320

and consequently lead to peculiar jumps on the ploughing resistance and unrealistic321

deformation patterns, as will be discussed in the following. To resolve this issue,322

we loop over all surface nodes and delete those whose G coordinate is less than323

that of its two neighboring nodes, as suggested by Kong (2015). Figure 7(b), in324

which the number adjacent to nodes indicate the order of being deleted, shows that325

by repeatedly checking surface nodes and applying the rule described above, the326

shape corner can be eliminated. Lastly, it should be noted that the need to correct327

the surface profile is common to methods that rely on discretization of the entire328

domain (e.g., finite element limit analysis (Kong, 2015)) as well as the proposed329

method.330

5. Simulation of smooth wedge indentation and ploughing331

The performance of the proposed SKM model is first examined in the case of332

indenting and ploughing a Tresca solid by a smooth rigid wedge (i.e., the interface333

strength 20 = 0). In this example, the wedge angle U (see Fig. 3 for its definition)334

equals to 10°, while the material cohesion 2 = 13 MPa. In the simulations, the335
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wedge is first pushed into the plastic solid, followed by a lateral ploughing with336

the normal load maintained at the same level as the one reached at the end of the337

indentation. Both indentation and ploughing processes are under displacement338

control in the simulations (i.e., the velocity EG or EH in Fig. 3(a) is prescribed).339

Fig. 8 compares the computed indentation resistance with that given by Hill340

et al. (1947)’s slip-line solution. A good agreement can be observed. Fig. 9341

presents the optimal velocity fields (i.e., deformation mechanisms) when the342

intruder penetrates to different depths. These fields exhibit geometrically self-343

similarity, which is explicitly assumed in Hill et al. (1947)’s solution but comes344

out automatically from the SKM.345
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Fig. 9. SKM computed velocity field at various stages of rigid wedge indentation.

Fig. 10 shows the computed trajectory of the wedge as well as the normalized346

tangential force during the ploughing stage. The deformation mechanisms for347

selected instances are given in Fig. 11. It is seen that the initial lateral ploughing348

leads to a sinking of the wedge. This deformation pattern, referred to as “junction349

growth” within tribology (Tabor, 1959; Challen and Oxley, 1979), occurs because350

the contact pressure on the rear flank is relieved and the wedge penetrates deeper351

into the plastic solid to achieve a larger contact area at the front flank to sustain352

the applied normal load. As the lateral ploughing continues, the wedge begins to353

rise and simultaneously push a bow wave of plastically deformed material ahead354

as depicted in Fig. 11(b) and (d). Such rising phase continues until reaching355

a steady state characterized by approximately constant ploughing resistance and356
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Δ) = 0.25.

wedge vertical location. It is seen that the computed rising trajectory is not smooth357

but with small-amplitude oscillations. The latter is attributed to the alternation358

between two deformation mechanisms respectively depicted in Fig. 11(c) and (d).359

The former mode is characterized by the wedge sliding along its front flank without360

deforming the solid, which gradually reduces the contact area between the wedge361

and the solid mass. When the contact area is not enough to sustain the applied362

normal load, the second mode characterized by a bear-capacity type failure occurs.363

The contact area grows consequently.364

To examine the accuracy of the SKM simulation, two alternative solutions365

are included in Fig. 10. Hambleton (2010) proposes a semi-analytical method366

by treating the ploughing as a sequence of incipient plastic flow problems that367

can be approximated by Hill et al. (1947)’s indentation mechanism. An FEM368
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Fig. 11. SKM computed evolution of the material free surface and velocity fields during smooth

wedge ploughing.

simulation is also performed by Hambleton (2010) to verify the semi-analytical369

model. This numerical analysis is conducted by using ABAQUS/Explicit. The370

arbitrary Lagrange-Eulerian (ALE) remeshing algorithm is employed in the region371

near the wedge to maintain a high-quality mesh after relatively large deformation372

has occurred. The rigid-plastic behavior of the solid is emulated by using the373

Tresca model with a large value of Young’s modulus � (e.g., �/2 ≈ 7000). More374

detailed discussions on the features of the FEM can be found in Hambleton and375

Drescher (2012, 2009). A good agreement can be seen from these comparisons.376

The steady-state ploughing forces computed by the SKM and semi-analytical377

approach are very close to the one obtained by slip-line technique (Challen and378

Oxley, 1979), while the FEM tends to predict a bit higher resistance. Note that379

the FEM simulation shows similarly oscillatory wedge trajectory and ploughing380
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resistance, as computed by the SKM.381

6. Convergence analysis of SKM simulation382

We use the ploughing simulation discussed in the previous section as an op-383

portunity to evaluate the convergence features of the SKM solution with respect to384

the discretization size of the free surface represented by the nodal space, ΔG, and385

the step size of the time marching represented by the time increment, Δ) .386

Fig. 12(a) and (b) shows the ploughing simulations performed under three387

different time steps. It can be seen that the computed wedge trajectory and388

tangential force both show a converging tendency as Δ) decreases. The decrease389

in the time step also leads to smaller fluctuations in the computed response. The390

same convergence feature can be observed for reducing the nodal spacing ΔG, as391

illustrated in Fig. 12(c) and (d). It is noticed that the simulations based on larger392

nodal spaces generate trajectories that elevate to higher positions. Such response393

might result from the fact that a linear function is used to interpolate the free394

surface between adjacent nodes (see the inset of Fig. 12(c)). In this illustration, the395

solid and dashed lines represent the free surface before and after the update, and396

the gray area denotes the factitious material that is added to preserve the continuity397

of the free surface. Larger nodal space implies more artificial material is piled398

up ahead of the wedge and consequently the deformation mode associated with399

wedge upward motion (e.g., that shown in Fig. 11(c)) can be sustained for longer400

periods. As a consequence, the wedge heads to larger elevations.401

The aforementioned analyses indicate that the volume conservation for incom-402

pressible Tresca solid can be violated in SKM simulations, due to the resources403

like the addition of artificial material mentioned above and the correction of the404
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Fig. 12. Convergence analyses of SKM solution with respect to time increment size (subfigures

(a) and (b)) and nodal space along the discretized free surface (subfigures (c) and (d)).

material free surface discussed in section 4. To assess how this violation is affected405

by the employed nodal spacing and time increment, the change of material volume406

in the convergence analysis is evaluated (see Table 1). These reported volume407

changes are computed by numerically integrating the material free surface at the408

end of the simulations. The data suggest that the change of material volume tends409
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Table 1. Change of material volume at the end of ploughing simulations that employ different

nodal spacing and time increment (see Fig. 12). Note that the volume change is normalized by

the initial volume before ploughing, +0. This initial volume corresponds to a rectangular region

with a depth twice the wedge indentation depth prior to ploghing 3 and a length twice the lateral

ploughing distance D, i.e., +0 = 43D.

Nodal spacing, ΔG Time increment, Δ) Change of material volume, Δ+/+0

1.0 1.0 -7.6 %

1.0 0.5 -3.6 %

1.0 0.25 -2.0 %

1.5 0.25 -1.1 %

2.0 0.25 0.01 %

to decrease as smaller time increments are employed (i.e., compare lines 1 to 3 of410

Table 1). On the other hand, when larger nodal spacing is used, more artificial411

material can be added to computation domain (i.e., compare lines 3 to 5 of Table 1),412

as discussed above.413

7. Simulation of rough wedge indentation and ploughing414

We have shown that the r-adaptive SKM model can reasonably represent the415

deformation processes of a Tresca solid ploughed by a smooth wedge. In this416

section, we further evaluate this technique in the case of ploughing cohesive solid417

by wedge where finite adhesion presents at contact surfaces. The experimental418

observations for ploughing aluminum alloy by a hard wedge (Challen et al., 1984)419

are used to assess the model. These tests are chosen become they provide a rich420

dataset (e.g., the evolution of ploughing resistance and tool trajectory) that helps421
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to evaluate the SKM model relatively comprehensively. Albeit being different422

materials, the mechanical behavior of metal and cohesive soil (e.g., undrained423

clay) is similar in some key aspects such as incompressibility conditions. Due to424

this reason, constitutive models and analytical solutions developed originally for425

metal have been successfully employed to analyze geotechnical problems (Mroz,426

1967; Prévost, 1977; Lemaitre and Chaboche, 1990; Anastasopoulos et al., 2011;427

Karapiperis and Gerolymos, 2014; Prandtl, 1920; Terzaghi, 1943). Following this428

line of thought, simulating the tests of ploughing metal is expected to provide429

a meaningful evaluation of the SKM model regarding its capacity to model the430

counterpart geotechnics problems (e.g., ploughing cohesive soil (Hettiaratchi and431

Reece, 1974; Palmer, 1999; Atkins, 2009) and the lateral sliding of pipeline in432

undrained clay (Tian and Cassidy, 2010; White and Dingle, 2011)).433

Table 2 summarizes the geometric and material parameters used in the simula-434

tions. The material properties are reported by Challen et al. (1984) except that for435

the test 12, which is not available from the literature. This information is estimated436

in this study by fitting the steady-state ploughing force. In the simulations, an in-437

dentation stage is modeled prior to the ploughing, which ceases when the normal438

forces applied in the experiments (see Table 2) are reached. Due to the lack of439

experimental data, a comparison between the computed and measured evolution of440

the penetration resistance with the indentation depth is not available. Nevertheless,441

the comparison between the calculated and measured wedge tip elevation at the442

beginning of the ploughing (see Figs. 13, 14 and 15) suggests that the indentation443

stage is reasonably represented by the model.444

Comparisons of full force-displacement histories for the three ploughing tests445

are shown in Figs. 13, 14 and 15. In general, a good agreement can be seen be-446
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Table 2. Parameters in the SKM simulations of the ploughing tests performed by Challen et al.

(1984).

Test U (°) # (N/mm) 2 (MPa) 20 (MPa)

10 25.9 700 243 26.73

12 35.05 700 200 30

19 10.2 700 193 82.99

tween the computed and observed response. The calculated steady-state ploughing447

forces and velocity fields (see Fig. 16) also match reasonably with the slip-line so-448

lution proposed by Challen and Oxley (1979). However, quantitative mismatches449

between model simulations and test data can also be observed. For example, the450

simulations show that there is a sudden drop of tangential force once the wedge451

starts to rise (see Fig. 14), resulting from the separation at the rear flank of the452

wedge and the consequent loss of resistance related to the interface strength. This453

feature is not observed from test results, where the separation may be a progres-454

sive process and thus leading to a smooth change of the ploughing resistance.455

Remarkable hardening and softening stages are observed from the experimental456

data of test 19, which are not captured by the model possibly due to the underlying457

assumption that the solid is perfectly plastic. Furthermore, it is observed that the458

computed steady-state resistance by the SKM coincides with the analytical solu-459

tion given by Challen and Oxley (1979) for the test 10 (see Fig. 13), whereas those460

computed for the tests 19 and 12 are reasonably close to yet not exactly the same461

as the analytical solution (see Figs. 14 and 15). This difference might result from462

the variation in SKM performance between different cases. In simulating Challen463

et al. (1984)’s tests, efforts are made to ensure a consistency regarding modeling464
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Fig. 13. Comparison between SKM simulated ploughing response, experimental data (test 10 in

Challen et al. (1984)) and analytical steady-state solution (Challen and Oxley, 1979). Note that the

SKM simulation employs nodal spacing ΔG = 60 and time increment Δ) = 10.

settings, e.g., nodal spacing and time increment (see the caption of Figs. 13 to465

15). Nevertheless, the accuracy of the SKM simulations might still vary between466

different cases, possibly due to that material properties vary across these tests (see467

Table 2).468

The computation times (total runtime) and the number of Mosek calls for the469

simulations described above are summarized in Table 3. It is seen that the cost470

of using r-adaptive SKM for simulating large deformation processes is relatively471

small. The runtime can potentially be brought down further via the implementation472

of Mosek through platforms that require smaller overhead than Matlab. The fact473

that the simulation of the test 12 consumes the largest cost is because a smaller474

value of the parameter )B (see section 3.2 for its definition) is employed to ensure475

the solution accuracy and consequently more iterations are conducted in the non-476

linear optimization of Eq. (7).477
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Fig. 16. Comparison between SKM computed steady-state velocity fields and that postulated in

slip-line solution (reproduced from Challen and Oxley (1979)).

8. Simulation of cylinder penetration in undrained clay478

To illustrate the application of the proposed SKM to other evolutionary plastic-479

ity problems in geotechnical engineering, plain-strain cylinder penetrating undrained480

clay is simulated in the following. As previously mentioned, this deformation pro-481

cess is similar to that taking place during the T-bar penetrometer test in geotechnical482

Table 3. Computation times (unit:second) and Mosek calls for SKM simulations of lateral plough-

ing. Note that the reported times are total runtime on a PC equipped with an Intel i9-9900 processor

(3.6 GHz; 8 cores) and 32 GB RAM. Test numbers in the table refer to those performed by Challen

et al. (1984).

Cases Total runtime Number of Mosek calls

Test 10 251 19624

Test 12 900 97071

Test 19 241 23545
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site characterization (Einav and Randolph, 2005).483

Figure 17 shows the kinematic mechanism used in the SKM simulations.484

Considering the symmetry of the problem, only half of the domain is modeled.485

The T-bar penetrometer is approximated by a rigid polygon (see Fig. 17(a)) that486

allows treating the soil-tool interface as planar velocity discontinuities. The SKM487

progressively adds new blocks to kinematic mechanism to facilitate the growth in488

the contact region between soils and T-bar during its penetration. Specifically, a489

new pair of rigid blocks are included (see Fig. 17(b)) when a new polygon edge490

becomes in contact with the soil free surface (e.g., �� in Fig. 17(b)). To ease491

the comparison between the SKM simulations and existing solutions, we consider492

that the shear strength of undrained clay (D distributes uniformly along depths.493

The Tresca solid is used to approximate undrained clay, i.e., cohesion 2 in Eq. (1)494

equals to (D. The soil-tool interface is considered to be rough and feature strength495

20 = (D/2. The simulation is performed by prescribing the velocity of the T-bar496

(i.e., EH in Fig. 17). Other model settings are the same as those employed in the497

aforementioned wedge ploughing example.498

Figure 18 show the computed variation of penetration resistance with depths499

by the SKM and finite element method (FEM) (Zhu et al., 2020). In the FEM500

simulation, Coupled Eulerian-Lagrangian (CEL) technique is used to handle the501

large deformation of soil, while the Tresca model is used to describe the behavior502

of undrained clay. More detailed discussions on the features of the FEMmodeling503

can be found from Kong (2015), Kong et al. (2018), and Zhu et al. (2020). The504

results given by the two numerical approaches agree reasonably, and show a505

consistent trend that the penetration resistance grows at smaller rates as the depth506

increases. The analytical solutions proposed by Hambleton and Drescher (2012)507
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Fig. 17. Kinematic mechanism in the simulation of rigid cylinder penetration: (a) early contact;

(b) new blocks are added to facilitate the growth in soil-tool contact area.

and Einav and Randolph (2005), applicable respectively to shallow and deep T-bar508

penetration, are included in Fig. 18. In the former work, a closed-form solution for509

cylinder indentation is constructed by examining asymptotic state of evolutionary510

processes characterized by the Prandtl-type punch mechanism (Hambleton and511

Drescher, 2012). The latter study presents a upper bound solution for a cylindrical512

plane-strain object translating through a rigid plastic solid (Einav and Randolph,513

2005). Figure 18 shows that the force-penetration relationship computed by the514

SKM matches reasonably with the solution of Hambleton and Drescher (2012) at515

shallow depths, while approaches to the solution of Einav and Randolph (2005) at516

deep locations.517

The change in the free surface and deformation mechanism of soil as the518

penetration proceeds is presented in Fig. 19. These patterns of evolving material519

geometries are consistent with those revealed from FEM simulations (Kong et al.,520
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2017; Zhu et al., 2020), except that the SKM computes global flow deformation521

mechanism for deep penetration (albeit that the magnitude of soil velocities at522

shallow depths is noticeably reduced, see Fig. 19(c)), rather than local full-flow523

mechanism as seen in the upper bound solution of Einav and Randolph (2005).524

The reasons behind such discrepancy will be discussed in the following section.525

9. Possibilities and limitations of SKM526

We have shown that how two archetypal problems of evolutionary plasticity527

processes (wedge ploughing and cylinder penetration) can be modeled by the SKM528
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Fig. 19. Material free surface and soil deformation mechanism computed by the SKM that

correspond to different cylinder penetration depths.

in combination with simple kinematic mechanism. By comparing against analyti-529

cal and numerical solutions as well as experimental evidence in the literature, we530
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show that the SKM can reasonably evaluate the first-order response of the problem531

(i.e., the force-displacement history and tool trajectories). The key behind this532

modeling success is to captures the evolution of material geometries (e.g., free533

surface) due to the large deformation.534

The present study has been focused on the evolutionary plasticity processes535

involvingTresca solid (cohesive soil). This cohesivematerial is selected to simplify536

the problems such that the key characteristics of the fundamental concept of537

simulating large deformation processes via SKM can be explored. Specifically,538

given the incompressibility conditions of cohesive material, the dilation at velocity539

discontinuities and the consequent potential material separation or overlay taking540

place during geometry update can be avoided. On the other hand, it should541

be noted that the SKM strategy can be applied to the problems dealing with542

frictional materials, as demonstrated by modeling thrusting sequences in geology543

(Cubas et al., 2008; Mary et al., 2013) and ploughing sand (Hambleton et al.,544

2014; Kashizadeh et al., 2015). In these studies, the dilatancy of cohesionless545

materials at velocity discontinuities is often neglected when the material geometry546

is incrementally updated, as a means to avoid the aforementioned complications.547

Therefore, when extending the proposed SKM method to frictional materials,548

future investigations are needed on the methods to update the material geometries549

in accordance with deformation mechanisms featuring finite dilatancy at velocity550

jumps.551

The proposed SKM formulation characterizes material deformation patterns552

by the simple mechanism of rigid elements. This modeling decision reduces553

the number of unknowns required to constrain an optimal kinematic field and554

consequently leads to relatively efficient simulations. Nevertheless, it should be555
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Fig. 20. Schematic illustrating the conditions of overtopping, where material deformation charac-

teristics such as local slope failure cannot be represented by rigid element mechanism.

noted that there are cases where the aforementioned simple mechanism is not556

sufficient to characterize material deformation patterns. For instance, when a557

wedge with finite size keep ploughing Tresca solid, the cohesive material at some558

times might start to overtop the moving object, as shown in Fig. 20. Under these559

conditions, the material deformation can feature characteristics that cannot be560

represented by simple kinematic mechanism, like local slope failure.561

To accommodate these deformation patterns, the current SKM model needs to562

employ more sophisticated kinematic mechanisms such as deformable elements563

and the deformation of the material not immediately adjacent to the object. For564

this purpose, the energy dissipation due to the deformation of elements needs to565

be included in the r-adaptive kinematic method, while broader material domain566

requires to be discretized bymesh (seeKong (2015) for a detailed discussion on for-567

mulating SKM based on finite element limit analysis). On the other hand, it should568

be noted that, while more sophisticated mechanisms can more accurately capture569

the material deformation, they inevitably increase computation cost. Therefore,570

the selection of kinematic mechanism in the SKM depends on “cost/benefit” con-571

siderations done for specific engineering projects.572

The response computed by the proposed SKM model strongly relies on the573

algorithms used to search for an optimal velocity field (i.e., the algorithms used to574
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solve the non-linear optimization of Eq. (7)). Local optimization algorithm is cur-575

rently employed due to that it is generallymore efficient than its global optimization576

counterparts. Nevertheless, this type of algorithm might return local optimum and577

the kinematic mechanism that is not the most critical. As mentioned above, global578

deformation pattern is computed by the SKM when the cylinder has been pushed579

to relatively deep depths (see Fig. 21(a)). In fact, local deformation pattern can580

correspond to smaller resistance (see the #/'(D values depicted in Fig. 21(a) and581

(b)) and thus representing a more critical mechanism. This alternative mechanism582

can be computed from the current formulation when the optimization solver starts583

with different initial guesses of nodal positions. Continuous investigations are584

required to explore the possibility of resolving this dependence on initial nodal585

positions without sacrificing computational efficiency, like via global surrogate586

optimization.587

In addition to initial nodal positions, the performance of the optimization solver588

can be sensitive to its controlling parameters, so does the response computed589

by the SKM model. We use the test 12 performed by Challen et al. (1984)590

to illustrate this point. It is seen from Fig. 22 that employing a higher value591

for the parameter )B (i.e., stop the optimization prematurely) only marginally592

overestimates the ploughing force over the first half of the deformation process,593

but leading to remarkable changes in the computed wedge trajectories and material594

free surface. The cumulative changes in the geometric configurations eventually595

reach a breakpoint (i.e., the square symbol in Fig. 22) where the deformation596

mode fundamentally changes (see the inset of Fig. 22), so does the corresponding597

ploughing resistance. Future studies can explore the possibility of regularizing598

the aforementioned dependence of solution on optimization solver parameters599
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Fig. 21. Deformation mechanism for deep penetration of cylinder.

via including deformable elements in kinematic mechanism, as the rigid block600

assumption might pose overly strong restrictions on available deformation modes.601

The last limitation of the SKM model observed in the present study is that the602

solution can be sensitive to the presence of irregular shape along the material free603

surface and thus requiring careful correction of the surface. To illustrate this point,604

Fig. 23 shows the effects of permitting the sharp inverse corner at the free surface.605

Similar to relaxing the optimization tolerance described above, the irregular shape606

of the free surface can promote remarkable changes on the computed deformation607

mode and peculiar jumps in the ploughing forces. This is because the boundary608

between the moving and stationary materials is trapped at the tip of the inverse609

angle (see the computed velocity fields in Fig. 23). The issue mentioned above can610
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be addressed by the surface correction scheme discussed in Section 4. However,611

it should be noted that these correction strategies can violate the conservation of612

mass, as materials are deleted (for correcting penetration) or added (for correcting613

the inverse corner). Such induced error can be minimized as relatively small time614

increments are adopted (see Table 1).615

10. Conclusions616

This work investigates the potentials of simulating evolutionary plasticity pro-617

cesses via sequential kinematic method (SKM) constructed on simple deformation618

mechanism. These processes are modeled by sequentially updating the material619

geometries in accordance with velocity fields represented by mechanism consist-620

ing of rigid translational elements separated by velocity discontinuities. Optimal621

velocity fields are sought by a r-adaptive kinematic method formulation, where622

an iterative, nested optimization procedure is constructed that consists of (1) de-623
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termination of velocities for a fixed mesh of rigid blocks using second-order cone624

programming and (2) adaptation of nodal positions using non-linear optimization625

to find a critical layout of velocity discontinuities. The advantages and limita-626

tions of the modeling strategy are examined through simulating wedge ploughing627

Tresca solid and cylinder penetrating undrained clay, where analytical, numerical628

solutions and experimental observations are available in the literature. The main629

conclusions can be drawn from this work include:630

1. The comparison of the results simulated by using the proposed SKM model631

against existing solutions and experimental evidence shows that SKM com-632

bined with conceptually simple deformation mechanism can reasonably rep-633

resent the first-order response of wedge ploughing and cylinder penetration,634

including forces and motions of the object.635

2. The proposed SKM technique exhibits promising features for delivering636

efficient analyses of evolutionary plasticity problems.637
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3. The response computed by the SKM depends on spatial and temporal dis-638

cretization sizes. A converging trend of simulations is seen as the nodal639

space of the discretized free surface or time increment size become smaller.640

4. Both employing a sufficiently small termination tolerance for the non-linear641

optimization of the nodal positions and appropriately correcting the material642

free surface can be crucial for obtaining accurate simulations. Without643

these restrictions, a significant deviation on the objects’ trajectories and644

the material free surface can occur without noticeably altering the computed645

forces. However, the accumulation of errors in the geometries can eventually646

lead to large mismatches on the prediction of resistance.647

5. The employed local optimization solver can return kinematicmechanism that648

is not the most critical, depending on the initial guesses of nodal positions.649

In future studies, the proposed SKM model can be extended to the problems650

dealing with frictional materials. In this aspect, more research efforts might be651

required focusing on the methods for updatingmaterial geometries that can accom-652

modate finite dilation at velocity discontinuities. The dependence of kinematic653

mechanism optimization on initial nodal positions might be resolved by employing654

efficient global optimization solvers (e.g., surrogate model). The proposed SKM655

model applies most appropriately if the engineering interest is to quickly evaluate656

large-deformation plasticity problems to the first order. When the primary inter-657

ests rest on more accurate representations of soil deformation or detailed response658

such as the stress and strain fields, the current formulation can be augmented by659

more sophisticated kinematic mechanisms (e.g., Kong (2015), Kong et al. (2018),660

Zhu et al. (2020)), or modeling techniques other than SKM can be pursued (e.g.,661

Agarwal et al. (2019), Afrasiabi et al. (2019) and Recuero et al. (2017)).662
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