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Abstract

Evolutionary plasticity processes, such as ploughing and penetrating, widely exist
in many geotechnical engineering applications. The simulation of these pro-
cesses poses considerable challenges due to the occurrence of large deformations,
unsteady nature of the material free surface, and inherent coupling between me-
chanical response and material geometries. This paper explores the possibility of
simulating the first-order response of these processes by using sequential kinematic
method (SKM) in combination with simple deformation mechanism. The mech-
anism consists of rigid elements separated by velocity discontinuities. Computa-
tions based on the kinematic approach of limit analysis are sequentially performed
to evaluate the most likely deformation mode and update material geometries. An
r-adaptive kinematic formulation is used that captures versatile velocity fields by
optimizing the geometries of simple kinematic mechanism. The modeling method-

ology is studied in detail for two typical evolutionary plasticity problems: wedge
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ploughing Tresca material and cylinder penetrating undrained clay. The numerical
results obtained by using the SKM are compared against existing analytical and
numerical solutions, as well as experimental evidence. The paper demonstrates
that evolutionary plasticity problems can be simulated in a conceptually simple
way using SKM and highlights the potential pitfalls of this technique.

Keywords: plasticity, large deformation, limit analysis, kinematic method,

r-adaptivity

1. Introduction

Evolutionary plasticity processes are ubiquitous in geotechnical engineering
problems. As an archetypal example, the process of cutting in dry sand emphasizes
the essential characteristics of this type of problems (see Fig. 1). They include
continuous failure of materials, large deformation, and significant changes in the
material free surface. Similar phenomena have been observed from lateral buckling
of seabed pipelines (Tian and Cassidy, 2010; White and Dingle, 2011), soil cutting
and tillage (McKyes, 1985; Godwin and O’Dogherty, 2007), and locomotion of
legged robots and vehicle mobility (Li et al., 2013; Recuero et al., 2017; Agarwal
et al., 2019). From a theoretical viewpoint, modeling evolutionary plasticity
processes poses considerable challenges due to nonlinearities introduced by large
deformations, material plasticity, and contact interactions.

Simple analytical models have been proposed to tackle the problems by con-
sidering particular states within the entire deformation processes, mostly corre-
sponding to the incipient failure and steady states. The first type of these models
is developed within the context of tribology as a means to explain the role of

asperities in frictional interactions between surfaces undergoing relative motion
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Fig. 1. Deformation pattern and evolution of the material free surface in ploughing a dry sand
(Kashizadeh, 2017). Contours shows the intensity of the incremental shear strain interpreted by
the PIV analyses (White and Take, 2002; Stanier and White, 2013), with the cooler and warmer

colors indicating smaller and larger magnitudes, respectively.

(Collins, 1972; Challen and Oxley, 1979; De Vathaire et al., 1981; Petryk, 1983).
These models focus on the steady-state motion characterized by invariant resis-
tance and material surface geometry. The second group of models is developed as
tools to predict the loads acting on tillage implements or geotechnical structures
(Osman, 1964; Hettiaratchi and Reece, 1974; Perumpral et al., 1983; Godwin
and O’Dogherty, 2007). Compared with the former group, these models are
mainly interested in the forces required to initiate deformation. When interest is
in simulating the complete deformation processes, numerical methods are nor-
mally required. For this purpose, various numerical techniques have been used
such as large deformation finite element analysis (Bil et al., 2004; Hambleton and
Drescher, 2009; Zhang et al., 2015; Ducobu et al., 2016; Zhang et al., 2020; Zhu
et al., 2020), discrete element method (Hryciw et al., 1997; Tsuji et al., 2012),
and meshfree methods (Leon Bal et al., 2018; Agarwal et al., 2019; Afrasiabi
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et al., 2019). These approaches achieve considerable success in handling large
deformation and the evolving material free surface but tend to be computationally
onerous and overly demanding for routine engineering practice.

The sequential kinematic method (SKM) represents a compelling alternative
strategy for modeling evolutionary plasticity processes due to its computational
efficiency and stability. The technique regards a deformation process as a sequence
of failure states, and in each state, the kinematic theorem of limit analysis (Drucker
et al., 1952) is applied to compute an optimal velocity field that is subsequently
used to update the material geometries. The computational efficiency and stability
of SKM has been illustrated in different engineering problems such as structural
collapse (Yang, 1993; Corradi and Panzeri, 2004), metal forming (Hwan, 1997;
Raithatha and Duncan, 2009), structural geology (Cubas et al., 2008; Mary et al.,
2013), and the simulation of penetration, ploughing, and cutting processes in
soils (Hambleton, 2010; Hambleton and Drescher, 2012; Hambleton et al., 2014;
Kashizadeh et al., 2015; Kong, 2015; Kong et al., 2018; Zhu et al., 2020). Existing
SKM formulations evaluate deformations of the entire computational domain.
However, in many problems with engineering relevance, the induced deformation
tends to be confined to local regions adjacent to the moving object. In the example
depicted in Fig. 1, strains are locally concentrated into a single shear band, and the
majority of the bulk materials mainly remains stationary or undergoes rigid body
motion. Therefore, the SKM formulation that accounts for the deformation within
the entire material domain can be unnecessarily complex and computationally
inefficient, especially when the primary interest is a quick prediction of the first-
order response such as the forces and motion of the moving object.

This paper explores the possibilities of performing a first-order analysis for
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evolutionary plasticity problems by utilizing SKM in combination with simple
kinematic mechanism. In the proposed approach, only deformation adjacent to
the moving object is considered and represented by mechanism consisting of slid-
ing rigid elements separated by velocity discontinuities. To allow for versatile
velocity fields, the model incorporates an r-adaptive kinematic method operating
on the simple mechanism (Shi and Hambleton, 2020). Rather than discretiz-
ing the entire domain, the model relies on discretizing solely the material free
surface. The modeling methodology is examined for two evolutionary plasticity
problems: wedge ploughing Tresca material and cylinder penetrating undrained
clay. The simplicity of these problems is appealing from fundamental perspective,
and well-documented experimental observations as well as analytical and numer-
ical solutions enable a detailed assessment of the strength and weakness of the

proposed technique.

2. General modeling strategy

We employ the problem of wedge ploughing as an archetypal example for
conveying the bases of the proposed SKM technique. An object (here a rigid
wedge) is pushed into a Tresca solid (Fig. 2(a)), followed by a lateral movement
that continuously deforms the cohesive material (Fig. 2(b)). We generally are
interested in the forces acting on the moving object (i.e., N and 7T in Fig. 2)
and/or its trajectory. This benchmark problem contains mechanical features that
are common to other evolutionary plasticity processes (e.g., see Fig. 2(c) and
(d)). First, the material deformed and displaced by the wedge accumulate along
the front flank that leads to changes in the free surface (see Fig. 2(b)), alters the

deformation patterns of the plastic solid and eventually the resulting forces on the
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Fig. 2. Schematic illustrating (a) penetrating a plastic solid by a rigid wedge and (b) subsequent

ploughing process; (c) ploughing process with circular and (d) rectangular tools.

wedge. Second, the contact conditions between the wedge and its surrounding
material evolve as the ploughing proceeds. The full attachment along both flanks
during the initial indentation changes to a separation at the rear flank (see Fig. 2(b)).
Our general strategies to tackle these challenges by utilizing SKM are summarized
in the following. These general modeling strategies can be extended to other
problems, as illustrated by the later example of cylinder penetration in undrained
clay.

As shown in Fig. 3, we describe the velocity fields of the materials surrounding
the wedge by an assembly of rigid elements that only translate in space. The edges
of these elements represent velocity discontinuities. In general, the mechanisms
could be more complex (e.g., including deformable elements and discretizing
entire material domain, see Kong et al. (2018); Zhu et al. (2020)). Nevertheless,
the aforementioned deformation pattern reduces the number of unknowns required
to constrain kinematic mechanism. It is also consistent with the patterns of

concentrated deformation revealed in many evolutionary plasticity processes (e.g.,
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Fig. 3. Schematic illustrating deformation mechanism: (a) at the initiation of wedge ploughing,
there are solid-tool interfaces at both front and rear flanks of the wedge; (b) after detaching from

solid, there is no interface at the rear flank.

see Fig. 1 or those shown by White and Dingle (2011), Xu and Zhang (2019)).
Two types of control can be included in the SKM: prescribing wedge velocity
and applying force. Under velocity control (also the common mode of running
the SKM), the forces acting on the wedge are evaluated by applying the kinematic
theorem of limit analysis. The corresponding material velocity fields are employed
to update the material free surface. Under force control, the aforementioned
running mode can be iteratively executed for different trial displacements until the
targeted force application is reached. It is also possible to jointly control force
and velocity for different degrees of freedom of the object (i.e., mixed control).
Taking wedge ploughing as an example, the vertical force acting on the tool (i.e.,

N in Fig. 3) and its horizontal velocity (i.e., v, in Fig. 3) can be prescribed, while
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the vertical velocity (i.e., vy in Fig. 3) and horizontal force (i.e., T in Fig. 3) are
recovered as part of the solution.

To actually solve the problem, we have made the following specific assump-
tions. The plastic solid is assumed to be weightless, rigid-perfectly-plastic, and
obeys the Tresca yield criterion and an associative flow rule. Although this
constitutive relation is originally proposed for metals, it has been shown to also
reasonably approximate the mechanical behavior of cohesive soils (e.g. undrained
clay) (Randolph and Houlsby, 1984; Einav and Randolph, 2005; Kong et al., 2018;
Zhu et al., 2020). Deformation is considered to be under plane strain conditions.
Regarding the wedge ploughing example, this assumption applies to the cases
where the out-of-plane dimension of the wedge is much larger than the penetration
depth. On the other hand, plain-strain cylinder penetrating can be a reasonable
representation of the T-bar penetrometer test used in geotechnical site exploration,
where the longitudinal dimension of the penetrometer is often much greater than
its in-plane ones.

Detailed descriptions of the kinematic mechanisms utilized for the wedge
ploughing problem are given in Fig. 3. In particular, Fig. 3(a) and (b) depict the
mechanisms applying to the cases where the rear flank of the wedge (i.e., AC in
Fig. 3) is in contact with the Tresca solid and the flank has been detached from
its neighboring material, respectively. In light of experimental observation (e.g.,
Challen et al. (1984)), this work postulates that the material adjacent to the rear
flank of the wedge is rigid during ploughing (i.e., only material deformation at
the front flank is described by the rigid block mechanism). Accordingly, the only
difference between the kinematic mechanisms in Fig. 3(a) and (b) is that the edge

AC is treated as a velocity discontinuity in the former case. It should be noted
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that the aforementioned simplification is made to retain the simplest form of the
solution (e.g., less blocks in the mechanism) such that the most clarity on the
possibilities and limitations of SKM can be obtained. Indeed, there is no difficulty
in adopting a more complex mechanism that would allow for deformation within
the material at both sides of the tool. In fact, our preliminary studies show that
both simplified and complex mechanisms yield the same results and in the latter
case practically zero-valued velocities are computed for the material adjacent to
the rear flank of the wedge.

In the following sections, detailed formulation of the SKM will be presented.
Specifically, Section 3 discusses the r-adaptive kinematic method that is used to
construct optimal velocity fields in combination with rigid block mechanism. The
approach to update the material geometries based on computed velocity fields will

be presented in Section 4.

3. Formulation of r-adaptive kinematic method

In this section, we will discuss, for the kinematic mechanism depicted in
Figure 3, how an optimal velocity field and the corresponding forces acting on
the wedge can be obtained by utilizing the r-adaptive kinematic method. The
velocity field of Fig. 3 is constrained by two types of information: the geometries
of the rigid elements and their velocities. In r-adaptive kinematic methods, both
block velocities and their nodal positions are treated as variables subjected to
optimization (Johnson, 1995; Milani and Lourencgo, 2009; Hambleton and Sloan,
2013). For this purpose, the proposed model constructs a nested optimization
procedure that in the inner level determines the optimal velocities for a fixed

mesh by second-order cone programming (SOCP), and at its outer level computes
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an optimal set among variable nodal positions using non-linear optimization.
Respectively, these two optimization layers are detailed in sections 3.1 and 3.2.
This r-adaptive kinematic formulation closely resembles that described by Shi
and Hambleton (2020) for computing limit states of three-dimensional plasticity

problems with fixed material geometries.

3.1. Optimization of velocity field for fixed mesh

For a velocity field characterized by rigid elements, the total energy dissipation
rate equals to the sum of those occurring at element edges (i.e., the velocity
discontinuities). The latter, for a perfectly plastic material that obeys the Tresca

yield criterion, can be expressed as (cf. Chen (1975)):
d = cl|Av,| (1)

The variable [ denotes the length of discontinuity, ¢ is the material cohesion,
and Av; is the tangential velocity jump along element edge. The absolute value
is prescribed so that the dissipated power is always positive, regardless of the
shearing direction. In a plasticity system as considered by the current SKM
formulation, plastic deformation all takes place in velocity discontinuities where
strain rates are infinite (Chen, 1975). To account for strain rate effects, the present
formulation might be extended by following the approach proposed by Randolph
(2004) and Einav and Randolph (2005). The general idea is to introduce a thickness
for velocity discontinuities such that finite strain rates can be defined. Then, a
relationship between material cohesion (i.e., ¢ in Eq. (1)) and strain rate (e.g.,
see Dayal and Allen (1975), Ladd and Foott (1974), and Einav and Randolph
(2005)) can be included. After including these additional relationships, the energy

dissipation rate of Eq. (1) is a function of both the magnitude of velocity jump
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and the aforementioned thickness. This latter geometry might be determined by
seeking a minimization of the energy dissipation rate (i.e., following the principal
of minimum work for this term in isolation) (see Randolph (2004) and Einav and
Randolph (2005) for detailed discussions on this aspect).

To preserve a linear objective function in the SOCP, |Av;| in Eq. (1) is replaced

by a dummy variable yu:

d=clu

u =V (Av,)?

The constraint specified in Eq. (2) is in the form of second-order cone (SOC)

2)

constraint, one of the types permitted in SOCP in addition to linear equality and
inequality constraints (cf. Sturm (2002)). Eq. (2) recovers the exact energy
dissipation relation when equality is achieved. For the problems presented in this
paper, this condition is always satisfied. This, as will become readily apparent, is
because that the SOCP is formed such that the dummy variable y is minimized.
For materials that obey the Tresca yielding criterion and associative flow rule,
a kinematically admissible mechanism does not permit velocity jumps that are

normal to element edges (Chen, 1975):
Av, =0 (3)

In accordance with the kinematic theorem of plasticity (Drucker et al., 1952),
a bound on limit load can be obtained by equating the rate of energy dissipation D
computed from a kinematically admissible velocity field to the rate of work due to
external forces W constructed based on the same field. Such energy balance, for
the system defined in Fig. 3, can be specified as

W:Tvx+va:D:chiui+anljuj “4)
i=1 j=1

11
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where v, and v, denote the velocity of the wedge along x-axis and y-axis, respec-
tively, Ng is the number of velocity discontinuities within plastic materials, and
the subscript 7 is used to indicate quantities corresponding to the /™ discontinuity
edge. The second energy dissipation term in Eq. (4) accounts for those occurring
at the interfaces between the wedge and the plastic solid and thus implying that the
wedge and the cohesive mass are treated as a composite dissipative mechanical
system. The variable Ny is the number of the interface segments. The dissipation
at these interface segments is computed by replacing the cohesion ¢ in Eq. (2) with
the interface strength c,. Perfectly smooth and rough interfaces are characterized
by ¢, = 0 and ¢, = c, respectively. A simple contact search algorithm is used to
determine the range of the interface, where the distance from nodes on the free
surface to the wedge flanks is computed and those with a distance less than a
tolerance (1.5 x 1072 is employed for all simulations in this paper) are considered
to be in contact with the wedge. Conversely, the separation of the wedge from
neighboring plastic solid is naturally considered once the distance exceeds the
tolerance mentioned above. To enable such no-tension interface, a jump condition
that is slightly different than the one given in Eq. (3) is assigned to the interface
segments:

Av, >0 (&)

As depicted in Fig. 4(a), the velocity jump at the interface is measured from
the wedge to the neighboring plastic material such that a positive value of Av,
indicates the separation. The interface behavior described by using Eqgs. (1) and
(5) (see Fig. 4(b)) is similar to that obtained by imposing no-tension conditions
with respect to the tractions along the surface of a Tresca solid (e.g., the Type

A interface defined by Herfelt et al. (2021)). This approach is not perfect in
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Fig. 4. Schematic illustrating the modeling of non-tension interface between rigid tool and Tresca
solid in SKM: (a) interface is treated as velocity jump (measured from tool to Tresca solid); (b)

plastic flow directions and failure envelop at the interface.

that it can imply tensile stress states within plastic solid and that shear stress is
sustained (i.e., energy dissipation is non-zero) immediately after separation (i.e.,
at the instance when Av,, turns positive) (Herfelt et al., 2021; Houlsby and Puzrin,
1999). Nevertheless, it provides a practical means to account for the no-tension
interface via the types of constrains permitted by the SOCP. Lastly, it should
be noted that the aforementioned limitations mainly influence the instance of
separation, after which the interface does not exist any more and consequently is
not included in the computation.

By manipulating Eq. (4), we obtain the following optimization problem with

13
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respect to the velocities of the rigid elements:

Ny

Ng
i 1
min T = V—(Z clip; + Z caljpj — Nvy)
o=l j=1

or
1 NE Ny
N = E(Z clip; + Z caljpj —Tvy)
i=1 j=1 (6)
s.t. Avy,; =0
MHi = ‘\/(Av,,-)z i=1, ... NE

iz AJ(Av)? =1

Equation (6) represents a standard form of SOCP problems and depending on
whether the ploughing or the indentation process is modeled, the first or the
second objective function is employed. The SOCP is solved by the Mosek toolbox
integrated with the MATLAB (Mosek, 2015). N and vy, T and v, represent two
work-conjugate pairs. In order to obtain feasible and bounded solutions from the
SOCP, at least one variable in each pair should be specified (e.g., the normal force
N and the horizontal velocity v, are usually the boundary conditions in modeling
the ploughing). As only rate-insensitive materials are considered in this work,
when setting boundary conditions by prescribing v, or v, a velocity of unity is
assigned for convenience.

Equation (6) represents the inner layer of the nested optimization and the com-
puted limit loads correspond to the rigid block mechanism with fixed geometries.
The outer layer of the nested optimization, as detailed in the next section, seeks

optimal nodal positions of the elements (i.e., nodes n; to ns in Fig. 3(a)) that
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minimize the limit loads.

3.2. Optimization of nodal positions of rigid elements (r adaptivity)

To obtain a critical layout of the velocity discontinuities, we construct the

following non-linear optimization problem:
min  F(x;;,S) i=1,2 and j=1,2,3
sit. Ap(x,8) 20 k=1,...,4

l
l] S.x[j Sx

. (7

X i

S>0

The objective function in Eq. (7) is the limit tangential or normal force computed
for a given set of nodal positions x;; (the first subscript denotes the i™ component
of the position vector, while the second subscript indicates the j node), evaluated
in precisely the same way as in the previous section. The coordinates of the nodes
n4 in Fig. 3 cannot be regarded as independent unknowns in the optimization since
this node has to lie on the material free surface. We implicitly define the location
of this node by an auxiliary variable S that measures the distance between the
node n4 and the intersection point of the wedge and the free surface (i.e., the point
B in Fig. 3). To prevent the inter-penetration of rigid elements and consequently
ensure computational stability, the first set of constraints in Eq. (7) requires that
element areas Ay are always positive. The variables xf ; and x;‘j appearing in
the second set of inequality constraints define allowable limits for certain nodal
position components. These constraints are set to ensure that the adjusted nodes
do not go beyond the material free surface.

As the objective function and constraints of Eq. (7) are both non-linear func-

tions of the unknown variables, such problem falls within the general domain
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of non-linear constrained optimization. In preliminary studies, two of the most
widely employed algorithms, interior point method and sequential quadratic pro-
gramming, are used to solve this optimization through the FMINCON solver of
MATLAB. These initial investigations show that the interior point method can
find a solution with fewer iterations and thus are selected for all computations
presented in this paper. Three key parameters that can affect the performance of
the interior point method are (1) step size factor As in finite difference method that
determines the perturbation amount of unknown variables for numerically com-
puting the gradient of the objective function; (2) step tolerance 7 that specifies
the lower bound on the change of the norm of the vector containing all unknown
variables; (3) the tolerance for the optimality 7, that measures the proximity of the
current solution to an optimal one. The first parameter affects the accuracy of the
calculated gradient of the objective function, while the latter two mainly influence
the accuracy of the solution as the optimization process will be terminated once
either tolerance is triggered. For simulations performed in this work, we observe
that the solutions are not particularly sensitive to the values of As and 7, and their
default values (i.e., As = 1 x 107® and T, = 1 x 107°) are adopted. The parameter
T, on the other hand, can noticeably influence the computed response, as it will
be discussed more deeply in the following. For all examples considered in this
work, T, = 1 x 107* to 1 x 107 are sufficient. Lastly, it should be noted that the
algorithm used to solve the non-linear optimization is deemed as a local optimizer
and therefore behave most effectively when the initial nodal positions of the rigid
elements (e.g., Fig. 5(a)) are relatively close to optimal ones (e.g., Fig. 5(b)) or the

objective function is convex.
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Fig. 5. Typical evolution of kinematic mechanism during r-adaptive kinematic method.

4. Update of material free surface

As shown in Fig. 6(a), deformation of the entire bulk material is tracked
through a discretized free surface. By doing so, the need to repeatedly remesh
the computational domain, as a means to handle severely distorted mesh, can be
avoided. The surface initially has uniform nodal spacing denoted by Ax. The
optimal velocity fields obtained in accordance with the technique discussed in the
previous section are used to update the displacements of the nodes along the free
surface by explicit time integration. Consider a pseudo time increment A7}, and
let the superscripts n — 1 and n denote quantities at the pseudo time 7,_; and
T, (T, = T,-1 + AT,), respectively. With one-step time-marching scheme, nodal

displacements at the end of the increment AT}, is found to be:
diy =d}7 +vITIAT, i=1,2 and j=1,2,... (8)

where d;; and v;; denote the i™" component of the displacement and velocity
vectors at the j™ node. For nodes belonging to multiple blocks (e.g., the point B
in Fig. 6), an averaged velocities of those blocks are assumed to be nodal velocity

(see Fig. 6(b)). Similarly, the position of the rigid wedge is updated according to
d o= d e VviIAT, =12 9)

where d;,, and v;, represent the displacement and velocity vectors of the rigid

wedge. Once the geometry of the free surface and the position of the wedge have
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been updated, the contact between the wedge and its neighboring materials is
checked based on the searching algorithm discussed in Section 3 and the portions
of the material free surface that are in contact with the wedge are treated as velocity
discontinuities within the kinematic mechanism.

As the size of the time increment is finite, some nodes on the free surface may
penetrate the object after the update described above, thus requiring correcting the
free surface. Following Kong (2015), those nodes that invade into the interior of
the object are mapped back to the boundary of the object along a direction normal
to the boundary, as illustrated in Fig. 7(a). Another type of free surface that requires
appropriate correction is the sharp inverse corner depicted in Fig. 7(b). Without
treatment, the computed boundary between the deforming and stationary materials
can be forced to pass the tip of the corner, which represents a local minimum for

the objective function (recall that the nature of the selected algorithm is a local

(a)

l‘\
:‘\ \ vl

% 7 L.
\W,) 'Vg% .~ original free surface
7
g

- _ 1
(b) =(v+v, vt
Ad=(v,+v, {i V4)/4A€pdated free surface

Fig. 6. Schematic illustrating the update of the material free surface according to the computed
velocity field: (a) velocity field obtained for geometry configuration at step n; (b) updated free

surface and geometry configuration at step n + 1.
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Fig. 7. Schematic illustrating the correction of the material free surface for: (a) penetration into

the tool; (b) sharp inverse corner.

optimizer). This behavior prevents searching for better deformation mechanisms,
and consequently lead to peculiar jumps on the ploughing resistance and unrealistic
deformation patterns, as will be discussed in the following. To resolve this issue,
we loop over all surface nodes and delete those whose x coordinate is less than
that of its two neighboring nodes, as suggested by Kong (2015). Figure 7(b), in
which the number adjacent to nodes indicate the order of being deleted, shows that
by repeatedly checking surface nodes and applying the rule described above, the
shape corner can be eliminated. Lastly, it should be noted that the need to correct
the surface profile is common to methods that rely on discretization of the entire
domain (e.g., finite element limit analysis (Kong, 2015)) as well as the proposed

method.

5. Simulation of smooth wedge indentation and ploughing

The performance of the proposed SKM model is first examined in the case of
indenting and ploughing a Tresca solid by a smooth rigid wedge (i.e., the interface
strength ¢, = 0). In this example, the wedge angle « (see Fig. 3 for its definition)

equals to 10°, while the material cohesion ¢ = 13 MPa. In the simulations, the
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wedge is first pushed into the plastic solid, followed by a lateral ploughing with
the normal load maintained at the same level as the one reached at the end of the
indentation. Both indentation and ploughing processes are under displacement
control in the simulations (i.e., the velocity v, or v, in Fig. 3(a) is prescribed).
Fig. 8 compares the computed indentation resistance with that given by Hill
et al. (1947)’s slip-line solution. A good agreement can be observed. Fig. 9
presents the optimal velocity fields (i.e., deformation mechanisms) when the
intruder penetrates to different depths. These fields exhibit geometrically self-
similarity, which is explicitly assumed in Hill et al. (1947)’s solution but comes

out automatically from the SKM.
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Fig. 10 shows the computed trajectory of the wedge as well as the normalized
tangential force during the ploughing stage. The deformation mechanisms for
selected instances are given in Fig. 11. It is seen that the initial lateral ploughing
leads to a sinking of the wedge. This deformation pattern, referred to as “‘junction
growth” within tribology (Tabor, 1959; Challen and Oxley, 1979), occurs because
the contact pressure on the rear flank is relieved and the wedge penetrates deeper
into the plastic solid to achieve a larger contact area at the front flank to sustain
the applied normal load. As the lateral ploughing continues, the wedge begins to
rise and simultaneously push a bow wave of plastically deformed material ahead
as depicted in Fig. 11(b) and (d). Such rising phase continues until reaching

a steady state characterized by approximately constant ploughing resistance and
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Fig. 10. Comparison between smooth wedge ploughing response computed by the SKM, finite
element, semi-analytical method (Hambleton, 2010), and analytical steady-state solution (Challen
and Oxley, 1979). Note that the SKM simulation employs nodal spacing Ax = 1 and time increment
AT =0.25.

wedge vertical location. It is seen that the computed rising trajectory is not smooth
but with small-amplitude oscillations. The latter is attributed to the alternation
between two deformation mechanisms respectively depicted in Fig. 11(c) and (d).
The former mode is characterized by the wedge sliding along its front flank without
deforming the solid, which gradually reduces the contact area between the wedge
and the solid mass. When the contact area is not enough to sustain the applied
normal load, the second mode characterized by a bear-capacity type failure occurs.
The contact area grows consequently.

To examine the accuracy of the SKM simulation, two alternative solutions
are included in Fig. 10. Hambleton (2010) proposes a semi-analytical method
by treating the ploughing as a sequence of incipient plastic flow problems that

can be approximated by Hill et al. (1947)’s indentation mechanism. An FEM
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wedge ploughing.

simulation is also performed by Hambleton (2010) to verify the semi-analytical
model. This numerical analysis is conducted by using ABAQUS/Explicit. The
arbitrary Lagrange-Eulerian (ALE) remeshing algorithm is employed in the region
near the wedge to maintain a high-quality mesh after relatively large deformation
has occurred. The rigid-plastic behavior of the solid is emulated by using the
Tresca model with a large value of Young’s modulus E (e.g., E/c =~ 7000). More
detailed discussions on the features of the FEM can be found in Hambleton and
Drescher (2012, 2009). A good agreement can be seen from these comparisons.
The steady-state ploughing forces computed by the SKM and semi-analytical
approach are very close to the one obtained by slip-line technique (Challen and
Oxley, 1979), while the FEM tends to predict a bit higher resistance. Note that

the FEM simulation shows similarly oscillatory wedge trajectory and ploughing
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resistance, as computed by the SKM.

6. Convergence analysis of SKM simulation

We use the ploughing simulation discussed in the previous section as an op-
portunity to evaluate the convergence features of the SKM solution with respect to
the discretization size of the free surface represented by the nodal space, Ax, and
the step size of the time marching represented by the time increment, AT .

Fig. 12(a) and (b) shows the ploughing simulations performed under three
different time steps. It can be seen that the computed wedge trajectory and
tangential force both show a converging tendency as AT decreases. The decrease
in the time step also leads to smaller fluctuations in the computed response. The
same convergence feature can be observed for reducing the nodal spacing Ax, as
illustrated in Fig. 12(c) and (d). It is noticed that the simulations based on larger
nodal spaces generate trajectories that elevate to higher positions. Such response
might result from the fact that a linear function is used to interpolate the free
surface between adjacent nodes (see the inset of Fig. 12(c)). In this illustration, the
solid and dashed lines represent the free surface before and after the update, and
the gray area denotes the factitious material that is added to preserve the continuity
of the free surface. Larger nodal space implies more artificial material is piled
up ahead of the wedge and consequently the deformation mode associated with
wedge upward motion (e.g., that shown in Fig. 11(c)) can be sustained for longer
periods. As a consequence, the wedge heads to larger elevations.

The aforementioned analyses indicate that the volume conservation for incom-
pressible Tresca solid can be violated in SKM simulations, due to the resources

like the addition of artificial material mentioned above and the correction of the
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Fig. 12. Convergence analyses of SKM solution with respect to time increment size (subfigures

(a) and (b)) and nodal space along the discretized free surface (subfigures (c) and (d)).

material free surface discussed in section 4. To assess how this violation is affected
by the employed nodal spacing and time increment, the change of material volume
in the convergence analysis is evaluated (see Table 1). These reported volume
changes are computed by numerically integrating the material free surface at the

end of the simulations. The data suggest that the change of material volume tends
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Table 1. Change of material volume at the end of ploughing simulations that employ different
nodal spacing and time increment (see Fig. 12). Note that the volume change is normalized by
the initial volume before ploughing, V. This initial volume corresponds to a rectangular region
with a depth twice the wedge indentation depth prior to ploghing d and a length twice the lateral

ploughing distance u, i.e., Vo = 4du.

Nodal spacing, Ax  Time increment, AT  Change of material volume, AV /V

1.0 1.0 -7.6 %
1.0 0.5 -3.6 %
1.0 0.25 -2.0 %
1.5 0.25 -1.1 %
2.0 0.25 0.01 %

to decrease as smaller time increments are employed (i.e., compare lines 1 to 3 of
Table 1). On the other hand, when larger nodal spacing is used, more artificial
material can be added to computation domain (i.e., compare lines 3 to 5 of Table 1),

as discussed above.

7. Simulation of rough wedge indentation and ploughing

We have shown that the r-adaptive SKM model can reasonably represent the
deformation processes of a Tresca solid ploughed by a smooth wedge. In this
section, we further evaluate this technique in the case of ploughing cohesive solid
by wedge where finite adhesion presents at contact surfaces. The experimental
observations for ploughing aluminum alloy by a hard wedge (Challen et al., 1984)
are used to assess the model. These tests are chosen become they provide a rich

dataset (e.g., the evolution of ploughing resistance and tool trajectory) that helps
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to evaluate the SKM model relatively comprehensively. Albeit being different
materials, the mechanical behavior of metal and cohesive soil (e.g., undrained
clay) is similar in some key aspects such as incompressibility conditions. Due to
this reason, constitutive models and analytical solutions developed originally for
metal have been successfully employed to analyze geotechnical problems (Mroz,
1967; Prévost, 1977; Lemaitre and Chaboche, 1990; Anastasopoulos et al., 2011;
Karapiperis and Gerolymos, 2014; Prandtl, 1920; Terzaghi, 1943). Following this
line of thought, simulating the tests of ploughing metal is expected to provide
a meaningful evaluation of the SKM model regarding its capacity to model the
counterpart geotechnics problems (e.g., ploughing cohesive soil (Hettiaratchi and
Reece, 1974; Palmer, 1999; Atkins, 2009) and the lateral sliding of pipeline in
undrained clay (Tian and Cassidy, 2010; White and Dingle, 2011)).

Table 2 summarizes the geometric and material parameters used in the simula-
tions. The material properties are reported by Challen et al. (1984) except that for
the test 12, which is not available from the literature. This information is estimated
in this study by fitting the steady-state ploughing force. In the simulations, an in-
dentation stage is modeled prior to the ploughing, which ceases when the normal
forces applied in the experiments (see Table 2) are reached. Due to the lack of
experimental data, a comparison between the computed and measured evolution of
the penetration resistance with the indentation depth is not available. Nevertheless,
the comparison between the calculated and measured wedge tip elevation at the
beginning of the ploughing (see Figs. 13, 14 and 15) suggests that the indentation
stage is reasonably represented by the model.

Comparisons of full force-displacement histories for the three ploughing tests

are shown in Figs. 13, 14 and 15. In general, a good agreement can be seen be-
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Table 2. Parameters in the SKM simulations of the ploughing tests performed by Challen et al.
(1984).

Test a(°) N (N/mm) ¢ (MPa) c, (MPa)

10 259 700 243 26.73
12 35.05 700 200 30
19 10.2 700 193 82.99

tween the computed and observed response. The calculated steady-state ploughing
forces and velocity fields (see Fig. 16) also match reasonably with the slip-line so-
lution proposed by Challen and Oxley (1979). However, quantitative mismatches
between model simulations and test data can also be observed. For example, the
simulations show that there is a sudden drop of tangential force once the wedge
starts to rise (see Fig. 14), resulting from the separation at the rear flank of the
wedge and the consequent loss of resistance related to the interface strength. This
feature is not observed from test results, where the separation may be a progres-
sive process and thus leading to a smooth change of the ploughing resistance.
Remarkable hardening and softening stages are observed from the experimental
data of test 19, which are not captured by the model possibly due to the underlying
assumption that the solid is perfectly plastic. Furthermore, it is observed that the
computed steady-state resistance by the SKM coincides with the analytical solu-
tion given by Challen and Oxley (1979) for the test 10 (see Fig. 13), whereas those
computed for the tests 19 and 12 are reasonably close to yet not exactly the same
as the analytical solution (see Figs. 14 and 15). This difference might result from
the variation in SKM performance between different cases. In simulating Challen

et al. (1984)’s tests, efforts are made to ensure a consistency regarding modeling

28



466

467

468

469

470

471

472

473

474

475

476

477

100 0.8

e (a) - (b)
g Z 07 1
y S
= 0 PP iy 0 06 f .
e = [
z <05 [ ]
o) s steady state solution
£-100 504 ]
E‘ 2 03 ]
o N
=200 =02 1
3 E
.8 g
sk | =" | =
_300 | | | 0 1
0 _ 2000 4000 6000 8000 0 2000 4000 6000 8000
laterial displacement (1x10 mm) laterial displacement (1x10> mm)

Fig. 13. Comparison between SKM simulated ploughing response, experimental data (test 10 in
Challen et al. (1984)) and analytical steady-state solution (Challen and Oxley, 1979). Note that the

SKM simulation employs nodal spacing Ax = 60 and time increment AT = 10.

settings, e.g., nodal spacing and time increment (see the caption of Figs. 13 to
15). Nevertheless, the accuracy of the SKM simulations might still vary between
different cases, possibly due to that material properties vary across these tests (see
Table 2).

The computation times (total runtime) and the number of Mosek calls for the
simulations described above are summarized in Table 3. It is seen that the cost
of using r-adaptive SKM for simulating large deformation processes is relatively
small. The runtime can potentially be brought down further via the implementation
of Mosek through platforms that require smaller overhead than Matlab. The fact
that the simulation of the test 12 consumes the largest cost is because a smaller
value of the parameter T (see section 3.2 for its definition) is employed to ensure
the solution accuracy and consequently more iterations are conducted in the non-

linear optimization of Eq. (7).
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Fig. 16. Comparison between SKM computed steady-state velocity fields and that postulated in

slip-line solution (reproduced from Challen and Oxley (1979)).

8. Simulation of cylinder penetration in undrained clay

To illustrate the application of the proposed SKM to other evolutionary plastic-
ity problems in geotechnical engineering, plain-strain cylinder penetrating undrained
clay is simulated in the following. As previously mentioned, this deformation pro-

cess is similar to that taking place during the T-bar penetrometer test in geotechnical

Table 3. Computation times (unit:second) and Mosek calls for SKM simulations of lateral plough-
ing. Note that the reported times are total runtime on a PC equipped with an Intel 19-9900 processor
(3.6 GHz; 8 cores) and 32 GB RAM. Test numbers in the table refer to those performed by Challen
et al. (1984).

Cases  Total runtime Number of Mosek calls

Test 10 251 19624
Test 12 900 97071
Test 19 241 23545
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site characterization (Einav and Randolph, 2005).

Figure 17 shows the kinematic mechanism used in the SKM simulations.
Considering the symmetry of the problem, only half of the domain is modeled.
The T-bar penetrometer is approximated by a rigid polygon (see Fig. 17(a)) that
allows treating the soil-tool interface as planar velocity discontinuities. The SKM
progressively adds new blocks to kinematic mechanism to facilitate the growth in
the contact region between soils and T-bar during its penetration. Specifically, a
new pair of rigid blocks are included (see Fig. 17(b)) when a new polygon edge
becomes in contact with the soil free surface (e.g., BC in Fig. 17(b)). To ease
the comparison between the SKM simulations and existing solutions, we consider
that the shear strength of undrained clay S, distributes uniformly along depths.
The Tresca solid is used to approximate undrained clay, i.e., cohesion ¢ in Eq. (1)
equals to S,,. The soil-tool interface is considered to be rough and feature strength
cq = S,/2. The simulation is performed by prescribing the velocity of the T-bar
(i.e., vy in Fig. 17). Other model settings are the same as those employed in the
aforementioned wedge ploughing example.

Figure 18 show the computed variation of penetration resistance with depths
by the SKM and finite element method (FEM) (Zhu et al., 2020). In the FEM
simulation, Coupled Eulerian-Lagrangian (CEL) technique is used to handle the
large deformation of soil, while the Tresca model is used to describe the behavior
of undrained clay. More detailed discussions on the features of the FEM modeling
can be found from Kong (2015), Kong et al. (2018), and Zhu et al. (2020). The
results given by the two numerical approaches agree reasonably, and show a
consistent trend that the penetration resistance grows at smaller rates as the depth

increases. The analytical solutions proposed by Hambleton and Drescher (2012)
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Fig. 17. Kinematic mechanism in the simulation of rigid cylinder penetration: (a) early contact;

(b) new blocks are added to facilitate the growth in soil-tool contact area.

and Einav and Randolph (2005), applicable respectively to shallow and deep T-bar
penetration, are included in Fig. 18. In the former work, a closed-form solution for
cylinder indentation is constructed by examining asymptotic state of evolutionary
processes characterized by the Prandtl-type punch mechanism (Hambleton and
Drescher, 2012). The latter study presents a upper bound solution for a cylindrical
plane-strain object translating through a rigid plastic solid (Einav and Randolph,
2005). Figure 18 shows that the force-penetration relationship computed by the
SKM matches reasonably with the solution of Hambleton and Drescher (2012) at
shallow depths, while approaches to the solution of Einav and Randolph (2005) at
deep locations.

The change in the free surface and deformation mechanism of soil as the
penetration proceeds is presented in Fig. 19. These patterns of evolving material

geometries are consistent with those revealed from FEM simulations (Kong et al.,
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SKM, Coupled Eulerian-Lagrangian (CEL) finite element method, and analytical models. Note
that the SKM simulation employs nodal spacing Ax = 0.01 and time increment AT = 0.02. The
analytical solution for shallow penetration is described in Hambleton and Drescher (2012), while

that for deep penetration is given by Einav and Randolph (2005).

2017; Zhu et al., 2020), except that the SKM computes global flow deformation
mechanism for deep penetration (albeit that the magnitude of soil velocities at
shallow depths is noticeably reduced, see Fig. 19(c)), rather than local full-flow
mechanism as seen in the upper bound solution of Einav and Randolph (2005).

The reasons behind such discrepancy will be discussed in the following section.

9. Possibilities and limitations of SKM

We have shown that how two archetypal problems of evolutionary plasticity

processes (wedge ploughing and cylinder penetration) can be modeled by the SKM
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in combination with simple kinematic mechanism. By comparing against analyti-

cal and numerical solutions as well as experimental evidence in the literature, we

35



531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

show that the SKM can reasonably evaluate the first-order response of the problem
(i.e., the force-displacement history and tool trajectories). The key behind this
modeling success is to captures the evolution of material geometries (e.g., free
surface) due to the large deformation.

The present study has been focused on the evolutionary plasticity processes
involving Tresca solid (cohesive soil). This cohesive material is selected to simplify
the problems such that the key characteristics of the fundamental concept of
simulating large deformation processes via SKM can be explored. Specifically,
given the incompressibility conditions of cohesive material, the dilation at velocity
discontinuities and the consequent potential material separation or overlay taking
place during geometry update can be avoided. On the other hand, it should
be noted that the SKM strategy can be applied to the problems dealing with
frictional materials, as demonstrated by modeling thrusting sequences in geology
(Cubas et al., 2008; Mary et al., 2013) and ploughing sand (Hambleton et al.,
2014; Kashizadeh et al., 2015). In these studies, the dilatancy of cohesionless
materials at velocity discontinuities is often neglected when the material geometry
is incrementally updated, as a means to avoid the aforementioned complications.
Therefore, when extending the proposed SKM method to frictional materials,
future investigations are needed on the methods to update the material geometries
in accordance with deformation mechanisms featuring finite dilatancy at velocity
jumps.

The proposed SKM formulation characterizes material deformation patterns
by the simple mechanism of rigid elements. This modeling decision reduces
the number of unknowns required to constrain an optimal kinematic field and

consequently leads to relatively efficient simulations. Nevertheless, it should be
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Fig. 20. Schematic illustrating the conditions of overtopping, where material deformation charac-

teristics such as local slope failure cannot be represented by rigid element mechanism.

noted that there are cases where the aforementioned simple mechanism is not
sufficient to characterize material deformation patterns. For instance, when a
wedge with finite size keep ploughing Tresca solid, the cohesive material at some
times might start to overtop the moving object, as shown in Fig. 20. Under these
conditions, the material deformation can feature characteristics that cannot be
represented by simple kinematic mechanism, like local slope failure.

To accommodate these deformation patterns, the current SKM model needs to
employ more sophisticated kinematic mechanisms such as deformable elements
and the deformation of the material not immediately adjacent to the object. For
this purpose, the energy dissipation due to the deformation of elements needs to
be included in the r-adaptive kinematic method, while broader material domain
requires to be discretized by mesh (see Kong (2015) for a detailed discussion on for-
mulating SKM based on finite element limit analysis). On the other hand, it should
be noted that, while more sophisticated mechanisms can more accurately capture
the material deformation, they inevitably increase computation cost. Therefore,
the selection of kinematic mechanism in the SKM depends on “cost/benefit” con-
siderations done for specific engineering projects.

The response computed by the proposed SKM model strongly relies on the

algorithms used to search for an optimal velocity field (i.e., the algorithms used to
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solve the non-linear optimization of Eq. (7)). Local optimization algorithm is cur-
rently employed due to that it is generally more efficient than its global optimization
counterparts. Nevertheless, this type of algorithm might return local optimum and
the kinematic mechanism that is not the most critical. As mentioned above, global
deformation pattern is computed by the SKM when the cylinder has been pushed
to relatively deep depths (see Fig. 21(a)). In fact, local deformation pattern can
correspond to smaller resistance (see the N/RS, values depicted in Fig. 21(a) and
(b)) and thus representing a more critical mechanism. This alternative mechanism
can be computed from the current formulation when the optimization solver starts
with different initial guesses of nodal positions. Continuous investigations are
required to explore the possibility of resolving this dependence on initial nodal
positions without sacrificing computational efficiency, like via global surrogate
optimization.

In addition to initial nodal positions, the performance of the optimization solver
can be sensitive to its controlling parameters, so does the response computed
by the SKM model. We use the test 12 performed by Challen et al. (1984)
to illustrate this point. It is seen from Fig. 22 that employing a higher value
for the parameter 7y (i.e., stop the optimization prematurely) only marginally
overestimates the ploughing force over the first half of the deformation process,
but leading to remarkable changes in the computed wedge trajectories and material
free surface. The cumulative changes in the geometric configurations eventually
reach a breakpoint (i.e., the square symbol in Fig. 22) where the deformation
mode fundamentally changes (see the inset of Fig. 22), so does the corresponding
ploughing resistance. Future studies can explore the possibility of regularizing

the aforementioned dependence of solution on optimization solver parameters
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Fig. 21. Deformation mechanism for deep penetration of cylinder.

s0 Via including deformable elements in kinematic mechanism, as the rigid block
sor assumption might pose overly strong restrictions on available deformation modes.
602 The last limitation of the SKM model observed in the present study is that the
s03 solution can be sensitive to the presence of irregular shape along the material free
s« surface and thus requiring careful correction of the surface. To illustrate this point,
eos Fig. 23 shows the effects of permitting the sharp inverse corner at the free surface.
s0s Similar to relaxing the optimization tolerance described above, the irregular shape
v Of the free surface can promote remarkable changes on the computed deformation
ss mode and peculiar jumps in the ploughing forces. This is because the boundary
s0 between the moving and stationary materials is trapped at the tip of the inverse

s1o angle (see the computed velocity fields in Fig. 23). The issue mentioned above can
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be addressed by the surface correction scheme discussed in Section 4. However,
it should be noted that these correction strategies can violate the conservation of
mass, as materials are deleted (for correcting penetration) or added (for correcting
the inverse corner). Such induced error can be minimized as relatively small time

increments are adopted (see Table 1).

10. Conclusions

This work investigates the potentials of simulating evolutionary plasticity pro-
cesses via sequential kinematic method (SKM) constructed on simple deformation
mechanism. These processes are modeled by sequentially updating the material
geometries in accordance with velocity fields represented by mechanism consist-
ing of rigid translational elements separated by velocity discontinuities. Optimal
velocity fields are sought by a r-adaptive kinematic method formulation, where

an iterative, nested optimization procedure is constructed that consists of (1) de-
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termination of velocities for a fixed mesh of rigid blocks using second-order cone
programming and (2) adaptation of nodal positions using non-linear optimization
to find a critical layout of velocity discontinuities. The advantages and limita-
tions of the modeling strategy are examined through simulating wedge ploughing
Tresca solid and cylinder penetrating undrained clay, where analytical, numerical
solutions and experimental observations are available in the literature. The main

conclusions can be drawn from this work include:

1. The comparison of the results simulated by using the proposed SKM model
against existing solutions and experimental evidence shows that SKM com-
bined with conceptually simple deformation mechanism can reasonably rep-
resent the first-order response of wedge ploughing and cylinder penetration,
including forces and motions of the object.

2. The proposed SKM technique exhibits promising features for delivering

efficient analyses of evolutionary plasticity problems.
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3. The response computed by the SKM depends on spatial and temporal dis-
cretization sizes. A converging trend of simulations is seen as the nodal
space of the discretized free surface or time increment size become smaller.

4. Both employing a sufficiently small termination tolerance for the non-linear
optimization of the nodal positions and appropriately correcting the material
free surface can be crucial for obtaining accurate simulations. Without
these restrictions, a significant deviation on the objects’ trajectories and
the material free surface can occur without noticeably altering the computed
forces. However, the accumulation of errors in the geometries can eventually
lead to large mismatches on the prediction of resistance.

5. The employed local optimization solver can return kinematic mechanism that

is not the most critical, depending on the initial guesses of nodal positions.

In future studies, the proposed SKM model can be extended to the problems
dealing with frictional materials. In this aspect, more research efforts might be
required focusing on the methods for updating material geometries that can accom-
modate finite dilation at velocity discontinuities. The dependence of kinematic
mechanism optimization on initial nodal positions might be resolved by employing
efficient global optimization solvers (e.g., surrogate model). The proposed SKM
model applies most appropriately if the engineering interest is to quickly evaluate
large-deformation plasticity problems to the first order. When the primary inter-
ests rest on more accurate representations of soil deformation or detailed response
such as the stress and strain fields, the current formulation can be augmented by
more sophisticated kinematic mechanisms (e.g., Kong (2015), Kong et al. (2018),
Zhu et al. (2020)), or modeling techniques other than SKM can be pursued (e.g.,
Agarwal et al. (2019), Afrasiabi et al. (2019) and Recuero et al. (2017)).
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