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Abstract— This letter focuses on the problem of traffic state
estimation for highway networks with junctions in the form of on-
and off-ramps while maintaining differential privacy of traffic data.
Two types of sensors are considered, fixed sensors such as inductive
loop detectors and connected vehicles which provide traffic density
and speed data. The celebrated nonlinear second-order Aw-Rascle-
Zhang (ARZ) model is utilized to model the traffic dynamics. The
model is formulated as a nonlinear state-space difference equation.
Sensitivity relations are derived for the given data which are then
used to formulate a differentially private mechanism which adds a
Gaussian noise to the data to make it differentially private. A Moving
Horizon Estimation (MHE) approach is implemented for traffic state
estimation using a linearized ARZ model. MHE is compared with
Kalman Filter variants namely Extended Kalman Filter, Ensemble
Kalman Filter and Unscented Kalman Filter. Several research and
engineering questions are formulated and analysis is performed to
find corresponding answers.

I. INTRODUCTION AND LETTER CONTRIBUTIONS

THE rise of connected vehicles (CVs) technology has provided
transportation professionals with additional sources of data to

monitor the state of traffic in real time. While more data produces
better results when used for state estimation and control, it imposes
greater privacy threats on the provider of such data. The location
data provided by CVs can be used by criminals for tracking the ve-
hicles, or identifying and profiling the travelers [1], [2]. Even with
sensors that provide aggregate density and speed data, the privacy
of individual vehicles is not ensured as it is possible to reconstruct
individual trajectories using this data [3], [4]. Rising concern
about data privacy in general has led to development of privacy
preservation algorithms which can be categorized into anonymity
based, obfuscation based and policy based algorithms [2]. Among
these, obfuscation based algorithms such as those which add noise
to the data are preferred for tackling location based privacy issues.
Such algorithms can be used to ensure differential privacy (DP) [5]
of data. DP is a strong notion of privacy that guarantees the
safety of individuals’ records when publicly sharing aggregate
information from databases. In context of roadway traffic, DP
preserves the location privacy of individual vehicles, both CV and
non-CV, when publicly sharing traffic state estimates [6], [7].

Introducing DP to traffic data however deteriorates the quality of
data which could result in a trade off between the level of privacy
and estimation accuracy. Since different state estimation algo-
rithms work with different assumptions and approximations, there
is reason to believe that some algorithms work better than others
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when it comes to differentially private state estimation. Therefore
it is important to identify such techniques that can produce high
quality state estimates while ensuring necessary levels of privacy.

Past works on differentially private traffic state estimation
(TSE) use variants of the Kalman Filter (KF) namely Extended
KF (EKF) [6] and Ensemble KF (EnKF) [7] to perform state
estimation. KFs are known to suffer from certain issues including
the absence of state constraints and required assumptions on
the distribution of the noise. A technique which traditionally
overcomes these drawbacks is Moving Horizon Estimation
(MHE) [8] which is unexplored in the context of differentially
private TSE. Therefore, in this work we implement MHE for
differentilly private TSE and compare its performance with EKF,
EnKF and Unscented KF (UKF) [9]. Note that unlike [10] which
proposes a privacy preserving MHE to ensure privacy of the
estimates produced using non-private data, here we consider that
the received data itself is private and use a more traditional MHE
formulation. This allows for privacy from the source of data itself.
Also, unlike the past studies which use a first-order traffic model,
here we use the second-order Aw-Rascle-Zhang [11], [12] model.
Second-order models can reproduce certain real-world traffic
phenomena like capacity drop which makes them more suitable
for estimation and control purposes. Additionally, we also model
junctions which adds more complexity to the model.

Besides, the past work assumes that the speed and density data
is obtained from fixed locations on the highway while here we
use CVs to obtain data from different parts of the highway.

The overall flow of processes in this study is as follows:
sensors collect aggregate density and speed data and add privacy
preserving noise it. This data is then sent to the network operator
who uses it along with a traffic model to perform TSE to obtain
density and speed estimates for the road stretch.

Given that the main research gap on this topic is the absence of
a comparative study between different state-estimation techniques
for TSE using a second-order model in the presence of DP, we
highlight the main contributions of this letter:

• We present a nonlinear state-space formulation for the
second-order ARZ model with junctions. The state-space
description is appended to include the measurement model
which is also nonlinear.

• We derive sensitivity relations for the measured density and
speed data. These relations are important for developing
differentially private mechanisms that add a Gaussian noise
of certain variance to the data to ensure DP.

• The performance of various state estimation techniques is
investigated in terms of accuracy using the SUMO traffic
simulation software in the presence of privacy preserving
additive noise. As a departure from estimation based on KFs,
we also investigate MHE for TSE.

The letter is organized as follows. Section II presents the
state-space formulation for the ARZ model and the measurement



model. Section III presents the definitions associated with DP,
the sensitivity relations for the data and the differentially private
mechanism. It also presents the MHE formulation for TSE.
Section IV presents a case study carried out using a realistic traffic
simulation software. The letter is concluded by summarizing the
results and discussion along with the scope of future work.

II. NONLINEAR ARZ TRAFFIC DYNAMICS MODEL

This section presents a state-space formulation for the nonlinear
second-order ARZ model [11], [12] describing the evolution of
traffic density on highways with ramps. Second-order traffic mod-
els, unlike their first-order counterparts, consider traffic density and
speed to be independent variables which offers a natural way to in-
corporate both density and speed data provided by the fixed sensors
and CVs. While other second-order models exist and have been
used for TSE in the past [13], these models unlike the ARZ model
face certain limitations [14] such as physical inconsistency under
heterogeneous traffic conditions which makes them unreliable.

To represent the model as a series of difference, state-space
equations, we discretize the ARZ model with respect to both
space and time, also referred to as the Godunov scheme [15].
This allows us to divide the highway and the attached ramps
into segments of equal length l and time into steps of equal
duration T . The segments forming the highway are referred to as
mainline segments and those forming the ramps are called ramp
segments. Throughout the letter, Ω,Ω̂, and Ω̌ denote the set of
mainline, on-ramp and off-ramp segments respectively such that
N := |Ω|,NI := |Ω̂| andNO := |Ω̌|.

The model consists of two states for each segment namely the
traffic density (vehicles per unit distance) denoted by ρi[k], where
k is the index of the time step and i is the index of the segment, and
the relative flow (vehicles per unit time) denoted by ψi[k]. The dis-
crete time traffic density and relative flow conservation equations
for any Segment i∈Ω can be written for any time step k as

ρi[k+1]=ρi[k]+
T

l
(qi−1[k]−qi[k]), (1a)

ψi[k+1]=
τ−1

τ
ψi[k]+

T

l
(ϕi−1[k]−ϕi[k])+

vf
τ
ρi[k]. (1b)

Here, qi[k] and ϕi[k] denote the quantities traffic flow and relative
flux leaving Segment i∈Ω at time step k, and vf denoting the
free flow speed of a segment, and τ are parameters of the ARZ
model. Similar equations can be written for ramp segments as
well. Mathematical expressions for qi[k] and ϕi[k] can be written
using the expressions for certain other quantities namely the
demand (D[k]), supply and driver characteristic (w[k]) which are
not presented in this article for brevity. These quantities are given
as nonlinear functions of the states and inputs defined similar to
[16]. The state vector for this system can be defined as

x[k] :=[ρi[k] ψi[k] ... ρ̂j[k] ψ̂j[k] ... ρ̌l[k] ψ̌l[k] ...]
⊤

where x[k] ∈R2(N+NI+NO) and i ∈Ω, j ∈ Ω̂ and k ∈ Ω̌. The
variables with ·̂ are associated with the on-ramps and those with
·̌ are associated with off-ramps. The input vector is defined as,

u[k] :=[Din[k] win[k] ρout[k] ... D̂in,j[k] ŵin,j[k]... ρ̌out,l[k] ...]
⊤

where u[k]∈R3+2NI+NO , j∈Ω̂ and l∈Ω̌.

The evolution of traffic density and relative flow described in
(1) can be written in a compact state-space form as follows

x[k+1]=Ax[k]+Gf(x,u), (2)

where A ∈Rnx×nx for nx := 2(N +NI +NO) represents the
linear portion of the dynamics of the system,f :Rnx×Rnu →Rnx

where nu=3+2NI+NO is a vector valued function representing
nonlinearities in the state-space equation, and G ∈ Rnx×nx

is a matrix representing the distribution of nonlinearities. The
nonlinearities in f are in the form of minimum of weighted
nonlinear functions of the states and inputs. The structure of the
above mentioned functions are similar to those presented in [16].
The modeling approach can be applied to roads with any number
of lanes given the maximum density is adjusted based on the
number of lanes. Next, we discuss the measurement model which
is also nonlinear in nature.

We consider two types of sensors, fixed sensors like the
inductive loop detectors and CVs. This study assumes that it is
possible to retrieve aggregate density and speed data for road
segments from both these sensors. Such data can be obtained from
fixed sensors directly using techniques such as in [17]. With CVs,
the average speed of a segment is assumed to be the average of
the speed of all the queried CVs in a segment similar to [18]. To
obtain density data from CVs, we assume additional functionality
like spacing measurement equipment available in advanced
driver assistance systems [19] or availability of vehicular ad-hoc
networks (VANETs) which allow vehicles to communicate with
each other in a neighbourhood around the queried CV [20]. A
sufficient penetration of CVs is necessary on the segments which
are queried for data. The spacing data or neighbourhood counts
can then be converted to density measurements before adding the
privacy preserving noise to them and sending them to a network
operator to perform estimation.

Among these measurements, density ρi[k] for any mainline
segment i∈Ω, and similarly for the ramps, is directly a state and
is used as it is, while the speed vi[k] can be written in terms of
the states as follows:

vi[k]=
ψi[k]

ρi[k]
−p(ρi[k]),

where p(·) is called the pressure function and is defined as part of
the ARZ model framework. We define a nonlinear measurement
function h(x[k]) such that
h2i−1(x[k])=x2i−1[k], and h2i(x[k])=

x2i[k]

x2i−1[k]
−p(x2i−1[k]).

Now, we can define the measurement vector y[k] as

y[k]=C[k]h(x[k])+ν[k], (3)

where C[k] is the observation matrix at time k describing
the availability of measurements from sensors. Note, that
the observation matrix here is variable in time because of
the measurements from CVs which are taken from different
segments at different times. At any time k, np[k] is the number
of measurements. Here, ν[k]∈Rnν[k],nν[k]=np[k] lumps all the
measurement errors including the sensor noise into a single vector.

In the following section we discuss some definitions related to
differential privacy with respect to the traffic data, the dynamics
(2), and the measurement model (3).



III. DIFFERENTIAL PRIVACY OF TRAFFIC DATA AND MHE
Making the data differentially private is considered as an

adequate measure against privacy attacks such as unwanted
tracking of vehicles and identifying individuals based on location
data. While certain cryptographic methods maintain privacy by
preventing attackers from reading the data, under the possibility
that the attacker finds a way to read it, differential privacy adds
another layer of defense which statistically guarantees that
individual’s records cannot be extracted from the data set. It
also allows sharing of estimates obtained from this data with
third-parties keeping the same guarantee. DP is achieved by
processing the data through differentially private mechanisms
which are functions that take entire data sets as input and produce
a differentially private output. In the following sections we discuss
some definitions that are needed to formally define DP.
A. Adjacency and DP

DP is defined in terms of adjacent data sets. Mathematically,
adjacency is defined as a binary symmetric relation denoted by
Adj on a space of data sets, sayD, such that for d,d′∈DAdj(d,d′)
holds if and only if d and d′ differ by the data of a single individual.
In this work, we consider two spaces of data sets, the traffic density
data sets and the traffic speed data sets which are composed of
the average vehicle density and average vehicle speed values from
several road segments and several time steps. Two data sets from
either of these spaces are said to be adjacent if they differ by the
trajectory of a single vehicle. With this definition of adjacency,
a differentially private mechanism can be defined similar to [7] as,

LetD be a space of data sets, and let (R,M) be a measurable
space where M is a σ-algebra on R. Let ϵ,δ≥0. A mechanism
M :D→R is (ϵ,δ)−differentially private if for all d,d′∈D such
that Adj(d,d′), we have

P(M(d)∈S)≤eϵP(M(d′)∈S)+δ,∀S∈M (4)

This means that the distribution of the outputs produced by the
mechanismM on any two adjacent data sets is very close which
makes it difficult to determine which data set was used as input by
looking at the output of the mechanism. Thus, attackers are unable
to extract individual specific information from the mechanism’s
output. Releasing this output instead of the original data protects
individual’s privacy against attacks.M is therefore said to provide
(ϵ,δ)-DP to the data. Smaller values of both ϵ and δ provide higher
privacy. In this work, we assume that such a privacy preserving
mechanism is applied to the density and speed data collected by
the fixed sensors and CVs at the source and the output is sent to
the network operator.

An important property [6] which allows the network operator to
use this data for state estimation and control while maintaining the
DP guarantee is called resilience-to-post-processing. According
to this property, if another mechanism is applied to the output of a
differentially private mechanism, the obtained result will have the
same DP guarantees as the initial output. In context of this work,
the mechanism applied after receiving the differentially private
outputs from the sensors is the estimation process. Thus, the final
state estimates are also differentially private.

To write the mechanisms capable of producing differentially
private outputs, we need to first define sensitivity relations for the
two types of data sets.

B. Sensitivity relations

The sensitivity of a function is defined as the maximum differ-
ence in the value of the function produced by two adjacent data sets.
In this work we are concerned about the sensitivity of data coming
from the traffic sensors. Since both the type of sensors considered
in this study provide the same two type of data, that is the segment
density and speed, we do not have a separate sensitivity relation
for CV data than for fixed sensor data. Specifically, we care about
the Euclidean norm between adjacent data sets, that is, ∥ρ−ρ̃∥2
and ∥v− ṽ∥2 where ρ,ρ̃ and v,ṽ are any two adjacent pairs of
density and speed data respectively. We can write

∥ρ−ρ̃∥22=
∞∑
k=0

np[k]∑
i=1

|ρi[k]−ρ̃i[k]|2

where ρi[k] represents the density measured at the ith density
sensor at time step k. Largest sensitivity value occurs when the
differentiating vehicle passes all the sensors at different times in the
two data sets. Since the density of a segment can be defined as the
number of vehicles per unit length of the segment, the density mea-

surements in the two data sets can be assumed to differ by
1

l
when

the differentiating vehicle is present on a measured segment in one
data set and absent in the other as the difference is caused by a sin-
gle vehicle being present or absent on that segment. The total time
during which the density for a segment differs between the two
data sets at any such instance can be approximated based on the
average time spent by a vehicle on that segment. Let this average
time be denoted by Tavg, which can be approximated using past
CV data for that stretch or by using a simulation-based approach as
in [7]. Here Tavg for all segments is assumed to be the same but in
practice a different Tavg can be computed for different segments to
get a better approximation of the sensitivity. At all other times the
measured densities would be the same in both the data sets. Then,

∥ρ−ρ̃∥22=
∞∑
k=0

np[k]∑
i=1

|ρi[k]−ρ̃i[k]|2≤
Np∑
i=1

2Tavg

(
1

l

)2

, (5)

=⇒∥ρ−ρ̃∥2≤
1

l

√
2NpTavg=:∆ρ, (6)

where Np is the maximum number of sensors on the highway
stretch at any time and ∆ρ is the sensitivity of the density data sets.

Similarly, for speed measurements we can write

∥v−ṽ∥22=
∞∑
k=0

np[k]∑
i=1

|vi[k]−ṽi[k]|. (7)

The effect of the absence or presence of a single vehicle in
the segment on the average speed of that segment can be
approximately captured indirectly with the help of the equilibrium
speed-density relationship of the ARZ model [11], [12] given as

Ve(ρ)=vf

(
1−

(
ρ

ρm

)γ)
, (8)

which relates the equilibrium speed Ve of a road segment with the
density of that segment. Here, ρm denoting the maximum density
of a segment, and γ are parameters of the ARZ model. We can
replace the speeds in the right hand side of (7) with the expression
in (8) with γ=1 and simplify it to get



|vi[k]−ṽi[k]|=
∣∣∣∣ vfρm (

ρi[k]−ρ̃i[k]
)∣∣∣∣. (9)

Then using the same idea as for the density, we can write

∥v−ṽ∥2≤
vf
ρml

√
2NpTavg=:∆v, (10)

where ∆v is the sensitivity of the speed data sets. Here, γ=1 is
chosen arbitrarily to simplify the expression (9) to a known con-
stant value. Though γ varies between 1 and 2 [16] (10) serves as a
good upper bound in most cases since ρ lies between quarter to one-
third of ρm under normal flow conditions. The sensitivity ∆v can
be modified under specific scenarios using empirical tests or using
a traffic simulation approach as in [7]. In general, ensuring a real-
istic value of the sensitivity avoids a large privacy-utility trade off.
C. Differentially private mechanisms

Using the sensitivity relations from the previous section, we can
implement a Gaussian Mechanism [6] which ensures (ϵ,δ)−DP.

Let K = Q−1(δ) for Q(x) =
1√
2π

∫∞
x
e−u2/2du, and

κδ,ϵ =(K+
√
K2+2ϵ)/(2ϵ), then a mechanism publishing the

sequence ρ̄=ρ+wρ wherewρ are zero mean iid Gaussian random
variables with variance κ2δ,ϵ∆ρ is (ϵ,δ)-differentially private. Here
ρ is the measured density data and ρ̄ is the differentially private
output produced by the mechanism which will be sent to the
network operator.

Similarly, a mechanism publishing the sequence v̄ = v+wv

where wv are zero mean iid Gaussian random variables with
variance κ2δ,ϵ∆v is also (ϵ,δ)-differentially private. Here v is the
measured speed data and v̄ is the differentially private output of the
mechanism. For the mechanisms defined here, the output itself is a
data set which will henceforth be called differentially private data.
In the next section, we discuss the MHE approach applied for TSE
using the differentially private data produced by the mechanisms.
D. Moving horizon estimator under DP

The objective of this article is to investigate the TSE
performance using ARZ model when considering differentially
private data coming from the fixed sensors and CVs. To do so,
here we implement a linear MHE approach using linearized
versions of the process and measurement models obtained using
a first-order Taylor series approximation. Throughout this section,
N denotes the size of the horizon for optimization.

1) Decision variables and objective function: The decision
variables for the optimization problem solved at time step k
are the state vectors from time step k − N to k denoted by
xk[t] ∀ t∈ [k−N,k]. From the obtained solution we set the final
value of the vector xk[k]=xk[k]. The objective function at time
step k∈ [N+1,∞] is denoted by J[k] :=J and is given as

J= µ||xk[k−N ]−x[k−N ]||2+w1

k∑
i=k−N

||y[i]−(C̃ixk[i]+c2i)||2

+w2

k−1∑
i=k−N

||xk[i+1]−(Ãixk[i]+Biu[i]+c1i)||2. (11)

Here, x̄[k − N ] is a prediction of x[k − N ] based on a
previously obtained state estimate and is expressed as

x̄[k−N ]=Ax̂[k−N−1]+Gf(x̂[k−N−1],u[k−N−1]). (12)

The notation y[i] defines the data vector at time i∈ [k−N,k],
Ãi,Bi and c1i are parameters of the linearized state-space
equation ∀ i ∈ [k−N,k− 1], and C̃i and c2i are parameters
of the linearized measurement model ∀ i ∈ [k − N,k]. Here,
Ãk, Bk and c1k are computed at (xo, u[k]) where xo =∑k−1

i=k−1−Nxk−1[i]/(N+1), C̃k and c2k are computed at xo.
2) Constraints and optimization problem: The problem only

consists of the upper and lower bounds on state values as follows

xmin≤xk[i]≤xmax,∀ i∈ [k−N,k] (13)

where xmin = 0⃗, and xmax =
[ρm ρmvf ρm ρmvf ··· ρm ρmvf ]

T . The above objective
and constraints are used to write the following optimization
problem

minimize
xk[k−N],...,xk[k]

J[k], subject to (13). (14)

The objective function J[k] can also be expressed as a sum
of quadratic and linear terms of the state vectors. Defining zk

by concatenating the decision variables from (14) such that
zk=[xk[k−N ]T xk[k−N+1]T ··· xk[k]]

T , we can write the
optimization problem (14) in standard form as follows

minimize
zk

zT
kHzk+qTzk, subject to zmin≤zk≤zmax (15)

where H ∈ R(N+1)nx×(N+1)nx and q ∈ R(N+1)nx consist
of the coefficients of the quadratic and linear terms in
the objective respectively. zmin = [(xTmin)×(N+1)]

T and
zmax=[(xTmax)×(N+1)]

T denote bounds on zk. It can be shown
that H is a positive definite matrix which makes (15) a convex
quadratic program (QP) that can be solved efficiently using readily
available QP solvers like CPLEX or MATLAB’s quadprog
function. Hence, problem (15) is computationally tractable.

IV. CASE STUDY USING SUMO
In this section, we apply the implemented MHE along with

EKF, UKF and EnKF, on a traffic simulation example generated
in SUMO which is an open source the traffic micro-simulation
software to compare their performance while keeping the data
differentially private. All the simulations are carried out using
MATLAB R2019b running on a 64-bit Windows 10 with
3.6GHz IntelR CoreTM i7-7700 CPU and 65GB of RAM. We
use the quadprog function of MATLAB to solve the MHE
optimization problem.

The main idea of this case study is to test the performance
of the state estimation techniques under different conditions of
privacy. In particular, we are interested in knowing the answers
to the following questions:

• Q1: How does the number of CV-segments impact the state
estimation performance of each technique while ensuring
DP of data?

• Q2: What is the impact of the level of privacy on the state
estimation performance of each technique?

A. Highway and sensor setup

In this study, we model a highway stretch of length 1.5 km with
two on-ramps at 0.3 and 0.9 km from the start and two off-ramps
at 0.6 and 1.2 km from the start. Additional 100 m segments
are modeled in SUMO before all the entry points and following
all the exit points of the highway whose data serves as input



for the system. We use the Weidemann 99 car-following model
with default parameters. The ARZ model parameters are calibrated
using simulated data from SUMO. The selected values are v=102
km/hr, ρm=333 veh/km, τ=60, and γ=2. Under the Godunov
scheme, the highway and ramps are divided into segments of
length 100 m each with a time-step value of 1 s, which satisfies the
CFL condition. The segment mean speeds are provided directly
by SUMO while the segment densities can be computed from the
vehicle count data provided by SUMO for each segment. There are
a total of 38 states in this highway system consisting of 15 mainline
segments and 4 ramps. Since the local state-space dynamics for
segment-type combinations as in (1) are the same irrespective of
the overall structure, the state estimation performance here should
be representative of the performance in general.

We force a congestion on the highway to create an interesting
scenario for comparison of TSE methods. The mainline demand
is kept as 2050 veh/hr throughout except between 200-400 sec
when it is increased to 6050 veh/hr owing to say a rush hour.
The on-ramp demands are kept as 320 veh/hr and 300 veh/hr
respectively. A variable speed sign is implemented in SUMO to
emulate a situation where an accident has occurred on Segment
11 of the highway mainline. The maximum allowed speed for this
segment is artificially reduced to 10.08 km/hr between 200-400
sec and 50.95 km/hr between 400-500 sec.

Throughout the case study, the fixed sensors are assumed
to be placed on the output segments of the network which is
necessary to make the system observable. We assumes that there
is a sufficient number of CVs on the highway to obtain the density
and speed values of decent quality from any road segment. We
also assume that we can only query a limited number of CVs at
a time due to bandwidth constraints. At every time step we select
a subset of segments to obtain data from. In the case study, we
select a set of segments at the beginning and update it after every
four time steps. At every update, the current segments in the set
are replaced by segments right ahead of them. The last mainline
segment is replaced by the first mainline segment. Note that a
better method to select CVs for querying may be available but
is not explored here. No measurement noise is added to the data
apart from the privacy preserving noise.
B. Implementation of estimation techniques

a) Parameter tuning: In this work, for all the KF variants,
we use diagonal process and measurement noise co-variance
matrices of the form Q=qI and R=rI where q,r∈R+ and I
in each case is an identity matrix of appropriate dimensions. The
initial guess for the estimate noise co-variance matrix is taken as
P =10−3I. We manually tune q and r for different arrangements
of sensors and different privacy levels based on the minimization
of the root mean squared error (RMSE) of estimated states. The
weights in the MHE objective function are also similarly tuned.
Regarding other parameters, for UKF [9], we set the following
values: α= 0.1,κ=−4 and β = 2, for EnKF [21], we set the
number of ensemble points to 100, and for MHE, we set N to
10. These values are found to be sufficient for the respective
techniques except wherever specified.

b) External bounds in KF: The KFs can produce negative
values of the states which are not allowed in the process model
(2). It results in numerical issues and forces the estimation to stop.

Fig. 1. RMSE for (a) density [top] and (b) speed [bottom] with increasing
number of CV-segments while considering (1,0.05)-DP.

To avoid this estimates are projected to within physical bounds.
In case of UKF, the sigma points need to be individually bounded
with a lower bound greater than zero to avoid numerical issues
within UKF. This method of projecting vectors for EKF and UKF
has been shown to fit in the KF theory mathematically and is
among the popular methods mentioned in [22].

c) Choice of comparison metrics: Parameter tuning is done
using the RMSE of the estimated states. However, since the
relative flow does not hold a direct significance for professionals,
we chose to compare the techniques based on the RMSE of
density and speed which have more general value.

C. Results and discussion
1) Impact of number of CV-segments: Here, we test the impact

of increasing the number CV-segments on the performance of
different state estimation techniques. We vary the number of CV-
segments from 5 to 11 while keeping them as far apart as possible.
Exact arrangement is omitted for brevity. Privacy preserving noise
is added to the measurement values based on the mechanism in
Section III-C to make the data (1,0.05)-differentially private. Fig.
1 presents the plot of RMSE for the estimated density and speed
for each of the techniques. The computation time per time step of
simulation for EKF, UKF, EnKF, and MHE are 0.06, 0.026, 0.040,
and 0.045 seconds respectively. These include the time taken from
receiving the data to producing the estimate for one time step.

It is observed that the estimation performance for all the
techniques improves with increasing number of CV-segments
which is expected. EnKF sometimes has more variation in
consecutive RMSE values as compared to other techniques which
can be attributed to the associated randomness. Overall, EnKF
performs the worst while UKF performs the best, closely followed
by both MHE and EKF in case of density estimation and EKF
in case of speed estimation. It is interesting that MHE falls behind
EKF in case of speed estimation. This comparison in performance
is also observed in the following tests. This is mentioned here to
avoid repetition later. Fig. 2 presents a plot of the actual versus
estimated density values obtained using UKF, EKF and MHE.

2) Impact of DP parameters: Privacy in this study depends on
two parameters ϵ and δ which have their own significance in the
DP definition. In this section, we test the impact of varying these
parameters on the state estimation performances. We keep the
same configuration of fixed sensors as in the previous section while
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Fig. 2. Traffic densities x[k] obtained from SUMO along with estimates from
EKF denoted by x̂EKF[k], UKF denoted by x̂UKF[k], and MHE denoted by
x̂MHE[k] while considering (1,0.05)−DP and 7 CV-segments evenly spaced
on the highway stretch.

Fig. 3. RMSE for densities with changing ϵ while keeping δ=0.05.

Fig. 4. RMSE for densities with changing δ while keeping ϵ=1.

the number of CV-segments is fixed to 5. Fig. 3 and Fig. 4 present
the variation in RMSE values for density for each technique with
changing epsilon keeping a constant δ=0.05, and changing delta
keeping ϵ=1 respectively. The plots for speed in both cases are
very similar to density and are omitted for brevity. The co-variance
matrices are tuned as necessary to obtain the best performance.

All the techniques show a similar variation in performance with
respect to privacy changes. It is observed that the impact of ϵ is
more profound than that of δ when both are varied between respec-
tive reasonable bounds. Specifically, the variation in performance
is small over the full range of selected δ values. On the other hand,
the variation is small for ϵ values above 1, but the performance
quickly worsens as we approach 0. While more research might be
needed under various scenarios, from the obtained results it can be
stated that it is possible to increase the level of privacy to a certain
extent without worrying about much additional degradation of
estimation quality. Beyond that point, a trade-off would be more
apparent and should be considered more seriously.

3) Discussions and preliminary answers: We provide some
preliminary suggestions regarding the questions posed earlier in
this section:

• A1: State estimation error decreases with an increase in the
number of CV-segments. UKF outperforms the other meth-
ods in both density and speed estimation while EnKF’s per-
formance is the worst. EKF and MHE perform comparably.

• A2: All the techniques show similar variation in performance
with change in privacy levels. In general, ϵ has more
influence on the estimation quality than δ.

A drawback of the present study is that it assumes that both the
CVs and fixed sensors provide the same measurement values for a

segment if present simultaneously. This may not always be true and
a reliable approach for data integration may be needed. Studying
the data integration problem considering different aggregate mea-
surements from sensors or using trajectory data from CVs for state
estimation and its impact on privacy are possible future directions
of work. Also, while not studied in this work, the advantage of
MHE in implementing arbitrary relations between states which
are otherwise un-modeled in the dynamics can also be explored.
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