Alternative Microfoundations for Strategic Classification

Meena Jagadeesan Celestine Mendler-Dunner Moritz Hardt
{mjagadeesan, mendler, hardt}@berkeley.edu

University of California, Berkeley

Abstract

When reasoning about strategic behavior in a machine learning context it is tempting
to combine standard microfoundations of rational agents with the statistical decision theory
underlying classification. In this work, we argue that a direct combination of these ingredients
leads to brittle solution concepts of limited descriptive and prescriptive value. First, we show
that rational agents with perfect information produce discontinuities in the aggregate response
to a decision rule that we often do not observe empirically. Second, when any positive fraction of
agents is not perfectly strategic, desirable stable points—where the classifier is optimal for the
data it entails—no longer exist. Third, optimal decision rules under standard microfoundations
maximize a measure of negative externality known as social burden within a broad class of
possible assumptions about agent behavior.

Recognizing these limitations we explore alternatives to standard microfoundations for
binary classification. We start by describing a set of desiderata that help navigate the space
of possible assumptions about agent responses. In particular, we analyze a natural constraint
on feature manipulations, and discuss properties that are sufficient to guarantee the robust
existence of stable points and to upper bound social burden. Building on these insights, we then
propose the noisy response model. Inspired by smoothed analysis and empirical observations,
noisy response incorporates imperfection in the agent responses, which we show mitigates the
limitations of standard microfoundations. Our model retains analytical tractability, leads to
more robust insights about stable points, and imposes a lower social burden at optimality.

1 Introduction

Consequential decisions compel individuals to react in response to the specifics of the decision
rule. This individual-level response in aggregate can disrupt both statistical patterns and social
facts that motivated the decision rule, leading to unforeseen consequences. A similar conundrum
in the context of macroeconomic policy making fueled the microfoundations program following
the influential critique of macroeconomics by Lucas in the 1970s [Lucas Jr, 1976]. Microfounda-
tions refers to a vast theoretical project that aims to ground theories of aggregate outcomes and
population forecasts in microeconomic assumptions about individual behavior. Oversimplifying a
broad endeavor, the hope was that if economic policy were microfounded, it would anticipate more
accurately the response that the policy induces.

Predominant in neoclassical economic theory is the assumption of an agent that exhaustively
maximizes a utility function on the basis of perfectly accurate information. This modeling as-
sumption about agent behavior underwrites many celebrated results on markets, mechanisms, and
games. Although called into question by behavioral economics and related fields (e.g. see [Camerer



et al., 2004]), the assumption remains central to economic theory and has become standard in
computer science, as well.

When reasoning about incentives and strategic behavior in the context of classification tasks,
it is tempting to combine the predominant modeling assumptions from microeconomic theory
with the statistical decision theory underlying classification. In the resulting model, agents have
perfect information about the decision rule and compute the best response according to their
utility function with the goal to achieve a more favorable classification outcome. We refer to this
agent model as standard microfoundations. Building on the assumption that agents follow standard
microfoundations, the decision maker then chooses the decision rule that maximizes their own
optimization objective in anticipation of the resulting agent response. This is the conceptual route
taken in the area of strategic classification, but similar observations may apply more broadly to the
intersection of economics and learning.

1.1 Our work

We argue that standard microfoundations are a poor basis for studying strategic behavior in binary
classification problems. We make this point through three observations that illustrate the limited
descriptive power of the standard model, and the problematic solution concepts it implies. In
response, we explore the space of alternative agent models for strategic classification, and we
identify desirable properties that when satisfied by a model of microfoundations lead to more
realistic and robust insights. Guided by these desiderata, we propose noisy response as a promising
alternative to the standard model.

A) Limitations of standard microfoundations

In strategic classification, agents respond strategically to the deployment of a binary decision rule
fo specified by model parameters 0. The assumption of the decision maker is that agents follow the
standard microfoundations: they have full information about fy and change their features so as to
maximize their utility function. The utility function captures the benefit of a positive classification
outcome, as well as the cost of feature change. Consequently, an agent does not invest in changing
its features if the cost of change exceeds the benefit of positive classification.

We show that these standard microfoundations are not descriptive of reality, and undesirable
under natural model misspecifications of agent responses.

Our first observation concerns the aggregate response—the distribution D(0) over feature, label
pairs induced by a classifier fy. We show that in the standard model, the aggregate response
necessarily exhibits discontinuities that we often do not observe in empirical settings. The problem
persists even if we assume an approximate best response and allow for heterogeneous cost functions.

Our second observation reveals that, apart from lacking descriptive power, the standard model
also leads to brittle conclusions about the solution concept of performative stability. Performative
stability refers to decision rules that are optimal on the particular distribution they entail and
thus represent fixed points of retraining methods. We show that the existence of performatively
stable classifiers breaks down when any fraction of agents in the population are non-strategic. This
brittleness of the existence of fixed points suggests that the standard model does not constitute a
reliable model for investigating dynamics of retraining algorithms.

Our last observation concerns the solution concept of performative optimality. Performative
optimality expresses a global property of a decision rule and is achieved by a classifier that overall
exhibits the highest accuracy on the distribution it induces. Such a classifier is not necessarily
performatively stable, and finding performatively optimal points requires the decision maker to



understand and anticipate strategic feedback effects. We prove that relying on standard microfoun-
dations to model strategic behavior leads to extreme decision rules that maximize a measure of
negative externality called social burden within a broad class of alternative models. Social burden,
proposed in recent work, quantifies the expected cost that positive instances of a classification
problem have to incur in order to be accepted. Thus, given natural model uncertainty, standard
microfoundations produce optimal solutions that are least favorable in terms of social burden.

B) Alternative microfoundations

Recognizing the limitations of standard microfoundations, we systematically explore alternatives
to the standard model. We investigate a broad space of alternative assumptions on agent responses,
encompassing general agent behavior that need not be fully informed, strategic, or utility maximiz-
ing. We formalize microfoundations as a randomized map M : X x Y — 7 that assigns each agent
to a response type t € 7 that is associated with a response function R;: X x® — X specifying how
agents of type t change their features x in response to a decision rule given by the parameters 6.

Letting Dyy be the base distribution over features and labels before any strategic adaptation,
the aggregate response to a classifier fy is given by the distribution D(6; M) over induced feature,
label pairs (R(x,0),v) for a random draw (x,y) ~ Dxy, and t = M(x,y). In this sense, the mapping
M microfounds the distribution induced by a classifier fy, endowing it with structure that allows
the decision maker to deduce the aggregate response from a model of individual behavior.

To guide our search for more appropriate microfoundations for binary classification, we in-
troduce a collection of properties that are desirable for a model of agent responses to satisfy. The
first condition, that we call aggregate smoothness rules out the discontinuities arising from standard
microfoundations. Conceptually, it requires that varying the model parameters slightly must
change the aggregate response smoothly. We find that this property alone is sufficient to guarantee
the robust existence of stable points under mixtures with non-strategic agents.

The second condition, that we call the expenditure constraint, helps ensure that the model
encodes realistic agent-level responses R;. At the high level it requires that agents do not spend
more on gaming than the utility of a positive outcome. This natural constraint gives raise to a large
set of potential models, for which we can show that, under weak assumptions, the social burden of
the optimal classifier is no larger than the social burden of the optimal classifier deduced from
the standard model. Moreover, under the same assumptions the optimal points are determined
by local behavior. This frees the decision maker from fully understanding the aggregate response
D(0) and makes the task of finding an approximately optimal classifier more tractable.

C) Noisy response—an alternative model

Using the properties described above as a compass through the space of alternative models,
we identify noisy response as a compelling model of microfoundations that complies with the
aforementioned desiderata. In this model, each agent best responds with respect to 6 + &, where &
is an independent sample from a zero mean noise distribution. This model is inspired by smoothed
analysis and encodes imperfection in the population’s response to a classifier by perturbing
individual agent’s manipulation target.

We show that noisy response satisfies a number of desirable properties that make it a promising
model of microfoundations for classification in strategic settings, both for theoretical analyses and
from a practical standpoint. First, noisy response satisfies aggregate smoothness, and thus leads
to the robust existence of stable points. Moreover, the model satisfies the expenditure constraint,
and thus encodes natural agent-level responses which can be used to reason about metrics such



as social burden. When used to anticipate strategic feedback effects and compute optimal points,
noisy response leads to strictly less pessimistic acceptance thresholds than those computed under
standard microfoundations, given the same constraints on manipulation expenditure. In fact, we
show via simulations that larger variance o of the noise in the manipulation target leads to more
conservative optimal thresholds, and for 0 — 0, we approximate the extreme case of standard
microfoundations. Finally, from a practical perspective, we demonstrate that noisy response
enjoys the desirable property that the distribution map D(6) can be estimated from individual
experiments alone, without ever deploying a classifier.

1.2 Related work

Existing work on strategic classification in machine learning has mostly followed standard micro-
foundations for modeling agent behavior in response to a decision rule, e.g., [Dalvi et al., 2004;
Bruckner and Scheffer, 2011; Hardt et al., 2016a; Khajehnejad et al.; Tsirtsis and Gomez-Rodriguez,
2020] to name a few. This includes works that focus on minimizing Stackelberg regret [Dong et al.,
2018; Chen et al., 2020], quantify the price of transparency [Akyol et al., 2016], and investigate the
benefits of randomization in the decision rule [Braverman and Garg, 2020]. Also investigations on
externalities such as social cost [Milli et al., 2019; Hu et al., 2019] and whether classifiers incentivize
improvement as opposed to gaming [Kleinberg and Raghavan, 2019; Miller et al., 2020; Shavit et al.,
2020; Haghtalab et al., 2020] have mostly built on the standard assumption of best-responding
agents with perfect information. Recent work by Levanon and Rosenfeld [2021] studied practical
implications of standard microfoundations and how to make the resulting optimization problem
more amenable for optimization.

A handful of works have suggested potential limitations of the standard strategic classification
framework. Briickner et al. [2012] recognized that the standard model leads to very conservative
Stackelberg solutions, and proposed to resort to Nash equilibria as an alternative solution concept.
We instead take a different route and advocate for rethinking standard microfoundations that lead to
these conservative acceptance thresholds altogether. Concurrent and independent work questioned
the perfect information assumption in the standard model and studied strategic classification
when the classifier is not fully revealed to the agents. In particular, Ghalme et al. [2021] find that
hiding information about the classifier harms the decision-maker’s accuracy, and Bechavod et al.
[2021] emphasize disparate impact on subgroups, when agents can only obtain additional side-
information from individuals within their communities. While we also question the assumptions
of the standard model, we argue that the agents often do not perfectly respond to the classifier even
when the decision rule is fully transparent. Therefore, we advocate for incorporating imperfection
into the model of microfoundations in order to anticipate natural deviations from the standard
model.

Related work in economics also investigates strategic responses to decision rules. This line
of work, initiated by Spence [1973], has shown that information about individuals can become
muddled as a result of heterogeneous gaming behavior [Frankel and Kartik, 2019], investigated
the role of commitment power of the decision maker [Frankel and Kartik, 2020], considered the
impact of an intermediary who aggregates the agents’ multi-dimensional features [Ball, 2020], and
considered the performance of different training approaches in strategic environments Hennessy
and Goodhart [2020]. A notable work by Bjorkegren et al. [2020] investigates strategic behavior
through a field experiment in the micro-lending domain, with a focus on evaluating approaches
for designing strategy-robust classifiers. An important distinction is that these works tend to study
regression, while we focus on classification. These settings appear to be qualitatively different in
the context of strategic feedback effects (e.g. see note in [Hennessy and Goodhart, 2020]).



Our work is conceptually related to recent work in economics that has recognized mismatches
between the predictions of standard models and empirical reality, for example in macroeconomic
policy [Stiglitz, 2018; Kaplan and Violante, 2018; Coibion et al., 2018] and in mechanism design
[Li, 2017]. These works, and many others, have explored incorporating richer behavioral and
informational assumptions into the standard model in economic settings. Although our work also
explores alternatives to standard microfoundations, we focus on algorithmic decision-making,
where the limitations of the standard model had not been previously identified. We believe that
our approach of navigating the entire space of potential models using a collection of properties
could be of broader interest when developing alternative microfoundations.

1.3 Setup and basic notation

Let X C IR™ denote the feature space, and let Y = {0, 1} be the space of binary outcomes. The base
distribution Dyy is a joint distribution over X x Y describing the population prior to any strategic
adaption. Throughout the paper we assume that Dyy is continuous and has zero mass on the
boundary of X. We focus on binary classification where the model fy : X — {0, 1} is parameterized
by 6 € R?, and the decision-maker selects classifier weights 6 from © C RY which is a compact,
convex set. We assume that for every 0 € ©, the set {x € X | fg(x) = 1} is closed, and the decision
boundary is measure 0. We adopt the notion of a distribution map D(6) from [Perdomo et al.,
2020] to describe the distribution over X x Y induced by strategic manipulation of agents in the
base distribution in response to the classifier fy.

2 Limitations of standard microfoundations

In the strategic classification literature, the typical agent model is a rational agent with perfect
information. At the core of this model lies the assumption that agents have perfect knowledge of
the classifier and maximize their utility given the classifier weights. The utility composes of two
terms: a reward for obtaining a positive classification, and a cost of manipulating features. The
reward is denoted y > 0 and the manipulation cost is represented by a function c: X x X — R
where c(x,x”) reflects how much agents need to expend to change their features from x to x". A
valid cost function satisfies a natural monotonicity requirement as stated in Assumption 1. Given a
feature vector x and a classifier fy, agents solve the following utility maximization problem:

argmax [y fo(x') ~ c(x,2)]. (1)

x'eX

Assumption 1. A cost function c : X x X — R is valid, if it is continuous in both arguments, it
holds that c(x,x”) = 0 for x = x’, and ¢ increases with distance in the sense that c(x, X) < c(x, x”) and
c(%,x) < c(x’,x) for every x € X that lies on the line segment connecting the two points x,x’ € X.!

We will refer to this response model as the standard microfoundations.

2.1 Discontinuities in the aggregate response

A striking property of distribution shifts induced by standard microfoundations in response to a
classifier fy is that they are necessarily either trivial or discontinuous. The underlying cause is that

I'We model non-zero cost for all modifications to features, regardless of whether they result in beneficial classification
or not. Generalizing beyond standard microfoundations this accounts for how agents may erroneously expend effort on
changing their features in an incorrect direction, as empirically demonstrated by Bjorkegren et al. [2020].



agents behaving according to standard microfoundations either change their features exactly up to
the decision boundary, or they do not change their features at all.

Proposition 1. Given a base distribution Dyvy, let D(0) be the distribution induced by a classifier fp.
Then, if D(0) is continuous and D(60) = Dxy, there does not exist a valid cost function c such that D(0)
is an aggregate of agents following standard microfoundations.

In addition to point masses, standard microfoundations face additional degeneracies in the
aggregate response. Namely, a similar argument shows that any non-trivial distribution arising
from the standard model must have a region of zero density below the decision boundary. These
properties are highly unnatural in practice. To illustrate this, consider banking lending decisions
and the corresponding distribution over credit scores in Example 1. If lenders decisions are based
on the FICO score, then under standard microfoundations the distribution over credit scores should
exhibit a discontinuity at the threshold. However this is not what we observe empirically.?

Example 1 (Lending decision). Bank’s lending decisions typically use FICO credit scores as an
indicator of creditworthiness. Previous work [Hardt et al., 2016b] studied a FICO dataset from
2003, where credit scores range from 300 to 850, and a cutoff of 620 was commonly used for
prime-rate loans. The observed distribution over credit scores appears continuous and is supported
across the full range of scores.

It is important to note that the degeneracies of standard microfoundations arise from the fact
that classification decisions are binary and based on a hard decision. Agents who are not classified
positively receive no reward: it does not matter how close to the decision boundary the agent is.
This discontinuity in the utility is specific to classification and does not arise in regression problems
that are predominantly studied in the economics literature. However, in machine learning and
statistical decision theory, binary classification is ubiquitous, and the degeneracies that we have
identified are relevant for modeling choices in a wide variety of applications.

The reader might imagine that common variations and generalizations of standard microfoun-
dations can mitigate these issues. Unfortunately, the two variations of standard microfoundations
that are typically considered—heterogeneous cost functions [Hu et al., 2019], and approximate best
response [Miller et al., 2020]—result in similar degeneracies. Heterogeneity in the cost (or utility)
function can only change whether or not an agent decides to change their features, but it does
not change their target of manipulation. If agents approximately best-respond, and thus move to
features x” that maximize their utility to within a constant factor approximation of the optimum,
the model no longer leads to point masses at the decision boundary, but agents will never undershoot
the decision boundary. This means that any nontrivial aggregate distribution must have a region of
zero density below the decision boundary to comply with standard microfoundations and any of
these variants.

In fact, agent behavior that is not captured by standard microfoundations or its variants has
been directly observed in field experiments. In particular, agents have been observed to both
overshoot and undershoot the decision boundary as well as generally exhibit noisy responses, even
if the classifier is fully transparent.

Example 2 (Field Experiment [Bjorkegren et al., 2020]). The authors developed an app that
mimicked aspects of “digital credit” applications, and deployed it in Kenya in order to empirically
investigate strategic behavior. Participants were rewarded if the app guessed that they were a

2There could be a number of reasons why we do not observe discontinuities in practice: different lenders having
different cutoffs, interest rates being non-binary, and the use of features beyond credit scores. In any case, the classical
model for strategic classification does not describe this setting accurately.



high-income earner. When the participants were given access to the coefficients of the decision rule,
they tended to change their features in the right direction, but a high variance in their responses
was observed—see Table 5 in their work. The noise in the response was even more pronounced
when participants were only given opaque access to the decision rule. In this case, agents often did
not even change their features in the right direction.

In the following section we demonstrate that the model of standard microfoundations is not
only lacking in descriptive power for strategic behavior in the context of binary classification, but
also exhibits unfavorable properties under natural deviations from the modeling assumptions.

2.2 Brittleness under natural model misspecifications

We describe two scenarios, where the behavior of standard microfoundations is highly undesirable
under natural model misspecifications. In particular, we show that the existence of stable points
breaks down when only a small fraction of agents are non-strategic, and the optimal solutions
associated with the standard model cause unnecessarily high social burden.

A) Stability as a fragile solution concept

Our first result demonstrates that the standard model does not lead to robust insights about the
solution concept of performative stability. In particular, performatively stable points that are
guaranteed to exist under standard microfoundations, as proven by Milli et al. [2019], no longer
exist if any fraction of individuals is non-strategic. Since stable points represent fixed points of
retraining, this suggests that repeated risk minimization (RRM) methods that provably converge
under standard microfoundations diverge in settings where only a tiny fraction of agents do not
comply with the model.

For our analysis, we consider a local relaxation of the notion of performative stability that
corresponds to fixed points of repeated gradient descent [Perdomo et al., 2020]. We say Opg is locally
stable if Opg is a local minima or a stationary point of the following optimization problem:

min By y)-p(6y) 1 v # fo(x)}. (2)
Local stability is closely related to the concept of a pure strategy (local) Nash equilibrium in a
simultaneous game between the strategic agents that respond to the classifier fy and the decision
maker who responds to the observed distribution D(0).
To showcase that the existence of locally stable points (or Nash equilibria) under standard
microfoundations is very sensitive to deviations in agent behavior, we focus on the following simple
1-dimensional setting.

Setup 1 (1-dimensional). Let X C R and consider a threshold functions fy(-) = 1{- > 6} with
0 € © CR. Let p(x) be the conditional probability over Dy of the true label being 1 given features
x. Suppose that p(x) is strictly increasing in x and there is an 6 € Int(®) such that x(6) = 0.5.

Proposition 2. Consider Setup 1. Suppose that a p fraction of agents drawn from Dyxy do not ever
change their features, and a 1 — p fraction of agents drawn independently from Dxy follow standard
microfoundations with a valid cost function c. Then, we have the following properties:

a) For p €{0,1}, locally stable points exist.
b) For p €(0,1), locally stable points do not exist.
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Figure 1: Convergence of retraining algorithm in a 1d-setting for different values of p with e = 1072. The
population consists of 10° individuals. Half of the individuals are sampled from x ~ A/(1,0.33) with true
label 1 and the other half is sampled from x ~ A(0,0.33) with true label 0. The parameter of the noisy
responses (NR) in (b) is taken to be o2 = 0.1. 635 and 911)5 are defined as in Proposition 2 for standard
microfoundations (and similarly for noisy response).

c) For p €(0,1), RRM will oscillate as follows: Let qu)s be the smallest locally performatively stable
point for q € {0,1}. Then, RRM oscillates between 611)5 and a threshold t(p) € (91135,685), where T(p)
is decreasing in p, approaching 611,5 as p — 1 and approaching 9195 as p — 0.

Proof Sketch. For p = 0 stability is trivial and for p = 1 the claim follows from an argument similar
to Lemma 3.2 in [Milli et al., 2019]. For p € (0,1), the core observation is that for any 6 the
distribution D(0) contains no strategic agents in the interval Gap(0) := [0 — A, 0] for some A > 0.
Furthermore, for any 6 > 91%5 the misclassification rate on non-strategic agents could be improved
by reducing the threshold to 911,5. Thus, it is not hard to see that or any 6 > 811)5, the threshold
max(6 — A, 611)5) achieves smaller loss than 6, and thus 6 can not be stable. We formalize this
argument and the case for 6 < Qll)s in Appendix B.2. O

Proposition 2 implies that not only does the existence of local Nash equilibria break down if any
fraction p € (0, 1) of agents are non-strategic, but also repeated risk minimization oscillates between
two extreme points. To illustrate this, we have implemented a simple instantiation of Setup 1
and visualize the trajectories of RRM for different values of p in Figure 1(a). The main insight is
that retraining methods start oscillating substantially even when p is very close to 0 (only an €
fraction of agents are not following standard microfoundations). This sensitivity of the trajectory
to natural deviations from the modeling assumptions suggests that standard microfoundations do
not constitute a reliable model to study algorithm dynamics.

B) Maximal negative externalities at optimality

Our next result shows that it is undesirable for the decision-maker to rely on standard microfoun-
dations to compute performatively optimal points when there is natural uncertainty about how
exactly agents respond to a classifier. In particular, performatively optimal classifiers computed
under standard microfoundations lead to highest negative externalities within a broad class of
alternative models for agent responses.

Recall that a performatively optimal points correspond to the best classifier for the decision
maker from a global perspective, but they are not necessarily stable under retraining. Formally, a
classifier Opq is performatively optimal [Perdomo et al., 2020] if it minimizes the performative risk:

(3)

Opo := argming g E(x y)~p(0) L{y # fo(x)}.



Performative optimality is closely related to the concept of a Stackelberg equilibrium in a leader-
follower game. The key challenge of computing such a Stackelberg equilibrium, or performative
optima, is that optimizing (3) requires the decision maker to anticipate the population’s response
D(0) to any classifier fy. A natural approach to model this response is to build on microfoundations
and deduce properties of the distribution map from individual agent behavior. Different models
for agent behavior can lead to solutions with qualitatively different properties.

While the decision-maker is unlikely to have a fully specified model for agent behavior at hand,
we outline a few natural criteria that agent responses could reasonably satisfy. To formalize these
criteria, we again focus on the 1-dimensional setting in Setup 1.

Property 1 (Expenditure monotonicity). For every agent with true features x, the manipulated
features x’ = R(x;0) in response to a classifier 0 satisfy the following properties:

a) c(x,R(x;0)) <y for every 0 € ©.
b) if fo(R(x;0)) =1, then fy(R(x;60")) =1 for all 6" < 6.

Property 1 describes agents that act rationally in the sense that a) they do not expend more on
gaming than their utility from a positive outcome, and b) an agent’s outcome does not worsen if
the threshold is lowered. However, agents complying with Property 1 do not necessarily behave
according to standard microfoundations, and instead may be imperfect and overestimate or
underestimate the consequences of a feature manipulation.

We now show that within the broad class of microfoundations that exhibit Property 1, the stan-
dard model leads to an extreme acceptance threshold. For the formal statement, see Appendix B.3.

Proposition 3 (Informal). Consider Setup 1. Let & be the class of distribution maps D : © — XxY that
can be represented by a population of agents who all satisfy Property 1. Then under mild assumptions,
for every D € I, it holds that

Opo(Dsm) = Opo(D)

where Opo(D) denotes the performative optima associated with the distribution map D, and Dy is the
distribution map induced by standard microfoundations.

A problematic implication of Proposition 3 is that standard microfoundations also maximize
the negative externality called social burden [Miller et al., 2020]:

Burden(0) := [y y)ep,, [min{c(x,x) | fo(x) =1}y =1].

Social burden quantifies the average cost that a positively labeled agent has to expend in order to
be positively classified by fy. While previous work introduced and studied social burden within
standard microfoundations, and showed that Nash equilibria lead to smaller social burden than
Stackelberg equilibria, we use it to study implications of different modeling assumptions on agent
behavior. In particular, the following corollary demonstrates that standard microfoundations lead
to worst possible social burden across all microfoundations that satisfy Property 1.

Corollary 4. Under the same assumptions as Proposition 3, for every D € I, it holds that

Burden(6po(Dsp)) = Burden(Bpn(D)).

where Opo(D) denotes the performative optima associated with the distribution map D, and Dsy, is the
distribution map induced by standard microfoundations.



This result indicates that under natural modeling uncertainty it is hard for the decision-maker
to justify the use of standard microfoundations. Implicit in our argument is the following moral
stance: given a set of criteria for what defines a plausible model for microfoundations, the decision-maker
should not select the one that maximizes negative externalities. In our setup, the set of criteria is given
by agents satisfying expenditure monotonicity, and we showed that standard microfoundations
maximize negative externalities within all models satisfying this property. What this means is that
when agents deviate from the standard model, computing the performative optimal point using
standard microfoundations results in suboptimal performative risk and unnecessarily high social
burden, relative to the performative optimal point of the true agent responses.

3 Alternative microfoundations

The previous section revealed several issues with using standard microfoundations to analyze
strategic feedback effects. In this section, we depart from this classical approach and search for
models that are more appropriate for binary classification. First, we define an exhaustive space of
alternative microfoundations. Then, we collect a set of useful properties that we show are desirable
for a model of microfoundations to satisfy. These properties serve as a “compass” to guide our
search for an alternative agent model for strategic classification.

3.1 Defining the space of alternatives

The principle behind microfoundations for strategic classification is to equip the distribution
map with structure by viewing the distribution shifts induced by a decision rule as an aggregate
of the responses of individual agents. We consider a space of alternative microfoundations that
capture agent responses in full generality. To do so, we introduce a family of response types 7
that represents the space of all possible ways that agents can perceive and react to the classifier
fo. Each agent is associated with a response type t € 7, true features x € X, and a true label
y € Y. The response type fully determines an agent’s behavior through the agent response function
R;: X xO — X, where x” = R;(x, 0) is the feature vector to which an agent with true features x and
response type t games when the classifier fy is deployed.

Remark. Using the language of agent response functions, non-strategic agents correspond to a
response type fys such that R, (x,0) = x for all 6 € ©, and standard microfoundations correspond
to a response type tsy where Ry (x,0) is given by (1) for all 6 € ©. Note that a population of
agents could by heterogeneous and exhibit a mixture of different types, or even be described by a
continuum of response types.

Within this framework, we formalize microfoundations through a mapping M : X xY — T from
agents to response types. We denote the set of possible mappings M by the collection M that con-
sists of all® possible randomized functions X x Y — 7. Conceptually, the mapping M € M sets up
the rules of agent behavior, and the fact that these rules are independent of the deployed classifier,
makes our framework immune to Lucas’s critique [Lucas Jr, 1976]. One aspect that distinguishes
our framework from typical approaches to microfoundations in the economics literature is that it
directly specifies agent responses, rather than specifying an underlying behavioral mechanism. An
advantage of this approach is that responses can be observed, whereas the behavioral mechanism
is harder to infer.

3These mappings are subject to weak measurability constraints that we describe in detail in Appendix A.2
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Importantly, the mapping M coupled with the base distribution Dyy provides all the necessary
information to specify the population’s response to a classifier fy and reason about metric such
as the performative risk or social burden. In particular, for each 6 € O, the aggregate response
D(6; M) is the distribution over (R;(x,0),y) where (x,y) ~ Dxy and t = M(x,y). We use the notation
D(;M):0 — A(X xY) to denote the aggregate response map induced by M.

Naturally, with such a flexible model, any distribution map can be microfounded, albeit with
complex response types, as long as feature manipulations do not change the fraction of positively
labeled agents in the population. We refer to Appendix C.1 for an explicit construction of M.

Proposition 5. Let Dyy be a non-atomic distribution. Let D(0) be any distribution map that preserves
the marginal distribution over Y of Dxy. Then, there exists a M € M such that D(-; M) is equal to D(-).

This result primarily serves as a proof of existence that our general framework for microfoun-
dations can capture any aggregate distribution—and in particular, continuous distributions that
are observed empirically (e.g. Example 1). In the following subsections, we specify two properties
that we believe a natural model of microfoundations should satisfy.

3.2 Aggregate smoothness

The first property we describe is an aggregate-level property pertaining to the induced distribution
and its interactions with the model class. It rules out unnatural discontinuities in the distribu-
tion map. We call this property aggregate smoothness, and formalize it in terms of the decoupled
performative risk [Perdomo et al., 2020].

Property 2 (Aggregate smoothness). Define the decoupled performative risk induced by M to
be DPRy(6,0") := E(yy)~po;m)[ 1y # for(x)}]. For a given base distribution Dxy, a mapping M
satisfies aggregate smoothness if the derivative of the decoupled performative risk with respect to 6’
exists and is continuous in 6 and 6’ across all of ©.

Intuitively, the existence of the partial derivative of DPRy;(6,0’) with respect to 6’ guaran-
tees that each distribution D(60; M) is sufficiently continuous (and cannot have a point mass at the
decision boundary), and assuming continuity of the derivative we guarantee that D(6; M) changes
continuously in 6. This connection can be made explicit in the case of 1-dimensional features:

Proposition 6. Suppose that X C IR, and let © C IR be a model class of threshold functions. Then, if the
distribution map D(-; M) has the following properties, M satisfies aggregate smoothness w.r.t. ©:

1. For each 6, the probability density pg(x,v) of D(0; M) exists everywhere and is continuous in x.
2. For each x,y, the probability density pg(x,v) is continuous in 6.

We believe that these two continuity properties are natural and likely to hold in practice,
given the empirical evidence in Example 1 and Example 2. A striking consequence of aggregate
smoothness is that it is sufficient to guarantee the existence of locally stable points, using Brouwer’s
fixed point theorem.

Theorem 7. Given a base distribution Dxy and model class ©, for any M that satisfies aggregate
smoothness, there exists a locally stable point.

In fact, this result actually implies that stable points exist even under deviations from the
model, as long as aggregate smoothness is preserved. To demonstrate that this holds for mixtures
with non-strategic agents, we use the fact that aggregate smoothness is closed under mixtures, and
a population of non-strategic agents satisfies aggregate smoothness under weak assumptions on
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the base distribution. For ease of notation we formalize mixtures with non-strategic agents through
the operator ®,(M), where for p € [0,1], we let ©,(M(x,y)) be equal to tyg with probability p and
equal to M(x,y) otherwise. Our next result proves that aggregate smoothness of M guarantees the
robust existence of stable points for any p.

Corollary 8. Suppose that the non-performative risk R(6) := E(y y)ep,, Ufo(x) = y} is continuously
differentiable VO € ©. Then, for any M that satisfies aggregate smoothness and any p € [0, 1], there exists
a locally stable point for @,(M).

Conceptually, our investigations in this section have been inspired by the line of work on
performative prediction [Perdomo et al., 2020] that demonstrated that regularity assumptions on
the aggregate response alone can be sufficient to guarantee the existence of stable points for smooth,
strongly convex loss functions. Our results differ from these previous analyses of performative
stability in that we instead focus on the 0-1 loss function. In Appendix E, we provide a discussion
of why the Lipschitzness assumptions on the distribution map used in prior work are not sufficient
to guarantee the existence of stable points in our classification setting.

3.3 Constraint on manipulation expenditure

While aggregate smoothness focused on the population-level properties of the induced distribution,
a model for microfoundations must also be descriptive of realistic agent-level responses in order
to yield useful qualitative insights about metrics such as social burden or accuracy on subgroups.
A minimal assumption on agent responses is that an agent never expends more on manipulation
than the utility of a positive outcome.

Property 3 (Expenditure constraint). Given a model class © and a cost function ¢, a mapping
M e M is expenditure-constrained if ¢(R(x,0),x) < y for every 6 € © and every t € Image(M).

This constraint is implicitly encoded in standard microfoundations and many of its variants.
Furthermore, if c is a valid cost function, then this property, together with a basic monotonicity
requirement on agent’s feature manipulations, implies expenditure monotonicity. As discussed in
Section 2.2, expenditure monotonicity is satisfied by a large set of microfoundations models among
which the standard model achieves extreme social burden at optimality. In Section 4 we will focus
on one particular model for microfoundations within this set which results in a strictly lower social
burden than the standard model.

Reducing empirical burden. Apart from defining a natural class of feasible microfoundations
models, an additional advantage of Property 3 is that it naturally constrains each agent’s range of
manipulations. This can significantly reduce empirical burden for the decision maker who wants
to estimate the distribution map to compute a strategy robust classifier offline.

Assume the decision maker follows a two-stage estimation procedure to estimate a performa-
tively optimal point, similar to [Miller et al., 2021]. First, they compute an estimate M of the true
mapping M and infer D(-; M) from the base distribution Dxy. Second, they assume the model
reflects the true decision dynamics and approximate optimal points as follows:

Opo(M) := argming g E(, ;) po;n) [y # fo(x)}]. (4)

Using a naive bound (see Lemma D.2) it is not difficult to see that it suffices to compute an estimate
M of M, such that sup, TV(D(0; M), D(6; M)) < & to guarantee that PR(6po(M))—PR(Opo(M)) < 2€.
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However, achieving this level of accuracy fundamentally requires a full specification of the response
types for every agent in the population.

The expenditure constraint helps to make this task more tractable, in that the decision-maker
only needs to estimate a small fraction of agent responses to achieve the same bound on the
suboptimality of the obtained performative risk. To formalize this, let’s assume the decision maker
can define a set ©( C © that contains the performatively optimal classifier Opo(M). Then, given the
implied restriction in the search space in (4), the expenditure constraint enables us to restrict the
set of covariates that are relevant for the optimization problem to

$(©g,¢) := Ugep, fx € X : Ix" € X : fy(x') # fo(x) Ac(x,x') < p}. (5)

The salient part S(©g,c) C X captures all agents who are sufficiently close to the decision boundary
for some 6 € © so they are able to cross it without expending more than y units of cost. The
subset S(©y, c) can be entirely specified by the cost function ¢ and can be much smaller than X. We
explicitly construct a pruned search space Oy and S(0y,c) in an example setting in Appendix F.1.

We now describe the implications of constraining to the salient part for a 1-dimensional setting
where X CR and fy is a threshold function.* Let us define an agent response oracle that given x and
0, outputs a draw x” from the response distribution (R;(x, 0),y) where (x,y) ~ Dxy. We show with
few calls to the oracle, the decision-maker can build an sufficiently precise estimate of M.

Lemma 9. Let X C R, let © C IR be the model class of threshold functions. Suppose that M satisfies
the expenditure constraint, the distribution map D(-; M) is 1-Lipschitz with respect to TV distance,
and Qg C O : Opp(M) € ©g. We further assume that an agent’s type does not depend on their label,

. _ . 21n(1/¢€)
i.e., M(x,0) = M(x,1) for all x € X. Then, with O(C >3

C:=Pp, [x €S(Oy,c)], the decision maker can create an estimate M so that:

) calls to the agent response oracle, where

PR(epo(M)) < PR(Gpo(M)) + €.
with probability 0.9.

The number of necessary calls to the response function oracle for estimating M decays with
C :=Pp,, [x € S(Oy,c)]. Without any assumption on agent actions, the value of ( is equal to 1.
However, when the decision-maker is able to constrain S(®,, ¢) to a small part of the input space
by relying on the manipulation constraints, domain knowledge, or stronger assumptions on agent
behavior, ¢ and thus the number of oracle calls can be reduced significantly.

The concept of a salient part bears resemblance to the approaches by Zhang and Conitzer
[2021]; Zhang et al. [2021], which directly specify the set of feature changes that an agent may
make, rather than implicitly specifying agent actions through a cost function. While these models
assume that agents best-respond, our key finding is that constraining agent behavior alone can
lessen the empirical burden on the decision-maker.

4 Microfoundations based on imperfect agents

Using the properties established in the previous section as a guide, we propose an alternate model
for microfoundations that naturally allows agents to undershoot or overshoot the decision boundary,
while complying with aggregate smoothness and expenditure rationality. Furthermore, we show
that this model, called noisy response, leads to strictly smaller social burden than the standard
model while retaining analytical tractablility.

4Lemma 9 directly extends to posterior threshold functions [Milli et al., 2019]. We also present results regarding the
expenditure constraint in general settings in Appendix F.2.
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4.1 Noisy response

Noisy response captures the idea of an imperfect agent who does not perfectly best-respond to
the classifier weights. This imperfection can arise from many different sources—including in-
terpretability issues, imperfect control over manipulations, or opaque access to the classifier.
Inspired by smoothed analysis [Spielman and Teng, 2009], we do not directly specify the source of
imperfection but instead capture imperfection in an agnostic manner, by adding small random
perturbations to the classifier weights targeted by the agents. Since smoothed analysis has been
successful in explaining convergence properties of algorithms in practical (instead of worst case)
situations, we similarly hope to better capture empirically observed strategic phenomenas.

More formally, we assume that an agent of type t perceives 0 according to 6 + ¢, and given a
valid cost function c responds to a classifier fy as

Ry(x,0) :=argmax [y - fo.4(x) - c(x,x')], (6)

x'eX’

where y > 0 denotes the utility of a positive classification outcome, and X’ C R is a compact,
convex set that contains X.”> To model noise that is independent across agents, we define the
mapping M, : X xY — 7 as follows: For every x € X and y € Y, the random variable M (x, )
is distributed according to the multivariate Gaussian distribution N (0,Y) with mean zero and
diagonal covariance matrix ¥. = diag(c?,...,02). This model results in a distribution over perceived
values of O across the entire population that follows a Gaussian distribution centered at 6. The
noise level o reflects the degree of imperfection in the population.

Conceptually, our model of noisy response bears similarities to models of incomplete information
[Harsanyi, 1968] that are standard in game theory (but that have not been traditionally considered
in the strategic classification literature). However, a crucial difference is that we advocate for
modeling agents actions as imperfect even if the classifier is fully transparent, because we believe
that imperfection can also arise from other sources. Evidence for this was found in the empirical
study of Bjorkegren et al. [2020] discussed in Example 2 where agents act imperfectly even when
the classifier weights are fully revealed.

We want to emphasize that we instantiate imperfection by adding noise to the perceptions,
instead of directly adding noise to the responses. While both approaches would mitigate the
discontinuities in the aggregate distribution, the approach of adding noise directly to the responses
results in a less natural model for agent behavior that violates the expenditure constraint.

4.2 Aggregate-level properties of noisy response

Intuitively, the noise in the manipulation target of noisy responses smooths out the discontinuities
of standard microfoundations, eliminating the point mass at the decision boundary and region of
zero density below the decision boundary. We show this explicitly in a 1-dimensional setting.

Proposition 10. Let ©® C R be a model class of threshold functions, and suppose also that X CIR. For
any o € (0,00), the distribution map D(-; M, ) satisfies the continuity properties in Proposition 6, and
thus M, satisfies aggregate smoothness.

Remark. Proposition 10 implies that noisy response inherits the robust existence of stable points
from Theorem 7. Furthermore, we illustrate in Figure 1(b) how noisy response mitigates the large
oscillations of repeated retraining that we observed for standard microfoundations.

5We assume that c is defined on all of X’ x X, and for every x € X, it holds that c(x,x’) > y for all x’ that are on the
boundary of X’.
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Figure 2: Probability density of the aggregate response D(6) in a 1d-setting, where the base distribution Dy
is a Gaussian with x ~ N(0,0.5). We illustrate (a) D(60) for a population of agents that follow noisy response
(NR) compared to standard microfoundations (SM), (b) how D(0) of NR changes for different 8, (c) variations
in D(O) of NR for different values of o.

To visualize the aggregate-level properties of noisy response and compare them to standard
microfoundations we depict the respective density functions for a 1-dimensional setting with a
Gaussian base distribution in Figure 2(a). We observe how the density around the threshold 6
increases as a result of agents changing their features. The distribution D(6) can be bi-modal
as agents closer to the threshold 6 are more likely to change their features. The shape of the
response distribution changes with ¢ as illustrated in Figure 2(b). As 0 — 0, the aggregate response
of a population of noisy response agents approaches that of standard microfoundations. This
means that noisy response maintains continuity while also being able to approximate the aggregate
response of standard microfoundations to arbitrary accuracy. Finally, we note that the distribution
map of noisy response changes continuously with 6, as visualized in Figure 2(c). In fact, the
distribution map induced by noisy response is Lipschitz in total-variation distance, where the
Lipschitz constant grows with 1/c.

Lemma 11. Given o € (0, ), the distribution map D(0; M) is continuous in TV distance and supported
on all of X. Moreover, the distribution map is Lipschitz in TV distance. That is, for any 60,0’ € ©, we
have that TV (D(6’;M,,), D(6; M,;)) < ﬁ 16— 6|,

This result displays a favorable property of noisy response compared to standard microfoundations,
in that the performative risk changes smoothly with changes in the classifier weights.

Remark (Implications beyond 0-1 loss). Lemma 11 implies that noisy response induces a distribu-
tion map that is Lipschitz in Wasserstein distance for any cost function, where the Lipschitz constant
depends on the diameter of the set X’. For smooth and strongly convex loss functions, this readily
implies convergence of repeated retraining [Perdomo et al., 2020; Mendler-Dunner et al., 2020].

4.3 Trade-off between imperfection and social burden

Apart from satisfying desirable aggregate-level properties, noisy response also satisfies the expendi-
ture monotonicity requirement in Property 1 (see Proposition D.1 for a proof). By Corollary 4, this
implies that in Setup 1 the social burden of the optimal classifier computed under noisy perception
is no larger than that of standard microfoundations. That is, Burden(6pn(M,)) < Burden(Opo(Dspm))-
In certain cases, we can obtain a stronger result and show that the social burden of noisy response
is strictly lower than that of standard microfoundations.
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Figure 3: Optimal points in a 1d-setting for different values of o (noise in the response model) and p (fraction
of non-strategic agents). The population consists of 10° individuals. Half of the individuals are sampled

from x ~ N(l, %) with true label 1 and the other half is sampled from x ~ N(O, %) with true label 0. We
compute the optimal points and the social burden (see Section B)). [CM: not sure what this refers to]

Corollary 12. Consider Setup 1. Let Mgy be the map associated with standard microfoundations, let
0 € (0,00), and let the cost function be of the form c(x1,x,) = |x1 —x5|. Suppose that [Os;,0s;+1] € ONX,
where Og; is defined so that u(6sy) = 0.5. Then, it holds that:

Burden(6po(M,)) < Burden(Bpo(Mspr))-

In fact, the social burden for fuzzy perception can be well below the social burden of standard
microfoundations. To demonstrate this we visualize the threshold and social burden across a
variety of different parameters of ¢ and p in Figure 3. The dashed lines indicate the respective
reference values for standard microfoundations (SM) and for a population of non-strategic agents
(NS). We observe that the threshold as well as the social burden decrease with the fraction p of
non-strategic agents in the population. Furthermore, if every agent follows noisy response (p = 0),
the threshold and the social burden are decreasing with ¢ (and hence the degree of imperfection in
agents response). Overall, the acceptance threshold and the social burden of optimal classifiers
derived under our new microfoundations is significantly lower than for standard microfoundations.

4.4 Using noisy response in practice

Microfoundations are useful in practice to model and anticipate how the population responds to
a deployed classifier. This tool is particularly powerful if the decision maker can estimate agent
behavior without needing to expose the population to potentially inaccurate and harmful classifiers
to explore and learn about agents responses.

An appealing aspect of assuming a parameterized model of the agent responses is that the
complex task of learning agent behavior is reduced to a parameter estimation problem. For noisy
response, the aggregate response D(0) is parameterized by the variance o of the perception noise. In
practice such parameters of individual responses can often be estimated via individual experiments,
i.e., by gathering information about individuals without ever deploying a classifier. For example,
the decision maker can randomly sample agents in the population, ask survey questions to learn
about their perceptions of the deployed classifier, and infer the variance o from these samples. We
refer to [Bjorkegren et al., 2020] for an actual field experiment that shows a example procedure
for how to similarly obtain a reasonable estimates of the cost function c. An error in parameter
estimation can then be translated into an error in the aggregate response.
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Lemma 13. Given a population with noisy perceptions with parameter o € (0,00), and an estimate & of
o, it holds that TV(D(6; M), D(0;M;)) < 3 [ —<1

min(o2,62)"
Combining Lemma 13 with a bound on the performative risk, we obtain the following robust-
ness guarantee of the performative risk to estimation errors in noise parameter o.

Corollary 14. Let the population be the aggregate of agents following noisy perceptions with parameter
0 €(0,00), and let & € (0, 00) be an estimate of the perception parameter o. Then the suboptimality of the
estimated performative risk Opo(Mg) on the true population represented by M, is bounded by:

PR(0p0(My)) - PR(Opo (M) < 3,/ ——5—.
min(c?4,672)

Hence, if the true distribution map is sufficiently close to some parameterization of noisy re-
sponse, estimating the noise parameter ¢ provides a robust procedure to infer an estimate of the
performative optima in practice.

Overall, noisy response offers a more descriptive and prescriptive model of agent behavior
compared to the standard model, and still maintains analytical tractability. While we have focused
on Gaussian noise in the perception function throughout this work, the outlined benefits of noisy
response also apply to other parameterized noise distributions, as long as they are sufficiently
smooth and continuous on all of R”. Hence, depending on the application, the decision-maker
might prefer to pick a different noise model that can better capture the expected particularities of
agents imperfections. The inference procedure via individual experimentation can then be adapted
to obtain performative risk estimates that depend on the parameters of the noise distribution.

5 Discussion

Traditional approaches to decision making in strategic settings take either a purely individual-
level approach like strategic classification, or a fully population-based approach like performative
prediction. In this work, we maintain both perspectives. On one hand, we utilize microfoundations
to endow the distribution shift induced by strategic behavior with natural structure, and on the
other hand we also investigate population-level properties of the distribution they induce.

Taking this holistic view enabled us to identify degeneracies with standard microfoundations
in the context of binary classification. In particular, it revealed that the aggregate response induced
by the standard model is inherently discontinuous, which is the main cause for the brittleness
of standard microfoundations identified in this work. By investigating the space of alternative
microfoundations, we depart from this classical approach and focus on general properties of a
model of microfoundations that are desirable. Finally, we proposed noisy response as an alternative
microfoundation that is motivated by empirically observed imperfections in the agent response,
satisfies the desired properties, and remains analytically tractable.

While we have focused on strategic classification in this work, we expect that considering the
interplay between the individual-level and aggregate-level properties of strategic behavior could
lead to novel insights in dynamic decision-making more generally. We believe that whenever
distribution shifts result from individuals actions in social settings, a suitably chosen microfoun-
dations model can provide a powerful tool for the decision-maker to reason about implications
of a predictive model, and design effective and socially desirable algorithms, without exhaustive
exploration.
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A Additional discussion of assumptions

A.1 Cost function

Let us discuss some context and implications of Assumption 1 defining a valid cost function.
Unlike prior work [Milli et al., 2019; Miller et al., 2020; Braverman and Garg, 2020], we model a
nonzero cost for all modifications to features, regardless of whether these modifications are in the
right direction. In the spirit of generalizing beyond standard microfoundations, this accounts for
how agents may erroneously expend effort on changing their features in an incorrect direction, as
empirically demonstrated in Example 2. We further note that the definition of a valid cost function
does not require symmetry in the arguments, which differentiates it from a metric.

A.2 Measurability requirements for alternative microfoundations

We now describe the measurability requirements that we need in order to define and work with
maps M € M. If we ignore measurability requirements for a moment, then notice that each map
M € M can be associated with a distribution Dyxy € A(7 x X x Y) given by (M(x,y),x,). Since
it is easier to define measurability requirements on Dy xy, we specify requirements on Dyxy,
which gives an implicit specification of requirements on M. First, we define the probability space.
Consider the sample space 7 x X x Y. We can define a sigma algebra F over () by viewing 7 as the
set of functions X x ® — X, and using that X CR%,® C IR?. The probability measure can then be
given by Drxy.

Since image(M) = supp(D7xy) contains a very small fraction of the sample space 7 x X x Y, we
can work with a much smaller probability space in this context. This probability space is defined
as follows: the sample space is supp(D7xy) € F (i.e. a subset of 7 x X x Y in the sigma-algebra),
and the sigma-algebra is intersections of every set in F with supp(D7xy). The probability measure
given by D7y can be defined over this smaller probability space.

The distribution map D can thus be viewed as random variables over this probability space. In
particular, D(0) is the distribution of the random variable (R;(x,0),v). In order for this random
variable to be well-defined, we place the following measurability assumption.

Assumption 2 (Measurability requirement on R). We require that for each 6 € © the function
Fg :supp(Drxy) = X xY given by Fy(t,x,v) = (R(x,0),) is measurable.
A.3 Assumption on gaming behavior

In Section 3.3 we make the assumption that agent cannot have differing types solely on the basis of
their true label. In other words, the map M cannot take into account the true label.

Assumption 3. For a map M € M, we require that M(x,0) = M(x,1) for all x € X.

Assumption 3 means that agents with features x who have true label 0 versus true label 1 have
identical distributions over response types in aggregate. We need this assumption to reason about
performatively optimal points, because a decision maker has no access to the true labels beyond
agents’ reported features when anticipating strategic behavior.

A.4 Compactness of X

This assumption guarantees that the behavior of agents who follow standard microfoundations is
well-defined.
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Fact 1. Suppose that c is a valid cost function, and X is compact. Then sup,..x(fy(x") — c(x,x)) is
attained on some x* € X and the behavior of rational agents with perfect information is well-defined.

Proof. Let Xpos := {x € X[ fo(x) =1} € X and @ := sup,x(fo(x’) — c(x,x’)). Suppose that ® = 0.
Then, by Assumption 1 the supremum is attained at x’ = x. Now, suppose that ® > 0. Then
O =1- infx,EXPOS {c(x, x’)}. By the fact that X, is a closed subset of a compact set (and thus

compact), and c is continuous, we know that infxfexpm {c(x,x’)} is attained on some x’ € X. O

B Proofs for Section 2

B.1 Proof of Proposition 1

In order to prove Proposition 1, we show that the gaming behavior of rational agents with perfect
information can be characterized in the following way: Any rational agent with perfect information
either will not change their features at all or will change their features exactly up to the decision
boundary. We use the notation:

Ry, (x,0) := argmax(fy(x’) — c(x,x’)) (7)
x'eX
to denote how an agent with features x who follows standard microfoundations will change their
features in response to fp.

Proposition B.1. Suppose that c is a valid cost function. Then for any x the response (7) is either
Ry, (x,0) = x or Ry (x,0) is on the decision boundary of fg.

Proof of Proposition B.1. By Fact 1, we know that the quantity argmax,,.x(fo(x) — c(x,x’)) is well
defined. It suffices to show that if R, (x,0) # x, then R, (x,0) is on the decision boundary of fy.
If Ry, (x,0) = x, then we know that c(x, R, (x,6)) > 0. This means that fy(x) = 0 and R, (x,0) €
argmax, .x(fo(x') — c(x,x")) = argminx,exposc(x,x’), where X0 1= {x € X | fo(x) =1}. Assume for
sake of contradiction that Ry (x,6) is not on the decision boundary. Then since x ¢ X,,,; and
Ry (x,0) € Xpp05, there must exist x" on the line segment between x and Ry, (x,0) such that x” is on
boundary of X, and thus the decision boundary of fy. Moreover, by Assumption 1, we know
that c(x,x") < c(x, Ry, (x,0)). Since X, is closed, we see that fg(x) = 1. Thus, [fo(x') —c(x,x")] <
[fo(Ryg,, (x,0)) —c(x,x")] which is a contradiction. O

Now, we use Proposition B.1 to prove Proposition 1.

Proof of Proposition 1. It suffices to show that D(0) is either equal to Dxy or is a discontinuous
distribution. Let Q(6) C X be the set of agents who change their features at fy, i.e.

Q(6) :={x € X | Ry (x,6) = x}.

If P(yy)epy, [x € Q(0)] = 0, then D(0) = Dyy. Otherwise, suppose that P(, ,)cp,, [x € Q(0)] > 0. By
Proposition B.1, all of the agents in Q(6) will game to somewhere on the decision boundary: that is,
Ry, (x,0) will be on the decision boundary for all x € Q(0). Thus, in D(6), there will be at least a
P(x,y)eDy, [x € Q(6)] probability mass of agents at the decision boundary, which is measure 0. This
means that D(6) is not a continuous distribution. O
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B.2 Proof of Proposition 2

For convenience, we break down Proposition 2 into a series of propositions, roughly corresponding
to part (a), part (b), and part (c), which we prove one-by-one.

First, let’s consider the case where p = 0. By the assumptions in Setup 1, we know that there
exists a unique 6 € © such that p(6) = 0.5. We call this value 05 (and it is in the interior of ). We
claim that this is the unique locally stable point when p = 0.

Proposition B.2. Consider Setup 1, where a p = 1 fraction of agents are non-strategic. Then, Ogy
(defined above) is the unique locally stable point.

Proof. Since p = 1, the distribution map is given by D(60) = Dxy. A locally stable point 6 must be a
local minimum or a stationary point of the following optimization problem:

min e, [1{fo(x) = 9} = min (Egpep,, [1x 2 0)(1 = p(e)] + Bpyypeny, [Lix < 0}p(0)]).
Notice that the unique such 6 is Ogy . O

We introduce some basic properties and notation for agents who behave according to standard
microfoundations. By Proposition B.1, we know if an agent games when the classifier fy is deployed,
then they will game up to boundary, which in this case, is 6. We adopt similar notation to the proof
of Proposition 1, and we denote the set of who game by:

Q(O) ::{xeXlRtSM(x,G) ::x} ={xeX|c(x,0)<1,x<06}.

(Technically, the agents x € Q(0) for whom c¢(x,0) = 1 are indifferent between not gaming and
gaming to 6, but this is a measure 0 set by the assumption that Dyy is continuous, and the
assumption that c is valid (Assumption 1)). For 6 # min(®), we see that for D(0), there will be a
point mass at 0 (from agents in Q(0)), the region Q(0) will have zero probability density, and the
rest of the distribution will remain identical to Dyy.

We first characterize the set of stable points at p = 0. This follows a very similar argument to
Lemma 3.2 in [Milli et al., 2019], but since our assumptions as well as our requirements for stability
are slightly weaker, the characterization result looks slightly different. (In particular, points above
the Stackelberg equilibrium can be locally stable points.)

Proposition B.3. Consider Setup 1, where a p = 0 fraction of agents are non-strategic. Then, there exists
a locally stable point, and moreover, the set of locally stable points forms an interval [0,,;,, max(0©)],
where 0,,;,, is the unique value such that:

IE(xry)GDXY [p (X)IXEQ(emin)]

=0.5.
IE(X’}))GDXY [IXEQ(emin)]

(Moreover, it holds that 0,,;, > Og, and c(Og,0,,i,) < 1.)

Proof. First, we show that 8" = min(©) cannot be a stable point Notice that D(0*) = Dxy. Thus,
0" is a local minimum or stationary point of mingcg IE(xy ~Dyy) 1Y # fo(x)}. However, this is not
possible because p(min(©)) < 0.5 by the assumptions in Setup 1.

Now, we consider 6 # min(©). In this case, as discussed above, D(6) has a point mass at 6.
Roughly speaking, the only property that needs to be satisfied for 0 in the interior of © to be
a local minimum of E, y)cp(e)[1{fe:(x) = y}] is that it needs to be suboptimal for the decision
maker to move just above the point mass (the decision maker never benefits from moving to
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O — € because there is a region of zero probability density underneath 6). The loss induced from
the point mass at 0 is [E, )cp,, [(1 - p(x))1{x € Q(0)}], while if the decision-maker moves just
above 0 is B y)ep,, [P(x)1{x € Q(0)}]. The condition thus becomes E y)ep,, [p(x)1{x € Q(0)}] >
E(x,y)eDy, [(1 = p(x))1{x € Q(0)}], which can be written as

E(xp)eDyy [P(x)1{x € Q(0)}]
E(epeny [T QON = (8)

ro):=

It suffices to show that the set of points where (8) is satisfied is an interval of the form [0,,;,, max(©)].

First, we show that the set of stable points forms an interval. It suffices to show that I'(0) is
continuous and strictly increasing in 6. By the assumption on ¢ (Assumption 1), we see that the
endpoints of the interval Q(6) are strictly increasing in 6. This, coupled with the fact that ¢ is
strictly increasing in x (assumed in Setup 1), implies that I'(0) is continuous and strictly increasing
as desired.

Furthermore, when p(0) < 0.5, the condition in (8) is never satisfied, and thus all stable points
0 satisfy 6 > Og1, and hence 6,,;, > Og .

Lastly, we show that this interval is not nonempty, and that ¢(6gy, O1nin) < 1. Consider 6 such
that c(6g,0) = 1 (which we know exists by Setup 1), we see that Qg = [Osr,0]. Using the conditions
on ¢, this means that condition (8) is satisfied and there is actually a strict equality. Using that c is
valid, this means that ¢(Ogy, Omin) < 1. O

We now prove that no locally stable points exist for 0 <p < 1.

Proposition B.4. Consider Setup 1, where a 0 < p <1 fraction of agents are non-strategic. Then, there
are no locally stable points.

Proof. When 0 < p < 1, we show that there are no locally stable points. Assume for sake of
contradiction that 6" is a locally stable point. Recall that for 6* to be locally stable, 6" must either
be a stationary point or a local minimum of mingeg E(x y)~p(6,s) L{y # fo(x)}. We divide into three
cases: (1) 0 =min(©), (2) " >min(©) A p(6¥) < 0.5, (3) " > min(©) A p(6) > 0.5, and show that
each results in a contradiction.

For the case (1), where 6* := min(©), we see that D(Q*) = Dxy. Thus, 6" is a local mini-
mum or stationary point of mingeg E(y,y)-p,,) 11y # fo(x)}. However, this is not possible because
p(min(©)) < 0.5 by the assumptions in Setup 1. For the remaining two cases, we know that D(6")
has a point mass at 0*. This means that [E(, y)ep(e-)1{y # fo(x)} is not differentiable at 6" = 6%, and
so 0" must be a local minimum.

For case (2), notice that Q(6*) consists a nonzero density of agents for whom p(x) < 0.5, and
for all agents x € Q(6%), it holds that p(x) < 0.5. The decision maker thus wishes to move just
to the other side of the point mass. (This is possible because 6" < max(®) based on the fact
that p(6*) < 0.5 and the assumptlons in Setup 1.) In particular, lime_,0 E(y y)ep(6) 1y # fo-1e(x)} <
lim_,o 1E(x v)eD(O Ly # fo(x

For case (3), notlce that there exists € > 0 such that p(6) > 0.5 and 6 € Q(0") for all 0 € (6" —¢,6%).
The presence of non-strategic agents means that the decision-maker wishes to move to 6 —€ to
achieve better performance on non-strategic agents. Since there are no strategic agents within
(0" —¢, 9*) this can be done without affecting the classification of strategic agents. In particular,

]E(xyED ?ife el <]E(xyeD Vife O

Now, we prove that repeated risk minimization oscillates when 0 <p < 1.
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Proposition B.5. Consider Setup 1, where a 0 < p <1 fraction of agents are non-strategic. Repeated
risk minimization will oscillate according to the following behavior. Let 3¢ denotes the (unique) locally
performatively stable point at p = 1 and let Ggs denotes the minimum locally performatively stable point
at p = 0. RRM will oscillate between 61%5 and a threshold f(p) > 61%8, where f(p) is decreasing in p,
approaching 611)5 as p — 1 and approaching 685 asp — 0.

Proof. Using Proposition B.2, we see that there is a unique performatively stable point for p =1,
given by 81135 := Og.. Using Proposition B.3, we see that the smallest locally stable point is given by
985 = emin'

In the case of p € (0,1), the distribution map D(0) takes the form of a mixture with p weight on
Dxy and with 1 — p weight on the distribution map of agents who behave according to standard
microfoundations (which has a point mass at 0, zero density within Qg, and the same as the original
distribution elsewhere). The main step in our proof is an analysis of the global optima of

B(O) = argming,eG)IE(x,y)ND(e) I{y = for(x)}.
for each 0 € ©. For convenience, we let
DPR(60,6’) := E(x y)-p(o) L{y # for(x)}.

We split into three cases: (a) 6 > Oy, (b) 6 < Og, and (c) Oy < O < Opyin.

Case (a): 0 > O We claim that B(0) = {Os1 }. In this case, the proof of Proposition B.3 tells us
that moving just above the point mass will incur no better risk than at 6. Moreover, since p(x) > 0.5
for all x > 0 > O,,;,, we see that DPR(6,60’) > DPR(0, 0) for all 8’ > 6. Because of the presence of
non-strategic agents, a p fraction of agents will be present in Qp, and these agents do not change
their features. Moreover, for 8’ < min(Qy), D(60) looks like the base distribution. Since p(x) > 0.5
for Osp < x < Opyin, we see that DPR(6,0’) < DPR(6, 0) for all 65; < 6” < 6. Moreover, this argument
actually shows that Og; = argminQSLsg,SeDPR(G, 0’). Lastly, since p(x) < 0.5 for x < Og1, we see that
DPR(@, 6/) > DPR(6,0g) for all 6" < Og..

Case (b): 0 <0g1. If 6 <0Ogp, then we claim that B(0) = {6gy }. In this case, all agents x below Og.
in D(0) have p(x) < 0.5. Thus, O = argmingge,SQSLDPR(G,Q’). Moreover, above Og1, D(0) looks
like the base distribution. This means that DPR(6,60’) > DPR(0, O ) for all 8’ > Og; , as desired.

Case (c): Ogp < 0 < Opin. Using the same argument as Case (a), we see that DPR(6,0’) >
DPR(6, 05y ) for all 8’ < Os;. Moreover, we also see that the risk obtained by the threshold right
above the point mass beats any higher threshold: that is, lim._,g >0 DPR(6,0 + €) < DPR(6, 8’) for
any 0’ > 0. This is because all agents x > 0 have p(x) > 0.5.

Thus, all we need to do is to compare the threshold right above the point mass with the threshold
Os.. Notice that these two classifiers behave the same on strategic agents with true features x ¢ Qg
(this is because Og € Qg, because by Proposition B.3, we know that ¢(6g,0) < c(Osy, Omin) < 1.).
Moreover, they also behave the same on non-strategic agents not in g < x < 6. Thus, we only
need to focus on strategic agents with true features in Qy and non-strategic agents with Ogp <x < 6.
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Thus, we use the expression in the proof of Proposition B.3 to see that:

lim DPR(O,0 +¢€)—DPR(O,041)

€—0,e>0

=P E(xp)epy, [1{x € [0s1, O1}p(x)] + (1 = p)E(x, ey, [1{x € Q(O)}p(x)]
—PE(xp)eny, [Hx € [Os1, O1}(1 — p(x))] = (1 = p)E(x,p)ep,, [1{x € Q(O)}(1 — p(x))]
= 2pE(xy)enyy [1{x € [Os1, O1}p(x)] + 2(1 = p)E(x y)epy, [ L{x € Q(O)}p(x)]
= PE(xy)eny, [1{x € [Os1, O]} = (1 = p)E(x y)epy, [L{x € Q(O)}].

The relevant quantity is:

Z(p) := p(Exp)edyy Treog,0)(20(x) = 1)) + (1 = p) (Exp)enyy [reoo) (20(x) - 1)])

Let’s denote by 0" the parameter weights “right above the point mass” (that is, the parameter
weights given by approaching 6 from above 6, without ever reaching 0). We see that B(0) = {0} if
and only if Z(p) > 0, B(60) = {07} if and only if Z(p) <0, and B(0) = {6%,0s_ } if and only if Z(p) = 0.

Now, we show that Z(p) is increasing in 6. Let py,s. be the pdf of Dyy. The derivative of the
first term is: p(2p(0)0 — 1)ppase(6) > 0, and the derivative of the second term is: (1 —p)(2p(0) —
1)Pbase(6) — (1~ p)(2p(min(Q(6)) ~ 1)Ppase (min(Q(6))) > 0, as desired.

Moreover, at 6 = O, we see that Z(p) < 0; at 6 = O;n, on the other hand, Z(p) > 0.

Thus, repeated retraining will oscillate between Os; and f(p), where f(p) is the value such
that Z(f(p)) = 0. To see that f(p) is decreasing in p, notice that Z(p) is increasing in p for all
Osp < 0 < Opin- As p — 0, it is easy to see that f(p) = Opin. As p — 1, it is easy to see that

f(p) — Osr. O

Using the above results, we can conclude Proposition 2.

Proof of Proposition 2. When p = 1, we can apply Proposition B.2. When p = 0, we can apply
Proposition B.3 to see that a locally stable point exists. When 0 < p < 1, we can apply Proposition
B.4 to see that no locally stable point exists. For the behavior of repeated risk minimization, we can
apply Proposition B.5. O

B.3 Formal Statement and Proof of Proposition 3

We give a formal statement of Proposition 3 using the technology of alternative microfoundations.
Let ¢ be a valid cost function. First, we formalize expenditure monotonicity (Property 1) in the
language of alternative microfoundations.

Property 4. Let © be a model class of threshold functions, and let ¢ be a cost function. A mapping
M e M satisfies expenditure monotonicity if c(R;(x,0),x) < y for every 6 € © and every t € Image(M),
and if fg(R;(x;0)) =1, then fy(R;(x;0’)) =1 for all 6" < 6.

Let M" be the set of maps M such that every t € Uy )exsupp(M(x)) satisfies expenditure
monotonicity (Property 4) and such that Assumption 3 is satisfied. Let & be the set of distribution
maps D(-; M) for M € M".

Proposition B.6. Consider Setup 1. Let  be the class of distribution maps defined above. Then:

Opo(Dsm) = Opo(D)
Burden(60po(Dsyr)) = Burden(Opo(D)).

where Dg), denotes the distribution map given by standard microfoundations, and Opo(D) denotes the
minimal performatively optimal point associated with the distribution map D.
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Proof. For ease of notation, let Og; be the unique value such that p(6s;) = 0.5. It is easy to see that
0’ = Opo(Dsy) is the unique point such that c(6s;,0’) = 1 and 6’ > Og; .

Since Burden(-) is monotonic in its argument, all we need to do is to show Opg(Dspny) = Opo (D).
It suffices to show that for 6 > Opn(Dsy) and for any D € D, it holds that PR(60) < PR(Opo(Dsm)),
where the performative risk is with respect to D.

First, let’s consider the set of agents Sy := {(t,x,v) | x < Og}. For (t,x,v) € Sy, notice that c(x, 0) >
c(x,0p0(Dspn)) > ¢(Osy, Opo(Dsm)) = ¢(Osy, Opo(Drppr)) = 1. By the expenditure constraint, this
means that these agents will not game on fy or fg, (p,,): i-€, Ri(x,0) = x and R(x, Opo(Dsm)) = x
for (t,x,) € S1. Thus, fg, (Do) (Re(X,0p0(Dsm))) = fo(Ri(x,0)) = 0. The performative risk with
respect to D is thus equivalent on S; for fg and fg,(pq,)-

Now, let’s consider the remaining set of agents S, :={(t,x,7) | x > Os.}. Let S) C S, be the set

Sy =1{(t,x,p) € S| fo(R4(x,0)) = 1}.

and
Sy = {(t,x,y) € 52| fopo (D) (Rt (%, Opo(Dsm))) = 1}-

We claim that S) C S/ This is because of the second condition in expenditure monotonicity that if
x was labelled positively by fy, , then x is also labelled positively by fg: in particular, we can thus
conclude that fg(R(0)) = 1 implies that fg, (p,,,)(R¢(x,0p0(Dsm))) = 1.

Now, we claim that the performative risk with respect to D on S, is no better for 6 than for
Opo(Dsp). This follows from the fact that S; € S, and the fact that p(x) > 0.5 for (t,x,9) € S,
coupled with Assumption 3. This completes the proof. O]

C Proofs for Section 3

C.1 Proof of Proposition 5

We prove Proposition 5. The intuition is that there is a response type for every possible agent
response, and it remains to show that the appropriate choice of agent response types can “shift the
mass” from Dyy to D(0). In fact, M only needs to map the population to two different response
types. Now, we formally prove this result.

Proof of Proposition 5. We prove Proposition 5 by construction and show that there is an M that
can microfound any distribution map. We construct M as follows. We construct response types
to and t;, and define M(x,0) = ¢, for all x € X and M(x,1) = t; for all x € X. In other words, we
associate agents with true label 0 with the type f; and agents with true label 1 with the type t;.

In order to construct ty and t;, we define the following probability measures over the measure
space X C RP equipped with the Borel sigma-algebra. We consider u°(0) to be the probability
measure given by the distribution over x when (x,y) € D(6) and y = 0. We define yu!(0) similarly.
We let %y be the probability measure given by the distribution x where (x,y) € Dxy and y = 0, and
we define piy analogously.

First, we claim that it suffices to prove that for each 6 € © there is a measurable map fyg: X — X
that maps the probability measure %, to u°(6), and a measurable map fi g : X — X that maps
[/l>1(Y to p!(0). In this case, we can define t; to be given by R, (x,0) = fo,0(x) and t; to be given by
R, (x,0) = fi 9(x). Let’s now consider the distribution given by (R;(x, 0),y) where (¢,x,y) ~ Drxy-
The condition distribution over y = 0 is given by u°(0) and the conditional distribution over y = 1
is given by u!(0), which means that the distribution over all is given by D(0), as desired. Moreover,
the measurability requirements on f; g and f; g guarantee that Assumption 2 is satisfied.
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Thus, it suffices to construct fy ¢ and f; g for 0 € © that satisfy the above conditions. To do this,
we make use of Proposition 3 in [Gatzouras, 2002], which says that there exists a Borel mapping
from any tight non-atomic measure to any other probability measure. Since the probability measure
associated to Dyxy is non-atomic, we see that ]&Y and y)l(Y are non-atomic as desired, and so a Borel
mapping from p%y to 1%(0) exists and a Borel mapping from sy to p!(0) exists. O]

C.2 Proof of Proposition 6

Proof of Proposition 6. To prove Proposition 6 we show that dPRy(0’) is continuous in 6 and 6’. We
see that

DPR(6,6’) = J

x'>6’

po((x,0)dx’ + j po((, 1))d.

x'<0’

Let’s take a derivative with respect to 6’ to obtain:

dPRy(0’) = —pe((0”,0)) + pe((60',1)).

The first continuity requirement tells us that this is continuous in 8’, and the second continuity
requirement tells us that this continuous in 6. O]

C.3 Proof of Theorem 7 and Corollary 8

We first recall the definition of the decoupled performative risk [Perdomo et al., 2020]:

DPR(0,0") := E(x y)ep(o) [1 (for(x) 2 9)].

The gradient of the decoupled performative risk plays an important role in our analysis of locally
stable points. In order to take derivatives at the boundary, we consider an open set ®’ D O that is
also bounded and convex, and assume there are classifiers associated with each 6 € ®’, although
the decision maker only considers classifier weights in ©. We use the notation:

dPRy(0’) := Vg:DPR(6,60) = Vo E( y)~pe) 1{y # for(x)}]

to denote the gradient of the decoupled performative risk with respect to the second argument. To
prove Theorem 7 we show that the continuity of the derivatives of the decoupled performative risk
guarantees the existence of stable points under mixtures with non-strategic agents.

Proof of Theorem 7. Our main technical ingredient is this proof is applying Brouwer’s fixed point
theorem on Gg,;(0) = Projg (6 + 11dPRg(6)). It thus suffices to show that the map 0 — Projg (0 +
ndPRg(6)) is continuous.

First, we show that aggregate risk smoothness implies that 6 +— Projg(6 + ndPRy(0)) is a
continuous map. By aggregate risk smoothness, we know that dPRy(6) exists for all 6 € ©. Moreover,
for any 0 € ©, aggregate risk smoothness tells us that:

lim ||[dPRg(6)— dPRg,(0’)|| < lim ||[dPRg(6) — dPRg/(0)|| + lim ||dPRg (0) — dPRg/(6’
Jim {|dPR(6) ~ dPRy/(6")]| < lim [|dPRy (6) — dPRo/(0) + lim ||dPRo/(0) —dPR:(9”)|

Thus, dPRg(6) is continuous in 6. Moreover, since the sum of continuous functions is continuous,
this means that 6 — 6 + 1dPRy(0) is continuous. Now, since projection onto a convex set is a
contraction map, we can conclude that 6 — Projg (6 + 11dPRy(0)) is continuous as desired.

O

We now prove Corollary 8.
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Proof of Corollary 8. By Theorem 7, it suffices to establish that dPRy(6) exists and is continuous
for the population as a whole. We use the fact that since derivatives are linear, we can break this
down into a term for non-strategic agents and a term for strategic agents. Since the sum of two
continuous function is continuous, it suffices to show that dPRy(60) exists and is continuous for
non-strategic agents and for strategic agents. For strategic agents, this follows from aggregate risk
smoothness. For non-strategic agents, since the (non-performative) risk R(60) := E(y y)ep,, 1{fo(x

v} is differentiable in 6 and dPRy(0) = VyR(0) is continuous in 6 as desired. D

C.4 Proof of Lemma 9

We consider the 1-dimensional setting where X C R and © is the class of threshold functions.
First, we show a bound on the performative risk in terms of the Kolmogrov-Sminorff (KS) distance
between the true distribution map and estimated distribution map. To state this bound, we
introduce the following notation. We use a subscript notation Dg(g, )(6; M) to denote the aggregate
response distribution D(0; M) restricted to agents with true features x € S(®, c), where S(Qy, c)
is defined as in (5). Let Dg((ao,c)(G;M) be the marginal distribution over x of the conditional

distribution of (x,y) ~ Ds(g,,)(0; M) conditional on y = 0. We define Dé . C)(Q;M), Dg(@)o,c)(Q;M)'
and D;(@)O’C)(G;M) analogously.

(©

Lemma C.1. Let © be a model class of posterior threshold functions, and ¢ be an outcome-valid cost
function. Suppose that M, M restricted to the domain (X \ S(©y,c)) x Y are expenditure constrained.
Then, for any ©y C O : Opo(M) € Oy, the predicted performative optima Opo(M) satisfies:

PRy (0po (M) < PRy (Opo(M))) +2&

where & is defined to be
sup(Ag + By)
0

where

A(0):=P[x €S(®,c) & p=0]KS(DY g ,(6:M), DY (6;M))
B(0):=P[x € S(0p,¢) & y= 1]KS(Dé(@)o,c)(G;M),D§<®O,C)(6;M)).

Proof. Let PR(9; M) denote the performative risk at @ on D(6; M) and let PR(9; M) denote the perfor-
mative risk at @ on D(0; M). It suffices to show that [PR(6; M)-PR(0;M)| < & for all 6 € @ (since this
would mean that PR(0po(M); M) < PR(Opo(M); M) + & < PR(Opo(M); M) + & < PR(Opo(M); M) + 28,
as desired). Notice that:

IPR(60; M) = PR(6; M)| = [ B p)~piosn) [ 1y = fo ()} =By o 1y # fo(x)}]].

Let’s let Dy xy be the distribution of (t,x,y) where (x,y) ~ Dxy and t ~ M(x,v). Similarly, let
Drxy be the distribution of (t,x,y) where (x,y) ~ Dxy and t ~ M(x,y). Notice that:

[IPR(6; M) = PR(6; M)| = [B(t,5,5) -1, [ 1Y # fo(Re(x, O =By 1 ), [ 1Y # fo(Ri(x, 0)}]]-

Now, we claim that for any agent (¢, x) where x ¢ S(©,c) and for t € supp(Drxy) U supp(Drxy),
it holds that fy(R;(x,0)) = fo(x) for every 6 € ©,. Note that since M satisfies the expenditure
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constraint with respect to c, then we know that if x ¢ Sy, it holds that fg(R;(x,0)) = fg(x). Moreover,
note that since Sg C S(®,, c) by definition, this yields the desired statement. Thus we have that:

B 1,00~y [ 1y = fo(Re(x,0))}] - E(t xp)~Dryy | 1y # fo(Ri(x,0)}]|

< Bt Dy [ 1 # fo(Re(x, 0))) Tx € S(©0, N =By 1 )op, [ 1Y # fo(Re(x,0))} Lix & (O, 0)}]
+ Bt ep)~Dre | 1Y # fo(Ri(x,0))} Lx € SO0, )} =By 1 ), [ 1Y = fo(Ri(x, 0))} Lix € SO, c)}]|
=|1E<t,x,y~pm[ﬂy¢feR(x,e>} L{x € S(80, N~ E; 1 b, [ 1y = fo(Ri(x,0))} L{x € SO, c)}]|
= |Exp)~pio)] 1y = fo(x)} Lx € S(©, )]~ Eyy, )0y Ly # fo(x)} Lix € S(Oy, 0)}]|.

We can break this into terms where y = 0 and terms where y = 1. Thus, it suffices to bound:

B xp)~piosm) 1y = fo(x)} 1{x € S(©q, 0)} Uy = 0}] —E( ) pio.n | Ly = fo(x)} 1{x € S(Oy, c)} 1{y = 0}]|
and

B x0)~pon | 1y = fo(x)} 1{x € S(©,0)} 1y = By )po.m| 1y # fo(x)} 1x € SO, c)} 1{y = 1}]].

It suffices to show that the first term is upper bounded by A(6) and the second term is upper
bounded by B(6). Since these two bounds follow from analogous arguments, we only present the
proof of the first bound.

|E s p)~pioan] 1y # fo(x)} Lix € S(Og, c)) Uy = 0} = E y)~p(oin | Uy = fo(x)} L{x € SO, )} 1{y = 0}]|
=P[x € 5(0¢,c) & y=0] 'IE(x,y)~DO @l Hp(x) 2 0} =E ) po (gl Hp(x) > 6}]

5(©¢.0) 5(©¢,c)
= Plx€5(00.) & y=0)[Epng, ool 11> 01-Fy o 1001
OC
<P[xeS(Oy,c) & p= O]KS(D’S’O (O:M), DY (03M)).

Now, we are ready to prove Lemma 9.

Proof of Lemma 9. Let O, be an € net of ©y. The decision-maker uses the agent response oracle as
follows. For each 6 € ©,, they can generate 1y samples as follows: draw a sample (x,y) ~ Dxy
conditioned on y = 0. If x € 5(0,c), then query the agent response oracle on x at 6. It is easy
to see that these samples are distributed as 1y independent samples from Dg’((()%'c)(e). Similarly,
the decision-maker uses the agent response oracle to draw n; samples that are distributed as n;
independent samples from D’;’(go’c)(e). (We will specify the values of 1y and 1, later.)

First, we define a distribution map D using these samples and the base distribution. Let’s define
Dy(0) to be the empirical distribution of the ny samples, and let D;(6) be the empirical distribution
of the ny samples. Let D’(0) be the distribution given by a mixture of (x,0) where x ~ Dy(0) with
probability Pp, [y = 0| x € §(0y,c)] and x ~ D;(0) with probability Pp, [y =1 |x € S(By,c)].
Let D”(0) be the distribution given by (x,y) drawn from the conditional distribution of Dxy
given x & S(©,c). We let D be the distribution given by a mixture of D’(6) with probability
Pp,, [x € $(0y,c)] and D”(0) with probability 1 -Pp, | [x € S(©y,0)].

We can microfound D with a map M as follows. Let M(x,y) = x when x & S(0,c). Let M on
S(®g,c)x Y be defined in such any way it microfounds D’(6) (this is possible because of Proposition
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5). It is easy to see that M microfounds D and that M restricted to the domain (X \ $(©g,c)) x Y is
expenditure-constrained. This means that we can apply Lemma C.1.
Now, we bound the performative risk PR(60pg(M)), where:

Opo(M) = argming.g E(y, ) p(on) [y # fo(x)}] = argmingeg B, ) poin [1y # fo(x)}].
In order to apply Lemma C.1, we need to bound:

sup {A(6)+B(0)} (9)
0€O et

where:

A(0):=P[x € S(O,c) & p=0] -KS(D’S"(O 4(0:M), Do o(0:))

B(0):=Plx € S(@y,c) & y=1]-KS(Dfg ,(0;M), D’“ o(6:)).

To bound (9), we union bound over ©,.. This set has cardinality O(l/e). Notice that with
probability > 1 — a, we know that:

p,0 i p,0 - In(2/a)
KS (DS, (03M). Djg, o (0:M)) < [ =
In(2

KS (DY, o(0:M), Dl (0:M)) < nén/“).
0

We can now set a = ©(e/100) in the previous result to obtain that with probability > 99/100, the
expression in (9) is bounded by:
In(2/€)

E:=O0|Pp, [x€S(Ogc) Ay =0] o

]+O[IPDXY[x€ S(@p,c) Ay =1] ln(2/e)]‘

21’11
We can now apply Lemma C.1 to O, to see that:

PR(6po(M)) < E + i By piosm) [y # fo(x)},

Now, let’s use the Lipschitz requirement on the distribution map to move to the set ©. Let’s
consider a distribution map D’ that is defined as follows: for 0 € O, we take D’(0) := D(0) , and
for 0 ¢ O, we take D’(0) := D(0’) where 0’ is the closest element in ©,,.; to 6. Now, let’s apply
Lemma D.2 to D and D’ on © to obtain that:

Join By pionn (L * fo(x)}]) < €+ min By o 1y # folx)]

_€+1gunIE(x;u)~D6M ) [Ly = fo(x)}]-

This means that
PR(Opo(M)) < E + € + PR(Opo(M)).

Thus, it suffices to bound E and set 1y and n; appropriately. Suppose that

no =@ (H’ny[x € 5(©4,0) & y= 0] 1/6))
and
n :G(H)ny[xe 5(©p,0) & y = 1]2%)'

Plugging in these expressions into the expression for E, we obtain the desired bounds. Moreover, no-
tice that the total number of queries to the oracle is ©(1/€)-(ng+n,) <O (IPDXY [x € S(O,, c)]zln(l/e) )
O

2¢e3
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D Proofs for Section 4

D.1 Proof of Theorem 10

Proof of Theorem 10. We use the following notation for this proof. Let’s extend the cost function to
be defined and valid on all of R rather than just X. For x € X, let’s use the notation I, € R to denote
the unique value such that I, < x and ¢(l, x) = 1. Similarly, let u, € IR denote the unique value such
that u, > x and c¢(x,u,) = 1. These values are unique by the definition of a valid cost function.

Fix 0 € (0,00), and x” € X. Let’s characterize the agents who will change their features to x” when
the threshold is 6. Either the agents’ true features are equal to x” and their perception function
P(0) & (x’,u, ], or the agents’ perception function P(6) = x” and their true features x are in [/, x].
Since the base distribution and the noise distribution are continuous, this means that there are no
point masses in the distribution. To see that a probability density function exists everywhere and is
continuous, let’s compute the density. Let pp,s. denote the pdf of the base distribution (which is
assumed to exist and be continuous since Dyy is a continuous distribution), and let p;yise denote
the pdf of D (which is continuous since it is the pdf of a gaussian). Notice that the probability
density of D(0) at (x',y’) is

pbase((x’l y,)) . ]PD[U 3 (x, - 9, Uy — 9)] + pnoise(x, - 9) : IPDXY [x € [lx,,x'],y = y,]-

This is continuous in x” because 1, and I, are continuous in x’. Moreover, this is nonzero on all
x’ because for all x” € X, we see that ppee((x’,3")) > 0 and Pp[y € (x' - 60,1,y — 0)] > 0 as well.

Now, we show aggregate smoothness. We see that the probability density pg((x’,v”)) at (x’,y’) is
continuous in x” because each term is continuous in x’. Similarly, we see that this is continuous in
O because each term is continuous in 6. By Proposition 6, this implies aggregate smoothness. [

D.2 Proof of Lemma 11l

Proof of Lemma 11. For a given classifier fg, consider the product distribution Dpo4(0,0) of the
base distribution Dyy and the multivariate gaussian distribution AV (6, 0 -I). This is a distribution
over X x R? that will describe the distribution over noise vectors and features vectors. That is, an
agent A with features x4 and noise 174 corresponds to (x4,0 +1,4). If we apply the function in (6) to
Dprog so that (x4,0)) — argmax g [7/ 'fQA(X’) - c(xA,x’)], then it is easy to see that we obtain the
distribution D(0).

Since the total variation distance can only decrease when we apply a function to the distribu-
tions, we know that TV(D(61), D(03)) < TV(Dprod(0,01), Dprod(0,02)). Thus, it suffices to bound
TV(Dprod(0,01), Dprod(0,05)). Using the properties of product distributions, we see that:

TV(med(G, 61)’Dprod(0:62)) STV(N(0y,0 1), N(6;,0 -1))
=TV(N(61/0,1), N'(6,/0,1))

1
< ——1601 = 6,]l,.
\/EUII 1= 02l

Now, the result follows from a bound on the total variation distance between two multivariate
gaussians (i.e. see Corollary 2.13 in [Diakonikolas et al., 2019]). O]

D.3 Social burden of noisy responses in general

We show that for any valid cost function, noisy responses results in an optimal point with no higher
social burden than the optimal point deduced from standard microfoundations.
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Proposition D.1. Let 0 € (0,00), and let ¢ be a valid cost function. Consider a 1-dimensional setting
where X C R and © is a model class of threshold functions. Then, the following holds:

Opo(Msp) > Opo (M)
Burden(0po(Msys)) = Burden(Opo(M,,)),

where Mgy is the mapping induced by standard microfoundations.

Proof. By Proposition B.6, it suffices to show that M, satisfies expenditure monotonicity and
Assumption 3. The fact that M,, satisfies Assumption 3 follows from its definition. For expenditure
monotonicity, note that the first condition follows from the fact that the optimization problem
in (6) tells us that fuzzy perception agents never exceed their utility of a positive outcome from
manipulation expenditure. We now show that the second condition is satisfied. Note that each
agents’ perception function takes the form P(0) = 6 + 11 for some fixed 7. Thus, any given agent
either consistently overshoots or consistently undershoots the threshold. If 77 < 0, then the agent
will only be positively classified if and only if 6 < x where x are the agent’s true features. If 1 > 0,
then the agent will be positively classified if and only if ¢(x,0 + 1) <1 or 6 < x. This proves the
desired statement. O

D.4 Proof of Proposition 12

Proof of Proposition 12. By Proposition D.1, we see that Opo(Dsy) = Opo (D). It thus suffices to show
that Opo(Dsym) > Opo (D). To show this, it suffices to show that the derivative of the performative
risk exists and is nonzero at Opg(Dsyy). Like in the proof of Theorem 10, we use the notation I, u,,
Pbase, and Pp. We write the performative risk in a form that is more convenient to differentiate.

o lg 0
PR(9>=J Phasel (% ))dx+f_ Pasel (% )>dx+f Phasel(x', 0)Pp 11 € [0, 1y — O]]dx

0 0-1

+L P05 DIP [ € 0,1, - 0}

oo -1 0
L pbase dx + J pbase((xr 0))dx + J-Q . pbase((x” O))IPD[VI € [O,X’ +1- Q]dx’

+

0
f Pse(5 D)P [ €0, + 1 ~0])d’

(D

o 0-1 1
J- pbase dx + J pbase(( ))dx + J; pbase((g -1+x, 0))IPD[77 € [O,x]dx

0 -0

+

L pbase -1+x, ))IPDM € [le]dx

o) 0-1
f Phasel dx+J Phase((x,0)dx + Pp_, [x € (6~ 1,0),y = 0]

—00

_=°

L pbase -1+x, 1)) _pbase((6 -1 +xr0)))]PD[17 € [O,x]]dx.
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Let’s write Jol (Pbase((0 —=1+x,1)) = ppase((0 =1 +x,0)))Pp[1 € [0, x]]dx in a slightly different form.

1
fo (Poase((6 = 14 %, 1)) — poase (6 — 1+ %,0))Pp 1 & [0, x])dx
1
= (IPD[” € [—O0,0]] +1PD[’7 € [LOO]])J(; (pbase((e -1 + X, 1)) _pbase((e -1 +x10)))dx

1
+J; (pbase((e -1+x, 1)) _pbase((e -1+x O)))IPD[W € [x; 1]]dx
= (Pp[n € [-00,0]] + Pp[n € [1,00]])(Pp,, [x € (0 -1,0),y =1] -Pp,, [x € (0 -1,0),y = 0])

1
+ J; (pbase(<9 -1+x 1)) _pbase((e -1+x 0)))IPD[77 € [x; 1]]dx-

We can rewrite:

1
J; (pbase((6 -1+x 1)) _pbase((6 -l+x, 0)))IPD[77 € [X, 1]]dx

1 1
= 0 J- (pbase((6 -1+ X,l)) _pbase((6 -1+ X, O)))pnoise(z)dde
1 z
= pnoise(z)j (pbase((6 -1+x, 1)) _pbase((6 -1+x, 0)))dXdZ
JO 0
r1
= pnoise(z)(]PDXy[x € ((6 -1,0-1+ Z)),}] = 1] _]PDXY [X € ((9 -1L,0-1+ z))),y = 0])dZ
JO

When we take a derivative with respect to 6, we obtain:

0
PgRG;Q) - _pbase((e' 0)) +pba5€((6 -1, 1)) _pbase((6 -1, 0)) + pbase((gf 0))

+ (IPDM € [_OO’ 0]] + IPD["] € [LOO]])(pbase((el 1)) _pbase((9 -1, 1)) _pbase((e’ 0)) + pbase((e -1, 0)))

1
+ J; pnoise(z)(pbase((e -1+z 1)) _pbase((e -1, 1)) _pbase((e -1+z 0)) + pbase((6 -1, 0)))dZ

Let’s analyze this expression at 8 = Opg(Dsy;). By the assumptions on the cost function, and
using that Og; + 1 € ® N X, we see that Opo(Dgp) = Oy + 1, so 6 —1 = Og;. This means that

pbase((e -1, 1)) - pbase((e -1, 0)) = pbase((QSLl 1)) - pbase((QSLr 0)) =0. Thus' the expression simpliﬁes
to:

d
P§é8) = (Pp[1 € [=c0,0]]+ Pp[n € [1,00]])(Pbase((6, 1)) = Pbase (6, 0)))
1
+ J;) Pnoise(2)(Pbase (0 =1 +2,1)) = Prase ((0 — 1 + 2,0)))dz.

We see that ppase((607,1)) > ppase((67,0)) for all 8’ > Og; by the assumption on y in Setup 1. This

implies that the first term is positive and the second term is nonnegative, so % is positive as
desired.

O]
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D.5 Proof of Lemma 13

Proof of Lemma 13. Consider the product distribution Dp,.4(0) of the base distribution Dxy and

the multivariate Gaussian distribution ANV(0,0 -I). This is a distribution over X x RY that will
describe the distribution over noise vectors and features vectors. That is, an agent a with features
x, and noise 174 corresponds to (xa,14). If we apply the function in (6) to Dpoq so that (x4,774)

argmax,cpd [7/ “foun, (x)) = c(xA,x')], then it is easy to see that we obtain the distribution D(6).

Since the total variation distance can only decrease when we apply a function to the dis-
tributions, we know that TV(D(8),D(0) < TV(Dprod(0), Dprod(6)). Thus, it suffices to bound
TV(Dprod(0), Dprod(6))- Using the properties of product distributions, we see that

TV(Dprod(O')f,Dprod(O:)) < TV(N(()’G 1), N(O:C7~ ' I))

Now, the result follows from the standard bound on the total variation distance between two
multivariate gaussians.

t
D.6 Proof of Corollary 14

In order to prove Corollary 14, we show that if the estimated distribution map is sufficiently
close to the true distribution map, then the optimal point computed using this model will achieve
near-optimal performative risk.

Lemma D.2. Let M be an estimate of the true distribution map M. Then the suboptimality of the perfor-
mative risk of Opo(M) as per (4) is bounded by: PR(6po(M))-PR(6po(M)) < 2supy {TV(D(G;M),D(Q;M))},
where PR(0) := E(y,)-p(g) [1{y # fo(x)}] denotes the performative risk with respect to M.

Proof of Lemma D.2. Let & = {TV(D(G;M),D(@;M))}. Let PR(6; M) denote the performative risk at

0 on D(0; M) and let PR(0; M) denote the performative risk at 0 on D(6; M). It suffices to show
that [PR(6; M) — PR(6; M)| < & (since this would mean that PR(Opo(M); M) < PR(Opo(M); M) + £ <
PR(Opo(M); M) + & < PR(Opo(M); M) + 2&, as desired). Notice that:

IPR(6; M) - PR(O; M)| = |1E(x,y)~D(9;M)[ Uy = fo(x)}] = E x y)ponnl Ly = fe(x)}]|-

Since the indicator variables are always constrained between 0 and 1, we can immediately obtain
an upper bound of TV (D(0; M), D(0; M)). O

We can easily deduce Corollary 14 from these above facts.

Proof of Corollary 14. We use Lemma 13 to see that

TV(D(0;M,),D(0,Mg)) <

N W

Then we Lemma D.2 to see that:

em

PR(0p0(Ms)) ~PR(Opo(Mj) < 25up{TV(D(6: M, ), D(O:Mj) )} £ 3\ [ oo
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E Lipschitzness in Wasserstein distance

In existing performative prediction approaches [Perdomo et al., 2020; Mendler-Dtunner et al., 2020;
Brown et al., 2020], it is assumed that the distribution map is Lipschitz with respect to changes in
0. In particular,

W(D(6),D(0) < Cllo-o'|,

for some constant C > 0, where W is the Wasserstein-1 distance.

E.1 Lipschitzness is not sufficient for stability

We show that for binary classification, Lipschitzness in Wasserstein distance is not sufficient to
guarantee the existence of stable points. We construct a simple example of a Lipschitz distribution
map for which stable points do not exist. Consider our counterexample in Setup 1 with p € (0,1): let
the cost function of the best responding agents be linear, and consider a uniform base distribution;
this results in a Lipschitz distribution map. By Proposition 2, stable points do not exist.

E.2 Lipschitzness can be restrictive

In the context of binary classification, we show that this requirement is quite restrictive on the cost
function and the base distribution, even in the context of a 1-d setting and standard microfoun-
dations. Example 3 provides a simple 1-d setting where the aggregate response distribution D(6)
induced by best-responding agents does not satisfy Lipschitzness:

Example 3. Suppose that ® = [0,1] and X =[-10,10]. Let the marginal distribution of the features
for Dxy be uniform on [0, 1] and consider the cost function c¢(x,y) = |x> —y?|. The distribution map
Dns(0) given by agents who follow standard microfoundations is not Lipschitz in Wasserstein
distance.

To prove Example 3, we show the following lemma.

Lemma E.1 (Violation of Lipschitzness). Assume that © is 1-dimensional. Suppose that c(x,y) < k|x—y|
for some constant k > 0. For each 6 € ©, let Sy be the salient part. If the following condition holds:

0’>0>0 |6/ - 9' '

then D(0) is not Lipschitz in Wasserstein distance.

Proof of Lemma E.1. First, we show that when 8’ < 6-1/k and 8" > 6 > 0, it holds that W(D(0), D(0’)) >
Zlkﬂ’pxy[Qg, \ Qg]. The distribution map D(0) corresponds to Dxy with all of the agents with type

x € Qg moving up to 6. This means that W(D(6’), D(6)) must move all of the agents with features

x € Qg \ Qg up to at least 0. Notice that min,cq,,\g, [x—0| = [sup(Qg)-0| > |sup(Qg’)-0'|-16"-0] >
2c(sup(Qp),0')—10" - 0] >  — 10" - 6] > 2. This means that W(D(60),D(6")) > 5z Pp. . [Qo \ Qp], as
desired.

. P ’ . .. .
Now, suppose that the condition supg.. g % = oo holds. Notice that this implies that
Ppyy [Qor\ Qo] .. . W(D(6),D(6"))
SUPg/>0>0,0'<0—1/k X|Y9,—_9| = co. This implies that supg..g-9 g<g_1/k # = o0, and so the
Lipschitzness constraint is violated. O

Now, we prove Example 3 from Lemma E.1.
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Proof of Example 3. We apply Lemma E.1. First, observe that c(x,v) = [x>~p?| = [x—yl|lx+y| < 20]x~|
as desired. Thus, it suffices to show that

sup Pp,,[Se\ Sor]
0’>0>0 |6/ - 9|

Let’s take 0 = 1 and 6’ = 1+€. Because of the uniform density, it suffices to show that lim._, w =

0. Notice that for sufficiently small €, we see that Sg\ S = [0, Ve? + 2¢], and 50 |Sg \ Sg/| = Ve? + 2e.

We see that % = —“62:26 =1+ % This approaches oo as € — 0, as desired. O]

F Additional results on the implications of the expenditure constraint

In Appendix E.1, we explicitly construct ©y and S(®y, c) in an example setting. In Appendix F.2, we
demonstrate that our insights about how the expenditure constraint results can reduce empirical
burden extend to more general model classes.

E1 Example construction of ©) and S(Q,c)

In this section, we discuss an example setting where the decision-maker can prune the search space
Q) using the expenditure constraint, and the resulting set S(Q, ¢) is much smaller than X. We first
present an informal version of this example:

Example 4 (Informal). Consider Setup 1. Define the cost function to be linear: ¢(x,x’) = a|x — x’|
for some a > 0.Then, if M satisfies the expenditure constraint and Assumption 3, then:

Opo € O := [Os = 3/a, 05 +3/a] S(Og,c) = {x| u(x) € [Os. — 4/, 05 + 4/},
where Og is such that p(0) = 0.5 (where p is defined in Setup 1).

Example 4 demonstrates the salient part consists of agents who are sufficiently close to the super-
vised learning threshold, where closeness is measured by the cost function. As a result, the salient
part shrinks as costs increase.

Let’s now formally construct © := [I,u]. We first define I: let s’ < O5; be the value such that
c(Os1,s’) =1, let s” < s” be the value such that ¢(s”,s’) = 1, and let | < s be the value such that
c(s”,1) = 1. We define u similarly: let ¢’ > O be the value such that ¢(0s;,t’) =1, let t” > t be the
value such that ¢(t”,t’) = 1, and let u > t” be the value such that ¢(¢t”,u) = 1. (To be precise, if we
ever reach a stage when defining / where no such point exists, then we take | = 0; similarly, if we
ever reach a stage when defining u where no such point exists, then we take u =1.)

Proposition F.1. Suppose that the agent response types T C T are expenditure-constrained with respect to
cost function c that is an outcome-valid cost function. The set © (defined above) contains a performatively
optimal point Opg of Drxy.

Proof. Since s’,t’ € ©,, it suffices to show that PR(#') < PR(u) and PR(s’) < PR(/).

First, we show that PR(#’) < PR(u). For both classifiers, by the expenditure constraint, all agents
with true features x such that x < Og; will necessarily be classified as 0 by both f;- and f,,. Thus, we
only need to consider x such that x > Og; . By the expenditure constraint, all agents with features x
such that x > t” will necessarily be classified as 1 by f;. By Assumption 3, coupled with the fact
that x > O for these agents, the classifier f, cannot achieve a better loss for these agents. We can
ignore agents with x = t” since these agents form a measure 0 set and Dyy is continuous. For agents
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with true features x such that Og; < x <t”, notice that these agents will necessarily be classified
as 0 by f, due to the expenditure constraint. Thus, by Assumption 3, coupled with the fact that
x > Og for these agents, the classifier f;; will not achieve a worse loss for these agents than f,.

We use a similar argument to show that PR(s”) < PR(I). For both classifiers, by the expenditure
constraint, all agents with true features x such that x > 65 will necessarily be classified as 0 by
both f;, and f,,. Thus, we only need to consider x such that x < Og; . By the expenditure constraint,
all agents with features x such that x < s” will necessarily be classified as 0 by f;,. By Assumption 3,
coupled with the fact that x < Ogp for these agents, the classifier f; cannot achieve a better loss for
these agents. We can ignore agents with x = s” since these agents form a measure 0 set and Dyy
is continuous. For agents with true features x such that s” < x < g, notice that these agents will
necessarily classified as 1 by f; due to the expenditure constraint, and so by Assumption 3, coupled
with the fact that x < 6gp for these agents, the classifier f; will not achieve a worse loss for these
agents.

O

We now show how to formally construct S(©,c). Let’s construct a set S'(Qg,c) := [I’,u’] as
follows. We can I’ and u” in terms of / and u (the upper and lower endpoints of ©). Let I’ < I be the
value such that ¢(I’,1) = 1 and let u’ > u be the value such that c(u,u”) = 1. Then S’(Qg,c) = [, u’].
(To be precise, if no such I’ exists, then we take I = 0; similarly, if no such u’ exists, then we take
u’ =1.) We now show that S’(®g,c) = S(Qy,c).

Proposition E2. Let S'(©y,c) be defined as above. Then, S(Qg,c) = S’(0,¢).

Proof. 1t suffices to show that S'(®g,c) = UySg, where Sy =.

Suppose that x € Sg. Then there exists x” such that ¢(x,x") < 1 and fy(x’) # fg(x) (which is
equivalent to 0 is between x and x’). Using Assumption 1, this implies that ¢(x,0) < 1. Using
Assumption 1 again, we see that since 0 € [I, u], this means that either x € [[,u], or ¢(x,I) <1, or
c(x,u) <1 must be true. This implies that x € S’(®, c).

Suppose that x € S'(0y,¢). If x € O, then we know that x € S,. If p(x) € ©y and x <[, then we
know x € S;. If x € ©y and x > u, then we know that x€ S,,. O

E2 General model classes

While we focused on the 1-dimensional setting in Section 3.3, we now demonstrate that the
expenditure constraint can reduce empirical burden on the decision-maker in general settings. The
following lemma formalizes the intuition that an appropriate estimate of agent’s response types
on S(0y,c) is sufficient to achieve near-optimal performative risk. We use a subscript notation
Ds(@,,c)(0) to denote the aggregate response distribution D(0) restricted to agents with true features
x€5(0p,¢c)CX.

Lemma E3. Let c be a valid cost function, let M, M be mappings that satisfy the expenditure constraint.
Then, for any Oy C O : Opo(M) € Oy, it holds that:

PR(Opo(M)) < PR(Opo(M)) + 2¢&

with & := supy [IPDXY [x € $(09,0)]- TV(Ds(@,,c)(05 M), DS(QO,C)(Q;M))}.

In words, to achieve a small error &, we need to accurately estimate the distribution map for all
x € $(0y,c), and the larger S(0y, c), the more accurate the estimate must be.
We prove Lemma F.3.
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Proof of Lemma F.3. Our starting point is similar to the proof of Lemma D.2. Like in that proof, let
PRp, ., (0) denote the performative risk at 6 on Drxy and let PRp_ . (0) denote the performative

risk at 6 on D7xy. As in that proof, it suffices to show that IPRp,,,(0)-PRp_ (6)| < &. At 6, notice
that this difference is:

|IE(t,x,y)~D7Xy[ 11 = fG(Rt(er))}] _IE(t,x,y)~f)TXY[ If1 = fg(Rt(X,Q))}”.

First, we note that we only need to show that [PRp_  (0) -PRp . (6)| <& for 6 € ©¢. This is
because we know that Opg € ©, and also the decision maker is only searching within ©.

Now, we claim that for any agent (t,x) where x  S(@,c) and for t € supp(Drxy) Usupp(Drxy),
it holds that fg(R;(x,0)) = fy(x) for every 6 € ©,. Note that since t is expenditure-constrained with
respect to ¢, then we know that if x ¢ Sp, it holds that fg(R = fp(x). Moreover, note that since
Sp C S(0Oy,c) by definition, this yields the desired staternent.

Thus, we have that:

(1) Dy [ 1y = fo(Re(x, O =By )5, [Ty = fo(Re(x, 0]
:4EMymnaﬂ@:m<<x6m Meﬂ@wﬂ]Equmew fo(Re(x,0))} 1{x € $(©g, c)}]|
= |E(xy)~pio)[ 1{y = fo(x xeﬂ®mnkﬁmm o)l Ly = fo(x)} Lx € S(©p, c)}]|

=[x € $(Oy,c) (mxyg>[ v = fo(x)} | x € S(0, )] = By 0| L1y = fo(x)} | x € S(Op,0)]|)

= Pl € $(00,0))[Equ -0, 0 L0 = fol] = By, 00] Ly = fol)])

The bound of IP[x € S(©,, c)]TV(DS(@(),C)(G), 155(@0,5)(6)) now directly follows. O
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