

3D Visual Tracking to Quantify Physical Contact Interactions in Human-to-Human Touch

1 **Shan Xu¹, Chang Xu¹, Sarah McIntyre², Håkan Olausson², Gregory J. Gerling^{1*}**

2 ¹School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, USA

3 ²Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden

4 *** Correspondence:**

5 Gregory J. Gerling

6 gg7h@virginia.edu

7 **Keywords: touch, social touch, haptics, visual tracking, tactile mechanics, human performance,**
8 **emotion communication.**

9 Abstract

10 Across a plethora of social situations, we touch others in natural and intuitive ways to share thoughts
11 and emotions, such as tapping to get one's attention or caressing to soothe one's anxiety. A deeper
12 understanding of these human-to-human interactions will require, in part, the precise measurement of
13 skin-to-skin physical contact. Among prior efforts, each measurement approach exhibits certain
14 constraints, e.g., motion trackers do not capture the precise shape of skin surfaces, while pressure
15 sensors impede skin-to-skin contact. In contrast, this work develops an interference-free 3D visual
16 tracking system using a depth camera to measure the contact attributes between the bare hand of a
17 toucher and the forearm of a receiver. The toucher's hand is tracked as a posed and positioned mesh
18 by fitting a hand model to detected 3D hand joints, whereas a receiver's forearm is extracted as a 3D
19 surface updated upon repeated skin contact. Based on a contact model involving point clouds, the
20 spatiotemporal changes of hand-to-forearm contact are decomposed as six, high-resolution, time-series
21 contact attributes, i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity
22 components, together with contact duration. To examine the system's capabilities and limitations, two
23 types of experiments were performed. First, to evaluate its ability to discern human touches, one person
24 delivered cued social messages, e.g., happiness, anger, sympathy, to another person using their
25 preferred gestures. The results indicated that messages and gestures, as well as the identities of the
26 touchers, were readily discerned from their contact attributes. Second, the system's spatiotemporal
27 accuracy was validated against measurements from independent devices, including an electromagnetic
28 motion tracker, sensorized pressure mat, and laser displacement sensor. While validated here in the
29 context of social communication, this system is extendable to human touch interactions such as
30 maternal care of infants and massage therapy.

31 **1 Introduction**

32 Social and emotional communication by touch is important to human development in daily life. It
33 contributes to brain and cognitive development in infancy and childhood (Cascio et al., 2019), and
34 plays a role in providing emotional support (Coan et al., 2006), and forming social bonds (Vallbo et
35 al., 2016). For example, being touched by one's partner mitigates one's reactivity to psychological
36 pressure, as observed in decreased blood pressure, heart rate, and cortisol levels (Gallace and Spence,

37 Behaviors such as compliance, volunteering, and eating habits are also positively improved
38 (Gallace and Spence, 2010). Moreover, several works now indicate that particular social messages and
39 emotional sentiments can be readily recognized from touch alone (Hertenstein et al., 2006, 2009;
40 Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Despite their importance
41 and ubiquity, we have just begun to quantify the exact nuances in the underlying physical contact
42 interactions used to communicate affective touch.

43 To decompose how physical contact interactions evoke sensory and behavioral responses, most
44 prior studies employ highly controlled stimuli, which vary a single factor at a time. In particular, In particular,
45 mechanical and thermal interactions are typically delivered to a person's skin using robotically driven
46 actuators (Löken et al., 2009; Essick et al., 2010; Ackerley et al., 2014a; Tsalamalal et al., 2014; Bucci
47 et al., 2017; Teyssier et al., 2020; Zheng et al., 2020). For example, brush stimuli swept along an arc
48 have been widely adopted to mimic caress-like stroking, while controlling their velocity, force, surface
49 material, and/or temperature. Using such stimuli, C-tactile afferents are shown to be preferentially
50 activated at stroke velocities around 1-10 cm/s, which align with ratings of pleasantness (Löken et al.,
51 2009; Essick et al., 2010; Ackerley et al., 2014a). Beyond experiments to examine brush stroke, more
52 complex interactions have been delivered via humanoid robots and robot hands (Teyssier et al., 2020;
53 Zheng et al., 2020). However, device-delivered stimuli do not fully express the natural and subtle
54 complexities inherent in human-to-human touch. This can result in disconnect with the everyday, real-
55 world interactions for which our sensory systems are finely tuned.

56 Measuring and quantifying free and unconstrained human-to-human touch interactions is complex
57 and challenging. In particular, the physical interactions are unscripted, unconstrained, and
58 individualized with rapid and irregular transitions. Indeed, multiple contact attributes often co-vary
59 over time, e.g., lateral velocity, contact area, indentation depth. Therefore, in moving toward
60 quantification, the initial efforts used qualitative, manual annotation to describe touch gestures, and
61 their contact intensity and duration (Hertenstein et al., 2006, 2009; Yohanan and MacLean, 2012;
62 Andreasson et al., 2018). While adaptable to a wide range of touch interactions and settings, qualitative
63 methods are constrained by the time required to analyze the data, the potential subjectivity of human
64 coders, and a courser set of metrics and classification levels. For instance, contact intensity is typically
65 classified in only three levels as light, medium, strong. As a result, automated techniques have been
66 introduced, such as electromagnetic motion trackers (Hauser et al., 2019a; Lo et al., 2021) and
67 sensorized pressure mats (Silvera-Tawil et al., 2014; Jung et al., 2015), with each their own capabilities
68 and limitations. For instance, electromagnetic trackers capture the movement of only a handful of
69 points, thus unable to monitor complex surface geometry, and can emit electromagnetic noise
70 incompatible with sensitive biopotential recording equipment. Pressure sensors and mats inhibit direct
71 skin-to-skin contact, when even thin films are shown to attenuate touch pleasantness (Rezaei et al.,
72 2021). Three-dimensional optical tracking methods have also been employed, such as infrared stereo
73 techniques (Hauser et al., 2019a, 2019b; McIntyre et al., 2021), motion capture systems (Suresh et al.,
74 2020), and stereo cameras with DeepLabCut (Nath et al., 2019). While these methods are specialized
75 in tracking joint positions of hands and limbs, they do not capture the shape and geometry of body
76 parts, since the infrared cameras lack sufficient accuracy on depth, motion capture systems only track
77 pre-attached markers, and stereo matching of multiple cameras often fail with texture-less surfaces. In
78 contrast, depth cameras can provide high spatial resolution point clouds and allow shape extraction of
79 texture-less body parts, such as a forearm. Depth cameras, as well, are more readily set up without
80 calibration, afford minimum magnetic interference, and can be located at a larger distance from the
81 area of interest. While depth cameras have been used in hand tracking and 3D reconstruction (Rusu
82 and Cousins, 2011; Taylor et al., 2016), they have not been used to measure contact interactions in
83 human-to-human touch.

While defined to a degree, we are still deciphering those physical contact attributes vital to social touch communication. In such settings, human touch interactions tend to include gesture, pressure/depth, velocity, acceleration, location, frequency, area, and duration (Hertenstein, 2002; Hertenstein et al., 2006, 2009; Yohan and MacLean, 2012; Silvera-Tawil et al., 2014; Jung et al., 2015; Andreasson et al., 2018; Hauser et al., 2019a, 2019b; Lo et al., 2021; McIntyre et al., 2021). To understand the functional importance of specific movement patterns, certain attributes such as spatial hand velocity have been further decomposed into directions of normal and tangential (Hauser et al., 2019a) or forward-backward and left-right (Lo et al., 2021). Moreover, simultaneous tracking of multiple contact attributes is needed for understanding naturalistic, time-dependent neural output of peripheral afferents. For example, a larger contact area should recruit more afferents, larger force or indentation should generate higher firing frequencies, and optimal velocity in tangential direction should evoke firing of C-tactile afferents (Johnson, 2001; Löken et al., 2009; Hauser et al., 2019b).

Herein, we develop an interference-free 3D visual tracking system to quantify spatiotemporal changes in skin-to-skin contact during human-to-human social touch communication. Human-subjects experiments evaluate its ability to discern unique combinations of contact attributes used to convey distinct social touch messages and gestures, as well as the identities of the touchers. Moreover, the system's spatiotemporal accuracy is validated against measurements from independent devices, including an electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor.

2 Human-to-Human Contact Tracking System

This work introduces a 3D visual tracking system and data processing pipeline, which used a high-resolution depth camera to quantify contact attributes between the bare hand of a toucher and the forearm of a receiver. As illustrated in Figure 1, the tracking system captured the 3D shape and movements of the toucher's hand and the receiver's forearm independently but simultaneously within the same camera coordinate system. Physical skin contact was detected between the hand and forearm based on interactions of their 3D point clouds. Seven contact attributes were derived over the time

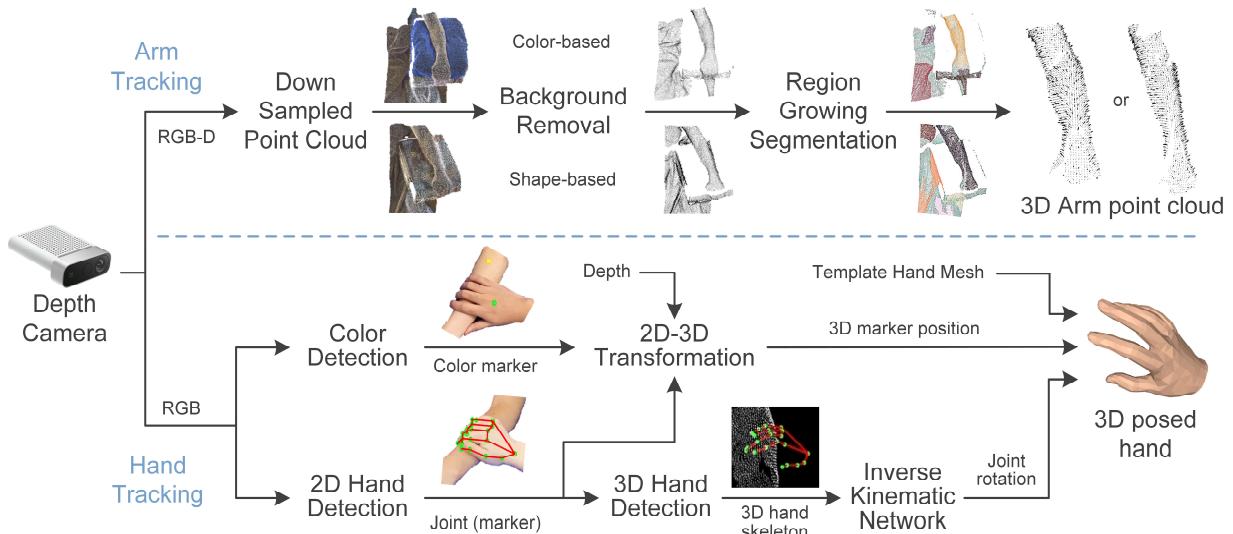


Figure 1. 3D visual tracking setup and data workflow. The toucher's hand and receiver's forearm are tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point cloud while the hand mesh is animated by the gestures and movements of the toucher's hand.

109 course of touch, which were contact area, indentation depth, contact duration, overall contact velocity,
 110 and its three orthogonal velocity components.

111 **2.1 3D Shape and Motion Tracking with Depth Camera**

112 The tracking procedure extracts the detailed 3D shape of the touch receiver's forearm. By merging the
 113 camera's RGB and depth information, an RGB-D image was derived and then converted into a dense
 114 point cloud per frame. The point cloud was cropped and downsampled to balance information and
 115 computation costs. To obtain a clean point cloud of the forearm without background, neighboring
 116 points around the forearm were first removed. Two removal methods were used alternatively based on
 117 the experimental setup (Figure 1). If the receiver's forearm was placed on a flat surface, such as a table,
 118 the points within that flat surface could be removed in a shape-based manner using the plane model
 119 segmentation algorithm provided by the Point Cloud Library (PCL) (Rusu and Cousins, 2011). In the
 120 second case, if a monochromatic holder was set underneath the forearm, such as a cushion, then the
 121 points of that holder could be removed by color-based segmentation in the HSV color space. Next, the
 122 3D region growing segmentation algorithm (Rusu and Cousins, 2011) was applied to separate the rest
 123 point cloud into multiple clusters according to the smoothness and distance between points. Since
 124 neighboring points around the forearm were removed in advance, points farther away in the
 125 background were assigned to separate clusters instead of being blended with the arm. Finally, by setting
 126 a relatively large smoothness threshold, all arm points could be grouped into one cluster despite the
 127 curvature of the forearm shape.

128 In human-to-human touch scenarios, the receiver's forearm is frequently occluded by the toucher's
 129 hand. Given that a blocked arm region is nearly impossible to capture, only the shape of the forearm
 130 prior to the contact was extracted. More specifically, the forearm point cloud was extracted before the
 131 beginning of each contact interaction to update its shape and position. During the contact, its position
 132 was refreshed in real-time according to the 3D position of the color marker on the arm, though its shape
 133 was not updated during the contact. Once the forearm was shape updated, the normal vector \mathbf{n}_{arm}^i of
 134 each arm point \mathbf{p}_{arm}^i was calculated and updated as well to facilitate further contact detection and
 135 measurement.

136 The hand tracking procedure was developed to capture the posture and position of the toucher's
 137 hand by combining depth information with a monocular hand motion tracking algorithm (Zhou et al.,
 138 2020). The algorithm is robust to occlusions and object interactions, which is advantageous in hand-
 139 arm contact. The monocular tracking algorithm contains two neural network modules to predict the 3D
 140 location and rotation of all 21 hand joints. In the first module of the hand joint detection network,
 141 features extracted from the 2D RGB image were first fed into a 2-layer convolutional neural network
 142 (CNN) to detect the probability of the 2D position of all joints. Then, another two 2-layer CNN was
 143 used to predict the 3D position of hand joints based on 2D features and 2D joint position estimates. In
 144 the second module of the inverse kinematic network, a 7-layer fully connected neural network was
 145 designed to derive the 3D rotation of each joint. Finally, the parametric MANO hand model (Romero
 146 et al., 2017) was employed to incorporate 3D joint rotations to animate the hand mesh following the
 147 shape and pose of the toucher's hand.

148 The rendered hand mesh was expressed in the local hand coordinate without the spatial information
 149 of the hand position. Therefore, depth information is incorporated here to locate the hand mesh in the
 150 camera coordinate, according to the movement of any hand joint or the color marker on the back of the
 151 hand (Figure 1). Specifically, the 2D position of the color marker was detected in the in the HSV, while
 152 the 2D position of the joint was retrieved from the detected 2D hand. The depth value of the hand joint

153 or marker was derived by transforming the depth image to the RGB coordinate, which was then used
 154 to obtain its 3D position following the camera projection model. By identifying the corresponding point
 155 of that marker or joint in the hand mesh model, the posed hand mesh was moved in real-time following
 156 the toucher's hand movements.

157 **2.2 Definition of Contact Attributes**

158 Hand-arm contact was measured in a point-based manner, which afforded higher resolution compared
 159 with a geometry-based method (Hauser et al., 2019a). First, a contact interaction between the hand and
 160 forearm was detected when at least one vertex point of the hand mesh was underneath the arm surface.
 161 More specifically, for each hand vertex point \mathbf{p}_{hand}^i , its nearest arm point \mathbf{p}_{arm}^i was found first. Then,
 162 as detailed in Equation (1), if the angle between the vector $\mathbf{p}_{hand}^i - \mathbf{p}_{arm}^i$ and the normal vector \mathbf{n}_{arm}^i
 163 of arm point \mathbf{p}_{arm}^i is larger than or equal to 90 degrees, this hand vertex is marked as underneath the
 164 arm surface.

165

$$F_{contact} = \begin{cases} 1 & \forall (\mathbf{p}_{hand}^i - \mathbf{p}_{arm}^i) \cdot \mathbf{n}_{arm}^i \leq 0 \\ 0 & \exists (\mathbf{p}_{hand}^i - \mathbf{p}_{arm}^i) \cdot \mathbf{n}_{arm}^i > 0 \end{cases} \quad (1)$$

166 Physical contact attributes were calculated when hand-arm contact was detected. Indentation depth
 167 is measured as Equation (2). In particular, N_C is the number of hand vertex points contacted with the
 168 forearm. For each contacted hand point \mathbf{p}_{hand}^i , its indentation depth d^i is approximated as half the
 169 distance between \mathbf{p}_{hand}^i and its nearest arm point \mathbf{p}_{arm}^i . The half scale was used because the line
 170 between two points might not be perpendicular to the arm surface. The overall indentation d deployed
 171 by the hand to the forearm is defined as the average indentation depth of all N_C contacted hand points:

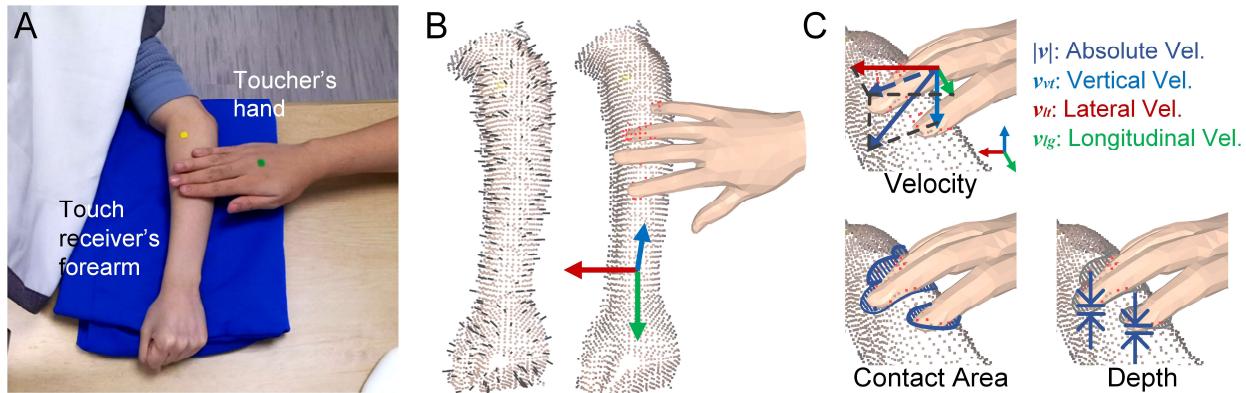


Figure 2. Definition of contact attributes. (A) Color image from video recorded by depth camera. Two color markers were placed on the toucher's hand and the receiver's forearm respectively to support motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments represent the norm vector of arm points; red points on the forearm represent the region contacted by the hand. In the arm coordinate, the vertical axis (blue) is designated along the vertical direction pointing right upward, the longitudinal axis (green) is parallel with the arm direction from elbow to wrist, and the lateral direction is perpendicular to the two axes pointing to the internal side of the forearm. (C) Six time-series attributes include absolute velocity, which is the absolute value of spatial contact velocity; three orthogonal velocity components corresponding to the three axes of the arm coordinate; contact area, which is the overall area on the forearm being contact; and the indentation depth as the average depth applied on the forearm by the hand.

172

$$Depth = \frac{\sum_{i=1}^{N_C} \|\mathbf{p}_{hand}^i - \mathbf{p}_{arm}^i\|_2}{2N_C} . \quad (2)$$

173 Contact area is measured as the summed area of all contacted arm points. As shown in Equation (3),
 174 the unit area S^i for one arm point is calculated as a sphere whose radius is the average neighbor
 175 distance, and π is round to 3. Within the arm point cloud of N_{all} points, the average neighbor distance
 176 l_{nbr}^i is calculated as the average distance of all points to their nearest neighbor points:

177

$$Area = 3N_C \left(\frac{\sum_{i=1}^{N_{all}} l_{nbr}^i}{N_{all}} \right)^2 . \quad (3)$$

178 In addition to cutaneous contact attributes, the velocity of hand movement was quantified when
 179 contact was detected. The absolute contact velocity V_{abs} is measured as the modulus of the spatial hand
 180 velocity \mathbf{v}_{Hand} :

181

$$V_{abs} = \left| \frac{\mathbf{p}_{Hand}^t - \mathbf{p}_{Hand}^{t-1}}{\Delta t} \right| . \quad (4)$$

182 In Equation (4), hand position \mathbf{p}_{Hand} is represented by the position of the middle
 183 metacarpophalangeal joint. By defining another coordinate on the receiver's forearm (Figure 2C),
 184 spatial hand velocity \mathbf{v}_{Hand} is further decomposed in the arm coordinate as three velocity components
 185 V_{vt} , V_{lg} , V_{lt} parallel with its axis of the arm coordinate (Figure 2C). The vertical axis \mathbf{i}_{vt} of the arm
 186 coordinate is aligned with the vertical direction pointing upright. It could be obtained as the normal
 187 vector of a point on a horizontal surface, like a table, or the normal vector of a point on the top of the
 188 receiver's forearm. Vertical velocity V_{vt} is the hand velocity component in this direction:

189

$$V_{vt} = \mathbf{v}_{Hand} \cdot \mathbf{i}_{vt} . \quad (5)$$

190 The longitudinal axis \mathbf{i}_{lg} is aligned with the direction of the arm bone, pointing from elbow to wrist.
 191 To derive this axis, the camera was orientated to display the forearm vertically in the 2D image. Then,
 192 the direction of the arm bone in the 2D image was set to be parallel with the y axis of the image
 193 coordinate. By projecting the y axis \mathbf{y} of the camera coordinate onto the perpendicular plane of the
 194 vertical axis \mathbf{n}_{vt} , the longitudinal axis follows the direction of the projected vector:

195

$$\mathbf{i}_{lg} = \frac{\mathbf{y} - (\mathbf{y} \cdot \mathbf{i}_{vt}) \mathbf{i}_{vt}}{\|\mathbf{y} - (\mathbf{y} \cdot \mathbf{i}_{vt}) \mathbf{i}_{vt}\|_2} . \quad (6)$$

196

$$V_{lg} = \mathbf{v}_{Hand} \cdot \mathbf{i}_{lg} . \quad (7)$$

197 Lastly, the lateral axis \mathbf{i}_{lt} is perpendicular to the plane of longitudinal and vertical axis, following
 198 the right-hand rule:

199

$$\mathbf{i}_{lt} = \mathbf{i}_{lg} \times \mathbf{i}_{vt} . \quad (8)$$

200

$$V_{lt} = \mathbf{v}_{Hand} \cdot \mathbf{i}_{lt} . \quad (9)$$

201 Compared with the overall hand velocity, these velocity components can quantify the directional nature
202 of the hand movements.

203 Moreover, contact duration is measured as a scalar value for each hand-arm touch interaction, which
204 is the sum of time over which contact was detected. Given the recording frequency f of the camera is
205 30 Hz and N_f is the number of frames per interaction, the contact duration is measured as:

$$206 \quad Duration = \frac{\sum_{i=1}^{N_f} F_{contact}}{f} . \quad (10)$$

207 3 Experiment 1: Human-to-Human Affective Touch Communication

208 The first experiment was designed with the task of human-to-human emotion communication.
209 Touchers was instructed to deliver cued emotional messages, e.g., happiness, sympathy, anger, to the
210 touch receiver at the receiver's forearm using preferred gestures, e.g., tapping, holding, stroking.
211 Recorded contact attributes were then used to differentiate delivered messages, utilized gestures, and
212 individual touchers. Contact analysis was conducted on the platform with the Intel Core i9-9900 CPU,
213 3.1 GHz, 64 GB RAM, and a NVIDIA GeForce RTX 2080 SUPER GPU. The same platform was used
214 for the second experiment.

215 3.1 Cued Emotional Messages and Gesture Stimuli

216 Seven emotions of anger, attention, calm, fear, gratitude, happiness, and sympathy were selected as
217 cued messages for touchers to express (Table 1). Those messages were adopted from prior studies and
218 have been observed to be recognizable through touch alone (Hertenstein et al., 2006, 2009; Thompson
219 and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Among them, gratitude and sympathy
220 are prosocial expressions that are more effectively communicated by touch compared with those self-
221 focused. Anger, happiness, and fear are universal expressions that are commonly communicated by
222 facial, vocal, and touch expressions. Attention and calm are also preferred messages in touch
223 interactions and can be correctly interpreted significantly better than chance. For each of the cued
224 messages, three commonly used gestures were adopted from prior studies (Hertenstein et al., 2006;
225 Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021) (Table 1). Holding and
226 squeezing were combined into one since they share a similar hand gesture and hand motion. Similarly,
227 hitting was combined with the tapping gesture, but only for the message of anger.

228 **Table 1.** Available gestures for each cued emotional message in touch communication task

Cued Emotional Messages							
	Anger (Ag)	Attention (At)	Calm (C)	Fear (F)	Gratitude (G)	Happiness (H)	Sympathy (S)
Gestures	Hit/Tap	Tap	Hold/Squeeze	Squeeze/Hold	Hold/Squeeze	Shake	Stroke
	Squeeze/Hold	Shake	Stroke	Shake	Shake	Tap	Tap
	Shake	Squeeze/Hold	Tap	Tap	Tap	Stroke	Squeeze/Hold

229 3.2 Participants

230 The human-subjects experiments were approved by the Institutional Review Board at the University
231 of Virginia. Ten participants were recruited as touchers, including five males and five females (mean
232 age = 23.8, SD = 5.0). Another five participants were recruited as touch receivers with three males and
233 two females (mean age = 24.0, SD = 4.4). Five experimental groups were randomly assembled, where
234 each group consisted of one male toucher, one female toucher, and one receiver. Each group performed

235 two experimental sessions with one session conducted by the male toucher and another one conducted
 236 by the female toucher. Written informed consent was obtained from all participants.

237 **3.3 Experimental Setup**

238 To avoid visual distractions during the experiment, touchers and receivers sat at opposing sides of an
 239 opaque curtain. They were instructed to not speak to each other. As shown in Figure 2A, a cushion was
 240 set on the table at the toucher's side upon which the receiver rested her or his left forearm. Cued
 241 emotional messages and corresponding gestures were displayed to the toucher on the computer screen.
 242 The toucher could select the gesture and proceed to the next message using the computer's mouse.
 243 Cued messages and the toucher's selection of gestures were also recorded. As illustrated by a snapshot
 244 of the experiment recording by depth camera (Figure 2A), the camera was set in front of the cushion
 245 and orientated towards it.

246 **3.4 Experimental Procedures**

247 In each session, seven cued emotional messages were communicated with each repeated six times. The
 248 42 message instructions were provided in random order. In each trial, one message was displayed on
 249 the screen with three gestures listed below. Touchers had five seconds to choose a gesture and report
 250 it on the computer display. For each cued message, the three provided gestures were identical but their
 251 order was randomized trial by trial. After that, the toucher delivered the message, by touching the
 252 receiver's forearm from elbow to wrist, using the right hand. Within each trial, only the chosen gesture
 253 was used. The use of other gestures or a combination of gestures was not allowed. For the same cued
 254 message across trials, touchers were free to use the same gesture or change to another gesture. A gesture
 255 could be deployed in any pattern of contact deemed appropriate by the toucher. No constraints or
 256 instructions were given for delivering the gesture, such as its duration, hand region employed, intensity,
 257 or repetition. At the end of a trial, by clicking the 'Next' button on the bottom of the computer display,
 258 the toucher initiated the next trial with a new message word and corresponding three gestures.

259 **3.5 Data Analysis**

260 Overall, 420 trials were performed in ten experimental sessions. Twelve trials were excluded from
 261 analysis as contact interactions were not properly recorded. Statistical and machine learning analyses
 262 were performed to examine the measured contact attributes.

263 To identify the contact pattern between touch gestures, paired-sample Mann–Whitney U tests were
 264 applied across gestures per contact attribute. For time-series attributes, the mean value was used. Since
 265 longitudinal velocity, lateral velocity, and vertical velocity are signed variables, the mean was derived
 266 from the absolute value of those variables. Contact duration as a scalar variable was directly compared
 267 across gestures. To evaluate which of the contact attributes could best identify or describe a certain
 268 type of touch gesture, the importance of each attribute in predicting that gesture was identified using a
 269 random forest classifier. The mean values of time-series attributes together with the scalar attribute
 270 served as inputs. For example, in predicting the stroking gesture, all trials were labeled in a binary
 271 fashion as delivering or not delivering this gesture, instead of being labeled as the four gesture types.
 272 Seventy-five percent of trials were randomly assigned as the training set and those remaining were
 273 assigned as the test set. The permutation method was used to derive the importance of attributes. The
 274 value was obtained as the average of 100 repetitions of classification, with 10 permutations per
 275 classification.

276 Further classification analyses were performed regarding the discrimination of touch gestures,
 277 emotional messages, and individual touchers, respectively, using the random forest algorithm. Contact
 278 attributes were fed into classifiers in three different formats, including the mean value of each time-
 279 series attribute, multiple relevant features extracted from each time-series attribute, and the original
 280 time-series attributes. In particular, multiple features were extracted to quantify the amplitude,
 281 frequency, and dynamic characteristics of the time-series signal (Christ et al., 2018). For example,
 282 time-domain features included mean, maximum, quartiles, standard deviation, trend, skewness,
 283 entropy, energy, etc. Frequency domain features included autocorrelations and partial autocorrelations
 284 with different lags, coefficients of wavelet and Fourier transformations, mean, variance, skew of
 285 Fourier transform spectrum, etc. From all extracted features, relevant ones were selected for
 286 classification by significance tests in predicting the classification target and the Benjamini Hochberg
 287 multiple test (Christ et al., 2018). When time-series data were used, all attributes were concatenated
 288 into one variable as input (Löning et al., 2019). To identify attributes that could better encode social
 289 affective touch, the importance of individual attributes was ranked for each classification task. More
 290 specifically, based on the mean-value classification, the permutation method was repeated multiple
 291 times to derive the average importance values.

292 3.6 Results

293 3.6.1 Physical Contact Attributes in Human-to-Human Touch

294 Human-to-human physical contact interactions between social messages, gestures, and individual
 295 touchers were quantified by their contact attributes. As shown in Figure 3, exemplar data for the four
 296 touch gestures (shake, tap, hold and stroke) exhibit distinct patterns across the contact attributes,
 297 consistent with expected hand movements per gesture. In particular, the stroking gesture was

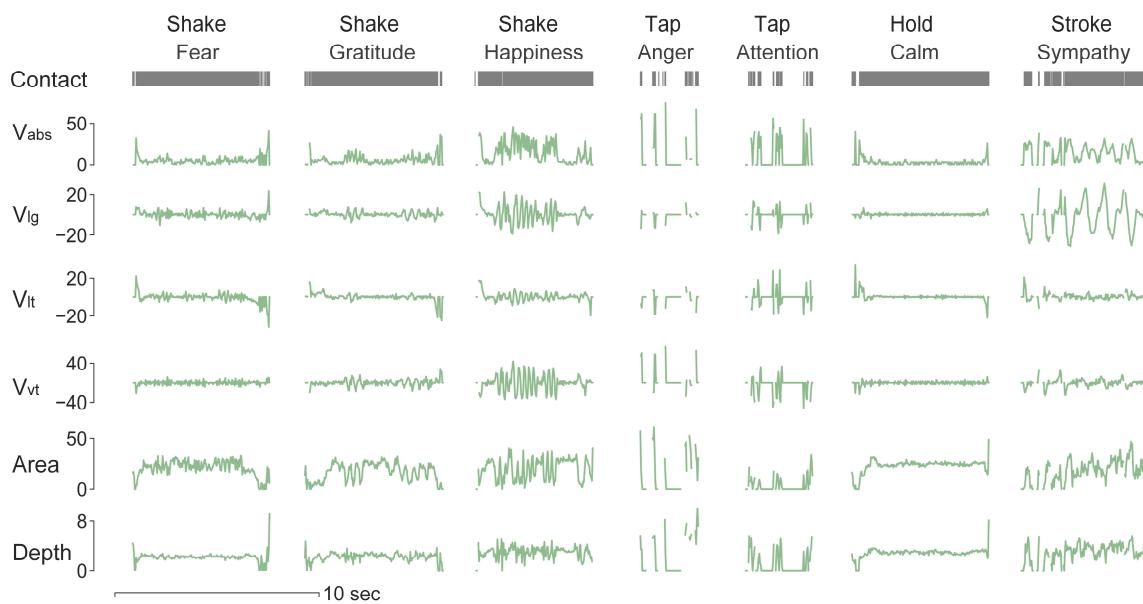


Figure 3. Time-series recordings of each contact attribute across touch gestures and delivered messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes. The *Contact* variable represents the status of the being contacted or not. V_{abs} denotes the absolute contact velocity (cm/s), V_{lg} denotes the longitudinal velocity (cm/s), V_{lt} denotes the lateral velocity (cm/s), V_{vt} denotes the vertical velocity (cm/s), *Area* denotes the contact area (cm^2), and *Depth* denotes the indentation depth (mm).

298 characterized by regular patterns in longitudinal velocity, which implies slow and repetitive
 299 movements along the direction of the forearm. For the shaking gesture, velocity attributes depicted
 300 large changes in frequency and relatively lower amplitude. Meanwhile, velocities in all three directions
 301 changed simultaneously, indicating a spatial direction in the movement of the toucher's hand. The
 302 tapping gesture was quantified as discontinuous, large-amplitude spikes of short contact duration.
 303 Compared with other touch gestures, holding gesture exhibited relatively stable contact with minimal
 304 changes. With further inspection into each gesture, contact patterns with subtle differences could also
 305 be captured across emotional messages. Such as in the shaking gesture, happiness was delivered with
 306 higher velocities compared with the expression of fear. Within the tapping gesture, shorter but more
 307 intensive contact was recorded when expressing anger compared with attention.

308 As shown in Figure 4A, the four touch gestures were statistically differentiable according to several
 309 of their contact attributes. For instance, absolute contact velocity can differentiate all gesture pairs
 310 except for that of stroking and shaking. With the contact attribute of longitudinal velocity, stroking was
 311 differentiable from shaking as it afforded higher longitudinal velocity. This also aligns with hand
 312 movements during stroking that are typically along the direction of the forearm. Both shaking and
 313 tapping gestures exhibited significantly higher longitudinal velocities than the holding gesture. With
 314 the lateral velocity, significant differences were derived among all four gestures, where tapping and
 315 shaking gestures afforded higher amplitudes than stroking and holding. As for the vertical velocity, the

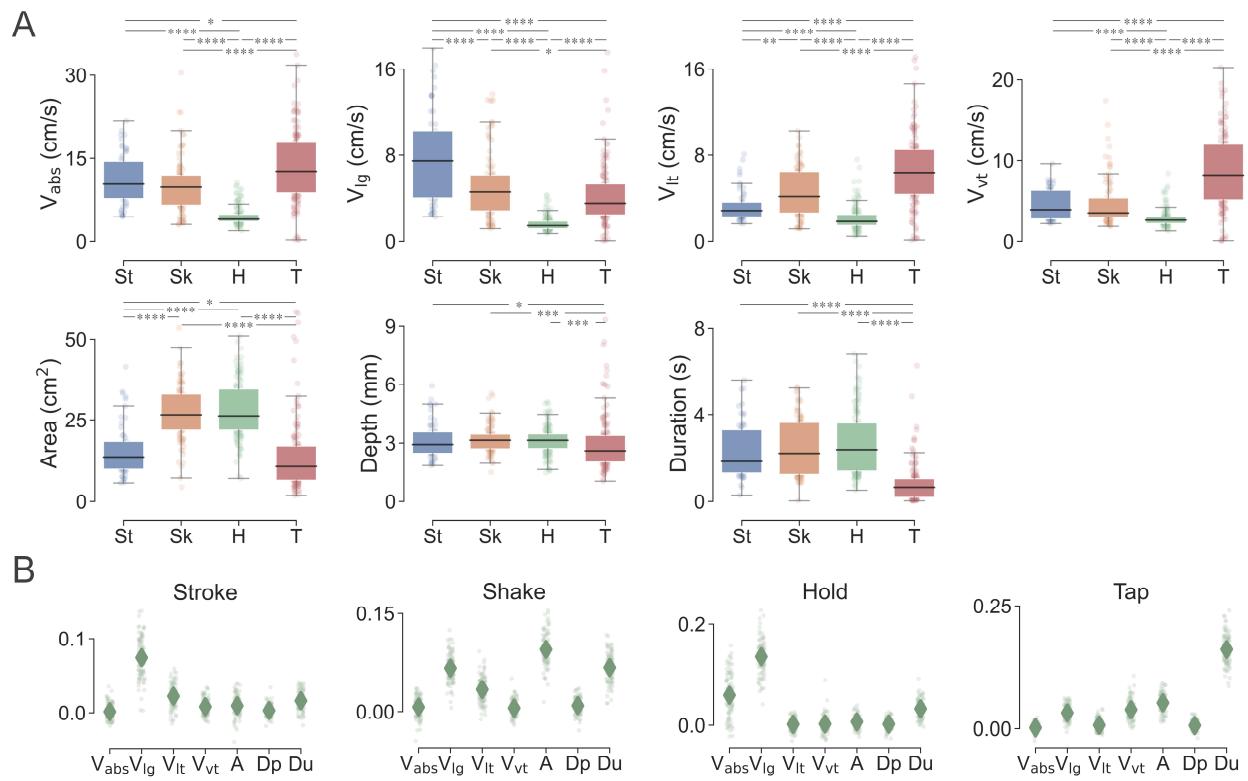


Figure 4. (A) Comparison of contact attributes across the four touch gestures. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ were derived by paired-sample Mann–Whitney U tests. (B) Importance of certain contact attributes in identifying each touch gesture using random forest classification. Diamonds denote means; points denote importance values of 100 repetitions of classification.

316 tapping gesture was associated with significantly higher velocities than others, which aligns with its
 317 up-down movements. Across all velocity attributes, the holding gesture was significantly distinct from
 318 other ones.

319 For the contact area attribute, shaking and holding gestures exhibited significantly higher values
 320 than the stroking gesture, and then tapping. Indeed, participants generally used the whole hand to
 321 deliver holding and shaking, while only the finger digits for stroking and the fingertips for tapping.
 322 Moreover, with indentation depth and contact duration, tapping was distinct amongst the gestures with
 323 significantly lower depth and shorter duration. Note the hand motion with the tapping gesture could be
 324 faster than the recording frequency of the camera, where one trial of contact might not be entirely
 325 captured and thus lead to a lower estimation of indentation depth.

326 In Figure 4B, the contact attributes that were salient in identifying or describing a specific touch
 327 gesture were further analyzed according to their importance in predicting that gesture. From the

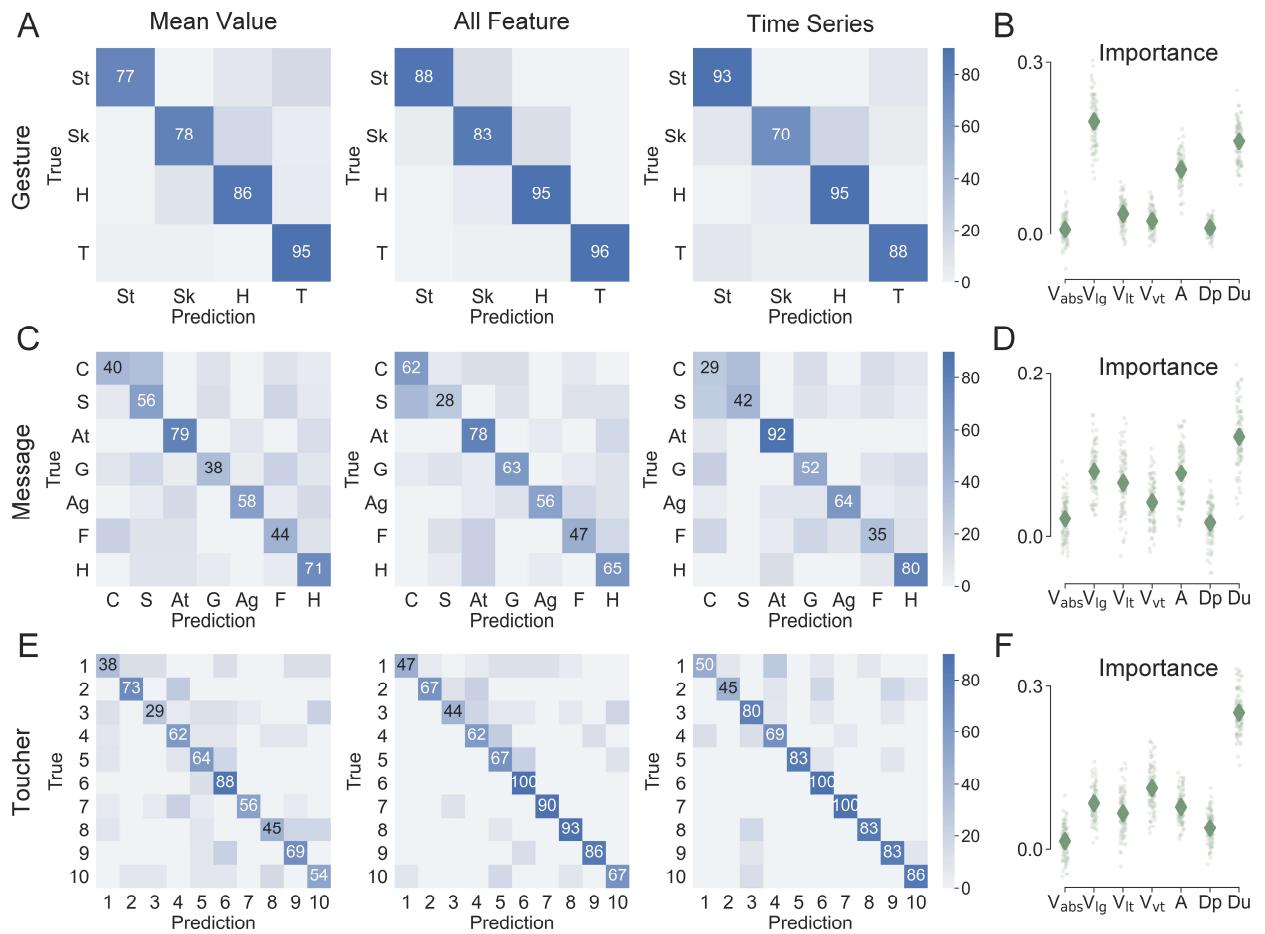


Figure 5. Classification of touch gestures, delivered messages, and toucher individuals using the mean value, all relevant features, and time-series data of contact attributes, respectively. The accuracy in prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are shown, as well as the importance of particular contact attributes in classifying (B) touch gestures, (D) delivered messages, (F) toucher individual. Numbers and colors in confusion matrices represent the prediction percentage. In the importance plots, the diamonds denote means; points denote importance values from 100 repetitions of classification.

328 importance ranking, longitudinal velocity appears to be the most useful attribute in describing the
 329 stroking gesture. The shaking gesture did not have a single salient attribute, perhaps because it was
 330 delivered from multiple directions and varied velocities. The attributes of contact area, contact
 331 duration, and longitudinal velocity were relatively more important. The holding gesture could be
 332 identified by longitudinal and absolute velocities with both lower amplitudes. For the tapping gesture,
 333 contact duration could be important in identifying it, which should be shorter than other gestures.

334 **3.6.2 Classification amidst Gestures, Messages, and Individuals**

335 In Figure 5, the contact attributes are shown to robustly classify touch gestures, delivered messages,
 336 and individual touchers at accuracies better than chance, which is 25%, 14.3%, and 10% respectively.
 337 For gesture prediction, the accuracy was 87% when the mean values of contact attributes were used as
 338 predictors (Figure 5A). The prediction accuracy slightly increased to 92% when all relevant features
 339 were used as more information was included, and was around 86% when predicted by the time-series
 340 data. In classifying delivered emotional messages, the accuracy was 54%, 57%, and 55%, for the three
 341 respective feature classes (Figure 5C). Moreover, in classifying the individual touchers, the accuracies
 342 were 56%, 72%, and 77%, respectively. For the importance ranking of the contact attributes, those of
 343 longitudinal velocity, contact duration, and contact area were typically more important.

344 **4 Experiment 2: Technical Validation on the Visual Tracking Method**

345 The second experiment was designed to validate the effectiveness of the 3D visual tracking system in
 346 measuring controlled human movements against those from independent devices, including an
 347 electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. These
 348 techniques are used commonly in haptics studies (Silvera-Tawil et al., 2014; Jung et al., 2015; Hauser
 349 et al., 2019a; Xu et al., 2020, 2021a; Lo et al., 2021). In this experiment, the observed contact attributes
 350 were compared within controlled touch conditions, e.g., stroking in different directions at preset
 351 velocities, pressing with different parts of the hand varying in contact area, and tapping at different
 352 depth magnitudes.

353 **4.1 Contact Velocity Validation Using Electromagnetic Tracker**

354 **4.1.1 Experimental Setup**

355 Measurements of the directional components of contact velocity, including absolute velocity,
 356 longitudinal velocity, lateral velocity, and vertical velocity were validated against those of an
 357 electromagnetic (EM) motion tracker (3D Guidance, Northern Digital, Canada. 6 DOF, 20-255 Hz, 1.4
 358 mm RMS position accuracy, 78 cm range; 0.5° RMS orientation accuracy, $\pm 180^\circ$ azimuth & roll, $\pm 90^\circ$
 359 elevation range). Both tracking systems were operated simultaneously to capture controlled
 360 movements of the human hand touching the forearm. The transmitter of the 3D Guidance EM tracker
 361 was oriented to be aligned with the arm coordinate (Figure 6A). The sensor of the EM tracker was
 362 attached to the toucher's back of the hand near the middle metacarpophalangeal joint.

363 **4.1.2 Experimental Procedures**

364 Given velocity components were defined in different directions, five test gestures were designed in
 365 total. The first two test gestures were stroking contact along the forearm in longitudinal and lateral
 366 directions, respectively. The third test gesture involved tapping vertically to the surface of the forearm.
 367 The fourth gesture was holding without movement. The fifth gesture was shaking, which was delivered
 368 in an irregular and arbitrary way with different directions and velocities included. For the first three

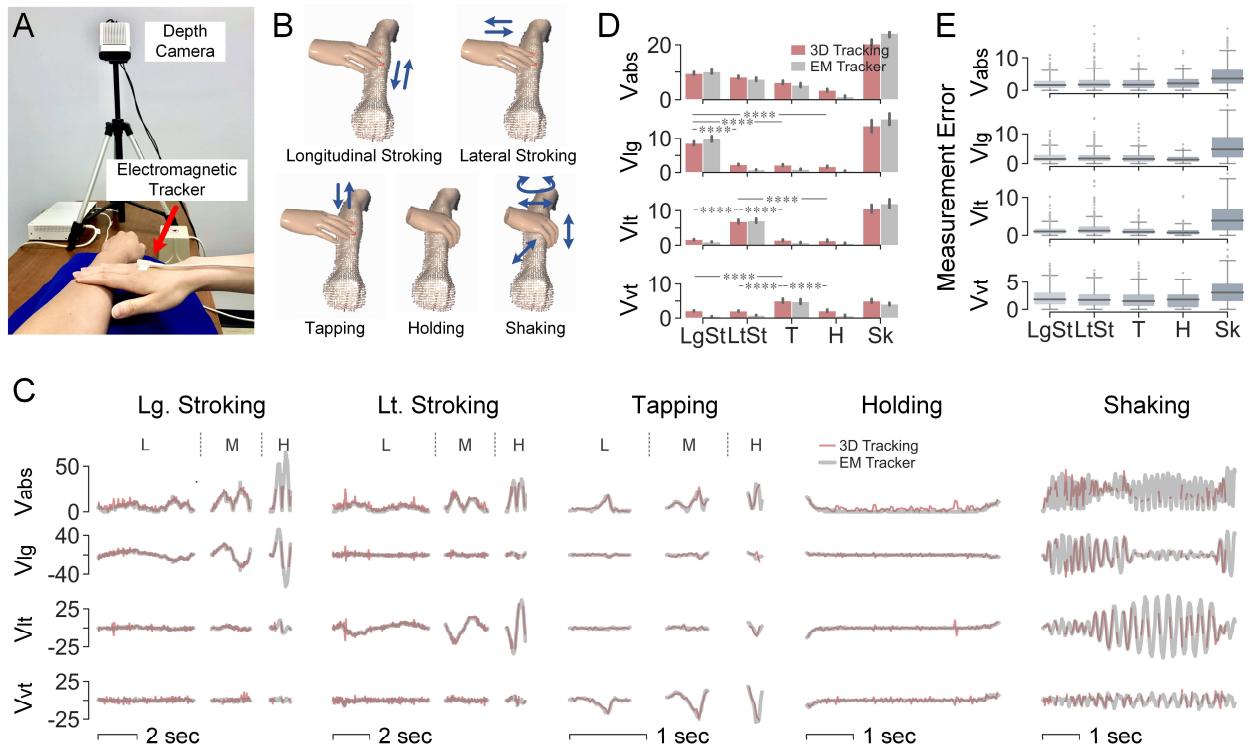


Figure 6. Validation of contact velocity measurements using EM tracker. (A) Experimental setup. (B) Five test gestures. (C) Velocity (cm/s) over time by the two tracking systems. For the first three test gestures, one trial is shown per force level, i.e., low, medium, and high force. (D) Mean values of velocities (cm/s) per test gesture. *** $p < 0.0001$ were derived by paired-sample Mann–Whitney U tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.

369 test gestures, each one was performed in three levels of velocities, from low to medium to high. Each
 370 velocity level was repeated for three trials. For example, the longitudinal stroking gesture was
 371 performed as three trials of stroking in the longitudinal direction with lower velocity, followed by three
 372 trials of stroking with medium velocity, and concluded by three trials of stroking with higher velocity.
 373 The direction of hand movement and level of velocity were behaviorally controlled by the trained
 374 toucher, who performed all three validation experiments. Shaking and holding gestures were performed
 375 only once but lasted for a longer time to collect enough amount of data for validation analysis.

376 **Table 2.** Experiment procedure for validating contact velocity

Test Gesture	Moving Direction	Velocity Levels	Repeated Trials per Level	Trials in Total
1	Stroking	Longitudinal	Low, Medium, High	3
2	Stroking	Lateral	Low, Medium, High	3
3	Tapping	Vertical	Low, Medium, High	3
4	Holding	None	None	1 (long duration)
5	Shaking	Irregular	Irregular	1 (long duration)

377 **4.1.3 Data Analysis**

378 Similar to the 3D visual tracking system, the four velocity attributes captured by the EM tracker were
 379 derived from the original time-series position data. For either tracking system, the absolute mean value
 380 of each velocity attribute was calculated per test gesture. Mann–Whitney U tests were conducted across
 381 the test gestures based on mean velocity collected by the visual tracking system. Measurement errors

382 between the two tracking systems were derived per attribute and test gesture. Since the sampling rates
 383 of the two systems differ, i.e., 30 Hz for the Azure Kinect camera and 60 Hz for the EM tracker, data
 384 collected from the EM tracker was resampled to be synchronized. More specifically, the EM tracking
 385 data was first interpolated and sampled according to the timestamps of the 3D visual tracking data.
 386 Then, the error was calculated for each time point between the velocities from the two systems.

387 **4.1.4 Results**

388 In Figure 6, velocities measured by the 3D visual tracking system were accurate when compared with
 389 the EM tracker. The time-series data from the two systems well overlapped amidst touch gestures
 390 (Figure 6C) and the average velocities of the gestures were comparable between the two systems
 391 (Figure 6D). Shaking delivered high velocities in all three directions, while velocity in a certain
 392 direction was significantly higher for hand movements along that direction. All four velocity attributes
 393 were significantly lower when the holding gesture was performed. As shown in Figure 6E, the
 394 measurement error was 1-2 cm/s for the first four gestures and relatively higher at around 5 cm/s for
 395 the shaking gesture.

396 **4.2 Contact Area Validation Using Sensorized Pressure Mat**

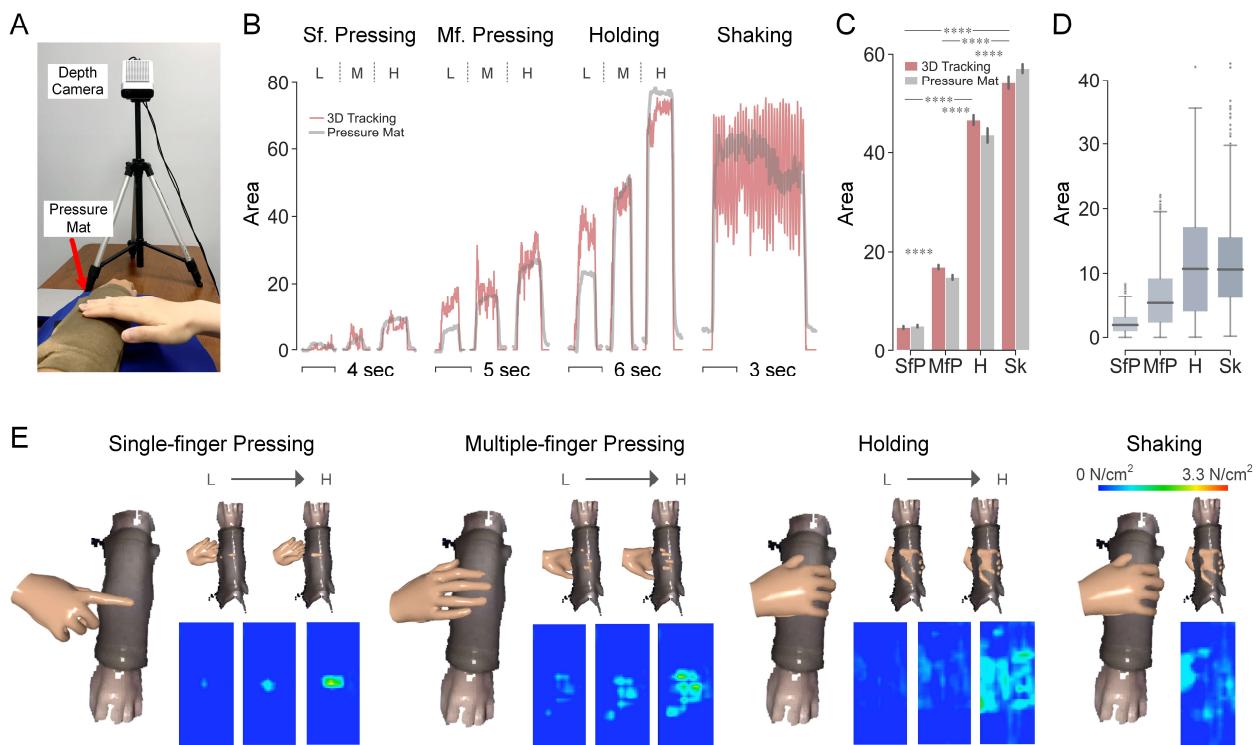


Figure 7. Validation of contact area measurements using sensorized pressure mat. (A) Experimental setup. (B) Contact area (cm^2) over time by the two systems. For the first three test gestures are shown one trial per force level, i.e., low, medium, and high force. (C) Mean values of contact area (cm^2) per test gesture. $****p < 0.0001$ were derived by paired-sample Mann–Whitney U tests. (D) Differences of measured contact area (cm^2) between the two systems per test gesture. (E) Visualization of hand-arm contact in top view (left) and bottom view (top right) with heatmaps of contact pressure tracked by sensorized pressure mat across force levels (bottom right).

397 **4.2.1 Experimental Setup**

398 Contact area was measured simultaneously with the 3D visual tracking system and a sensorized
 399 pressure mat (Conformable TactArray SN8880, Pressure Profile Systems, USA, 7x14 cm, 12x27
 400 sensing elements, 0.002 psi pressure resolution, 3.05 psi pressure range, 29.3 Hz). Note that contact
 401 was evaluated between the toucher's hand and the surface of the pressure mat which was overlaid on
 402 top of the bare forearm, for which it had been custom-designed (Figure 7A). Based on pilot tests with
 403 the pressure mat, its measurement of contact area could be inaccurate due to the creases caused by
 404 pressing when the mat was put on the forearm. To attenuate this effect, a piece of single-face corrugated
 405 cardboard was placed between the forearm and the mat to generate a smooth and stiffer curved surface
 406 following the shape of the forearm.

407 **4.2.2 Experimental Procedures**

408 Four test gestures were employed. The first test gesture was single-finger pressing with the index
 409 finger. The second gesture was multiple-finger pressing with all fingers except for the thumb. The third
 410 gesture was holding and the fourth gesture was shaking. For the first three test gestures, three levels of
 411 force were applied from low to medium to high, to generate different levels of contact area within a
 412 gesture. Each force level was repeated for three trials. Per trial, the toucher's hand moved downward
 413 into the receiver's forearm and maintained pressure/hold at that force level for more than three seconds.
 414 For example, the single-finger pressing gesture was conducted for three trials of pressure using the
 415 index finger at a low force level, followed by three trials of pressure at a medium force level, and three
 416 trials of pressing with a higher force level. The shaking gesture was conducted for one trial with a long
 417 duration. Any patterns of shaking could be applied in an irregular and arbitrary manner including
 418 different directions, velocities, etc.

419 **Table 3.** Experiment procedure for validating contact area

Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1 Single-finger pressing	Low, Medium, High	3	9
2 Multiple-finger pressing	Low, Medium, High	3	9
3 Holding	Low, Medium, High	3	9
4 Shaking	Irregular	1	1 (long duration)

420 **4.2.3 Data Analysis**

421 The average contact area per gesture was calculated for both measurement systems. Significance
 422 tests were performed across gestures based on average areas from the visual tracking system. The
 423 measurement differences between the two systems were derived from time-series recordings per
 424 gesture. To overcome the time discrepancy of sampling, data collected by the sensorized pressure mat
 425 was resampled to be synchronized with the visual tracking system.

426 **4.2.4 Results**

427 In Figure 7B, the time-series contact areas captured by the 3D visual tracking system and the sensorized
 428 pressure mat well overlapped with each other across test gestures and force levels. While single-finger
 429 pressing (SfP) afforded the smallest contact area, larger multiple-finger pressing (MfP) was
 430 significantly smaller than holding (H) and shaking (Sk) (Figure 7C). As shown in Figure 7D, the
 431 measurement differences between the two systems were around 2 and 6 cm² for SfP and MfP, while
 432 increased to 11 cm² for holding and shaking.

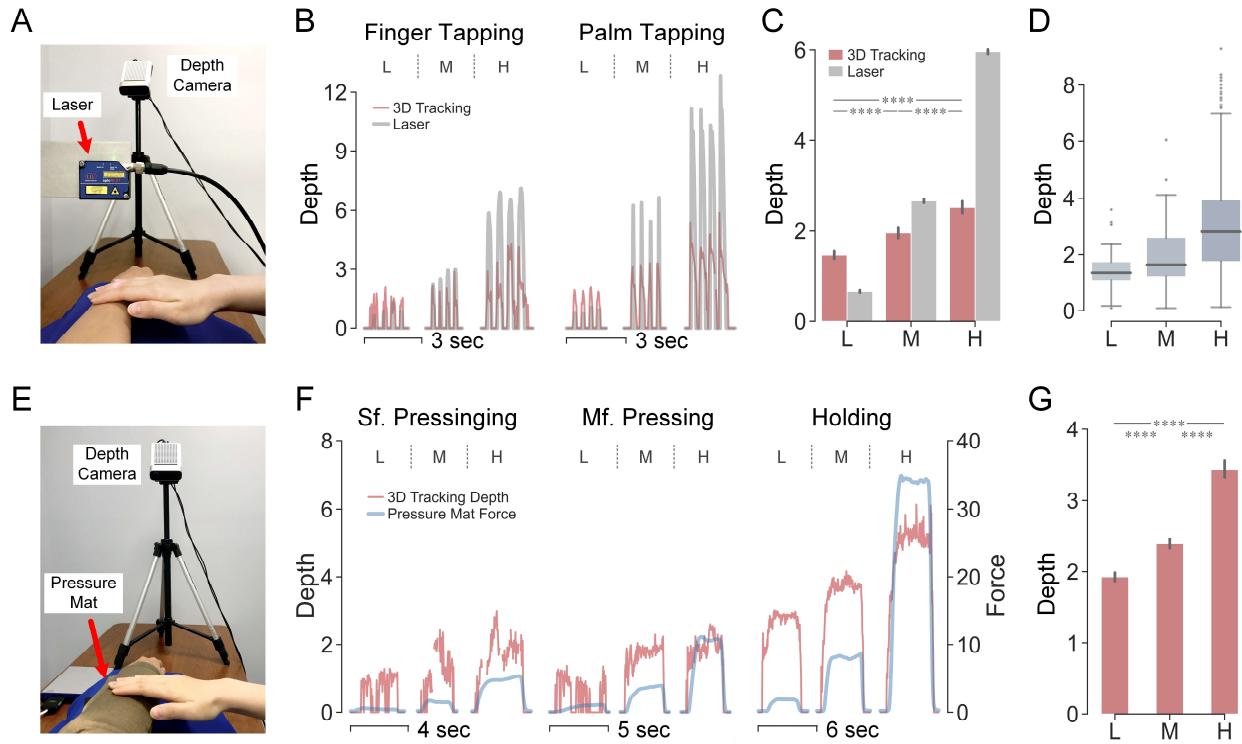


Figure 8. Validation of indentation depth measurements using laser displacement sensor and sensorized pressure mat. (A) Experimental setup with laser displacement sensor. (B) Indentation depth (mm) over time by the either system. For the two test gestures shown is one trial per force level, i.e., low, medium, and high force. (C) Mean values of indentation depth per test gesture. *** $p < 0.0001$ were derived by paired-sample Mann–Whitney U tests across force levels. (D) Errors of measured indentation depth between systems per force level. (E) Experimental setup with sensorized pressure mat. (F) Indentation depth (mm) collected by the 3D visual tracking system overlaps with overall force (N) collected by the sensorized pressure mat. Per test gesture, one trial per force level is shown i.e., low, medium, and high force. (G) Mean value of indentation depth per force level recorded by the 3D visual tracking system. *** $p < 0.0001$ were derived by paired-sample Mann–Whitney U tests across force levels.

4.3 Indentation Depth Validation Using Laser Sensor

4.3.1 Experimental Setup

Indentation depth was first validated using a laser displacement sensor (optoNCDT ILD 1402-100, Micro-Epsilon, Germany, 100 mm range, 10 μm resolution, 1.5 kHz). The sensor was mounted on a customized stand with the beam pointing downward. Given its capability of measuring the displacement of one point in only the vertical direction (Figure 8A), a limited set of tapping gestures was evaluated in this setting. Other gestures were then tested with a separate validation procedure using the sensorized pressure mat (Figure 8E).

4.3.2 Experimental Procedures

Two test gestures were examined with the laser sensor. The first gesture was multiple-finger tapping, where the movement of the tip of the middle finger was tracked. The second gesture was tapping with

444 the palm, measured at one point on the back of the hand. Holding, shaking, and stroking gestures were
 445 not examined here since these gestures are typically not conducted in the vertical direction. Within
 446 each gesture, three force levels were employed, i.e., low, medium, high, and each repeated in three
 447 trials. The toucher quickly tapped for four times within one trial. For example, the palm tapping gesture
 448 was conducted for three trials of four taps with the palm at a low force level, followed by three trials
 449 of four taps at a medium force level, and three trials of four taps at a high force level. The raw data
 450 collected by laser sensor contained displacements of both indentations into the skin and movements in
 451 the air. Therefore, the toucher conducted a ‘zero contact’ touch to the forearm at a minimally
 452 perceptible force prior to each test gesture.

453 Within the setting of sensorized pressure mat, the three test gestures performed were single-finger
 454 pressing, multiple-finger pressing, and holding. Each gesture was performed in three force levels,
 455 where each level was repeated for three trials.

456 **Table 4.** Experiment procedure for validating indentation depth

Validation with Laser Sensor				
	Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1	Multiple-finger tapping	Low, Medium, High	3 (4 taps per trial)	9
2	Palm tapping	Low, Medium, High	3 (4 taps per trial)	9
Validation with Pressure Mat				
	Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1	Single-finger pressing	Low, Medium, High	3	9
2	Multiple-finger pressing	Low, Medium, High	3	9
3	Holding	Low, Medium, High	3	9

457 **4.3.3 Data Analysis**

458 For the validation with laser sensor, average indentation depth at each force level was obtained by
 459 aggregating the two tapping gestures. Significance tests were conducted across force levels based on
 460 the average depth collected by the visual tracking system. Measurement errors between the two systems
 461 were derived from time-series recordings at each force level. The data from the laser sensor was
 462 resampled according to the 3D visual tracking system’s results. For quick tapping gestures, slight
 463 temporal discrepancies between the two recordings could derive large differences. Therefore, the
 464 dynamic time warping method was used to match tracked movements. The measurement errors were
 465 obtained by comparing each pair of matched points from the two recordings.

466 Though no depth data could be captured by the pressure mat, the overall contact force was measured
 467 for correlation with indentation depth measured by the visual tracking system. By aggregating all test
 468 gestures, the average depth derived per force level was then calculated and compared.

469 **4.3.4 Results**

470 In Figure 8, the patterns of indentation depth measured by the two systems were very similar especially
 471 for the temporal changes (Figure 8B). Though differences could be observed between their overall
 472 amplitudes, their increasing trends were maintained across force levels (Figure 8C). Therefore, the 3D
 473 visual tracking system affords the sensitivity to track slight changes in indentation depth, while the
 474 amplitude of changes is proportionally mitigated. Moreover, contact with different force levels could
 475 be easily differentiated by indentation depth amongst a variety of touch gestures. (Figure 8C, 8G).

476 **5 Discussion**

477 To better understand human-to-human touch interactions underlying social emotional communication,
 478 an interference-free 3D visual tracking system was developed to precisely measure skin-to-skin
 479 physical contact by time-series contact attributes. The system was validated to capture and readily
 480 distinguish naturalistic human touches across delivered emotional messages, touch gestures, and
 481 individual touchers according to contact attributes. Compared with standard tracking techniques,
 482 similar accuracy of spatiotemporal measurements was achieved by this system, while multivariate
 483 attributes can be obtained simultaneously within one concise setup.

484 **5.1 Deciphering Affective Touch Communication by Contact Attributes**

485 As human affective touch is prone to be impacted by social and individual factors, such contact
 486 differences could be readily captured by this system via contact attributes. First of all, touch gestures
 487 can be differentiated with high accuracy as their contact attributes were significantly different from
 488 each other (Figure 4A). Measurements of this system also align with prior reports of gesture
 489 quantification with similar amplitudes. Such as the velocity for stroking in social touch is around 10
 490 cm/s (Lo et al., 2021), and the average contact area of holding gesture is around 30 cm² (Hauser et al.,
 491 2019a). In addition, the characterized contact pattern of each gesture align well with the general sense
 492 of how we deliver that gesture. For example, tapping is associated with higher vertical velocities,
 493 stroking is delivered with higher longitudinal velocities, and holding is commonly applied with lower
 494 velocities and larger contact areas (Figure 4A).

495 Moreover, delivered emotional messages can be differentiated by contact attributes much better
 496 than chance (Figure 5C). The accuracy of 54%, 57%, 55% was achieved when predicted by three
 497 different levels of information derived from contact attributes (Figure 5C). Note that human receivers
 498 only achieve a comparable recognition correctness around 57% when a similar pool of messages were
 499 tested (Hauser et al., 2019a; McIntyre et al., 2021). It indicates that some contact information human
 500 receivers rely on in identifying emotional messages can be captured by this tracking system.
 501 Meanwhile, certain messages that were difficult to be discriminated by contact attributes might indeed
 502 be very similar in their social meanings and touch behaviors. Such as sympathy and calm, which are
 503 supposed to be close in the terms of contact quantification.

504 Furthermore, this tracking system can capture individual differences in affective touch as individual
 505 touchers were also easily distinguished. Prior studies highlighted that touch behavior in social
 506 communication could be influenced by many factors, such as age (Cascio et al., 2019), gender
 507 (Hertenstein et al., 2009; Russo et al., 2020), cultural backgrounds (Hertenstein et al., 2006; Suvilehto
 508 et al., 2019), relationship (Thompson and Hampton, 2011), or personalities (McIntyre et al., 2021).
 509 While the personal information is easy to obtain via questionnaires, the uniqueness of their contact
 510 performance is always challenging to collect. Prior attempts on individual difference typically focused
 511 on contact with engineered stimuli like silicone-elastomers (Xu et al., 2021b), grooved surfaces in
 512 grating orientation tasks (Peters et al., 2009), or the contact with robots (Cang et al., 2015). In those
 513 settings, contact can be well-recorded by built-in or attached sensors, which in contrast is impractical
 514 or interferential for human-to-human touch. As individual difference indeed plays a role in social
 515 emotion communication, this system could help bridge the gap by inspecting the differences from the
 516 aspect of skin contact quantification.

517 **5.2 Improved Skin-to-Skin Contact Measurement by 3D Visual Tracking**

518 The measurement accuracy of this system was validated by several standard tracking techniques. As
 519 shown in Figures 6-8, time-series recordings of contact attributes aligned well with the data collected

520 from independent devices, i.e., contact velocities from an EM motion tracker, contact area from a
 521 sensorized pressure mat, and indentation depth from a laser sensor. Those standard tracking methods
 522 typically afford high accuracy or resolution of measurements but are specialized for limited types of
 523 contact attributes. Therefore, when different attributes are needed at the same time, a complex
 524 combination of multiple devices is usually required. In contrast, the proposed tracking system captures
 525 most of those attributes simultaneously with a concise setup without calibration.

526 Moreover, the proposed 3D visual tracking system is compatible with wider applications as many
 527 limitations of standard tracking methods were overcome or avoided. More specifically, compared with
 528 the EM tracker, this system is free of electromagnetic interference and provides shape information
 529 instead of tracking the position of only few points. Compared with infrared motion trackers like the
 530 Leap Motion sensor, it covers a larger range of tracking and captures any 3D shapes in addition to
 531 hands and several basic geometric shapes. The motion capture system is superior in tracking
 532 movements but is expensive to set up and constrained by pre-attached markers. Sensorized pressure
 533 mat and other force sensors always block the direct contact and might not be reliable in area
 534 measurement due to spatial resolution constraints and the increasing zero drift over time (Figure 4B).
 535 While the proposed tracking system is free of those issues mentioned above, limitations still exist. In
 536 particular, the attribute of contact force and pressure are unavailable although they contribute to contact
 537 interactions (Essick et al., 2010; Huang et al., 2020; Teyssier et al., 2020; Xu et al., 2020). Due to the
 538 constraint of recording frequency, fast movements might fail in tracking since the hand image could
 539 be blurred. Meanwhile, the forearm needs to be recorded parallel with the y-axis of the color image
 540 coordinate. In so doing, the spatial hand velocity can be decomposed into the three orthogonal
 541 directions without additional markers to define the arm coordinate.

542 5.3 Further Applications in Human-to-Human Touch Interaction

543 Human touch each other with different intentions and a wide range of emotional states. In the classic
 544 theory of emotion, three dimensions of valence, arousal, and dominance, are typically employed for
 545 emotion assessments (Russell and Mehrabian, 1977; Russell, 1980). Indeed, using machine-controlled
 546 brush stimuli, the valence rating was reported to be tuned by the tangential stroking velocity (Löken et
 547 al., 2009; Essick et al., 2010; Ackerley et al., 2014a, 2014b; Croy et al., 2021). In the scenario of
 548 naturalistic human touch, our measurements could further facilitate the quantitative analysis regarding
 549 other correlates between contact attributes and the three emotional dimensions.

550 From the perspective of neurophysiology, changes in the skin's mechanics caused by physical
 551 contact could elicit different responses of peripheral afferents (Johnson, 2001; Yao and Wang, 2019;
 552 Xu et al., 2021a). For example, the firing frequency of C-tactile afferents is associated with the stroking
 553 velocity in an inverted-U shape relationship (Löken et al., 2009; Ackerley et al., 2014a; Liljencrantz
 554 and Olausson, 2014). Other A β afferents are suggested to support the identification of distinct
 555 emotional messages delivered by touch (Hauser et al., 2019b). Moving forward into this direction,
 556 measurements of naturalistic human contact can aid in uncovering how exactly afferents respond to
 557 such contact and contribute to different emotional percepts.

558 Affective touch is also believed to impact physiological arousal such as blood pressure, heart rate,
 559 respiration, ECG, EEG, and hormone level (Gallace and Spence, 2010; Sefidgar et al., 2016).
 560 Especially for infants, touch delivered by caregivers contributes to their social, cognitive, and physical
 561 development (Hertenstein, 2002; Van Puyvelde et al., 2019), where the underlying contact details
 562 would be meaningful to quantify. Additionally, many physical therapies, such as massage, rely on
 563 specific manipulation of the muscle and tissue of patients delivered by professional therapists. Those

564 therapies create health benefits including relieving stress and pain, promoting blood circulation, and
 565 boosting mental wellness (Moyer et al., 2004). While the underlying mechanism is waiting to be further
 566 explored with the aid of physical skin contact tracking.

567 **6 Conflict of Interest**

568 The authors declare that the research was conducted in the absence of any commercial or financial
 569 relationships that could be construed as a potential conflict of interest.

570 **7 Author Contributions**

571 SX, CX, SM, HO, and GJG conceptualized and designed the study. SX and GJG developed the tracking
 572 system. SX, CX, and GJG performed the experiments. SX, CX, SM, and GJG analyzed and interpreted
 573 experimental results. SX, CX, and GJG drafted the manuscript. All authors edited and approved the
 574 manuscript.

575 **8 Funding**

576 This work is supported in part by grants from the National Science Foundation (IIS-1908115) and the
 577 National Institutes of Health (NINDS R01NS105241) to GJG. The funders had no role in study design,
 578 data collection and analysis, decision to publish, or preparation of the manuscript.

579 **9 Acknowledgments**

580 We would like to thank all the participants who participated in the experiments.

581 **10 Reference**

582 Ackerley, R., Backlund Wasling, H., Liljencrantz, J., Olausson, H., Johnson, R. D., and Wessberg, J.
 583 (2014a). Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. *J.
 584 Neurosci.* 34, 2879–2883. doi:10.1523/JNEUROSCI.2847-13.2014.

585 Ackerley, R., Carlsson, I., Wester, H., Olausson, H., and Backlund Wasling, H. (2014b). Touch
 586 perceptions across skin sites: Differences between sensitivity, direction discrimination and
 587 pleasantness. *Front. Behav. Neurosci.* 8, 54. doi:10.3389/FNBEH.2014.00054.

588 Andreasson, R., Alenljung, B., Billing, E., and Lowe, R. (2018). Affective Touch in Human–Robot
 589 Interaction: Conveying Emotion to the Nao Robot. *Int. J. Soc. Robot.* 10, 473–491.
 590 doi:10.1007/s12369-017-0446-3.

591 Bucci, P., Cang, X. L., Valair, A., Marino, D., Tseng, L., Jung, M., et al. (2017). “Sketching
 592 CuddleBits: Coupled Prototyping of Body and Behaviour for an Affective Robot Pet,” in
 593 *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, 3681–
 594 3692. doi:10.1145/3025453.3025774.

595 Cang, X. L., Bucci, P., Strang, A., Allen, J., Maclean, K., and Liu, H. Y. S. (2015). Different strokes
 596 and different folks: Economical dynamic surface sensing and affect-related touch recognition. in
 597 *ICMI 2015 - Proceedings of the 2015 ACM International Conference on Multimodal
 598 Interaction*, 147–154. doi:10.1145/2818346.2820756.

599 Cascio, C. J., Moore, D., and McGlone, F. (2019). Social touch and human development. *Dev. Cogn.
 600 Neurosci.* 35, 5–11. doi:10.1016/j.dcn.2018.04.009.

601 Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W. (2018). Time Series FeatuRe Extraction
 602 on basis of Scalable Hypothesis tests (tsfresh – A Python package). *Neurocomputing* 307, 72–
 603 77. doi:10.1016/j.neucom.2018.03.067.

604 Coan, J. A., Schaefer, H. S., and Davidson, R. J. (2006). Lending a hand: Social regulation of the
 605 neural response to threat. *Psychol. Sci.* 17, 1032–1039. doi:10.1111/j.1467-9280.2006.01832.x.

606 Croy, I., Bierling, A., Sailer, U., and Ackerley, R. (2021). Individual Variability of Pleasantness
 607 Ratings to Stroking Touch Over Different Velocities. *Neuroscience* 464, 33–43.
 608 doi:10.1016/J.NEUROSCIENCE.2020.03.030.

609 Essick, G. K., McGlone, F., Dancer, C., Fabricant, D., Ragin, Y., Phillips, N., et al. (2010).
 610 Quantitative assessment of pleasant touch. *Neurosci. Biobehav. Rev.* 34, 192–203.
 611 doi:10.1016/J.NEUBIOREV.2009.02.003.

612 Gallace, A., and Spence, C. (2010). The science of interpersonal touch: An overview. *Neurosci.*
 613 *Biobehav. Rev.* 34, 246–259. doi:10.1016/j.neubiorev.2008.10.004.

614 Hauser, S. C., McIntyre, S., Israr, A., Olausson, H., and Gerling, G. J. (2019a). Uncovering Human-
 615 to-Human Physical Interactions that Underlie Emotional and Affective Touch Communication.
 616 in *2019 IEEE World Haptics Conference (WHC)*, 407–412. doi:10.1109/WHC.2019.8816169.

617 Hauser, S. C., Nagi, S. S., McIntyre, S., Israr, A., Olausson, H., and Gerling, G. J. (2019b). From
 618 Human-to-Human Touch to Peripheral Nerve Responses. in *2019 IEEE World Haptics
 619 Conference (WHC)* (IEEE), 592–597. doi:10.1109/WHC.2019.8816113.

620 Hertenstein, M. J. (2002). Touch: Its communicative functions in infancy. *Hum. Dev.* 45, 70–94.

621 Hertenstein, M. J., Holmes, R., Mccullough, M., and Keltner, D. (2009). The Communication of
 622 Emotion via Touch. *Emotion* 9, 566–573. doi:10.1037/a0016108.

623 Hertenstein, M. J., Keltner, D., App, B., Bulleit, B. A., and Jaskolka, A. R. (2006). Touch
 624 communicates distinct emotions. *Emotion* 6, 528–533. doi:10.1037/1528-3542.6.3.528.

625 Huang, C., Wang, Q., Zhao, M., Chen, C., Pan, S., and Yuan, M. (2020). Tactile Perception
 626 Technologies and Their Applications in Minimally Invasive Surgery: A Review. *Front. Physiol.*
 627 11, 1601. doi:10.3389/FPHYS.2020.611596.

628 Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. *Curr. Opin.*
 629 *Neurobiol.* 11, 455–461. doi:10.1016/S0959-4388(00)00234-8.

630 Jung, M. M., Cang, X. L., Poel, M., and Maclean, K. E. (2015). Touch challenge'15: Recognizing
 631 social touch gestures. in *Proceedings of the 2015 ACM International Conference on Multimodal
 632 Interaction (ICMI)* (New York, NY, USA), 387–390. doi:10.1145/2818346.2829993.

633 Liljencrantz, J., and Olausson, H. (2014). Tactile C fibers and their contributions to pleasant
 634 sensations and to tactile allodynia. *Front. Behav. Neurosci.* 8, 37.
 635 doi:10.3389/FNBEH.2014.00037.

636 Lo, C., Chu, S. T., Penney, T. B., and Schirmer, A. (2021). 3D Hand-Motion Tracking and Bottom-
 637 Up Classification Sheds Light on the Physical Properties of Gentle Stroking. *Neuroscience* 464,
 638 90–104. doi:https://doi.org/10.1016/j.neuroscience.2020.09.037.

639 Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., and Olausson, H. (2009). Coding of pleasant
 640 touch by unmyelinated afferents in humans. *Nat. Neurosci.* 12, 547–548. doi:10.1038/nn.2312.

641 Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Király, F. J. (2019). sktime: A
 642 Unified Interface for Machine Learning with Time Series. *arXiv Prepr. arXiv1909.07872*.

643 McIntyre, S., Hauser, S. C., Kuztor, A., Boehme, R., Moungou, A., Isager, P. M., et al. (2021). The
644 language of social touch is intuitive and quantifiable. *Psychol. Sci.*

645 Moyer, C. A., Rounds, J., and Hannum, J. W. (2004). A Meta-Analysis of Massage Therapy
646 Research. *Psychol. Bull.* 130, 3–18. doi:10.1037/0033-2909.130.1.3.

647 Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., and Mathis, M. W. (2019). Using
648 DeepLabCut for 3D markerless pose estimation across species and behaviors. *Nat. Protoc.* 14,
649 2152–2176. doi:10.1038/s41596-019-0176-0.

650 Peters, R. M., Hackeman, E., and Goldreich, D. (2009). Diminutive Digits Discern Delicate Details:
651 Fingertip Size and the Sex Difference in Tactile Spatial Acuity. *J. Neurosci.* 29, 15756–15761.
652 doi:10.1523/JNEUROSCI.3684-09.2009.

653 Rezaei, M., Nagi, S. S., Xu, C., McIntyre, S., Olausson, H., and Gerling, G. J. (2021). Thin Films on
654 the Skin, but not Frictional Agents, Attenuate the Percept of Pleasantness to Brushed Stimuli. in
655 *2021 IEEE World Haptics Conference (WHC)*, 49–54. doi:10.1109/WHC49131.2021.9517259.

656 Romero, J., Tzionas, D., and Black, M. J. (2017). Embodied hands: modeling and capturing hands
657 and bodies together. *ACM Trans. Graph.* 36. doi:10.1145/3130800.3130883.

658 Russell, J. A. (1980). A circumplex model of affect. *J. Pers. Soc. Psychol.* 39, 1161–1178.

659 Russell, J. A., and Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. *J. Res.
660 Pers.* 11, 273–294. doi:10.1016/0092-6566(77)90037-X.

661 Russo, V., Ottaviani, C., and Spitoni, G. F. (2020). Affective touch: A meta-analysis on sex
662 differences. *Neurosci. Biobehav. Rev.* 108, 445–452. doi:10.1016/j.neubiorev.2019.09.037.

663 Rusu, R. B., and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). *Proc. IEEE Int. Conf.
664 Robot. Autom.* doi:10.1109/ICRA.2011.5980567.

665 Sefidgar, Y. S., MacLean, K. E., Yohanan, S., Van Der Loos, H. F. M. H., Croft, E. A., and Garland,
666 E. J. (2016). Design and Evaluation of a Touch-Centered Calming Interaction with a Social
667 Robot. *IEEE Trans. Affect. Comput.* 7, 108–121. doi:10.1109/TAFFC.2015.2457893.

668 Silvera-Tawil, D., Rye, D., and Velonaki, M. (2014). Interpretation of Social Touch on an Artificial
669 Arm Covered with an EIT-based Sensitive Skin. *Int. J. Soc. Robot.* 6, 489–505.
670 doi:10.1007/s12369-013-0223-x.

671 Suresh, A. K., Goodman, J. M., Okorokova, E. V., Kaufman, M., Hatsopoulos, N. G., and Bensmaia,
672 S. J. (2020). Neural population dynamics in motor cortex are different for reach and grasp. *Elife*
673 9, 1–16. doi:10.7554/ELIFE.58848.

674 Suvilehto, J. T., Nummenmaa, L., Harada, T., Dunbar, R. I. M., Hari, R., Turner, R., et al. (2019).
675 Cross-cultural similarity in relationship-specific social touching. *Proc. R. Soc. B Biol. Sci.* 286,
676 20190467. doi:10.1098/rspb.2019.0467.

677 Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp, T., et al. (2016). Efficient and
678 precise interactive hand tracking through joint, continuous optimization of pose and
679 correspondences. in *ACM Transactions on Graphics*, 1–12. doi:10.1145/2897824.2925965.

680 Teyssier, M., Bailly, G., Pelachaud, C., and Lecolinet, E. (2020). Conveying Emotions Through
681 Device-Initiated Touch. *IEEE Trans. Affect. Comput.*, 1–1. doi:10.1109/TAFFC.2020.3008693.

682 Thompson, E. H., and Hampton, J. A. (2011). The effect of relationship status on communicating
683 emotions through touch. *Cogn. Emot.* 25, 295–306. doi:10.1080/02699931.2010.492957.

684 Tsalamalal, M. Y., Ouarti, N., Martin, J.-C., and Ammi, M. (2014). Haptic communication of
 685 dimensions of emotions using air jet based tactile stimulation. *J. Multimodal User Interfaces*
 686 2014 91 9, 69–77. doi:10.1007/S12193-014-0162-3.

687 Vallbo, Å., Löken, L., and Wessberg, J. (2016). “Sensual touch: A slow touch system revealed with
 688 microneurography,” in *Affective Touch and the Neurophysiology of CT Afferents*, 1–30.
 689 doi:10.1007/978-1-4939-6418-5_1.

690 Van Puyvelde, M., Collette, L., Gorissen, A. S., Pattyn, N., and McGlone, F. (2019). Infants
 691 autonomic cardio-respiratory responses to nurturing stroking touch delivered by the mother or
 692 the father. *Front. Physiol.* 10, 1117. doi:10.3389/FPHYS.2019.01117.

693 Xu, C., He, H., Hauser, S. C., and Gerling, G. J. (2020). Tactile Exploration Strategies with Natural
 694 Compliant Objects Elicit Virtual Stiffness Cues. *IEEE Trans. Haptics* 13, 4–10.
 695 doi:10.1109/TOH.2019.2959767.

696 Xu, C., Wang, Y., and Gerling, G. J. (2021a). An elasticity-curvature illusion decouples cutaneous
 697 and proprioceptive cues in active exploration of soft objects. *PLoS Comput. Biol.* 17, e1008848.
 698 doi:10.1371/JOURNAL.PCBI.1008848.

699 Xu, C., Wang, Y., and Gerling, G. J. (2021b). Individual Performance in Compliance Discrimination
 700 is Constrained by Skin Mechanics but Improved under Active Control. *2021 IEEE World*
 701 *Haptics Conf. WHC 2021*, 445–450. doi:10.1109/WHC49131.2021.9517269.

702 Yao, M., and Wang, R. (2019). Neurodynamic analysis of Merkel cell–neurite complex transduction
 703 mechanism during tactile sensing. *Cogn. Neurodyn.* 13, 293–302. doi:10.1007/S11571-018-
 704 9507-Z/FIGURES/8.

705 Yohanan, S., and MacLean, K. E. (2012). The Role of Affective Touch in Human-Robot Interaction:
 706 Human Intent and Expectations in Touching the Haptic Creature. *Int. J. Soc. Robot.* 4, 163–180.
 707 doi:10.1007/s12369-011-0126-7.

708 Zheng, X., Shiomi, M., Minato, T., and Ishiguro, H. (2020). What Kinds of Robot’s Touch Will
 709 Match Expressed Emotions? *IEEE Robot. Autom. Lett.* 5, 127–134.
 710 doi:10.1109/LRA.2019.2947010.

711 Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., and Xu, F. (2020). Monocular Real-
 712 time Hand Shape and Motion Capture using Multi-modal Data. in *Proceedings of the IEEE/CVF*
 713 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 5346–5355.

714

715

716 **Figure 1.** 3D visual tracking setup and data workflow. The toucher's hand and receiver's forearm are
 717 tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point cloud
 718 while the hand mesh is animated by the gestures and movements of the toucher's hand.

719 **Figure 2.** Definition of contact attributes. **(A)** Color image from video recorded by depth camera. Two
 720 color markers were placed on the toucher's hand and the receiver's forearm respectively to support
 721 motion tracking. **(B)** 3D forearm point cloud and hand mesh. Short black line segments represent the
 722 norm vector of arm points; red points on the forearm represent the region contacted by the hand. In the
 723 arm coordinate, the vertical axis (blue) is designated along the vertical direction pointing right upward,
 724 the longitudinal axis (green) is parallel with the arm direction from elbow to wrist, and the lateral
 725 direction is perpendicular to the two axes pointing to the internal side of the forearm. **(C)** Six time-
 726 series attributes include absolute velocity, which is the absolute value of spatial contact velocity; three
 727 orthogonal velocity components corresponding to the three axes of the arm coordinate; contact area,
 728 which is the overall area on the forearm being contact; and the indentation depth as the average depth
 729 applied on the forearm by the hand.

730 **Figure 3.** Time-series recordings of each contact attribute across touch gestures and delivered
 731 messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes.
 732 The *Contact* variable represents the status of the being contacted or not. V_{abs} denotes the absolute
 733 contact velocity (cm/s), V_{lg} denotes the longitudinal velocity (cm/s), V_{lt} denotes the lateral velocity
 734 (cm/s), V_{vt} denotes the vertical velocity (cm/s), *Area* denotes the contact area (cm^2), and *Depth* denotes
 735 the indentation depth (mm).

736 **Figure 4.** **(A)** Comparison of contact attributes across the four touch gestures. $*p < 0.05$, $**p < 0.01$,
 737 $***p < 0.001$, $****p < 0.0001$ were derived by paired-sample Mann–Whitney U tests. **(B)** Importance
 738 of certain contact attributes in identifying each touch gesture using random forest classification.
 739 Diamonds denote means; points denote importance values of 100 repetitions of classification.

740 **Figure 5.** Classification of touch gestures, delivered messages, and toucher individuals using the mean
 741 value, all relevant features, and time-series data of contact attributes, respectively. The accuracy in
 742 prediction of **(A)** touch gestures, **(C)** delivered messages, **(E)** toucher individual are shown, as well as
 743 the importance of particular contact attributes in classifying **(B)** touch gestures, **(D)** delivered
 744 messages, **(F)** toucher individual. Numbers and colors in confusion matrices represent the prediction
 745 percentage. In the importance plots, the diamonds denote means; points denote importance values from
 746 100 repetitions of classification.

747 **Figure 6.** Validation of contact velocity measurements using EM tracker. **(A)** Experimental setup. **(B)**
 748 Five test gestures. **(C)** Velocity (cm/s) over time by the two tracking systems. For the first three test
 749 gestures, one trial is shown per force level, i.e., low, medium, and high force. **(D)** Mean values of
 750 velocities (cm/s) per test gesture. $****p < 0.0001$ were derived by paired-sample Mann–Whitney U
 751 tests. **(E)** Errors (cm/s) of measured velocities between the two systems for each test gesture.

752 **Figure 7.** Validation of contact area measurements using sensorized pressure mat. **(A)** Experimental
 753 setup. **(B)** Contact area (cm^2) over time by the two systems. For the first three test gestures are shown
 754 one trial per force level, i.e., low, medium, and high force. **(C)** Mean values of contact area (cm^2) per
 755 test gesture. $****p < 0.0001$ were derived by paired-sample Mann–Whitney U tests. **(D)** Differences
 756 of measured contact area (cm^2) between the two systems per test gesture. **(E)** Visualization of hand-
 757 arm contact in top view (left) and bottom view (top right) with heatmaps of contact pressure tracked
 758 by sensorized pressure mat across force levels (bottom right).

759
 760 **Figure 8.** Validation of indentation depth measurements using laser displacement sensor and
 761 sensorized pressure mat. **(A)** Experimental setup with laser displacement sensor. **(B)** Indentation depth
 762 (mm) over time by the either system. For the two test gestures shown is one trial per force level, i.e.,
 763 low, medium, and high force. **(C)** Mean values of indentation depth per test gesture. *** $p < 0.0001$
 764 were derived by paired-sample Mann–Whitney U tests across force levels. **(D)** Errors of measured
 765 indentation depth between systems per force level. **(E)** Experimental setup with sensorized pressure
 766 mat. **(F)** Indentation depth (mm) collected by the 3D visual tracking system overlaps with overall force
 767 (N) collected by the sensorized pressure mat. Per test gesture, one trial per force level is shown i.e.,
 768 low, medium, and high force. **(G)** Mean value of indentation depth per force level recorded by the 3D
 769 visual tracking system. *** $p < 0.0001$ were derived by paired-sample Mann–Whitney U tests across
 force levels.

770

771

Table 1. Available gestures for each cued emotional message in touch communication task

Cued Emotional Messages							
	Anger (Ag)	Attention (At)	Calm (C)	Fear (F)	Gratitude (G)	Happiness (H)	Sympathy (S)
Gestures	Hit/Tap	Tap	Hold/Squeeze	Squeeze/Hold	Hold/Squeeze	Shake	Stroke
	Squeeze/Hold	Shake	Stroke	Shake	Shake	Tap	Tap
	Shake	Squeeze/Hold	Tap	Tap	Tap	Stroke	Squeeze/Hold

772

773

Table 2. Experiment procedure for validating contact velocity

	Test Gesture	Moving Direction	Velocity Levels	Repeated Trials per Level	Trials in Total
1	Stroking	Longitudinal	Low, Medium, High	3	9
2	Stroking	Lateral	Low, Medium, High	3	9
3	Tapping	Vertical	Low, Medium, High	3	9
4	Holding	None	None	1	1 (long duration)
5	Shaking	Irregular	Irregular	1	1 (long duration)

774

775

Table 3. Experiment procedure for validating contact area

	Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1	Single-finger pressing	Low, Medium, High	3	9
2	Multiple-finger pressing	Low, Medium, High	3	9
3	Holding	Low, Medium, High	3	9
4	Shaking	Irregular	1	1 (long duration)

776

777

Table 4. Experiment procedure for validating indentation depth

	Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1	Multiple-finger tapping	Low, Medium, High	3 (4 taps per trial)	9
2	Palm tapping	Low, Medium, High	3 (4 taps per trial)	9
Validation with Pressure Mat				
	Test Gesture	Force Levels	Repeated Trials per Level	Trials in Total
1	Single-finger pressing	Low, Medium, High	3	9
2	Multiple-finger pressing	Low, Medium, High	3	9
3	Holding	Low, Medium, High	3	9

778