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Abstract 9 

Across a plethora of social situations, we touch others in natural and intuitive ways to share thoughts 10 
and emotions, such as tapping to get one’s attention or caressing to soothe one’s anxiety. A deeper 11 
understanding of these human-to-human interactions will require, in part, the precise measurement of 12 
skin-to-skin physical contact. Among prior efforts, each measurement approach exhibits certain 13 
constraints, e.g., motion trackers do not capture the precise shape of skin surfaces, while pressure 14 
sensors impede skin-to-skin contact. In contrast, this work develops an interference-free 3D visual 15 
tracking system using a depth camera to measure the contact attributes between the bare hand of a 16 
toucher and the forearm of a receiver. The toucher’s hand is tracked as a posed and positioned mesh 17 
by fitting a hand model to detected 3D hand joints, whereas a receiver’s forearm is extracted as a 3D 18 
surface updated upon repeated skin contact. Based on a contact model involving point clouds, the 19 
spatiotemporal changes of hand-to-forearm contact are decomposed as six, high-resolution, time-series 20 
contact attributes, i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity 21 
components, together with contact duration. To examine the system’s capabilities and limitations, two 22 
types of experiments were performed. First, to evaluate its ability to discern human touches, one person 23 
delivered cued social messages, e.g., happiness, anger, sympathy, to another person using their 24 
preferred gestures. The results indicated that messages and gestures, as well as the identities of the 25 
touchers, were readily discerned from their contact attributes. Second, the system’s spatiotemporal 26 
accuracy was validated against measurements from independent devices, including an electromagnetic 27 
motion tracker, sensorized pressure mat, and laser displacement sensor. While validated here in the 28 
context of social communication, this system is extendable to human touch interactions such as 29 
maternal care of infants and massage therapy. 30 

1 Introduction 31 

Social and emotional communication by touch is important to human development in daily life. It 32 
contributes to brain and cognitive development in infancy and childhood (Cascio et al., 2019), and 33 
plays a role in providing emotional support (Coan et al., 2006), and forming social bonds (Vallbo et 34 
al., 2016). For example, being touched by one’s partner mitigates one’s reactivity to psychological 35 
pressure, as observed in decreased blood pressure, heart rate, and cortisol levels (Gallace and Spence, 36 
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2010). Behaviors such as compliance, volunteering, and eating habits are also positively improved 37 
(Gallace and Spence, 2010). Moreover, several works now indicate that particular social messages and 38 
emotional sentiments can be readily recognized from touch alone (Hertenstein et al., 2006, 2009; 39 
Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Despite their importance 40 
and ubiquity, we have just begun to quantify the exact nuances in the underlying physical contact 41 
interactions used to communicate affective touch. 42 

To decompose how physical contact interactions evoke sensory and behavioral responses, most 43 
prior studies employ highly controlled stimuli, which vary a single factor at a time. In particular, 44 
mechanical and thermal interactions are typically delivered to a person’s skin using robotically driven 45 
actuators (Löken et al., 2009; Essick et al., 2010; Ackerley et al., 2014a; Tsalamlal et al., 2014; Bucci 46 
et al., 2017; Teyssier et al., 2020; Zheng et al., 2020). For example, brush stimuli swept along an arc 47 
have been widely adopted to mimic caress-like stroking, while controlling their velocity, force, surface 48 
material, and/or temperature. Using such stimuli, C-tactile afferents are shown to be preferentially 49 
activated at stroke velocities around 1-10 cm/s, which align with ratings of pleasantness (Löken et al., 50 
2009; Essick et al., 2010; Ackerley et al., 2014a). Beyond experiments to examine brush stroke, more 51 
complex interactions have been delivered via humanoid robots and robot hands (Teyssier et al., 2020; 52 
Zheng et al., 2020). However, device-delivered stimuli do not fully express the natural and subtle 53 
complexities inherent in human-to-human touch. This can result in disconnect with the everyday, real-54 
world interactions for which our sensory systems are finely tuned. 55 

Measuring and quantifying free and unconstrained human-to-human touch interactions is complex 56 
and challenging. In particular, the physical interactions are unscripted, unconstrained, and 57 
individualized with rapid and irregular transitions. Indeed, multiple contact attributes often co-vary 58 
over time, e.g., lateral velocity, contact area, indentation depth. Therefore, in moving toward 59 
quantification, the initial efforts used qualitative, manual annotation to describe touch gestures, and 60 
their contact intensity and duration (Hertenstein et al., 2006, 2009; Yohanan and MacLean, 2012; 61 
Andreasson et al., 2018). While adaptable to a wide range of touch interactions and settings, qualitative 62 
methods are constrained by the time required to analyze the data, the potential subjectivity of human 63 
coders, and a courser set of metrics and classification levels. For instance, contact intensity is typically 64 
classified in only three levels as light, medium, strong. As a result, automated techniques have been 65 
introduced, such as electromagnetic motion trackers (Hauser et al., 2019a; Lo et al., 2021) and 66 
sensorized pressure mats (Silvera-Tawil et al., 2014; Jung et al., 2015), with each their own capabilities 67 
and limitations. For instance, electromagnetic trackers capture the movement of only a handful of 68 
points, thus unable to monitor complex surface geometry, and can emit electromagnetic noise 69 
incompatible with sensitive biopotential recording equipment. Pressure sensors and mats inhibit direct 70 
skin-to-skin contact, when even thin films are shown to attenuate touch pleasantness (Rezaei et al., 71 
2021). Three-dimensional optical tracking methods have also been employed, such as infrared stereo 72 
techniques (Hauser et al., 2019a, 2019b; McIntyre et al., 2021), motion capture systems (Suresh et al., 73 
2020), and stereo cameras with DeepLabCut (Nath et al., 2019). While these methods are specialized 74 
in tracking joint positions of hands and limbs, they do not capture the shape and geometry of body 75 
parts, since the infrared cameras lack sufficient accuracy on depth, motion capture systems only track 76 
pre-attached markers, and stereo matching of multiple cameras often fail with texture-less surfaces. In 77 
contrast, depth cameras can provide high spatial resolution point clouds and allow shape extraction of 78 
texture-less body parts, such as a forearm. Depth cameras, as well, are more readily set up without 79 
calibration, afford minimum magnetic interference, and can be located at a larger distance from the 80 
area of interest. While depth cameras have been used in hand tracking and 3D reconstruction (Rusu 81 
and Cousins, 2011; Taylor et al., 2016), they have not been used to measure contact interactions in 82 
human-to-human touch. 83 
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While defined to a degree, we are still deciphering those physical contact attributes vital to social 84 
touch communication. In such settings, human touch interactions tend to include gesture, 85 
pressure/depth, velocity, acceleration, location, frequency, area, and duration (Hertenstein, 2002; 86 
Hertenstein et al., 2006, 2009; Yohanan and MacLean, 2012; Silvera-Tawil et al., 2014; Jung et al., 87 
2015; Andreasson et al., 2018; Hauser et al., 2019a, 2019b; Lo et al., 2021; McIntyre et al., 2021). To 88 
understand the functional importance of specific movement patterns, certain attributes such as spatial 89 
hand velocity have been further decomposed into directions of normal and tangential (Hauser et al., 90 
2019a) or forward-backward and left-right (Lo et al., 2021). Moreover, simultaneous tracking of 91 
multiple contact attributes is needed for understanding naturalistic, time-dependent neural output of 92 
peripheral afferents. For example, a larger contact area should recruit more afferents, larger force or 93 
indentation should generate higher firing frequencies, and optimal velocity in tangential direction 94 
should evoke firing of C-tactile afferents (Johnson, 2001; Löken et al., 2009; Hauser et al., 2019b).  95 

Herein, we develop an interference-free 3D visual tracking system to quantify spatiotemporal 96 
changes in skin-to-skin contact during human-to-human social touch communication. Human-subjects 97 
experiments evaluate its ability to discern unique combinations of contact attributes used to convey 98 
distinct social touch messages and gestures, as well as the identities of the touchers. Moreover, the 99 
system’s spatiotemporal accuracy is validated against measurements from independent devices, 100 
including an electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. 101 

2 Human-to-Human Contact Tracking System  102 

This work introduces a 3D visual tracking system and data processing pipeline, which used a high-103 
resolution depth camera to quantify contact attributes between the bare hand of a toucher and the 104 
forearm of a receiver. As illustrated in Figure 1, the tracking system captured the 3D shape and 105 
movements of the toucher’s hand and the receiver’s forearm independently but simultaneously within 106 
the same camera coordinate system. Physical skin contact was detected between the hand and forearm 107 
based on interactions of their 3D point clouds. Seven contact attributes were derived over the time 108 

 

Figure 1. 3D visual tracking setup and data workflow. The toucher’s hand and receiver’s forearm 
are tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point 
cloud while the hand mesh is animated by the gestures and movements of the toucher’s hand.  
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course of touch, which were contact area, indentation depth, contact duration, overall contact velocity, 109 
and its three orthogonal velocity components.  110 

2.1 3D Shape and Motion Tracking with Depth Camera 111 

The tracking procedure extracts the detailed 3D shape of the touch receiver’s forearm. By merging the 112 
camera’s RGB and depth information, an RGB-D image was derived and then converted into a dense 113 
point cloud per frame. The point cloud was cropped and downsampled to balance information and 114 
computation costs. To obtain a clean point cloud of the forearm without background, neighboring 115 
points around the forearm were first removed. Two removal methods were used alternatively based on 116 
the experimental setup (Figure 1). If the receiver’s forearm was placed on a flat surface, such as a table, 117 
the points within that flat surface could be removed in a shape-based manner using the plane model 118 
segmentation algorithm provided by the Point Cloud Library (PCL) (Rusu and Cousins, 2011). In the 119 
second case, if a monochromatic holder was set underneath the forearm, such as a cushion, then the 120 
points of that holder could be removed by color-based segmentation in the HSV color space. Next, the 121 
3D region growing segmentation algorithm (Rusu and Cousins, 2011) was applied to separate the rest 122 
point cloud into multiple clusters according to the smoothness and distance between points. Since 123 
neighboring points around the forearm were removed in advance, points farther away in the 124 
background were assigned to separate clusters instead of being blended with the arm. Finally, by setting 125 
a relatively large smoothness threshold, all arm points could be grouped into one cluster despite the 126 
curvature of the forearm shape. 127 

In human-to-human touch scenarios, the receiver’s forearm is frequently occluded by the toucher’s 128 
hand. Given that a blocked arm region is nearly impossible to capture, only the shape of the forearm 129 
prior to the contact was extracted. More specifically, the forearm point cloud was extracted before the 130 
beginning of each contact interaction to update its shape and position. During the contact, its position 131 
was refreshed in real-time according to the 3D position of the color marker on the arm, though its shape 132 
was not updated during the contact. Once the forearm was shape updated, the normal vector 𝒏௔௥௠

௜  of 133 
each arm point 𝒑௔௥௠

௜  was calculated and updated as well to facilitate further contact detection and 134 
measurement. 135 

The hand tracking procedure was developed to capture the posture and position of the toucher’s 136 
hand by combining depth information with a monocular hand motion tracking algorithm (Zhou et al., 137 
2020). The algorithm is robust to occlusions and object interactions, which is advantageous in hand-138 
arm contact. The monocular tracking algorithm contains two neural network modules to predict the 3D 139 
location and rotation of all 21 hand joints. In the first module of the hand joint detection network, 140 
features extracted from the 2D RGB image were first fed into a 2-layer convolutional neural network 141 
(CNN) to detect the probability of the 2D position of all joints. Then, another two 2-layer CNN was 142 
used to predict the 3D position of hand joints based on 2D features and 2D joint position estimates. In 143 
the second module of the inverse kinematic network, a 7-layer fully connected neural network was 144 
designed to derive the 3D rotation of each joint. Finally, the parametric MANO hand model (Romero 145 
et al., 2017) was employed to incorporate 3D joint rotations to animate the hand mesh following the 146 
shape and pose of the toucher’s hand. 147 

The rendered hand mesh was expressed in the local hand coordinate without the spatial information 148 
of the hand position. Therefore, depth information is incorporated here to locate the hand mesh in the 149 
camera coordinate, according to the movement of any hand joint or the color marker on the back of the 150 
hand (Figure 1). Specifically, the 2D position of the color marker was detected in the in the HSV, while 151 
the 2D position of the joint was retrieved from the detected 2D hand. The depth value of the hand joint 152 
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or marker was derived by transforming the depth image to the RGB coordinate, which was then used 153 
to obtain its 3D position following the camera projection model. By identifying the corresponding point 154 
of that marker or joint in the hand mesh model, the posed hand mesh was moved in real-time following 155 
the toucher’s hand movements. 156 

2.2 Definition of Contact Attributes 157 

Hand-arm contact was measured in a point-based manner, which afforded higher resolution compared 158 
with a geometry-based method (Hauser et al., 2019a). First, a contact interaction between the hand and 159 
forearm was detected when at least one vertex point of the hand mesh was underneath the arm surface. 160 
More specifically, for each hand vertex point 𝒑௛௔௡

௜ , its nearest arm point 𝒑௔௥௠
௜  was found first. Then, 161 

as detailed in Equation (1), if the angle between the vector 𝒑௛௔௡ௗ
௜ − 𝒑௔௥௠

௜  and the normal vector 𝒏௔௥௠
௜  162 

of arm point 𝒑௔௥௠
௜  is larger than or equal to 90 degrees, this hand vertex is marked as underneath the 163 

arm surface.  164 

𝐹௖௢௡௧௔௖௧ = ቊ
1    ∀(𝒑௛௔௡ௗ

௜ − 𝒑௔௥௠
௜ ) ⋅ 𝒏௔௥௠

௜ ≤ 0

0    ∃(𝒑௛௔௡ௗ
௜ − 𝒑௔௥௠

௜ ) ⋅ 𝒏௔௥௠
௜ > 0

        (1) 165 

Physical contact attributes were calculated when hand-arm contact was detected. Indentation depth 166 
is measured as Equation (2). In particular, 𝑁஼ is the number of hand vertex points contacted with the 167 
forearm. For each contacted hand point 𝒑௛௔௡ௗ

௜ , its indentation depth 𝑑௜ is approximated as half the 168 
distance between 𝒑௛௔௡ௗ

௜  and its nearest arm point 𝒑௔௥௠
௜ . The half scale was used because the line 169 

between two points might not be perpendicular to the arm surface. The overall indentation 𝑑 deployed 170 
by the hand to the forearm is defined as the average indentation depth of all 𝑁஼ contacted hand points:  171 

 

Figure 2. Definition of contact attributes. (A) Color image from video recorded by depth camera. 
Two color markers were placed on the toucher’s hand and the receiver’s forearm respectively to 
support motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments 
represent the norm vector of arm points; red points on the forearm represent the region contacted 
by the hand. In the arm coordinate, the vertical axis (blue) is designated along the vertical direction 
pointing right upward, the longitudinal axis (green) is parallel with the arm direction from elbow to 
wrist, and the lateral direction is perpendicular to the two axes pointing to the internal side of the 
forearm. (C) Six time-series attributes include absolute velocity, which is the absolute value of 
spatial contact velocity; three orthogonal velocity components corresponding to the three axes of 
the arm coordinate; contact area, which is the overall area on the forearm being contact; and the 
indentation depth as the average depth applied on the forearm by the hand. 
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𝐷𝑒𝑝𝑡ℎ =

෍ ฮ𝒑௛௔௡ௗ
௜ − 𝒑௔௥௠

௜ ฮ
ଶ

ே಴

௜ୀଵ

2𝑁஼
  .       (2) 172 

Contact area is measured as the summed area of all contacted arm points. As shown in Equation (3), 173 
the unit area 𝑆௜  for one arm point is calculated as a sphere whose radius is the average neighbor 174 
distance, and π is round to 3. Within the arm point cloud of 𝑁௔௟௟ points, the average neighbor distance 175 
𝑙௡௕௥

௜  is calculated as the average distance of all points to their nearest neighbor points: 176 

𝐴𝑟𝑒𝑎 = 3𝑁஼(
∑ 𝑙௡௕௥

௜ேೌ೗೗
௜ୀଵ

𝑁௔௟௟
)ଶ  .     (3) 177 

In addition to cutaneous contact attributes, the velocity of hand movement was quantified when 178 
contact was detected. The absolute contact velocity 𝑉௔௕௦ is measured as the modulus of the spatial hand 179 
velocity 𝒗ு௔௡ௗ: 180 

𝑉௔௕௦ = ቤ
𝒑ு௔௡ௗ

௧ − 𝒑ு௔௡ௗ
௧ିଵ

△ 𝑡
ቤ  .      (4) 181 

In Equation (4), hand position 𝒑ு௔௡ௗ  is represented by the position of the middle 182 
metacarpophalangeal joint. By defining another coordinate on the receiver’s forearm (Figure 2C), 183 
spatial hand velocity 𝒗ு௔௡ௗ is further decomposed in the arm coordinate as three velocity components 184 
𝑉௩௧, 𝑉௟௚,  𝑉௟௧ parallel with its axis of the arm coordinate (Figure 2C). The vertical axis 𝒊௩௧ of the arm 185 
coordinate is aligned with the vertical direction pointing upright. It could be obtained as the normal 186 
vector of a point on a horizontal surface, like a table, or the normal vector of a point on the top of the 187 
receiver’s forearm. Vertical velocity 𝑉௩௧ is the hand velocity component in this direction: 188 

𝑉𝑣𝑡 = 𝒗𝐻𝑎𝑛𝑑 ⋅ 𝒊𝑣𝑡  .      (5) 189 

The longitudinal axis 𝒊௟௚ is aligned with the direction of the arm bone, pointing from elbow to wrist. 190 
To derive this axis, the camera was orientated to display the forearm vertically in the 2D image. Then, 191 
the direction of the arm bone in the 2D image was set to be parallel with the y axis of the image 192 
coordinate. By projecting the y axis 𝒚 of the camera coordinate onto the perpendicular plane of the 193 
vertical axis 𝒏௩௧, the longitudinal axis follows the direction of the projected vector: 194 

𝒊௟௚ =
𝒚 − (𝒚 ⋅ 𝒊௩௧)𝒊௩௧

‖𝒚 − (𝒚 ⋅ 𝒊௩௧)𝒊௩௧‖ଶ
  .      (6) 195 

𝑉௟௚ = 𝒗ு௔௡ௗ ⋅ 𝒊௟௚  .      (7) 196 

Lastly, the lateral axis 𝒊௟௧ is perpendicular to the plane of longitudinal and vertical axis, following 197 
the right-hand rule: 198 

𝒊௟௧ = 𝒊௟௚ × 𝒊௩௧  .        (8) 199 

𝑉௟௧ = 𝒗ு௔௡ௗ ⋅ 𝒊௟௧   .        (9) 200 
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Compared with the overall hand velocity, these velocity components can quantify the directional nature 201 
of the hand movements. 202 

Moreover, contact duration is measured as a scalar value for each hand-arm touch interaction, which 203 
is the sum of time over which contact was detected. Given the recording frequency 𝑓 of the camera is 204 
30 Hz and 𝑁௙ is the number of frames per interaction, the contact duration is measured as: 205 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
∑ 𝐹௖௢௡௧௔௖௧

ே೑

௜ୀଵ

𝑓
  .       (10) 206 

3 Experiment 1: Human-to-Human Affective Touch Communication 207 

The first experiment was designed with the task of human-to-human emotion communication. 208 
Touchers was instructed to deliver cued emotional messages, e.g., happiness, sympathy, anger, to the 209 
touch receiver at the receiver’s forearm using preferred gestures, e.g., tapping, holding, stroking. 210 
Recorded contact attributes were then used to differentiate delivered messages, utilized gestures, and 211 
individual touchers. Contact analysis was conducted on the platform with the Intel Core i9-9900 CPU, 212 
3.1 GHz, 64 GB RAM, and a NVIDIA GeForce RTX 2080 SUPER GPU. The same platform was used 213 
for the second experiment.  214 

3.1 Cued Emotional Messages and Gesture Stimuli 215 

Seven emotions of anger, attention, calm, fear, gratitude, happiness, and sympathy were selected as 216 
cued messages for touchers to express (Table 1). Those messages were adopted from prior studies and 217 
have been observed to be recognizable through touch alone (Hertenstein et al., 2006, 2009; Thompson 218 
and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Among them, gratitude and sympathy 219 
are prosocial expressions that are more effectively communicated by touch compared with those self-220 
focused. Anger, happiness, and fear are universal expressions that are commonly communicated by 221 
facial, vocal, and touch expressions. Attention and calm are also preferred messages in touch 222 
interactions and can be correctly interpreted significantly better than chance. For each of the cued 223 
messages, three commonly used gestures were adopted from prior studies (Hertenstein et al., 2006; 224 
Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021) (Table 1). Holding and 225 
squeezing were combined into one since they share a similar hand gesture and hand motion. Similarly, 226 
hitting was combined with the tapping gesture, but only for the message of anger.  227 

Table 1. Available gestures for each cued emotional message in touch communication task 228 

 Cued Emotional Messages 
Anger (Ag) Attention (At) Calm (C) Fear (F) Gratitude (G) Happiness (H) Sympathy (S) 

Gestures 
Hit/Tap Tap Hold/Squeeze Squeeze/Hold Hold/Squeeze Shake Stroke 
Squeeze/Hold Shake Stroke Shake Shake Tap Tap 
Shake Squeeze/Hold Tap Tap Tap Stroke Squeeze/Hold 

3.2 Participants 229 

The human-subjects experiments were approved by the Institutional Review Board at the University 230 
of Virginia. Ten participants were recruited as touchers, including five males and five females (mean 231 
age = 23.8, SD = 5.0). Another five participants were recruited as touch receivers with three males and 232 
two females (mean age = 24.0, SD = 4.4). Five experimental groups were randomly assembled, where 233 
each group consisted of one male toucher, one female toucher, and one receiver. Each group performed 234 
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two experimental sessions with one session conducted by the male toucher and another one conducted 235 
by the female toucher. Written informed consent was obtained from all participants.  236 

3.3 Experimental Setup 237 

To avoid visual distractions during the experiment, touchers and receivers sat at opposing sides of an 238 
opaque curtain. They were instructed to not speak to each other. As shown in Figure 2A, a cushion was 239 
set on the table at the toucher’s side upon which the receiver rested her or his left forearm. Cued 240 
emotional messages and corresponding gestures were displayed to the toucher on the computer screen. 241 
The toucher could select the gesture and proceed to the next message using the computer’s mouse. 242 
Cued messages and the toucher’s selection of gestures were also recorded. As illustrated by a snapshot 243 
of the experiment recoding by depth camera (Figure 2A), the camera was set in front of the cushion 244 
and orientated towards it. 245 

3.4 Experimental Procedures 246 

In each session, seven cued emotional messages were communicated with each repeated six times. The 247 
42 message instructions were provided in random order. In each trial, one message was displayed on 248 
the screen with three gestures listed below. Touchers had five seconds to choose a gesture and report 249 
it on the computer display. For each cued message, the three provided gestures were identical but their 250 
order was randomized trial by trial. After that, the toucher delivered the message, by touching the 251 
receiver’s forearm from elbow to wrist, using the right hand. Within each trial, only the chosen gesture 252 
was used. The use of other gestures or a combination of gestures was not allowed. For the same cued 253 
message across trials, touchers were free to use the same gesture or change to another gesture. A gesture 254 
could be deployed in any pattern of contact deemed appropriate by the toucher. No constraints or 255 
instructions were given for delivering the gesture, such as its duration, hand region employed, intensity, 256 
or repetition. At the end of a trial, by clicking the ‘Next’ button on the bottom of the computer display, 257 
the toucher initiated the next trial with a new message word and corresponding three gestures. 258 

3.5 Data Analysis 259 

Overall, 420 trials were performed in ten experimental sessions. Twelve trials were excluded from 260 
analysis as contact interactions were not properly recorded. Statistical and machine learning analyses 261 
were performed to examine the measured contact attributes. 262 

To identify the contact pattern between touch gestures, paired-sample Mann–Whitney U tests were 263 
applied across gestures per contact attribute. For time-series attributes, the mean value was used. Since 264 
longitudinal velocity, lateral velocity, and vertical velocity are signed variables, the mean was derived 265 
from the absolute value of those variables. Contact duration as a scalar variable was directly compared 266 
across gestures. To evaluate which of the contact attributes could best identify or describe a certain 267 
type of touch gesture, the importance of each attribute in predicting that gesture was identified using a 268 
random forest classifier. The mean values of time-series attributes together with the scalar attribute 269 
served as inputs. For example, in predicting the stroking gesture, all trials were labeled in a binary 270 
fashion as delivering or not delivering this gesture, instead of being labeled as the four gesture types. 271 
Seventy-five percent of trials were randomly assigned as the training set and those remaining were 272 
assigned as the test set. The permutation method was used to derive the importance of attributes. The 273 
value was obtained as the average of 100 repetitions of classification, with 10 permutations per 274 
classification. 275 
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Further classification analyses were performed regarding the discrimination of touch gestures, 276 
emotional messages, and individual touchers, respectively, using the random forest algorithm. Contact 277 
attributes were fed into classifiers in three different formats, including the mean value of each time-278 
series attribute, multiple relevant features extracted from each time-series attribute, and the original 279 
time-series attributes. In particular, multiple features were extracted to quantify the amplitude, 280 
frequency, and dynamic characteristics of the time-series signal (Christ et al., 2018). For example, 281 
time-domain features included mean, maximum, quartiles, standard deviation, trend, skewness, 282 
entropy, energy, etc. Frequency domain features included autocorrelations and partial autocorrelations 283 
with different lags, coefficients of wavelet and Fourier transformations, mean, variance, skew of 284 
Fourier transform spectrum, etc. From all extracted features, relevant ones were selected for 285 
classification by significance tests in predicting the classification target and the Benjamini Hochberg 286 
multiple test (Christ et al., 2018). When time-series data were used, all attributes were concatenated 287 
into one variable as input (Löning et al., 2019). To identify attributes that could better encode social 288 
affective touch, the importance of individual attributes was ranked for each classification task. More 289 
specifically, based on the mean-value classification, the permutation method was repeated multiple 290 
times to derive the average importance values.  291 

3.6 Results 292 

3.6.1 Physical Contact Attributes in Human-to-Human Touch 293 

Human-to-human physical contact interactions between social messages, gestures, and individual 294 
touchers were quantified by their contact attributes. As shown in Figure 3, exemplar data for the four 295 
touch gestures (shake, tap, hold and stroke) exhibit distinct patterns across the contact attributes, 296 
consistent with expected hand movements per gesture. In particular, the stroking gesture was 297 

Figure 3. Time-series recordings of each contact attribute across touch gestures and delivered 
messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes. 
The Contact variable represents the status of the being contacted or not. Vabs denotes the absolute 
contact velocity (cm/s), Vlg denotes the longitudinal velocity (cm/s), Vlt denotes the lateral velocity 
(cm/s), Vvt denotes the vertical velocity (cm/s), Area denotes the contact area (cm2), and Depth 
denotes the indentation depth (mm). 
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characterized by regular patterns in longitudinal velocity, which implies slow and repetitive 298 
movements along the direction of the forearm. For the shaking gesture, velocity attributes depicted 299 
large changes in frequency and relatively lower amplitude. Meanwhile, velocities in all three directions 300 
changed simultaneously, indicating a spatial direction in the movement of the toucher’s hand. The 301 
tapping gesture was quantified as discontinuous, large-amplitude spikes of short contact duration. 302 
Compared with other touch gestures, holding gesture exhibited relatively stable contact with minimal 303 
changes. With further inspection into each gesture, contact patterns with subtle differences could also 304 
be captured across emotional messages. Such as in the shaking gesture, happiness was delivered with 305 
higher velocities compared with the expression of fear. Within the tapping gesture, shorter but more 306 
intensive contact was recorded when expressing anger compared with attention. 307 

As shown in Figure 4A, the four touch gestures were statistically differentiable according to several 308 
of their contact attributes. For instance, absolute contact velocity can differentiate all gesture pairs 309 
except for that of stroking and shaking. With the contact attribute of longitudinal velocity, stroking was 310 
differentiable from shaking as it afforded higher longitudinal velocity. This also aligns with hand 311 
movements during stroking that are typically along the direction of the forearm. Both shaking and 312 
tapping gestures exhibited significantly higher longitudinal velocities than the holding gesture. With 313 
the lateral velocity, significant differences were derived among all four gestures, where tapping and 314 
shaking gestures afforded higher amplitudes than stroking and holding. As for the vertical velocity, the 315 

 

Figure 4. (A) Comparison of contact attributes across the four touch gestures. *p < 0.05, **p < 
0.01, ***p < 0.001, ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests. (B) 
Importance of certain contact attributes in identifying each touch gesture using random forest 
classification. Diamonds denote means; points denote importance values of 100 repetitions of 
classification. 
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tapping gesture was associated with significantly higher velocities than others, which aligns with its 316 
up-down movements. Across all velocity attributes, the holding gesture was significantly distinct from 317 
other ones. 318 

For the contact area attribute, shaking and holding gestures exhibited significantly higher values 319 
than the stroking gesture, and then tapping. Indeed, participants generally used the whole hand to 320 
deliver holding and shaking, while only the finger digits for stroking and the fingertips for tapping. 321 
Moreover, with indentation depth and contact duration, tapping was distinct amongst the gestures with 322 
significantly lower depth and shorter duration. Note the hand motion with the tapping gesture could be 323 
faster than the recording frequency of the camera, where one trial of contact might not be entirely 324 
captured and thus lead to a lower estimation of indentation depth.  325 

In Figure 4B, the contact attributes that were salient in identifying or describing a specific touch 326 
gesture were further analyzed according to their importance in predicting that gesture. From the 327 

 

Figure 5. Classification of touch gestures, delivered messages, and toucher individuals using the 
mean value, all relevant features, and time-series data of contact attributes, respectively. The 
accuracy in prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are 
shown, as well as the importance of particular contact attributes in classifying (B) touch gestures, 
(D) delivered messages, (F) toucher individual. Numbers and colors in confusion matrices represent 
the prediction percentage. In the importance plots, the diamonds denote means; points denote 
importance values from 100 repetitions of classification. 
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importance ranking, longitudinal velocity appears to be the most useful attribute in describing the 328 
stroking gesture. The shaking gesture did not have a single salient attribute, perhaps because it was 329 
delivered from multiple directions and varied velocities. The attributes of contact area, contact 330 
duration, and longitudinal velocity were relatively more important. The holding gesture could be 331 
identified by longitudinal and absolute velocities with both lower amplitudes. For the tapping gesture, 332 
contact duration could be important in identifying it, which should be shorter than other gestures.  333 

3.6.2 Classification amidst Gestures, Messages, and Individuals 334 

In Figure 5, the contact attributes are shown to robustly classify touch gestures, delivered messages, 335 
and individual touchers at accuracies better than chance, which is 25%, 14.3%, and 10% respectively. 336 
For gesture prediction, the accuracy was 87% when the mean values of contact attributes were used as 337 
predictors (Figure 5A). The prediction accuracy slightly increased to 92% when all relevant features 338 
were used as more information was included, and was around 86% when predicted by the time-series 339 
data. In classifying delivered emotional messages, the accuracy was 54%, 57%, and 55%, for the three 340 
respective feature classes (Figure 5C). Moreover, in classifying the individual touchers, the accuracies 341 
were 56%, 72%, and 77%, respectively. For the importance ranking of the contact attributes, those of 342 
longitudinal velocity, contact duration, and contact area were typically more important. 343 

4 Experiment 2: Technical Validation on the Visual Tracking Method 344 

The second experiment was designed to validate the effectiveness of the 3D visual tracking system in 345 
measuring controlled human movements against those from independent devices, including an 346 
electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. These 347 
techniques are used commonly in haptics studies (Silvera-Tawil et al., 2014; Jung et al., 2015; Hauser 348 
et al., 2019a; Xu et al., 2020, 2021a; Lo et al., 2021). In this experiment, the observed contact attributes 349 
were compared within controlled touch conditions, e.g., stroking in different directions at preset 350 
velocities, pressing with different parts of the hand varying in contact area, and tapping at different 351 
depth magnitudes. 352 

4.1 Contact Velocity Validation Using Electromagnetic Tracker 353 

4.1.1 Experimental Setup 354 

Measurements of the directional components of contact velocity, including absolute velocity, 355 
longitudinal velocity, lateral velocity, and vertical velocity were validated against those of an 356 
electromagnetic (EM) motion tracker (3D Guidance, Northern Digital, Canada. 6 DOF, 20-255 Hz, 1.4 357 
mm RMS position accuracy, 78 cm range; 0.5° RMS orientation accuracy, ±180° azimuth & roll, ±90° 358 
elevation range). Both tracking systems were operated simultaneously to capture controlled 359 
movements of the human hand touching the forearm. The transmitter of the 3D Guidance EM tracker 360 
was oriented to be aligned with the arm coordinate (Figure 6A). The sensor of the EM tracker was 361 
attached to the toucher’s back of the hand near the middle metacarpophalangeal joint.  362 

4.1.2 Experimental Procedures 363 

Given velocity components were defined in different directions, five test gestures were designed in 364 
total. The first two test gestures were stroking contact along the forearm in longitudinal and lateral 365 
directions, respectively. The third test gesture involved tapping vertically to the surface of the forearm. 366 
The fourth gesture was holding without movement. The fifth gesture was shaking, which was delivered 367 
in an irregular and arbitrary way with different directions and velocities included. For the first three 368 
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test gestures, each one was performed in three levels of velocities, from low to medium to high. Each 369 
velocity level was repeated for three trials. For example, the longitudinal stroking gesture was 370 
performed as three trials of stroking in the longitudinal direction with lower velocity, followed by three 371 
trials of stroking with medium velocity, and concluded by three trials of stroking with higher velocity. 372 
The direction of hand movement and level of velocity were behaviorally controlled by the trained 373 
toucher, who performed all three validation experiments. Shaking and holding gestures were performed 374 
only once but lasted for a longer time to collect enough amount of data for validation analysis. 375 

Table 2. Experiment procedure for validating contact velocity  376 

 Test Gesture Moving Direction Velocity Levels Repeated Trials per Level Trials in Total 
1 Stroking Longitudinal Low, Medium, High 3 9 
2 Stroking Lateral Low, Medium, High 3 9 
3 Tapping Vertical Low, Medium, High 3 9 
4 Holding None None 1 1 (long duration) 
5 Shaking Irregular Irregular 1 1 (long duration) 

4.1.3 Data Analysis 377 

Similar to the 3D visual tracking system, the four velocity attributes captured by the EM tracker were 378 
derived from the original time-series position data. For either tracking system, the absolute mean value 379 
of each velocity attribute was calculated per test gesture. Mann–Whitney U tests were conducted across 380 
the test gestures based on mean velocity collected by the visual tracking system. Measurement errors 381 

Figure 6. Validation of contact velocity measurements using EM tracker. (A) Experimental setup. 
(B) Five test gestures. (C)Velocity (cm/s) over time by the two tracking systems. For the first three 
test gestures, one trial is shown per force level, i.e., low, medium, and high force. (D) Mean values 
of velocities (cm/s) per test gesture. ****p < 0.0001 were derived by paired-sample Mann–Whitney 
U tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.  
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between the two tracking systems were derived per attribute and test gesture. Since the sampling rates 382 
of the two systems differ, i.e., 30 Hz for the Azure Kinect camera and 60 Hz for the EM tracker, data 383 
collected from the EM tracker was resampled to be synchronized. More specifically, the EM tracking 384 
data was first interpolated and sampled according to the timestamps of the 3D visual tracking data. 385 
Then, the error was calculated for each time point between the velocities from the two systems. 386 

4.1.4 Results 387 

In Figure 6, velocities measured by the 3D visual tracking system were accurate when compared with 388 
the EM tracker. The time-series data from the two systems well overlaped amidst touch gestures 389 
(Figure 6C) and the average velocities of the gestures were comparable between the two systems 390 
(Figure 6D). Shaking delivered high velocities in all three directions, while velocity in a certain 391 
direction was significantly higher for hand movements along that direction. All four velocity attributes 392 
were significantly lower when the holding gesture was performed. As shown in Figure 6E, the 393 
measurement error was 1-2 cm/s for the first four gestures and relatively higher at around 5 cm/s for 394 
the shaking gesture.  395 

4.2 Contact Area Validation Using Sensorized Pressure Mat 396 

 

Figure 7. Validation of contact area measurements using sensorized pressure mat. (A) Experimental 
setup. (B) Contact area (cm2) over time by the two systems. For the first three test gestures are 
shown one trial per force level, i.e., low, medium, and high force. (C) Mean values of contact area 
(cm2) per test gesture. ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests. (D) 
Differences of measured contact area (cm2) between the two systems per test gesture. (E)  
Visualization of hand-arm contact in top view (left) and bottom view (top right) with heatmaps of 
contact pressure tracked by sensorized pressure mat across force levels (bottom right). 
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4.2.1 Experimental Setup 397 

Contact area was measured simultaneously with the 3D visual tracking system and a sensorized 398 
pressure mat (Conformable TactArray SN8880, Pressure Profile Systems, USA, 7x14 cm, 12x27 399 
sensing elements, 0.002 psi pressure resolution, 3.05 psi pressure range, 29.3 Hz). Note that contact 400 
was evaluated between the toucher’s hand and the surface of the pressure mat which was overlaid on 401 
top of the bare forearm, for which it had been custom-designed (Figure 7A). Based on pilot tests with 402 
the pressure mat, its measurement of contact area could be inaccurate due to the creases caused by 403 
pressing when the mat was put on the forearm. To attenuate this effect, a piece of single-face corrugated 404 
cardboard was placed between the forearm and the mat to generate a smooth and stiffer curved surface 405 
following the shape of the forearm.  406 

4.2.2 Experimental Procedures 407 

Four test gestures were employed. The first test gesture was single-finger pressing with the index 408 
finger. The second gesture was multiple-finger pressing with all fingers except for the thumb. The third 409 
gesture was holding and the fourth gesture was shaking. For the first three test gestures, three levels of 410 
force were applied from low to medium to high, to generate different levels of contact area within a 411 
gesture. Each force level was repeated for three trials. Per trial, the toucher’s hand moved downward 412 
into the receiver’s forearm and maintained pressure/hold at that force level for more than three seconds. 413 
For example, the single-finger pressing gesture was conducted for three trials of pressure using the 414 
index finger at a low force level, followed by three trials of pressure at a medium force level, and three 415 
trials of pressing with a higher force level. The shaking gesture was conducted for one trial with a long 416 
duration. Any patterns of shaking could be applied in an irregular and arbitrary manner including 417 
different directions, velocities, etc. 418 

Table 3. Experiment procedure for validating contact area  419 

 Test Gesture Force Levels Repeated Trials per Level Trials in Total 
1 Single-finger pressing Low, Medium, High 3 9 
2 Multiple-finger pressing Low, Medium, High 3 9 
3 Holding Low, Medium, High 3 9 
4 Shaking Irregular 1 1 (long duration) 

4.2.3 Data Analysis 420 

The average contact area per gesture was calculated for both measurement systems. Significance 421 
tests were performed across gestures based on average areas from the visual tracking system. The 422 
measurement differences between the two systems were derived from time-series recordings per 423 
gesture. To overcome the time discrepancy of sampling, data collected by the sensorized pressure mat 424 
was resampled to be synchronized with the visual tracking system. 425 

4.2.4 Results 426 

In Figure 7B, the time-series contact areas captured by the 3D visual tracking system and the sensorized 427 
pressure mat well overlapped with each other across test gestures and force levels. While single-finger 428 
pressing (SfP) afforded the smallest contact area, larger multiple-finger pressing (MfP) was 429 
significantly smaller than holding (H) and shaking (Sk) (Figure 7C). As shown in Figure 7D, the 430 
measurement differences between the two systems were around 2 and 6 cm2 for SfP and MfP, while 431 
increased to 11 cm2 for holding and shaking.  432 
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4.3 Indentation Depth Validation Using Laser Sensor 433 

4.3.1 Experimental Setup 434 

Indentation depth was first validated using a laser displacement sensor (optoNCDT ILD 1402-100, 435 
Micro-Epsilon, Germany, 100 mm range, 10 µm resolution, 1.5 kHz). The sensor was mounted on a 436 
customized stand with the beam pointing downward. Given its capability of measuring the 437 
displacement of one point in only the vertical direction (Figure 8A), a limited set of tapping gestures 438 
was evaluated in this setting. Other gestures were then tested with a separate validation procedure using 439 
the sensorized pressure mat (Figure 8E). 440 

4.3.2 Experimental Procedures 441 

Two test gestures were examined with the laser sensor. The first gesture was multiple-finger tapping, 442 
where the movement of the tip of the middle finger was tracked. The second gesture was tapping with 443 

 

Figure 8. Validation of indentation depth measurements using laser displacement sensor and 
sensorized pressure mat. (A) Experimental setup with laser displacement sensor. (B) Indentation 
depth (mm) over time by the either system. For the two test gestures shown is one trial per force 
level, i.e., low, medium, and high force. (C) Mean values of indentation depth per test gesture. 
****p < 0.0001 were derived by paired-sample Mann–Whitney U tests across force levels. (D) 
Errors of measured indentation depth between systems per force level. (E) Experimental setup with 
sensorized pressure mat. (F) Indentation depth (mm) collected by the 3D visual tracking system 
overlaps with overall force (N) collected by the sensorized pressure mat. Per test gesture, one trial 
per force level is shown i.e., low, medium, and high force. (G) Mean value of indentation depth per 
force level recorded by the 3D visual tracking system. ****p < 0.0001 were derived by paired-
sample Mann–Whitney U tests across force levels. 
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the palm, measured at one point on the back of the hand. Holding, shaking, and stroking gestures were 444 
not examined here since these gestures are typically not conducted in the vertical direction. Within 445 
each gesture, three force levels were employed, i.e., low, medium, high, and each repeated in three 446 
trials. The toucher quickly tapped for four times within one trial. For example, the palm tapping gesture 447 
was conducted for three trials of four taps with the palm at a low force level, followed by three trials 448 
of four taps at a medium force level, and three trials of four taps at a high force level. The raw data 449 
collected by laser sensor contained displacements of both indentations into the skin and movements in 450 
the air. Therefore, the toucher conducted a ‘zero contact’ touch to the forearm at a minimally 451 
perceptible force prior to each test gesture.  452 

Within the setting of sensorized pressure mat, the three test gestures performed were single-finger 453 
pressing, multiple-finger pressing, and holding. Each gesture was performed in three force levels, 454 
where each level was repeated for three trials.  455 

Table 4. Experiment procedure for validating indentation depth  456 

 Validation with Laser Sensor 
 Test Gesture Force Levels Repeated Trials per Level Trials in Total 

1 Multiple-finger tapping Low, Medium, High 3 (4 taps per trial) 9 
2 Palm tapping Low, Medium, High 3 (4 taps per trial) 9 
 Validation with Pressure Mat 
 Test Gesture Force Levels Repeated Trials per Level Trials in Total 

1 Single-finger pressing Low, Medium, High 3 9 
2 Multiple-finger pressing Low, Medium, High 3 9 
3 Holding Low, Medium, High 3 9 

4.3.3 Data Analysis 457 

For the validation with laser sensor, average indentation depth at each force level was obtained by 458 
aggregating the two tapping gestures. Significance tests were conducted across force levels based on 459 
the average depth collected by the visual tracking system. Measurement errors between the two systems 460 
were derived from time-series recordings at each force level. The data from the laser sensor was 461 
resampled according to the 3D visual tracking system’s results. For quick tapping gestures, slight 462 
temporal discrepancies between the two recordings could derive large differences. Therefore, the 463 
dynamic time warping method was used to match tracked movements. The measurement errors were 464 
obtained by comparing each pair of matched points from the two recordings.  465 

Though no depth data could be captured by the pressure mat, the overall contact force was measured 466 
for correlation with indentation depth measured by the visual tracking system. By aggregating all test 467 
gestures, the average depth derived per force level was then calculated and compared. 468 

4.3.4 Results 469 

In Figure 8, the patterns of indentation depth measured by the two systems were very similar especially 470 
for the temporal changes (Figure 8B). Though differences could be observed between their overall 471 
amplitudes, their increasing trends were maintained across force levels (Figure 8C). Therefore, the 3D 472 
visual tracking system affords the sensitivity to track slight changes in indentation depth, while the 473 
amplitude of changes is proportionally mitigated. Moreover, contact with different force levels could 474 
be easily differentiated by indentation depth amongst a variety of touch gestures. (Figure 8C, 8G). 475 

5 Discussion 476 
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To better understand human-to-human touch interactions underlying social emotional communication, 477 
an interference-free 3D visual tracking system was developed to precisely measure skin-to-skin 478 
physical contact by time-series contact attributes. The system was validated to capture and readily 479 
distinguish naturalistic human touches across delivered emotional messages, touch gestures, and 480 
individual touchers according to contact attributes. Compared with standard tracking techniques, 481 
similar accuracy of spatiotemporal measurements was achieved by this system, while multivariate 482 
attributes can be obtained simultaneously within one concise setup.  483 

5.1 Deciphering Affective Touch Communication by Contact Attributes 484 

As human affective touch is prone to be impacted by social and individual factors, such contact 485 
differences could be readily captured by this system via contact attributes. First of all, touch gestures 486 
can be differentiated with high accuracy as their contact attributes were significantly different from 487 
each other (Figure 4A). Measurements of this system also align with prior reports of gesture 488 
quantification with similar amplitudes. Such as the velocity for stroking in social touch is around 10 489 
cm/s (Lo et al., 2021), and the average contact area of holding gesture is around 30 cm2 (Hauser et al., 490 
2019a). In addition, the characterized contact pattern of each gesture align well with the general sense 491 
of how we deliver that gesture. For example, tapping is associated with higher vertical velocities, 492 
stroking is delivered with higher longitudinal velocities, and holding is commonly applied with lower 493 
velocities and larger contact areas (Figure 4A).  494 

Moreover, delivered emotional messages can be differentiated by contact attributes much better 495 
than chance (Figure 5C). The accuracy of 54%, 57%, 55% was achieved when predicted by three 496 
different levels of information derived from contact attributes (Figure 5C). Note that human receivers 497 
only achieve a comparable recognition correctness around 57% when a similar pool of messages were 498 
tested (Hauser et al., 2019a; McIntyre et al., 2021). It indicates that some contact information human 499 
receivers rely on in identifying emotional messages can be captured by this tracking system. 500 
Meanwhile, certain messages that were difficult to be discriminated by contact attributes might indeed 501 
be very similar in their social meanings and touch behaviors. Such as sympathy and calm, which are 502 
supposed to be close in the terms of contact quantification.  503 

Furthermore, this tracking system can capture individual differences in affective touch as individual 504 
touchers were also easily distinguished. Prior studies highlighted that touch behavior in social 505 
communication could be influenced by many factors, such as age (Cascio et al., 2019), gender 506 
(Hertenstein et al., 2009; Russo et al., 2020), cultural backgrounds (Hertenstein et al., 2006; Suvilehto 507 
et al., 2019), relationship (Thompson and Hampton, 2011), or personalities (McIntyre et al., 2021). 508 
While the personal information is easy to obtain via questionnaires, the uniqueness of their contact 509 
performance is always challenging to collect. Prior attempts on individual difference typically focused 510 
on contact with engineered stimuli like silicone-elastomers (Xu et al., 2021b), grooved surfaces in 511 
grating orientation tasks (Peters et al., 2009), or the contact with robots (Cang et al., 2015). In those 512 
settings, contact can be well-recorded by built-in or attached sensors, which in contrast is impractical 513 
or interferential for human-to-human touch. As individual difference indeed plays a role in social 514 
emotion communication,  this system could help bridge the gap by inspecting the differences from the 515 
aspect of skin contact quantification. 516 

5.2 Improved Skin-to-Skin Contact Measurement by 3D Visual Tracking 517 

The measurement accuracy of this system was validated by several standard tracking techniques. As 518 
shown in Figures 6-8, time-series recordings of contact attributes aligned well with the data collected 519 
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from independent devices, i.e., contact velocities from an EM motion tracker, contact area from a 520 
sensorized pressure mat, and indentation depth from a laser sensor. Those standard tracking methods 521 
typically afford high accuracy or resolution of measurements but are specialized for limited types of 522 
contact attributes. Therefore, when different attributes are needed at the same time, a complex 523 
combination of multiple devices is usually required. In contrast, the proposed tracking system captures 524 
most of those attributes simultaneously with a concise setup without calibration.  525 

Moreover, the proposed 3D visual tracking system is compatible with wider applications as many 526 
limitations of  standard tracking methods were overcome or avoided. More specifically, compared with 527 
the EM tracker, this system is free of electromagnetic interference and provides shape information 528 
instead of tracking the position of only few points. Compared with infrared motion trackers like the 529 
Leap Motion sensor, it covers a larger range of tracking and captures any 3D shapes in addition to 530 
hands and several basic geometric shapes. The motion capture system is superior in tracking 531 
movements but is expensive to set up and constrained by pre-attached markers. Sensorized pressure 532 
mat and other force sensors always block the direct contact and might not be reliable in area 533 
measurement due to spatial resolution constraints and the increasing zero drift over time (Figure 4B). 534 
While the proposed tracking system is free of those issues mentioned above, limitations still exist. In 535 
particular, the attribute of contact force and pressure are unavailable although they contribute to contact 536 
interactions (Essick et al., 2010; Huang et al., 2020; Teyssier et al., 2020; Xu et al., 2020). Due to the 537 
constraint of recording frequency, fast movements might fail in tracking since the hand image could 538 
be blurred. Meanwhile, the forearm needs to be recorded parallel with the y-axis of the color image 539 
coordinate. In so doing, the spatial hand velocity can be decomposed into the three orthogonal 540 
directions without additional markers to define the arm coordinate. 541 

5.3 Further Applications in Human-to-Human Touch Interaction 542 

Human touch each other with different intentions and a wide range of emotional states. In the classic 543 
theory of emotion, three dimensions of valence, arousal, and dominance, are typically employed for 544 
emotion assessments (Russell and Mehrabian, 1977; Russell, 1980). Indeed, using machine-controlled 545 
brush stimuli, the valence rating was reported to be tuned by the tangential stroking velocity (Löken et 546 
al., 2009; Essick et al., 2010; Ackerley et al., 2014a, 2014b; Croy et al., 2021). In the scenario of 547 
naturalistic human touch, our measurements could further facilitate the quantitative analysis regarding 548 
other correlates between contact attributes and the three emotional dimensions.  549 

From the perspective of neurophysiology, changes in the skin’s mechanics caused by physical 550 
contact could elicit different responses of peripheral afferents (Johnson, 2001; Yao and Wang, 2019; 551 
Xu et al., 2021a). For example, the firing frequency of C-tactile afferents is associated with the stroking 552 
velocity in an inverted-U shape relationship (Löken et al., 2009; Ackerley et al., 2014a; Liljencrantz 553 
and Olausson, 2014). Other Aβ afferents are suggested to support the identification of distinct 554 
emotional messages delivered by touch (Hauser et al., 2019b). Moving forward into this direction, 555 
measurements of naturalistic human contact can aid in uncovering how exactly afferents respond to 556 
such contact and contribute to different emotional percepts.  557 

Affective touch is also believed to impact physiological arousal such as blood pressure, heart rate, 558 
respiration, ECG, EEG, and hormone level (Gallace and Spence, 2010; Sefidgar et al., 2016). 559 
Especially for infants, touch delivered by caregivers contributes to their social, cognitive, and physical 560 
development (Hertenstein, 2002; Van Puyvelde et al., 2019), where the underlying contact details 561 
would be meaningful to quantify. Additionally, many physical therapies, such as massage, rely on 562 
specific manipulation of the muscle and tissue of patients delivered by professional therapists. Those 563 
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therapies create health benefits including relieving stress and pain, promoting blood circulation, and 564 
boosting mental wellness (Moyer et al., 2004). While the underlying mechanism is waiting to be further 565 
explored with the aid of physical skin contact tracking.  566 
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Figure 1. 3D visual tracking setup and data workflow. The toucher’s hand and receiver’s forearm are 716 
tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point cloud 717 
while the hand mesh is animated by the gestures and movements of the toucher’s hand.  718 

Figure 2. Definition of contact attributes. (A) Color image from video recorded by depth camera. Two 719 
color markers were placed on the toucher’s hand and the receiver’s forearm respectively to support 720 
motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments represent the 721 
norm vector of arm points; red points on the forearm represent the region contacted by the hand. In the 722 
arm coordinate, the vertical axis (blue) is designated along the vertical direction pointing right upward, 723 
the longitudinal axis (green) is parallel with the arm direction from elbow to wrist, and the lateral 724 
direction is perpendicular to the two axes pointing to the internal side of the forearm. (C) Six time-725 
series attributes include absolute velocity, which is the absolute value of spatial contact velocity; three 726 
orthogonal velocity components corresponding to the three axes of the arm coordinate; contact area, 727 
which is the overall area on the forearm being contact; and the indentation depth as the average depth 728 
applied on the forearm by the hand. 729 

Figure 3. Time-series recordings of each contact attribute across touch gestures and delivered 730 
messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes. 731 
The Contact variable represents the status of the being contacted or not. Vabs denotes the absolute 732 
contact velocity (cm/s), Vlg denotes the longitudinal velocity (cm/s), Vlt denotes the lateral velocity 733 
(cm/s), Vvt denotes the vertical velocity (cm/s), Area denotes the contact area (cm2), and Depth denotes 734 
the indentation depth (mm). 735 

Figure 4. (A) Comparison of contact attributes across the four touch gestures. *p < 0.05, **p < 0.01, 736 
***p < 0.001, ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests. (B) Importance 737 
of certain contact attributes in identifying each touch gesture using random forest classification. 738 
Diamonds denote means; points denote importance values of 100 repetitions of classification. 739 

Figure 5. Classification of touch gestures, delivered messages, and toucher individuals using the mean 740 
value, all relevant features, and time-series data of contact attributes, respectively. The accuracy in 741 
prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are shown, as well as 742 
the importance of particular contact attributes in classifying (B) touch gestures, (D) delivered 743 
messages, (F) toucher individual. Numbers and colors in confusion matrices represent the prediction 744 
percentage. In the importance plots, the diamonds denote means; points denote importance values from 745 
100 repetitions of classification. 746 

Figure 6. Validation of contact velocity measurements using EM tracker. (A) Experimental setup. (B) 747 
Five test gestures. (C)Velocity (cm/s) over time by the two tracking systems. For the first three test 748 
gestures, one trial is shown per force level, i.e., low, medium, and high force. (D) Mean values of 749 
velocities (cm/s) per test gesture. ****p < 0.0001 were derived by paired-sample Mann–Whitney U 750 
tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.  751 

Figure 7. Validation of contact area measurements using sensorized pressure mat. (A) Experimental 752 
setup. (B) Contact area (cm2) over time by the two systems. For the first three test gestures are shown 753 
one trial per force level, i.e., low, medium, and high force. (C) Mean values of contact area (cm2) per 754 
test gesture. ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests. (D) Differences 755 
of measured contact area (cm2) between the two systems per test gesture. (E)  Visualization of hand-756 
arm contact in top view (left) and bottom view (top right) with heatmaps of contact pressure tracked 757 
by sensorized pressure mat across force levels (bottom right). 758 
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Figure 8. Validation of indentation depth measurements using laser displacement sensor and 759 
sensorized pressure mat. (A) Experimental setup with laser displacement sensor. (B) Indentation depth 760 
(mm) over time by the either system. For the two test gestures shown is one trial per force level, i.e., 761 
low, medium, and high force. (C) Mean values of indentation depth per test gesture. ****p < 0.0001 762 
were derived by paired-sample Mann–Whitney U tests across force levels. (D) Errors of measured 763 
indentation depth between systems per force level. (E) Experimental setup with sensorized pressure 764 
mat. (F) Indentation depth (mm) collected by the 3D visual tracking system overlaps with overall force 765 
(N) collected by the sensorized pressure mat. Per test gesture, one trial per force level is shown i.e., 766 
low, medium, and high force. (G) Mean value of indentation depth per force level recorded by the 3D 767 
visual tracking system. ****p < 0.0001 were derived by paired-sample Mann–Whitney U tests across 768 
force levels. 769 

 770 

Table 1. Available gestures for each cued emotional message in touch communication task 771 

 Cued Emotional Messages 
Anger (Ag) Attention (At) Calm (C) Fear (F) Gratitude (G) Happiness (H) Sympathy (S) 

Gestures 
Hit/Tap Tap Hold/Squeeze Squeeze/Hold Hold/Squeeze Shake Stroke 
Squeeze/Hold Shake Stroke Shake Shake Tap Tap 
Shake Squeeze/Hold Tap Tap Tap Stroke Squeeze/Hold 

 772 

Table 2. Experiment procedure for validating contact velocity  773 

 Test Gesture Moving Direction Velocity Levels Repeated Trials per Level Trials in Total 
1 Stroking Longitudinal Low, Medium, High 3 9 
2 Stroking Lateral Low, Medium, High 3 9 
3 Tapping Vertical Low, Medium, High 3 9 
4 Holding None None 1 1 (long duration) 
5 Shaking Irregular Irregular 1 1 (long duration) 

 774 

Table 3. Experiment procedure for validating contact area  775 

 Test Gesture Force Levels Repeated Trials per Level Trials in Total 
1 Single-finger pressing Low, Medium, High 3 9 
2 Multiple-finger pressing Low, Medium, High 3 9 
3 Holding Low, Medium, High 3 9 
4 Shaking Irregular 1 1 (long duration) 

 776 

Table 4. Experiment procedure for validating indentation depth  777 

 Validation with Laser Sensor 
 Test Gesture Force Levels Repeated Trials per Level Trials in Total 

1 Multiple-finger tapping Low, Medium, High 3 (4 taps per trial) 9 
2 Palm tapping Low, Medium, High 3 (4 taps per trial) 9 
 Validation with Pressure Mat 
 Test Gesture Force Levels Repeated Trials per Level Trials in Total 

1 Single-finger pressing Low, Medium, High 3 9 
2 Multiple-finger pressing Low, Medium, High 3 9 
3 Holding Low, Medium, High 3 9 

 778 


