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Abstract

Across a plethora of social situations, we touch others in natural and intuitive ways to share thoughts
and emotions, such as tapping to get one’s attention or caressing to soothe one’s anxiety. A deeper
understanding of these human-to-human interactions will require, in part, the precise measurement of
skin-to-skin physical contact. Among prior efforts, each measurement approach exhibits certain
constraints, e.g., motion trackers do not capture the precise shape of skin surfaces, while pressure
sensors impede skin-to-skin contact. In contrast, this work develops an interference-free 3D visual
tracking system using a depth camera to measure the contact attributes between the bare hand of a
toucher and the forearm of a receiver. The toucher’s hand is tracked as a posed and positioned mesh
by fitting a hand model to detected 3D hand joints, whereas a receiver’s forearm is extracted as a 3D
surface updated upon repeated skin contact. Based on a contact model involving point clouds, the
spatiotemporal changes of hand-to-forearm contact are decomposed as six, high-resolution, time-series
contact attributes, i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity
components, together with contact duration. To examine the system’s capabilities and limitations, two
types of experiments were performed. First, to evaluate its ability to discern human touches, one person
delivered cued social messages, e.g., happiness, anger, sympathy, to another person using their
preferred gestures. The results indicated that messages and gestures, as well as the identities of the
touchers, were readily discerned from their contact attributes. Second, the system’s spatiotemporal
accuracy was validated against measurements from independent devices, including an electromagnetic
motion tracker, sensorized pressure mat, and laser displacement sensor. While validated here in the
context of social communication, this system is extendable to human touch interactions such as
maternal care of infants and massage therapy.

1 Introduction

Social and emotional communication by touch is important to human development in daily life. It
contributes to brain and cognitive development in infancy and childhood (Cascio et al., 2019), and
plays a role in providing emotional support (Coan et al., 2006), and forming social bonds (Vallbo et
al., 2016). For example, being touched by one’s partner mitigates one’s reactivity to psychological
pressure, as observed in decreased blood pressure, heart rate, and cortisol levels (Gallace and Spence,
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2010). Behaviors such as compliance, volunteering, and eating habits are also positively improved
(Gallace and Spence, 2010). Moreover, several works now indicate that particular social messages and
emotional sentiments can be readily recognized from touch alone (Hertenstein et al., 2006, 2009;
Thompson and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Despite their importance
and ubiquity, we have just begun to quantify the exact nuances in the underlying physical contact
interactions used to communicate affective touch.

To decompose how physical contact interactions evoke sensory and behavioral responses, most
prior studies employ highly controlled stimuli, which vary a single factor at a time. In particular,
mechanical and thermal interactions are typically delivered to a person’s skin using robotically driven
actuators (Loken et al., 2009; Essick et al., 2010; Ackerley et al., 2014a; Tsalamlal et al., 2014; Bucci
et al., 2017; Teyssier et al., 2020; Zheng et al., 2020). For example, brush stimuli swept along an arc
have been widely adopted to mimic caress-like stroking, while controlling their velocity, force, surface
material, and/or temperature. Using such stimuli, C-tactile afferents are shown to be preferentially
activated at stroke velocities around 1-10 cm/s, which align with ratings of pleasantness (Loken et al.,
2009; Essick et al., 2010; Ackerley et al., 2014a). Beyond experiments to examine brush stroke, more
complex interactions have been delivered via humanoid robots and robot hands (Teyssier et al., 2020;
Zheng et al., 2020). However, device-delivered stimuli do not fully express the natural and subtle
complexities inherent in human-to-human touch. This can result in disconnect with the everyday, real-
world interactions for which our sensory systems are finely tuned.

Measuring and quantifying free and unconstrained human-to-human touch interactions is complex
and challenging. In particular, the physical interactions are unscripted, unconstrained, and
individualized with rapid and irregular transitions. Indeed, multiple contact attributes often co-vary
over time, e.g., lateral velocity, contact area, indentation depth. Therefore, in moving toward
quantification, the initial efforts used qualitative, manual annotation to describe touch gestures, and
their contact intensity and duration (Hertenstein et al., 2006, 2009; Yohanan and MacLean, 2012;
Andreasson et al., 2018). While adaptable to a wide range of touch interactions and settings, qualitative
methods are constrained by the time required to analyze the data, the potential subjectivity of human
coders, and a courser set of metrics and classification levels. For instance, contact intensity is typically
classified in only three levels as light, medium, strong. As a result, automated techniques have been
introduced, such as electromagnetic motion trackers (Hauser et al., 2019a; Lo et al., 2021) and
sensorized pressure mats (Silvera-Tawil et al., 2014; Jung et al., 2015), with each their own capabilities
and limitations. For instance, electromagnetic trackers capture the movement of only a handful of
points, thus unable to monitor complex surface geometry, and can emit electromagnetic noise
incompatible with sensitive biopotential recording equipment. Pressure sensors and mats inhibit direct
skin-to-skin contact, when even thin films are shown to attenuate touch pleasantness (Rezaei et al.,
2021). Three-dimensional optical tracking methods have also been employed, such as infrared stereo
techniques (Hauser et al., 2019a, 2019b; Mclntyre et al., 2021), motion capture systems (Suresh et al.,
2020), and stereo cameras with DeepLabCut (Nath et al., 2019). While these methods are specialized
in tracking joint positions of hands and limbs, they do not capture the shape and geometry of body
parts, since the infrared cameras lack sufficient accuracy on depth, motion capture systems only track
pre-attached markers, and stereo matching of multiple cameras often fail with texture-less surfaces. In
contrast, depth cameras can provide high spatial resolution point clouds and allow shape extraction of
texture-less body parts, such as a forearm. Depth cameras, as well, are more readily set up without
calibration, afford minimum magnetic interference, and can be located at a larger distance from the
area of interest. While depth cameras have been used in hand tracking and 3D reconstruction (Rusu
and Cousins, 2011; Taylor et al., 2016), they have not been used to measure contact interactions in
human-to-human touch.

This is a provisional file, not the final typeset article
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Visual Tracking for Social Touch

While defined to a degree, we are still deciphering those physical contact attributes vital to social
touch communication. In such settings, human touch interactions tend to include gesture,
pressure/depth, velocity, acceleration, location, frequency, area, and duration (Hertenstein, 2002;
Hertenstein et al., 2006, 2009; Yohanan and MacLean, 2012; Silvera-Tawil et al., 2014; Jung et al.,
2015; Andreasson et al., 2018; Hauser et al., 2019a, 2019b; Lo et al., 2021; McIntyre et al., 2021). To
understand the functional importance of specific movement patterns, certain attributes such as spatial
hand velocity have been further decomposed into directions of normal and tangential (Hauser et al.,
2019a) or forward-backward and left-right (Lo et al., 2021). Moreover, simultaneous tracking of
multiple contact attributes is needed for understanding naturalistic, time-dependent neural output of
peripheral afferents. For example, a larger contact area should recruit more afferents, larger force or
indentation should generate higher firing frequencies, and optimal velocity in tangential direction
should evoke firing of C-tactile afferents (Johnson, 2001; Loken et al., 2009; Hauser et al., 2019b).

Herein, we develop an interference-free 3D visual tracking system to quantify spatiotemporal
changes in skin-to-skin contact during human-to-human social touch communication. Human-subjects
experiments evaluate its ability to discern unique combinations of contact attributes used to convey
distinct social touch messages and gestures, as well as the identities of the touchers. Moreover, the
system’s spatiotemporal accuracy is validated against measurements from independent devices,
including an electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor.

2 Human-to-Human Contact Tracking System

This work introduces a 3D visual tracking system and data processing pipeline, which used a high-
resolution depth camera to quantify contact attributes between the bare hand of a toucher and the
forearm of a receiver. As illustrated in Figure 1, the tracking system captured the 3D shape and
movements of the toucher’s hand and the receiver’s forearm independently but simultaneously within
the same camera coordinate system. Physical skin contact was detected between the hand and forearm
based on interactions of their 3D point clouds. Seven contact attributes were derived over the time
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Figure 1. 3D visual tracking setup and data workflow. The toucher’s hand and receiver’s forearm
are tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point
cloud while the hand mesh is animated by the gestures and movements of the toucher’s hand.
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course of touch, which were contact area, indentation depth, contact duration, overall contact velocity,
and its three orthogonal velocity components.

2.1 3D Shape and Motion Tracking with Depth Camera

The tracking procedure extracts the detailed 3D shape of the touch receiver’s forearm. By merging the
camera’s RGB and depth information, an RGB-D image was derived and then converted into a dense
point cloud per frame. The point cloud was cropped and downsampled to balance information and
computation costs. To obtain a clean point cloud of the forearm without background, neighboring
points around the forearm were first removed. Two removal methods were used alternatively based on
the experimental setup (Figure 1). If the receiver’s forearm was placed on a flat surface, such as a table,
the points within that flat surface could be removed in a shape-based manner using the plane model
segmentation algorithm provided by the Point Cloud Library (PCL) (Rusu and Cousins, 2011). In the
second case, if a monochromatic holder was set underneath the forearm, such as a cushion, then the
points of that holder could be removed by color-based segmentation in the HSV color space. Next, the
3D region growing segmentation algorithm (Rusu and Cousins, 2011) was applied to separate the rest
point cloud into multiple clusters according to the smoothness and distance between points. Since
neighboring points around the forearm were removed in advance, points farther away in the
background were assigned to separate clusters instead of being blended with the arm. Finally, by setting
a relatively large smoothness threshold, all arm points could be grouped into one cluster despite the
curvature of the forearm shape.

In human-to-human touch scenarios, the receiver’s forearm is frequently occluded by the toucher’s
hand. Given that a blocked arm region is nearly impossible to capture, only the shape of the forearm
prior to the contact was extracted. More specifically, the forearm point cloud was extracted before the
beginning of each contact interaction to update its shape and position. During the contact, its position
was refreshed in real-time according to the 3D position of the color marker on the arm, though its shape
was not updated during the contact. Once the forearm was shape updated, the normal vector 1, of
each arm point p’,., was calculated and updated as well to facilitate further contact detection and
measurement.

The hand tracking procedure was developed to capture the posture and position of the toucher’s
hand by combining depth information with a monocular hand motion tracking algorithm (Zhou et al.,
2020). The algorithm is robust to occlusions and object interactions, which is advantageous in hand-
arm contact. The monocular tracking algorithm contains two neural network modules to predict the 3D
location and rotation of all 21 hand joints. In the first module of the hand joint detection network,
features extracted from the 2D RGB image were first fed into a 2-layer convolutional neural network
(CNN) to detect the probability of the 2D position of all joints. Then, another two 2-layer CNN was
used to predict the 3D position of hand joints based on 2D features and 2D joint position estimates. In
the second module of the inverse kinematic network, a 7-layer fully connected neural network was
designed to derive the 3D rotation of each joint. Finally, the parametric MANO hand model (Romero
et al., 2017) was employed to incorporate 3D joint rotations to animate the hand mesh following the
shape and pose of the toucher’s hand.

The rendered hand mesh was expressed in the local hand coordinate without the spatial information
of the hand position. Therefore, depth information is incorporated here to locate the hand mesh in the
camera coordinate, according to the movement of any hand joint or the color marker on the back of the
hand (Figure 1). Specifically, the 2D position of the color marker was detected in the in the HSV, while
the 2D position of the joint was retrieved from the detected 2D hand. The depth value of the hand joint
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or marker was derived by transforming the depth image to the RGB coordinate, which was then used
to obtain its 3D position following the camera projection model. By identifying the corresponding point
of that marker or joint in the hand mesh model, the posed hand mesh was moved in real-time following
the toucher’s hand movements.

2.2 Definition of Contact Attributes

Hand-arm contact was measured in a point-based manner, which afforded higher resolution compared
with a geometry-based method (Hauser et al., 2019a). First, a contact interaction between the hand and
forearm was detected when at least one vertex point of the hand mesh was underneath the arm surface.
More specifically, for each hand vertex point pl,,,, , its nearest arm point pl,-,, was found first. Then,
as detailed in Equation (1), if the angle between the vector p',,,q — Plym and the normal vector ni,.,,
of arm point pl,., is larger than or equal to 90 degrees, this hand vertex is marked as underneath the
arm surface.

1 v(p;"land - pflrm) : nfzrm <0
0 El(p;land - pflrm) : nfzrm >0

Feontact = { (1)

Physical contact attributes were calculated when hand-arm contact was detected. Indentation depth
is measured as Equation (2). In particular, N, is the number of hand vertex points contacted with the
forearm. For each contacted hand point p',,4, its indentation depth d' is approximated as half the
distance between p' ., and its nearest arm point pi,.,. The half scale was used because the line
between two points might not be perpendicular to the arm surface. The overall indentation d deployed
by the hand to the forearm is defined as the average indentation depth of all N, contacted hand points:

[v|]: Absolute Vel.
v we: Vertical Vel.
; vi: Lateral Vel.

Y vig: Longitudinal Vel.

e,

b “Velocit

Figure 2. Definition of contact attributes. (A) Color image from video recorded by depth camera.
Two color markers were placed on the toucher’s hand and the receiver’s forearm respectively to
support motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments
represent the norm vector of arm points; red points on the forearm represent the region contacted
by the hand. In the arm coordinate, the vertical axis (blue) is designated along the vertical direction
pointing right upward, the longitudinal axis (green) is parallel with the arm direction from elbow to
wrist, and the lateral direction is perpendicular to the two axes pointing to the internal side of the
forearm. (C) Six time-series attributes include absolute velocity, which is the absolute value of
spatial contact velocity; three orthogonal velocity components corresponding to the three axes of
the arm coordinate; contact area, which is the overall area on the forearm being contact; and the
indentation depth as the average depth applied on the forearm by the hand.
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N¢ ) ,
l_=1||p;land - pélrm”Z
Depth = N, . (2

Contact area is measured as the summed area of all contacted arm points. As shown in Equation (3),
the unit area S' for one arm point is calculated as a sphere whose radius is the average neighbor
distance, and & is round to 3. Within the arm point cloud of N,; points, the average neighbor distance
1L, is calculated as the average distance of all points to their nearest neighbor points:

N o
My %br)z

Area = 3N (
Nay

(3)

In addition to cutaneous contact attributes, the velocity of hand movement was quantified when
contact was detected. The absolute contact velocity V,;s is measured as the modulus of the spatial hand
velocity Vyana:

t t—1
Prand — PHand
At

Vabs -

(4)

In Equation (4), hand position pyanq 18 represented by the position of the middle
metacarpophalangeal joint. By defining another coordinate on the receiver’s forearm (Figure 2C),
spatial hand velocity V4,4 1s further decomposed in the arm coordinate as three velocity components
Ve, Vig, Vi parallel with its axis of the arm coordinate (Figure 2C). The vertical axis i,; of the arm
coordinate is aligned with the vertical direction pointing upright. It could be obtained as the normal
vector of a point on a horizontal surface, like a table, or the normal vector of a point on the top of the
receiver’s forearm. Vertical velocity V,,; is the hand velocity component in this direction:

Vot = Vhand * Lot - (5)

The longitudinal axis i, is aligned with the direction of the arm bone, pointing from elbow to wrist.
To derive this axis, the camera was orientated to display the forearm vertically in the 2D image. Then,
the direction of the arm bone in the 2D image was set to be parallel with the y axis of the image
coordinate. By projecting the y axis y of the camera coordinate onto the perpendicular plane of the
vertical axis n,;, the longitudinal axis follows the direction of the projected vector:

_ b (y ivt)ivt
ly — - )il

(6)

llg

Vlg = VHand * ilg . ()

Lastly, the lateral axis i;; is perpendicular to the plane of longitudinal and vertical axis, following
the right-hand rule:

i = ilg X Iyt - €)

Vit = Yhana * U - 9)
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Compared with the overall hand velocity, these velocity components can quantify the directional nature
of the hand movements.

Moreover, contact duration is measured as a scalar value for each hand-arm touch interaction, which
is the sum of time over which contact was detected. Given the recording frequency f of the camera is
30 Hz and N¢ is the number of frames per interaction, the contact duration is measured as:

Ny

i=1 Feontact

f

3 Experiment 1: Human-to-Human Affective Touch Communication

Duration = (10)

The first experiment was designed with the task of human-to-human emotion communication.
Touchers was instructed to deliver cued emotional messages, e.g., happiness, sympathy, anger, to the
touch receiver at the receiver’s forearm using preferred gestures, e.g., tapping, holding, stroking.
Recorded contact attributes were then used to differentiate delivered messages, utilized gestures, and
individual touchers. Contact analysis was conducted on the platform with the Intel Core 19-9900 CPU,
3.1 GHz, 64 GB RAM, and a NVIDIA GeForce RTX 2080 SUPER GPU. The same platform was used
for the second experiment.

3.1 Cued Emotional Messages and Gesture Stimuli

Seven emotions of anger, attention, calm, fear, gratitude, happiness, and sympathy were selected as
cued messages for touchers to express (Table 1). Those messages were adopted from prior studies and
have been observed to be recognizable through touch alone (Hertenstein et al., 2006, 2009; Thompson
and Hampton, 2011; Hauser et al., 2019a; McIntyre et al., 2021). Among them, gratitude and sympathy
are prosocial expressions that are more effectively communicated by touch compared with those self-
focused. Anger, happiness, and fear are universal expressions that are commonly communicated by
facial, vocal, and touch expressions. Attention and calm are also preferred messages in touch
interactions and can be correctly interpreted significantly better than chance. For each of the cued
messages, three commonly used gestures were adopted from prior studies (Hertenstein et al., 2006;
Thompson and Hampton, 2011; Hauser et al., 2019a; MclIntyre et al., 2021) (Table 1). Holding and
squeezing were combined into one since they share a similar hand gesture and hand motion. Similarly,
hitting was combined with the tapping gesture, but only for the message of anger.

Table 1. Available gestures for each cued emotional message in touch communication task

Cued Emotional Messages

Anger (Ag)  Attention (At) Calm (C) Fear (F) Gratitude (G) Happiness (H) Sympathy (S)

Hit/Tap Tap Hold/Squeeze Squeeze/Hold Hold/Squeeze Shake Stroke
Gestures Squeeze/Hold Shake Stroke Shake Shake Tap Tap

Shake Squeeze/Hold Tap Tap Tap Stroke Squeeze/Hold

3.2 Participants

The human-subjects experiments were approved by the Institutional Review Board at the University
of Virginia. Ten participants were recruited as touchers, including five males and five females (mean
age =23.8, SD = 5.0). Another five participants were recruited as touch receivers with three males and
two females (mean age = 24.0, SD = 4.4). Five experimental groups were randomly assembled, where
each group consisted of one male toucher, one female toucher, and one receiver. Each group performed
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two experimental sessions with one session conducted by the male toucher and another one conducted
by the female toucher. Written informed consent was obtained from all participants.

3.3 Experimental Setup

To avoid visual distractions during the experiment, touchers and receivers sat at opposing sides of an
opaque curtain. They were instructed to not speak to each other. As shown in Figure 2A, a cushion was
set on the table at the toucher’s side upon which the receiver rested her or his left forearm. Cued
emotional messages and corresponding gestures were displayed to the toucher on the computer screen.
The toucher could select the gesture and proceed to the next message using the computer’s mouse.
Cued messages and the toucher’s selection of gestures were also recorded. As illustrated by a snapshot
of the experiment recoding by depth camera (Figure 2A), the camera was set in front of the cushion
and orientated towards it.

3.4 Experimental Procedures

In each session, seven cued emotional messages were communicated with each repeated six times. The
42 message instructions were provided in random order. In each trial, one message was displayed on
the screen with three gestures listed below. Touchers had five seconds to choose a gesture and report
it on the computer display. For each cued message, the three provided gestures were identical but their
order was randomized trial by trial. After that, the toucher delivered the message, by touching the
receiver’s forearm from elbow to wrist, using the right hand. Within each trial, only the chosen gesture
was used. The use of other gestures or a combination of gestures was not allowed. For the same cued
message across trials, touchers were free to use the same gesture or change to another gesture. A gesture
could be deployed in any pattern of contact deemed appropriate by the toucher. No constraints or
instructions were given for delivering the gesture, such as its duration, hand region employed, intensity,
or repetition. At the end of a trial, by clicking the ‘Next” button on the bottom of the computer display,
the toucher initiated the next trial with a new message word and corresponding three gestures.

3.5 Data Analysis

Overall, 420 trials were performed in ten experimental sessions. Twelve trials were excluded from
analysis as contact interactions were not properly recorded. Statistical and machine learning analyses
were performed to examine the measured contact attributes.

To identify the contact pattern between touch gestures, paired-sample Mann—Whitney U tests were
applied across gestures per contact attribute. For time-series attributes, the mean value was used. Since
longitudinal velocity, lateral velocity, and vertical velocity are signed variables, the mean was derived
from the absolute value of those variables. Contact duration as a scalar variable was directly compared
across gestures. To evaluate which of the contact attributes could best identify or describe a certain
type of touch gesture, the importance of each attribute in predicting that gesture was identified using a
random forest classifier. The mean values of time-series attributes together with the scalar attribute
served as inputs. For example, in predicting the stroking gesture, all trials were labeled in a binary
fashion as delivering or not delivering this gesture, instead of being labeled as the four gesture types.
Seventy-five percent of trials were randomly assigned as the training set and those remaining were
assigned as the test set. The permutation method was used to derive the importance of attributes. The
value was obtained as the average of 100 repetitions of classification, with 10 permutations per
classification.

This is a provisional file, not the final typeset article
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Further classification analyses were performed regarding the discrimination of touch gestures,
emotional messages, and individual touchers, respectively, using the random forest algorithm. Contact
attributes were fed into classifiers in three different formats, including the mean value of each time-
series attribute, multiple relevant features extracted from each time-series attribute, and the original
time-series attributes. In particular, multiple features were extracted to quantify the amplitude,
frequency, and dynamic characteristics of the time-series signal (Christ et al., 2018). For example,
time-domain features included mean, maximum, quartiles, standard deviation, trend, skewness,
entropy, energy, etc. Frequency domain features included autocorrelations and partial autocorrelations
with different lags, coefficients of wavelet and Fourier transformations, mean, variance, skew of
Fourier transform spectrum, etc. From all extracted features, relevant ones were selected for
classification by significance tests in predicting the classification target and the Benjamini Hochberg
multiple test (Christ et al., 2018). When time-series data were used, all attributes were concatenated
into one variable as input (Loning et al., 2019). To identify attributes that could better encode social
affective touch, the importance of individual attributes was ranked for each classification task. More
specifically, based on the mean-value classification, the permutation method was repeated multiple
times to derive the average importance values.

3.6 Results
3.6.1 Physical Contact Attributes in Human-to-Human Touch

Human-to-human physical contact interactions between social messages, gestures, and individual
touchers were quantified by their contact attributes. As shown in Figure 3, exemplar data for the four
touch gestures (shake, tap, hold and stroke) exhibit distinct patterns across the contact attributes,
consistent with expected hand movements per gesture. In particular, the stroking gesture was

Shake Shake Shake Tap Tap Hold Stroke
Fear Gratitude Happiness Anger Attention Calm Sympathy
Contact | (I ] [ ([ [} mmm Nl |
Vabs 50]
0
20
V[g ]
-20
20
Vit ]
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8
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P 0
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Figure 3. Time-series recordings of each contact attribute across touch gestures and delivered
messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes.
The Contact variable represents the status of the being contacted or not. Vs denotes the absolute
contact velocity (cm/s), Vi, denotes the longitudinal velocity (cm/s), Vi denotes the lateral velocity
(cm/s), Vi denotes the vertical velocity (cm/s), Area denotes the contact area (cm?), and Depth
denotes the indentation depth (mm).
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characterized by regular patterns in longitudinal velocity, which implies slow and repetitive
movements along the direction of the forearm. For the shaking gesture, velocity attributes depicted
large changes in frequency and relatively lower amplitude. Meanwhile, velocities in all three directions
changed simultaneously, indicating a spatial direction in the movement of the toucher’s hand. The
tapping gesture was quantified as discontinuous, large-amplitude spikes of short contact duration.
Compared with other touch gestures, holding gesture exhibited relatively stable contact with minimal
changes. With further inspection into each gesture, contact patterns with subtle differences could also
be captured across emotional messages. Such as in the shaking gesture, happiness was delivered with
higher velocities compared with the expression of fear. Within the tapping gesture, shorter but more
intensive contact was recorded when expressing anger compared with attention.

As shown in Figure 4A, the four touch gestures were statistically differentiable according to several
of their contact attributes. For instance, absolute contact velocity can differentiate all gesture pairs
except for that of stroking and shaking. With the contact attribute of longitudinal velocity, stroking was
differentiable from shaking as it afforded higher longitudinal velocity. This also aligns with hand
movements during stroking that are typically along the direction of the forearm. Both shaking and
tapping gestures exhibited significantly higher longitudinal velocities than the holding gesture. With
the lateral velocity, significant differences were derived among all four gestures, where tapping and
shaking gestures afforded higher amplitudes than stroking and holding. As for the vertical velocity, the
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Figure 4. (A) Comparison of contact attributes across the four touch gestures. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < (0.0001 were derived by paired-sample Mann—Whitney U tests. (B)
Importance of certain contact attributes in identifying each touch gesture using random forest
classification. Diamonds denote means; points denote importance values of 100 repetitions of
classification.
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tapping gesture was associated with significantly higher velocities than others, which aligns with its
up-down movements. Across all velocity attributes, the holding gesture was significantly distinct from
other ones.

For the contact area attribute, shaking and holding gestures exhibited significantly higher values
than the stroking gesture, and then tapping. Indeed, participants generally used the whole hand to
deliver holding and shaking, while only the finger digits for stroking and the fingertips for tapping.
Moreover, with indentation depth and contact duration, tapping was distinct amongst the gestures with
significantly lower depth and shorter duration. Note the hand motion with the tapping gesture could be
faster than the recording frequency of the camera, where one trial of contact might not be entirely
captured and thus lead to a lower estimation of indentation depth.

In Figure 4B, the contact attributes that were salient in identifying or describing a specific touch
gesture were further analyzed according to their importance in predicting that gesture. From the
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Figure 5. Classification of touch gestures, delivered messages, and toucher individuals using the
mean value, all relevant features, and time-series data of contact attributes, respectively. The
accuracy in prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are
shown, as well as the importance of particular contact attributes in classifying (B) touch gestures,
(D) delivered messages, (F) toucher individual. Numbers and colors in confusion matrices represent
the prediction percentage. In the importance plots, the diamonds denote means; points denote
importance values from 100 repetitions of classification.
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importance ranking, longitudinal velocity appears to be the most useful attribute in describing the
stroking gesture. The shaking gesture did not have a single salient attribute, perhaps because it was
delivered from multiple directions and varied velocities. The attributes of contact area, contact
duration, and longitudinal velocity were relatively more important. The holding gesture could be
identified by longitudinal and absolute velocities with both lower amplitudes. For the tapping gesture,
contact duration could be important in identifying it, which should be shorter than other gestures.

3.6.2 Classification amidst Gestures, Messages, and Individuals

In Figure 5, the contact attributes are shown to robustly classify touch gestures, delivered messages,
and individual touchers at accuracies better than chance, which is 25%, 14.3%, and 10% respectively.
For gesture prediction, the accuracy was 87% when the mean values of contact attributes were used as
predictors (Figure 5A). The prediction accuracy slightly increased to 92% when all relevant features
were used as more information was included, and was around 86% when predicted by the time-series
data. In classifying delivered emotional messages, the accuracy was 54%, 57%, and 55%, for the three
respective feature classes (Figure 5C). Moreover, in classifying the individual touchers, the accuracies
were 56%, 72%, and 77%, respectively. For the importance ranking of the contact attributes, those of
longitudinal velocity, contact duration, and contact area were typically more important.

4 Experiment 2: Technical Validation on the Visual Tracking Method

The second experiment was designed to validate the effectiveness of the 3D visual tracking system in
measuring controlled human movements against those from independent devices, including an
electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. These
techniques are used commonly in haptics studies (Silvera-Tawil et al., 2014; Jung et al., 2015; Hauser
etal., 2019a; Xu et al., 2020, 2021a; Lo et al., 2021). In this experiment, the observed contact attributes
were compared within controlled touch conditions, e.g., stroking in different directions at preset
velocities, pressing with different parts of the hand varying in contact area, and tapping at different
depth magnitudes.

4.1 Contact Velocity Validation Using Electromagnetic Tracker
4.1.1 Experimental Setup

Measurements of the directional components of contact velocity, including absolute velocity,
longitudinal velocity, lateral velocity, and vertical velocity were validated against those of an
electromagnetic (EM) motion tracker (3D Guidance, Northern Digital, Canada. 6 DOF, 20-255 Hz, 1.4
mm RMS position accuracy, 78 cm range; 0.5° RMS orientation accuracy, +180° azimuth & roll, £90°
elevation range). Both tracking systems were operated simultaneously to capture controlled
movements of the human hand touching the forearm. The transmitter of the 3D Guidance EM tracker
was oriented to be aligned with the arm coordinate (Figure 6A). The sensor of the EM tracker was
attached to the toucher’s back of the hand near the middle metacarpophalangeal joint.

4.1.2 Experimental Procedures

Given velocity components were defined in different directions, five test gestures were designed in
total. The first two test gestures were stroking contact along the forearm in longitudinal and lateral
directions, respectively. The third test gesture involved tapping vertically to the surface of the forearm.
The fourth gesture was holding without movement. The fifth gesture was shaking, which was delivered
in an irregular and arbitrary way with different directions and velocities included. For the first three
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Figure 6. Validation of contact velocity measurements using EM tracker. (A) Experimental setup.
(B) Five test gestures. (C)Velocity (cm/s) over time by the two tracking systems. For the first three
test gestures, one trial is shown per force level, i.e., low, medium, and high force. (D) Mean values
of velocities (cm/s) per test gesture. ****p <0.0001 were derived by paired-sample Mann—Whitney
U tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.

test gestures, each one was performed in three levels of velocities, from low to medium to high. Each
velocity level was repeated for three trials. For example, the longitudinal stroking gesture was
performed as three trials of stroking in the longitudinal direction with lower velocity, followed by three
trials of stroking with medium velocity, and concluded by three trials of stroking with higher velocity.
The direction of hand movement and level of velocity were behaviorally controlled by the trained
toucher, who performed all three validation experiments. Shaking and holding gestures were performed
only once but lasted for a longer time to collect enough amount of data for validation analysis.

Table 2. Experiment procedure for validating contact velocity

Test Gesture  Moving Direction Velocity Levels Repeated Trials per Level Trials in Total
1 Stroking Longitudinal Low, Medium, High 3 9
2 Stroking Lateral Low, Medium, High 3 9
3 Tapping Vertical Low, Medium, High 3 9
4 Holding None None 1 1 (long duration)
5 Shaking Irregular Irregular 1 1 (long duration)

4.1.3 Data Analysis

Similar to the 3D visual tracking system, the four velocity attributes captured by the EM tracker were
derived from the original time-series position data. For either tracking system, the absolute mean value
of each velocity attribute was calculated per test gesture. Mann—Whitney U tests were conducted across
the test gestures based on mean velocity collected by the visual tracking system. Measurement errors
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between the two tracking systems were derived per attribute and test gesture. Since the sampling rates
of the two systems differ, i.e., 30 Hz for the Azure Kinect camera and 60 Hz for the EM tracker, data
collected from the EM tracker was resampled to be synchronized. More specifically, the EM tracking
data was first interpolated and sampled according to the timestamps of the 3D visual tracking data.
Then, the error was calculated for each time point between the velocities from the two systems.

4.1.4 Results

In Figure 6, velocities measured by the 3D visual tracking system were accurate when compared with
the EM tracker. The time-series data from the two systems well overlaped amidst touch gestures
(Figure 6C) and the average velocities of the gestures were comparable between the two systems
(Figure 6D). Shaking delivered high velocities in all three directions, while velocity in a certain
direction was significantly higher for hand movements along that direction. All four velocity attributes
were significantly lower when the holding gesture was performed. As shown in Figure 6E, the
measurement error was 1-2 cm/s for the first four gestures and relatively higher at around 5 cm/s for
the shaking gesture.

4.2 Contact Area Validation Using Sensorized Pressure Mat
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Figure 7. Validation of contact area measurements using sensorized pressure mat. (A) Experimental
setup. (B) Contact area (cm?) over time by the two systems. For the first three test gestures are
shown one trial per force level, i.e., low, medium, and high force. (C) Mean values of contact area
(cm?) per test gesture. ****p < (0.0001 were derived by paired-sample Mann—Whitney U tests. (D)
Differences of measured contact area (cm?) between the two systems per test gesture. (E)
Visualization of hand-arm contact in top view (left) and bottom view (top right) with heatmaps of
contact pressure tracked by sensorized pressure mat across force levels (bottom right).
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4.2.1 Experimental Setup

Contact area was measured simultaneously with the 3D visual tracking system and a sensorized
pressure mat (Conformable TactArray SN8880, Pressure Profile Systems, USA, 7x14 cm, 12x27
sensing elements, 0.002 psi pressure resolution, 3.05 psi pressure range, 29.3 Hz). Note that contact
was evaluated between the toucher’s hand and the surface of the pressure mat which was overlaid on
top of the bare forearm, for which it had been custom-designed (Figure 7A). Based on pilot tests with
the pressure mat, its measurement of contact area could be inaccurate due to the creases caused by
pressing when the mat was put on the forearm. To attenuate this effect, a piece of single-face corrugated
cardboard was placed between the forearm and the mat to generate a smooth and stiffer curved surface
following the shape of the forearm.

4.2.2 Experimental Procedures

Four test gestures were employed. The first test gesture was single-finger pressing with the index
finger. The second gesture was multiple-finger pressing with all fingers except for the thumb. The third
gesture was holding and the fourth gesture was shaking. For the first three test gestures, three levels of
force were applied from low to medium to high, to generate different levels of contact area within a
gesture. Each force level was repeated for three trials. Per trial, the toucher’s hand moved downward
into the receiver’s forearm and maintained pressure/hold at that force level for more than three seconds.
For example, the single-finger pressing gesture was conducted for three trials of pressure using the
index finger at a low force level, followed by three trials of pressure at a medium force level, and three
trials of pressing with a higher force level. The shaking gesture was conducted for one trial with a long
duration. Any patterns of shaking could be applied in an irregular and arbitrary manner including
different directions, velocities, etc.

Table 3. Experiment procedure for validating contact area

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9
4 Shaking Irregular 1 1 (long duration)

4.2.3 Data Analysis

The average contact area per gesture was calculated for both measurement systems. Significance
tests were performed across gestures based on average areas from the visual tracking system. The
measurement differences between the two systems were derived from time-series recordings per
gesture. To overcome the time discrepancy of sampling, data collected by the sensorized pressure mat
was resampled to be synchronized with the visual tracking system.

4.2.4 Results

In Figure 7B, the time-series contact areas captured by the 3D visual tracking system and the sensorized
pressure mat well overlapped with each other across test gestures and force levels. While single-finger
pressing (SfP) afforded the smallest contact area, larger multiple-finger pressing (MfP) was
significantly smaller than holding (H) and shaking (Sk) (Figure 7C). As shown in Figure 7D, the
measurement differences between the two systems were around 2 and 6 cm? for SfP and MfP, while
increased to 11 cm? for holding and shaking.
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Figure 8. Validation of indentation depth measurements using laser displacement sensor and
sensorized pressure mat. (A) Experimental setup with laser displacement sensor. (B) Indentation
depth (mm) over time by the either system. For the two test gestures shown is one trial per force
level, i.e., low, medium, and high force. (C) Mean values of indentation depth per test gesture.
*axEp < 0.0001 were derived by paired-sample Mann—Whitney U tests across force levels. (D)
Errors of measured indentation depth between systems per force level. (E) Experimental setup with
sensorized pressure mat. (F) Indentation depth (mm) collected by the 3D visual tracking system
overlaps with overall force (N) collected by the sensorized pressure mat. Per test gesture, one trial
per force level is shown i.e., low, medium, and high force. (G) Mean value of indentation depth per
force level recorded by the 3D visual tracking system. ****p < 0.0001 were derived by paired-
sample Mann—Whitney U tests across force levels.

4.3 Indentation Depth Validation Using Laser Sensor

4.3.1 Experimental Setup

Indentation depth was first validated using a laser displacement sensor (optoNCDT ILD 1402-100,
Micro-Epsilon, Germany, 100 mm range, 10 pm resolution, 1.5 kHz). The sensor was mounted on a
customized stand with the beam pointing downward. Given its capability of measuring the
displacement of one point in only the vertical direction (Figure 8A), a limited set of tapping gestures
was evaluated in this setting. Other gestures were then tested with a separate validation procedure using
the sensorized pressure mat (Figure 8E).

4.3.2 Experimental Procedures

Two test gestures were examined with the laser sensor. The first gesture was multiple-finger tapping,
where the movement of the tip of the middle finger was tracked. The second gesture was tapping with
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the palm, measured at one point on the back of the hand. Holding, shaking, and stroking gestures were
not examined here since these gestures are typically not conducted in the vertical direction. Within
each gesture, three force levels were employed, i.e., low, medium, high, and each repeated in three
trials. The toucher quickly tapped for four times within one trial. For example, the palm tapping gesture
was conducted for three trials of four taps with the palm at a low force level, followed by three trials
of four taps at a medium force level, and three trials of four taps at a high force level. The raw data
collected by laser sensor contained displacements of both indentations into the skin and movements in
the air. Therefore, the toucher conducted a ‘zero contact’ touch to the forearm at a minimally
perceptible force prior to each test gesture.

Within the setting of sensorized pressure mat, the three test gestures performed were single-finger
pressing, multiple-finger pressing, and holding. Each gesture was performed in three force levels,
where each level was repeated for three trials.

Table 4. Experiment procedure for validating indentation depth

Validation with Laser Sensor

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Multiple-finger tapping Low, Medium, High 3 (4 taps per trial) 9
2 Palm tapping Low, Medium, High 3 (4 taps per trial) 9

Validation with Pressure Mat

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9

4.3.3 Data Analysis

For the validation with laser sensor, average indentation depth at each force level was obtained by
aggregating the two tapping gestures. Significance tests were conducted across force levels based on
the average depth collected by the visual tracking system. Measurement errors between the two systems
were derived from time-series recordings at each force level. The data from the laser sensor was
resampled according to the 3D visual tracking system’s results. For quick tapping gestures, slight
temporal discrepancies between the two recordings could derive large differences. Therefore, the
dynamic time warping method was used to match tracked movements. The measurement errors were
obtained by comparing each pair of matched points from the two recordings.

Though no depth data could be captured by the pressure mat, the overall contact force was measured
for correlation with indentation depth measured by the visual tracking system. By aggregating all test
gestures, the average depth derived per force level was then calculated and compared.

4.3.4 Results

In Figure 8, the patterns of indentation depth measured by the two systems were very similar especially
for the temporal changes (Figure 8B). Though differences could be observed between their overall
amplitudes, their increasing trends were maintained across force levels (Figure 8C). Therefore, the 3D
visual tracking system affords the sensitivity to track slight changes in indentation depth, while the
amplitude of changes is proportionally mitigated. Moreover, contact with different force levels could
be easily differentiated by indentation depth amongst a variety of touch gestures. (Figure 8C, 8G).

5 Discussion
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To better understand human-to-human touch interactions underlying social emotional communication,
an interference-free 3D visual tracking system was developed to precisely measure skin-to-skin
physical contact by time-series contact attributes. The system was validated to capture and readily
distinguish naturalistic human touches across delivered emotional messages, touch gestures, and
individual touchers according to contact attributes. Compared with standard tracking techniques,
similar accuracy of spatiotemporal measurements was achieved by this system, while multivariate
attributes can be obtained simultaneously within one concise setup.

5.1 Deciphering Affective Touch Communication by Contact Attributes

As human affective touch is prone to be impacted by social and individual factors, such contact
differences could be readily captured by this system via contact attributes. First of all, touch gestures
can be differentiated with high accuracy as their contact attributes were significantly different from
each other (Figure 4A). Measurements of this system also align with prior reports of gesture
quantification with similar amplitudes. Such as the velocity for stroking in social touch is around 10
cm/s (Lo et al., 2021), and the average contact area of holding gesture is around 30 cm? (Hauser et al.,
2019a). In addition, the characterized contact pattern of each gesture align well with the general sense
of how we deliver that gesture. For example, tapping is associated with higher vertical velocities,
stroking is delivered with higher longitudinal velocities, and holding is commonly applied with lower
velocities and larger contact areas (Figure 4A).

Moreover, delivered emotional messages can be differentiated by contact attributes much better
than chance (Figure 5C). The accuracy of 54%, 57%, 55% was achieved when predicted by three
different levels of information derived from contact attributes (Figure 5C). Note that human receivers
only achieve a comparable recognition correctness around 57% when a similar pool of messages were
tested (Hauser et al., 2019a; Mclntyre et al., 2021). It indicates that some contact information human
receivers rely on in identifying emotional messages can be captured by this tracking system.
Meanwhile, certain messages that were difficult to be discriminated by contact attributes might indeed
be very similar in their social meanings and touch behaviors. Such as sympathy and calm, which are
supposed to be close in the terms of contact quantification.

Furthermore, this tracking system can capture individual differences in affective touch as individual
touchers were also easily distinguished. Prior studies highlighted that touch behavior in social
communication could be influenced by many factors, such as age (Cascio et al., 2019), gender
(Hertenstein et al., 2009; Russo et al., 2020), cultural backgrounds (Hertenstein et al., 2006; Suvilehto
et al., 2019), relationship (Thompson and Hampton, 2011), or personalities (McIntyre et al., 2021).
While the personal information is easy to obtain via questionnaires, the uniqueness of their contact
performance is always challenging to collect. Prior attempts on individual difference typically focused
on contact with engineered stimuli like silicone-elastomers (Xu et al., 2021b), grooved surfaces in
grating orientation tasks (Peters et al., 2009), or the contact with robots (Cang et al., 2015). In those
settings, contact can be well-recorded by built-in or attached sensors, which in contrast is impractical
or interferential for human-to-human touch. As individual difference indeed plays a role in social
emotion communication, this system could help bridge the gap by inspecting the differences from the
aspect of skin contact quantification.

5.2 Improved Skin-to-Skin Contact Measurement by 3D Visual Tracking

The measurement accuracy of this system was validated by several standard tracking techniques. As
shown in Figures 6-8, time-series recordings of contact attributes aligned well with the data collected
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from independent devices, i.e., contact velocities from an EM motion tracker, contact area from a
sensorized pressure mat, and indentation depth from a laser sensor. Those standard tracking methods
typically afford high accuracy or resolution of measurements but are specialized for limited types of
contact attributes. Therefore, when different attributes are needed at the same time, a complex
combination of multiple devices is usually required. In contrast, the proposed tracking system captures
most of those attributes simultaneously with a concise setup without calibration.

Moreover, the proposed 3D visual tracking system is compatible with wider applications as many
limitations of standard tracking methods were overcome or avoided. More specifically, compared with
the EM tracker, this system is free of electromagnetic interference and provides shape information
instead of tracking the position of only few points. Compared with infrared motion trackers like the
Leap Motion sensor, it covers a larger range of tracking and captures any 3D shapes in addition to
hands and several basic geometric shapes. The motion capture system is superior in tracking
movements but is expensive to set up and constrained by pre-attached markers. Sensorized pressure
mat and other force sensors always block the direct contact and might not be reliable in area
measurement due to spatial resolution constraints and the increasing zero drift over time (Figure 4B).
While the proposed tracking system is free of those issues mentioned above, limitations still exist. In
particular, the attribute of contact force and pressure are unavailable although they contribute to contact
interactions (Essick et al., 2010; Huang et al., 2020; Teyssier et al., 2020; Xu et al., 2020). Due to the
constraint of recording frequency, fast movements might fail in tracking since the hand image could
be blurred. Meanwhile, the forearm needs to be recorded parallel with the y-axis of the color image
coordinate. In so doing, the spatial hand velocity can be decomposed into the three orthogonal
directions without additional markers to define the arm coordinate.

5.3 Further Applications in Human-to-Human Touch Interaction

Human touch each other with different intentions and a wide range of emotional states. In the classic
theory of emotion, three dimensions of valence, arousal, and dominance, are typically employed for
emotion assessments (Russell and Mehrabian, 1977; Russell, 1980). Indeed, using machine-controlled
brush stimuli, the valence rating was reported to be tuned by the tangential stroking velocity (Loken et
al., 2009; Essick et al., 2010; Ackerley et al., 2014a, 2014b; Croy et al., 2021). In the scenario of
naturalistic human touch, our measurements could further facilitate the quantitative analysis regarding
other correlates between contact attributes and the three emotional dimensions.

From the perspective of neurophysiology, changes in the skin’s mechanics caused by physical
contact could elicit different responses of peripheral afferents (Johnson, 2001; Yao and Wang, 2019;
Xu et al., 2021a). For example, the firing frequency of C-tactile afferents is associated with the stroking
velocity in an inverted-U shape relationship (Loken et al., 2009; Ackerley et al., 2014a; Liljencrantz
and Olausson, 2014). Other AP afferents are suggested to support the identification of distinct
emotional messages delivered by touch (Hauser et al., 2019b). Moving forward into this direction,
measurements of naturalistic human contact can aid in uncovering how exactly afferents respond to
such contact and contribute to different emotional percepts.

Affective touch is also believed to impact physiological arousal such as blood pressure, heart rate,
respiration, ECG, EEG, and hormone level (Gallace and Spence, 2010; Sefidgar et al., 2016).
Especially for infants, touch delivered by caregivers contributes to their social, cognitive, and physical
development (Hertenstein, 2002; Van Puyvelde et al., 2019), where the underlying contact details
would be meaningful to quantify. Additionally, many physical therapies, such as massage, rely on
specific manipulation of the muscle and tissue of patients delivered by professional therapists. Those
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therapies create health benefits including relieving stress and pain, promoting blood circulation, and
boosting mental wellness (Moyer et al., 2004). While the underlying mechanism is waiting to be further
explored with the aid of physical skin contact tracking.
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Figure 1. 3D visual tracking setup and data workflow. The toucher’s hand and receiver’s forearm are
tracked using one depth camera (Microsoft Azure Kinect). Forearm shape is extracted as a point cloud
while the hand mesh is animated by the gestures and movements of the toucher’s hand.

Figure 2. Definition of contact attributes. (A) Color image from video recorded by depth camera. Two
color markers were placed on the toucher’s hand and the receiver’s forearm respectively to support
motion tracking. (B) 3D forearm point cloud and hand mesh. Short black line segments represent the
norm vector of arm points; red points on the forearm represent the region contacted by the hand. In the
arm coordinate, the vertical axis (blue) is designated along the vertical direction pointing right upward,
the longitudinal axis (green) is parallel with the arm direction from elbow to wrist, and the lateral
direction is perpendicular to the two axes pointing to the internal side of the forearm. (C) Six time-
series attributes include absolute velocity, which is the absolute value of spatial contact velocity; three
orthogonal velocity components corresponding to the three axes of the arm coordinate; contact area,
which is the overall area on the forearm being contact; and the indentation depth as the average depth
applied on the forearm by the hand.

Figure 3. Time-series recordings of each contact attribute across touch gestures and delivered
messages. Distinct contact patterns were captured by the spatiotemporal changes of those attributes.
The Contact variable represents the status of the being contacted or not. Vs denotes the absolute
contact velocity (cm/s), Vi, denotes the longitudinal velocity (cm/s), Vi denotes the lateral velocity
(cm/s), Vi denotes the vertical velocity (cm/s), Area denotes the contact area (cm?), and Depth denotes
the indentation depth (mm).

Figure 4. (A) Comparison of contact attributes across the four touch gestures. *p < 0.05, **p < 0.01,
*Hkp <0.001, ****p < 0.0001 were derived by paired-sample Mann—Whitney U tests. (B) Importance
of certain contact attributes in identifying each touch gesture using random forest classification.
Diamonds denote means; points denote importance values of 100 repetitions of classification.

Figure 5. Classification of touch gestures, delivered messages, and toucher individuals using the mean
value, all relevant features, and time-series data of contact attributes, respectively. The accuracy in
prediction of (A) touch gestures, (C) delivered messages, (E) toucher individual are shown, as well as
the importance of particular contact attributes in classifying (B) touch gestures, (D) delivered
messages, (F) toucher individual. Numbers and colors in confusion matrices represent the prediction
percentage. In the importance plots, the diamonds denote means; points denote importance values from
100 repetitions of classification.

Figure 6. Validation of contact velocity measurements using EM tracker. (A) Experimental setup. (B)
Five test gestures. (C)Velocity (cm/s) over time by the two tracking systems. For the first three test
gestures, one trial is shown per force level, i.e., low, medium, and high force. (D) Mean values of
velocities (cm/s) per test gesture. ****p < 0.0001 were derived by paired-sample Mann—Whitney U
tests. (E) Errors (cm/s) of measured velocities between the two systems for each test gesture.

Figure 7. Validation of contact area measurements using sensorized pressure mat. (A) Experimental
setup. (B) Contact area (cm?) over time by the two systems. For the first three test gestures are shown
one trial per force level, i.e., low, medium, and high force. (C) Mean values of contact area (cm?) per
test gesture. ****p < 0.0001 were derived by paired-sample Mann—Whitney U tests. (D) Differences
of measured contact area (cm?) between the two systems per test gesture. (E) Visualization of hand-
arm contact in top view (left) and bottom view (top right) with heatmaps of contact pressure tracked
by sensorized pressure mat across force levels (bottom right).
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Figure 8. Validation of indentation depth measurements using laser displacement sensor and
sensorized pressure mat. (A) Experimental setup with laser displacement sensor. (B) Indentation depth
(mm) over time by the either system. For the two test gestures shown is one trial per force level, i.e.,
low, medium, and high force. (C) Mean values of indentation depth per test gesture. ****p < (0.0001
were derived by paired-sample Mann—Whitney U tests across force levels. (D) Errors of measured
indentation depth between systems per force level. (E) Experimental setup with sensorized pressure
mat. (F) Indentation depth (mm) collected by the 3D visual tracking system overlaps with overall force
(N) collected by the sensorized pressure mat. Per test gesture, one trial per force level is shown i.e.,
low, medium, and high force. (G) Mean value of indentation depth per force level recorded by the 3D
visual tracking system. ****p < (0.0001 were derived by paired-sample Mann—Whitney U tests across
force levels.

Table 1. Available gestures for each cued emotional message in touch communication task

Cued Emotional Messages

Anger (Ag) Attention (At) Calm (C) Fear (F) Gratitude (G) Happiness (H) Sympathy (S)

Hit/Tap Tap Hold/Squeeze Squeeze/Hold Hold/Squeeze Shake Stroke
Gestures Squeeze/Hold Shake Stroke Shake Shake Tap Tap

Shake Squeeze/Hold Tap Tap Tap Stroke Squeeze/Hold

Table 2. Experiment procedure for validating contact velocity

Test Gesture  Moving Direction Velocity Levels Repeated Trials per Level Trials in Total
1 Stroking Longitudinal Low, Medium, High 3 9
2 Stroking Lateral Low, Medium, High 3 9
3 Tapping Vertical Low, Medium, High 3 9
4 Holding None None 1 1 (long duration)
5 Shaking Irregular Irregular 1 1 (long duration)
Table 3. Experiment procedure for validating contact area

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9
4 Shaking Irregular 1 1 (long duration)

Table 4. Experiment procedure for validating indentation depth
Validation with Laser Sensor

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Multiple-finger tapping Low, Medium, High 3 (4 taps per trial) 9
2 Palm tapping Low, Medium, High 3 (4 taps per trial) 9

Validation with Pressure Mat

Test Gesture Force Levels Repeated Trials per Level Trials in Total
1 Single-finger pressing Low, Medium, High 3 9
2 Multiple-finger pressing Low, Medium, High 3 9
3 Holding Low, Medium, High 3 9
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