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We present first results on selected twist-3 quark GPDs using the quasi-distribution method. This
approach relates lattice QCD data and light-cone distribution functions using Large Momentum
Effective Theory (LaMET). We calculate quark-antiquark correlators of boosted nucleons coupled
to non-local operators with vector and axial Dirac structure, which is transverse to the momentum
boost. We use three values of the momentum boost, namely 0.83, 1.25, 1.67 GeV. The GPDs
are defined in the symmetric (Breit frame), which we implement here with 4-vector momentum
transfer squared of 0, 0.69 and 1.39 GeV2, all at zero skewness. The calculation is performed
using one ensemble of two degenerate light, a strange and a charm quark (𝑁 𝑓 = 2 + 1 + 1) of
maximally twisted mass fermions with a clover term, corresponding to a pion mass of 260 MeV.
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1. Introduction

One of the key determinants in proton structure are distribution functions of its partonic
content, which are extensively studied experimentally worldwide in major laboratories, such as JLab,
BNL, Fermilab, DESY, SLAC, CERN, PSI, J-PARC, and MAMI. The key quantities for mapping
the proton structure are parton distribution functions (PDFs), generalized parton distributions
(GPDs), and transverse-momentum-dependent distributions (TMD PDFs). These are inferred from
experimental data from high-energy scattering processes, which is possible due to the asymptotic
freedom of the strong coupling. In particular, asymptotic freedom enables the use of a QCD
factorization formalism to isolate the universal non-perturbative component of the process, namely
the PDFs, GPDs, and TMDs. Furthermore, these distribution functions are classified based on
their twist, which indicates the order at which they appear in the expansion in terms of the large
energy, 𝑄, of the physical process. At leading twist (twist-2), they have probabilistic interpretation,
which does not hold for the higher-twist parton distributions. The twist-2 contributions have been
extensively studied, while very little is known about the twist-3 contributions. However, twist-3
contributions are not negligible for the energy scales explored experimentally; in fact, they are
assumed to be sizable, which we address in this work. Twist-3 GPDs are also interesting in their
own right. For instance, the twist-3 GPDs that we present here are necessary for proton tomography
and for exploring the spin-orbit correlations in the proton[1]. This means that one must know
the twist-3 GPDs in order to reliably extract the twist-2 contributions. Knowledge of the twist-3
GPDs can be used to estimate the power corrections in hard exclusive processes, such as DVCS.
Despite their importance, higher-twist distributions can be difficult to determine experimentally,
since it is challenging to isolate them from the leading-twist contributions. All the above consist
an important motivation to undertake calculations of twist-3 GPDs from lattice QCD, which, while
very challenging, are very promising in providing information on these quantities.

2. 𝑥-dependent GPDs from lattice QCD

The light-cone nature of PDFs, GPDs, and TMDs makes them directly inaccessible from
lattice QCD that is based on a Euclidean metric. However, the development of approaches other
than Mellin moments has led to a successful research program to obtain the 𝑥-dependence of
distribution functions from lattice QCD. A widely used approach is based on calculations of matrix
elements of non-local operators and boosted protons, the so-called quasi-distributions method.
Such matrix elements are then related to the light-cone distributions via Large-Momentum Effective
Theory (LaMET) [2]. Extensive reviews of the various approaches to get 𝑥-dependent distribution
functions can be found in Refs. [3–6].

Here, we implement the quasi-distribution method to obtain information on twist-3 GPDs.
There are several computational challenges associated with this calculation, mainly due to the use
of matrix elements of boosted proton states and non-local operators at off-forward kinematics. First,
due to the momentum transfer, there are increased statistical uncertainties compared to the PDFs
case. Second, since the GPDs are defined in the Breit frame, each value of momentum transfer
requires a separate calculation. Third, as we shall see, there is a need for as many independent
matrix elements as there are GPDs, so that we can disentangle them. Last but not least, the matching
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kernel is more complicated for the case of nonzero skewness. In fact, the perturbative formalism
breaks down around 𝑥 = |𝜉 | due to severe higher-twist contributions. Even at 𝜉 = 0, a proper
matching formalism for the twist-3 GPDs is much more complicated than for twist-2 GPDs due to
the presence of zero modes, as well as mixing with quark-gluon-quark correlators. In this work, we
neglect such a mixing. Furthermore, the matching kernel for the twist-3 vector GPDs is not known,
and in this preliminary work we only present results for the vector matrix elements. For the twist-3
axial GPDs, we use the matching obtained for twist-3 PDFs. Similar to the case of twist-2 GPDs,
it is anticipated that the matching of twist-3 GPDs at 𝜉 = 0 is the same as for twist-3 PDFs. For the
twist-3 GPDs under study, we construct the matrix elements

ℎO (Γ𝜅 , 𝑧, 𝑃 𝑓 , 𝑃𝑖 , 𝜇) = 𝑍O (𝑧, 𝜇) ⟨𝑁 (𝑃 𝑓 ) | 𝜓(𝑧) OW(𝑧, 0)𝜓(0) |𝑁 ( 𝑓 )⟩ , (1)

where, as in the twist-2 case, the Wilson line is in the same direction as the boost, which is chosen to
be the 𝑧-direction. Γ𝜅 is the parity projector with 𝜅 = 0 representing the unpolarized and 𝜅 = 1, 2, 3
the polarized projector. The operator O corresponding to the twist-3 contributions are 𝛾 𝑗 and 𝛾5 𝛾 𝑗 ,
both with 𝑗 = 1, 2. GPDs require Pf − Pi = 𝚫 ≠ 0, and are defined in the Breit frame, in which
P 𝑓 = P + 𝚫

2 and P𝑖 = P − 𝚫
2 , where P = (0, 0, 𝑃3) is the proton momentum boost. Note that GPDs

depend on the 4-vector momentum transfer squared, 𝑡, and not on the individual nucleon momenta,
while the matrix elements depend on the source and sink momenta. Another important variable of
GPDs is the skewness 𝜉, which is related to the momentum transfer in the direction of the boost.
On the lattice, we define the quasi-skewness, 𝜉 = − Δ3

2𝑃3
, and in our calculation we focus on 𝜉 = 0.

The matrix elements of Eq. (1) are renormalized non-perturbatively in the RI’ scheme and are
converted to the modified MS (MMS) scheme and evolved to a scale of 2 GeV. These renormalized
matrix elements decompose into four GPDs for the vector (𝐺1, 𝐺2, 𝐺3, 𝐺4) and four for the axial
(𝐺1, 𝐺2, 𝐺3, 𝐺4) case. Therefore, one needs four independent matrix elements to disentangle
them. These are obtained from all non-vanishing combinations of the Dirac indices ( 𝑗 = 1, 2) and
parity projectors (𝜅 = 0, 1, 2, 3). This decomposition is applied at each value of 𝑧 separately, and
the relevant expressions are [7]

ℎ𝛾 𝑗 = ⟨⟨
𝑔
𝑗𝜌
⊥ Δ𝜌

2𝑚
⟩⟩[𝐹𝐸+𝐹𝐺1] + ⟨⟨𝑔 𝑗𝜌

⊥ 𝛾𝜌⟩⟩[𝐹𝐻+𝐹𝐺2] + ⟨⟨
𝑔
𝑗𝜌
⊥ Δ𝜌𝛾

+

𝑃+ ⟩⟩𝐹𝐺3 + ⟨⟨
𝑖𝜖

𝑗𝜌
⊥ Δ𝜌𝛾

+𝛾5

𝑃+ ⟩⟩𝐹𝐺4 , (2)

ℎ𝛾 𝑗𝛾5 = ⟨⟨
𝑔
𝑗𝜌
⊥ Δ𝜌𝛾5

2𝑚
⟩⟩[𝐹

𝐸
+ 𝐹

𝐺1
] + ⟨⟨𝑔 𝑗𝜌

⊥ 𝛾𝜌𝛾5⟩⟩[𝐹𝐻
+ 𝐹

𝐺2
] + ⟨⟨

𝑔
𝑗𝜌
⊥ Δ𝜌𝛾

+𝛾5

𝑃+ ⟩⟩𝐹
𝐺3

+ ⟨⟨
𝑖𝜖

𝑗𝜌
⊥ Δ𝜌𝛾

+

𝑃+ ⟩⟩𝐹
𝐺4

, (3)

where ⟨⟨Γ⟩⟩ ≡ �̄�𝑁 (𝑃 𝑓 , 𝑠
′) Γ 𝑢𝑁 (𝑃𝑖 , 𝑠) with 𝑢𝑁 the proton spinors. For simplicity, we omit the

arguments of the matrix elements, that is ℎO ≡ ℎO (Γ𝜅 , 𝑧, 𝑃 𝑓 , 𝑃𝑖 , 𝜇), and 𝐹𝑋 ≡ 𝐹𝑋 (𝑧, 𝜉, 𝑡, 𝑃3, 𝜇).
𝐹𝐻 , 𝐹𝐸 , 𝐹

𝐻
, and 𝐹

𝐸
are twist-2 contributions, while 𝐹

𝐺𝑖
are the twist-3 contributions. Based on

the above decomposition, the forward limit of [𝐹
𝐻
+ 𝐹

𝐺2
] is the twist-3 PDF 𝑔𝑇 . It should be noted

that the forward limit of the vector case is zero.
The functions 𝐹𝑋 are defined in coordinate space and one must Fourier-transform them to

momentum space, 𝑥,

𝑞𝐺𝑋 (𝑥, 𝜉, 𝑡, 𝑃3, 𝜇) =
∫

𝑑𝑧

4𝜋
𝑒−𝑖𝑥𝑃3𝑧𝐹𝑋 (𝑧, 𝜉, 𝑡, 𝑃3, 𝜇) . (4)

With the values of 𝑧 being limited up to half of the spatial extent of the lattice, the reconstruction
of the 𝑥-dependence is an ill-posed inverse problem that does not have a unique solution. To

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
5
4

First Lattice QCD Study of Proton Twist-3 GPDs J. Dodson

avoid imposing assumptions like 𝐹𝑋 being zero beyond some 𝑧max, we use the model-independent
Backus-Gilbert reconstruction method. More details on the implementation can be found in [8, 9].
The last step of the calculation is to match the quasi-GPDs, 𝑞𝐺𝑋, to the light-cone GPDs, 𝐺𝑋, via
a kernel calculated in perturbation theory,

𝑞𝐺𝑋 (𝑥, 𝜉, 𝑡, 𝑃3, 𝜇) =
∫ 1

−1

𝑑𝑦

|𝑦 |𝐶𝑋

(
𝑥

𝑦
,
𝜉

𝑦
,

𝜇

𝑦𝑃3
, 𝑟

)
𝐺𝑋 (𝑦, 𝜉, 𝑡, 𝜇) + O

(
𝑚2

𝑃2
3
,
𝑡

𝑃2
3
,
Λ𝑄𝐶𝐷2

𝑥2𝑃2
3

)
. (5)

For the matching kernel,𝐶𝑋, we use the one-loop expression from Ref. [10] for the axial GPDs. The
formula we use connects the quasi-distributions in the MMS scheme to the light-cone distributions
in the standard MS scheme. The renormalization scale is chosen to be 2 GeV for both quantities.
The corresponding kernel for the vector case is not known yet, and therefore, we do not have results
on the light-cone 𝐺1, 𝐺2, 𝐺3, and 𝐺4 GPDs.

3. Lattice calculation

The workflow of this calculation follows the procedure used for the unpolarized, helicity and
transversity GPDs [9, 11]. We start by constructing the two-point and three-point functions for the
nucleon,

𝐶2𝑝𝑡 (P, 𝑡𝑠, 0) = Γ0𝛼𝛽
∑︁

x
𝑒−𝑖P·x ⟨0| 𝑁𝛼 (x, 𝑡𝑠)𝑁𝛽 (0, 0) |0⟩ , (6)

𝐶
3𝑝𝑡
Γ𝜈

(Pf ,Pi, 𝑡𝑠, 𝜏, 0) = Γ𝜈𝛼𝛽

∑︁
x,y

𝑒−𝑖 (Pf−Pi) ·y𝑒−𝑖Pf ·x ⟨0| 𝑁𝛼 (x, 𝑡𝑠)O𝛾𝑖𝛾5 (y, 𝜏; 𝑧)𝑁𝛽 (0, 0) |0⟩ . (7)

Here, 𝑁𝛼, 𝑁𝛽 are the interpolating fields for the proton, 𝜏 is the current insertion time, and 𝑡𝑠 is
the time separation between the source and the sink (the source is taken at 𝑡 = 0). Γ0 =

1+𝛾4
2 is the

parity plus projector and Γ𝜅 is either Γ0 or Γ 𝑗 =
1
4 (1 + 𝛾0)𝑖𝛾5𝛾 𝑗 .

We calculate connected contributions to the three-point functions, as we focus on the 𝑢 − 𝑑

isovector flavor combination, for which the disconnected component is zero. The connected diagram
is shown in Fig. 1.

N(x, t) N(0, 0)

W

1

Figure 1: Pictorial representation of the connected contribu-
tions to the three-point functions. The initial and final states
with the quantum numbers of the nucleon are indicated by
𝑁 (0, 0) and 𝑁 (x, 𝑡), respectively. The red curly line indicates
the Wilson line, 𝑊 , of the non-local operator.

Since there is a non-zero momentum transfer between the initial and final states, one has to
cancel the time dependence of the exponentials as well as the overlap from the interpolating fields.
To this end, we build the following ratio

𝑅O (Γ𝜅 , 𝑃 𝑓 , 𝑃𝑖; 𝑡𝑠, 𝜏) =
𝐶

3pt
O (Γ𝜅 , 𝑃 𝑓 , 𝑃𝑖; 𝑡𝑠, 𝜏)
𝐶2pt(Γ0, 𝑃 𝑓 ; 𝑡𝑠)

√︄
𝐶2pt(Γ0, 𝑃𝑖 , 𝑡𝑠 − 𝜏)𝐶2pt(Γ0, 𝑃 𝑓 , 𝜏)𝐶2pt(Γ0, 𝑃 𝑓 , 𝑡𝑠)
𝐶2pt(Γ0, 𝑃 𝑓 , 𝑡𝑠 − 𝜏)𝐶2pt(Γ0, 𝑃𝑖 , 𝜏)𝐶2pt(Γ0, 𝑃𝑖 , 𝑡𝑠)

.

(8)
Ground-state dominance is achieved as 𝑡𝑠 increases, with the ratio 𝑅O becoming constant. We
extract the ground-state matrix elements by taking a plateau fit in a region of convergence, which
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we indicate by Π(O, Γ𝜅 ). For simplicity, the dependence on 𝑧, 𝑃 𝑓 , 𝑃𝑖 and the renormalization scale
𝜇 is implied.

Our calculations are performed on an 𝑁 𝑓 = 2 + 1 + 1 ensemble [12] of maximally twisted
mass fermions, with pion mass 𝑀𝜋 = 260 MeV, lattice spacing 𝑎 ≃ 0.093 fm and volume
𝑉 = 323 × 64. We produce data for ℎ𝛾1 , ℎ𝛾2 , ℎ𝛾1𝛾5 and ℎ𝛾2𝛾5 , for a class of momenta of
the form 𝚫 = (±𝑞, 0, 0), 𝚫 = (0,±𝑞, 0), and 𝚫 = (±𝑞,±𝑞, 0). The nucleon boost is nonzero along
the 𝑧-direction, P = (0, 0,±𝑃3). This leads to a factor of eight more statistics. The parameters of
the calculation and the number of measurements is given in Table 1. The source-sink time separa-
tion is chosen as 𝑡𝑠 = 10𝑎, due to the increased statistical uncertainties in the twist-3 contributions
compared to the twist-2 case.

𝑃3 [ GeV ] 𝑞 [ 2𝜋
𝐿
] −𝑡 [ GeV2 ] 𝑁confs 𝑁src 𝑁total

±0.83 (±2, 0, 0) 0.69 67 8 4288
±1.25 (±2, 0, 0) 0.69 67 8 4288
±1.25 (±2,±2, 0) 1.39 198 8 12672
±1.67 (±2, 0, 0) 0.69 219 32 56064

Table 1: Statistics used in this calculation (𝜉 = 0). 𝑁confs, 𝑁src and 𝑁total is the number of configurations,
source positions per configuration and total statistics (including a factor of 8), respectively.

4. Results

Let us begin our discussion with the bare matrix elements for the ground state, as extracted
from the plateau fit. First, we give an example of the independent matrix elements that can be
used to disentangle the GPDs, based on the trace algebra of Eqs. (2) - (3). For the kinematic setup
𝑄 = (𝑞, 0, 0), each one of the vector matrix elements contributes to the following GPDs: Π(𝛾1, Γ0):
𝐸 +𝐺1 and 𝐺3; Π(𝛾1, Γ2): 𝐸 +𝐺1 and 𝐺3; Π(𝛾2, Γ3): 𝐻 +𝐺2 and 𝐺4. As can be seen, the standard
unpolarized and polarized projectors are not sufficient to isolate 𝐻 + 𝐺2. We are now exploring an
alternative setup. For the axial case, we have the following contributions. Π(𝛾2𝛾5, Γ0): 𝐻 + 𝐺2

and 𝐺4; Π(𝛾2𝛾5, Γ2): 𝐻 + 𝐺2 and 𝐺4; Π(𝛾1𝛾5, Γ1): 𝐻 + 𝐺2 and 𝐸 + 𝐺1; Π(𝛾1𝛾5, Γ3): 𝐺3.
In Fig. 2, we plot the four independent matrix elements contributing to the axial twist-3 GPDs

for 𝑡 = −0.69 GeV2 and 𝑃3 = 1.25 GeV. We have already averaged the eight combinations that lead
to the same equation. When combining such matrix elements, we apply a weighted average. We use
this momentum for demonstration purposes, because the small uncertainties allow one to comment
on the differences in the matrix elements. We find a very good signal for the axial case, and observe
that Π(𝛾2𝛾5, Γ2) is dominant in magnitude. Π(𝛾1𝛾5, Γ3) is suppressed and compatible with zero.
This remains true for higher values of the momentum boost. This impacts directly the extraction of
𝐺3, as the particular matrix element is proportional to 𝐹

𝐺3
. The matrix elements Π(𝛾1𝛾5, Γ1) and

Π(𝛾2𝛾5, Γ0) are of similar magnitude. Results on the vector matrix elements are shown in Fig. 3
for the three matrix elements that contribute for (±𝑞, 0, 0) and (0,±𝑞, 0), after averaging over all
eight combinations. We find that Π(𝛾2, Γ3) gives a sizeable signal, while the other two matrix
elements are compatible with zero. However, for the vector case, further investigation is required
before being able to disentangle the vector GPDs.
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Figure 2: Matrix elements contributing to the twist-3 axial GPDs for 𝑃3 = 1.25 GeV, 𝑡 = −0.69 GeV2

and 𝜉 = 0. The blue, red, orange, and green points correspond to Π(𝛾2𝛾5, Γ0), Π(𝛾1𝛾5, Γ1), Π(𝛾2𝛾5, Γ2),
Π(𝛾1𝛾5, Γ3).
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Figure 3: Matrix elements contributing to the twist-3 vector GPDs for 𝑃3 = 1.25 GeV, 𝑡 = −0.69 GeV2 and
𝜉 = 0. The red, orange and blue points correspond to Π(𝛾1, Γ0), Π(𝛾1, Γ2), Π(𝛾2, Γ3).

It is also interesting to see the decomposed functions 𝐹𝑋 for 𝑋 = 𝐻 + 𝐺2, 𝐸 + 𝐺1, 𝐺3, 𝐺4,
in particular their dependence on the momentum boost and momentum transfer. Representative
results are shown in Fig. 4. As expected, the contribution from 𝐸 + 𝐺1 has the largest magnitude,
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Figure 4: Decomposed 𝐹𝑋 for the axial GPDs, at {𝜉 = 0,−𝑡 = 0.69 GeV2}. The nucleon boost is
𝑃3 = 1.25 GeV. The blue, orange, red, and purple points correspond to 𝐻+𝐺2, 𝐸+𝐺1, 𝐺3, 𝐺4, respectively.

followed by 𝐻 +𝐺2. This is in accordance with the findings of the twist-2 case [8], as well as of the
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usual axial form factors [13]. The values for 𝐺3 are found to be exactly zero, and 𝐺4 has a zero real
part for 𝑧 ≤ 6𝑎. We note that the integrals

∫
𝑑𝑥𝐺𝑖 = 0 (𝑖 = 1, 2, 3, 4) [14], which might explain why

𝐺4 which appears on its own in the decomposition, is very small. In addition,
∫
𝑑𝑥𝑥𝐺3 =

𝜉

4 𝐺𝐸 (𝑡),
which is zero in our calculation (𝜉 = 0).

For the axial case, we reconstruct the 𝑥-dependence from the decomposed matrix elements and
apply the matching kernel to obtain the light-cone GPDs as a function of 𝑥. We remind the reader
that we use the results of Ref. [10], which correspond to the 𝑔𝑇 PDF. Since we only obtain the
GPDs at zero skewness, it is anticipated that the matching formalism is the same as for PDFs [15].
Here, we focus on the 𝐻 +𝐺2 and 𝐸 +𝐺1 GPDs, for which a signal is found. Their 𝑃3-dependence
is shown in Fig. 5 for the two highest momenta. We find that the GPDs are very close to each
other, with a marginal agreement in the small-𝑥 region. Note that the bands correspond to statistical
uncertainties only. An investigation of various systematic effects is required before reaching any
conclusions. We emphasize that, presently, lattice QCD calculations are not reliable in extracting
the small 𝑥 region (𝑥 ≤ 0.1 − 0.15), nor the antiquark region.
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Figure 5: Momentum dependence of 𝐻 + 𝐺2 (left) and 𝐸 + 𝐺1 (right) for {𝜉 = 0,−𝑡 = 0.69 GeV2}. The
orange and green bands correspond to 𝑃3 = 1.25 GeV and 𝑃3 = 1.67 GeV, respectively, and indicate only
statistical uncertainties.

Finally, in Fig. 6 we compare the twist-3 GPDs at two different values of 𝑡 with their twist-2
counterparts calculated in Ref. [8]. For the case of 𝐻 + 𝐺2 we also compare with their forward
limit, 𝑔𝑇 , which we calculated in a separate work [16]. The setup corresponds to 𝑃3 = 1.25 GeV
and 𝜉 = 0. We can note that 𝑔𝑇 (𝑥) is the dominant distribution in magnitude, while 𝐻 + 𝐺2 is
similar in magnitude to 𝐻 at 𝑡 = −0.69 GeV2. Our preliminary results show mild dependence on 𝑡

for both 𝐻 + 𝐺2 and 𝐸 + 𝐺1.

5. Future work

We have presented preliminary results on the axial twist-3 GPDs 𝐻 +𝐺2, 𝐸 +𝐺1, 𝐺3, 𝐺4, for
three values of 𝑃3 and two values of the momentum transfer, that is −𝑡 = 0.69, 1.39 GeV2. We
also showed very preliminary results for the vector matrix elements, that can potentially lead to the
extraction of 𝐻 +𝐺2, 𝐸 +𝐺1, 𝐺3, 𝐺4. We find that the signal is reasonable, and for the axial case,
we can disentangle the four GPDs. We note that the noise-to-signal ratio is increased for the matrix
elements of twist-3 compared to the twist-2 counterparts.
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Figure 6: Left: 𝐻 +𝐺2 at {𝜉 = 0,−𝑡 = 0.69 GeV2} (orange), {𝜉 = 0,−𝑡 = 1.39 GeV2} (purple) together with
the twist-2 𝐻 at {𝜉 = 0,−𝑡 = 0.69 GeV2} (red), and 𝑔𝑇 (blue). Right: 𝐸 + 𝐺1 at {𝜉 = 0,−𝑡 = 0.69 GeV2}
(orange) and {𝜉 = 0,−𝑡 = 1.39 GeV 2} (purple). The momentum boost for all data is 𝑃3 = 1.25 GeV. The
bands correspond to statistical uncertainties.

In the near future, we will increase statistics for the current values of 𝑃3. We will also include
more values of 𝑡, once the matching formalism is available for 𝜉 ≠ 0. Another direction is to study
ensembles with larger volume, so we can have a more dense range of 𝑡. Further, we will continue
our study for the vector twist-3 GPDs, and also analyze data for the tensor twist-3 case.
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