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We consider the supermarket model in the usual Markovian setting where
jobs arrive at rate ni, for some A, > 0, with n parallel servers each pro-
cessing jobs in its queue at rate 1. An arriving job joins the shortest among
dy < n randomly selected service queues. We show that when d;, — oo
and A, — A € (0, 00), under natural conditions on the initial queues, the
state occupancy process converges in probability, in a suitable path space,
to the unique solution of an infinite system of constrained ordinary differen-
tial equations parametrized by A. Our main interest is in the study of fluc-
tuations of the state process about its near equilibrium state in the critical
regime, namely when %, — 1. Previous papers, for example, (Stoch. Syst.

8 (2018) 265-292) have considered the regime ﬁ‘i’(') o — oo while the ob-

jective of the current work is to develop diffusion approximations for the
state occupancy process that allow for all possible rates of growth of d,.
In particular, we consider the three canonical regimes (a) d,//n — 0; (b)
dy [/ — ¢ € (0,00) and, (¢) dy//n — o0. In all three regimes, we show,
by establishing suitable functional limit theorems, that (under conditions on
An) fluctuations of the state process about its near equilibrium are of order
n~1/2 and are governed asymptotically by a one-dimensional Brownian mo-
tion. The forms of the limit processes in the three regimes are quite different;
in the first case, we get a linear diffusion; in the second case, we get a dif-
fusion with an exponential drift; and in the third case we obtain a reflected
diffusion in a half space. In the special case dj,/(y/nlogn) — oo, our work
gives alternative proofs for the universality results established in (Stoch. Syst.
8 (2018) 265-292).
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1. Introduction. In this work, we study the asymptotic behavior of a family of random-
ized load balancing schemes for many server systems. Consider a processing system with n
parallel queues in which each queue’s jobs are processed by the associated server at rate 1.
Jobs arrive at rate nA,; and join the shortest queue among d,, randomly selected queues (with-
out replacement), with d, € [n] = {1, ..., n}. The interarrival times and service times are
mutually independent exponential random variables. This queuing system with the above
described “join-the-shortest-queue amongst chosen queues” discipline is often denoted as
JSQ(d,) and frequently referred to as the supermarket model (cf. [14, 23-25, 27, 31] and
references therein). Note that when d,, = n the above description corresponds to a policy
where an incoming job joins the shortest of all queues in the system (see, e.g., [9]). The case
d, = 1 is the other extreme corresponding to incoming jobs joining a randomly chosen queue
in which case the system is equivalent to one with n independent M /M /1 queues with arrival
rate A, and service rate 1. The case d, = d where d > 1 is a fixed positive integer is some-
times also referred to as the power-of-d scheme. The analysis of JSQ(d,,) schemes has been a
focus of much recent research motivated by problems from large scale service centers, cloud
computing platforms and data storage and retrieval systems (see, e.g., [1, 3, 8, 15, 26, 32, 33,
35]). The influential works of Mitzenmacher [29, 30] and Vvedenskaya et al. [36] showed by
considering a fluid scaling that increasing d from 1 to 2 leads to significant improvement in
performance in terms of steady-state queue length distributions in that the tails of the asymp-
totic steady-state distributions decay exponentially when d = 1 and superexponentially when
d = 2. Limit theorems under a diffusion scaling for the JSQ(d) system, with a fixed d, can be
found in [7, 10]. Although JSQ(d) for a fixed d > 2 leads to significant improvements over
JSQ(1), as observed in [12, 13], no fixed value of d provides the optimal waiting time proper-
ties of the join-the-shortest-queue system (i.e., JSQ(n)). See the survey [35] for an overview
of the progress in this general area. This motivates the study of asymptotic behavior of a
JSQ(d) system in which the number of choices d increase with system size, namely n. Such
an asymptotic study is the goal of this work.

The paper [31] studied the law of large numbers (LLN) behavior of a JSQ(d,,) system,
under a standard scaling, when d,, — oo. The precise result of [31] is as follows. For i €
No=1{0,1,2,...} and ¢ € [0, 00), let G, ;(t) denote the fraction of queues with at least i
customers at time ¢ in the nth system. Note that G, o(t) =1 for all # > 0. We will call
G, (t) ={G, i(t) : i > 0} the state occupancy process. This process has sample paths in the
space of summable nonnegative sequences. More precisely, for p > 1, let £, be the space of
real sequences x = (x1, x2, ...) such that || x|, = .72, Ixi|P)V/P < 0o. Let

(1.1) ¢f ={x ety :x;>x andx; €[0, 1] forall i € N}

be the space of nonincreasing sequences in £; with values in [0, 1], equipped with the topol-
ogy generated by | - ||;. Note that Ef is a closed subset of £, and hence is a Polish space.
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Then, whenever ||G,(0)]|; < oo a.s., it can be shown that {G,(¢) : + > 0} is a stochastic
process with sample paths in D([0, co) : Zf) (the space of right-continuous functions with

left limits from [0, co) to Ef equipped with the usual Skorohod topology); see Section 3.
The paper [31] shows the following two facts under the assumption that G, (0) converges in

e L.
probability to some r € £7:

(a) When d,, =n and A,, — A € (0, 20), G, is a tight sequence in ([0, c0) : Zli) and
every weak limit point satisfies a certain set of “fluid limit equations” (see [31], Theorem 5,
and equations (2.4)—(2.5) in the current work);

(b) When d,, is an arbitrary sequence growing to oo and A, — A € (0, 1), then the state-
ments in (a) hold once more for G,,.

The current work begins by revisiting the above LLN results from [31]. In Theorem 2.1 of
this work, we show that, when G, (0) converges in probability to r, for arbitrary sequences

d, — oo and A, — X € (0, 00), G, converges in probability in D([0, co) : Ef) to a contin-
uous trajectory g in E% that is characterized as the unique solution of an infinite system of

constrained ordinary differential equations (ODE) (see (2.2) in Proposition 2.1). Using stan-
dard properties of the Skorohod reflection map, we observe in Remark 2.3 that a continuous

trajectory in Ef solves the fluid limit equations of [31] if and only if it solves (2.2). This to-
gether with Proposition 2.1 proves that the fluid limit equations in [31] in fact have a unique
solution. In this manner, we complete and strengthen the result from [31]. Our proof of the
LLN result is quite different from the arguments in [31]. The latter are based on sophisti-
cated ideas of separation of time scales and weak convergence of measure valued processes
from [16] to handle the convergence for d;, = n, and certain coupling techniques to treat the
general case when d,, < n and d,, — oo. In contrast, our approach is more direct and uses
martingale estimates and well-known characterization properties of solutions of Skorohod
problems (see, e.g., proof of Lemma 4.7).

Our main goal in this work is to study diffusion approximations for G, in the heavy traffic
regime, namely when A, — 1. In the case when d,, = n (JSQ(n) system), this problem has
been studied in [9]. Their basic result is as follows. Suppose d, = n and /n(1—21,) = B > 0.
Consider the unit vector e; = (1,0, ...) in £;. Then under conditions on G, (0), the process
Y, () = /n(G,(-) — e1) converges in distribution in D([0, 00) : £;) to a continuous stochas-
tic process Y = (Y1, Y2, ...), described in terms of a one-dimensional Brownian motion, for
which Y; =0 for i > r for some r € N (which depends on the conditions assumed on G, (0)).
Specifically, when r = 2, the pair Yy, Y» is given as a two-dimensional diffusion in the half-
space (—o0, 0] x R with oblique reflection in the direction (—1, 1)" at the boundary {0} x R.
(For the form of the limit in the general case, see Corollary 2.7). In [31] this result is extended
to the case where d,, < n and flog — 00. Under the same assumptions on the initial con-

dition as in [9], it is shown in [31] that Y, converges to the same limit process as for the
case d,, = n. The proof, as for the LLN result, proceeded by constructing a su1table couphng
between a JSQ(d,,) and JSQ(n) system. The paper [31] also argued that when fl oan — 0,

the process Y, cannot be tight, and thus in this regime the above diffusion approximation
cannot hold.

Our objective in this work is to develop diffusion approximations for G, in the critical
regime (i.e., when A, — 1 in a suitable manner) that allow for possibly a slower growth of d,,
than that permitted by the results in [31]. In fact, in contrast to [9, 31], we will prove diffusion
limits when d,, — oo in an arbitrary manner for choices of A, — 1 constrained by the exact
growth rate of d,,. See Table 1 for an overview of the regimes of (1,, d,,) that we cover, along
with those covered by previous work. In the special case that \/_“{Og — 00, we will recover

the results of [31] with a different proof. In order to motivate the type of limit theorems we
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seek, we begin by observing that the centering e used in the definition of Y, is a stationary
point of the fluid limit given in (2.2) with A = 1, and thus the results of [9] and [31] give
information on fluctuations of the state process G, about this stationary point. However, e
is not the only stationary point of (2.2) (when A = 1) and in fact this ODE has uncountably
many fixed points given by f}; = ZIJ‘-ZI ej+yve1=(,...,1,,0,0,..) € K% for k e N
and y € [0, 1), where e; is the jth unit vector in £, (with 1 at the jth coordinate and zeroes
elsewhere). All of these stationary points arise in a natural fashion. Indeed, it turns out that
the evolution of the state process G, can be described via the equation (see Remark 3.1)

t
G, (1) = G,(0) +[) [an(Gn(s)) - b(Gn(S))]dS +M, (),

where M, is a (infinite dimensional) martingale converging to zero in probability (see
Lemma 4.1) and a,, b are certain maps from E% to £1 (see Remark 3.1 for details). Thus
for large n, trajectories of G, will be close to solutions of the infinite dimensional ODE

g,=a,(g,) —b(g,,

where g, denotes the derivative of g,,. This equation has a unique stationary point ,,, which
is introduced in Definition 2. The fixed point u,, corresponds to the point in the state space
@f at which the inflow rate equals the outflow rate in the nth system, and thus it is of interest
to explore system behavior in the neighborhood of this point. Since G,, is approximated by
g, (over any compact time interval), one can loosely interpret i, as a near fixed point of the
state process G,. Furthermore, it can be shown (see Remark 2.5(iv)) that, if d, — oo and
An — 1 in a suitable manner, g, can converge to any specified fixed point f Z of (2.2), and
thus every fixed point of (2.2) arises from u,, in a suitable asymptotic regime. In order to
explore fluctuations of G, close to different fixed points of (2.2), it is then natural to study
the asymptotic behavior of

(1.2) Z,(t) = V1(Gu (D) — ). 120,

We note that in the regime considered in [31] where d 5 o and J/n(l—=2x,) = a >0,

J/nlogn

J/n(ey — w,) — ae; and so in this case the asymptotic behavior of Z,, can be read off from
that of Y, (see Corollary 2.7 and Remark 2.8(v)). However, in general \/n(e; — u,,) (and
more generally, /n(f Z — 1,,)) may not be bounded and so the asymptotic behavior of Z,
and Y, may be very different.

In this work, we obtain limit theorems for Z,, as d,, — oo in an arbitrary fashion and 1, —
1 in a suitable manner. Specifically, in Theorems 2.2, 2.3 and 2.4 we consider the three cases:
(@) dy//n — 0, (b) dy//n — c € (0,00) and (c) d,/+/n — 00, respectively. In all three
regimes, we consider initial conditions G, (0) such that for some r € N, /n(G,;(0) — pn, ;)
converge to zero in probability for all j > r and in each case (under conditions on A;), we
obtain a limit process driven by a one-dimensional Brownian motion with continuous sample
paths in £,, which has all but finitely many coordinates 0. In particular, when r = 2 in the
second and the third case and r = k + 2 for some k € N in the first case (and d,, A,, depend
on k in a suitable fashion), one can describe the limit through a two-dimensional diffusion
driven by a one-dimensional Brownian motion. The form of this two-dimensional process in
the three regimes is quite different; in the first case, we get a linear diffusion (i.e., the drift is
of the form b(y) = Ay for, y € R? and some 2 x 2 matrix A); in the second case, we get a
diffusion with an exponential drift, and in the third case we obtain a reflected diffusion in the
half space (—o0, o] x R for some « > 0.

Although the limit processes in Theorems 2.2 and 2.3 are quite different from those ob-
tained in [10] and [31], the limit in Theorem 2.4 has a similar form (in that it is a reflected
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diffusion in a half-space) as in the above papers. However here as well there are some dif-
ferences. In particular, depending on how A, approaches 1, the reflection occurs at a differ-
ent barrier o € (0, 00); in fact, « = oo is possible as well in which case there is no reflec-
tion. Furthermore, recall that Z,, is defined by centering about u,,. In general, /n(n,, — 1)
will diverge, and thus the process Y, considered in the above cited papers may not con-
verge in this regime. However, as noted previously, when d,, grows sufficiently fast, namely
ﬁ”i”o an the process Y,, will indeed converge and in that case we recover the result in

[31] (in fact a slight strengthening in that the drift parameter in Corollary 2.7 is allowed to

be 0). In addition, Theorem 2.4 also covers the case «/E?Z) an — ¢ € (0, 00) and situations

where A, = 1 + O(n~1/2) (see Remark 2.8 (iv)). In such settings, once more both Z,, and Y,
converge and the limit of the latter has the same form as in [9, 31].

As is observed in Remarks 2.6 and 2.8, under conditions of Theorem 2.3 or Theorem 2.4,
Jt,, must converge to the fixed point e; = f (1). In contrast, Theorem 2.2 allows for a range of
asymptotic behavior for u,,. In particular, under the conditions of the theorem, with suitable
An, dn, I, can converge to the fixed point f 2 for an arbitrary k € N (see [5] for a similar ob-
servation). Here, k may then be considered as the average time spent by a job in the system,
since asymptotically almost all (cf. [5]) queues will have length £ under these conditions. In
such a setting, the first k — 1 coordinates of the limit process are essentially O (see Theorem
2.2 for a precise statement) and the kth coordinate is the first one to exhibit stochastic vari-
ability. Thus a rather novel asymptotic behavior for the JSQ(d,,) system emerges when d,,
approaches oo at significantly slower rates than those considered in [31] and A, approach 1
in a suitable manner (in relation to d,).

1.1. Organization of the paper. Section 2 contains all our main results. The remaining
sections starting with Section 3 contain proofs of the main results.

We now make some comments on the proofs of Theorems 2.2-2.4. The starting point
is a convenient semimartingale representation for the centered state process Z, in (6.1). In
the study of the behavior of the drift term in this decomposition, an important ingredient
is an analysis of the asymptotic properties of the near fixed point u,, and the asymptotic

behavior of the function £, (see Definition 1) in O(n_%) sized neighborhoods around the
coordinates of p,. This behavior, which is different in the three regimes considered above,
determines the asymptotics of the drift A,,(Z,(s)) — b(Z,(s)), where A, (z) = /n(a,(p, +
n~12z) —a,(w,)). Properties of w, are also key in arguing that, in all three cases, under
our conditions, (Z, ,+1, .. .) converges to 0 in probability in D([0, co) : £7) (see Lemma 6.4).
The rest of the work is in characterizing the asymptotics of the finite dimensional process
(Zn1, .-, Zy,r). For this study, the three regimes require different approaches. In particular,
Theorem 2.2 hinges on a detailed understanding of the asymptotic behavior of a tridiagonal
matrix function Q,(s) (see, e.g., Lemmas 7.4 and 7.6); Theorem 2.3 requires an analysis of
a stochastic differential equation with an exponential drift term (in particular, the drift does
not satisfy the usual growth conditions); and Theorem 2.4 is based on a careful study of
excursions of the prelimit processes above the limiting reflecting barrier and properties of
Skorohod maps in order to characterize the reflection properties of the limit process.

1.2. Notation and setup. For m > 1, let [m] = {1,2,...,m}. We will denote finite-
dimensional vectors in R™ as X, y, etc. and (X, y) will denote the standard inner product.
Transpose of a vector v will be written as v’. The standard basis vectors in R” will be de-
noted by ¢; fori =1,2...m. Also, || x| = /(x, X) will denote the usual Euclidean norm.

We will often use bold symbols such as x = (x1, x3, ...) to denote a infinite dimensional
vector or function. For p € {1,2,...00}, let |lx|, = O 72, |x;|?)1/P denote the p-norm on
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the space of infinite sequences and £, = {x € R* | |lx|, < oo}. Let Zli be as in (1.1), which
is a Polish space under || - ||;. Fork e N, let f, =(1,1,...,1,0,0...) € Eli denote the vector
with first £ indices equal to 1, and e = (0,...,0,1,0...) € £1 denote the vector with 1 in
the kth coordinate. For any k € N and y € [0, 1), write f,); = fr+vert1 € E%. For z =
(z1,22,...) e R®and r e N, let 2,4+ = (Zy+1, Zr+2, - . .) € R® denote the vector shifted by r
steps. Similar notation will be used for functions and processes with values in R*.

For a Polish space S and the interval Z = [0, T'] for T > 0 or Z = [0, 0c0), denote by
C(Z :S) (resp. D(Z : S)) the space of continuous functions (resp., right continuous functions
with left limits) from Z to S, endowed with the topology defined by uniform convergence
on compact sets (resp., Skorokhod topology). For & € ID([0, T'] : R), g € D([0, T'] : £,) and
t € [0, T], denote the size of the largest jump upto time 7 by J; (h) = sup,¢pg 41 12 (s) —h(s—)]
and J;(g) = SUpPgepo..1 18(s) — g(s—) |l p, and the supremum norms up to time ¢ by |hls; =
supscro.r 17 (s)| and [|gll p.r = supscpo 1 18 ()1l p- If 4 is absolutely continuous on [0, 7], then
fz(t) (or sometimes dh(t)/dt) will denote the derivative of & at ¢ € [0, T'] (defined almost
everywhere).

We will use [{conq) to denote the indicator function that takes the value 1 if cond is true,
otherwise it takes the value 0. We will denote by id the identity map, id(¢) = ¢, on [0, T'] or
[0, 00). We use P and E to denote the probability and expectation operators, respectively.
For x,y € R, x A y denotes the minimum and x Vv y the maximum of x and y, respectively.

. . P .
Forany x ¢ R, x* =x Vv 0and x~ = (—x) vV 0. We use — and = to denote convergence in
probability and convergence in distribution respectively on an appropriate Polish space which
will depend on the context. For a sequence of real valued random variables (X,,, n > 1), we

write X, = op(b,) when |X,|/b, i> 0 as n — oo. For nonnegative functions &(-), g(-),
we write h(n) = O(g(n)) when h(n)/g(n) is uniformly bounded, and 4 (n) = o(g(n)) (or
h(n) < g(n)) when lim,_ o h(n)/g(n) = 0. We write h(n) ~ g(n) if h(n)/g(n) — 1 as
n— 00o.

2. Main results. Recall the process G, from Section 1. Our first result gives a law of
large numbers (LLN) for the process G, as n — oo. In order to state this result, we begin
by recalling the one-dimensional Skorohod map (cf. [18], Section 3.6.C, [19]) with reflecting
barrier at « € R. For « € R and & € ID([0, o0) : R) with A(0) < «, define 'y (h), fa(h) €
D([0, 00) : R) as

2.1)  Tom)(@)=h(t) — sup (h(s) —a)T, Do (h)(t) = sup (h(s) —a)™.
s€[0,1] s€[0,7]

The map I', (and sometimes the pair (I'y, f‘a)) is referred to as the one-dimensional Sko-
rohod map (with reflection at ). We note that the above map is a modification of the usual
definition to account for the fact that in our case reflection occurs from above (in order to
prevent i from exceeding the level «). The following well-posedness result, which is proved
in Section 4, will be used to characterize the LLN limit of G,,.

PROPOSITION 2.1. Fixr € Ef. Then there is a unique (g, v) € C([0, 00) : Ef X £o) that
solves the following system of equations

22) (g:(t), vi(t) = (T, ﬁ)(r,- - /0 (4i(5) — gi1(5))ds + v,-l(->)<r) Viz1,1>0,

where vo(t) = At forall t > 0.



FLUCTUATIONS FOR JSQ(dy) 2089

REMARK 2.2. Using the well-known characterization of a one-dimensional Skorohod

map, one can alternatively characterize (g, v) as the unique pair in C([0, c0) : @% X £oo) such
that v; is nondecreasing,

gi(t)=ri — [5(gi(s) — gi+1(5)) ds + vi_1(t) — vi (1), .
@3 w20, G =1, i - gi(s)duis) = 0} vzl

and vg(t) = At, for all t > 0 and v; (0) = 0 for each i > 0.

We can now present the LLN result. The proof is given in Section 4.

THEOREM 2.1. Letr € Ef. Suppose that G, (0) LN rin Ef, A — A and d,, — 00, as
n — 00. Then G, — g in probability in D([0, c0) :Ef) asn — oo, where (g, v) € C([0, 00) :
Ef X £o) is the unique solution of (2.2).

REMARK 2.3. Note that Theorem 2.1 allows d,, — oo in an arbitrary manner. The Sko-
rokhod reflection term v; in (2.3), which increases only at time instants ¢ when g;(t) = 1,
prevents g; from exceeding the level 1. It arises as a result of the simple fact that an arriving
job cannot join a queue of length i — 1 when all the queues in the selection are of length i or
more. In [31], Theorem 1, it is shown that, under the assumptions of Theorem 2.1, G,, is a
tight sequence of D([0, co) : Ef) valued random variables and that every subsequential weak
limit g satisfies a system of equations given as

¢ t
CH  aO=r— [ @O =g ds+ [ pr@E)ds foriz1.
where
A= (=148 if j=m@e) -1,
P (A—=148j11(s)" if j =m(g(s)) >0,
2.5) Pi(&() =1, if j =m(g(s)) =0,

0 otherwise,

and for x € Zf, m(x) = inf{i | x;+1 < 1}. (Note that m(G,(¢)) is the length of the smallest
queue at time ¢.) The uniqueness of the above system of equations was not shown in [31].

From (2.2) and the definition in (2.1), it follows that each v; is absolutely continuous and,
for a.e. t,

dv; dv;— "
vi (1) :( Pi—1(6) —&i (1) +gi+1(t)) Iig; =1y

dt dt
for any i > 1. From this, we see that, for a.e. 7,

A if i =0,

dvi_1(t .

o (1) -3553 ifi <m(g(n)andi>1,

2.6) i = | (i) +

<T—I+gi+1(t)> ifi =m(g(#))andi > 1,

0 ifi > m(g(2)).

and consequently p;(g(s)) = dvés(s) — % for a.e. s. Substituting this back in (2.3) shows

that g solves the system of equations in (2.4). Conversely, for any solution g of (2.4), defining
v by the right side of (2.6) by replacing g with g, we see that (g, v) solves (2.3). From the
uniqueness result in Lemma 2.1, it then follows that in fact there is only one solution to the
system of equations in (2.4) and this solution equals g given in (2.2).
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Consider now the time asymptotic behavior of g given in (2.2). When A < 1, (1,0,0...) €
£ is the unique fixed point of (2.2), as can be seen by setting the derivative of the right-hand
side of (2.4) to 0. In the critical case, that is, when A = 1, the situation is very different and
in fact there are uncountably many fixed points given by the collection {f € Eli | m(f) >
0, fin(f)42 =0} = {f}: | k e N,y €[0, 1)}, which once more is seen by checking that the
derivative on the right-hand side of (2.4) is 0 at exactly these points when A = 1. In this work,
we are interested in the fluctuations of G, in the critical case when the system starts suitably
close to one of the fixed points of (2.3). Thus for the remaining section we will assume that
An < 1 for every n and A,, — 1 as n — oo. In order to formulate precisely what we mean by
“suitably close to the fixed point” we need some definitions and notation. The functions 8,
in the next definition will play a central role.

DEFINITION 1. Given d, € [n], define the function B, : [0, 1] — [0, 1] by
)—F

The function 8, (-) arises when sampling d,, random servers without replacement. Specifi-
cally, when nx € N, B,(x) = P(A, 4, C [nx]) = (’:if)/(;n), where A, 4, is arandomly chosen
subset (without replacement) from [n] of size d,,. Here, we adopt the convention that (T) =0
when m < r. An alternative is to perform sampling with replacement, which corresponds to

the simpler function y;,(x) = x in place of B,.
We now introduce the notion of a “near fixed point” of G,,.

dy—1

2.7) B0 = [] (x -

i=0 1—

= |~

S|~

DEFINITION 2. Forn € N, the near fixed point u,, of G, is the vector in Ef givenas i, =
(Mn.15> Mn2...) where u, ; are defined recursively as p,,1 = A, and py i1 = Ay B (n,i) for
i>1.

Using B,(x) < x% < x and A, < 1, it is easy to check that I, € E%. The reason u,, is
referred to as a near fixed point of G, is discussed in Remark 3.1. To study the fluctuations
of the process around the near fixed point ,, we define the centered and scaled process, Z,
as in (1.2). We now present our three main results on fluctuations, which correspond to the
three cases d,/+/n — 0, d,//n — ¢ € (0,00) and d,//n — oo, respectively. In each of
these cases, we will assume that the initial configuration starts sufficiently close to the near
equilibrium point u,,.

ASSUMPTION 2.4. Suppose that {||Z,(0)|1}ren is tight and Z,(0) LN Z in {7, where
Zr+ = 0 for some r € N.

In the following, ,3,, (x) is as deﬁned in (5.1) and in the convention noted below (5.1). In
particular, for x € (0, 1) \ {d”n—_l}, B (x) is the derivative of 8, at x.

THEOREM 2.2. Su.ppose that, as n — 00, 1 K dy, K 5/n, Ay /' 1, and there is a k € N
so that py x — 1 and B, (pn k) = a € [0, 00) as n — oo. Further suppose that Assumption
2.4 holds for some r > k. Then for any T € (0, 00),

(2.8) lim sup P(|Z, 2,7 > M) =0.
M— o0 n

Furthermore, if k > 1, then SUP;efe.T] | Z,,i (1)] £> Oasn—> oo forany T <oo0,0<e<T
andi €[k —1].
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Consider the shifted process Y, (t) = (Zle Zni(t), Znk+1(), Zn j42(t),...) and y =
(Zle Zis Zk+1> Zk+25 - - -)- Then Y, = Y in D([0, 00) : £>), where Y € C([0, 00) : £3) is the
unique pathwise solution to

(2.9)

t t
Yi(t) =y — (Ot-i-]I{k:]})/ Yl(s)ds-i-/ Yz(s)ds%—ﬁB(t),
0 0
t t t
Yz(t):yz-i-a/(; YI(S)dS—/O Yz(s)ds+/0 Y3(s)ds,

t t
Yi(t)=y,~—/ Y,-(s)ds—l—/ Yit1(s)ds forie{3,....r —k+1},
0 0

Yi(t)=0 fori>r—k+1,

and B(-) is a one-dimensional standard Brownian motion.

REMARK 2.5.

o)

(i)

(iii)

(iv)

Note that the convergence sup,¢ic 111Zn,i ()| L 0as n — oo for any 0 <e <T is
equivalent to the statement that Z,, ; — 0 in probability in D((0, T'] : R) where the latter
space is equipped with the topology of uniform convergence on compacts. Note also that,
since Theorem 2.2 allows Z,, ; (0) to converge to a nonzero limit, the above convergence
to 0 cannot be strengthened to a convergence in probability in D([0, T] : R).

By Corollary 5.3 in Section 5, when u, x is away from O,

: dnplen k+1
Ba(ttn i) = (14 0(1)) ———
nMn,k
as n — oo. Hence the assumptions d,, — oo, A, — 1, u, x — 1 and ,Bn(Mn,k) — o <00

in Theorem 2.2 say that j, x+1 — 0. Since p, x — 1, this in fact shows that u, — f;
in Zf, where recall that f; is one of the fixed points of the fluid-limit (2.2) when A = 1.
The fact that the convergence happens in Eli can be seen on observing that if @, 4+1 <€

then, by (5.2), ftn k+1+i < €.

We also note that in general /n(p, — f;) will diverge, and thus /n(G, — f})
will typically not be tight, in this regime. Nevertheless, it may still be interesting to
study the behavior of n* (G, — f;) for some « € (0, 1/2) and appropriate choices of
d, — oo and A, — 1. Note however that when « € (0, 1/2), the martingale term in the
semimartingale decomposition of n* (G, — f;) will converge to zero (as can be seen
from the convergence observed below (6.6)) and thus the limit behavior is expected to
be different. We leave this for future work.

In the special case when the system starts sufficiently close to the near fixed point g, so
that z; =0 for i > k41, the limit process Y simplifies to an essentially two-dimensional
process given as, Y;(¢) =0 for i > 2, and

t t
Yi(0) = y1 — (o + Iy fo Yi(s)ds + /0 Y>(s)ds + v2B(1)

t t
Ya(t) = yota /0 Yi(s)ds — fo Ya(s)ds

The convergence behavior of Z,, is governed by the sequence of parameters (d,;, A,). In

Corollary 5.5 from Section 5, we show that if 1 < d*¥*! «n and 1 — 21, = S”erll%d"

2 n
with &, — —log(a) € (—oo, o0] and i—"; — 0, then the conditions u,;, — 1 and

,8,, (Un.k) = a € [0, 00) of Theorem 2.2 are satisfied. Using this fact, we make the fol-
lowing observations. For simplicity, consider z = 0.
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__loglogn
~ (logm)*
orem 2.2 are satisfied and one essentially sees nonzero fluctuations only in the kth and
k + 1-th coordinates. Note that as k becomes large, the traffic intensity increases and one
sees more and more coordinates of the near fixed point approach 1.

(b) With the same d,, as in (a) but a somewhat lower traffic intensity givenas 1 — A, =
logn 1/2—€
: (%Og)n)k
with o =0 (i.e., ,Bn (tn.k) — 0). Thus the limit process Y, in the case k > 1, simplifies
toY; =0fori > 1and Y,(t) = ~/2B(r). When k = 1, Z, = Y; is instead given as the
following Ornstein—Uhlenbeck (OU) process

(a) Suppose that d, =logn, 1 — X,

. In this case the assumptions of The-

for some € € (0, 1/2), one sees that condition of the theorem are satisfied

(2.10) Zi(t) = — /O’ Zi(s)ds +V2B(@).

(c) With higher values of d,, using Theorem 2.2, one can analyze fluctuations for

systems with higher traffic intensity. For example, suppose that d, = lg/g’_’n. Then the

conditions of the theorem are satisfied with k = 1 and 1 — A,, ~ (logn)?/+/n. In fact,
in this case « = 0 and the limit process is described by the one-dimensional OU
process (2.10). With a slightly higher traffic intensity given as 1 — A, = ((logn)> —
2lognloglogn))/2+/n one obtains a two-dimensional limit diffusion.

(d) The theorem allows for traffic intensity in the Halfin—Whitt scaling regime (i.e.,

J/n(l —x,) — B > 0) as well. Specifically, for k > 2, if d, = (\/ﬁlogn)% and (1 —

An) = % for some B > Bo = 1/2k, the conditions of the theorem are satisfied with

o = 0. With slightly higher traffic intensity (e.g., 8+ o(1) replaced by 8o+ ( % loglogn —
log o)/ logn) conditions of the theorem are met with a nonzero «.

(e) More generally, suppose we are interested in studying the fluctuation behav-
ior when the traffic intensity is A, = 1 — yn~¢ for some a € (0,1) and y > 0. The
cases a < 1/2 and a > 1/2 correspond to the so-called sub and super Halfin—Whitt
regimes, respectively. The asymptotic behavior of JSQ(d,) schemes in steady state in
these regimes has been studied in [5, 6, 21, 22]. In [5, 6], the authors prove the follow-
ing: suppose d,, = n® for some b € (0, 1] that satisfies a/b ¢ N and 2a < 1 + b(k — 1)
where k = [a/b]; then with high probability in equilibrium, the largest queue will have
length k and a vanishingly small fraction of queues have length smaller than k. In [21,
22], the authors consider the case a € (0, 1/2) and show that for the JSQ(d,) system
with buffer size b, = O(logn), in equilibrium, both the expected waiting time per
job and the probability that a job is routed to a nonidle server are O (b,n~"(1/2=9)),

whenever d, > ﬁn“ logn for any positive integer r < %. In the current work, we
study the behavior of JSQ(d,,) over finite intervals of time. Our results, including The-
orem 2.2, allow for both sub and super Halfin—Whitt regimes. To see this, choose any
ae(0,1),v>1,aninteger k > a/(1 —a), and let b = a/ k. (In other words, a satisfies
2a < 1+ b(k — 1), which is the same condition as in [5]). Then Theorem 2.2 holds with
k,d, = nb(l;/—vlogn)]/k and o =0.

(f) Recall that a fixed point of (2.2) when A = 1 takes the form f ,1: =frt+veir1 =
1,...,1,y,0,..) € £¢, where k € N and y € [0, 1). Although Theorem 2.2 only con-
siders settings where the near fixed point g, converges to f ,9 = f for some k, it is
possible to give conditions under which g, converges to a different fixed point. Specif-
ically, suppose that 1 < d,’f“ <Knand 1 — A, = ﬁ for some a > 0. Then it can be

checked using Lemma 5.4 that u,, — f Z with y = e~%. However, proving fluctuation
results in this regime appears to be technically more involved, and we leave it for future
work.
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The next theorem describes the fluctuations of Z,, when d,, is of order /n.

dn
i
o € (—00, 00] and a, = o(n'’*). Then w,, — f in Eli. Suppose further that Assumption 2.4
holds for some r > 2. Then, as n — oo, Z, = Z in D([0, 00) : £2), where Z is the unique
pathwise solution to

THEOREM 2.3.  Suppose that = — ¢ € (0, 00) and a, =1 — (1284 4 ) with oy —

! cay—1 ! cZy(s)
zl(z)=zl—/0(zl(s)—zz(s))ds—(ce ) /O(e 1) _ 1) ds + V2B(1),

! ca—1 ! cZ1(s)
Zr(t) =12 _/0 (Za(s) — Z3(s)) ds + (ce ) /(; (') —1)ds,

Zi(t)=2z; — /(;’(Zi(s) — Zi+1(s))ds foreachie{3...r},
Zi(t)=0 foreachi >r,

and B is standard Brownian motion.

REMARK 2.6.

(i) Note that the coefficients in the above system of equations are only locally Lipschitz
and have an exponential growth. However, since c is positive, the system of equations has a
unique pathwise solution as is shown in Lemma 8.2.

(i) Once more, when z; = 0 for all i > 2, the system of equations simplifies to a two-
dimensional system given as Z; =0 for all i > 2, and

! cay—1 ! cZy(s)
zl(z)=zl—/0(zl(s)—zz(s))ds—(ce ) /O(e 1) _ 1) ds + V2B(1),

t t
Zr(t) =27 — / Zy(s)ds + (ce®®) ! / (e“1%) — 1) ds.
0 0

(iii) In the regime considered in Theorem 2.3, the near fixed point g, can converge to
only one particular fixed point of (2.2), namely f,. As before, the term /n(g, — f) may
diverge and thus \/n(G,(-) — f;) will in general not be tight.

(iv) Suppose that d,, = c¢/n for some ¢ >0,z=0and 1 — 1, = (B + o(1)) logn//n for
some B > Bo = 1/2c. Then the assumptions of the above theorem are satisfied with & = oo
and the limit system simplifies to a one-dimensional OU process given as Z; =0 foralli > 1,
and Z; satisifes (2.10). If (8 + o(1)) logn is replaced by Bglogn + y for some y € R, we
instead obtain a two-dimensional limit system given as Z; =0 for all i > 2, and

Z1(t) = — /(;t(Zl(s) — Za(s))ds —e™ 7 At(eczl(s) —1)ds+ V2B(@),
t t
Zz(t)=—/0 zz(s)ds+e—cyfo (41 —1)ds.

Finally, we consider the fluctuation behavior when d,, >> /n. This time the limit system
will involve reflected diffusion processes. Recall from (2.1) the definition of the Skorohod
maps 'y and f‘a associated with a reflection barrier at @ € R. We will extend the definition
of these maps to o = 0o by setting

@2.11) Too(h)=h,  Foo(h)=0 forheD([0,00):R).
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THEOREM 2.4. Suppose that \/n < d,, and

logd, oy
(2.12) ! dy  Jn
where o, — a € [0, 00], witha, = O(y/n/dy,), and ay = O(nl/ﬁ).

Then pu, — fin Kli. Suppose further that Assumption 2.4 holds for some r > 2 with 71 < «.
Then,asn — o0, Z, = Z € D([0, 00) : £3), where Z is the first component of the pair (Z, 1),
which is a €2 x Ry valued continuous process given as the unique solution to

(Z1(1). 7(D)) = (Tas fa)(m - /O (21(s) — Za(s)) ds + sz(-))m,

t
o) Zo(t) =22 — /0 (Za(s) — Z3(9)) ds + (1),

t
Zi(t) =1z —/ (Zi(s) — Ziy1(s))ds  foreachie€{3...r},
0
Zi(t)=0 foreachi >r,
and B is a standard Brownian motion.
We note that given a standard Brownian motion B, there is a unique continuous process
(Z, n) with values in £, x R, adapted to the filtration generated by B (See Remark 2.8(1)).
As a corollary to this theorem, we obtain the specific regime considered in [31] (in fact we

provide a slight strengthening in that, unlike [31], we allow o = 0). See Remark 2.8(v) for
further discussion.

COROLLARY 2.7. As n — o0, suppose that d,, > /nlogn and /n(1 — A,) — a €
[0, 00), along with \/n(1 —A,) > (/nlogn)/d, forlargen ifa = 0. Let Y ,(-) = /n(G,(-) —
[ 1) and assume that the sequence of random variables {||Y ,,(0)|1} is tight, and as n — oo,

Y, (0) i yebrwithy,, =0 forsomer>2.ThenY, =Y inID([0, 00) : £2), where (Y, 1)
is the £y x [0, 00) valued continuous process given by the unique solution to

(¥1(0), 7(1)) = (To. Fo) (y1 —aid() — [ (1) = a(0)) ds + fzm)m
t
Ya(t) = vy — fo (Ya(s) — Ya(s)) ds + (1),

Yi(t) =y; — /Z(Yi(s) —Yiy1(s))ds foreachie(3...r},
0
Yi(t)=0 foreachi >r,

and B is a standard Brownian motion.

REMARK 2.8.

(i) The existence and uniqueness of solutions to the stochastic integral equations in
(2.13) follows by standard fixed-point arguments on using the Lipschitz property of the map
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'y on D([0, co) : R). This system of equations can equivalently be written as

t
Zi(t) =21 — /0 (Z1(5) — Za()) ds + V2B(t) — (o).

t
o1 Zo(t) =22 — /0 (Za(s) — Z3(s)) ds + (1),

Zi(t) =z — _/Ot(Zi(s) —Zit1(s))ds foreachi € {3...r},

Z;(t)=0 foreachi >r,
where n = 0 when o = 00, and when « € R, it satisfies

17(0) = 0 and 7 is a nondecreasing function.
(2.15) Z(t) <«a
Jo(a = Zi(s))dn(s) =0

The system of equations (2.14) describes a constrained multidimensional diffusion driven
by a one-dimensonal Brownian motion. Existence and uniqueness for a similar system of
equations and the convergence of Y, to that system when d, = n is shown in [9]. However,
note that unlike in [9] (where the reflection is at 0), the reflection in (2.14) occurs at a barrier
o € [0, oo].

(i1) The convergence p,, — f along with tightness of {Z,},cn shows that, under the
conditions of Theorems 2.3 or 2.4, most queues will be of length 1 on any fixed interval
[0, T].

(iii) The limit system in Theorem 2.4 simplifies when z; = 0 for i > 2 and is given as
Z; =0foralli > 2, and

210y =21 — [ (Z1(s) = Za(s)) ds + V2B — (1),
0

t
Zz(t)zzz—/o Za(s)ds + (),

where 7 is as in the statement of the theorem.

(iv) Suppose that d,, = /nlogn/2a for some a >0 and 1 — A, = % + W.
Then the assumptions in Theorem 2.4 are satisfied with « = 0. In this case, the reflection
barrier is at 0, namely Z;(¢) < 0 for all 7. Also note that since 4/n(1 — ,) — a, we have that
Un.1 = Ap —> 1. Since d,,/+/n — o0, this shows that for k > 2,

it 2 = N Pu(h) < it = (1 = (1 = 2)) " 0.

Using w41 < uﬁ'ji, see that /n(n, — f) — —ae; € €1, and hence the fluctuations of
G, about the fixed point f; can be characterized as well. Specifically, letting Y, (-) =
(G, () — f1) = Z,() + /n(pm, — f), we see that, under the condition of the above
theorem, Y, = Y in ([0, 00) : £3), where ¥ = Z — ae, and hence, assuming z; = 0 for
i>2,(Y,n) eC(0,00): € x Ry) is the unique solution to (2.15) with (Z1, n, «) replaced
with (Y1, 7, —a), and the equations

t
Yi(t) =y —at —/0 (Y1(s) — Ya(s))ds + ~V2B(t) — (1),

t
Yz(t)=y2—/0 Ya(s)ds + (o).

where y =z — aej and B is a standard Brownian motion. In particular, the limit Y takes the
same form as in [9, 31] with a stronger constraint that Y;(¢) < —a < 0 for each ¢ > 0.
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Analysis of ISQ(dy) with 1 — Ap =n"%,dy, = I'nbﬂ and k =limy, [a /by . The notation by, € (I, r] denotes the

condition n'n < dy <n”

Reference

Regimes of a, b,, and k

Analysis type

Braverman [4]

Eschenfeldt & Gamarnik [9]

a=05>b,=1,k=1

a=05b,=1,k=1

Convergence of stationary
distribution

Functional central limit theorem

Functional central limit theorem

a=0.5,by € ((0.5+198102n 414

Mukherjee et al. [31] Togn

ae(1/2,1),b, €la+ loglogn 1,k=1 Functional central limit theorem

logn
a=0.5,b, €[05+ OEE" 1] k=1

aell/3,1/2), by e (05,1, k=1
ae(1/4,1/2),by =05,k =1

Theorem 2.4 (¢ = 0)

Theorem 2.4 (« € (0, 00))
Theorem 2.4 (o = 00)

Functional central limit theorem

Functional central limit theorem

Theorem 2.3 (o = 00) Functional central limit theorem

a €0, 1),by=(a+ L")k,
k>a/(1—a),keN
ae,1),by— be (1],

2a <1+bk—1),a/b¢N

@€ (0,1/2), by € la+ BLEN 1),
k=1

Theorem 2.2 (a = 0)* Functional central limit theorem

Brightwell et al. [5] Equilibrium queue lengths

Liu & Ying [21, 22] Equilibrium performance

(v) Suppose that d,, > «/nlogn. Then it is easy to see that (2.12) holds with some o > 0
if and only if \/n(1 — A,) — « > 0. This regime was studied in [31]. Using the arguments as
in (iv) above, it is easy to check that \/n(g,, — f|) — —ae; in £; (and hence ¢;). Corollary
2.7 is immediate from this and Theorem 2.4. In particular, we recover [31], Theorem 3.
However, the proof techniques in the current paper are different from the stochastic coupling
techniques employed in [31].

(vi) Suppose y/n < d,, < +/nlogn and that (2.12) holds with & < oo. Then, as observed
in the proof of Theorem 4 in [31], Y, will not be tight in this regime. But since  /n(1 —
n1) = (/nlogdy,)/d, + an — 00, this does not preclude the convergence of Z, =Y, —
J/n(p,, — f1). Indeed, Theorem 2.4 shows that the process Z,, converges in distribution and
the limit process has a reflecting barrier at «, that is, Z; < «. In particular, unlike the case
d, > \/nlogn, the barrier in this case does not come from the constraint G, ; < 1.

(vii) Theorem 2.4 allows for a slower approach to criticality than n~!/2, for example, A,
such that n'3(x, — 1) —> y > 0. In this case, @ = 0o and there is no reflection. When z; =0
for all i > 1, this system reduces to the one-dimensional OU process given by (2.10) with
Z;=0fori > 1.

Table 1 summarizes some of the key regimes of (d,, A,,) that are covered by Theorems
2.2-2.4 and places them in the context of previous work on JSQ(d,,) systems in heavy traffic.
In order to make comparison with [5], note that the regime in * can equivalently be written

asae(0,1), by = (a+ 1°§)g’§”)/k—> b,2a <1+bk—1),a/beN.

3. Poisson representation of state processes. We now embark on the proofs of the main
results. We start with a brief overview of the organization of the proofs. In this section, we
describe a specific construction of the state process. Proof of the law of large numbers (The-
orem 2.1) is given in Section 4. Section 5 describes fine-scaled (deterministic) properties of
the function B, and the near fixed points p,, which play a key technical role in the proofs
of our diffusion approximations. Section 6 derives preliminary estimates required to prove
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all the main results for the fluctuations of the state process. Sections 7, 8 and 9 complete the
proofs of Theorems 2.2, 2.3 and 2.4, respectively.

We start with a specific construction of the state process through time changed Poisson
processes (cf. [11, 20]). A similar representation has been used in previous work on JSQ(d)
systems (cf. [9, 10, 31]). Let {N; 4+, N; — :i > 1} be a collection of mutually independent
rate one Poisson processes given on some probability space (€2, F, P). Then G, has the
following (equivalent in distribution) representation. For i > 1 and ¢ > 0,

1 t
Gt () = G (0) — —Ni,_(n [160:) = Griao) ds)
(3.1)

+1N,+( [ [n(Gri1(5) - r(Goi(0))]ds ),

where G, o(t) = 1 for all + > 0. Denoting

Api(t) = Ni,+<)»nn _/Ot[ﬁn(Gn,i—l(S)) — Bu (Gn,i(s))]ds)a
t
Dy i(t) = N,-,_<n [ 1Guits) - Gn,m(s)]ds),

the above evolution equation can be rewritten as
1 1 .
(3.2) Gn,i(t) :Gn,i(o) - ;Dn,i(t)'i‘ ;An,i(t)y ieN,t>0.

The above equation can be intuitively understood as follows. The point process D, ; describes
events that cause a decrease in G, ; owing to completion of service events for jobs in queues
of length exactly i, which since each server works at rate 1, happens at rate n[G, ; () —
Gy.i+1(1)] at the time instant #. On the other hand, A, ; describes events causing an increase
in G, ;, which only occur if the chosen queue of a new job has exactly i — 1 individuals;
this occurs if among the d,, random choices made by this job, all of the chosen queues have
load at least i — 1 but not all have load at least i. The probability of the latter event is exactly
Bn(Gni—1(t)) — Bu(Gp.i(t)), and thus the rate at which G, ; increases at time instant ¢ is

given by ni, (B (Gp,i—1(1)) — Bn(Gn,i(1))).
Let

Fi' = 0{Ani(9). Dui(s).s <t.i = 1},
and let 7" be the augmentation of 7 with P-null sets. It then follows that, for each i > 1,

1 t
Mn,i,+(t) =- i,+<)\nn/ ﬁn(Gn,i—l(s)) - ,Bn(Gn,i(s)) dS)
(3.3) " 0

t
~ /O Bu(Gi1(9)) — Bu(Goi(s)) ds

and
34 Mn,_m——N (fGMs) nm(s)ds)—ft(Gn,-(s)—Gn,-H(s))ds
(.. |

are {F}'}-martingales with predictable (cross) quadratic variation processes given, for t > 0,
as

(M}’ll+ —_/ ,Bn n,i— 1(S)) ,Bn( nl(s))) i>1,

1 t
(i) = /0 (Gui(s) = Guis1 () ds, @21,
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(My,i,—, My j,—): =0, (My i+, My j+) =0, foralli,j>1,i# jand
(My iy, My —)y=0 foralli,k>1.

Using these martingales, the evolution of G, can be rewritten as

t
Gi (1) = G (0) — / (Gri(5) = Gpis1 (5)) ds
(3.5) 0

t
+ fo Bu(Gri-1(8)) — Bu(Guni(5)) ds + My i (), i =1,

where M, ;(t) =My ; +() — M, ; —(¢) and
1/ rt t
(3.6) (M1}, = E( [ Grit9) =G ) s+, [ (ﬁn(Gn,i_ms))—ﬁn(Gn,i(s»)ds).

We will assume throughout that G,(0) € Kli a.s. Then it follows that, for every ¢ > 0,
|G, (t)]l1 < oo a.s. Indeed, since n|G,(¢)]1 equals the total number of jobs in the system at
time ¢, and over any time interval [0, ] finitely many jobs enter the system a.s., denoting by
A; the number of jobs that arrive over [0, 1], we see that |G, (¢)]|1 < |G, (0|1 + A;/n < o0
a.s. Thus G, is a stochastic process with sample paths in D([0, co) : Zf). Note that, for any
t>0,1Gu(t) — Gu(t—)) < 1.

REMARK 3.1. Leta,,b: Zf — {1 be given by

@n(X); = dn(Ba(xic1) — Bu(x)),  b()i =xi—xiy1,  xell, i>1,

where, by convention, for x € Eli, xo = 1. Then (3.5) can be rewritten as an evolution equation
in £ as

t
(3.7 G (t) =G, (0) +/0 [a1(Gn(9)) — b(Gn(s))]ds + Mu(1),

where M, (t) = (M, ;(t))i>1 is a stochastic process with sample paths in ID([0, c0) : £1) and
the integral is a Bochner-integral [37]. Note that the near fixed point g, from Definition 2
satisfies a,, (i,,) = b(m,,). It is in fact the unique solution to

(3.8) a,(x) =b(x) forxedtl,

as is seen by adding up all the coordinates of (3.8) and using x € £1. In Lemma 4.1, we will

see that for any T > 0, as n — 00, sup, . ||M,(t)l2 LN 0. Hence if G, (0) = u,,, then by
(3.7), we expect the process G, (t) to stay close to , (over any compact time interval) as
n — oo. In this sense, u,, can be viewed as a “near fixed point” of G, (-) and the terminology
in Definition 2 is justified. Another reason for this terminology comes from the results in
Theorems 2.2-2.4, which show that, under conditions, u,, converges to one of the fixed points
of the fluid limit (2.2) when A = 1.

4. The law of large numbers. In this section, we prove Proposition 2.1 and Theo-
rem 2.1.

4.1. Uniqueness of fluid limit equations. In this subsection, we show that there is at most

one solution of (2.2) in C([0, 00) : E% X £s0). Results of Section 4.2 will provide existence of
solutions to this equation. Suppose (g, v) and (g’, v’) are two solutions to (2.2) in C([0, c0) :

Z% X £x0). We will now argue that the two solutions are equal.
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We claim that that v} and v; are nonzero for only finitely many i’s. Indeed, since g, g’ €
C(o0, T] :E%), there is a constant C € (0, 00) so that sup;_7 [|g(s)[l1 V sups<r llg’ ()|l <C.
Since
4.1 x; <|lxl1/i foranyx e ¢},

taking M = [C + 1] € N shows that sup,_ gi(s) V glf(s) < 1 forany i > M. But then by the
equivalent representation of (2.2) given in (2.3) (in particular the second line), we must have
v; =v; =0 for any i > M. This proves the claim.

Since v; = vlf =0 for i > M, the first line of the equivalent formulation in (2.3) shows that
both x = g and x = g’ satisfy the integral equations

t
xi(t)=r; —/ (xi(s) —xi41(s))ds fori>M+1landr €0, T].
0

By standard arguments using Gronwall’s lemma [11], Appendix 5, we then must have
gi = g for each i > M + 1. Indeed, letting z;(-) = g;(-) — g/(-) for i > M + 1 and
v(t) =372 )41 12i(0)] for t € [0, T], we have that

t
|zi (1) 5/0 (|zi ()| + |zi+1(s)|)ds foralli> M+ 1, andz € [0, T]
and so
t
v(t) < 2] v(s)ds, te]0,T],
0

which implies that v(¢) =0 for ¢t € [0, T'].
We now show that g; = g/ for i < M. From the definition of the Skorohod map in (2.1),
we see that for iy, hy € D([0, 00) : R) with h;(0) <1,i=1,2,andt >0

Ty (1) = D1 (ha)||, , <20k = halls, [T1(h) = Tih) |, , < 1At — halls:-

*,f — *,0 —

Thus, since (g, v) and (g’, v) solve (2.2),

t t
@2) g =il =2( [ s = silds+ [ oo = gival.oods +omi=vi L, ).

and
/ ! / ! / /
(4.3) |vi — v ”*t 5/0 lgi — &; H*,sds +/0 |gi+1 — 8i+1 ”*,sds + Jvi1 —vj_y ”*t

for any i > 1. Let H; = max;e1,..m) 18 — & ll+..- Note gm+1 = gy, » and hence H; =
max;e(1,..M+1y 18 — &;ll,.- Then from (4.3), we have

t
(4.4) M—dhﬁ%AmM+MH—%Jm forany i < M.

Repeatedly using (4.4) along with vy = v;, shows that [[v; — V]|l«; < 2i fé Hgds for any
i < M. Using this bound in (4.2) shows for 1 <i < M:

t t t
||gl- —gl{H*t 52(2/ Hids + 2@ — 1)/ Hsds> :4i/ Hds.
’ 0 0 0
Hence considering the maximum of || g; — glf |s,; over 1 <i <M we get
t
0<H < 4M/ H¢ds foreachte]0,T].
0

Gronwall’s lemma now shows that H7 = 0, and hence g; = g; for i = 1... M. Finally, since
vy = v6, we see recursively from the second equation in (2.2) that v; = v; foralli >0. O
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4.2. Tightness and limit point characterization. Some of the arguments in this section
are similar to [31], however, in order to keep the presentation self-contained we provide
details in a concise manner. The next result establishes the convergence of the martingale
term M, in the semimartingale decomposition in (3.7). Throughout this subsection and the
next section, we assume that the conditions of Theorem 2.1 are satisfied, namely, G, (0) L
inﬁli,knakanddne 00, as n — 0Q.

LEMMA 4.1, Forany T > 0, sup,_q || M, (s)l2 = 0.

PROOF. It suffices to show that for any T > 0, lim,, E sup,.7 |M,, (s)||% = 0. Applying
Doob’s maximal inequality, we have that

4.5) Esup||M (s)||2<4E||M (T)||2_4EZM,”(T)
i>1
Since EM 2 (T ) = E{(M, ;)r, using the monotone convergence theorem in (4.5) shows
T( A
(4.6) E sup ||M ®)[2 <4E Y (M, 5 < 4 LA 58Uy An)
i>1 n

where the last inequality is from (3.6) on observing that

& 1 (T A (T T(1+Ay)
St = [ Guaw) + 5 [ pu(Guom) = =,
= nJo n Jo

Sending n — oo in (4.6) completes the proof of the lemma. [

The next proposition characterizes compact sets in E% C £1N[0, 11°°. The proof is standard
and can be found for example in [31].

PROPOSITION 4.2. A subset C C E% is precompact if and only if

lim sup sup Z |x;|=0

M— 00 xeCi>M

The estimates in the following lemmas will be useful when applying Aldous—Kurtz tight-
ness criteria [17], Theorem 23.11, for proving tightness of {G,},>1.

LEMMA 4.3. Foreach n € N, there is a square integrable {F]'}-martingale {L,(t)} such
that, for any t > 0,

”Gnul,ti SI[BP]HGn(S)Hl = ”Gn(O)HI‘F)“nt‘f’Ln(l‘)-
se|,t

Furthermore, (Ly,); < )‘" ,forallt > 0.

PrROOF. Fori=1,...,n,let X;(t) denote the number of jobs in the ith server’s queue at
time 7. Then
Iix;
[Gu)], = Z Gyt = Y.y ) D2l = ZZH Xi02) ZX .
j=li=l i=1j=1

Hence |G, (?)]|1 is the total number of jobs in the system at time ¢, divided by n.
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Since the total number of jobs in the system at time ¢ is bounded above by the sum
of number of job arrivals by time 7 and the initial number of jobs, sup;cio 1 1Gn ()| <

1G] + %, where A, (¢) is the total number of arrivals to the system by time ¢. Since

A, is a Poisson process with arrival rate A,n, the result follows on setting L, (¢) = % —Ant,
t>0. O

LEMMA 4.4. Fixn € Nand § € (0, 00). Let T be a bounded {F]'}-stopping time. Then

E|G,(t+8) — G, (D), < (hy + DS.
PROOF. From (3.2), for any i € N,
AT [Grile+8) = Gui®)] = (Ani(r+8) = Api () + Ds(x +8) = Dyi(o).
From (3.3) and (3.4), we see that
E~(Ani(x +8) — Api(D) =2 E/ (Ba(Gri=1(5) = Bu(Gn.i(s))) ds

1
n
1
E-
n

(D,i(x +8) = Dy i (7)) = E/ (Gn,i(s) = Gp,it1(s))ds
T
Using the above identities in (4.7),

E|Gi(t 4+ 8) — Gpi(7)|
T+4
(48) =< )MnE/; (ﬁn(Gn,i—l(s)) - ﬂn(Gn,i(s)))ds
T+4
FE [ (Gri®) = Grini () ds

Adding (4.8) over various values of i € N, we have

0 T+38
E” G,(t+95) - Gy, (T)Hl <An Z E/ (/311 (Gn,i—l (S)) - ﬂn(Gn,i(S)))ds

Z:E/ Gnl(s) an+1(s))

<E/ (B (Guo(5)) + G () ds < Gn + DS, ]

The following lemma will be useful in verifying the tightness of {G,(¢)} in Ef for each
fixed r > 0.

LEMMA 4.5. For every n,m € N there is a square integrable {F]'} martingale L, ,(-)
so that, for all t > 0,

sup Y Gni(s) < ZGH,(0>+—||Gn||1I+an<r>

<
§ tl>m i>m

and (L. m); <—||Gn”1[

— nm
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PROOF. From (3.1), for any i € Nand ¢ > 0:

1 t
(4.9) Gni() = Gni(0) + Ny (n)»n/o Bn(Gn,i-1(s)) — ﬂn(Gn,i(S))dS)-

Consider the point-process given by
t
Bum(®) =3 Ny, (nxn [ Bu(Gui15) = u(Gni(5) ds).
i>m

Adding over i > m in (4.9), we get

1
(4.10) SUp > Gni(8) = ) G (0)+ —Bum (1),

<t . .
S—tl>m >m

It is easy to see that with

t
bn,m(t) =nky, Z /(; IBn(Gn,i—l(s)) — B (Gn,i (S)) ds, t>0,

i>m

in,m(t) = By m(t) — by m(t) is a F}'-martingale and

~ t t
(Ln,m>t =bn,m(t) =n)\nf0 ,Bn(Gn,m(S)) ds fn)\n/(‘) Gn,m(s) ds

ni,t

< nknt(sup Gn,m(s)> <

s<t m

1Gnllve,

where, for the last inequality we have used (4.1). The lemma now follows on setting

Ly m(t) =Ly n,)/n and and using (4.10). [

Recall that under our assumptions, A, — A and d,, — oo as n — co. We are now ready to
prove that the sequence of processes {G,},>1 is tight.

LEMMA 4.6. Suppose that {G,(0)},>1 is a tight sequence of E% valued random vari-

ables. Then for any T > 0, {G,},>1 is a tight sequence of D([0, T] : Zf) valued random
variables.

PROOF. To show that {G,},>1 is tight, it suffices to show the following two conditions:

(1) Forany ¢t € [0, T] and € > 0, there is a compact set ' C Zf so that inf,cny P(G,(2) €
NH>1-—e.

(2) For every sequence of nonnegative numbers §, converging to 0 as n — oo, and
every sequence of F;'-stopping times 7, such that 7, < T, limsup,_, ., E|G, (7, + 6,) —
Gn(fn)”l =0.

To see this, note using the Aldous—Kurtz criteria [17], Theorem 23.11, that the above condi-
tions (1) and (2), respectively, imply the conditions (i) and (ii) of [17], Theorem 23.8. Since
it is immediate from Lemma 4.4 that condition (2) is satisfied, we now focus on proving
condition (1).

Fixe >0.Let A = sup,,~.1 An. Since G, (0) is tight, there is a compact K| C Zf such that

P(G,(0) e K))>1— % forall n € N.
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In particular, since || - ||; is a continuous function, there is a x; € (0,00) such that
SUPyek, lx|l1 < k1. For the martingale sequence {L,},cn defined in Lemma 4.3, we can
find x> € (0, 00) so that

E(L))r AT e
P(Lulr>K) < —F5—<—5 <<
K5 y 8

for each n € N. Then, using the above estimates in Lemma 4.3, with « = AT + k1 + k2, we
see

€
P(IGullhr zx) =
for each n € N. Let my 1 oo be a sequence such that4”('f7§1) < 2k+1 for all k € N. Define
1
Kzz{yeﬁf:forsomexel(hZyl_Zx, — 1/4,VkeN}.
i>my i>my my

Since K is compact, it is immediate from Proposition 4.2 that K is precompact in Ef. Also,
using Lemma 4.5, for any ¢ € [0, T'],

P(G.(1) € K5) < P(IIGyll1,7 = k) + P(G,(0) € KY)

1
—I—P(|Ln,mk|*,r > 1/4 for some k € N, |G, l1,7 <K>

€ 7 1

— 4 DAT — <,

4+8+ (k +1) Zm mk_e
where the second inequality follows from the application of Doob’s maximal inequality with
the stopping time 7 = inf{z | ||G,(¢)||1 > «} and from the expression of (L, ) in Lemma
4.5, and the third inequality follows from the choice of {my}ren. This proves (1) and com-
pletes the proof of the lemma. [

The following lemma gives a characterization of the limit points of G,,.

LEMMA 4.7. Fix T € (0, 00). Suppose that, along some subsequence {ni}i>1, G, = G
in D([0, T]: £)) as k — 0. Then G € C([0, T) : £}) a.s., and (2.2) is satisfied with (g;, v;)
replaced with (G;, Vi), where V; are defined recursively using the second equation in (2.2)
with Vo(t) = At for t > 0.

PROOF. From Lemma 4.1, we see that M, £> 0,in D([0, T'] : €7). By Skorohod embed-
ding theorem, let us assume that G,,, M, , G are all defined on the same probability space
and

(Gnkv Mnk) - (G, 0), a.s.

in D(0, T] : Kli X £»). Since the jumps of G, have size at most 1/n, G is continuous and
IG(s) — Gp, (s)ll1,7 — O a.s. Similarly, || M, (s)|l2,7 — 0 a.s. To simplify notation from
now on, we will take n; = n.

Let V,,i(t) =Ap f(; Bn(Gy.i(s))ds fori > 1 and V, o(¢) = A,t. From (3.5), forany i > 1,

t
(4.11)  Gp,i(t) = Gn,i(0) - fo (Grn,i () = Gn,i1(5)) ds + Vii—1(t) — Vi i (t) + My i (1).
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Fori e N, SUps <1 |Gni(s) —Gi(s)] < SUPs<T 1Gn(s) —G(s)|ly — O and SUPs<T My, (s)] <
sup, <7 |M,(s)|l2 = 0, a.s. as n = 0o. We now show that, for each i € Ny, V,, ; converges
uniformly on [0, 7] (a.s.) to some limit process V;. Clearly, this is true for i = 0 and in fact
Vo(t) = At, t > 0. Proceeding recursively, suppose now that V, ;_1 — V;_1 on [0, T'] for
some i > 1. Then, since all the terms in (4.11), except Vj, ;, converge uniformly, V, ; must
converges uniformly as well to some limit process V;. Sending n — oo in (4.11), we get for
everyt <T andi > 1:

t
Gi(t) = Gi(0) — fo (Gi(s) — Gis1 () ds + Vi1 (1) — Vi(t), as.

This shows the first line in (2.3) is satisfied with (g;, v;) replaced with (G;, V;).
We now show that the second line in (2.3) is satisfied as well. Since V; is the limit of {V,, ;},
the following properties hold:

(1) Vo(t) =Atforallr €0, T].
(i1) V; is continuous, nondecreasing and V;(0) = 0.
(i) For any r € [0, T], fot(l — Gi(s))dV;i(s) =0. This is a consequence of the following
identities:

t t
/0 (1= Gi(s))dVi(s) =11,£n/0 (1= Gi()) dVyi(s)
i /tk(l Gi(5))Ba(Gni(s))d
= lrll'Il b n i1(5))Bn n,i s))ds

t
=i [ lim (1 = G,(5))Bu(Gri () ds
= 0’

where the first equality holds since G; is a continuous and bounded function and V,,; — V;
uniformly on [0, T']; the second equality uses the definition of V,,;, the third is from the
dominated convergence theorem and the fourth follows since B, (x) < x%  for x € [0, 1] and
d, — 00, B,(x) — 0 forevery x € [0, 1).

Thus we have verified that the second line in (2.3) is satisfied with (G;, V;) as well. The result
is now immediate from Remark 2.2. [

4.3. Completing the proof of LLN. We can now complete the proofs of Proposition 2.1
and Theorem 2.1.

PROOF OF PROPOSITION 2.1. Fixr € Ef, A > 0 and choose a sequence r,, € E% such that
r, — rin Eli and for each i, nr, ; € No. Consider parameters A, = A, d, = n and a JSQ(d,)
system initialized at G, (0) = r,. From Lemma 4.7, we have that there is at least one solution
of (2.2), which is given as a limit point of an arbitrary weakly convergent subsequence of
G, (such a sequence exists in view of the tightness shown in Lemma 4.6). The fact that this
equation can have at most one solution was shown in Section 4.1. The result follows. [

PROOF OF THEOREM 2.1. Since G,(0) 2 b in Zf, the hypothesis of Lemma 4.6 is

satisfied, and thus the sequence {G,},>1 is tight in D([0, T] : Ef) for any fixed T > 0. The
result is now immediate from Lemma 4.7 and unique solvability of (2.2) shown in Proposition
2.1. O
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REMARK 4.8. We note that the proofs of Lemma 4.7 and Theorem 2.1 also show that,
under the conditions of Theorem 2.1, for eachi > 1,

sup
t<T

t
P
n [ Bu(Gui ) ds = u (0] 0.
where (g;, v;) is the unique solution of (2.2).

5. Properties of the near fixed point. In this section, we give some important proper-
ties of the near fixed point u,, that will be needed in the proofs of fluctuation theorems. Since
I, is defined in terms of the function §;, we begin by giving some results on the asymptotic
behavior of g, and its derivatives. Proofs follow via elementary algebra and Taylor’s approx-
imation and can be found in Appendix A. Roughly speaking, these results control the error
between sampling with and without replacement of d,, servers from a collection of n servers.
We first note that the function g, is differentiable on (0, 1) \ {%;1} and the derivative is given
as

dp—1 dy—1

fotr= 3 (= jmt [T
o 20 —i/n
5.1 ! i)

d, . d, —1
forxe(—,l] andﬂn(x)=0f0rxe<0, )
n n

dp—1

As a convention, we set /3,, (x) =0forx =
Note that h(t) = Z—“ is an increasing function of ¢ on (—b, oo) when b > a. Using this

+1
fact in (2.7) shows that, when d,, < n,
(5.2) 0<Bu(x) <x¥ =y, (x), x€[0,1].
Using the same fact in (5.1) shows that, for d, < n,
) dy—1
(5.3) 0<pBulx) =< 1" 7> X€(1).

n

The following lemma estimates the ratio between B,, and y,, and its derivatives.

LEMMA 5.1.  Assume d,, < n. Then for any € € (0, 1), as n — 00,

Bn()/Bn(x)

5.4
G Y (X) /¥ (X)

1‘—>O.

xele, 1]
Furthermore, if d, < /n, then

Bn(x) _1
Yn(X)

B (x)

5.5

‘ —0 and sup
xele, 1]

—1‘—>O.

xe€le, 1]

The next corollary follows from the proof of Lemma 5.1 (specifically the estimate (A.3) in
the proof of the lemma).

COROLLARY 5.2. Assume d, K< n. Then for any € € (0, 1),

d2
sup [log () — log yu()| = 0“1 ).

x€le, 1]
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Recall the near fixed points g, = ({t,;)i>1 introduced in Definition 2.

COROLLARY 5.3.  Suppose that d, < n. Leti € N be such that liminf, u, ; > 0. Then

li )Ln//«n,i,B.n(Mn,i)
m ———————

=00 dn:un,i-i-l

=1.

LEMMA 5.4. Assume d, < n and fix € € (0, 1). Then there is a C € (0,00) and ng € N
such that, if for some k e Nand ny € N, u, > € for all n > ny, then for all n > n1 Vv ny,

k
log pp k+1 — (log m(Z d,’l)

i=0

k

C .
< ;Zd111+1

i=1

COROLLARY 5.5. Suppose for some k e N, 1 K« d,]fr] & n. Suppose also that 1 — ©, =
§ntlogdy
dk

n

2
where &, — —log(a) € (—oo, 0o] and i—’; — 0 asn— oo. Then pp — 1 and

Bn(Mn,k) —aasn— Q.

LEMMA 5.6. Suppose that A, /' 1, and 1 L d,, < n. Suppose also that, for some k > 2,
Mnkelandﬂn(unk)eae [0, 00) as n — o00. Then as n — 00, ﬁn(unl)eooandfor
anyi €[k —1],

:Bn (n, l)
,Bn(Mn 1)

The following result is along the lines of Lemma 5.1. It allows for weaker assumptions on
d, but gives an approximation only in a neighborhood of 1.

LEMMA 5.7. Suppose that d, < n23. Let {en} be a sequence in [0, 1] such that e,% <
d;'. Then as n — oc:

(5.6) sup |22 1‘ -0,
xe[l—ep, 171 Yn(X)

and

(5.7) Pulx) 1‘ 0.
xe[l—epy, 1] Vn(X)

The next result shows that if d, — oo, then the behavior of 8, (x) is interesting only when
x is sufficiently close to 1.

LEMMA 5.8. Suppose that d, > 1, and let €, = %. Then as n — o0,

SUPyc0.1—¢,] |1Bn(X)| — 0. Furthermore, if limsupn(i—" < 1 then we also have
SUDx [0, 1—¢,] |:8n(x)| — 0.

6. Preliminary estimates under diffusion scaling. Recall the near fixed point u,, from
Definition 2 and the process Z,, introduced in (1.2). Also, recall the maps a, and b from
Remark 3.1. We will extend the definition of 8, and ,B,, to R by setting 8, (x) = ,B,, (x) =0 for
x < 0. Further, in what follows, for z < 0 and real valued integrable function %(-), the integral
Ji0..h ) du = — [, o, h(u) du. We start by giving a semimartingale decomposition for Z,,.
The quantity A, (z) defined in the following lemma can be viewed as a discrete derivative
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of a, at u, in the direction z. The function A, is asymptotically linear under conditions of
Theorem 2.2 (see Lemma 7.1), and is asymptotically nonlinear under conditions of Theorems
2.3 and 2.4 (see Lemma 6.7). The asymptotic analysis of this map and the resulting system
Z, is a key ingredient in our proofs.

LEMMA 6.1. Fort >0, Z, () satisfies
t t
6.1) Z,t)=7Z,(00) —{—[0 Ay (Z,(s))ds — /0 b(Zn(s))ds +/nM, (1),

where A, : oo — Loo, is defined as A, (z) = /ni{a,(u, +n"?z) —a,(n,)}. Moreover,
(6.2) An(@)i =qni-1@i-1) — qn.i(zi), €N

where

i (2) = / Bulpni + v/ dy, zeR,ieN,
(6.3) [0,z]

gno0(z) =0, zeR.

PROOF. From (3.7) and since a,(r,) = b(n,,),

(G (1) = 1) = V(G (0) — ) + /0 an(Ga(5)) — an(ay)} ds

t
— [ V{b(Ga(5) = b)) ds + M0,

Now (6.1) follows by using the the definition of Z, and A,, and the linearity of b. Further,
using the definition of a,,, we see that (6.2) holds where

AN/ B (in,i + 2//n) — Bun,i)}  fori =1,

(6.4) qn.i(2) = {0 ifi =0.

Clearly, the g, ; defined in (6.4) is same as that given in (6.3). The result follows. [

LEMMA 6.2. Suppose that d, — 00, A, — 1, and for some k > 1, G,(0) LN frinty.
Then there is a standard Brownian motion B so that \/uM, = ﬁBek in ID([0, c0) : £7).

PrRoOOF. Fix T > 0. Since G,(0) — f; and f is a fixed point of (2.2), by Theo-

rem 2.1, G, A [ in D0, T]: £1), where f; here is viewed as the function on [0, T']
that takes the constant value f, € ﬁf. Moreover, by Remark 4.8, forevery i > 1V, ;(¢) =
A fé Bn(Gp.i(s))ds converges uniformly on [0, T'] in probability to v;(¢), where v; solves

(6.5) vi =T1(fri — (fri — frirDid+vi21()), i =1,

and vg(t) =t, where recall that ‘id’” denotes the identity map on [0, 7']. Recalling the defini-
tion of f; we see by a recursive argument that

¢ ifi <k
6.6 (1) = ’
©0 v {0 ifi > k.

Combining this with (3.6), we have for eachi > 1,
(VM) = [ (Gri(9) = Guisr(®))ds +n [ (Bu(Gri-1(6)) = Bu(Grns(5))) ds

= (fi = fri+Did +vi—1() —vi() = H(),
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in probability in C([0, T'] : R) where

% ifi=
Ho= 2 =k o
0 ifi£k,
Adding (3.6) over i, we have for t € [0, T'],
t t
6.7) SV = [ Grari6)ds + i [ (G ds.
i>k

The process on the right-hand side converges in probability in C([0, T'] : R) to fi x+1id +
vk(-) = 0 and thus Y";_;(/nM, ;)1 converges to O in probability. By Doob’s maximal in-
equality,

nEsup) My (1) <4EY (VnMy )7 — 0, asn— oo,

1=<T -k

i i>k

where the last convergence follows by the dominated convergence theorem on noting that the
right-hand side of (6.7) is bounded above by sup,, (1 + A,) < oo. The result now follows on
using the martingale central limit theorem (cf. [11], Theorem 7.1.4) for the k-dimensional
martingale sequence (v/nMy 1, ..., /nMyi). O

Recall the functions g, ; from Lemma 6.1.

LEMMA 6.3. Assume that for some r € N, limsup,,_, . tn.r < 1. Then for any L > 0,

qn,i(2)
Z

=0.

limsupsup sup
n—>o0 j>r 0<|z|<L

PROOF. By (6.3),

4n.i(2) <ApSup sup sup

Z i>r 0<|z|<L |y|<z

sup sup
i>r 0<|z|<L

Bu <Mn,i + %)‘

(s ) <hn o e

= A, Sup sup
Vn 0<x<pn,+-L
=X=HMUn,r N

i>r|z|<L

which converges to 0 by Lemma 5.8, since limsup,,_, . (tn,r + ﬁ) <1. O

For L € (0, c0), define the stopping time

. 1
6.8) _—_ 1nf{t| 1Zy)], = L — ﬁ}'
Since the jumps of Z,, are of size ﬁ, we see that, for any 7' > 0,
(69) ||Zn||2,T/\r,,,L <L.

Recall from Section 1.2 the vector z,+ € R* associated with a vector z € R,

LEMMA 6.4. Suppose that as n — 0o, G, (0) i) frin @% and Z, ,+(0) £> 0 in £ for

some r > k. Then forany T, L > 0, || Zy y+ 12,7 A7, £> 0.
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PROOF. Fori >kandzeR,letA, ;(z) = q”%@ﬂ{#o}. Then, since lim,,—, oo iy k+1 =0,
by Lemma 6.3,

(6.10) Sn,L = sup sup|A,;(z)]—0, asn— oo.
i>k+1|z|<L

Next, from (6.1), fori >r+1>k+1,

INT,
Zn it A ) = Z0i (0) + /0 Aniot(Znio1(9)) Zni—1(s) ds
INT,
- fo A i(Zni(8)) Zni(s) ds

AT,
- /O (Zui () = Zni1(8)) ds + /AMy it A T),

where we use 7, instead of 7, ;, for notational simplicity. Then, observing from (6.10) that
SUP; > +1 SUPse[0.7,] | An.i (Zn,i (1)) < 6n,L, We have

AT,
|Zn it At)| < | Zni(0)] + 3n,L/ (|1Zn,i=1 ()| + | Zn,i (s)]) ds
6.11) 0

tAT,
+/0 (| Zn.i ()| 4 | Zn.i+1(8)|) ds + |VnMpi (t A1)l
Define maps F1, Fp : R® — R by

X1 i=1,
Xi—1+xi 1>2,

(F1x); 2{

(Fax)i =x; +xi+1, i1€N.
Then by collecting (6.11) over all i > r 4 1, we get

ATy
20 AT = | Zirs O +00s [ F1|Zsi )] ds
AT,
(6.12) ous [ 1200 erds

ATy
+ /0 Fa|Zn 4+ (5)|ds + [ViMo 4t A7),

where the absolute values |z| € R* and integrals are interpreted as being coordinatewise for
infinite dimensional vectors z € R®. Now noting that the maps F;, when considered from
¢>» — £, are bounded linear operators with norm bounded by 2, we have fori =1, 2,

IAT)
[ Fi 2ol ds

ATy
< / 2 Znrs (5)] ds.
2 Jo
Using the triangle inequality in (6.12) shows for any t < T,
” Zn,r-i—(t A Tn)||2 = ” Zn,r—i—(o) ”2 + ”\/EMn,r-i-”Z,T + 5n,LLT

INT,
2014 601) /0 |Z0.rs ()] ds.

where we have used that [Ol AT |Z, r(s)|ds < Lt. Hence, using Gronwall’s inequality,

1Znrsl2. 70ty < (| Znr+ O]y + 80 L LT + 1My i |l2, 1) e Hon0T
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Now, as n — 00, || Z,.,+(0)]2 LN 0 by assumption, 8, ; — 0 by (6.10), and |/n x
M, 421 £> 0 by Lemma 6.2. The result follows. [

The following elementary lemma will allow us to replace 7, A T with T in various
convergence results. The proof is omitted.

LEMMA 6.5. Fix T € [0, 00). Suppose for each n € N and L > 0 that v, 1 is a [0, T]
valued random variable such that limj,_, «, sup, P (v, < T) — 0 for some T > 0. Suppose
that there is a sequence of stochastic processes {Fy,},en with sample paths in D([0, T] : R)

P . P
such that for each L > 0 |Fy|x 1Az, , — 0 as n— o0. Then in fact |Fy |« 7 — 0 as n — oo.
The next lemma gives conditions under which the near fixed point p,, converges to f.

LEMMA 6.6. Let0<¢,=1—x, be such that €, — 0 and €,d,, — oo. Then p,, — f,
infyasn— oQ.

PROOF. Using Definition 2 and (5.2) note that O < pty, j+1 = AnBn (i) < MZ”I. for each
i > 1. Hence in order to show u, — f; in £y, it suffices to show that (1) u, 1 — 1, and (2)
un,2 — 0. This convergence is immediate on observing for (1) that u, 1 =A, =1—¢, = 1,

and for (2) that p, 2 < “Zr,ll = (1 =€) <eedn 0. O

The following lemma gives a convenient approximation of the term ¢, 1 introduced in
(6.3) in terms of certain exponentials.

LEMMA 6.7. Suppose d, — oo and d,, < n*/3. Let 1, =1 — (% + %)for some real

dya?
n

sequence {0, }n>N satisfying — 0. Then, for any L > 0,

d, d,
exp(E=(z — an)) — exp(——Eay)
(6.13) limsup sup v ’ N

1|=0.
n—>o0 0O<|z|<L Qn,l(z)dn/\/ﬁ

PROOF. We only consider the case 0 < z < L. The case —L < z < 0 is treated similarly.

_ . L \2 log? dy, 2 2
Recall that @, 1 = A,. Noting that d,,(1 — 1, + W) <4d,( 2 +oa;/n+L7/n) — 0 we

have on applying Lemma 5.7 with €, = (1 — A, + %) that, for any |z| < L,

an1@=(1+o) [ ?n()»n-F%)dy

=(1 +o(1))f0 exp((dn - 1)1og{/\n + %} - logdn) dy

% } +log dn) dy.
Using expansion for log(1+ /) around 4 = 0 and once more the fact that d,, (1 — 1, + %)2 —
07

=(14o0(1)) /(;Z exp(dn log{kn +

an1 () = (14 o(1) [()’exp(d,,{xn “1q %} —I—loga’n) dy

= (1+o(1)) foz exp(%()’ - an)> dy
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exp(J (2 — ) — exp(— o)

= (1+o0(1)) N

which proves (6.13). [

Proof of the following lemma proceeds by standard arguments but we provide details in
Appendix B.

LEMMA 6.8. Fix T > 0. Let g, h, M be three bounded measurable functions from
[0, T] — R and assume further that M is a right-continuous bounded variation function.
Suppose that m = infsc[o, 7 A7 h(s) > O for some T > 0. Let 7 : [0,T] — R be a bounded
measurable function that satisfies for every t € [0, T],

t t
(6.14) z(t):z(O)—/0 h(s)z(s)alsik/0 g(s)ds + M(t).

Then for any t € [0, T A 7],

|g|*,T/\r
m

}Z(I)}f +2|1‘/[|>s<,T/\r +€_mz’1(0)’-

LEMMA 6.9. Fix T € (0, 00). For each n, let V,, be a martingale with respect to some
filtration {G}'} such that V,(0) = 0. Let (r,);>, be a positive sequence so that lim, o1, =
~+00. Suppose that there is a C € (0, 00) such that for alln e Nandt € [0,T], (V,,); < Ct.
Then for any € > 0,

P(sup(Vn(t) nt) > e) -0

t<T

asn— Q.

PROOF. Let 8, = —=. Then

P( sup [Va(0) —rar] > €) <P( sup [Va®)]> )+ P( sup [Va()|>7a8s)

0<t<T 0<r<6, Sp<t<T

<4EV,, (8,)%> A4EV,(T)*

- €2 ("n‘sn)2
4E(Vy)s, 4E(V,)r 4Cé, A4CT
— < — 0,
€2 (rn8n)2 - € (rnan)2

where the inequality on the second line is from Doob’s maximal inequality. [

7. Proof of Theorem 2.2. Now we start with some preliminary lemmas. Recall from
Remark 2.5(ii) that under the hypothesis of Theorem 2.2 we have u,, — f € Zf as n — oo.

Along with the tightness of {||Z,(0)||1},eN, this shows that G, (0) LN fre E% as n — oo.

LEMMA 7.1. Let d, — o0, % — 0, and A, /' 1. Assume that for some k € N,
liminf, up xk =6 > 0. Then forany L > 0and 1 <i <k, as n — oo,

(7.1) sup | (Bu(ni)2)” /ﬁnwn,ﬂ/ﬂdy—l ~0.

O<|z|<L
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PROOF. To prove (7.1), we will approximate Bn (x) by Pn(x). Using Lemma 5.1,
B (x)
Yn(x)
Since liminfn u,n k> 6/2 and j — p, ; is decreasing, there is an Ny so that for n > Ny,
Mn,i + f 2, for any i <k and y € R with |y| < L. Hence uniformly in 0 < |z| < L and
i <k,

€, = Sup —1‘—>0.

xe[8/2.1]

,Bn Un,i + L) Y ( Mn,i + L)
_/‘ 4= l—i-o(l)/Z gy

lgn(,unl) Yn (Mn,i)
1+0(1) ( >dn—1
d
\/_an Y
B 1+0(1) z _ y
= A exp{(dn l)log<1 + «/r_mn’)}dy

_1+o() (¢ dp L
= . /()exp{O(\/ﬁ(S)}dyﬁl.

REMARK 7.2. Suppose that the hypothesis of Lemma 7.1 hold. Recall the definition of
A, for i > k from the proof of Lemma 6.4. We extend this definition by setting

(7.2) Ap, i(2) =qn, t(Z)/(,Bn(Mn Z)Z) {z#£0} — 1 ifl <i <k,
where g, ; is defined by (6.3). With this extension,

Brn(un)(1+ Ani(2))z if1<i<k,

This shows (7.1). [

(7:3) i =\ 6 )z it > k.

Using this notation, Lemma 7.1 and Lemma 6.3 show that, for any L > 0,

(7.4) YaL =Sup sup |A,;(z)| >0 asn— oo.
ieNO<|z|<L

The following corollary is an immediate consequence of Remark 7.2 and Lemma 6.1.

COROLLARY 7.3. Under the hypothesis of Lemma 1.1, Z,, satisfies the following integral

equations.
Fori=1,
t .
Zu (1) = Zy.1(0) — /0 B Ctn (L4 Dp 1 (Zn1(5))) Z1 ) dis
t
- fo (Za1(5) = Zu2(s)) ds + v/aM1 (0.
Forie{2,...k}

Zni(6) = Z0i(0) + /O B Cttni )1+ Ai1(Zni1(5))) Zni—1(5) ds
t .
- /O B Cttn) (14 A (Zn.i(5))) Zui () ds

t
- /O (Zn.i(5) = Znis1(5)) ds + /My i (1)
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Fori=k+1,

t .
Zn k1 () = Zn s 1(0) + /0 B i) (1 + At (Zui(5))) Zui(s) ds
t
- /0 Ants 1 (Znis 1)) Zontr 1 (5)

~ [ (Zaks1) = Zuser2(0)) ds + VM1 0.

Fori>k+1,

t t
Zni(6) = Zy.1(0) + /0 Anit(Zuni—1($)) Zni—1(5) ds — fo Ani (Z(5)) Zni () ds

t
- /0 (Zni(5) = Znio1($)) ds + Ay (1),

where A, ; is as in Remark 7.2.
Finally, if o1 = Y X_| Zy.i, then

t .
Yo 1 (1) = Y1 (0) — fo B (btn ) (1 + A (Zn 1 (5)) Zn i (5) s

(1.5) , A
- /0 (Zn1 () = Zn g1 ) ds + 3 /My 1 (0).

i=1

LE.MMA 7.4. Suppose A, /1 and 1 K d, <K n. Assume that for some k > 2, pip  — 1
and B,(n k) = a € [0,00) as n — 0o. Define the k — 1 x k — 1 tridiagonal matrix Q,(s)
as

0n (), j1=Bun(un )1+ Ap j(Zn j()) +1, 1<j<k—1,
(7.6) 0n()j, j+11=—1, 1<j<k-2,
0n()j,j—11==BuCn j—0) (1 + An j=1(Zn,j-1(5))), 2<j<k—1,
and for all other j, k, Q,(s)[j, k] =0. Then for any T, L € (0, 00),

lim inf inf =2 =400 a.s.
n—>005e[0,T ATy, ] ¥eRF-1\{0O}  ||X||

PROOF. Let iy i(s) = Bu(itn,i)(1 + Ani(Zn,i(s))) + 1 and Hy(s) = Qn(s) + Qu(s)".
Then H,(s) is a symmetric tridiagonal matrix with entries
Hy()[j, j1=2hn,j(s), 1=j=<k-—1,
(1.7) Hy($)lj, j+11=—hy j(s), 1=<j=<k-2,
Hy($)lj,j —11=—hp j-1(s), 2=<j=<k—-1

Let h, = ,3,, (tn,1)- By Lemma 5.6, h, — oo and by the uniform convergence in (7.4) and
Lemma 5.6 once more

hn,i(s) 1

n

‘max sup
i<k=1ge[0,TAty.]

‘—)0 asn — oo a.s.

This in particular shows that

1
—H,(s)— H

7.8
(7.8) we

s€[0,T ATy ]

—0 as.,
F
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where || - || r is the Frobenius norm and H is the k — 1 x k — 1 tridiagonal matrix given as
H[j,j1=2, 1=<j=<k-1,
Hj,j+11=-1, 1=j=<k-2,
Hlj,j—1=-1, 2<j<k-1
Note for any ¥ = (x1, x2, ..., x¢_1) € R¥~! by completing squares
XHX =x{ 4 (= x1)% 4 (3 —x2)7 4+ (k-2 — x5 1) + X0,

which is strictly positive if X # 0. Let ¢ = infjz = X' HX. Since the unit sphere is compact,
the infimum is attained, and hence ¢ > 0. This shows that H is a positive definite matrix.
Finally, note that for any s > 0,

1 A -
X —H,(s)X =X"HX —i—xt(—Hn(s) — H)x
hy, Iy

> X' HX — |hy, Ho(s) = H| X1 = (c = |y Ha(s) = H| 2) IX ],
On taking infimum and using X’ H,,(s)X = 2x' Q,,(s)X, this shows

2X1 0, ()%
inf inf %7"9 > (c — sup |k Has) — HHF)hn.
sel0,TAt ] xeRR\(0} [ Xl s€[0,T ATy ]

As n — 00, the convergence in (7.8) and the divergence 4, — +00 now completes the proof.
O

REMARK 7.5. Forevery s > 0, the k — 1 x k — 1 matrix Q,(s) appearing in the previous
lemma is the drift operator that appears in the right-hand side of the first k — 1 coordinates in
Corollary 7.3. More precisely, for each t > 0,

- . t . t .
(79)  Xu(t) = X, (0) — /0 0n($) X () ds + &1 /0 Zo () ds + W (1),

where Xn =(Zn1,2Zn2s---s Znik—1), Wn = (\/EM,,J, e \/ﬁMn,k—l) and é,_ is the vec-
tor (0,0,...,0, 1)’ e RE=1,

LEMMA 7.6. Suppose that the hypothesis of Theorem 2.2 holds with k > 2 and let X n=
(Zn1,Zn2,y ...y Znk—1). Thenfor L, T, € € (0, 00),

(7.10) P( s [Xu®)] > [Xa (0] +¢€) -0,
s€[0,T ATy, L]
and
(7.11) sup [ Xu(s)| S0,
sele, TNty L]
as n — Q.

PROOF.  Applying It6’s formula (see [34], Section IL.7) to the function h(x) = ||X||* and
the semimartingale representation of X,, from (7.9) in Remark 7.5, we get

> 2 > 2 ros > =
%O = 1Za @1 +2 [ (Rt dRo(o)] + W,
N ) l‘_, N t N N
(7.12) — | Xa O] =2 fo (X0(5), On(s)Xn(s))dls +2 /0 Zn k()X (), 1) ds

r . -
_|_2/0 (Xn(s=), dWy(s)) + [Wy1;,
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where [Wn]t —Zk 11[an ilr. Let

X (5)! Qn(5)Xn(s)

)= R o ez T o0

gn(s) = 2Zn,k(5)zn,k—l (s),

r o 5 -
Ru(s) =2 fo (Xn(s—), dWo(s)) + [Wal,

then (7.12) becomes

N R t . t
(7.13) | X0 (0)]* = [ X ()] - 2/0 h ()] X ()] dis +/O gn(s)ds + Ry (1).
Further, by Lemma 7.4,
(7.14) m, = inf h,(s) > +00 a.s.asn — o0,

s€[0,T ATy ]

and by Doob’s inequality and It6’s isometry (see, e.g., [34], Corollary 3, Section I1.7), for
i<k-—1,

E sup
€[0,T Aty L]

/Znt(s )d(\/_an)(s)

< 4Ef ngi(s—)d[\/ﬁMn,i]s

<4L’E[/nM, It =4L*E(J/nM, ;)1

where the second to last inequality is obtained by using [|Z,||2,7Ar, , < L. From the proof
of Lemma 6.2, we see that for any i <k — 1, E(/nM, ;)7 = E[\/nM, i1t — 0 as n — oo.
Along with the above display, this shows that the two terms appearing in the definition of R,
are converging to zero, and hence

(7.15) |RuleThs,, — 0 asn— oo.

Applying Lemma 6.8 to (7.13) with z(¢) = ||)?n(t)||2, h=2h,, g =80, M=R,,and 7 =
T,,1 shows forany r € [0, T AT, 1]

< |gn|>t<,T/\rn’L
2

1X, (0] 2Ryl T agy, + €2 X, (0) |7

Taking ¢ = €, = 1//m, and using (7.14), (7.15), |gulw7ng, < 2L* and X,(0) &>
(z1,..-2k—1)", we see that

(7.16) sup [ X (1) 0.

tele,, T Aty L]

Since €, — 0, this shows (7.11) for any fixed € > 0. Finally, from (7.13), we see that

v 2 v 2
sup ”Xn(t)H =< HXn(O) ” + |gn|>x<,T/\t,,,L€n + |Rn|*,T/\r,l’L-
tel0,e, ATy LA
Since we have already shown (7.16), the convergence in (7.10) is now immediate on using
that €, — 0, |gnl+, T Az, < 212 and that (7.15) holds. I

COROLLARY 7.7. Under the assumptions of Lemma 7.6, for each i < k,

A P
I "L Z i () ds = 0, as n — oo.
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PROOF. For any € > 0,

TNty L
/ |Z,i(s)|ds 5/ |Z,i(s)|ds +f |Z,i(s)|ds
0 [0,eAT, L] [e,TATy, L]

<Le+ sup |Z,i(s)|T.

sele, TAty, L]

Now fix § > 0 and let € = % Then for any i < k,

TAT, L S
(7.17) P(/ | Zni(s)|ds > 8) < P( sup | Zn.i(s)| > —>,
0 sele,TAty, L] 2T
which from (7.11) converges to 0 as n — oo. Since § > 0 was arbitrary, this completes the
proof. [

PROOF OF THEOREM 2.2. Recall the conditions in the theorem. By Remark 2.5(ii) and
the tightness of {||Z,,(0)||1}reN, the hypothesis of Lemma 6.2 holds. Hence by Skorokhod’s
embedding theorem, we can assume that {(Z,(0), M,)},<n and a standard Brownian motion
B are defined on a common probability space such that for any 7 > 0,

(7.18) sup|v/nM, (1) — V2B(t)ex |, — 0
t<T

and

(7.19) 12,(0) =z, >0 as.,

asn — oo. Let Y and Y, be as in the statement of the theorem. Taking m =r — k + 1, let
Y, = (Zf;l Zni, Znk+1s---> Zn,r) be the stochastic process with sample paths in D([0, 7] :
R™) corresponding to the first m coordinates of Y. Note Y, m+ = Zp 4, Zpnj = Yn1 —
Zf.:]l Zyi,andfork=1,Y,1=Z,;. Hence by Corollary 7.3, I?n satisfy

t t
Yo 1(£) = Y1 (0) — /0 1 (5) Y1 () ds — Ty /0 Yo 1(s)ds

t
(7.20) +/O Yo2(s)ds 4 /nM, (1)
k=1 . ; k—1
+ Z/o an k() Zn,i(s)ds — ]I{k>1}/0 Zna(s)ds+ > /nMy (1),
i=l i=1

t t t
Yo a(t) = ¥,2(0) + /O 1 (5) Y1 (5) s — fo Yoo (s)ds + fo Yo3(s)ds

k—1
(7.21) - ; fo o (8) 7 5 (5) ds — /0 kst (5) Y (s) ds

and fori € {3,4...m},
t t
Vi () = Vi (0) — f Y,i(s)ds + / Yis1(s)ds
0 0

7.22 ! !
(7.22) + /O Sutsi—2(8) Vi1 () ds — /0 Snsio1 ()Y i (5) ds

+ My gyi—1 (1),
where @, 1 (s) = B (nk) (1 + Ak (Zy 1 (5))) and 8, (s) = Ay i (Zp.i(s)) for i € N.
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Since || Z, 2,7 A7, , < L, we have by (7.4) that, for any i € N,
(7.23) [8n,ils,T Aty < Vn,L —> 0 as.asn— oo.
Moreover, since ,Bn(,un,k) — « € [0, 00), this also shows that

(7.24) sup  |ank(s) —a| >0 as.asn— oco.
s€[0,T ATy, L]

‘We now show that
(7.25) 1Y, = Ylorne, —0 asn— oo.

To see this, note that, by Remark 2.5(ii), the hypothesis of Lemma 6.4 is satisfied, and hence

1Znr i 2705, , —> 0. Since ¥yt = Z, r+ and ¥,y =0, this shows that
P
(7.26) 1Y n,m+ — Ymsll2,rnz, . — 0.
Thus in order to prove (7.25) it suffices to show that > | |Y, ; — Y; .7 ATy L i 0asn — oo.

To show this, we consider U, ; =Y, ; — Y;. Subtracting (2.9) from (7.20), (7.21) and (7.22),
we see

= I t d t d
U 1(t) = Up.10) — (o + L)) fo Up1(s)ds + fo Uy 2(s) ds
+ VM, 1 (1) — V2B(@t) + Wy 1 (1),
t t t
(727)  Upa(t) = Up2(0) + / U 1(s) — / Una(s) ds + / Un 3(s) ds + Waa (1),
0 0 0

t t
Up i (6) = U 1 (0) — / Un.i(s)ds + / Un.is1(s) ds
0 0

+ W,i(t) forie{3,4...m},

where

t k=1 .y
Wn,l(t)i/o(a—an,k(s))Yn,l(s)derZfO an k() Zn,i(s)ds
i=1
; k—1
— g1y fo Zu1(s)ds + 3 A/aMy i (1),
i=1

t k=1 .4
Wy a(t) = /0 (@) = @) Y1) ds = 3 [ ni6)Z,566)ds
i=1

t
—/0 Snk+1()Yn2(s)ds + /nM, j+1(1),
t
W, i (1) = fo S iri—2(5) Vi1 (s)ds

t
— [ ki OYis 6 ds 4 VM i1(6) fori € Be.m)

Note that, for each n, ||Ynll2, 717, < kllZnll2,7 17, > Which by (6.9) is bounded above by
kL. Hence by (7.24), (7.23), (7.18) and Corollary 7.7,

(7.28) (Winile.Thm, —> 0 asn— oo
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for each i € [m]. Let |Unll1,r = Sup;epo.] > 1Up,i(2)|. Then, from (7.27), for any ¢ €
[07 T AN Tn,L]’

m t
1Wnlhs = Y (Uns O]+ Waslerng, ) + 1WiMux = V2Bl + R [ U l1sds
i=1
with R = max (2« + Ijx=1}, 2). Hence by Gronwall’s inequality,

m
||Un||1,T/\'r,,,L = <|ﬁMn,k - ‘/EBl*,T + Z(|Un,z(0)| + |Wn,i|*,TAr,,,L))€RT.

i=l

By our hypothesis, as n — 00, |U, i (0)| = |Zy k+i—1(0) — Zn.k+i—1l LN 0 for each i € [m].

Hence by (7.28) and (7.18), |Unll1.7r5,, = X1 |Yai — YiliT Az, —> 0 as n — oco. Com-
bined with (7.26), this completes the proof of (7.25).

Next, we prove (2.8). Fix § > 0. Since Y has sample paths in C([0, T'] : £5), we can find
L € (0, 00) so that

(7.29) P(IIYll2,r > L1) <

N S

Also, since Z,,(0) LN z, we can find a Ly € (0, 0o) so that

(7.30) sgp P(|Z,(0)], > L,) <

N S

Let L=(Li+1)4+k(Ly+ 1)+ 1. Also, let )?n be asin Lemma 7.6 when k > 1. Fork =1,

-

we set X, = 0. Then

k—1
||Zn||2,T/\r,,,L =< ||Xn||2,T/\t,,,L + H Yn — €] Z Zn,i

i=I

2,T ATy
< Kl 1 Xnll2, 7 Az + 1Y nll2, 755, -
Hence for each n e N,
P(t,,L <T)<P(lZsl2,7Ar,, > L —1)
< P(I¥ulo7rn,, > L1+ 1) + P(IXull2rar,, > Lo + 1),
<8+ P(I¥y = Ylarnn, > 1)+ P(IXul2rre,, > [Xa@)] + 1),
where the last inequality uses (7.29) and (7.30). From Lemma 7.6 and (7.25), we see

limsup P(|Zll2,7 > L) <limsup P(z,, <T) <$.

n—o00 n—0o0
Since § > 0 is arbitrary, the convergence in (2.8) is now immediate.

This convergence in particular says that lim;_, o sup,, P (7, < T) = 0. Using Lemma
6.5 with F,(¢t) = ||Y, — Y|l2;, we now see from (7.25) that ||Y, — Y|2.7 £ 0asn— .
Similarly, if k£ > 1, then taking F, (t) = SUPscre.r] 1 Zn.i ($)] in Lemma 6.5 we conclude from

Lemma 7.6 that for each i € [k — 1] and € > 0 SUPgsere. 711 Zn.i (5] LN 0 as n — oo. This
completes the proof of Theorem 2.2. [
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8. Proof of Theorem 2.3. In this section, we give the proof of Theorem 2.3. We begin
by giving a convenient representation for Z, under the assumptions of Theorem 2.3 and
establishing some a priori convergence properties.

LEMMA 8.1. Suppose ¢, = % —>ce(0,00)and ), =1— (105:1,, + %) where o, € R,

liminf, , o o > —00 and nofﬁ — 0. Suppose also that {||Z,,(0)||1}neN is a tight sequence
of random variables and Z,, ,+(0) ﬁ) 0 in ¢y for some r > 2. Then there are stochastic

processes &,, {Wy, ;}:_, with sample paths in D([0, 00) : R) such that for any t > 0,

t t
Zo 1 () = Z1 (0) — fo Zo1(s)ds + /O Zna(s)ds + AMy 1 (1)
t
_ (c”ecnan)—I/ (1 +8n(s))(ecnzn.l(s) _ l)ds,
0
t t
8.1)  Zya(t) = Zy2(0) — / Zua(s)ds + / Z 3(s)ds + Wi 2(1)
0 0
t
+ (cnec”""‘)_1 / (1 +8n(s))(ec”z"’1(s) —1)ds,
0

t t
Zy,i(t) = Zy,i(0) —/0 Zn,i(s)ds +/O Zn,iv1(s)ds + Wy (1) forief3,....r}
and for any fixed L, T € (0, 00):

(1) /nM, = V2B in D([0, 00) : R) where B is a standard Brownian motion,
(2) 8nls,1, = O a.s.

P .
3) [Wh.ils.T, > O0forie{2,...,r},
P
“ ||Zn,r+”2,Tn — 0,

where T, =T A v, and 1,1 is defined as in (6.8).

PROOF. Recall the definition of g, ; from Lemma 6.1. Define
80 (8) = .1 (Zn,1(5))cn (eI Zn1 O 7en] — g=cnem)=1 _
so that
4n1(Zn,1(9)) = (14 8, (5))c, ! (erlPn1@menl — g=cnom),

Since SUPs<T A7, | |Z,,1(s)| < L, Lemma 6.7 shows that |8, 7, = 0 a.s. Define

t
Wy (1) = — /0 dn2(Zn2(5)) ds -+ /My 2(0),

t t
Wi (1) i/o Gn,i—1(Zn,i—1(s))ds —/0 qn,i(Zni(s))ds + /nM, ;i (t) forie{3,...,r}

From Lemma 6.1, it follows that (8.1) is satisfied. Lemma 6.6 shows that p, — f; € E%.

Along with the assumed tightness of {||Z, (0)||1},eN, this shows G, (0) = n,, + Z"—(no) LN fi1

NG
in Kli. Hence by Lemma 6.2 and Lemma 6.4,

(8.2) VnM,, = /2Be; in D([0, 00] : £2)

P .
and ||Z, 4+ |l2.7Ar,; — 0 as n — oo. Since |Z,, |, 7z, ; <L and w,2 — 0, Lemma 6.3,

together with (8.2), shows that |W,, ;. T, £> Oforeachie{2,...,r},asn—oco. [
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The next lemma gives pathwise existence and uniqueness of solutions to a system of
stochastic differential equations in which the drift fails to satisfy a linear growth condition.

LEMMA 8.2. Suppose c € (0,00), € (0,00] and B is a standard Brownian motion.
Then for any r > 2 the system of equations

Z1(t)y=z1 — /Ot Zi(s)ds + /Ol Zy(s)ds + «/EB(I) — (ceca)*l ‘/(;t(eclws) _ l)ds,

t t t
Z>(t) =20 —fo Z>(s)ds —{—/O Z3(s)ds + (ce“")_lfo (eCZ‘(S) —1)ds,

(8.3)
t t
Zi(t) =1z —/(; Zi(s)ds +/0 Zit1(s)ds forie{3,...,r},
Zi(t)=0 fori>r
has a unique pathwise solution Z with sample paths in C([0, 00) : £3) for any (z1,...,2r) €
R".

PROOF. The case when o = oo is standard and is thus omitted. Consider now the case
a < oo. It is straightforward to see that there is a unique Zy = (Z3, Z4, ...) in C([0, 00) :
£») that solves the last two equations in (8.3). Hence it suffices to show that, the system of
equations

Zi(t) =21 — (ce®) ™! /Ot(eczl@) —1)ds + fot(zz(s) — Z1(s)) ds + V2B(1),
(8.4) t t t
Z2(1)2Z2+(ceca)_1/0 (ec416) 1)ds—/0 zz(s)ds+f0 h(s)ds

has a unique pathwise solution (Z1, Z,) with sample paths in C([0, co) : R?) where h = Z3 €
C([0, 00) : R) is a given (nonrandom) continuous trajectory and (z1, z2) € R2.
Define y; = z1, y2 = 21 + z2 and consider the equation:

t t
Yi(t) =y — (ce®) ! / (e — 1) ds + / (Ya(s) — 2Y1(s)) ds + V2B(1),
(8.5) t ° 0
Y2(t) = yy — / Yi(s)ds +f h(s)ds +~/2B(t).
0 0
Note that (Z1, Z;) solve (8.4) if and only if (Y1, ¥>), with Y| = Z; and Y» = Z| + Z> solve
(8.5). Thus it suffices to prove existence and uniqueness of solutions for (8.5).

For L € (0, c0), let nz : R — [0, 1] be such that n;, is smooth, 17 (x) =1 for |x| < L and
nr (x) =0 for |x| > L 4 1. Consider the equation

vhw =y ()" [ M On(vE ) ds
0
(8.6) + (ce) '+ /Ot(YzL (s) —2YL(s))ds + V2B@),

Yty =y, - /Ot YL(s)ds +_/(;th(s)ds +V2B(1).

Since for each L (8.6) is an equation with (globally) Lipschitz coefficients, by standard re-
sults, it has a unique pathwise continuous solution.
Fix T € (0, 00) and let t;, =inf{t > 0: |Y1L (t)| = L} AT for any L > 0. Then by pathwise
uniqueness of (8.6), for 0 <t <tp ATp41,
YE(n) =YE o).

This in particular shows that, t;, < 7741 a.s.
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We now estimate the second moment of |YL(t)|. By Itd’s formula,
(YE0))? = (y1)? = 2(ce ™) / YL (5)e T Oy (YE(s)) ds +2(ce™ / YE(s)ds
- 2f0t YE@)(YF () —2YE(s)) ds + 2ﬁfo Y[ (s)dB(s) +2t,
(YL (1)) = (y)? — 2/t YE)YE(s)ds + 2ft YE(s)h(s)ds + 2ﬁ/t YE(s)dB(s) + 2t
2 0 1 2 0 2 0 2 .
Thus
(YEO)2+ (Y (0)> = D> + () — 2(ce™ / v (5)e M Oy (v (5)) ds
+2 ce f Yl (s)ds +2/ Y2 ($)h(s)ds
— 4/0 (vL(s)) ds + 2«5/0 (YE(s) + Y¥(s))dB(s) + 4.

Since ¢ > 0, we have on using the inequality |x| < 1+ |x|? that —xe““ 5 (x) < (1 + |x|?) for
all x € R. Thus with | Y Xl = sups i1 1Y = (),

IPE, <1 + 4oy ™ [ P2 s +2 [ (1 P2 lac)as

2
)+

Taking expectations and using Doob’s inequality and Itd’s isometry to compute the expecta-
tion over the supremum:

+ 2«/5(1 + sup

0<s<t

/S(YIL(M) + YL ) dB(u)

L cay—1 ! L2
EYE, <151+ @ee) ™ +20hlr) [ 1+ E|YH7 ) ds
+2«/§<1+4E/[|Y1L(u)+Y2L(u)|2du) +4¢
0

t
< (P +KT+D)+K [ EIYH[ ds

0 ,

with K = 4(ce®)~1 + 2\hlsT + 16+/2 for any ¢t € [0, T]. By Gronwall lemma, for every

LeN,

E|YE2 . < (1P + K (T + D)X =cy.
Thus, as L — oo
Py <T)<P(|Y*|, ;> L) <c1/L* -0,

and consequently 7; 1 T a.s. as L — oo. Now define Y (f) = YL (¢) for 0 <t < t7. Then Y
is a solution of (8.5) on [0, T). The same argument as before shows that this is the unique
pathwise solution on [0, T'). Since T is arbitrary, we get a unique pathwise solution of (8.5)
on [0, 0o). This completes the proof of the lemma. [

LEMMA 8.3. Suppose the assumptions of Theorem 2.3 hold. Suppose further that Z,,(0),
M, and a standard Brownian motion B are given on a common probability space such that
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Z,00)— zin Eli and M, — /2Be, in D([0, 00) : €2) a.s. Let Z be as defined in Lemma 8.2.
Then forany T, L € (0, 00),

P
(8.7) Zn — Z”Z,T/\T,LLATL —0 asn— oo,

where T, =inf{t | | Z(t)|l2. > L}.

PROOF. Fix L,T € (0,00) and let T, =T A 1,1 A 7. Using the estimate [e?* — ¢%| <
ae" ™) |x — y| for x, y € R, a > 0 and since | Z,,,1(s)|. |Z1(s)| < L for any s € [0, T,,], note

|an(s)ecn2n,1(S) _ aecZ1(S)|
< }an(s)eannJ(S) _ an(s)ec”zl(s)| + |Cln(S)€C"ZI(S) _ an(s)eczl(s)|
+ |eczl(s)|}an(s) —al

< |an(s)|cne ™| Un,1(s)| + |an (s)|LeX Ve, — c| + L ay(s) — al,

where a,(s) = (c,e*)~L(1 + 8,(5)), ¢n =dy//n — ¢, 8, is as in Lemma 8.1, a =
(ce)~ ! and Uni=2Zy;— Z fori € N. Since ¢, — ¢ and |§,[«,7, = 0 a.s. by Lemma
8.1, la, — als, 1, — 0 a.s. Hence for any s € [0, T,,],

(8.8) |ane?rt —ae?|, < K|Upiles +rns
where K = supn(cneC”L|an|*,Tn) < o0 a.s. and
rp = |an|*,TnLeL(c”vc)|cn —c|+eLa, —a w1, > 0 as.

Subtracting (8.3) from (8.1), for any ¢ > 0,

t
U 1(t) = Uy 1 (0) — /0 (Un 1(5) = Up 2(5)) ds -+ M1 (£) — V2B(0)
t t
— /0 (a1 (s)enZn16) _ qecZ10)) g +/O (an(s) —a)ds,
t
(8.9)  Upa(t) = Upa(0) — /0 (Un.a(s) — Un3(s)) ds + Wy 2 (1)
+ /Ot(an,l(s)ec”z’“m — aeczl(s))ds — /(;t (an(s) —a)ds,

t
Un,i(t) = Uy,i (0) —/ (Un,i(s) = Univ1(s))ds + Wy, (1) forie(3,....r}.
0
Let H; = supg¢po.] Y i1 |Uy,i(s)|. Then from (8.8) and (8.9), for any ¢ € [0, T},],

H;, < Hy+ |\/’;Mn,l — \/§B|*,T +2T(|an _a|*,T,, +rn)

r t
S Wil + Uy bz, + 201+ K)/O H, ds.
i=2

Hence by Gronwall’s lemma,
-
HT,, =< (HO + |\/EMn,l — \/§B|*,T + ZT(lan - al*,Tn + rn) + Z |Wn,i|*,Tn + |Un,r+1|>k,T,,>

i=2
x 2+K)T



FLUCTUATIONS FOR JSQ(dy) 2123

Note U, ,+ =Z, 4+ and U, ;(0) = Z, ;(0) — z; for i <r; hence using Lemma 8.1 and the
assumed convergences, it follows that ||U, 2,7, £> 0 and, based on the above display, that

Hr, LN 0. Together these show U |21, = |Z, — Z|l2,7;, LN Oasn—>o00. O

COROLLARY 8.4. Under assumptions of Lemma 8.3, {||Z,||2.7 }neN is a tight sequence
of random variables and

(8.10) lim sup P(t,,. <T)=0.

L—oo p

PROOF. Fix § > 0. Since Z has sample paths in C([0, T'] : £2), we can find L € (0, co) so
that P(||Z||2,7 > L) <§. With tp 4o =inf{t | || Z(¢)||2 > L+2}, note the inclusion {|| Z||2,7 <
L} € {rr4+2 > T} which will be used in the next display. Now, by the right continuity of Z,,
note for each n € N,

P(ty1+2=T) = P(1Zsll2T Az 0 > L+ 1)
<P(1Zy— Zl2. 1Aty 4 > Lot | Zll27 > L)
<P(Zn = Zl2 1Aty piontren > 1) + P(I1Zll2,T > L)
< P(1Zn — Zl2.7rty 1 arrtisr > 1) 6.
Sending n — oo and using Lemma 8.3 shows limsup,, P(t, .+2 < T) < 4. Therefore,
limnsup P(IZyll2r > L+2) < limnsup P(th 42 <T)<3$.

Since § > 0 is arbitrary, this shows that {||Z, ||2,7}»eN is tight. The convergence in (8.10) now
follows since {1, +1 < T} S {||Z,|l2,7 > L}. O

PROOF OF THEOREM 2.3. Using Lemma 8.1 and Skorohod embedding theorem, we can
assume without loss of generality that Z, (0), M, and B are given on a common probability

space, Z,(0) — z in £¢, and M,, — +2Be; in ([0, o0) : £2) a.s. From Lemma 8.3, we
now have that for every T, L € (0, 00) (8.7) holds. In fact, this shows || Z, — Z||2, T LN 0 as

n — oo using Lemma 6.5, (8.10) and the fact limy_, o P(r; < T) = 0 observed in the proof
of Corollary 8.4. [

9. Proof of Theorem 2.4. In this section, we give the proof of Theorem 2.4. As for the
proof of Theorem 2.3, we begin with a convenient representation for Z, and by establishing
some useful convergence properties.

LEMMA 9.1. Let Ay, oy, dy be as in the statement of Theorem 2.4. Suppose that

N Z,,(0)|l1}neN is a tight sequence of random variables and Z,, ,+(0) LN 0 in £y for some
r > 2. Then there are real stochastic processes {W, ;};_, and n, with sample paths in
D([0, o) : R) so that, W, 1, n, have absolutely continuous paths a.s., Wy 1(0) = n,(0) =0,
and for any t > 0,

t t

1) Zp1(t) = Zn1(0) — /O Zo 1 () ds + /0 Z2(5) ds + /My 1 (1) + Wi 1 (1) — 1a(0),
t t

(92) Zna(t) = Zy2(0) — /0 Zua(s)ds + fo Z3(s) ds + Wa2(t) + m (0),

93) Z,:@t)=272,,0) — /(;t Zyi(s)ds + /Ot Zniv1(s)ds + W, (t) forie{3,...,r}.
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Furthermore, n,, is nondecreasing process with 1, (0) = 0 that satisfies

t
9.4) () = /O Lz, (260 dn(s)  as.

for some constants 0, = a, + O(y/n/d,) > 0 as n — oo. Also for any L, T € (0, 00), as
n— 0o:

(1) /nM, 1= 2B inD([0,T]:R)

@) V(W11 [0, T,D) = [y W1 ()] ds 5> 0
B3) Wpilst, = 0forief2,....r}

@ 1Znssl2z, 2> 0.

Here, B is a standard Brownian motion and T, =T N 1y L.

§|

PROOF. By our assumptions on «;,, we can find a x € (0, oo) such that 8, = o, + "d

0 for every n. Note that 6,, — « as n — o0o. Recall the functions g, ; defined in (6.4). Define

Wi 1(1) = —/0 In1(Zn, 1))z, |(s)<6,) dS-

t
nn(t)ifo In1(Zn, 1))z, \(5)26,) dS
so that 1, (1) = [o I(z, ,(5)26,) d71n (s), and

t
9.5) fo o1 (Zn1(5)) ds = 1 (1) — Wi 1 (0.

From Lemma 6.1, it then follows that (9.1) is satisfied. Recall from (6.4) that g, 1(z) =
A/ Bn(An + 2/ /1) — Bn(Ay)}. Then, by monotonicity of By, gn.1(z) > 0 whenever z > 0.
The condition 6, > 0 shows that 7, is nondecreasing and

SUp |gn.1(2)| < V1Bu O + 0/ /1) < 1Oy + 6,/ /1)

Zfen
= /(1 = ((0gdy) /dy + (ctn — 0)//n))" = /r(1 — (logdy — &) /dy)"

dn
fexp(—log—+/c> —0 asn— oo.
Jn

This shows that tv(W,, 1; [0, T]) — O a.s.
Next, since d, (1 — A;) — oo, Lemma 6.6 shows that

(9.6) /1,,l—>fle£1L asn — 0o.
Therefore, G, (0) = u,, + % — fin E%. Then by Lemma 6.2,
(9.7) VM, = ~2Be; in D([0, 0] : £2),
and by Lemma 6.4, || Zy, s+ 112,77, ﬁ) 0 as n — oo. Define
Wy a(t) = — /Ot Gn2(Zn2(8)) ds + /nMy, 2(1) — Wy 1 (2).

Using (9.5) and Lemma 6.1 once more, we see that (9.2) is satisfied. Finally, fori € {3, ..., r},
define

t t
Wi (1) = /0 it (Znio1(s))ds — fo i (Z0(5)) + N/TMs (0.
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Then, from Lemma 6.1 again, it follows that (9.3) is satisfied with the above choice of
Wi Lemma 6.3 along with (9.6), (9.7) and |Z, ;|«,7 Az, , < L show that, as n — 00, and

\Wp.ile1, = 0foreachi € {2,...,r}. O

COROLLARY 9.2. Suppose that the assumptions in Lemma 9.1 are satisfied. Assume
further that d, < n*'3. Then the conclusions of Lemma 9.1 hold with 6, = «,, and

t
(9.8) M (1) i/o Vi (1485 (s)) T e En1O=o ooy ds,

where y, = % and 6, is a process with sample paths in ([0, 00), R) such that
18n 15,7 AT, — O a.s. for each L > 0.

PROOF. Since d,, < n*/3 and a, = O(n'/%), the hypothesis of Lemma 6.7 is satisfied.
Define

SH(S) = qn,l(val(s))yn(eyn[zn,l(s)—an] _ e_ynan)_l _ 1

Since sup; 7 g, , |Zn,1(s)| < L, Lemma 6.7 shows that (3,7, — 0 a.s. as n — oco. Next,
define ’

t
Wnyl(t) - yn—l‘/(; (1 + 8n(s))(e_ynan _ eyn(zn.l(s)_an)ﬂ{zn’l(S)<an})ds

t
+ /0 Vo (14 84(5)) e P17y (e ds.

Then W, 1(0) =0, W, 1 is absolutely continuous and, with ¥ = sup,, %an_ < 00,

T,
(Wi, 13 [0, T ) gis, 1z <1y = Vi | /0 |1+ 8, (s)[|e 77 — e Znt® =0 5 ) o] ds

2(1 + T
< T
Yn

0 asn— oo.

Hence, since |8, ]+, 7, = 0, we have that tv(W, 1; [0, T,,]) £> 0 as n — oo. By rearranging
terms, we see that, with the above definitions of W, 1 and 5,, (9.5) is satisfied. The result
follows. [

Since y, — 0o and 6, — « as n — 00, the previous lemma suggests a connection to the
Skorokhod map I'y, defined in (2.1). In order to make this connection precise, we begin with
the following lemma.

LEMMA 9.3.  Under the assumptions of Theorem 2.4, for any L € (0, 00),

(9.9) sup  (Zna(t) — ozn)Jr 20 asn— 0.
tel0,T ATy, L]

PROOF. Consider first the case when d,, > /nlogn. For this case, €, = % — 0,
and since

logd,
Zut () = (G a (1) = An) < /(1 = 1) = @ o

we have that (9.9) holds. Now consider the complementary case, namely d,, >> /n but d,, >
/nlogn does not hold. In this case, we may find an increasing subsequence {ny }reny € N so
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that \/n < d, < n*3 holds when n € {n}ren and d, > /nlogn holds when n ¢ {ny}ren
(e.g., take {nglren ={n eN|d, < n%9}). The argument above shows the convergence of
(9.9) along the latter subsequence. Therefore, it suffices to show the convergence of (9.9)
along the sub,sequence {ny}ren Where /n < d, < n?/3.

We will use Corollary 9.2. Since Z, 1(0) £> z1 € R with z;1 < «, we have (Z, 1(0) —

P
ay)T — 0as n — oo. It now suffices to show that for any € > 0,

P( sup val(t)>06n+66)—>0 asn — oo.
te[0,T ATy, L]

Let 9, =inf{r > 0| Z,.1(t) > a, + 6¢€} and, as before, T, =T A 7, . It is then enough to
show that P (¢, < T,) — 0 as n — oo. For this, inductively define stopping times, o, 0 =0,

on,2k—1 = inf{t > 0y 262 | Zp,1(t) > oty + 3¢},
_ keN
on,2k = Inf{t > 0y k1 | Zp,1(1) < oty + 2€},

Note that for each n € N, 0, , — 00 as r — oo, almost surely. Also, henceforth, without loss
of generality, we consider only n that are large enough so that 1/.4/n < €. Hence on the set
{0y < 00}, Oy € [0n,2k—1, On,2k) for some k € N. Then for every K € N,

K
P(ﬁn =< Tn) =< Z P(ﬁn S [Un,Zk—ls On2k N Tn]) + P(Un,ZK—I—l =< Tn)-
k=1

Hence to complete the proof it is enough to show that:

(1) Foreach k € N, limy,—, oo P (9, € [04,2k—1, On,2k A Ty]) =0,
(2) limg o0 limsup,,_, o P(on2k+1 < Ty) =0.

Consider (1) first. Note that on the set Cy,,;1 = {Z;,,1(0) <, + 3¢}, for any k € N,

ay +3€ < Zy 1(0n0k—1) = Zn1(0n2k—1—) + Zn,1(0n,2k-1) — Zn,1(0n,26—1—)

(9.10)
<Zn1(0n2k—1—) +€ <y +4e.
Similarly,
(9.11) Zy,1(t)>a,+€ foreacht €0, 2—1,0n2k]

Let H, (1) = /nM, 1(t + 04.2k—1) — /My, 1 (0 2k—1) for £ > 0 and consider the sets
) ) 1
Cn,2 = {Uy Vop2k—1 = 1.}, Cn,3 = {|Wn,1 I*,Tn <e€/2, |8n|*,Tn =< 5}

Then on the set C,, = ﬂ?:1 C,.i, using Corollary 9.2, for any ¢ € [0, (T, A 0n,2k) — On.2k—11,

Zn 1t +0n26-1) — Zn,1(00,2k—1)

On2k—1+t
= —/ (Zn1(8) = Zn2(5))ds + Hy(t) + Wy 1 (t + 05,0k—1) — Wi, 1(00,2k—1)
(o

n,2k—1

On,2k—1+t

a / Vo (14 8,(5)) Te?n1 O 7 g, ds.
Op 2k—1

Since for ¢ in the above interval o, 2k—1 +t < T, < Ty, |Zn1(8)| + | Zn2(s)| < 2L for

any s < oy 2k—1 + t. Also, since oy, 2k—1 +t < 04,2k, by (9.11), Z,.1(s) — a, > € for any

s € [04.2k—1, On,2k—1 + t]. Thus on C,, we have

t .
9.12)  Zp1(t +0n2k-1) — Zn1(0n0k—1) < 2Lt + H, (1) + € — v exp(yne) =Y, (1).

n
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Using (9.10), on Cy,, Zy, 1(9y) — Zp,1(0n 26k—1) = oty + 6€ — oty — 4€ = 2¢. Hence

P(ﬁn € [Un,Zk—l’ On,2k N\ Tn))

0.13) < P(0n € [0n,2k1, 0,26 A o). Ca) + P(Cp1 1) + P(Cy )

< P( sup Y,() = 2¢)+ P(CL ) + P(CL3),
1€[0,T7]
where the second inequality is on observing that on the set {0, € [0,,2k—1, 002k A Ty)},
(9.12) holds with ¢ replaced by 9, — 0, 2k—1. Next, note that H, is a {G;'} martingale, where

n __ n
gl - ‘7:t+0n.2k—1 and

(Hn>t = <\/ﬁMn,l>t+an,2k,1 - (\/ﬁMnJ)an_zk,l

Op,2k—1+t
= [Gn,l(s) - Gn,2(3)+)\n _)\nﬂn(Gn,l(s))] ds

On,2k—1
<2,

where the second equality is from (3.6).
Since y;,, — 00, we can apply Lemma 6.9 to conclude

P sup Y,(1)>2¢) = P< sup [Hn(t) - (M - 2LH > e) =0
1€[0,T] 1€[0,T] 2yn

as n — oo. We also have lim,, P(C;’l.) =0 for i =1, 3 since, as noted earlier (Z, 1(0) —

o)™ L 0, and by Corollary 9.2, respectively. From these observations, it follows that the
right-hand side of (9.13) converges to 0 as n — oo, which completes the proof of (1).
Now we prove (2). Let p, ; = on.; A Ty, and define

K

Yok (1) =Y (Zn1(t A pnig1) — Zn1(t A po2i)).-
i=0

Note that {0, 2k+1 < Tn} € {Y,,.k (T) = K€}, and hence to prove (2) it is sufficient to show
that

(9.14) limsup P(Y, .k (T) > Ke) >0 as K — oo.

n—oo

From Corollary 9.2, we have that on the set Cp, 4 = {tv(W,,.1; [0, T,]) < 1},

Yn,K(T)
K rTAppain
=3 [ (2026) = Zua ) ds

i—0 Y TA\Pn2i

i=0 ;
K

+ D My (T A pupig1) — My (T A pn2i)
i=0
K

+ Y Wt (T A puit) = Wi (T A pn.2i)
i=0

K

T Apn,2i+1 4 b y(Zn 1 (5)—atn)
—Zf Vo (L+38u(s)) " e ont™ 7 (5)>a,) dS
i=0? TAPn2i
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K
<2LT + ) (VaMy 1(T A puaiv1) — VaMu 1 (T A pp2i) + tv(W, 15 [0, T1)
i=0

<2LT +1+ H, x(T),
where we have used the facts that SUPs<y, , |Zn,1 (s)| < L, and that the rightmost term in the
third line is nonpositive. Also, here ’

K

Hy g (1) =Y (VnMy 1 (t A puoig1) — NnMy 1 (8 A po2i)).-

i=0

Using (3.6), we see that H, g is a F;'-martingale with quadratic variation given by

K
(Hn,K>t = Z((\/EMnJ)t/\pn,z,‘H - («/ﬁMnJ)t/\p,in)
i=0
K NP 2i+1
=y /t (Gt (8) = Gua(s) + An — (G 1 (5))) ds < 21.
i=0 "7 1/\Pn,2i

Hence
P(Y, x(T) = Ke) < P(Yyx(T) > Ke, Cya) + P(Cy 4)
< P(H,,,K(T) > Ke — 2LT + 1)) + P( ,2’4)

2
- EH; ((T)
~ (Ke — QLT + 1))
2T
< P(C¢ ).
= Ke—Q@LT+DE (Ca)
From Corollary 9.2, P(C, ,) — 0 as n — oo. This together with the above display shows

limg o0 limsup,_, oo P(Y,,,k(T) > Ke) = 0. Thus we have shown (9.14) and the proof of
(2) is complete. The result follows. [

+ P(C; 4)

LEMMA 9.4.  Suppose the hypothesis of Theorem 2.4 holds, then for each n € N, there
is a real constant 6, = o, + O(y/n/dy) > 0 and processes Wy, 1, Wy, 2 with sample paths in
D([0, oo) : R) such that with Z, 1 = Z,.1 N 6y,

Zu1(t) =T, (Zn,1<0> - /0 (Zn1(5) = Zna(s)) + /M1 () + Wn,1<->)<z>, and

(9.15)

Zu2t) = 2,200~ [ (Za(s) = Zu3($)) ds + Waat) + mu(t) forallt >0,
where
(9.16) mn = T, (21 ) fo (Zn1(5) = Zna(s)) + VAMu1 () + Wn,1<-)).

Furthermore, for any L,T € (0,00), the random variables |(Z,1 — 9n)+|*,T/\r,, s
W1l 1Az, and |Wy 2lx 1 az, , converge to zero in probability as n — oo.

PROOF. Let 6, be as in Lemma 9.1. Since d, > +/n, 6, = a, + o(1) and Lemma 9.3
shows

(9.17) [(Zn1 — 07| — 0.

* TNty L
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Note that Z,,,l =Zy1—(Zp1 — 6,)T. Hence we can rewrite (9.1) and (9.2) as

~ ~ t ~
Zud () = Zn1 (0) — / Zu1(s)ds
0
t ~
9.18) + /0 Z2(5) ds + /Moyt () + Win 1 () — 1 (0),

t
Zua(t) = Zy.2(0) — fo (Zua(s) = Zn3()) ds + Wa2 (1) + 1 (0),

where
t

W 1(£) = Wy 1 (1) — fo (Zn1(s) = 60n)  ds — (Zu1 (1) = 60) " + (201 (0) = 6,) ™.

The properties of n, from Lemma 9.1 (and Corollary 9.2) say that n, is a nondecreasing
process, with 7,(0) =0 and n,(¢) = fé ]I{Z” L (5)=0,) dn,(s). Since Zn,l < 6,, (9.18) and the
characterizing properties of the Skorokhod fnap show (9.15) and (9.16). Finally, by Lemma
9.1, Corollary 9.2 and Lemma 9.3,

P P
|Wn,1|*,T/\rn,L — 0, and |Wn,2|*,TA‘L',,,L —0
as n — 00. Hence, using (9.17), |Wn,1 s, T ATy L £> 0 as n — 00, and the result follows. [
The following lemma will be needed in order to prove the tightness of Z,,.

LEMMA 9.5. Under the hypothesis of Theorem 2.4, the collection of random variables
{1Zn 12,7 }nen is tight for any T € (0, 00).

PROOF. Fix T € (0, 00). In Lemma 9.4, using the definition of the Skorokhod map I'y,
for 6,, > 0 (see (2.1)), we have, for any ¢ > 0 that

- . ' y
() < |zn,1<0>}+f0 |zn,1<s>|ds+/0 |Zn2()] ds + [NAMot s+ Wi 1]

This shows that for any ¢ > 0,

~ ~ t t B
|Zn,1|*,t =< 2(|Zn,1(0)} +/(; |Zn,1|>f<,s ds +-/(; |Zn,2|>f<,s ds + |ﬁMn,l|*,t + |Wn,l|*,z>7

~ t t
Znalss < |Zn10)] 4| Zn2(0)] +/O |Z 1.5 ds +/O (21Zules + 1 Zn3les) ds

+ WM 1Lt 4 I Waitler 4+ W2l

and
t t
|z,,,,-|*,,s|zn,,~<0)|+f0 |zn,,‘|*,sds+/O Znistlss ds + W iles forie(3,....r),

where the last line is from Lemma 9.1. Let H; = |Z,1,1|*,t +1Zp2lss + -+ 1Zurlsr. By
adding over equations in the above display, we have for ¢ € [0, t] and t € [0, T'] that

- r t
0<H, < 4(H0 WM 1l + Wt + 3 [ Wailr +f0 H,§ ds).
i=2

By Gronwall’s inequality, for all T € [0, T'],

-
(9.19) H; < 4(H0 + |\/5Mn,1|*,r + |Wn,1 |>x<,r + Z |Wn,i|*,r>e4r-
i=2
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Let Zn = (Zn,l, Zn2, .-y Zny). Since Zn(O) LN (z1,...,2r), and \/nM, = Bey, for every
€ > 0, thereis a L € (0, oo) such that for every n € N,

€ .
P(Cy1) < 3 where Cp,,1 = {Ho + |v/nMy, 1«7 > L1}.

Applying Lemmas 9.1 and Lemma 9.4 with L = 4(L1 + 1)¢*” 42, we can find an ng € N so
that P(Cy2) < 5 for n > ng, where

.
Co2 = IWailes, + D IWailen, +[(Zoa =607 |, 1 + 1 Znrsll2g, = 1
i=2

and 7, =T A 1, 1. On the event (C, 1 U Cy 2)<,
1 Zull1.7, = Hr, <4(L; + De*”
by (9.19), and hence by triangle inequality (and noting || x> < ||X|l1),

920, 1Znll2.7, <N Znll17, + |(Zna — 00|, 7 + 1 Zurs Dl
' <dL 4+ DT +1=L—1.

Also, by the definition of 7, 1, | Z, (T, L)]l2 > L — ﬁ on the set 7, ; < T. Hence we must
have that 7,, ; > T whenever (9.20) holds, and hence

|Z,ll2T <L —1 ontheevent (C,1UC,2)°".
This shows that
P(|Zyll2,r > L) < P(Ch1UCyp) <€ Vn>ny.

Since € > 0 is arbitrary, the result follows. [
The following result is immediate from Lemmas 6.5, 9.1, 9.4 and 9.5.

COROLLARY 9.6. Under the hypothesis of Theorem 2.4, for any T > 0,
limy o sup, P(ty,. < T) = 0. In particular, the processes Wy 1, {Wy Yo, 1Znrill2,
(Zn1— 0,)" converge in probability to zero in D([0, 00) : R) as n — oc.

COROLLARY 9.7. Under the hypothesis of Theorem 2.4, the sequence of processes
{Z,}nen is tight in D([0, 00) : £7).

PROOF. Let 6, be as in Lemma 9.4. For the sequence {Zn}neN introduced in the proof of
Lemma 9.5, note that

(921) Zn = Pzn + (Zn,l - 911)+el + San,r—l—:

where P : Rr — £y 18 glven by P(x1,...,xr) = (x1,...,Xr,0) while S, : £, — {5 is given
by S,y = (0 y) where 0 is the zero vector in R’. Slnce these maps are continuous, the
tightness of {Z tnen in D([0, T : R¥), the tightness of {Z, ;+}sen in D([0, T] : £2) and
the tightness of {(Z,.1 — 6,) " }nen in D([0, T : R) will show the tightness of the sequence

{Z,}nen in D([0, T] : £2). Note by Corollary 9.6, for each fixed T < oo, ||Z, r+ll2.7 i 0

and |(Zn.1 — 0) T st kit 0. Hence it is sufficient to show that {Zn}neN is tight in D([0, T'] :
R"). From Lemma 9.5, the convergence of W, ; in Corollary 9.6, and equations for Z, ;,
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Jj =3,...r in Lemma 9.1, it is immediate that (Z, 3, ... Z, ) is tight in D([0, c0) : R’_z).
Finally, consider the pair (Z,. 1, Z,,2). Note that

| Zn1 = Znplsr < |(Zna _Qn)—i_}*j‘ H1Zn 1,7+ Znplsr < |(Zny — 9n)+}*,T +2(Znll2,7
and the right-hand side in the above display is tight in R.. This shows the tightness of

fo (Zur(s) — Zno(s))ds

in C([0, 00) : R). Combining this observation with Lemma 9.5, the convergence of /nM,,
in Lemma 9.1, and the convergence of W,, 1 in Corollary 9.6, it follows that

9.22) Ru() = Zy 1 (0) — /0 (Zu () = Zua()) ds + /aMy 1 () + Wi 1 ()
is tight in D([0, co) : R). Using the identity,
Lo, (Ry) (1) =Tg,(To, (Ry)(s) + Ry(- +5) — Ry (5))(t — 5)

for 0 <s <t < T, we see from the definition of the Skorohod map that

|Ta, (Rw)(t) — Tg, (Ry) (5)] <2 iugt|Rn(u) — Ru(s)].

Together with the tightness of R,,, this immediately implies the tightness of Zn, 1="Tg,(Ry)
and of I'g, (R,,). Finally, the tightness of Z,, 5 is now immediate from Lemma 9.5, the conver-

gence of W, » in Corollary 9.6 and the tightness of f‘gn (R;) noted above. The result follows.
O

PROOF OF THEOREM 2.4. From Lemma 6.6 and from the tightness of {||Z, (0)|1}seN,

it follows under the conditions of the theorem that p,, LS [ and G, (0) LN fiin E%. This
proves the first statement in the theorem. Now consider the second statement. Fix T < oo.
From Corollary 9.7, {Z,},en is tight in D([0, 00) : £3). Also from Lemma 9.1, /nM,, ;
converges in distribution to /2B where B is a standard Brownian motion and from Corollary
9.6,

- P :
(W1 AW Yz, (Zn1 = 6)7) = 0 inD([0, T]: R™).
Suppose that along a subsequence
(Zns /1Mo, 1, Wo 1AW iYi 20, (Zn 1t = 6,)7) = (Z,/2B,0)

in D([0, 00) : £2 x R"*2) and for notational simplicity label the subsequence once more as
{n}. Also by appealing to Skorohod embedding theorem, we assume that all the processes
in the above display are given on a common probability space and the above convergence

holds a.s. Since Jr(Z,) = supy<,<7 Zn(t) — Z,(t—)||2 is at most ﬁ and Z,(0) £> zZ,

we have Jr(Z) =0 and Z(0) = z a.s. In particular, Z has sample paths in C([0, c0) : £5)
and (Z,, /nM, 1) — (Z, v/2B) uniformly over compact time intervals in £, x R. Since by

Corollary 9.6, forevery T < oo, | Z, r+ 2.7 £> 0, it suffices to show that (Zy, ..., Z,) along
with B satisfy (2.13).

From the equations of (Z, 3, ... Z, ) in Lemma 9.1, uniform convergence of Z,, to Z, and
the uniform convergence of {W, ;};_; to 0, it is immediate that (Z3, ..., Z,) satisfy (2.13).
Finally, consider the equations for (Z, Z»). From (9.22) and uniform convergence properties
observed above, it is immediate that R, converges uniformly, a.s., to R given as

R()=Z1(0) /0 (Z1(5) — Za()) + V2B,
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Since 6, = a,, + O(y/n/d,) — «a, this shows that, for every T < 00,

o, (Ry) (1) = Ry (t) — stlop](Rn (t) — 0n) "
se(0,1

— R(t) — sup (R(t) — )" =T (R)(1)
s€[0,1]

uniformly for ¢ € [0, T], a.s., where (R(¢) — )™ is taken to be 0 when « = oo. Similarly,
Tg, (Ry) (1) = T (R) (1)

uniformly for ¢ € [0, T'], a.s. Here, when o = o0, Iy, and f‘a are as introduced in (2.11).
The fact that (Z1, Z;) solve the first two equations in (2.13) is now immediate from Lemma

9.4, the convergence Z,Ll —Zn1 i 0, and the uniform convergence of W, > to 0 noted
previously. The result follows. [

APPENDIX A: PROOFS OF RESULTS IN SECTION 5

A.1. Proof of Lemma 5.1. PROOF. Fix e € (0, 1). First suppose ‘i—" — 0. Consider x €
(e, 1]. Let A, (x) =log B, (x) —log ¥ (x). Let ng € N be such that for all n > ng, d, /n < €/2.
Then, for n > ny,

dp—1
Ap(x) = Z log(
i=0

x—l/n) log 1 dil{l (x—i/n) 1 }
—logx™ = o —logx
T—i/n) 2 T AT T
dp—1 dy—1

) sl

Differentiating A, gives,

(A.1)

du—1 dy—1 i/n

b= (== 1) = & o

i=0 i/n x i=0

Since n > ng and x € [¢, 1] we have x(x — ,%) > 62/2 fori <d, — 1. Hence,

dn—1 2

) 2 ) 1d
|A,(x)] < = go (i/n) < e_ﬁ"‘

From the definition of A,, we also have,

(A2) A(m:mupgmm:mu%munmm_o
' " Ba(®) v () ya() \pu(@) Bu(x) )
Since ;"g; 7" > d, for x € [, 1], from (A.2) we have,

1 1d,
<— sup |A, (x)|<———>0
dn xele, 1] n

Bu(x) ya(x) ‘
sup |- -1
x€le, 1] Yn(x) Bu(x)
This proves (5.4).

Now assume % — 0. Once more consider x € (g,1] and n > ng. Let C =

SUP,, >y, 11/; /ln < 00 and let n; > ng be such that d,C/n < 1/2 for all n > n;. Then for

n>npand x € [e, 1]:
d,—1

(A3) |AL ()| < Z 2

(l/n)

I dp—1

2C Zz/n<C—

=0
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where the first inequality is from (A.1) and the inequality |log(1 + &)| < 2|h| for |h| < 1/2.
This shows sup, c(¢ 17 |An(x)| — 0, hence showing the first convergence in (5.5). Finally the

second convergence (5.5) is immediate on combining the first convergence with (5.4). [

A.2. Proof of Corollary 5.2. This is an immediate consequence of the estimate in (A.3).

A.3. Proof of Corollary 5.3. PROOF. Lete > 0 and ng € N be such that u, ; > € for
all n > ng. By Lemma 5.1, as n — 00

Bn(ﬂn i) V(M i)
A4 =1 1)) 22
A9 Butiny ~ LT
Recall that 11, ;41 = A Bn(1n,i) and yu(x) = x% . Hence (A.4) gives
Bn (Mn,i) dy
A5 Ll (1 4 o(1
(A=) Moni+1/An (1+o ))Mn,i

completing the proof. [

A4. Proof of Lemma 5.4. PROOF. From Corollary 5.2, there is a ng € N and C €
(0, 00) such that for all n > ng

cd?
sup |log B, (x) — log yu (x)| < —

x€le, 1]

Thus, if forn > np andi € N, u, ; > €, then

log/"vn,i+l = 1Og)¥n + IOgﬁn(Mn,i) = log)\'n + IOg Vn(/"vn,i) + Vn,i

(A.6)

= 10g An +dy 10g Mni + Vn,is

2
where |y, ;| < C:” . Now let k € N and n € N be such that for all n > ny, p, > €. We will
show that forn > ngvny;and j € {1, ..., k} that
i
(A7) log i, j+1 = (log)»n)<z d,’,) + Bn.j>
i=0

where |8, | < % sz=1 d,’frl. Note the the lemma is immediate from (A.7) on taking j = k.
To prove (A.7) we argue inductively. First note that since u,, € d, Mn.i = Unk > € for each
i <kand n > ny. Hence (A.6) holds for each i <k and n > ng Vv ny. Taking i = 1 in (A.6)
and noting that u, 1 = A, proves (A.7) for the case j = 1.

Suppose now (A.7) holds for some j <k — 1. Then, usingi = j + 1, in (A.6)
log iy, j+2 =10g Ay + dn10g tn j+1 + Vi j+1,

2
where [y, j11] < %. By the induction hypothesis, (A.7) holds for j. Hence

J
log pp, j+2 =logh, +dy, { (logA,) (Z d;l) + ﬂ”,j}
i=0
j+1 .
= (lOg)\n) (Z d,i) + dnan,j + Vn,j

i=0
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and hence B, j+1 =duBn,j + Vn,j. This shows
cd. .., ca ciH
B gl =1dnboj 4y jl Sdu—D dt 4 =2 = =3 d;"!
i=1 i=1
which shows that (A.7) holds for j 4 1. This completes the proof. [J

2
A.5. Proof of Corollary 5.5. PROOF. Since d;, — oo, the assumption fl—’; — 0 shows

that |-§n‘ < dé” —> 0. This shows that €p = =1— An = "::n"‘d#

We first show that u,; — 1 for each i € {1,...,k}. We will argue inductively. Since
Un1=Ap=1— en,wehave Un1 — 1. Supposenow that w, ; — 1 for some i <k — 1.
Hence eventually w, i Z 5. Applying Lemma 5.4 with k =i and € = 5 L and simplifying the
resulting expression, we get

also converges to 0.

ditl -1 d(di —1)
A8 1 = (log2 OCad, )
( ) Og Un,i+1 = (log Vl) d, — 1 + ( n(dy, — 1)
dl-l—l -1 dz(di -1
YN A P L)

(A9)

_ 0<5n +klogdn> n O(d’iﬂ)’
dy " n

where the second equality uses log An = log(1 — en) = O(¢,) and the third follows on re-
calling that d, — oo. Since i <k — 1, f"‘ < 1+$" — 0. Using this along with dk+1 <« nin

(A.9) shows that u, ;41 — 1. Hence, by 1nduct10n ni = 1fori <k.
Next we argue that /Sn (n.k) = . Since A, — 1 and pu, x — 1, from Corollary 5.3 we
have that

. Bn(ﬂn,k)
Iim —= = 1.
=0 dy Un,k+1

Hence it suffices to show that d, i, x+1 — «. For this note that
log(dnﬂn,k+l) = log Mn k+1 + logd

dt —1 d?dk—1
n

k+1
— (—en+ O(€2)dk (1 + O(1/dy)) + logdy + o(d"n )

where the second equality is from (A.8) and last equality is by using Taylor’s expansion for

2 2
log(1 — €,). Using d,’f“ <« n and |6,%d,]1(| < W — 0, we now have

10g(dnttn k+1) = (—€ndy +o(1))(1+ O(1/dy)) +logdy + o(1)
= (=&, —logd,)(1+ 0(1/dy)) +logd, + o(1)
— &, —logd, +logd, + 0(‘5”2&

n

)—I—o(l)

==&+ o(1) — log(a),

where the last equality once more uses the observation that % — 0. Thus we have
dpin k+1 — o as n — oo which completes the proof. [J
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A.6. Proof of Lemma 5.6. PROOF. Since p,x — 1 and j + p,, ; is nonincreasing,
we have u, ; — 1 for each i < k. Additionally, since A, — 1, Corollary 5.3 shows that for

Po(ni)

dutnirt = 1. As a consequence, B, (iy k—1) = 00 as n — 00, and for
nHn,i

any i € [k] lim,— o
any j € [k —2]

m Bn(ﬂn,j) — lim dnin,j+1 — lim MUn,j+1

n—oo ,Bn(lfbn,j—f—l) n—oo nin, j+2 n—oo M, j+2

This completes the proof of the lemma. [J

=1.

A.7. Proof of Lemma 5.7. PROOF. By the first part of Lemma 5.1, (5.7) is immediate
from (5.6). Now consider (5.6). Taking logarithms in (2.7), for x > d,,/n,

dp—1

log B,(x) = ; (log(x — %) — log(l — ;—))
= Z (log( -——q —x)) —1og(1 — %))

Let 8, = €, + 7 dn For large n, §, < 5, and hence, using the expansion log(1 — h) = —h +
O (h?) for |h|_2,f0ranyxe[l en,l].
dle i
log Bn(x) =Y {—; —(-0+~+ 0(53)} = —dy(1 — x) + 0(d,5?2)
i=0

= dylog(1 = (1 = x)) + O (dn8y) = 10g Y (x) + O(dn8y)-

Note that 8,% = (e, +d,/ n)? < 2(6 + 2) Hence by our assumptions d, 5 — 0. This proves
(5.6) and completes the proof of the lemma. O]

A.8. Proof of Lemma 5.8. PROOF. By (5.2)

sup  |Bn(x)| = (1 — €,)n = e=dento) _,
x€[0,1—¢,]

Similarly, by (5.3), under the assumption lim sup,, ‘fli < 1, for large n,

sup  |Bn (0] < (1= da/m) ™ dy(1 =€)~ = emhotiord O 0.
x€l0,1—¢,]

APPENDIX B: PROOF OF LEMMA 6.8

For a right continuous bounded variation function F : [0, T] — R, let dF denote the
signed measure on (0, T'] given by dF(a,b] = F(b) — F(a) for 0 <a <b < T, and dA
denote the Lebesgue measure on (0, 7']. Bounded measurable functions % : [0, T] — R act
on signed measure du on (0, T'] on the left as follows: 2 du denotes the signed measure
A [ih(x)du(x), AeB(,T].

Let H(t) = fé h(s)dA(s) for t € [0, T]. Note that z defined in (6.14) is a right continu-
ous function with bounded variations. The corresponding measure dz on (0, T'] satisfies the
identity

dz=—hzd\A+gdr+dM,
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namely
dz+hzdh=gdr+dM.

Acting on the left in the above identity by the bounded continuous function e (1) = ") we
get

eHdz+ethdA:eHgdk+eHdM.

Since dH = hd, by the change of variable formula (cf. [28], Theorem VI.8.3) def! =
hef! d).. Hence

efldz + zde!! = eHgdA +efam.
Two applications of the integration by parts formula (cf. [2], Theorem 18.4) show that
de"z)=egdr+d(e" M) — Mde".

Computing the total measure on (0, ¢] fort < T':
t t
e Dz(t) — 2(0) :/O e We(s)dr(s) + e OM @) — M(©0) - /0 M(s)de" (s).

Rearranging terms and multiplying by e~ on both sides and noting, from (6.14), that
M(0)=0:

B.1) z(1)= / t HO=HD g (5)dr(s) + M(r) — e HDO f t M(s)de (s) + e HOZ(0).
0 0

We now estimate the various terms on the right-hand side of (B.1). The first term on the right-
hand side of (B.1) satisfies fort € [0, T A 7]

t t
‘ fo eMO=HO o () di(s)| < |gle.7nr /O eTO=HD g (s)

i it
= |g|*,T/\r/ e__ls h(u)d”d)»(s)
(B.2) A

t
<|glrne /O ™M) g (s)

l_e_tm < |g|*,T/\r
" .

= |g|*,T/\r

Next we estimate the third term in the right-hand side of (B.1). Since 4 is nonnegative on
[0,T AT],de ina positive measure on (0, T A 7]. Hence fort € [0, T A 7]

(B.3)

t t
e H® fo M(s)de" (5)| < M| rreeHO /0 de" (s) < M .1 ne.

Finally, the last term in the right-hand side of (B.1) for any 7 € [0, T A T] can be bounded as
(B.4) le™ D2 0)] < |z(0)|e™™.

Using (B.2), (B.3) and (B.4) in (B.1) completes the proof of the lemma. [
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