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We consider the supermarket model in the usual Markovian setting where
jobs arrive at rate nλn for some λn > 0, with n parallel servers each pro-
cessing jobs in its queue at rate 1. An arriving job joins the shortest among
dn ≤ n randomly selected service queues. We show that when dn → ∞
and λn → λ ∈ (0,∞), under natural conditions on the initial queues, the
state occupancy process converges in probability, in a suitable path space,
to the unique solution of an infinite system of constrained ordinary differen-
tial equations parametrized by λ. Our main interest is in the study of fluc-
tuations of the state process about its near equilibrium state in the critical
regime, namely when λn → 1. Previous papers, for example, (Stoch. Syst.
8 (2018) 265–292) have considered the regime dn√

n logn
→∞ while the ob-

jective of the current work is to develop diffusion approximations for the
state occupancy process that allow for all possible rates of growth of dn.
In particular, we consider the three canonical regimes (a) dn/

√
n → 0; (b)

dn/
√

n→ c ∈ (0,∞) and, (c) dn/
√

n →∞. In all three regimes, we show,
by establishing suitable functional limit theorems, that (under conditions on
λn) fluctuations of the state process about its near equilibrium are of order
n−1/2 and are governed asymptotically by a one-dimensional Brownian mo-
tion. The forms of the limit processes in the three regimes are quite different;
in the first case, we get a linear diffusion; in the second case, we get a dif-
fusion with an exponential drift; and in the third case we obtain a reflected
diffusion in a half space. In the special case dn/(

√
n logn)→∞, our work

gives alternative proofs for the universality results established in (Stoch. Syst.
8 (2018) 265–292).

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084
1.1. Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087
1.2. Notation and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087

2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2088
3. Poisson representation of state processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096
4. The law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2098

4.1. Uniqueness of fluid limit equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2098
4.2. Tightness and limit point characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2100
4.3. Completing the proof of LLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2104

5. Properties of the near fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2105
6. Preliminary estimates under diffusion scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2106
7. Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2111
8. Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119
9. Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2123
Appendix A: Proofs of results in Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2132

Received June 2020; revised April 2021.
MSC2020 subject classifications. 90B15, 60F17, 90B22, 60C05.
Key words and phrases. Power of choice, join-the-shortest-queue, fluid limits, heavy traffic, Halfin–Whitt, load

balancing, diffusion approximations, Skorohod problem, reflected diffusions, functional limit theorems.

2083

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/21-AAP1729
http://www.imstat.org
mailto:bhamidi@email.unc.edu
mailto:budhiraja@email.unc.edu
mailto:miheer.dewaskar@duke.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2084 S. BHAMIDI, A. BUDHIRAJA AND M. DEWASKAR

A.1. Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2132
A.2. Proof of Corollary 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2133
A.3. Proof of Corollary 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2133
A.4. Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2133
A.5. Proof of Corollary 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134
A.6. Proof of Lemma 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2135
A.7. Proof of Lemma 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2135
A.8. Proof of Lemma 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2135

Appendix B: Proof of Lemma 6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2135
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2137
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2137

1. Introduction. In this work, we study the asymptotic behavior of a family of random-
ized load balancing schemes for many server systems. Consider a processing system with n

parallel queues in which each queue’s jobs are processed by the associated server at rate 1.
Jobs arrive at rate nλn and join the shortest queue among dn randomly selected queues (with-
out replacement), with dn ∈ [n] .= {1, . . . , n}. The interarrival times and service times are
mutually independent exponential random variables. This queuing system with the above
described “join-the-shortest-queue amongst chosen queues” discipline is often denoted as
JSQ(dn) and frequently referred to as the supermarket model (cf. [14, 23–25, 27, 31] and
references therein). Note that when dn = n the above description corresponds to a policy
where an incoming job joins the shortest of all queues in the system (see, e.g., [9]). The case
dn = 1 is the other extreme corresponding to incoming jobs joining a randomly chosen queue
in which case the system is equivalent to one with n independent M/M/1 queues with arrival
rate λn and service rate 1. The case dn = d where d > 1 is a fixed positive integer is some-
times also referred to as the power-of-d scheme. The analysis of JSQ(dn) schemes has been a
focus of much recent research motivated by problems from large scale service centers, cloud
computing platforms and data storage and retrieval systems (see, e.g., [1, 3, 8, 15, 26, 32, 33,
35]). The influential works of Mitzenmacher [29, 30] and Vvedenskaya et al. [36] showed by
considering a fluid scaling that increasing d from 1 to 2 leads to significant improvement in
performance in terms of steady-state queue length distributions in that the tails of the asymp-
totic steady-state distributions decay exponentially when d = 1 and superexponentially when
d = 2. Limit theorems under a diffusion scaling for the JSQ(d) system, with a fixed d , can be
found in [7, 10]. Although JSQ(d) for a fixed d ≥ 2 leads to significant improvements over
JSQ(1), as observed in [12, 13], no fixed value of d provides the optimal waiting time proper-
ties of the join-the-shortest-queue system (i.e., JSQ(n)). See the survey [35] for an overview
of the progress in this general area. This motivates the study of asymptotic behavior of a
JSQ(d) system in which the number of choices d increase with system size, namely n. Such
an asymptotic study is the goal of this work.

The paper [31] studied the law of large numbers (LLN) behavior of a JSQ(dn) system,
under a standard scaling, when dn →∞. The precise result of [31] is as follows. For i ∈
N0

.= {0,1,2, . . .} and t ∈ [0,∞), let Gn,i(t) denote the fraction of queues with at least i

customers at time t in the nth system. Note that Gn,0(t) = 1 for all t ≥ 0. We will call
Gn(t)

.= {Gn,i(t) : i > 0} the state occupancy process. This process has sample paths in the
space of summable nonnegative sequences. More precisely, for p ≥ 1, let �p be the space of
real sequences x

.= (x1, x2, . . .) such that ‖x‖p
.= (
∑∞

i=1 |xi |p)1/p <∞. Let

(1.1) �
↓
1

.= {
x ∈ �1 : xi ≥ xi+1 and xi ∈ [0,1] for all i ∈N

}
be the space of nonincreasing sequences in �1 with values in [0,1], equipped with the topol-
ogy generated by ‖ · ‖1. Note that �

↓
1 is a closed subset of �1, and hence is a Polish space.
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Then, whenever ‖Gn(0)‖1 < ∞ a.s., it can be shown that {Gn(t) : t ≥ 0} is a stochastic
process with sample paths in D([0,∞) : �↓1 ) (the space of right-continuous functions with

left limits from [0,∞) to �
↓
1 equipped with the usual Skorohod topology); see Section 3.

The paper [31] shows the following two facts under the assumption that Gn(0) converges in
probability to some r ∈ �

↓
1 :

(a) When dn = n and λn → λ ∈ (0,∞), Gn is a tight sequence in D([0,∞) : �↓1 ) and
every weak limit point satisfies a certain set of “fluid limit equations” (see [31], Theorem 5,
and equations (2.4)–(2.5) in the current work);

(b) When dn is an arbitrary sequence growing to ∞ and λn → λ ∈ (0,1), then the state-
ments in (a) hold once more for Gn.

The current work begins by revisiting the above LLN results from [31]. In Theorem 2.1 of
this work, we show that, when Gn(0) converges in probability to r , for arbitrary sequences
dn →∞ and λn → λ ∈ (0,∞), Gn converges in probability in D([0,∞) : �↓1 ) to a contin-

uous trajectory g in �
↓
1 that is characterized as the unique solution of an infinite system of

constrained ordinary differential equations (ODE) (see (2.2) in Proposition 2.1). Using stan-
dard properties of the Skorohod reflection map, we observe in Remark 2.3 that a continuous
trajectory in �

↓
1 solves the fluid limit equations of [31] if and only if it solves (2.2). This to-

gether with Proposition 2.1 proves that the fluid limit equations in [31] in fact have a unique
solution. In this manner, we complete and strengthen the result from [31]. Our proof of the
LLN result is quite different from the arguments in [31]. The latter are based on sophisti-
cated ideas of separation of time scales and weak convergence of measure valued processes
from [16] to handle the convergence for dn = n, and certain coupling techniques to treat the
general case when dn < n and dn →∞. In contrast, our approach is more direct and uses
martingale estimates and well-known characterization properties of solutions of Skorohod
problems (see, e.g., proof of Lemma 4.7).

Our main goal in this work is to study diffusion approximations for Gn in the heavy traffic
regime, namely when λn → 1. In the case when dn = n (JSQ(n) system), this problem has
been studied in [9]. Their basic result is as follows. Suppose dn = n and

√
n(1−λn)→ β > 0.

Consider the unit vector e1 = (1,0, . . .) in �2. Then under conditions on Gn(0), the process
Y n(·) .=√

n(Gn(·)− e1) converges in distribution in D([0,∞) : �2) to a continuous stochas-
tic process Y = (Y1, Y2, . . .), described in terms of a one-dimensional Brownian motion, for
which Yi = 0 for i > r for some r ∈N (which depends on the conditions assumed on Gn(0)).
Specifically, when r = 2, the pair Y1, Y2 is given as a two-dimensional diffusion in the half-
space (−∞,0] ×R with oblique reflection in the direction (−1,1)t at the boundary {0} ×R.
(For the form of the limit in the general case, see Corollary 2.7). In [31] this result is extended
to the case where dn < n and dn√

n logn
→∞. Under the same assumptions on the initial con-

dition as in [9], it is shown in [31] that Y n converges to the same limit process as for the
case dn = n. The proof, as for the LLN result, proceeded by constructing a suitable coupling
between a JSQ(dn) and JSQ(n) system. The paper [31] also argued that when dn√

n logn
→ 0,

the process Y n cannot be tight, and thus in this regime the above diffusion approximation
cannot hold.

Our objective in this work is to develop diffusion approximations for Gn in the critical
regime (i.e., when λn → 1 in a suitable manner) that allow for possibly a slower growth of dn

than that permitted by the results in [31]. In fact, in contrast to [9, 31], we will prove diffusion
limits when dn →∞ in an arbitrary manner for choices of λn → 1 constrained by the exact
growth rate of dn. See Table 1 for an overview of the regimes of (λn, dn) that we cover, along
with those covered by previous work. In the special case that dn√

n logn
→∞, we will recover

the results of [31] with a different proof. In order to motivate the type of limit theorems we
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seek, we begin by observing that the centering e1 used in the definition of Y n is a stationary
point of the fluid limit given in (2.2) with λ = 1, and thus the results of [9] and [31] give
information on fluctuations of the state process Gn about this stationary point. However, e1
is not the only stationary point of (2.2) (when λ= 1) and in fact this ODE has uncountably
many fixed points given by f

γ
k

.=∑k
j=1 ej + γ ek+1 = (1, . . . ,1, γ,0,0, . . .) ∈ �

↓
1 for k ∈ N

and γ ∈ [0,1), where ej is the j th unit vector in �2 (with 1 at the j th coordinate and zeroes
elsewhere). All of these stationary points arise in a natural fashion. Indeed, it turns out that
the evolution of the state process Gn can be described via the equation (see Remark 3.1)

Gn(t)=Gn(0)+
∫ t

0

[
an

(
Gn(s)

)− b
(
Gn(s)

)]
ds +Mn(t),

where Mn is a (infinite dimensional) martingale converging to zero in probability (see
Lemma 4.1) and an, b are certain maps from �

↓
1 to �1 (see Remark 3.1 for details). Thus

for large n, trajectories of Gn will be close to solutions of the infinite dimensional ODE

ġn = an(gn)− b(gn),

where ġn denotes the derivative of gn. This equation has a unique stationary point μn, which
is introduced in Definition 2. The fixed point μn corresponds to the point in the state space
�
↓
1 at which the inflow rate equals the outflow rate in the nth system, and thus it is of interest

to explore system behavior in the neighborhood of this point. Since Gn is approximated by
gn (over any compact time interval), one can loosely interpret μn as a near fixed point of the
state process Gn. Furthermore, it can be shown (see Remark 2.5(iv)) that, if dn →∞ and
λn → 1 in a suitable manner, μn can converge to any specified fixed point f

γ
k of (2.2), and

thus every fixed point of (2.2) arises from μn in a suitable asymptotic regime. In order to
explore fluctuations of Gn close to different fixed points of (2.2), it is then natural to study
the asymptotic behavior of

(1.2) Zn(t)
.=√

n
(
Gn(t)−μn

)
, t ≥ 0.

We note that in the regime considered in [31] where dn√
n logn

→∞ and
√

n(1−λn)→ α > 0,√
n(e1 −μn)→ αe1 and so in this case the asymptotic behavior of Zn can be read off from

that of Y n (see Corollary 2.7 and Remark 2.8(v)). However, in general
√

n(e1 − μn) (and
more generally,

√
n(f

γ
k − μn)) may not be bounded and so the asymptotic behavior of Zn

and Y n may be very different.
In this work, we obtain limit theorems for Zn as dn →∞ in an arbitrary fashion and λn →

1 in a suitable manner. Specifically, in Theorems 2.2, 2.3 and 2.4 we consider the three cases:
(a) dn/

√
n → 0, (b) dn/

√
n → c ∈ (0,∞) and (c) dn/

√
n →∞, respectively. In all three

regimes, we consider initial conditions Gn(0) such that for some r ∈N,
√

n(Gn,j (0)−μn,j )

converge to zero in probability for all j > r and in each case (under conditions on λn), we
obtain a limit process driven by a one-dimensional Brownian motion with continuous sample
paths in �2, which has all but finitely many coordinates 0. In particular, when r = 2 in the
second and the third case and r = k + 2 for some k ∈ N in the first case (and dn, λn depend
on k in a suitable fashion), one can describe the limit through a two-dimensional diffusion
driven by a one-dimensional Brownian motion. The form of this two-dimensional process in
the three regimes is quite different; in the first case, we get a linear diffusion (i.e., the drift is
of the form b(y) = Ay for, y ∈ R2 and some 2 × 2 matrix A); in the second case, we get a
diffusion with an exponential drift, and in the third case we obtain a reflected diffusion in the
half space (−∞, α] ×R for some α ≥ 0.

Although the limit processes in Theorems 2.2 and 2.3 are quite different from those ob-
tained in [10] and [31], the limit in Theorem 2.4 has a similar form (in that it is a reflected
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diffusion in a half-space) as in the above papers. However here as well there are some dif-
ferences. In particular, depending on how λn approaches 1, the reflection occurs at a differ-
ent barrier α ∈ (0,∞); in fact, α =∞ is possible as well in which case there is no reflec-
tion. Furthermore, recall that Zn is defined by centering about μn. In general,

√
n(μn − e1)

will diverge, and thus the process Y n considered in the above cited papers may not con-
verge in this regime. However, as noted previously, when dn grows sufficiently fast, namely

dn√
n logn

→∞ the process Y n will indeed converge and in that case we recover the result in
[31] (in fact a slight strengthening in that the drift parameter in Corollary 2.7 is allowed to
be 0). In addition, Theorem 2.4 also covers the case dn√

n logn
→ c ∈ (0,∞) and situations

where λn = 1+O(n−1/2) (see Remark 2.8 (iv)). In such settings, once more both Zn and Y n

converge and the limit of the latter has the same form as in [9, 31].
As is observed in Remarks 2.6 and 2.8, under conditions of Theorem 2.3 or Theorem 2.4,

μn must converge to the fixed point e1 = f 0
1. In contrast, Theorem 2.2 allows for a range of

asymptotic behavior for μn. In particular, under the conditions of the theorem, with suitable
λn, dn, μn can converge to the fixed point f 0

k for an arbitrary k ∈N (see [5] for a similar ob-
servation). Here, k may then be considered as the average time spent by a job in the system,
since asymptotically almost all (cf. [5]) queues will have length k under these conditions. In
such a setting, the first k − 1 coordinates of the limit process are essentially 0 (see Theorem
2.2 for a precise statement) and the kth coordinate is the first one to exhibit stochastic vari-
ability. Thus a rather novel asymptotic behavior for the JSQ(dn) system emerges when dn

approaches ∞ at significantly slower rates than those considered in [31] and λn approach 1
in a suitable manner (in relation to dn).

1.1. Organization of the paper. Section 2 contains all our main results. The remaining
sections starting with Section 3 contain proofs of the main results.

We now make some comments on the proofs of Theorems 2.2–2.4. The starting point
is a convenient semimartingale representation for the centered state process Zn in (6.1). In
the study of the behavior of the drift term in this decomposition, an important ingredient
is an analysis of the asymptotic properties of the near fixed point μn, and the asymptotic

behavior of the function βn (see Definition 1) in O(n− 1
2 ) sized neighborhoods around the

coordinates of μn. This behavior, which is different in the three regimes considered above,
determines the asymptotics of the drift An(Zn(s))− b(Zn(s)), where An(z)

.=√
n(an(μn +

n−1/2z) − an(μn)). Properties of μn are also key in arguing that, in all three cases, under
our conditions, (Zn,r+1, . . .) converges to 0 in probability in D([0,∞) : �2) (see Lemma 6.4).
The rest of the work is in characterizing the asymptotics of the finite dimensional process
(Zn,1, . . . ,Zn,r ). For this study, the three regimes require different approaches. In particular,
Theorem 2.2 hinges on a detailed understanding of the asymptotic behavior of a tridiagonal
matrix function Qn(s) (see, e.g., Lemmas 7.4 and 7.6); Theorem 2.3 requires an analysis of
a stochastic differential equation with an exponential drift term (in particular, the drift does
not satisfy the usual growth conditions); and Theorem 2.4 is based on a careful study of
excursions of the prelimit processes above the limiting reflecting barrier and properties of
Skorohod maps in order to characterize the reflection properties of the limit process.

1.2. Notation and setup. For m ≥ 1, let [m] .= {1,2, . . . ,m}. We will denote finite-
dimensional vectors in R

m as 
x, 
y, etc. and 〈
x, 
y〉 will denote the standard inner product.
Transpose of a vector 
v will be written as 
vt . The standard basis vectors in R

m will be de-
noted by 
ei for i = 1,2 . . .m. Also, ‖
x‖ .=√〈
x, 
x〉 will denote the usual Euclidean norm.

We will often use bold symbols such as x
.= (x1, x2, . . .) to denote a infinite dimensional

vector or function. For p ∈ {1,2, . . .∞}, let ‖x‖p
.= (
∑∞

i=1 |xi |p)1/p denote the p-norm on
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the space of infinite sequences and �p
.= {x ∈R

∞ | ‖x‖p <∞}. Let �
↓
1 be as in (1.1), which

is a Polish space under ‖ · ‖1. For k ∈N, let f k
.= (1,1, . . . ,1,0,0 . . .) ∈ �

↓
1 denote the vector

with first k indices equal to 1, and ek
.= (0, . . . ,0,1,0 . . .) ∈ �1 denote the vector with 1 in

the kth coordinate. For any k ∈ N and γ ∈ [0,1), write f
γ
k

.= f k + γ ek+1 ∈ �
↓
1 . For z =

(z1, z2, . . .) ∈R
∞ and r ∈N, let zr+ .= (zr+1, zr+2, . . .) ∈R

∞ denote the vector shifted by r

steps. Similar notation will be used for functions and processes with values in R
∞.

For a Polish space S and the interval I = [0, T ] for T > 0 or I = [0,∞), denote by
C(I : S) (resp. D(I : S)) the space of continuous functions (resp., right continuous functions
with left limits) from I to S, endowed with the topology defined by uniform convergence
on compact sets (resp., Skorokhod topology). For h ∈ D([0, T ] : R), g ∈ D([0, T ] : �p) and
t ∈ [0, T ], denote the size of the largest jump upto time t by Jt (h)

.= sups∈[0,t] |h(s)−h(s−)|
and Jt (g)

.= sups∈[0,t] ‖g(s)− g(s−)‖p , and the supremum norms up to time t by |h|∗,t .=
sups∈[0,t] |h(s)| and ‖g‖p,t

.= sups∈[0,t] ‖g(s)‖p . If h is absolutely continuous on [0, T ], then
ḣ(t) (or sometimes dh(t)/dt) will denote the derivative of h at t ∈ [0, T ] (defined almost
everywhere).

We will use I{cond} to denote the indicator function that takes the value 1 if cond is true,
otherwise it takes the value 0. We will denote by id the identity map, id(t)

.= t , on [0, T ] or
[0,∞). We use P and E to denote the probability and expectation operators, respectively.
For x, y ∈ R, x ∧ y denotes the minimum and x ∨ y the maximum of x and y, respectively.

For any x ∈R, x+ .= x ∨ 0 and x− .= (−x)∨ 0. We use
P−→ and ⇒ to denote convergence in

probability and convergence in distribution respectively on an appropriate Polish space which
will depend on the context. For a sequence of real valued random variables (Xn, n≥ 1), we

write Xn = oP(bn) when |Xn|/bn
P−→ 0 as n →∞. For nonnegative functions h(·), g(·),

we write h(n) = O(g(n)) when h(n)/g(n) is uniformly bounded, and h(n) = o(g(n)) (or
h(n) � g(n)) when limn→∞ h(n)/g(n) = 0. We write h(n) ∼ g(n) if h(n)/g(n) → 1 as
n→∞.

2. Main results. Recall the process Gn from Section 1. Our first result gives a law of
large numbers (LLN) for the process Gn as n →∞. In order to state this result, we begin
by recalling the one-dimensional Skorohod map (cf. [18], Section 3.6.C, [19]) with reflecting
barrier at α ∈ R. For α ∈ R and h ∈ D([0,∞) : R) with h(0) ≤ α, define �α(h), �̂α(h) ∈
D([0,∞) :R) as

�α(h)(t)= h(t)− sup
s∈[0,t]

(
h(s)− α

)+
, �̂α(h)(t)= sup

s∈[0,t]
(
h(s)− α

)+
.(2.1)

The map �α (and sometimes the pair (�α, �̂α)) is referred to as the one-dimensional Sko-
rohod map (with reflection at α). We note that the above map is a modification of the usual
definition to account for the fact that in our case reflection occurs from above (in order to
prevent h from exceeding the level α). The following well-posedness result, which is proved
in Section 4, will be used to characterize the LLN limit of Gn.

PROPOSITION 2.1. Fix r ∈ �
↓
1 . Then there is a unique (g,v) ∈C([0,∞) : �↓1 × �∞) that

solves the following system of equations

(2.2)
(
gi(t), vi(t)

)= (�1, �̂1)

(
ri −

∫ ·
0

(
gi(s)− gi+1(s)

)
ds + vi−1(·)

)
(t) ∀i ≥ 1, t ≥ 0,

where v0(t)= λt for all t ≥ 0.
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REMARK 2.2. Using the well-known characterization of a one-dimensional Skorohod
map, one can alternatively characterize (g,v) as the unique pair in C([0,∞) : �↓1 × �∞) such
that vi is nondecreasing,

(2.3)
gi(t)= ri − ∫ t

0 (gi(s)− gi+1(s)) ds + vi−1(t)− vi(t),

vi(t)≥ 0, gi(t)≤ 1,
∫ t

0 (1− gi(s))dvi(s)= 0

}
∀i ≥ 1

and v0(t)= λt , for all t > 0 and vi(0)= 0 for each i ≥ 0.

We can now present the LLN result. The proof is given in Section 4.

THEOREM 2.1. Let r ∈ �
↓
1 . Suppose that Gn(0)

P−→ r in �
↓
1 , λn → λ and dn →∞, as

n→∞. Then Gn → g in probability inD([0,∞) : �↓1 ) as n→∞, where (g,v) ∈C([0,∞) :
�
↓
1 × �∞) is the unique solution of (2.2).

REMARK 2.3. Note that Theorem 2.1 allows dn →∞ in an arbitrary manner. The Sko-
rokhod reflection term vi in (2.3), which increases only at time instants t when gi(t) = 1,
prevents gi from exceeding the level 1. It arises as a result of the simple fact that an arriving
job cannot join a queue of length i − 1 when all the queues in the selection are of length i or
more. In [31], Theorem 1, it is shown that, under the assumptions of Theorem 2.1, Gn is a
tight sequence of D([0,∞) : �↓1 ) valued random variables and that every subsequential weak
limit ĝ satisfies a system of equations given as

ĝi(t)= ri −
∫ t

0

(
ĝi(s)− ĝi+1(s)

)
ds +

∫ t

0
pi−1

(
ĝ(s)

)
ds for i ≥ 1,(2.4)

where

pj

(
ĝ(s)

)=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ− (
λ− 1+ ĝj+2(s)

)+ if j =m
(
ĝ(s)

)− 1,(
λ− 1+ ĝj+1(s)

)+ if j =m
(
ĝ(s)

)
> 0,

λ if j =m
(
ĝ(s)

)= 0,

0 otherwise,

(2.5)

and for x ∈ �
↓
1 , m(x)

.= inf{i | xi+1 < 1}. (Note that m(Gn(t)) is the length of the smallest
queue at time t .) The uniqueness of the above system of equations was not shown in [31].

From (2.2) and the definition in (2.1), it follows that each vi is absolutely continuous and,
for a.e. t ,

dvi(t)

dt
=
(

dvi−1(t)

dt
− gi(t)+ gi+1(t)

)+
I{gi(t)=1}

for any i ≥ 1. From this, we see that, for a.e. t ,

(2.6)
dvi(t)

dt
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ if i = 0,
dvi−1(t)

dt
if i < m

(
g(t)

)
and i ≥ 1,(

dvi−1(t)

dt
− 1+ gi+1(t)

)+
if i =m

(
g(t)

)
and i ≥ 1,

0 if i > m
(
g(t)

)
.

and consequently pj (g(s))= dvj (s)

ds
− dvj+1(s)

ds
for a.e. s. Substituting this back in (2.3) shows

that g solves the system of equations in (2.4). Conversely, for any solution ĝ of (2.4), defining
v̂ by the right side of (2.6) by replacing g with ĝ, we see that (ĝ, v̂) solves (2.3). From the
uniqueness result in Lemma 2.1, it then follows that in fact there is only one solution to the
system of equations in (2.4) and this solution equals g given in (2.2).
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Consider now the time asymptotic behavior of g given in (2.2). When λ < 1, (λ,0,0 . . .) ∈
�1 is the unique fixed point of (2.2), as can be seen by setting the derivative of the right-hand
side of (2.4) to 0. In the critical case, that is, when λ= 1, the situation is very different and
in fact there are uncountably many fixed points given by the collection {f ∈ �

↓
1 | m(f ) >

0, fm(f )+2 = 0} = {f γ
k | k ∈ N, γ ∈ [0,1)}, which once more is seen by checking that the

derivative on the right-hand side of (2.4) is 0 at exactly these points when λ= 1. In this work,
we are interested in the fluctuations of Gn in the critical case when the system starts suitably
close to one of the fixed points of (2.3). Thus for the remaining section we will assume that
λn < 1 for every n and λn → 1 as n→∞. In order to formulate precisely what we mean by
“suitably close to the fixed point” we need some definitions and notation. The functions βn

in the next definition will play a central role.

DEFINITION 1. Given dn ∈ [n], define the function βn : [0,1]→ [0,1] by

(2.7) βn(x)
.=

dn−1∏
i=0

(
x − i

n

1− i
n

)+
.

The function βn(·) arises when sampling dn random servers without replacement. Specifi-
cally, when nx ∈N, βn(x)= P (An,dn ⊆ [nx])= (nx

dn

)
/
( n
dn

)
, where An,dn is a randomly chosen

subset (without replacement) from [n] of size dn. Here, we adopt the convention that
(m
r

)= 0
when m < r . An alternative is to perform sampling with replacement, which corresponds to
the simpler function γn(x)

.= xdn in place of βn.
We now introduce the notion of a “near fixed point” of Gn.

DEFINITION 2. For n ∈N, the near fixed point μn of Gn is the vector in �
↓
1 given as μn =

(μn,1,μn,2 . . .) where μn,i are defined recursively as μn,1 = λn and μn,i+1 = λnβn(μn,i) for
i ≥ 1.

Using βn(x) ≤ xdn ≤ x and λn < 1, it is easy to check that μn ∈ �
↓
1 . The reason μn is

referred to as a near fixed point of Gn is discussed in Remark 3.1. To study the fluctuations
of the process around the near fixed point μn, we define the centered and scaled process, Zn

as in (1.2). We now present our three main results on fluctuations, which correspond to the
three cases dn/

√
n → 0, dn/

√
n → c ∈ (0,∞) and dn/

√
n →∞, respectively. In each of

these cases, we will assume that the initial configuration starts sufficiently close to the near
equilibrium point μn.

ASSUMPTION 2.4. Suppose that {‖Zn(0)‖1}n∈N is tight and Zn(0)
P−→ z in �2, where

zr+ = 0 for some r ∈N.

In the following, β̇n(x) is as defined in (5.1) and in the convention noted below (5.1). In
particular, for x ∈ (0,1) \ {dn−1

n
}, β̇n(x) is the derivative of βn at x.

THEOREM 2.2. Suppose that, as n→∞, 1 � dn �√
n, λn ↗ 1, and there is a k ∈ N

so that μn,k → 1 and β̇n(μn,k)→ α ∈ [0,∞) as n→∞. Further suppose that Assumption
2.4 holds for some r > k. Then for any T ∈ (0,∞),

(2.8) lim
M→∞ sup

n
P
(‖Zn‖2,T > M

)= 0.

Furthermore, if k > 1, then supt∈[ε,T ] |Zn,i(t)| P−→ 0 as n →∞ for any T < ∞, 0 < ε ≤ T

and i ∈ [k− 1].
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Consider the shifted process Y n(t)
.= (
∑k

i=1 Zn,i(t),Zn,k+1(t),Zn,k+2(t), . . .) and y
.=

(
∑k

i=1 zi, zk+1, zk+2, . . .). Then Y n ⇒ Y in D([0,∞) : �2), where Y ∈ C([0,∞) : �2) is the
unique pathwise solution to

(2.9)

Y1(t)= y1 − (α + I{k=1})
∫ t

0
Y1(s) ds +

∫ t

0
Y2(s) ds +√

2B(t),

Y2(t)= y2 + α

∫ t

0
Y1(s) ds −

∫ t

0
Y2(s) ds +

∫ t

0
Y3(s) ds,

Yi(t)= yi −
∫ t

0
Yi(s) ds +

∫ t

0
Yi+1(s) ds for i ∈ {3, . . . , r − k+ 1},

Yi(t)= 0 for i > r − k + 1,

and B(·) is a one-dimensional standard Brownian motion.

REMARK 2.5.

(i) Note that the convergence supt∈[ε,T ] |Zn,i(t)| P−→ 0 as n →∞ for any 0 < ε ≤ T is
equivalent to the statement that Zn,i → 0 in probability in D((0, T ] :R) where the latter
space is equipped with the topology of uniform convergence on compacts. Note also that,
since Theorem 2.2 allows Zn,i(0) to converge to a nonzero limit, the above convergence
to 0 cannot be strengthened to a convergence in probability in D([0, T ] :R).

(ii) By Corollary 5.3 in Section 5, when μn,k is away from 0,

β̇n(μn,k)= (
1+ o(1)

)dnμn,k+1

λnμn,k

as n→∞. Hence the assumptions dn →∞, λn → 1, μn,k → 1 and β̇n(μn,k)→ α <∞
in Theorem 2.2 say that μn,k+1 → 0. Since μn,k → 1, this in fact shows that μn → f k

in �
↓
1 , where recall that f k is one of the fixed points of the fluid-limit (2.2) when λ= 1.

The fact that the convergence happens in �
↓
1 can be seen on observing that if μn,k+1 ≤ ε

then, by (5.2), μn,k+1+i ≤ εdi
n .

We also note that in general
√

n(μn − f k) will diverge, and thus
√

n(Gn − f k)

will typically not be tight, in this regime. Nevertheless, it may still be interesting to
study the behavior of nα(Gn − f k) for some α ∈ (0,1/2) and appropriate choices of
dn →∞ and λn → 1. Note however that when α ∈ (0,1/2), the martingale term in the
semimartingale decomposition of nα(Gn − f k) will converge to zero (as can be seen
from the convergence observed below (6.6)) and thus the limit behavior is expected to
be different. We leave this for future work.

(iii) In the special case when the system starts sufficiently close to the near fixed point μn so
that zi = 0 for i > k+1, the limit process Y simplifies to an essentially two-dimensional
process given as, Yi(t)= 0 for i > 2, and

Y1(t)= y1 − (α + I{k=1})
∫ t

0
Y1(s) ds +

∫ t

0
Y2(s) ds +√

2B(t)

Y2(t)= y2+α

∫ t

0
Y1(s) ds −

∫ t

0
Y2(s) ds

(iv) The convergence behavior of Zn is governed by the sequence of parameters (dn, λn). In
Corollary 5.5 from Section 5, we show that if 1 � dk+1

n � n and 1 − λn = ξn+logdn

dk
n

with ξn → − log(α) ∈ (−∞,∞] and ξ2
n

dn
→ 0, then the conditions μn,k → 1 and

β̇n(μn,k)→ α ∈ [0,∞) of Theorem 2.2 are satisfied. Using this fact, we make the fol-
lowing observations. For simplicity, consider z= 0.
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(a) Suppose that dn = logn, 1 − λn = log logn

(logn)k
. In this case the assumptions of The-

orem 2.2 are satisfied and one essentially sees nonzero fluctuations only in the kth and
k+1-th coordinates. Note that as k becomes large, the traffic intensity increases and one
sees more and more coordinates of the near fixed point approach 1.

(b) With the same dn as in (a) but a somewhat lower traffic intensity given as 1−λn =
(logn)1/2−ε

(logn)k
for some ε ∈ (0,1/2), one sees that condition of the theorem are satisfied

with α = 0 (i.e., β̇n(μn,k)→ 0). Thus the limit process Y , in the case k > 1, simplifies
to Yi = 0 for i > 1 and Y1(t) =

√
2B(t). When k = 1, Z1 = Y1 is instead given as the

following Ornstein–Uhlenbeck (OU) process

(2.10) Z1(t)=−
∫ t

0
Z1(s) ds +√

2B(t).

(c) With higher values of dn, using Theorem 2.2, one can analyze fluctuations for

systems with higher traffic intensity. For example, suppose that dn =
√

n
logn

. Then the

conditions of the theorem are satisfied with k = 1 and 1 − λn ∼ (logn)2/
√

n. In fact,
in this case α = 0 and the limit process is described by the one-dimensional OU
process (2.10). With a slightly higher traffic intensity given as 1 − λn = ((logn)2 −
2 logn log logn))/2

√
n one obtains a two-dimensional limit diffusion.

(d) The theorem allows for traffic intensity in the Halfin–Whitt scaling regime (i.e.,√
n(1 − λn) → β > 0) as well. Specifically, for k ≥ 2, if dn = (

√
n logn)

1
k and (1 −

λn)= β+o(1)√
n

for some β > β0 = 1/2k, the conditions of the theorem are satisfied with

α = 0. With slightly higher traffic intensity (e.g., β+o(1) replaced by β0+(1
k

log logn−
logα)/ logn) conditions of the theorem are met with a nonzero α.

(e) More generally, suppose we are interested in studying the fluctuation behav-
ior when the traffic intensity is λn = 1 − γ n−a for some a ∈ (0,1) and γ > 0. The
cases a < 1/2 and a > 1/2 correspond to the so-called sub and super Halfin–Whitt
regimes, respectively. The asymptotic behavior of JSQ(dn) schemes in steady state in
these regimes has been studied in [5, 6, 21, 22]. In [5, 6], the authors prove the follow-
ing: suppose dn = nb for some b ∈ (0,1] that satisfies a/b /∈ N and 2a < 1 + b(k − 1)

where k
.= �a/b�; then with high probability in equilibrium, the largest queue will have

length k and a vanishingly small fraction of queues have length smaller than k. In [21,
22], the authors consider the case a ∈ (0,1/2) and show that for the JSQ(dn) system
with buffer size bn = O(logn), in equilibrium, both the expected waiting time per
job and the probability that a job is routed to a nonidle server are O(bnn

−r(1/2−a)),
whenever dn ≥ r

γ
na logn for any positive integer r ≤ logn

72(bn−1)2 . In the current work, we
study the behavior of JSQ(dn) over finite intervals of time. Our results, including The-
orem 2.2, allow for both sub and super Halfin–Whitt regimes. To see this, choose any
a ∈ (0,1), ν > 1, an integer k > a/(1− a), and let b

.= a/k. (In other words, a satisfies
2a < 1+ b(k− 1), which is the same condition as in [5]). Then Theorem 2.2 holds with
k, dn = nb(bν

γ
logn)1/k and α = 0.

(f) Recall that a fixed point of (2.2) when λ= 1 takes the form f
γ
k

.= f k + γ ek+1 =
(1, . . . ,1, γ,0, . . .) ∈ �

↓
1 , where k ∈ N and γ ∈ [0,1). Although Theorem 2.2 only con-

siders settings where the near fixed point μn converges to f 0
k = f k for some k, it is

possible to give conditions under which μn converges to a different fixed point. Specif-
ically, suppose that 1 � dk+1

n � n and 1 − λn = a
dk
n

for some a > 0. Then it can be

checked using Lemma 5.4 that μn → f
γ
k with γ = e−a . However, proving fluctuation

results in this regime appears to be technically more involved, and we leave it for future
work.
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The next theorem describes the fluctuations of Zn when dn is of order
√

n.

THEOREM 2.3. Suppose that dn√
n
→ c ∈ (0,∞) and λn = 1− (

logdn

dn
+ αn√

n
) with αn →

α ∈ (−∞,∞] and αn = o(n1/4). Then μn → f 1 in �
↓
1 . Suppose further that Assumption 2.4

holds for some r ≥ 2. Then, as n →∞, Zn ⇒ Z in D([0,∞) : �2), where Z is the unique
pathwise solution to

Z1(t)= z1 −
∫ t

0

(
Z1(s)−Z2(s)

)
ds − (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds +√

2B(t),

Z2(t)= z2 −
∫ t

0

(
Z2(s)−Z3(s)

)
ds + (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds,

Zi(t)= zi −
∫ t

0

(
Zi(s)−Zi+1(s)

)
ds for each i ∈ {3 . . . r},

Zi(t)= 0 for each i > r,

and B is standard Brownian motion.

REMARK 2.6.

(i) Note that the coefficients in the above system of equations are only locally Lipschitz
and have an exponential growth. However, since c is positive, the system of equations has a
unique pathwise solution as is shown in Lemma 8.2.

(ii) Once more, when zi = 0 for all i > 2, the system of equations simplifies to a two-
dimensional system given as Zi = 0 for all i > 2, and

Z1(t)= z1 −
∫ t

0

(
Z1(s)−Z2(s)

)
ds − (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds +√

2B(t),

Z2(t)= z2 −
∫ t

0
Z2(s) ds + (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds.

(iii) In the regime considered in Theorem 2.3, the near fixed point μn can converge to
only one particular fixed point of (2.2), namely f 1. As before, the term

√
n(μn − f 1) may

diverge and thus
√

n(Gn(·)− f 1) will in general not be tight.
(iv) Suppose that dn = c

√
n for some c > 0, z= 0 and 1− λn = (β + o(1)) logn/

√
n for

some β > β0 = 1/2c. Then the assumptions of the above theorem are satisfied with α =∞
and the limit system simplifies to a one-dimensional OU process given as Zi = 0 for all i > 1,
and Z1 satisifes (2.10). If (β + o(1)) logn is replaced by β0 logn+ γ for some γ ∈ R, we
instead obtain a two-dimensional limit system given as Zi = 0 for all i > 2, and

Z1(t)=−
∫ t

0

(
Z1(s)−Z2(s)

)
ds − e−cγ

∫ t

0

(
ecZ1(s) − 1

)
ds +√

2B(t),

Z2(t)=−
∫ t

0
Z2(s) ds + e−cγ

∫ t

0

(
ecZ1(s) − 1

)
ds.

Finally, we consider the fluctuation behavior when dn �√
n. This time the limit system

will involve reflected diffusion processes. Recall from (2.1) the definition of the Skorohod
maps �α and �̂α associated with a reflection barrier at α ∈ R. We will extend the definition
of these maps to α =∞ by setting

(2.11) �∞(h)= h, �̂∞(h)= 0 for h ∈D
([0,∞) :R).
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THEOREM 2.4. Suppose that
√

n� dn and

λn = 1−
(

logdn

dn

+ αn√
n

)
,

where αn → α ∈ [0,∞], with α−n =O(
√

n/dn), and αn =O
(
n1/6).

(2.12)

Then μn → f 1 in �
↓
1 . Suppose further that Assumption 2.4 holds for some r ≥ 2 with z1 ≤ α.

Then, as n→∞, Zn ⇒ Z ∈D([0,∞) : �2), where Z is the first component of the pair (Z, η),
which is a �2 ×R+ valued continuous process given as the unique solution to

(2.13)

(
Z1(t), η(t)

)= (�α, �̂α)

(
z1 −

∫ ·
0

(
Z1(s)−Z2(s)

)
ds +√

2B(·)
)
(t),

Z2(t)= z2 −
∫ t

0

(
Z2(s)−Z3(s)

)
ds + η(t),

Zi(t)= zi −
∫ t

0

(
Zi(s)−Zi+1(s)

)
ds for each i ∈ {3 . . . r},

Zi(t)= 0 for each i > r,

and B is a standard Brownian motion.

We note that given a standard Brownian motion B , there is a unique continuous process
(Z, η) with values in �2 ×R+, adapted to the filtration generated by B (See Remark 2.8(i)).
As a corollary to this theorem, we obtain the specific regime considered in [31] (in fact we
provide a slight strengthening in that, unlike [31], we allow α = 0). See Remark 2.8(v) for
further discussion.

COROLLARY 2.7. As n →∞, suppose that dn � √
n logn and

√
n(1 − λn) → α ∈

[0,∞), along with
√

n(1−λn)≥ (
√

n logn)/dn for large n if α = 0. Let Y n(·) .=√
n(Gn(·)−

f 1) and assume that the sequence of random variables {‖Y n(0)‖1} is tight, and as n→∞,

Y n(0)
P−→ y ∈ �2 with yr+ = 0 for some r ≥ 2. Then Y n ⇒ Y in D([0,∞) : �2), where (Y , η̃)

is the �2 × [0,∞) valued continuous process given by the unique solution to

(
Y1(t), η̃(t)

)= (�0, �̂0)

(
y1 − αid(·)−

∫ ·
0

(
Y1(s)− Y2(s)

)
ds +√

2B(·)
)
(t)

Y2(t)= y2 −
∫ t

0

(
Y2(s)− Y3(s)

)
ds + η̃(t),

Yi(t)= yi −
∫ t

0

(
Yi(s)− Yi+1(s)

)
ds for each i ∈ {3 . . . r},

Yi(t)= 0 for each i > r,

and B is a standard Brownian motion.

REMARK 2.8.

(i) The existence and uniqueness of solutions to the stochastic integral equations in
(2.13) follows by standard fixed-point arguments on using the Lipschitz property of the map
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�α on D([0,∞) :R). This system of equations can equivalently be written as

(2.14)

Z1(t)= z1 −
∫ t

0

(
Z1(s)−Z2(s)

)
ds +√

2B(t)− η(t),

Z2(t)= z2 −
∫ t

0

(
Z2(s)−Z3(s)

)
ds + η(t),

Zi(t)= zi −
∫ t

0

(
Zi(s)−Zi+1(s)

)
ds for each i ∈ {3 . . . r},

Zi(t)= 0 for each i > r,

where η= 0 when α =∞, and when α ∈R, it satisfies

(2.15)
η(0)= 0 and η is a nondecreasing function.
Z1(t)≤ α∫∞

0 (α −Z1(s)) dη(s)= 0

⎫⎬
⎭ .

The system of equations (2.14) describes a constrained multidimensional diffusion driven
by a one-dimensonal Brownian motion. Existence and uniqueness for a similar system of
equations and the convergence of Y n to that system when dn = n is shown in [9]. However,
note that unlike in [9] (where the reflection is at 0), the reflection in (2.14) occurs at a barrier
α ∈ [0,∞].

(ii) The convergence μn → f 1 along with tightness of {Zn}n∈N shows that, under the
conditions of Theorems 2.3 or 2.4, most queues will be of length 1 on any fixed interval
[0, T ].

(iii) The limit system in Theorem 2.4 simplifies when zi = 0 for i > 2 and is given as
Zi = 0 for all i > 2, and

Z1(t)= z1 −
∫ t

0

(
Z1(s)−Z2(s)

)
ds +√

2B(t)− η(t),

Z2(t)= z2 −
∫ t

0
Z2(s) ds + η(t),

where η is as in the statement of the theorem.
(iv) Suppose that dn =√

n logn/2a for some a > 0 and 1− λn = a√
n
+ 2a(log logn+O(1))√

n logn
.

Then the assumptions in Theorem 2.4 are satisfied with α = 0. In this case, the reflection
barrier is at 0, namely Z1(t)≤ 0 for all t . Also note that since

√
n(1−λn)→ a, we have that

μn,1 = λn → 1. Since dn/
√

n→∞, this shows that for k ≥ 2,
√

nμn,2 =√
nλnβn(λn)≤√

nλnλ
dn
n =√

n
(
1− (1− λn)

)dn+1 → 0.

Using μn,i+1 ≤ μ
dn

n,i , see that
√

n(μn − f 1) →−ae1 ∈ �1, and hence the fluctuations of
Gn about the fixed point f 1 can be characterized as well. Specifically, letting Y n(·) =√

n(Gn(·) − f 1) = Zn(·) + √
n(μn − f 1), we see that, under the condition of the above

theorem, Y n ⇒ Y in D([0,∞) : �2), where Y = Z − ae1, and hence, assuming zi = 0 for
i > 2, (Y , η̃) ∈C([0,∞) : �2 ×R+) is the unique solution to (2.15) with (Z1, η,α) replaced
with (Y1, η̃,−a), and the equations

Y1(t)= y1 − at −
∫ t

0

(
Y1(s)− Y2(s)

)
ds +√

2B(t)− η̃(t),

Y2(t)= y2 −
∫ t

0
Y2(s) ds + η̃(t),

where y = z− ae1 and B is a standard Brownian motion. In particular, the limit Y takes the
same form as in [9, 31] with a stronger constraint that Y1(t)≤−a < 0 for each t > 0.
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TABLE 1
Analysis of JSQ(dn) with 1− λn = n−a , dn = �nbn� and k

.= limn�a/bn�. The notation bn ∈ ((ln, r] denotes the
condition nln � dn ≤ nr

Reference Regimes of a, bn and k Analysis type

Braverman [4] a = 0.5, bn = 1, k = 1 Convergence of stationary
distribution

Eschenfeldt & Gamarnik [9] a = 0.5, bn = 1, k = 1 Functional central limit theorem

Mukherjee et al. [31] a = 0.5, bn ∈ ((0.5+ log logn
logn

,1], k = 1 Functional central limit theorem

Theorem 2.4 (α = 0) a ∈ (1/2,1), bn ∈ [a + log logn
logn

,1], k = 1 Functional central limit theorem

Theorem 2.4 (α ∈ (0,∞)) a = 0.5, bn ∈ [0.5+ log logn
logn

,1], k = 1 Functional central limit theorem

Theorem 2.4 (α =∞) a ∈ [1/3,1/2), bn ∈ ((0.5,1], k = 1 Functional central limit theorem

Theorem 2.3 (α =∞) a ∈ (1/4,1/2), bn = 0.5, k = 1 Functional central limit theorem

Theorem 2.2 (α = 0)∗ a ∈ (0,1), bn = (a + log logn
logn

)/k,
k > a/(1− a), k ∈N

Functional central limit theorem

Brightwell et al. [5] a ∈ (0,1), bn → b ∈ (0,1],
2a < 1+ b(k − 1), a/b /∈N

Equilibrium queue lengths

Liu & Ying [21, 22] a ∈ (0,1/2), bn ∈ [a + logn logn
logn

,1],
k = 1

Equilibrium performance

(v) Suppose that dn �√
n logn. Then it is easy to see that (2.12) holds with some α > 0

if and only if
√

n(1− λn)→ α > 0. This regime was studied in [31]. Using the arguments as
in (iv) above, it is easy to check that

√
n(μn − f 1)→−αe1 in �1 (and hence �2). Corollary

2.7 is immediate from this and Theorem 2.4. In particular, we recover [31], Theorem 3.
However, the proof techniques in the current paper are different from the stochastic coupling
techniques employed in [31].

(vi) Suppose
√

n� dn �√
n logn and that (2.12) holds with α <∞. Then, as observed

in the proof of Theorem 4 in [31], Y n will not be tight in this regime. But since
√

n(1 −
μn,1) = (

√
n logdn)/dn + αn →∞, this does not preclude the convergence of Zn = Y n −√

n(μn − f 1). Indeed, Theorem 2.4 shows that the process Zn converges in distribution and
the limit process has a reflecting barrier at α, that is, Z1 ≤ α. In particular, unlike the case
dn �√

n logn, the barrier in this case does not come from the constraint Gn,1 ≤ 1.
(vii) Theorem 2.4 allows for a slower approach to criticality than n−1/2, for example, λn

such that n1/3(λn − 1)→ γ > 0. In this case, α =∞ and there is no reflection. When zi = 0
for all i ≥ 1, this system reduces to the one-dimensional OU process given by (2.10) with
Zi = 0 for i > 1.

Table 1 summarizes some of the key regimes of (dn, λn) that are covered by Theorems
2.2–2.4 and places them in the context of previous work on JSQ(dn) systems in heavy traffic.

In order to make comparison with [5], note that the regime in ∗ can equivalently be written
as a ∈ (0,1), bn = (a + log logn

logn
)/k → b, 2a < 1+ b(k − 1), a/b ∈N.

3. Poisson representation of state processes. We now embark on the proofs of the main
results. We start with a brief overview of the organization of the proofs. In this section, we
describe a specific construction of the state process. Proof of the law of large numbers (The-
orem 2.1) is given in Section 4. Section 5 describes fine-scaled (deterministic) properties of
the function βn and the near fixed points μn, which play a key technical role in the proofs
of our diffusion approximations. Section 6 derives preliminary estimates required to prove
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all the main results for the fluctuations of the state process. Sections 7, 8 and 9 complete the
proofs of Theorems 2.2, 2.3 and 2.4, respectively.

We start with a specific construction of the state process through time changed Poisson
processes (cf. [11, 20]). A similar representation has been used in previous work on JSQ(d)

systems (cf. [9, 10, 31]). Let {Ni,+,Ni,− : i ≥ 1} be a collection of mutually independent
rate one Poisson processes given on some probability space (�,F,P ). Then Gn has the
following (equivalent in distribution) representation. For i ≥ 1 and t ≥ 0,

(3.1)

Gn,i(t)=Gn,i(0)− 1

n
Ni,−

(
n

∫ t

0

[
Gn,i(s)−Gn,i+1(s)

]
ds

)

+ 1

n
Ni,+

(
λnn

∫ t

0

[
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)]
ds

)
,

where Gn,0(t)= 1 for all t ≥ 0. Denoting

An,i(t)
.=Ni,+

(
λnn

∫ t

0

[
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)]
ds

)
,

Dn,i(t)
.=Ni,−

(
n

∫ t

0

[
Gn,i(s)−Gn,i+1(s)

]
ds

)
,

the above evolution equation can be rewritten as

(3.2) Gn,i(t)=Gn,i(0)− 1

n
Dn,i(t)+ 1

n
An,i(t), i ∈N, t ≥ 0.

The above equation can be intuitively understood as follows. The point process Dn,i describes
events that cause a decrease in Gn,i owing to completion of service events for jobs in queues
of length exactly i, which since each server works at rate 1, happens at rate n[Gn,i(t) −
Gn,i+1(t)] at the time instant t . On the other hand, An,i describes events causing an increase
in Gn,i , which only occur if the chosen queue of a new job has exactly i − 1 individuals;
this occurs if among the dn random choices made by this job, all of the chosen queues have
load at least i − 1 but not all have load at least i. The probability of the latter event is exactly
βn(Gn,i−1(t)) − βn(Gn,i(t)), and thus the rate at which Gn,i increases at time instant t is
given by nλn(βn(Gn,i−1(t))− βn(Gn,i(t))).

Let

F̃n
t = σ

{
An,i(s),Dn,i(s), s ≤ t, i ≥ 1

}
,

and let Fn
t be the augmentation of F̃n

t with P -null sets. It then follows that, for each i ≥ 1,

Mn,i,+(t)
.= 1

n
Ni,+

(
λnn

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds

)

− λn

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds

(3.3)

and

(3.4) Mn,i,−(t)
.= 1

n
Ni,−

(
n

∫ t

0
Gn,i(s)−Gn,i+1(s) ds

)
−
∫ t

0

(
Gn,i(s)−Gn,i+1(s)

)
ds

are {Fn
t }-martingales with predictable (cross) quadratic variation processes given, for t ≥ 0,

as

〈Mn,i,+〉t = λn

n

∫ t

0

(
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

))
ds, i ≥ 1,

〈Mn,i,−〉t = 1

n

∫ t

0

(
Gn,i(s)−Gn,i+1(s)

)
ds, i ≥ 1,
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〈Mn,i,−,Mn,j,−〉t = 0, 〈Mn,i,+,Mn,j,+〉t = 0, for all i, j ≥ 1, i �= j and

〈Mn,i,+,Mn,k,−〉t = 0 for all i, k ≥ 1.

Using these martingales, the evolution of Gn can be rewritten as

(3.5)
Gn,i(t)=Gn,i(0)−

∫ t

0

(
Gn,i(s)−Gn,i+1(s)

)
ds

+ λn

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds +Mn,i(t), i ≥ 1,

where Mn,i(t)
.=Mn,i,+(t)−Mn,i,−(t) and

(3.6) 〈Mn,i〉t = 1

n

(∫ t

0

(
Gn,i(s)−Gn,i+1(s)

)
ds+λn

∫ t

0

(
βn

(
Gn,i−1(s)

)−βn

(
Gn,i(s)

))
ds

)
.

We will assume throughout that Gn(0) ∈ �
↓
1 a.s. Then it follows that, for every t ≥ 0,

‖Gn(t)‖1 <∞ a.s. Indeed, since n‖Gn(t)‖1 equals the total number of jobs in the system at
time t , and over any time interval [0, t] finitely many jobs enter the system a.s., denoting by
At the number of jobs that arrive over [0, t], we see that ‖Gn(t)‖1 ≤ ‖Gn(0)‖1 +At/n <∞
a.s. Thus Gn is a stochastic process with sample paths in D([0,∞) : �↓1 ). Note that, for any
t > 0, ‖Gn(t)−Gn(t−)‖1 ≤ 1

n
.

REMARK 3.1. Let an,b : �↓1 → �1 be given by

an(x)i
.= λn

(
βn(xi−1)− βn(xi)

)
, b(x)i

.= xi − xi+1, x ∈ �
↓
1 , i ≥ 1,

where, by convention, for x ∈ �
↓
1 , x0 = 1. Then (3.5) can be rewritten as an evolution equation

in �1 as

(3.7) Gn(t)=Gn(0)+
∫ t

0

[
an

(
Gn(s)

)− b
(
Gn(s)

)]
ds +Mn(t),

where Mn(t)
.= (Mn,i(t))i≥1 is a stochastic process with sample paths in D([0,∞) : �1) and

the integral is a Bochner-integral [37]. Note that the near fixed point μn from Definition 2
satisfies an(μn)= b(μn). It is in fact the unique solution to

(3.8) an(x)= b(x) for x ∈ �
↓
1 ,

as is seen by adding up all the coordinates of (3.8) and using x ∈ �1. In Lemma 4.1, we will

see that for any T > 0, as n →∞, supt≤T ‖Mn(t)‖2
P−→ 0. Hence if Gn(0) = μn, then by

(3.7), we expect the process Gn(t) to stay close to μn (over any compact time interval) as
n→∞. In this sense, μn can be viewed as a “near fixed point” of Gn(·) and the terminology
in Definition 2 is justified. Another reason for this terminology comes from the results in
Theorems 2.2–2.4, which show that, under conditions, μn converges to one of the fixed points
of the fluid limit (2.2) when λ= 1.

4. The law of large numbers. In this section, we prove Proposition 2.1 and Theo-
rem 2.1.

4.1. Uniqueness of fluid limit equations. In this subsection, we show that there is at most
one solution of (2.2) in C([0,∞) : �↓1 × �∞). Results of Section 4.2 will provide existence of
solutions to this equation. Suppose (g,v) and (g′,v′) are two solutions to (2.2) in C([0,∞) :
�
↓
1 × �∞). We will now argue that the two solutions are equal.
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We claim that that v′i and vi are nonzero for only finitely many i’s. Indeed, since g,g′ ∈
C([0, T ] : �↓1 ), there is a constant C ∈ (0,∞) so that sups≤T ‖g(s)‖1∨ sups≤T ‖g′(s)‖1 ≤ C.
Since

(4.1) xi ≤ ‖x‖1/i for any x ∈ �
↓
1 ,

taking M
.= �C+ 1� ∈N shows that sups≤T gi(s)∨ g′i (s) < 1 for any i ≥M . But then by the

equivalent representation of (2.2) given in (2.3) (in particular the second line), we must have
vi = v′i = 0 for any i ≥M . This proves the claim.

Since vi = v′i = 0 for i ≥M , the first line of the equivalent formulation in (2.3) shows that
both x = g and x = g′ satisfy the integral equations

xi(t)= ri −
∫ t

0

(
xi(s)− xi+1(s)

)
ds for i ≥M + 1 and t ∈ [0, T ].

By standard arguments using Gronwall’s lemma [11], Appendix 5, we then must have
gi = g′i for each i ≥ M + 1. Indeed, letting zi(·) .= gi(·) − g′i (·) for i ≥ M + 1 and
v(t)

.=∑∞
i=M+1 |zi(t)| for t ∈ [0, T ], we have that

∣∣zi(t)
∣∣≤ ∫ t

0

(∣∣zi(s)
∣∣+ ∣∣zi+1(s)

∣∣)ds for all i ≥M + 1, and t ∈ [0, T ]
and so

v(t)≤ 2
∫ t

0
v(s) ds, t ∈ [0, T ],

which implies that v(t)= 0 for t ∈ [0, T ].
We now show that gi = g′i for i ≤M . From the definition of the Skorohod map in (2.1),

we see that for h1, h2 ∈D([0,∞) :R) with hi(0)≤ 1, i = 1,2, and t ≥ 0∥∥�1(h1)− �1(h2)
∥∥∗,t ≤ 2‖h1 − h2‖∗,t ,

∥∥�̂1(h1)− �̂1(h2)
∥∥∗,t ≤ ‖h1 − h2‖∗,t .

Thus, since (g,v) and (g′,v′) solve (2.2),

(4.2)
∥∥gi − g′i

∥∥∗,t ≤ 2
(∫ t

0

∥∥gi − g′i
∥∥∗,s ds +

∫ t

0

∥∥gi+1 − g′i+1
∥∥∗,s ds + ∥∥vi−1 − v′i−1

∥∥∗,t
)
,

and

(4.3)
∥∥vi − v′i

∥∥∗,t ≤
∫ t

0

∥∥gi − g′i
∥∥∗,s ds +

∫ t

0

∥∥gi+1 − g′i+1
∥∥∗,s ds + ∥∥vi−1 − v′i−1

∥∥∗,t
for any i ≥ 1. Let Ht

.= maxi∈{1,...M} ‖gi − g′i‖∗,t . Note gM+1 = g′M+1, and hence Ht =
maxi∈{1,...M+1} ‖gi − g′i‖∗,t . Then from (4.3), we have

(4.4)
∥∥vi − v′i

∥∥∗,t ≤ 2
∫ t

0
Hs ds + ∥∥vi−1 − v′i−1

∥∥∗,t for any i ≤M.

Repeatedly using (4.4) along with v0 = v′0 shows that ‖vi − v′i‖∗,t ≤ 2i
∫ t

0 Hs ds for any
i ≤M . Using this bound in (4.2) shows for 1≤ i ≤M :

∥∥gi − g′i
∥∥∗,t ≤ 2

(
2
∫ t

0
Hs ds + 2(i − 1)

∫ t

0
Hs ds

)
= 4i

∫ t

0
Hs ds.

Hence considering the maximum of ‖gi − g′i‖∗,t over 1≤ i ≤M we get

0≤Ht ≤ 4M

∫ t

0
Hs ds for each t ∈ [0, T ].

Gronwall’s lemma now shows that HT = 0, and hence gi = g′i for i = 1 . . .M . Finally, since
v0 = v′0, we see recursively from the second equation in (2.2) that vi = v′i for all i ≥ 0. �
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4.2. Tightness and limit point characterization. Some of the arguments in this section
are similar to [31], however, in order to keep the presentation self-contained we provide
details in a concise manner. The next result establishes the convergence of the martingale
term Mn in the semimartingale decomposition in (3.7). Throughout this subsection and the

next section, we assume that the conditions of Theorem 2.1 are satisfied, namely, Gn(0)
P−→ r

in �
↓
1 , λn → λ and dn →∞, as n→∞.

LEMMA 4.1. For any T > 0, sups≤T ‖Mn(s)‖2
P−→ 0.

PROOF. It suffices to show that for any T > 0, limn E sups≤T ‖Mn(s)‖2
2 = 0. Applying

Doob’s maximal inequality, we have that

(4.5) E sup
s≤T

∥∥Mn(s)
∥∥2

2 ≤ 4E
∥∥Mn(T )

∥∥2
2 = 4E

∑
i≥1

Mn,i(T )2.

Since EM2
n,i(T )=E〈Mn,i〉T , using the monotone convergence theorem in (4.5) shows

E sup
s≤T

∥∥Mn(s)
∥∥2

2 ≤ 4E
∑
i≥1

〈Mn,i〉T ≤ 4
T (1+ supn λn)

n
,(4.6)

where the last inequality is from (3.6) on observing that

∞∑
i=1

〈Mn,i〉T ≤ 1

n

∫ T

0
Gn,1(s)+ λn

n

∫ T

0
βn

(
Gn,0(t)

)≤ T (1+ λn)

n
.

Sending n→∞ in (4.6) completes the proof of the lemma. �

The next proposition characterizes compact sets in �
↓
1 ⊆ �1∩[0,1]∞. The proof is standard

and can be found for example in [31].

PROPOSITION 4.2. A subset C ⊆ �
↓
1 is precompact if and only if

lim sup
M→∞

sup
x∈C

∑
i>M

|xi | = 0.

The estimates in the following lemmas will be useful when applying Aldous–Kurtz tight-
ness criteria [17], Theorem 23.11, for proving tightness of {Gn}n≥1.

LEMMA 4.3. For each n ∈N, there is a square integrable {Fn
t }-martingale {Ln(t)} such

that, for any t ≥ 0,

‖Gn‖1,t
.= sup

s∈[0,t]
∥∥Gn(s)

∥∥
1 ≤

∥∥Gn(0)
∥∥

1 + λnt +Ln(t).

Furthermore, 〈Ln〉t ≤ λnt
n

, for all t ≥ 0.

PROOF. For i = 1, . . . , n, let Xi(t) denote the number of jobs in the ith server’s queue at
time t . Then

∥∥Gn(t)
∥∥

1 =
∞∑

j=1

Gn,j (t)=
∞∑

j=1

n∑
i=1

I{Xi(t)≥j}
n

= 1

n

n∑
i=1

∞∑
j=1

I{Xi(t)≥j} = 1

n

n∑
i=1

Xi(t).

Hence ‖Gn(t)‖1 is the total number of jobs in the system at time t , divided by n.
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Since the total number of jobs in the system at time t is bounded above by the sum
of number of job arrivals by time t and the initial number of jobs, sups∈[0,t] ‖Gn(s)‖ ≤
‖Gn(0)‖1 + An(t)

n
, where An(t) is the total number of arrivals to the system by time t . Since

An is a Poisson process with arrival rate λnn, the result follows on setting Ln(t)= An(t)
n

−λnt ,
t ≥ 0. �

LEMMA 4.4. Fix n ∈N and δ ∈ (0,∞). Let τ be a bounded {Fn
t }-stopping time. Then

E
∥∥Gn(τ + δ)−Gn(τ )

∥∥
1 ≤ (λn + 1)δ.

PROOF. From (3.2), for any i ∈N,

(4.7)
∣∣Gn,i(τ + δ)−Gn,i(τ )

∣∣≤ 1

n

(
An,i(τ + δ)−An,i(τ )+Dn,i(τ + δ)−Dn,i(τ )

)
.

From (3.3) and (3.4), we see that

E
1

n

(
An,i(τ + δ)−An,i(τ )

)= λnE

∫ τ+δ

τ

(
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

))
ds,

E
1

n

(
Dn,i(τ + δ)−Dn,i(τ )

)=E

∫ τ+δ

τ

(
Gn,i(s)−Gn,i+1(s)

)
ds.

Using the above identities in (4.7),

(4.8)

E
∣∣Gn,i(τ + δ)−Gn,i(τ )

∣∣
≤ λnE

∫ τ+δ

τ

(
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

))
ds

+E

∫ τ+δ

τ

(
Gn,i(s)−Gn,i+1(s)

)
ds.

Adding (4.8) over various values of i ∈N, we have

E
∥∥Gn(τ + δ)−Gn(τ )

∥∥
1 ≤ λn

∞∑
i=1

E

∫ τ+δ

τ

(
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

))
ds

+
∞∑
i=1

E

∫ τ+δ

τ

(
Gn,i(s)−Gn,i+1(s)

)
ds

≤E

∫ τ+δ

τ

(
λnβn

(
Gn,0(s)

)+Gn,1(s)
)
ds ≤ (λn + 1)δ. �

The following lemma will be useful in verifying the tightness of {Gn(t)} in �
↓
1 for each

fixed t ≥ 0.

LEMMA 4.5. For every n,m ∈ N there is a square integrable {Fn
t } martingale Ln,m(·)

so that, for all t ≥ 0,

sup
s≤t

∑
i>m

Gn,i(s)≤
∑
i>m

Gn,i(0)+ λnt

m
‖Gn‖1,t +Ln,m(t)

and 〈Ln,m〉t ≤ λnt
nm
‖Gn‖1,t .
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PROOF. From (3.1), for any i ∈N and t ≥ 0:

(4.9) Gn,i(t)≤Gn,i(0)+ 1

n
N+,i

(
nλn

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds

)
.

Consider the point-process given by

Bn,m(t)
.=∑

i>m

N+,i

(
nλn

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds

)
.

Adding over i > m in (4.9), we get

(4.10) sup
s≤t

∑
i>m

Gn,i(s)≤
∑
i>m

Gn,i(0)+ 1

n
Bn,m(t).

It is easy to see that with

bn,m(t)
.= nλn

∑
i>m

∫ t

0
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

)
ds, t ≥ 0,

L̃n,m(t)
.= Bn,m(t)− bn,m(t) is a Fn

t -martingale and

〈L̃n,m〉t = bn,m(t)= nλn

∫ t

0
βn

(
Gn,m(s)

)
ds ≤ nλn

∫ t

0
Gn,m(s) ds

≤ nλnt
(
sup
s≤t

Gn,m(s)
)
≤ nλnt

m
‖Gn‖1,t ,

where, for the last inequality we have used (4.1). The lemma now follows on setting
Ln,m(t)= L̃n,m(t)/n and and using (4.10). �

Recall that under our assumptions, λn → λ and dn →∞ as n→∞. We are now ready to
prove that the sequence of processes {Gn}n≥1 is tight.

LEMMA 4.6. Suppose that {Gn(0)}n≥1 is a tight sequence of �
↓
1 valued random vari-

ables. Then for any T > 0, {Gn}n≥1 is a tight sequence of D([0, T ] : �↓1 ) valued random
variables.

PROOF. To show that {Gn}n≥1 is tight, it suffices to show the following two conditions:

(1) For any t ∈ [0, T ] and ε > 0, there is a compact set � ⊆ �
↓
1 so that infn∈N P (Gn(t) ∈

�)≥ 1− ε.
(2) For every sequence of nonnegative numbers δn converging to 0 as n →∞, and

every sequence of Fn
t -stopping times τn such that τn ≤ T , lim supn→∞E‖Gn(τn + δn) −

Gn(τn)‖1 = 0.

To see this, note using the Aldous–Kurtz criteria [17], Theorem 23.11, that the above condi-
tions (1) and (2), respectively, imply the conditions (i) and (ii) of [17], Theorem 23.8. Since
it is immediate from Lemma 4.4 that condition (2) is satisfied, we now focus on proving
condition (1).

Fix ε > 0. Let λ̄= supn≥1 λn. Since Gn(0) is tight, there is a compact K1 ⊂ �
↓
1 such that

P
(
Gn(0) ∈K1

)≥ 1− ε

8
for all n ∈N.
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In particular, since ‖ · ‖1 is a continuous function, there is a κ1 ∈ (0,∞) such that
supx∈K1

‖x‖1 ≤ κ1. For the martingale sequence {Ln}n∈N defined in Lemma 4.3, we can
find κ2 ∈ (0,∞) so that

P
(|Ln|∗,T > κ2

)≤ E〈Ln〉T
κ2

2

≤ λ̄T

κ2
2

≤ ε

8

for each n ∈ N. Then, using the above estimates in Lemma 4.3, with κ = λ̄T + κ1 + κ2, we
see

P
(‖Gn‖1,T ≥ κ

)≤ ε

4

for each n ∈N. Let mk ↑∞ be a sequence such that 4 λ̄T (κ+1)

m
1/2
k

≤ ε
2k+1 for all k ∈N. Define

K2 =
{
y ∈ �

↓
1 : for some x ∈K1,

∑
i>mk

yi ≤
∑

i>mk

xi + λ̄T κ

mk

+ 1

m
1/4
k

,∀k ∈N

}
.

Since K1 is compact, it is immediate from Proposition 4.2 that K2 is precompact in �
↓
1 . Also,

using Lemma 4.5, for any t ∈ [0, T ],
P
(
Gn(t) ∈Kc

2
)≤ P

(‖Gn‖1,T ≥ κ
)+P

(
Gn(0) ∈Kc

1
)

+P

(
|Ln,mk

|∗,T >
1

m
1/4
k

for some k ∈N,‖Gn‖1,T ≤ κ

)

≤ ε

4
+ ε

8
+ 4(κ + 1)λ̄T

∞∑
k=1

m
1/2
k

1

mk

≤ ε,

where the second inequality follows from the application of Doob’s maximal inequality with
the stopping time τ

.= inf{t | ‖Gn(t)‖1 > κ} and from the expression of 〈Ln,mk
〉 in Lemma

4.5, and the third inequality follows from the choice of {mk}k∈N. This proves (1) and com-
pletes the proof of the lemma. �

The following lemma gives a characterization of the limit points of Gn.

LEMMA 4.7. Fix T ∈ (0,∞). Suppose that, along some subsequence {nk}k≥1, Gnk
⇒G

in D([0, T ] : �↓1 ) as k →∞. Then G ∈ C([0, T ) : �↓1 ) a.s., and (2.2) is satisfied with (gi, vi)

replaced with (Gi,Vi), where Vi are defined recursively using the second equation in (2.2)
with V0(t)= λt for t ≥ 0.

PROOF. From Lemma 4.1, we see that Mnk

P−→ 0, in D([0, T ] : �2). By Skorohod embed-
ding theorem, let us assume that Gnk

, Mnk
, G are all defined on the same probability space

and

(Gnk
,Mnk

)→ (G,0), a.s.

in D([0, T ] : �↓1 × �2). Since the jumps of Gn have size at most 1/n, G is continuous and
‖G(s) − Gnk

(s)‖1,T → 0 a.s. Similarly, ‖Mnk
(s)‖2,T → 0 a.s. To simplify notation from

now on, we will take nk = n.
Let Vn,i(t)

.= λn

∫ t
0 βn(Gn,i(s)) ds for i ≥ 1 and Vn,0(t)

.= λnt . From (3.5), for any i ≥ 1,

(4.11) Gn,i(t)=Gn,i(0)−
∫ t

0

(
Gn,i(s)−Gn,i+1(s)

)
ds + Vn,i−1(t)− Vn,i(t)+Mn,i(t).
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For i ∈N, sups≤T |Gn,i(s)−Gi(s)| ≤ sups≤T ‖Gn(s)−G(s)‖1 → 0 and sups≤T |Mn,i(s)| ≤
sups≤T ‖Mn(s)‖2 → 0, a.s. as n→∞. We now show that, for each i ∈ N0, Vn,i converges
uniformly on [0, T ] (a.s.) to some limit process Vi . Clearly, this is true for i = 0 and in fact
V0(t) = λt , t ≥ 0. Proceeding recursively, suppose now that Vn,i−1 → Vi−1 on [0, T ] for
some i ≥ 1. Then, since all the terms in (4.11), except Vn,i , converge uniformly, Vn,i must
converges uniformly as well to some limit process Vi . Sending n→∞ in (4.11), we get for
every t ≤ T and i ≥ 1:

Gi(t)=Gi(0)−
∫ t

0

(
Gi(s)−Gi+1(s)

)
ds + Vi−1(t)− Vi(t), a.s.

This shows the first line in (2.3) is satisfied with (gi, vi) replaced with (Gi,Vi).
We now show that the second line in (2.3) is satisfied as well. Since Vi is the limit of {Vn,i},

the following properties hold:

(i) V0(t)= λt for all t ∈ [0, T ].
(ii) Vi is continuous, nondecreasing and Vi(0)= 0.

(iii) For any t ∈ [0, T ], ∫ t
0 (1−Gi(s)) dVi(s)= 0. This is a consequence of the following

identities: ∫ t

0

(
1−Gi(s)

)
dVi(s)= lim

n

∫ t

0

(
1−Gi(s)

)
dVn,i(s)

= lim
n

∫ t

0
λn

(
1−Gi(s)

)
βn

(
Gn,i(s)

)
ds

= λ

∫ t

0
lim

n→∞
(
1−Gi(s)

)
βn

(
Gn,i(s)

)
ds

= 0,

where the first equality holds since Gi is a continuous and bounded function and Vn,i → Vi

uniformly on [0, T ]; the second equality uses the definition of Vn,i , the third is from the
dominated convergence theorem and the fourth follows since βn(x)≤ xdn , for x ∈ [0,1] and
dn →∞, βn(x)→ 0 for every x ∈ [0,1).

Thus we have verified that the second line in (2.3) is satisfied with (Gi,Vi) as well. The result
is now immediate from Remark 2.2. �

4.3. Completing the proof of LLN. We can now complete the proofs of Proposition 2.1
and Theorem 2.1.

PROOF OF PROPOSITION 2.1. Fix r ∈ �
↓
1 , λ > 0 and choose a sequence rn ∈ �

↓
1 such that

rn → r in �
↓
1 and for each i, nrn,i ∈N0. Consider parameters λn = λ, dn = n and a JSQ(dn)

system initialized at Gn(0)= rn. From Lemma 4.7, we have that there is at least one solution
of (2.2), which is given as a limit point of an arbitrary weakly convergent subsequence of
Gn (such a sequence exists in view of the tightness shown in Lemma 4.6). The fact that this
equation can have at most one solution was shown in Section 4.1. The result follows. �

PROOF OF THEOREM 2.1. Since Gn(0)
P−→ r in �

↓
1 , the hypothesis of Lemma 4.6 is

satisfied, and thus the sequence {Gn}n≥1 is tight in D([0, T ] : �↓1 ) for any fixed T > 0. The
result is now immediate from Lemma 4.7 and unique solvability of (2.2) shown in Proposition
2.1. �
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REMARK 4.8. We note that the proofs of Lemma 4.7 and Theorem 2.1 also show that,
under the conditions of Theorem 2.1, for each i ≥ 1,

sup
t≤T

∣∣∣∣λn

∫ t

0
βn

(
Gn,i(s)

)
ds − vi(t)

∣∣∣∣ P−→ 0,

where (gi, vi) is the unique solution of (2.2).

5. Properties of the near fixed point. In this section, we give some important proper-
ties of the near fixed point μn that will be needed in the proofs of fluctuation theorems. Since
μn is defined in terms of the function βn, we begin by giving some results on the asymptotic
behavior of βn and its derivatives. Proofs follow via elementary algebra and Taylor’s approx-
imation and can be found in Appendix A. Roughly speaking, these results control the error
between sampling with and without replacement of dn servers from a collection of n servers.
We first note that the function βn is differentiable on (0,1)\{dn−1

n
} and the derivative is given

as

(5.1)

β̇n(x)=
dn−1∑
j=0

(1− j/n)−1
dn−1∏
i=0
i �=j

x − i/n

1− i/n

for x ∈
(

dn − 1

n
,1
]

and β̇n(x)= 0 for x ∈
(

0,
dn − 1

n

)
.

As a convention, we set β̇n(x)= 0 for x = dn−1
n

.
Note that h(t) = a+t

b+t
is an increasing function of t on (−b,∞) when b > a. Using this

fact in (2.7) shows that, when dn ≤ n,

(5.2) 0≤ βn(x)≤ xdn .= γn(x), x ∈ [0,1].
Using the same fact in (5.1) shows that, for dn < n,

(5.3) 0≤ β̇n(x)≤ dnx
dn−1

1− dn

n

, x ∈ (0,1).

The following lemma estimates the ratio between βn and γn and its derivatives.

LEMMA 5.1. Assume dn � n. Then for any ε ∈ (0,1), as n→∞,

(5.4) sup
x∈[ε,1]

∣∣∣∣ β̇n(x)/βn(x)

γ̇n(x)/γn(x)
− 1

∣∣∣∣→ 0.

Furthermore, if dn �√
n, then

sup
x∈[ε,1]

∣∣∣∣βn(x)

γn(x)
− 1

∣∣∣∣→ 0 and sup
x∈[ε,1]

∣∣∣∣ β̇n(x)

γ̇n(x)
− 1

∣∣∣∣→ 0.(5.5)

The next corollary follows from the proof of Lemma 5.1 (specifically the estimate (A.3) in
the proof of the lemma).

COROLLARY 5.2. Assume dn � n. Then for any ε ∈ (0,1),

sup
x∈[ε,1]

∣∣logβn(x)− logγn(x)
∣∣=O

(
d2
n

n

)
.
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Recall the near fixed points μn = (μn,i)i≥1 introduced in Definition 2.

COROLLARY 5.3. Suppose that dn � n. Let i ∈N be such that lim infn μn,i > 0. Then

lim
n→∞

λnμn,i β̇n(μn,i)

dnμn,i+1
= 1.

LEMMA 5.4. Assume dn � n and fix ε ∈ (0,1). Then there is a C ∈ (0,∞) and n0 ∈ N

such that, if for some k ∈N and n1 ∈N, μn,k ≥ ε for all n≥ n1, then for all n≥ n1 ∨ n0,∣∣∣∣∣logμn,k+1 − (logλn)

(
k∑

i=0

di
n

)∣∣∣∣∣≤ C

n

k∑
i=1

di+1
n .

COROLLARY 5.5. Suppose for some k ∈N, 1� dk+1
n � n. Suppose also that 1− λn =

ξn+logdn

dk
n

where ξn →− log(α) ∈ (−∞,∞] and ξ2
n

dn
→ 0 as n →∞. Then μn,k → 1 and

β̇n(μn,k)→ α as n→∞.

LEMMA 5.6. Suppose that λn ↗ 1, and 1� dn � n. Suppose also that, for some k ≥ 2,
μn,k → 1 and β̇n(μn,k)→ α ∈ [0,∞) as n→∞. Then as n→∞, β̇n(μn,1)→∞ and for
any i ∈ [k− 1],

β̇n(μn,i)

β̇n(μn,1)
→ 1.

The following result is along the lines of Lemma 5.1. It allows for weaker assumptions on
dn but gives an approximation only in a neighborhood of 1.

LEMMA 5.7. Suppose that dn � n2/3. Let {εn} be a sequence in [0,1] such that ε2
n �

d−1
n . Then as n→∞:

sup
x∈[1−εn,1]

∣∣∣∣βn(x)

γn(x)
− 1

∣∣∣∣→ 0,(5.6)

and

sup
x∈[1−εn,1]

∣∣∣∣ β̇n(x)

γ̇n(x)
− 1

∣∣∣∣→ 0.(5.7)

The next result shows that if dn →∞, then the behavior of βn(x) is interesting only when
x is sufficiently close to 1.

LEMMA 5.8. Suppose that dn � 1, and let εn
.= 2 logdn

dn
. Then as n → ∞,

supx∈[0,1−εn] |βn(x)| → 0. Furthermore, if lim supn
dn

n
< 1 then we also have

supx∈[0,1−εn] |β̇n(x)| → 0.

6. Preliminary estimates under diffusion scaling. Recall the near fixed point μn from
Definition 2 and the process Zn introduced in (1.2). Also, recall the maps an and b from
Remark 3.1. We will extend the definition of βn and β̇n to R by setting βn(x)= β̇n(x)= 0 for
x < 0. Further, in what follows, for z < 0 and real valued integrable function h(·), the integral∫
[0,z] h(u)du=− ∫[z,0] h(u)du. We start by giving a semimartingale decomposition for Zn.

The quantity An(z) defined in the following lemma can be viewed as a discrete derivative
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of an at μn in the direction z. The function An is asymptotically linear under conditions of
Theorem 2.2 (see Lemma 7.1), and is asymptotically nonlinear under conditions of Theorems
2.3 and 2.4 (see Lemma 6.7). The asymptotic analysis of this map and the resulting system
Zn is a key ingredient in our proofs.

LEMMA 6.1. For t ≥ 0, Zn(t) satisfies

(6.1) Zn(t)= Zn(0)+
∫ t

0
An

(
Zn(s)

)
ds −

∫ t

0
b
(
Zn(s)

)
ds +√

nMn(t),

where An : �∞→ �∞, is defined as An(z)
.=√

n{an(μn + n−1/2z)− an(μn)}. Moreover,

(6.2) An(z)i = qn,i−1(zi−1)− qn,i(zi), i ∈N

where

(6.3)
qn,i(z)

.= λn

∫
[0,z]

β̇n(μn,i + y/
√

n)dy, z ∈R, i ∈N,

qn,0(z)
.= 0, z ∈R.

PROOF. From (3.7) and since an(μn)= b(μn),

√
n
(
Gn(t)−μn

)=√
n
(
Gn(0)−μn

)+ ∫ t

0

√
n
{
an

(
Gn(s)

)− an(μn)
}
ds

−
∫ t

0

√
n
{
b
(
Gn(s)

)− b(μn)
}
ds +√

nMn(t).

Now (6.1) follows by using the the definition of Zn and An, and the linearity of b. Further,
using the definition of an, we see that (6.2) holds where

(6.4) qn,i(z)
.=
{
λn

√
n
{
βn(μn,i + z/

√
n)− βn(μn,i)

}
for i ≥ 1,

0 if i = 0.

Clearly, the qn,i defined in (6.4) is same as that given in (6.3). The result follows. �

LEMMA 6.2. Suppose that dn →∞, λn → 1, and for some k ≥ 1, Gn(0)
P−→ f k in �1.

Then there is a standard Brownian motion B so that
√

nMn ⇒
√

2Bek in D([0,∞) : �2).

PROOF. Fix T > 0. Since Gn(0) → f k and f k is a fixed point of (2.2), by Theo-

rem 2.1, Gn
P−→ f k in D([0, T ] : �1), where f k here is viewed as the function on [0, T ]

that takes the constant value f k ∈ �
↓
1 . Moreover, by Remark 4.8, for every i ≥ 1 Vn,i(t)

.=
λn

∫ t
0 βn(Gn,i(s)) ds converges uniformly on [0, T ] in probability to vi(t), where vi solves

(6.5) vi = �̂1
(
fk,i − (fk,i − fk,i+1)id+ vi−1(·)), i ≥ 1,

and v0(t)
.= t , where recall that ‘id’ denotes the identity map on [0, T ]. Recalling the defini-

tion of f k we see by a recursive argument that

(6.6) vi(t)
.=
{
t if i < k,

0 if i ≥ k.

Combining this with (3.6), we have for each i ≥ 1,

〈√nMn,i〉· =
∫ ·

0

(
Gn,i(s)−Gn,i+1(s)

)
ds + λn

∫ ·
0

(
βn

(
Gn,i−1(s)

)− βn

(
Gn,i(s)

))
ds

→ (fk,i − fk,i+1)id+ vi−1(·)− vi(·)=H(·),
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in probability in C([0, T ] :R) where

H(t)
.=
{

2t if i = k,

0 if i �= k,
t ∈ [0, T ].

Adding (3.6) over i, we have for t ∈ [0, T ],

(6.7)
∑
i>k

〈√nMn,i〉t ≤
∫ t

0
Gn,k+1(s) ds + λn

∫ t

0
βn(Gn,k)(s) ds.

The process on the right-hand side converges in probability in C([0, T ] : R) to fk,k+1id +
vk(·) = 0 and thus

∑
i>k〈

√
nMn,i〉T converges to 0 in probability. By Doob’s maximal in-

equality,

nE sup
t≤T

∑
i>k

M2
n,i(t)≤ 4E

∑
i>k

〈√nMn,i〉T → 0, as n→∞,

where the last convergence follows by the dominated convergence theorem on noting that the
right-hand side of (6.7) is bounded above by supn(1+ λn) <∞. The result now follows on
using the martingale central limit theorem (cf. [11], Theorem 7.1.4) for the k-dimensional
martingale sequence (

√
nMn,1, . . . ,

√
nMn,k). �

Recall the functions qn,i from Lemma 6.1.

LEMMA 6.3. Assume that for some r ∈N, lim supn→∞μn,r < 1. Then for any L > 0,

lim sup
n→∞

sup
i≥r

sup
0<|z|≤L

∣∣∣∣qn,i(z)

z

∣∣∣∣= 0.

PROOF. By (6.3),

sup
i≥r

sup
0<|z|≤L

∣∣∣∣qn,i(z)

z

∣∣∣∣≤ λn sup
i≥r

sup
0<|z|≤L

sup
|y|≤z

∣∣∣∣β̇n

(
μn,i + y√

n

)∣∣∣∣
= λn sup

i≥r

sup
|z|≤L

∣∣∣∣β̇n

(
μn,i + z√

n

)∣∣∣∣≤ λn sup
0≤x≤μn,r+ L√

n

β̇n(x)

which converges to 0 by Lemma 5.8, since lim supn→∞(μn,r + L√
n
) < 1. �

For L ∈ (0,∞), define the stopping time

(6.8) τn,L
.= inf

{
t |∥∥Zn(t)

∥∥
2 ≥ L− 1√

n

}
.

Since the jumps of Zn are of size 1√
n

, we see that, for any T > 0,

(6.9) ‖Zn‖2,T∧τn,L
≤ L.

Recall from Section 1.2 the vector zr+ ∈R
∞ associated with a vector z ∈R

∞.

LEMMA 6.4. Suppose that as n→∞, Gn(0)
P−→ f k in �

↓
1 and Zn,r+(0)

P−→ 0 in �2 for

some r > k. Then for any T ,L > 0, ‖Zn,r+‖2,T∧τn,L

P−→ 0.
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PROOF. For i > k and z ∈R, let �n,i(z)
.= qn,i (z)

z
I{z �=0}. Then, since limn→∞μn,k+1 = 0,

by Lemma 6.3,

(6.10) δn,L
.= sup

i≥k+1
sup
|z|≤L

∣∣�n,i(z)
∣∣→ 0, as n→∞.

Next, from (6.1), for i ≥ r + 1 > k + 1,

Zn,i(t ∧ τn)=Zn,i(0)+
∫ t∧τn

0
�n,i−1

(
Zn,i−1(s)

)
Zn,i−1(s) ds

−
∫ t∧τn

0
�n,i

(
Zn,i(s)

)
Zn,i(s) ds

−
∫ t∧τn

0

(
Zn,i(s)−Zn,i+1(s)

)
ds +√

nMn,i(t ∧ τn),

where we use τn instead of τn,L for notational simplicity. Then, observing from (6.10) that
supi≥k+1 supt∈[0,τn] |�n,i(Zn,i(t))| ≤ δn,L, we have

∣∣Zn,i(t ∧ τn)
∣∣≤ ∣∣Zn,i(0)

∣∣+ δn,L

∫ t∧τn

0

(∣∣Zn,i−1(s)
∣∣+ ∣∣Zn,i(s)

∣∣)ds

+
∫ t∧τn

0

(∣∣Zn,i(s)
∣∣+ ∣∣Zn,i+1(s)

∣∣)ds + ∣∣√nMn,i(t ∧ τn)
∣∣.

(6.11)

Define maps F 1,F 2 :R∞→R
∞ by

(F 1x)i =
{
x1 i = 1,

xi−1 + xi i ≥ 2,

(F 2x)i = xi + xi+1, i ∈N.

Then by collecting (6.11) over all i ≥ r + 1, we get

(6.12)

∣∣Zn,r+(t ∧ τn)
∣∣≤ ∣∣Zn,r+(0)

∣∣+ δn,L

∫ t∧τn

0
F 1
∣∣Zn,r+(s)

∣∣ds

+ δn,L

∫ t∧τn

0

∣∣Zn,r(s)
∣∣e1 ds

+
∫ t∧τn

0
F 2
∣∣Zn,r+(s)

∣∣ds + ∣∣√nMn,r+(t ∧ τn)
∣∣,

where the absolute values |z| ∈R
∞ and integrals are interpreted as being coordinatewise for

infinite dimensional vectors z ∈ R
∞. Now noting that the maps F i , when considered from

�2 → �2, are bounded linear operators with norm bounded by 2, we have for i = 1,2,∥∥∥∥
∫ t∧τn

0
F i

∣∣Zn,r+(s)
∣∣ds

∥∥∥∥
2
≤
∫ t∧τn

0
2
∥∥Zn,r+(s)

∥∥
2 ds.

Using the triangle inequality in (6.12) shows for any t ≤ T ,∥∥Zn,r+(t ∧ τn)
∥∥

2 ≤
∥∥Zn,r+(0)

∥∥
2 + ‖√nMn,r+‖2,T + δn,LLT

+ 2(1+ δn,L)

∫ t∧τn

0

∥∥Zn,r+(s)
∥∥

2 ds,

where we have used that
∫ t∧τn

0 |Zn,r(s)|ds ≤ Lt . Hence, using Gronwall’s inequality,

‖Zn,r+‖2,T∧τn ≤
(∥∥Zn,r+(0)

∥∥
2 + δn,LLT + ‖√nMn,r+‖2,T

)
e2(1+δn,L)T .
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Now, as n → ∞, ‖Zn,r+(0)‖2
P−→ 0 by assumption, δn,L → 0 by (6.10), and ‖√n ×

Mn,r+‖2,T
P−→ 0 by Lemma 6.2. The result follows. �

The following elementary lemma will allow us to replace τn,L ∧ T with T in various
convergence results. The proof is omitted.

LEMMA 6.5. Fix T ∈ [0,∞). Suppose for each n ∈ N and L > 0 that τn,L is a [0, T ]
valued random variable such that limL→∞ supn P (τn,L < T )→ 0 for some T > 0. Suppose
that there is a sequence of stochastic processes {Fn}n∈N with sample paths in D([0, T ] : R)

such that for each L > 0 |Fn|∗,T∧τn,L

P−→ 0 as n→∞. Then in fact |Fn|∗,T P−→ 0 as n→∞.

The next lemma gives conditions under which the near fixed point μn converges to f 1.

LEMMA 6.6. Let 0 ≤ εn
.= 1− λn be such that εn → 0 and εndn →∞. Then μn → f 1

in �1 as n→∞.

PROOF. Using Definition 2 and (5.2) note that 0≤ μn,i+1 = λnβn(μn,i)≤ μ
dn

n,i for each
i ≥ 1. Hence in order to show μn → f 1 in �1, it suffices to show that (1) μn,1 → 1, and (2)
μn,2 → 0. This convergence is immediate on observing for (1) that μn,1 = λn = 1− εn → 1,
and for (2) that μn,2 ≤ μ

dn

n,1 = (1− εn)
dn ≤ e−εndn → 0. �

The following lemma gives a convenient approximation of the term qn,1 introduced in
(6.3) in terms of certain exponentials.

LEMMA 6.7. Suppose dn →∞ and dn � n2/3. Let λn = 1− (
logdn

dn
+ αn√

n
) for some real

sequence {αn}n≥N satisfying dnα2
n

n
→ 0. Then, for any L > 0,

(6.13) lim sup
n→∞

sup
0<|z|≤L

∣∣∣∣exp( dn√
n
(z− αn))− exp(− dn√

n
αn)

qn,1(z)dn/
√

n
− 1

∣∣∣∣= 0.

PROOF. We only consider the case 0 < z≤ L. The case −L≤ z < 0 is treated similarly.

Recall that μn,1 = λn. Noting that dn(1− λn + L√
n
)2 ≤ 4dn(

log2 dn

d2
n

+ α2
n/n+L2/n)→ 0 we

have on applying Lemma 5.7 with εn = (1− λn + L√
n
) that, for any |z| ≤ L,

qn,1(z)= (
1+ o(1)

) ∫ z

0
γ̇n

(
λn + y√

n

)
dy

= (
1+ o(1)

) ∫ z

0
exp

(
(dn − 1) log

{
λn + y√

n

}
+ logdn

)
dy

= (
1+ o(1)

) ∫ z

0
exp

(
dn log

{
λn + y√

n

}
+ logdn

)
dy.

Using expansion for log(1+h) around h= 0 and once more the fact that dn(1−λn+ L√
n
)2 →

0,

qn,1(z)= (
1+ o(1)

) ∫ z

0
exp

(
dn

{
λn − 1+ y√

n

}
+ logdn

)
dy

= (
1+ o(1)

) ∫ z

0
exp

(
dn√
n
(y − αn)

)
dy
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= (
1+ o(1)

)exp( dn√
n
(z− αn))− exp(− dn√

n
αn)

dn/
√

n

which proves (6.13). �

Proof of the following lemma proceeds by standard arguments but we provide details in
Appendix B.

LEMMA 6.8. Fix T > 0. Let g, h, M be three bounded measurable functions from
[0, T ] → R and assume further that M is a right-continuous bounded variation function.
Suppose that m

.= infs∈[0,T∧τ ] h(s) > 0 for some τ ≥ 0. Let z : [0, T ] → R be a bounded
measurable function that satisfies for every t ∈ [0, T ],

(6.14) z(t)= z(0)−
∫ t

0
h(s)z(s) ds +

∫ t

0
g(s) ds +M(t).

Then for any t ∈ [0, T ∧ τ ],
∣∣z(t)∣∣≤ |g|∗,T∧τ

m
+ 2|M|∗,T∧τ + e−mt

∣∣z(0)
∣∣.

LEMMA 6.9. Fix T ∈ (0,∞). For each n, let Vn be a martingale with respect to some
filtration {Gn

t } such that Vn(0)= 0. Let (rn)
∞
n=1 be a positive sequence so that limn→∞ rn =

+∞. Suppose that there is a C ∈ (0,∞) such that for all n ∈ N and t ∈ [0, T ], 〈Vn〉t ≤ Ct .
Then for any ε > 0,

P
(
sup
t≤T

(
Vn(t)− rnt

)
> ε

)
→ 0

as n→∞.

PROOF. Let δn
.= 1√

rn
. Then

P
(

sup
0≤t≤T

[
Vn(t)− rnt

]
> ε

)
≤P

(
sup

0≤t≤δn

∣∣Vn(t)
∣∣> ε

)
+P

(
sup

δn<t≤T

∣∣Vn(t)
∣∣> rnδn

)

≤4EVn(δn)
2

ε2 + 4EVn(T )2

(rnδn)2

=4E〈Vn〉δn

ε2 + 4E〈Vn〉T
(rnδn)2 ≤ 4Cδn

ε2 + 4CT

(rnδn)2 → 0,

where the inequality on the second line is from Doob’s maximal inequality. �

7. Proof of Theorem 2.2. Now we start with some preliminary lemmas. Recall from
Remark 2.5(ii) that under the hypothesis of Theorem 2.2 we have μn → f k ∈ �

↓
1 as n→∞.

Along with the tightness of {‖Zn(0)‖1}n∈N, this shows that Gn(0)
P−→ f k ∈ �

↓
1 as n→∞.

LEMMA 7.1. Let dn → ∞, dn√
n
→ 0, and λn ↗ 1. Assume that for some k ∈ N,

lim infn μn,k = δ > 0. Then for any L > 0 and 1≤ i ≤ k, as n→∞,

(7.1) sup
0<|z|≤L

∣∣∣∣(β̇n(μn,i)z
)−1

λn

∫ z

0
β̇n(μn,i + y/

√
n)dy − 1

∣∣∣∣→ 0.
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PROOF. To prove (7.1), we will approximate β̇n(x) by γ̇n(x). Using Lemma 5.1,

εn
.= sup

x∈[δ/2,1]

∣∣∣∣ β̇n(x)

γ̇n(x)
− 1

∣∣∣∣→ 0.

Since lim infn μn,k > δ/2 and j !→ μn,j is decreasing, there is an N0 so that for n ≥ N0,
μn,i + y√

n
≥ δ

2 , for any i ≤ k and y ∈ R with |y| ≤ L. Hence uniformly in 0 < |z| ≤ L and
i ≤ k,

λn

z

∫ z

0

β̇n(μn,i + y√
n
)

β̇n(μn,i)
dy = 1+ o(1)

z

∫ z

0

γ̇n(μn,i + y√
n
)

γ̇n(μn,i)
dy

= 1+ o(1)

z

∫ z

0

(
1+ y√

nμn,i

)dn−1
dy

= 1+ o(1)

z

∫ z

0
exp

{
(dn − 1) log

(
1+ y√

nμn,i

)}
dy

= 1+ o(1)

z

∫ z

0
exp

{
O

(
dnL√

nδ

)}
dy → 1.

This shows (7.1). �

REMARK 7.2. Suppose that the hypothesis of Lemma 7.1 hold. Recall the definition of
�n,i for i > k from the proof of Lemma 6.4. We extend this definition by setting

(7.2) �n,i(z)
.= qn,i(z)/

(
β̇n(μn,i)z

)
I{z �=0} − 1 if 1≤ i ≤ k,

where qn,i is defined by (6.3). With this extension,

(7.3) qn,i(z)=
{
β̇n(μn,i)

(
1+�n,i(z)

)
z if 1≤ i ≤ k,

�n,i(z)z if i > k.

Using this notation, Lemma 7.1 and Lemma 6.3 show that, for any L > 0,

(7.4) γn,L
.= sup

i∈N
sup

0<|z|≤L

∣∣�n,i(z)
∣∣→ 0 as n→∞.

The following corollary is an immediate consequence of Remark 7.2 and Lemma 6.1.

COROLLARY 7.3. Under the hypothesis of Lemma 7.1, Zn satisfies the following integral
equations.

For i = 1,

Zn,1(t)= Zn,1(0)−
∫ t

0
β̇n(μn,1)

(
1+�n,1

(
Zn,1(s)

))
Zn,1(s) ds

−
∫ t

0

(
Zn,1(s)−Zn,2(s)

)
ds +√

nMn,1(t).

For i ∈ {2, . . . k}
Zn,i(t)= Zn,i(0)+

∫ t

0
β̇n(μn,i−1)

(
1+�n,i−1

(
Zn,i−1(s)

))
Zn,i−1(s) ds

−
∫ t

0
β̇n(μn,i)

(
1+�n,i

(
Zn,i(s)

))
Zn,i(s) ds

−
∫ t

0

(
Zn,i(s)−Zn,i+1(s)

)
ds +√

nMn,i(t).
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For i = k+ 1,

Zn,k+1(t)=Zn,k+1(0)+
∫ t

0
β̇n(μn,k)

(
1+�n,k

(
Zn,k(s)

))
Zn,k(s) ds

−
∫ t

0
�n,k+1

(
Zn,k+1(s)

)
Zn,k+1(s)

−
∫ t

0

(
Zn,k+1(s)−Zn,k+2(s)

)
ds +√

nMn,k+1(t).

For i > k+ 1,

Zn,i(t)= Zn,i(0)+
∫ t

0
�n,i−1

(
Zn,i−1(s)

)
Zn,i−1(s) ds −

∫ t

0
�n,i

(
Zn,i(s)

)
Zn,i(s) ds

−
∫ t

0

(
Zn,i(s)−Zn,i+1(s)

)
ds +√

nMn,i(t),

where �n,i is as in Remark 7.2.
Finally, if Yn,1

.=∑k
i=1 Zn,i , then

(7.5)

Yn,1(t)= Yn,1(0)−
∫ t

0
β̇n(μn,k)(1+�n,k

(
Zn,k(s)

)
Zn,k(s) ds

−
∫ t

0

(
Zn,1(s)−Zn,k+1(s)

)
ds +

k∑
i=1

√
nMn,i(t).

LEMMA 7.4. Suppose λn ↗ 1 and 1 � dn � n. Assume that for some k ≥ 2, μn,k → 1
and β̇n(μn,k)→ α ∈ [0,∞) as n→∞. Define the k − 1× k − 1 tridiagonal matrix Qn(s)

as

(7.6)

Qn(s)[j, j ] = β̇n(μn,j )
(
1+�n,j

(
Zn,j (s)

))+ 1, 1≤ j ≤ k− 1,

Qn(s)[j, j + 1] = −1, 1≤ j ≤ k− 2,

Qn(s)[j, j − 1] = −β̇n(μn,j−1)
(
1+�n,j−1

(
Zn,j−1(s)

))
, 2≤ j ≤ k− 1,

and for all other j , k, Qn(s)[j, k] = 0. Then for any T ,L ∈ (0,∞),

lim
n→∞ inf

s∈[0,T∧τn,L]
inf


x∈Rk−1\{0}

xtQn(s)
x
‖
x‖2 =+∞ a.s.

PROOF. Let hn,i(s)
.= β̇n(μn,i)(1 + �n,i(Zn,i(s))) + 1 and Hn(s)

.= Qn(s) + Qn(s)
t .

Then Hn(s) is a symmetric tridiagonal matrix with entries

(7.7)

Hn(s)[j, j ] = 2hn,j (s), 1≤ j ≤ k− 1,

Hn(s)[j, j + 1] = −hn,j (s), 1≤ j ≤ k − 2,

Hn(s)[j, j − 1] = −hn,j−1(s), 2≤ j ≤ k− 1.

Let hn
.= β̇n(μn,1). By Lemma 5.6, hn →∞ and by the uniform convergence in (7.4) and

Lemma 5.6 once more

max
i≤k−1

sup
s∈[0,T∧τn,L]

∣∣∣∣hn,i(s)

hn

− 1
∣∣∣∣→ 0 as n→∞ a.s.

This in particular shows that

(7.8) sup
s∈[0,T∧τn,L]

∥∥∥∥ 1

hn

Hn(s)−H

∥∥∥∥
F

→ 0 a.s.,
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where ‖ · ‖F is the Frobenius norm and H is the k − 1× k − 1 tridiagonal matrix given as

H [j, j ] = 2, 1≤ j ≤ k− 1,

H [j, j + 1] = −1, 1≤ j ≤ k− 2,

H [j, j − 1] = −1, 2≤ j ≤ k− 1.

Note for any 
x = (x1, x2, . . . , xk−1) ∈R
k−1 by completing squares


xtH 
x = x2
1 + (x2 − x1)

2 + (x3 − x2)
2 + · · · + (xk−2 − xk−1)

2 + x2
k−1,

which is strictly positive if 
x �= 0. Let c
.= inf‖
x‖=1 
xtH 
x. Since the unit sphere is compact,

the infimum is attained, and hence c > 0. This shows that H is a positive definite matrix.
Finally, note that for any s ≥ 0,


xt 1

hn

Hn(s)
x = 
xtH 
x + 
xt

(
1

hn

Hn(s)−H

)

x

≥ 
xtH 
x − ∥∥h−1
n Hn(s)−H

∥∥
F ‖
x‖2 ≥ (

c− ∥∥h−1
n Hn(s)−H

∥∥
F

)‖
x‖2.

On taking infimum and using 
xtHn(s)
x = 2
xtQn(s)
x, this shows

inf
s∈[0,T∧τL]

inf
x∈Rk\{0}

2
xtQn(s)
x
‖
x‖2 ≥

(
c− sup

s∈[0,T∧τL]
∥∥h−1

n Hn(s)−H
∥∥
F

)
hn.

As n→∞, the convergence in (7.8) and the divergence hn →+∞ now completes the proof.
�

REMARK 7.5. For every s > 0, the k−1×k−1 matrix Qn(s) appearing in the previous
lemma is the drift operator that appears in the right-hand side of the first k− 1 coordinates in
Corollary 7.3. More precisely, for each t ≥ 0,

(7.9) 
Xn(t)= 
Xn(0)−
∫ t

0
Qn(s) 
Xn(s) ds + 
ek−1

∫ t

0
Zn,k(s) ds + 
Wn(t),

where 
Xn
.= (Zn,1,Zn,2, . . . ,Zn,k−1), 
Wn

.= (
√

nMn,1, . . . ,
√

nMn,k−1) and 
ek−1 is the vec-
tor (0,0, . . . ,0,1)t ∈R

k−1.

LEMMA 7.6. Suppose that the hypothesis of Theorem 2.2 holds with k ≥ 2 and let 
Xn
.=

(Zn,1,Zn,2, . . . ,Zn,k−1). Then for L,T , ε ∈ (0,∞),

(7.10) P
(

sup
s∈[0,T∧τn,L]

∥∥ 
Xn(s)
∥∥>

∥∥ 
Xn(0)
∥∥+ ε

)
→ 0,

and

(7.11) sup
s∈[ε,T∧τn,L]

∥∥ 
Xn(s)
∥∥ P−→ 0,

as n→∞.

PROOF. Applying Itô’s formula (see [34], Section II.7) to the function h(
x)= ‖
x‖2 and
the semimartingale representation of 
Xn from (7.9) in Remark 7.5, we get

∥∥ 
Xn(t)
∥∥2 = ∥∥ 
Xn(0)

∥∥2 + 2
∫ t

0+
〈 
Xn(s−), d 
Xn(s)

〉+ [ 
Wn]t

= ∥∥ 
Xn(0)
∥∥2 − 2

∫ t

0

〈 
Xn(s),Qn(s) 
Xn(s)
〉
ds + 2

∫ t

0
Zn,k(s)

〈 
Xn(s), 
ek−1
〉
ds(7.12)

+ 2
∫ t

0

〈 
Xn(s−), d 
Wn(s)
〉+ [ 
Wn]t ,
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where [ 
Wn]t .=∑k−1
i=1 [

√
nMn,i]t . Let

hn(s)
.= 
Xn(s)

tQn(s) 
Xn(s)

‖ 
Xn(s)‖2
I{ 
Xn(s) �=0} + nI{ 
Xn(s)=0},

gn(s)
.= 2Zn,k(s)Zn,k−1(s),

Rn(s)
.= 2

∫ t

0

〈 
Xn(s−), d 
Wn(s)
〉+ [ 
Wn]t

then (7.12) becomes

(7.13)
∥∥ 
Xn(t)

∥∥2 = ∥∥ 
Xn(0)
∥∥2 − 2

∫ t

0
hn(s)

∥∥ 
Xn(s)
∥∥2

ds +
∫ t

0
gn(s) ds +Rn(t).

Further, by Lemma 7.4,

(7.14) mn
.= inf

s∈[0,T∧τn,L]
hn(s)→+∞ a.s. as n→∞,

and by Doob’s inequality and Itô’s isometry (see, e.g., [34], Corollary 3, Section II.7), for
i ≤ k− 1,

E sup
s∈[0,T∧τn,L]

∣∣∣∣
∫ t

0
Zn,i(s−)d(

√
nMn,i)(s)

∣∣∣∣2 ≤ 4E

∫ T∧τn,L

0
Z2

n,i(s−)d[√nMn,i]s

≤ 4L2E[√nMn,i]T = 4L2E〈√nMn,i〉T ,

where the second to last inequality is obtained by using ‖Zn‖2,T∧τn,L
≤ L. From the proof

of Lemma 6.2, we see that for any i ≤ k − 1, E〈√nMn,i〉T =E[√nMn,i]T → 0 as n→∞.
Along with the above display, this shows that the two terms appearing in the definition of Rn

are converging to zero, and hence

(7.15) |Rn|∗,T∧τn,L

P−→ 0 as n→∞.

Applying Lemma 6.8 to (7.13) with z(t) = ‖ 
Xn(t)‖2, h = 2hn, g = gn, M = Rn, and τ =
τn,L shows for any t ∈ [0, T ∧ τn,L]

∥∥ 
Xn(t)
∥∥2 ≤ |gn|∗,T∧τn,L

2mn

+ 2|Rn|∗,T∧τn,L
+ e−2mnt

∥∥ 
Xn(0)
∥∥2

.

Taking t = εn
.= 1/

√
mn and using (7.14), (7.15), |gn|∗,T∧τn,L

≤ 2L2 and 
Xn(0)
P−→

(z1, . . . zk−1)
t , we see that

(7.16) sup
t∈[εn,T∧τn,L]

∥∥ 
Xn(t)
∥∥ P−→ 0.

Since εn → 0, this shows (7.11) for any fixed ε > 0. Finally, from (7.13), we see that

sup
t∈[0,εn∧τn,L∧T ]

∥∥ 
Xn(t)
∥∥2 ≤ ∥∥ 
Xn(0)

∥∥2 + |gn|∗,T∧τn,L
εn + |Rn|∗,T∧τn,L

.

Since we have already shown (7.16), the convergence in (7.10) is now immediate on using
that εn → 0, |gn|∗,T∧τn,L

≤ 2L2 and that (7.15) holds. �

COROLLARY 7.7. Under the assumptions of Lemma 7.6, for each i < k,∫ T∧τn,L

0 |Zn,i(s)|ds
P−→ 0, as n→∞.
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PROOF. For any ε > 0,∫ T∧τn,L

0

∣∣Zn,i(s)
∣∣ds ≤

∫
[0,ε∧τn,L]

∣∣Zn,i(s)
∣∣ds +

∫
[ε,T∧τn,L]

∣∣Zn,i(s)
∣∣ds

≤ Lε + sup
s∈[ε,T∧τn,L]

∣∣Zn,i(s)
∣∣T .

Now fix δ > 0 and let ε = δ
2L

. Then for any i < k,

P

(∫ T∧τn,L

0

∣∣Zn,i(s)
∣∣ds > δ

)
≤ P

(
sup

s∈[ε,T∧τn,L]
∣∣Zn,i(s)

∣∣> δ

2T

)
,(7.17)

which from (7.11) converges to 0 as n →∞. Since δ > 0 was arbitrary, this completes the
proof. �

PROOF OF THEOREM 2.2. Recall the conditions in the theorem. By Remark 2.5(ii) and
the tightness of {‖Zn(0)‖1}n∈N, the hypothesis of Lemma 6.2 holds. Hence by Skorokhod’s
embedding theorem, we can assume that {(Zn(0),Mn)}n∈N and a standard Brownian motion
B are defined on a common probability space such that for any T > 0,

(7.18) sup
t≤T

∥∥√nMn(t)−
√

2B(t)ek

∥∥
2 → 0

and

(7.19)
∥∥Zn(0)− z

∥∥
2 → 0 a.s.,

as n→∞. Let Y and Y n be as in the statement of the theorem. Taking m
.= r − k + 1, let


Yn
.= (
∑k

i=1 Zn,i,Zn,k+1, . . . ,Zn,r ) be the stochastic process with sample paths in D([0, T ] :
R

m) corresponding to the first m coordinates of Y n. Note Y n,m+ = Zn,r+, Zn,k = Yn,1 −∑k−1
i=1 Zn,i , and for k = 1, Yn,1 =Zn,1. Hence by Corollary 7.3, 
Yn satisfy

Yn,1(t)= Yn,1(0)−
∫ t

0
an,k(s)Yn,1(s) ds − I{k=1}

∫ t

0
Yn,1(s) ds

+
∫ t

0
Yn,2(s) ds +√

nMn,k(t)

+
k−1∑
i=1

∫ t

0
an,k(s)Zn,i(s) ds − I{k>1}

∫ t

0
Zn,1(s) ds +

k−1∑
i=1

√
nMn,i(t),

(7.20)

Yn,2(t)= Yn,2(0)+
∫ t

0
an,k(s)Yn,1(s) ds −

∫ t

0
Yn,2(s) ds +

∫ t

0
Yn,3(s) ds

−
k−1∑
i=1

∫ t

0
an,k(s)Zn,i(s) ds −

∫ t

0
δn,k+1(s)Yn,2(s) ds

+√
nMn,k+1(t),

(7.21)

and for i ∈ {3,4 . . .m},
Yn,i(t)= Yn,i(0)−

∫ t

0
Yn,i(s) ds +

∫ t

0
Yn,i+1(s) ds

+
∫ t

0
δn,k+i−2(s)Yn,i−1(s) ds −

∫ t

0
δn,k+i−1(s)Yn,i(s) ds

+√
nMn,k+i−1(t),

(7.22)

where an,k(s)
.= β̇n(μn,k)(1+�n,k(Zn,k(s))) and δn,i(s)

.=�n,i(Zn,i(s)) for i ∈N.
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Since ‖Zn‖2,T∧τn,L
≤ L, we have by (7.4) that, for any i ∈N,

(7.23) |δn,i |∗,T∧τn,L
≤ γn,L → 0 a.s. as n→∞.

Moreover, since β̇n(μn,k)→ α ∈ [0,∞), this also shows that

(7.24) sup
s∈[0,T∧τn,L]

∣∣an,k(s)− α
∣∣→ 0 a.s. as n→∞.

We now show that

(7.25) ‖Y n − Y‖2,T∧τn,L

P−→ 0 as n→∞.

To see this, note that, by Remark 2.5(ii), the hypothesis of Lemma 6.4 is satisfied, and hence

‖Zn,r+‖2,T∧τn,L

P−→ 0. Since Y n,m+ = Zn,r+ and Ym+ = 0, this shows that

(7.26) ‖Y n,m+ − Ym+‖2,T∧τn,L

P−→ 0.

Thus in order to prove (7.25) it suffices to show that
∑m

i=1 |Yn,i −Yi |∗,T∧τn,L

P−→ 0 as n→∞.
To show this, we consider Un,i

.= Yn,i − Yi . Subtracting (2.9) from (7.20), (7.21) and (7.22),
we see

(7.27)

Un,1(t)=Un,1(0)− (α + I{k=1})
∫ t

0
Un,1(s) ds +

∫ t

0
Un,2(s) ds

+√
nMn,k(t)−

√
2B(t)+Wn,1(t),

Un,2(t)=Un,2(0)+ α

∫ t

0
Un,1(s)−

∫ t

0
Un,2(s) ds +

∫ t

0
Un,3(s) ds +Wn,2(t),

Un,i(t)=Un,i(0)−
∫ t

0
Un,i(s) ds +

∫ t

0
Un,i+1(s) ds

+Wn,i(t) for i ∈ {3,4 . . .m},
where

Wn,1(t)
.=
∫ t

0

(
α − an,k(s)

)
Yn,1(s) ds +

k−1∑
i=1

∫ t

0
an,k(s)Zn,i(s) ds

− I{k>1}
∫ t

0
Zn,1(s) ds +

k−1∑
i=1

√
nMn,i(t),

Wn,2(t)
.=
∫ t

0

(
an,k(s)− α

)
Yn,1(s) ds −

k−1∑
i=1

∫ t

0
an,k(s)Zn,i(s) ds

−
∫ t

0
δn,k+1(s)Yn,2(s) ds +√

nMn,k+1(t),

Wn,i(t)
.=
∫ t

0
δn,k+i−2(s)Yn,i−1(s) ds

−
∫ t

0
δn,k+i−1(s)Yn,i(s) ds +√

nMn,k+i−1(t) for i ∈ {3, . . .m}.
Note that, for each n, ‖Y n‖2,T∧τn,L

≤ k‖Zn‖2,T∧τn,L
, which by (6.9) is bounded above by

kL. Hence by (7.24), (7.23), (7.18) and Corollary 7.7,

(7.28) |Wn,i |∗,T∧τn,L

P−→ 0 as n→∞
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for each i ∈ [m]. Let ‖Un‖1,t
.= sups∈[0,t]

∑m
i=1 |Un,i(t)|. Then, from (7.27), for any t ∈

[0, T ∧ τn,L],

‖Un‖1,t ≤
m∑

i=1

(∣∣Un,i(0)
∣∣+ |Wn,i |∗,T∧τn,L

)+ |√nMn,k −
√

2B|∗,T +R

∫ t

0
‖Un‖1,s ds

with R
.=max(2α + I{k=1},2). Hence by Gronwall’s inequality,

‖Un‖1,T∧τn,L
≤
(
|√nMn,k −

√
2B|∗,T +

m∑
i=1

(∣∣Un,i(0)
∣∣+ |Wn,i |∗,T∧τn,L

))
eRT .

By our hypothesis, as n →∞, |Un,i(0)| = |Zn,k+i−1(0)− zn,k+i−1| P−→ 0 for each i ∈ [m].
Hence by (7.28) and (7.18), ‖Un‖1,T∧τn,L

=∑m
i=1 |Yn,i − Yi |∗,T∧τn,L

P−→ 0 as n→∞. Com-
bined with (7.26), this completes the proof of (7.25).

Next, we prove (2.8). Fix δ > 0. Since Y has sample paths in C([0, T ] : �2), we can find
L1 ∈ (0,∞) so that

(7.29) P
(‖Y‖2,T > L1

)≤ δ

2
.

Also, since Zn(0)
P−→ z, we can find a L2 ∈ (0,∞) so that

(7.30) sup
n

P
(∥∥Zn(0)

∥∥
2 > L2

)≤ δ

2
.

Let L
.= (L1 + 1)+ k(L2 + 1)+ 1. Also, let 
Xn be as in Lemma 7.6 when k > 1. For k = 1,

we set 
Xn
.= 0. Then

‖Zn‖2,T∧τn,L
≤ ‖ 
Xn‖2,T∧τn,L

+
∥∥∥∥∥Y n − e1

k−1∑
i=1

Zn,i

∥∥∥∥∥
2,T∧τn,L

≤ kI{k>1}‖ 
Xn‖2,T∧τn,L
+ ‖Y n‖2,T∧τn,L

.

Hence for each n ∈N,

P (τn,L ≤ T )≤ P
(‖Zn‖2,T∧τn,L

> L− 1
)

≤ P
(‖Y n‖2,T∧τn,L

> L1 + 1
)+P

(‖ 
Xn‖2,T∧τn,L
> L2 + 1

)
,

≤ δ +P
(‖Y n − Y‖2,T∧τn,L

> 1
)+P

(‖ 
Xn‖2,T∧τn,L
>
∥∥ 
Xn(0)

∥∥+ 1
)
,

where the last inequality uses (7.29) and (7.30). From Lemma 7.6 and (7.25), we see

lim sup
n→∞

P
(‖Zn‖2,T ≥ L

)≤ lim sup
n→∞

P (τn,L ≤ T )≤ δ.

Since δ > 0 is arbitrary, the convergence in (2.8) is now immediate.
This convergence in particular says that limL→∞ supn P (τn,L ≤ T ) = 0. Using Lemma

6.5 with Fn(t) = ‖Y n − Y‖2,t , we now see from (7.25) that ‖Y n − Y‖2,T
P−→ 0 as n→∞.

Similarly, if k > 1, then taking Fn(t)= sups∈[ε,t] |Zn,i(s)| in Lemma 6.5 we conclude from

Lemma 7.6 that for each i ∈ [k − 1] and ε > 0 sups∈[ε,T ] |Zn,i(s)| P−→ 0 as n →∞. This
completes the proof of Theorem 2.2. �
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8. Proof of Theorem 2.3. In this section, we give the proof of Theorem 2.3. We begin
by giving a convenient representation for Zn under the assumptions of Theorem 2.3 and
establishing some a priori convergence properties.

LEMMA 8.1. Suppose cn = dn√
n
→ c ∈ (0,∞) and λn = 1− (

logdn

dn
+ αn√

n
) where αn ∈R,

lim infn→∞ αn > −∞ and αn

n1/4 → 0. Suppose also that {‖Zn(0)‖1}n∈N is a tight sequence

of random variables and Zn,r+(0)
P−→ 0 in �2 for some r ≥ 2. Then there are stochastic

processes δn, {Wn,i}ri=2 with sample paths in D([0,∞) :R) such that for any t ≥ 0,

(8.1)

Zn,1(t)= Zn,1(0)−
∫ t

0
Zn,1(s) ds +

∫ t

0
Zn,2(s) ds +√

nMn,1(t)

− (
cne

cnαn
)−1

∫ t

0

(
1+ δn(s)

)(
ecnZn,1(s) − 1

)
ds,

Zn,2(t)= Zn,2(0)−
∫ t

0
Zn,2(s) ds +

∫ t

0
Zn,3(s) ds +Wn,2(t)

+ (
cne

cnαn
)−1

∫ t

0

(
1+ δn(s)

)(
ecnZn,1(s) − 1

)
ds,

Zn,i(t)= Zn,i(0)−
∫ t

0
Zn,i(s) ds +

∫ t

0
Zn,i+1(s) ds +Wn,i(t) for i ∈ {3, . . . , r}

and for any fixed L,T ∈ (0,∞):

(1)
√

nMn,1 ⇒
√

2B in D([0,∞) :R) where B is a standard Brownian motion,
(2) |δn|∗,Tn → 0 a.s.

(3) |Wn,i |∗,Tn

P−→ 0 for i ∈ {2, . . . , r},
(4) ‖Zn,r+‖2,Tn

P−→ 0,

where Tn
.= T ∧ τn,L and τn,L is defined as in (6.8).

PROOF. Recall the definition of qn,i from Lemma 6.1. Define

δn(s)
.= qn,1

(
Zn,1(s)

)
cn

(
ecn[Zn,1(s)−αn] − e−cnαn

)−1 − 1

so that

qn,1
(
Zn,1(s)

)= (
1+ δn(s)

)
c−1
n

(
ecn[Zn,1(s)−αn] − e−cnαn

)
.

Since sups≤T∧τn,L
|Zn,1(s)| ≤ L, Lemma 6.7 shows that |δn|∗,Tn → 0 a.s. Define

Wn,2(t)
.=−

∫ t

0
qn,2

(
Zn,2(s)

)
ds +√

nMn,2(t),

Wn,i(t)
.=
∫ t

0
qn,i−1

(
Zn,i−1(s)

)
ds −

∫ t

0
qn,i

(
Zn,i(s)

)
ds +√

nMn,i(t) for i ∈ {3, . . . , r}.

From Lemma 6.1, it follows that (8.1) is satisfied. Lemma 6.6 shows that μn → f 1 ∈ �
↓
1 .

Along with the assumed tightness of {‖Zn(0)‖1}n∈N, this shows Gn(0)= μn + Zn(0)√
n

P−→ f 1

in �
↓
1 . Hence by Lemma 6.2 and Lemma 6.4,

(8.2)
√

nMn ⇒
√

2Be1 in D
([0,∞] : �2

)
and ‖Zn,r+‖2,T∧τn,L

P−→ 0 as n →∞. Since |Zn,i |∗,T∧τn,L
≤ L and μn,2 → 0, Lemma 6.3,

together with (8.2), shows that |Wn,i |∗,Tn

P−→ 0 for each i ∈ {2, . . . , r}, as n→∞. �
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The next lemma gives pathwise existence and uniqueness of solutions to a system of
stochastic differential equations in which the drift fails to satisfy a linear growth condition.

LEMMA 8.2. Suppose c ∈ (0,∞), α ∈ (0,∞] and B is a standard Brownian motion.
Then for any r ≥ 2 the system of equations

(8.3)

Z1(t)= z1 −
∫ t

0
Z1(s) ds +

∫ t

0
Z2(s) ds +√

2B(t)− (
cecα)−1

∫ t

0

(
ecZ1(s) − 1

)
ds,

Z2(t)= z2 −
∫ t

0
Z2(s) ds +

∫ t

0
Z3(s) ds + (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds,

Zi(t)= zi −
∫ t

0
Zi(s) ds +

∫ t

0
Zi+1(s) ds for i ∈ {3, . . . , r},

Zi(t)= 0 for i > r

has a unique pathwise solution Z with sample paths in C([0,∞) : �2) for any (z1, . . . , zr) ∈
R

r .

PROOF. The case when α =∞ is standard and is thus omitted. Consider now the case
α <∞. It is straightforward to see that there is a unique Z2+ .= (Z3,Z4, . . .) in C([0,∞) :
�2) that solves the last two equations in (8.3). Hence it suffices to show that, the system of
equations

(8.4)
Z1(t)= z1 − (

cecα)−1
∫ t

0

(
ecZ1(s) − 1

)
ds +

∫ t

0

(
Z2(s)−Z1(s)

)
ds +√

2B(t),

Z2(t)= z2 + (
cecα)−1

∫ t

0

(
ecZ1(s) − 1

)
ds −

∫ t

0
Z2(s) ds +

∫ t

0
h(s) ds

has a unique pathwise solution (Z1,Z2) with sample paths in C([0,∞) :R2) where h
.= Z3 ∈

C([0,∞) :R) is a given (nonrandom) continuous trajectory and (z1, z2) ∈R
2.

Define y1 = z1, y2 = z1 + z2 and consider the equation:

(8.5)
Y1(t)= y1 − (

cecα)−1
∫ t

0

(
ecY1(s) − 1

)
ds +

∫ t

0

(
Y2(s)− 2Y1(s)

)
ds +√

2B(t),

Y2(t)= y2 −
∫ t

0
Y1(s) ds +

∫ t

0
h(s) ds +√

2B(t).

Note that (Z1,Z2) solve (8.4) if and only if (Y1, Y2), with Y1 = Z1 and Y2 = Z1 +Z2 solve
(8.5). Thus it suffices to prove existence and uniqueness of solutions for (8.5).

For L ∈ (0,∞), let ηL : R→ [0,1] be such that ηL is smooth, ηL(x)= 1 for |x| ≤ L and
ηL(x)= 0 for |x| ≥ L+ 1. Consider the equation

(8.6)

YL
1 (t)= y1 − (

cecα)−1
∫ t

0
ecYL

1 (s)ηL

(
YL

1 (s)
)
ds

+ (
cecα)−1

t +
∫ t

0

(
YL

2 (s)− 2YL
1 (s)

)
ds +√

2B(t),

YL
2 (t)= y2 −

∫ t

0
YL

1 (s) ds +
∫ t

0
h(s) ds +√

2B(t).

Since for each L (8.6) is an equation with (globally) Lipschitz coefficients, by standard re-
sults, it has a unique pathwise continuous solution.

Fix T ∈ (0,∞) and let τL
.= inf{t ≥ 0 : |YL

1 (t)| ≥ L} ∧ T for any L > 0. Then by pathwise
uniqueness of (8.6), for 0≤ t ≤ τL ∧ τL+1,

YL(t)= YL+1(t).

This in particular shows that, τL ≤ τL+1 a.s.
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We now estimate the second moment of |YL
1 (t)|. By Itô’s formula,

(
YL

1 (t)
)2 = (y1)

2 − 2
(
cecα)−1

∫ t

0
YL

1 (s)ecYL
1 (s)ηL

(
YL

1 (s)
)
ds + 2

(
cecα)−1

∫ t

0
YL

1 (s) ds

+ 2
∫ t

0
YL

1 (s)
(
YL

2 (s)− 2YL
1 (s)

)
ds + 2

√
2
∫ t

0
YL

1 (s) dB(s)+ 2t,

(
YL

2 (t)
)2 = (y2)

2 − 2
∫ t

0
YL

1 (s)YL
2 (s) ds + 2

∫ t

0
YL

2 (s)h(s) ds + 2
√

2
∫ t

0
YL

2 (s) dB(s)+ 2t.

Thus

(
YL

1 (t)
)2 + (

YL
2 (t)

)2 = (y1)
2 + (y2)

2 − 2
(
cecα)−1

∫ t

0
YL

1 (s)ecYL
1 (s)ηL

(
YL

1 (s)
)
ds

+ 2
(
cecα)−1

∫ t

0
YL

1 (s) ds + 2
∫ t

0
YL

2 (s)h(s) ds

− 4
∫ t

0

(
YL

1 (s)
)2

ds + 2
√

2
∫ t

0

(
YL

1 (s)+ YL
2 (s)

)
dB(s)+ 4t.

Since c > 0, we have on using the inequality |x| ≤ 1+ |x|2 that −xecxηL(x)≤ (1+ |x|2) for
all x ∈R. Thus with ‖YL‖∗,t .= sups∈[0,t] ‖YL(s)‖,

∥∥YL
∥∥2
∗,t ≤ ‖y‖2 + 4

(
cecα)−1

∫ t

0

(
1+ ∥∥YL

∥∥2
∗,s
)
ds + 2

∫ t

0

(
1+ ∥∥YL

∥∥2
∗,s
)∣∣h(s)

∣∣ds

+ 2
√

2
(

1+ sup
0≤s≤t

∣∣∣∣
∫ s

0

(
YL

1 (u)+ YL
2 (u)

)
dB(u)

∣∣∣∣2
)
+ 4t.

Taking expectations and using Doob’s inequality and Itô’s isometry to compute the expecta-
tion over the supremum:

E
∥∥YL

∥∥2
∗,t ≤ ‖y‖2 + (

4
(
cecα)−1 + 2|h|∗,T )

∫ t

0

(
1+E

∥∥YL
∥∥2
∗,s
)
ds

+ 2
√

2
(

1+ 4E

∫ t

0

∣∣YL
1 (u)+ YL

2 (u)
∣∣2 du

)
+ 4t

≤ (‖y‖2 +K(T + 1)
)+K

∫ t

0
E
∥∥YL

∥∥2
∗,s ds

with K
.= 4(cecα)−1 + 2|h|∗,T + 16

√
2 for any t ∈ [0, T ]. By Gronwall lemma, for every

L ∈N,

E
∥∥YL

∥∥2
∗,T ≤

(‖y‖2 +K(T + 1)
)
eKT .= c1.

Thus, as L→∞
P(τL < T )≤ P

(∥∥YL
∥∥∗,T ≥ L

)≤ c1/L
2 → 0,

and consequently τL ↑ T a.s. as L→∞. Now define Y(t)
.= YL(t) for 0 ≤ t ≤ τL. Then Y

is a solution of (8.5) on [0, T ). The same argument as before shows that this is the unique
pathwise solution on [0, T ). Since T is arbitrary, we get a unique pathwise solution of (8.5)
on [0,∞). This completes the proof of the lemma. �

LEMMA 8.3. Suppose the assumptions of Theorem 2.3 hold. Suppose further that Zn(0),
Mn and a standard Brownian motion B are given on a common probability space such that
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Zn(0)→ z in �
↓
1 and Mn →

√
2Be1 in D([0,∞) : �2) a.s. Let Z be as defined in Lemma 8.2.

Then for any T ,L ∈ (0,∞),

(8.7) ‖Zn −Z‖2,T∧τn,L∧τL

P−→ 0 as n→∞,

where τL
.= inf{t | ‖Z(t)‖2,t > L}.

PROOF. Fix L,T ∈ (0,∞) and let Tn
.= T ∧ τn,L ∧ τL. Using the estimate |eax − eay | ≤

aea(x∨y)|x − y| for x, y ∈R, a ≥ 0 and since |Zn,1(s)|, |Z1(s)| ≤ L for any s ∈ [0, Tn], note∣∣an(s)e
cnZn,1(s) − aecZ1(s)

∣∣
≤ ∣∣an(s)e

cnZn,1(s) − an(s)e
cnZ1(s)

∣∣+ ∣∣an(s)e
cnZ1(s) − an(s)e

cZ1(s)
∣∣

+ ∣∣ecZ1(s)
∣∣∣∣an(s)− a

∣∣
≤ ∣∣an(s)

∣∣cne
cnL

∣∣Un,1(s)
∣∣+ ∣∣an(s)

∣∣LeL(cn∨c)|cn − c| + ecL
∣∣an(s)− a

∣∣,
where an(s)

.= (cne
cnαn)−1(1 + δn(s)), cn

.= dn/
√

n → c, δn is as in Lemma 8.1, a
.=

(cecα)−1, and Un,i
.= Zn,i − Zi for i ∈ N. Since cn → c and |δn|∗,Tn → 0 a.s. by Lemma

8.1, |an − a|∗,Tn → 0 a.s. Hence for any s ∈ [0, Tn],
(8.8)

∣∣ane
cnZn,1 − aecZ1

∣∣∗,s ≤K|Un,1|∗,s + rn,

where K
.= supn(cne

cnL|an|∗,Tn) <∞ a.s. and

rn
.= |an|∗,TnLeL(cn∨c)|cn − c| + ecL|an − a|∗,Tn → 0 a.s.

Subtracting (8.3) from (8.1), for any t > 0,

(8.9)

Un,1(t)=Un,1(0)−
∫ t

0

(
Un,1(s)−Un,2(s)

)
ds +√

nMn,1(t)−
√

2B(t)

−
∫ t

0

(
an,1(s)e

cnZn,1(s) − aecZ1(s)
)
ds +

∫ t

0

(
an(s)− a

)
ds,

Un,2(t)=Un,2(0)−
∫ t

0

(
Un,2(s)−Un,3(s)

)
ds +Wn,2(t)

+
∫ t

0

(
an,1(s)e

cnZn,1(s) − aecZ1(s)
)
ds −

∫ t

0

(
an(s)− a

)
ds,

Un,i(t)=Un,i(0)−
∫ t

0

(
Un,i(s)−Un,i+1(s)

)
ds +Wn,i(t) for i ∈ {3, . . . , r}.

Let Ht
.= sups∈[0,t]

∑r
i=1 |Un,i(s)|. Then from (8.8) and (8.9), for any t ∈ [0, Tn],

Ht ≤H0 + |√nMn,1 −
√

2B|∗,T + 2T
(|an − a|∗,Tn + rn

)
+

r∑
i=2

|Wn,i |∗,Tn + |Un,r+1|∗,Tn + 2(1+K)

∫ t

0
Hs ds.

Hence by Gronwall’s lemma,

HTn ≤
(
H0 + |√nMn,1 −

√
2B|∗,T + 2T

(|an − a|∗,Tn + rn
)+ r∑

i=2

|Wn,i |∗,Tn + |Un,r+1|∗,Tn

)

× e2(1+K)T .
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Note Un,r+ = Zn,r+ and Un,i(0) = Zn,i(0)− zi for i ≤ r ; hence using Lemma 8.1 and the

assumed convergences, it follows that ‖Un,r+‖2,Tn

P−→ 0 and, based on the above display, that

HTn

P−→ 0. Together these show ‖U‖2,Tn = ‖Zn −Z‖2,Tn

P−→ 0 as n→∞. �

COROLLARY 8.4. Under assumptions of Lemma 8.3, {‖Zn‖2,T }n∈N is a tight sequence
of random variables and

(8.10) lim
L→∞ sup

n
P (τn,L ≤ T )= 0.

PROOF. Fix δ > 0. Since Z has sample paths in C([0, T ] : �2), we can find L ∈ (0,∞) so
that P (‖Z‖2,T > L)≤ δ. With τL+2

.= inf{t | ‖Z(t)‖2 > L+2}, note the inclusion {‖Z‖2,T ≤
L} ⊆ {τL+2 > T } which will be used in the next display. Now, by the right continuity of Zn,
note for each n ∈N,

P (τn,L+2 ≤ T )≤ P
(‖Zn‖2,T∧τn,L+2 > L+ 1

)
≤ P

(‖Zn −Z‖2,T∧τn,L+2 > 1 or ‖Z‖2,T > L
)

≤ P
(‖Zn −Z‖2,T∧τn,L+2∧τL+2 > 1

)+P
(‖Z‖2,T > L

)
≤ P

(‖Zn −Z‖2,T∧τn,L+2∧τL+2 > 1
)+ δ.

Sending n→∞ and using Lemma 8.3 shows lim supn P (τn,L+2 ≤ T )≤ δ. Therefore,

lim sup
n

P
(‖Zn‖2,T > L+ 2

)≤ lim sup
n

P (τn,L+2 ≤ T )≤ δ.

Since δ > 0 is arbitrary, this shows that {‖Zn‖2,T }n∈N is tight. The convergence in (8.10) now
follows since {τn,L+1 ≤ T } ⊆ {‖Zn‖2,T > L}. �

PROOF OF THEOREM 2.3. Using Lemma 8.1 and Skorohod embedding theorem, we can
assume without loss of generality that Zn(0), Mn and B are given on a common probability
space, Zn(0) → z in �

↓
1 , and Mn →

√
2Be1 in D([0,∞) : �2) a.s. From Lemma 8.3, we

now have that for every T ,L ∈ (0,∞) (8.7) holds. In fact, this shows ‖Zn − Z‖2,T
P−→ 0 as

n→∞ using Lemma 6.5, (8.10) and the fact limL→∞P (τL ≤ T )= 0 observed in the proof
of Corollary 8.4. �

9. Proof of Theorem 2.4. In this section, we give the proof of Theorem 2.4. As for the
proof of Theorem 2.3, we begin with a convenient representation for Zn and by establishing
some useful convergence properties.

LEMMA 9.1. Let λn, αn, dn be as in the statement of Theorem 2.4. Suppose that

{‖Zn(0)‖1}n∈N is a tight sequence of random variables and Zn,r+(0)
P−→ 0 in �2 for some

r ≥ 2. Then there are real stochastic processes {Wn,i}ri=1 and ηn with sample paths in
D([0,∞) : R) so that, Wn,1, ηn have absolutely continuous paths a.s., Wn,1(0)= ηn(0)= 0,
and for any t ≥ 0,

Zn,1(t)=Zn,1(0)−
∫ t

0
Zn,1(s) ds +

∫ t

0
Zn,2(s) ds +√

nMn,1(t)+Wn,1(t)− ηn(t),(9.1)

Zn,2(t)=Zn,2(0)−
∫ t

0
Zn,2(s) ds +

∫ t

0
Zn,3(s) ds +Wn,2(t)+ ηn(t),(9.2)

Zn,i(t)=Zn,i(0)−
∫ t

0
Zn,i(s) ds +

∫ t

0
Zn,i+1(s) ds +Wn,i(t) for i ∈ {3, . . . , r}.(9.3)
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Furthermore, ηn is nondecreasing process with ηn(0)= 0 that satisfies

(9.4) ηn(t)=
∫ t

0
I{Zn,1(s)≥θn} dηn(s) a.s.

for some constants θn = αn + O(
√

n/dn) ≥ 0 as n →∞. Also for any L,T ∈ (0,∞), as
n→∞:

(1)
√

nMn,1 ⇒
√

2B in D([0, T ] :R)

(2) tv(Wn,1; [0, Tn]) .= ∫ Tn

0 |Ẇn,1(s)|ds
P−→ 0

(3) |Wn,i |∗,Tn

P−→ 0 for i ∈ {2, . . . , r}
(4) ‖Zn,r+‖2,Tn

P−→ 0.

Here, B is a standard Brownian motion and Tn
.= T ∧ τn,L.

PROOF. By our assumptions on αn, we can find a κ ∈ (0,∞) such that θn
.= αn+ κ

√
n

dn
≥

0 for every n. Note that θn → α as n→∞. Recall the functions qn,i defined in (6.4). Define

Wn,1(t)
.=−

∫ t

0
qn,1

(
Zn,1(s)

)
I{Zn,1(s)<θn} ds,

ηn(t)
.=
∫ t

0
qn,1

(
Zn,1(s)

)
I{Zn,1(s)≥θn} ds

so that ηn(t)= ∫ t
0 I{Zn,1(s)≥θn} dηn(s), and

(9.5)
∫ t

0
qn,1

(
Zn,1(s)

)
ds = ηn(t)−Wn,1(t).

From Lemma 6.1, it then follows that (9.1) is satisfied. Recall from (6.4) that qn,1(z) =
λn

√
n{βn(λn + z/

√
n)− βn(λn)}. Then, by monotonicity of βn, qn,1(z)≥ 0 whenever z≥ 0.

The condition θn ≥ 0 shows that ηn is nondecreasing and

sup
z≤θn

∣∣qn,1(z)
∣∣≤√

nβn(λn + θn/
√

n)≤√
n(λn + θn/

√
n)dn

=√
n
(
1− (

(logdn)/dn + (αn − θn)/
√

n
))dn =√

n
(
1− (logdn − κ)/dn

)dn

≤ exp
(
− log

dn√
n
+ κ

)
→ 0 as n→∞.

This shows that tv(Wn,1; [0, T ])→ 0 a.s.
Next, since dn(1− λn)→∞, Lemma 6.6 shows that

(9.6) μn → f 1 ∈ �
↓
1 as n→∞.

Therefore, Gn(0)= μn + Zn(0)√
n
→ f 1 in �

↓
1 . Then by Lemma 6.2,

(9.7)
√

nMn ⇒
√

2Be1 in D
([0,∞] : �2

)
,

and by Lemma 6.4, ‖Zn,r+‖2,T∧τn,L

P−→ 0 as n→∞. Define

Wn,2(t)
.=−

∫ t

0
qn,2

(
Zn,2(s)

)
ds +√

nMn,2(t)−Wn,1(t).

Using (9.5) and Lemma 6.1 once more, we see that (9.2) is satisfied. Finally, for i ∈ {3, . . . , r},
define

Wn,i(t)
.=
∫ t

0
qn,i−1

(
Zn,i−1(s)

)
ds −

∫ t

0
qn,i

(
Zn,i(s)

)+√
nMn,i(t).
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Then, from Lemma 6.1 again, it follows that (9.3) is satisfied with the above choice of
Wn,i . Lemma 6.3 along with (9.6), (9.7) and |Zn,i |∗,T∧τn,L

≤ L show that, as n →∞, and

|Wn,i |∗,Tn

P−→ 0 for each i ∈ {2, . . . , r}. �

COROLLARY 9.2. Suppose that the assumptions in Lemma 9.1 are satisfied. Assume
further that dn � n2/3. Then the conclusions of Lemma 9.1 hold with θn = αn and

(9.8) ηn(t)
.=
∫ t

0
γ−1
n

(
1+ δn(s)

)+
eγn(Zn,1(s)−αn)

I{Zn,1(s)≥αn} ds,

where γn
.= dn√

n
and δn is a process with sample paths in D([0,∞),R) such that

|δn|∗,T∧τn,L
→ 0 a.s. for each L > 0.

PROOF. Since dn � n2/3 and αn = O(n1/6), the hypothesis of Lemma 6.7 is satisfied.
Define

δn(s)
.= qn,1

(
Zn,1(s)

)
γn

(
eγn[Zn,1(s)−αn] − e−γnαn

)−1 − 1.

Since sups≤T∧τn,L
|Zn,1(s)| ≤ L, Lemma 6.7 shows that |δn|∗,Tn → 0 a.s. as n →∞. Next,

define

Wn,1(t)
.= γ−1

n

∫ t

0

(
1+ δn(s)

)(
e−γnαn − eγn(Zn,1(s)−αn)

I{Zn,1(s)<αn}
)
ds

+
∫ t

0
γ−1
n

(
1+ δn(s)

)−
eγn(Zn,1(s)−αn)

I{Zn,1(s)≥αn} ds.

Then Wn,1(0)= 0, Wn,1 is absolutely continuous and, with κ = supn
dn√
n
α−n <∞,

tv
(
Wn,1; [0, Tn])I{|δn|∗,Tn<1} = γ−1

n

∫ Tn

0

∣∣1+ δn(s)
∣∣∣∣e−γnαn − eγn(Zn,1(s)−αn)

I{Zn,1(s)<αn}
∣∣ds

≤ 2(1+ eκ)T

γn

→ 0 as n→∞.

Hence, since |δn|∗,Tn → 0, we have that tv(Wn,1; [0, Tn]) P−→ 0 as n →∞. By rearranging
terms, we see that, with the above definitions of Wn,1 and ηn, (9.5) is satisfied. The result
follows. �

Since γn →∞ and θn → α as n→∞, the previous lemma suggests a connection to the
Skorokhod map �α defined in (2.1). In order to make this connection precise, we begin with
the following lemma.

LEMMA 9.3. Under the assumptions of Theorem 2.4, for any L ∈ (0,∞),

(9.9) sup
t∈[0,T∧τn,L]

(
Zn,1(t)− αn

)+ P−→ 0 as n→∞.

PROOF. Consider first the case when dn �√
n logn. For this case, εn

.=
√

n logdn

dn
→ 0,

and since

Zn,1(t)=√
n
(
Gn,1(t)− λn

)≤√
n(1− λn)=

√
n logdn

dn

+ αn,

we have that (9.9) holds. Now consider the complementary case, namely dn �√
n but dn �√

n logn does not hold. In this case, we may find an increasing subsequence {nk}k∈N ⊆N so
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that
√

n � dn � n2/3 holds when n ∈ {nk}k∈N and dn �√
n logn holds when n /∈ {nk}k∈N

(e.g., take {nk}k∈N .= {n ∈ N | dn ≤ n0.6}). The argument above shows the convergence of
(9.9) along the latter subsequence. Therefore, it suffices to show the convergence of (9.9)
along the sub,sequence {nk}k∈N where

√
n� dn � n2/3.

We will use Corollary 9.2. Since Zn,1(0)
P−→ z1 ∈ R with z1 ≤ α, we have (Zn,1(0) −

αn)
+ P−→ 0 as n→∞. It now suffices to show that for any ε > 0,

P
(

sup
t∈[0,T∧τn,L]

Zn,1(t) > αn + 6ε
)
→ 0 as n→∞.

Let ϑn
.= inf{t ≥ 0 | Zn,1(t) > αn + 6ε} and, as before, Tn

.= T ∧ τn,L. It is then enough to
show that P (ϑn ≤ Tn)→ 0 as n→∞. For this, inductively define stopping times, σn,0 = 0,

σn,2k−1 = inf
{
t > σn,2k−2 |Zn,1(t) > αn + 3ε

}
,

σn,2k = inf
{
t > σn,2k−1 |Zn,1(t) < αn + 2ε

}
,

k ∈N.

Note that for each n ∈N, σn,r →∞ as r →∞, almost surely. Also, henceforth, without loss
of generality, we consider only n that are large enough so that 1/

√
n < ε. Hence on the set

{ϑn <∞}, ϑn ∈ [σn,2k−1, σn,2k) for some k ∈N. Then for every K ∈N,

P (ϑn ≤ Tn)≤
K∑

k=1

P
(
ϑn ∈ [σn,2k−1, σn,2k ∧ Tn])+P (σn,2K+1 ≤ Tn).

Hence to complete the proof it is enough to show that:

(1) For each k ∈N, limn→∞P (ϑn ∈ [σn,2k−1, σn,2k ∧ Tn])= 0,
(2) limK→∞ lim supn→∞P (σn,2K+1 ≤ Tn)= 0.

Consider (1) first. Note that on the set Cn,1
.= {Zn,1(0)≤ αn + 3ε}, for any k ∈N,

αn + 3ε ≤Zn,1(σn,2k−1)= Zn,1(σn,2k−1−)+Zn,1(σn,2k−1)−Zn,1(σn,2k−1−)

≤Zn,1(σn,2k−1−)+ ε ≤ αn + 4ε.
(9.10)

Similarly,

(9.11) Zn,1(t)≥ αn + ε for each t ∈ [σn,2k−1, σn,2k].
Let Hn(t)

.=√
nMn,1(t + σn,2k−1)−√

nMn,1(σn,2k−1) for t ≥ 0 and consider the sets

Cn,2
.= {ϑn ∨ σn,2k−1 ≤ Tn}, Cn,3

.=
{
|Wn,1|∗,Tn ≤ ε/2, |δn|∗,Tn ≤

1

2

}
.

Then on the set Cn =⋂3
i=1 Cn,i , using Corollary 9.2, for any t ∈ [0, (Tn ∧ σn,2k)− σn,2k−1],

Zn,1(t + σn,2k−1)−Zn,1(σn,2k−1)

=−
∫ σn,2k−1+t

σn,2k−1

(
Zn,1(s)−Zn,2(s)

)
ds +Hn(t)+Wn,1(t + σn,2k−1)−Wn,1(σn,2k−1)

−
∫ σn,2k−1+t

σn,2k−1

γ−1
n

(
1+ δn(s)

)+
eγn(Zn,1(s)−αn)

I{Zn,1(s)≥αn} ds.

Since for t in the above interval σn,2k−1 + t ≤ Tn ≤ τn,L, |Zn,1(s)| + |Zn,2(s)| ≤ 2L for
any s ≤ σn,2k−1 + t . Also, since σn,2k−1 + t ≤ σn,2k , by (9.11), Zn,1(s) − αn ≥ ε for any
s ∈ [σn,2k−1, σn,2k−1 + t]. Thus on Cn we have

(9.12) Zn,1(t + σn,2k−1)−Zn,1(σn,2k−1)≤ 2Lt +Hn(t)+ ε − t

2γn

exp(γnε)
.= Yn(t).
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Using (9.10), on Cn, Zn,1(ϑn)−Zn,1(σn,2k−1)≥ αn + 6ε − αn − 4ε = 2ε. Hence

P
(
ϑn ∈ [σn,2k−1, σn,2k ∧ Tn

)
)

≤ P
(
ϑn ∈ [σn,2k−1, σn,2k ∧ Tn

)
,Cn)+P

(
Cc

n,1
)+P

(
Cc

n,3
)

≤ P
(

sup
t∈[0,T ]

Yn(t)≥ 2ε
)
+P

(
Cc

n,1
)+P

(
Cc

n,3
)
,

(9.13)

where the second inequality is on observing that on the set {ϑn ∈ [σn,2k−1, σn,2k ∧ Tn)},
(9.12) holds with t replaced by ϑn − σn,2k−1. Next, note that Hn is a {Gn

t } martingale, where
Gn

t =Fn
t+σn,2k−1

and

〈Hn〉t = 〈√nMn,1〉t+σn,2k−1 − 〈√nMn,1〉σn,2k−1

=
∫ σn,2k−1+t

σn,2k−1

[
Gn,1(s)−Gn,2(s)+ λn − λnβn

(
Gn,1(s)

)]
ds

≤ 2t,

where the second equality is from (3.6).
Since γn →∞, we can apply Lemma 6.9 to conclude

P
(

sup
t∈[0,T ]

Yn(t)≥ 2ε
)
= P

(
sup

t∈[0,T ]

[
Hn(t)−

(
exp(γnε)

2γn

− 2L

)
t

]
≥ ε

)
→ 0

as n →∞. We also have limn P (Cc
n,i) = 0 for i = 1,3 since, as noted earlier (Zn,1(0) −

αn)
+ P−→ 0, and by Corollary 9.2, respectively. From these observations, it follows that the

right-hand side of (9.13) converges to 0 as n→∞, which completes the proof of (1).
Now we prove (2). Let ρn,i

.= σn,i ∧ τn,L and define

Yn,K(t)
.=

K∑
i=0

(
Zn,1(t ∧ ρn,2i+1)−Zn,1(t ∧ ρn,2i )

)
.

Note that {σn,2K+1 ≤ Tn} ⊆ {Yn,K(T )≥Kε}, and hence to prove (2) it is sufficient to show
that

(9.14) lim sup
n→∞

P
(
Yn,K(T )≥Kε

)→ 0 as K →∞.

From Corollary 9.2, we have that on the set Cn,4
.= {tv(Wn,1; [0, Tn])≤ 1},

Yn,K(T )

=
K∑

i=0

∫ T∧ρn,2i+1

T∧ρn,2i

(
Zn,2(s)−Zn,1(s)

)
ds

+
K∑

i=0

√
nMn,1(T ∧ ρn,2i+1)−√

nMn,1(T ∧ ρn,2i )

+
K∑

i=0

Wn,1(T ∧ ρn,2i+1)−Wn,1(T ∧ ρn,2i)

−
K∑

i=0

∫ T∧ρn,2i+1

T∧ρn,2i

γ−1
n

(
1+ δn(s)

)+
eγn(Zn,1(s)−αn)

I{Zn,1(s)≥αn} ds
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≤ 2LT +
K∑

i=0

(√
nMn,1(T ∧ ρn,2i+1)−√

nMn,1(T ∧ ρn,2i )
)+ tv

(
Wn,1; [0, T ])

≤ 2LT + 1+Hn,K(T ),

where we have used the facts that sups≤τn,L
|Zn,1(s)| ≤ L, and that the rightmost term in the

third line is nonpositive. Also, here

Hn,K(t)
.=

K∑
i=0

(√
nMn,1(t ∧ ρn,2i+1)−√

nMn,1(t ∧ ρn,2i)
)
.

Using (3.6), we see that Hn,K is a Fn
t -martingale with quadratic variation given by

〈Hn,K〉t =
K∑

i=0

(〈√nMn,1〉t∧ρn,2i+1 − 〈√nMn,1〉t∧ρn,2i

)

=
K∑

i=0

∫ t∧ρn,2i+1

t∧ρn,2i

(
Gn,1(s)−Gn,2(s)+ λn − λnβn

(
Gn,1(s)

))
ds ≤ 2t.

Hence

P
(
Yn,K(T )≥Kε

)≤ P
(
Yn,K(T )≥Kε,Cn,4

)+P
(
Cc

n,4
)

≤ P
(
Hn,K(T ) > Kε − (2LT + 1)

)+P
(
Cc

n,4
)

≤ EH 2
n,K(T )

(Kε − (2LT + 1))2 +P
(
Cc

n,4
)

≤ 2T

(Kε − (2LT + 1))2 +P
(
Cc

n,4
)
.

From Corollary 9.2, P (Cc
n,4) → 0 as n →∞. This together with the above display shows

limK→∞ lim supn→∞P (Yn,K(T ) ≥ Kε) = 0. Thus we have shown (9.14) and the proof of
(2) is complete. The result follows. �

LEMMA 9.4. Suppose the hypothesis of Theorem 2.4 holds, then for each n ∈ N, there
is a real constant θn = αn +O(

√
n/dn)≥ 0 and processes W̃n,1, Wn,2 with sample paths in

D([0,∞) :R) such that with Z̃n,1
.= Zn,1 ∧ θn,

Z̃n,1(t)= �θn

(
Z̃n,1(0)−

∫ ·
0

(
Z̃n,1(s)−Zn,2(s)

)+√
nMn,1(·)+ W̃n,1(·)

)
(t), and

Zn,2(t)= Zn,2(0)−
∫ t

0

(
Zn,2(s)−Zn,3(s)

)
ds +Wn,2(t)+ ηn(t) for all t > 0,

(9.15)

where

(9.16) ηn = �̂θn

(
Z̃n,1(0)−

∫ ·
0

(
Z̃n,1(s)−Zn,2(s)

)+√
nMn,1(·)+ W̃n,1(·)

)
.

Furthermore, for any L,T ∈ (0,∞), the random variables |(Zn,1 − θn)
+|∗,T∧τn,L

,
|W̃n,1|∗,T∧τn,L

and |Wn,2|∗,T∧τn,L
converge to zero in probability as n→∞.

PROOF. Let θn be as in Lemma 9.1. Since dn �√
n, θn = αn + o(1) and Lemma 9.3

shows

(9.17)
∣∣(Zn,1 − θn)

+∣∣∗,T∧τn,L
→ 0.
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Note that Z̃n,1 = Zn,1 − (Zn,1 − θn)
+. Hence we can rewrite (9.1) and (9.2) as

Z̃n,1(t)= Z̃n,1(0)−
∫ t

0
Z̃n,1(s) ds

+
∫ t

0
Zn,2(s) ds +√

nMn,1(t)+ W̃n,1(t)− ηn(t),

Zn,2(t)= Zn,2(0)−
∫ t

0

(
Zn,2(s)−Zn,3(s)

)
ds +Wn,2(t)+ ηn(t),

(9.18)

where

W̃n,1(t)
.=Wn,1(t)−

∫ t

0

(
Zn,1(s)− θn

)+
ds − (

Zn,1(t)− θn

)+ + (
Zn,1(0)− θn

)+
.

The properties of ηn from Lemma 9.1 (and Corollary 9.2) say that ηn is a nondecreasing
process, with ηn(0) = 0 and ηn(t) = ∫ t

0 I{Z̃n,1(s)=θn} dηn(s). Since Z̃n,1 ≤ θn, (9.18) and the
characterizing properties of the Skorokhod map show (9.15) and (9.16). Finally, by Lemma
9.1, Corollary 9.2 and Lemma 9.3,

|Wn,1|∗,T∧τn,L

P−→ 0, and |Wn,2|∗,T∧τn,L

P−→ 0

as n→∞. Hence, using (9.17), |W̃n,1|∗,T∧τn,L

P−→ 0 as n→∞, and the result follows. �

The following lemma will be needed in order to prove the tightness of Zn.

LEMMA 9.5. Under the hypothesis of Theorem 2.4, the collection of random variables
{‖Zn‖2,T }n∈N is tight for any T ∈ (0,∞).

PROOF. Fix T ∈ (0,∞). In Lemma 9.4, using the definition of the Skorokhod map �θn

for θn ≥ 0 (see (2.1)), we have, for any t > 0 that

ηn(t)≤
∣∣Z̃n,1(0)

∣∣+ ∫ t

0

∣∣Z̃n,1(s)
∣∣ds +

∫ t

0

∣∣Zn,2(s)
∣∣ds + |√nMn,1|∗,t + |W̃n,1|∗,t .

This shows that for any t ≥ 0,

|Z̃n,1|∗,t ≤ 2
(∣∣Z̃n,1(0)

∣∣+ ∫ t

0
|Z̃n,1|∗,s ds +

∫ t

0
|Zn,2|∗,s ds + |√nMn,1|∗,t + |W̃n,1|∗,t

)
,

|Zn,2|∗,t ≤
∣∣Z̃n,1(0)

∣∣+ ∣∣Zn,2(0)
∣∣+ ∫ t

0
|Z̃n,1|∗,s ds +

∫ t

0

(
2|Zn,2|∗,s + |Zn,3|∗,s)ds

+ |√nMn,1|∗,t + |W̃n,1|∗,t + |Wn,2|∗,t ,
and

|Zn,i |∗,t ≤
∣∣Zn,i(0)

∣∣+ ∫ t

0
|Zn,i |∗,s ds +

∫ t

0
|Zn,i+1|∗,s ds + |Wn,i |∗,t for i ∈ {3, . . . , r},

where the last line is from Lemma 9.1. Let Ht
.= |Z̃n,1|∗,t + |Zn,2|∗,t + · · · + |Zn,r |∗,t . By

adding over equations in the above display, we have for t ∈ [0, τ ] and τ ∈ [0, T ] that

0≤Ht ≤ 4

(
H0 + |√nMn,1|∗,τ + |W̃n,1|∗,τ +

r∑
i=2

|Wn,i |∗,τ +
∫ t

0
Hs ds

)
.

By Gronwall’s inequality, for all τ ∈ [0, T ],

(9.19) Hτ ≤ 4

(
H0 + |√nMn,1|∗,τ + |W̃n,1|∗,τ +

r∑
i=2

|Wn,i |∗,τ
)
e4τ .
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Let 
Zn
.= (Z̃n,1,Zn,2, . . . ,Zn,r). Since 
Zn(0)

P−→ (z1, . . . , zr), and
√

nMn ⇒ Be1, for every
ε > 0, there is a L1 ∈ (0,∞) such that for every n ∈N,

P (Cn,1)≤ ε

2
, where Cn,1

.= {
H0 + |√nMn,1|∗,T ≥ L1

}
.

Applying Lemmas 9.1 and Lemma 9.4 with L= 4(L1 + 1)e4T + 2, we can find an n0 ∈N so
that P (Cn,2)≤ ε

2 for n≥ n0, where

Cn,2
.=
{
|W̃n,1|∗,Tn +

r∑
i=2

|Wn,i |∗,Tn +
∣∣(Zn,1 − θn)

+∣∣∗,Tn
+ ‖Zn,r+‖2,Tn ≥ 1

}

and Tn
.= T ∧ τn,L. On the event (Cn,1 ∪Cn,2)

c,

‖ 
Zn‖1,Tn =HTn < 4(L1 + 1)e4T

by (9.19), and hence by triangle inequality (and noting ‖
x‖2 ≤ ‖
x‖1),

(9.20)
‖Zn‖2,Tn ≤ ‖ 
Zn‖1,Tn +

∣∣(Zn,1 − θn)
+∣∣∗,Tn

+ ‖Zn,r+‖2,Tn

< 4(L1 + 1)e4T + 1=L− 1.

Also, by the definition of τn,L, ‖Zn(τn,L)‖2 ≥ L− 1√
n

on the set τn,L < T . Hence we must
have that τn,L > T whenever (9.20) holds, and hence

‖Zn‖2,T < L− 1 on the event (Cn,1 ∪Cn,2)
c.

This shows that

P
(‖Zn‖2,T ≥ L

)≤ P (Cn,1 ∪Cn,2)≤ ε ∀n≥ n0.

Since ε > 0 is arbitrary, the result follows. �

The following result is immediate from Lemmas 6.5, 9.1, 9.4 and 9.5.

COROLLARY 9.6. Under the hypothesis of Theorem 2.4, for any T > 0,
limL→∞ supn P (τn,L ≤ T ) = 0. In particular, the processes W̃n,1, {Wn,i}ri=2, ‖Zn,r+‖2,
(Zn,1 − θn)

+ converge in probability to zero in D([0,∞) :R) as n→∞.

COROLLARY 9.7. Under the hypothesis of Theorem 2.4, the sequence of processes
{Zn}n∈N is tight in D([0,∞) : �2).

PROOF. Let θn be as in Lemma 9.4. For the sequence { 
Zn}n∈N introduced in the proof of
Lemma 9.5, note that

(9.21) Zn = P 
Zn + (Zn,1 − θn)
+e1 + SrZn,r+,

where P : Rr → �2 is given by P (x1, . . . , xr) = (x1, . . . , xr ,0) while Sr : �2 → �2 is given
by Sry = (
0,y) where 
0 is the zero vector in R

r . Since these maps are continuous, the
tightness of { 
Zn}n∈N in D([0, T ] : Rk), the tightness of {Zn,r+}n∈N in D([0, T ] : �2) and
the tightness of {(Zn,1 − θn)

+}n∈N in D([0, T ] : R) will show the tightness of the sequence

{Zn}n∈N in D([0, T ] : �2). Note by Corollary 9.6, for each fixed T < ∞, ‖Zn,r+‖2,T
P−→ 0

and |(Zn,1 − θn)
+|∗,T P−→ 0. Hence it is sufficient to show that { 
Zn}n∈N is tight in D([0, T ] :

R
r ). From Lemma 9.5, the convergence of Wn,i in Corollary 9.6, and equations for Zn,j ,
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j = 3, . . . r in Lemma 9.1, it is immediate that (Zn,3, . . .Zn,r ) is tight in D([0,∞) : Rr−2).
Finally, consider the pair (Z̃n,1,Zn,2). Note that

|Z̃n,1−Zn,2|∗,T ≤
∣∣(Zn,1− θn)

+∣∣∗,T +|Zn,1|∗,T +|Zn,2|∗,T ≤
∣∣(Zn,1− θn)

+∣∣∗,T +2‖Zn‖2,T

and the right-hand side in the above display is tight in R+. This shows the tightness of∫ ·
0

(
Z̃n,1(s)−Zn,2(s)

)
ds

in C([0,∞) : R). Combining this observation with Lemma 9.5, the convergence of
√

nMn,1

in Lemma 9.1, and the convergence of W̃n,1 in Corollary 9.6, it follows that

(9.22) Rn(·) .= Z̃n,1(0)−
∫ ·

0

(
Z̃n,1(s)−Zn,2(s)

)
ds +√

nMn,1(·)+ W̃n,1(·)
is tight in D([0,∞) :R). Using the identity,

�θn(Rn)(t)= �θn

(
�θn(Rn)(s)+Rn(· + s)−Rn(s)

)
(t − s)

for 0≤ s ≤ t ≤ T , we see from the definition of the Skorohod map that∣∣�θn(Rn)(t)− �θn(Rn)(s)
∣∣≤ 2 sup

s≤u≤t

∣∣Rn(u)−Rn(s)
∣∣.

Together with the tightness of Rn, this immediately implies the tightness of Z̃n,1 = �θn(Rn)

and of �̂θn(Rn). Finally, the tightness of Zn,2 is now immediate from Lemma 9.5, the conver-
gence of Wn,2 in Corollary 9.6 and the tightness of �̂θn(Rn) noted above. The result follows.

�

PROOF OF THEOREM 2.4. From Lemma 6.6 and from the tightness of {‖Zn(0)‖1}n∈N,

it follows under the conditions of the theorem that μn
P−→ f 1 and Gn(0)

P−→ f 1 in �
↓
1 . This

proves the first statement in the theorem. Now consider the second statement. Fix T < ∞.
From Corollary 9.7, {Zn}n∈N is tight in D([0,∞) : �2). Also from Lemma 9.1,

√
nMn,1

converges in distribution to
√

2B where B is a standard Brownian motion and from Corollary
9.6, (

W̃n,1, {Wn,i}ri=2, (Zn,1 − θn)
+) P−→ 0 in D

([0, T ] :Rr+1).
Suppose that along a subsequence(

Zn,
√

nMn,1, W̃n,1, {Wn,i}ri=2, (Zn,1 − θn)
+)⇒ (Z,

√
2B,0)

in D([0,∞) : �2 × R
r+2) and for notational simplicity label the subsequence once more as

{n}. Also by appealing to Skorohod embedding theorem, we assume that all the processes
in the above display are given on a common probability space and the above convergence

holds a.s. Since JT (Zn)
.= sup0≤t≤T ‖Zn(t) − Zn(t−)‖2 is at most 1√

n
and Zn(0)

P−→ z,
we have JT (Z) = 0 and Z(0) = z a.s. In particular, Z has sample paths in C([0,∞) : �2)

and (Zn,
√

nMn,1)→ (Z,
√

2B) uniformly over compact time intervals in �2 ×R. Since by

Corollary 9.6, for every T <∞, ‖Zn,r+‖2,T
P−→ 0, it suffices to show that (Z1, . . . ,Zr) along

with B satisfy (2.13).
From the equations of (Zn,3, . . .Zn,r ) in Lemma 9.1, uniform convergence of Zn to Z, and

the uniform convergence of {Wn,i}ri=3 to 0, it is immediate that (Z3, . . . ,Zr) satisfy (2.13).
Finally, consider the equations for (Z1,Z2). From (9.22) and uniform convergence properties
observed above, it is immediate that Rn converges uniformly, a.s., to R given as

R(·)= Z1(0)−
∫ ·

0

(
Z1(s)−Z2(s)

)+√
2B(·).
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Since θn = αn +O(
√

n/dn)→ α, this shows that, for every T <∞,

�θn(Rn)(t)=Rn(t)− sup
s∈[0,t]

(
Rn(t)− θn

)+
→R(t)− sup

s∈[0,t]
(
R(t)− α

)+ = �α(R)(t)

uniformly for t ∈ [0, T ], a.s., where (R(t)− α)+ is taken to be 0 when α =∞. Similarly,

�̂θn(Rn)(t)→ �̂α(R)(t)

uniformly for t ∈ [0, T ], a.s. Here, when α = ∞, �α and �̂α are as introduced in (2.11).
The fact that (Z1,Z2) solve the first two equations in (2.13) is now immediate from Lemma

9.4, the convergence Z̃n,1 − Zn,1
P−→ 0, and the uniform convergence of Wn,2 to 0 noted

previously. The result follows. �

APPENDIX A: PROOFS OF RESULTS IN SECTION 5

A.1. Proof of Lemma 5.1. PROOF. Fix ε ∈ (0,1). First suppose dn

n
→ 0. Consider x ∈

(ε,1]. Let �n(x)
.= logβn(x)− logγn(x). Let n0 ∈N be such that for all n≥ n0, dn/n < ε/2.

Then, for n≥ n0,

�n(x)
.=

dn−1∑
i=0

log
(

x − i/n

1− i/n

)
− logxdn =

dn−1∑
i=0

{
log

(
x − i/n

1− i/n

)
− logx

}

=
dn−1∑
i=0

log
(

1− i/(nx)

1− i/n

)
=

dn−1∑
i=0

log
(

1− (i/n)
1/x − 1

1− i/n

)
.

(A.1)

Differentiating �n gives,

�̇n(x)=
dn−1∑
i=0

(
1

x − i/n
− 1

x

)
=

dn−1∑
i=0

i/n

x(x − i/n)
.

Since n≥ n0 and x ∈ [ε,1] we have x(x − i
n
)≥ ε2/2 for i ≤ dn − 1. Hence,

∣∣�̇n(x)
∣∣≤ 2

ε2

dn−1∑
i=0

(i/n)≤ 1

ε2

d2
n

n
.

From the definition of �n, we also have,

(A.2) �̇n(x)= β̇n(x)

βn(x)
− γ̇n(x)

γn(x)
= γ̇n(x)

γn(x)

(
β̇n(x)

γ̇n(x)

γn(x)

βn(x)
− 1

)
.

Since γ̇n(x)
γn(x)

= dn

x
≥ dn for x ∈ [ε,1], from (A.2) we have,

sup
x∈[ε,1]

∣∣∣∣ β̇n(x)

γ̇n(x)

γn(x)

βn(x)
− 1

∣∣∣∣≤ 1

dn

sup
x∈[ε,1]

∣∣�̇n(x)
∣∣≤ 1

ε

dn

n
→ 0.

This proves (5.4).
Now assume dn√

n
→ 0. Once more consider x ∈ (ε,1] and n ≥ n0. Let C

.=
supn≥n0

1/ε−1
1−dn/n

< ∞ and let n1 > n0 be such that dnC/n < 1/2 for all n ≥ n1. Then for
n≥ n1 and x ∈ [ε,1]:

∣∣�n(x)
∣∣≤ dn−1∑

i=0

2
∣∣∣∣(i/n)

1/x − 1

1− i/n

∣∣∣∣≤ 2C

dn−1∑
i=0

i/n≤ C
d2
n

n
,(A.3)
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where the first inequality is from (A.1) and the inequality | log(1+ h)| ≤ 2|h| for |h| ≤ 1/2.
This shows supx∈[ε,1] |�n(x)| → 0, hence showing the first convergence in (5.5). Finally the
second convergence (5.5) is immediate on combining the first convergence with (5.4). �

A.2. Proof of Corollary 5.2. This is an immediate consequence of the estimate in (A.3).

A.3. Proof of Corollary 5.3. PROOF. Let ε > 0 and n0 ∈ N be such that μn,i > ε for
all n≥ n0. By Lemma 5.1, as n→∞

β̇n(μn,i)

βn(μn,i)
= (

1+ o(1)
) γ̇n(μn,i)

γn(μn,i)
.(A.4)

Recall that μn,i+1
.= λnβn(μn,i) and γn(x)

.= xdn . Hence (A.4) gives

(A.5)
β̇n(μn,i)

μn,i+1/λn

= (
1+ o(1)

) dn

μn,i

completing the proof. �

A.4. Proof of Lemma 5.4. PROOF. From Corollary 5.2, there is a n0 ∈ N and C ∈
(0,∞) such that for all n≥ n0

sup
x∈[ε,1]

∣∣logβn(x)− logγn(x)
∣∣≤ Cd2

n

n
.

Thus, if for n≥ n0 and i ∈N, μn,i ≥ ε, then

logμn,i+1 = logλn + logβn(μn,i)= logλn + logγn(μn,i)+ γn,i

= logλn + dn logμn,i + γn,i,
(A.6)

where |γn,i | ≤ Cd2
n

n
. Now let k ∈N and n1 ∈N be such that for all n≥ n1, μn,k ≥ ε. We will

show that for n≥ n0 ∨ n1 and j ∈ {1, . . . , k} that

(A.7) logμn,j+1 = (logλn)

( j∑
i=0

di
n

)
+ βn,j ,

where |βn,j | ≤ C
n

∑j
i=1 di+1

n . Note the the lemma is immediate from (A.7) on taking j = k.

To prove (A.7) we argue inductively. First note that since μn ∈ �
↓
1 , μn,i ≥ μn,k ≥ ε for each

i ≤ k and n ≥ n1. Hence (A.6) holds for each i ≤ k and n ≥ n0 ∨ n1. Taking i = 1 in (A.6)
and noting that μn,1 = λn proves (A.7) for the case j = 1.

Suppose now (A.7) holds for some j ≤ k− 1. Then, using i = j + 1, in (A.6)

logμn,j+2 = logλn + dn logμn,j+1 + γn,j+1,

where |γn,j+1| ≤ Cd2
n

n
. By the induction hypothesis, (A.7) holds for j . Hence

logμn,j+2 = logλn + dn

{
(logλn)

( j∑
i=0

di
n

)
+ βn,j

}

= (logλn)

(j+1∑
i=0

di
n

)
+ dnβn,j + γn,j
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and hence βn,j+1 = dnβn,j + γn,j . This shows

|βn,j+1| = |dnβn,j + γn,j | ≤ dn

C

n

j∑
i=1

di+1
n + Cd2

n

n
= C

n

j+1∑
i=1

di+1
n

which shows that (A.7) holds for j + 1. This completes the proof. �

A.5. Proof of Corollary 5.5. PROOF. Since dn →∞, the assumption ξ2
n

dn
→ 0 shows

that |ξn|
dn

≤ 1+ξ2
n

dn
→ 0. This shows that εn

.= 1− λn = ξn+logdn

dk
n

also converges to 0.

We first show that μn,i → 1 for each i ∈ {1, . . . , k}. We will argue inductively. Since
μn,1

.= λn = 1 − εn, we have μn,1 → 1. Suppose now that μn,i → 1 for some i ≤ k − 1.
Hence eventually μn,i ≥ 1

2 . Applying Lemma 5.4 with k = i and ε = 1
2 and simplifying the

resulting expression, we get

logμn,i+1 = (logλn)
di+1
n − 1

dn − 1
+O

(
d2
n(di

n − 1)

n(dn − 1)

)
(A.8)

=O(εn)
di+1
n − 1

dn − 1
+O

(
d2
n(di

n − 1)

n(dn − 1)

)

=O

(
ξn + logdn

dk−i
n

)
+O

(
di+1
n

n

)
,

(A.9)

where the second equality uses logλn = log(1 − εn) = O(εn) and the third follows on re-

calling that dn →∞. Since i ≤ k − 1, |ξn|
dk−i
n

≤ 1+ξ2
n

dn
→ 0. Using this along with dk+1

n � n in

(A.9) shows that μn,i+1 → 1. Hence, by induction, μn,i → 1 for i ≤ k.
Next we argue that β̇n(μn,k) → α. Since λn → 1 and μn,k → 1, from Corollary 5.3 we

have that

lim
n→∞

β̇n(μn,k)

dnμn,k+1
= 1.

Hence it suffices to show that dnμn,k+1 → α. For this note that

log(dnμn,k+1)= logμn,k+1 + logdn

= log(1− εn)

(
dk+1
n − 1

dn − 1

)
+O

(
d2
n

n

dk
n − 1

dn − 1

)
+ logdn

= (−εn +O
(
ε2
n

))
dk
n

(
1+O(1/dn)

)+ logdn +O

(
dk+1
n

n

)
,

where the second equality is from (A.8) and last equality is by using Taylor’s expansion for

log(1− εn). Using dk+1
n � n and |ε2

ndk
n | ≤ 2(ξ2

n+(logdn)2)

dk
n

→ 0, we now have

log(dnμn,k+1)= (−εnd
k
n + o(1)

)(
1+O(1/dn)

)+ logdn + o(1)

= (−ξn − logdn)
(
1+O(1/dn)

)+ logdn + o(1)

=−ξn − logdn + logdn +O

(
ξn + logdn

dn

)
+ o(1)

=−ξn + o(1)→ log(α),

where the last equality once more uses the observation that |ξn|
dn

→ 0. Thus we have
dnμn,k+1 → α as n→∞ which completes the proof. �
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A.6. Proof of Lemma 5.6. PROOF. Since μn,k → 1 and j !→ μn,j is nonincreasing,
we have μn,i → 1 for each i ≤ k. Additionally, since λn → 1, Corollary 5.3 shows that for

any i ∈ [k] limn→∞ β̇n(μn,i )

dnμn,i+1
= 1. As a consequence, β̇n(μn,k−1) →∞ as n →∞, and for

any j ∈ [k− 2]

lim
n→∞

β̇n(μn,j )

β̇n(μn,j+1)
= lim

n→∞
dnμn,j+1

dnμn,j+2
= lim

n→∞
μn,j+1

μn,j+2
= 1.

This completes the proof of the lemma. �

A.7. Proof of Lemma 5.7. PROOF. By the first part of Lemma 5.1, (5.7) is immediate
from (5.6). Now consider (5.6). Taking logarithms in (2.7), for x > dn/n,

logβn(x)=
dn−1∑
i=0

(
log

(
x − i

n

)
− log

(
1− i

n

))

=
dn−1∑
i=0

(
log

(
1− i

n
− (1− x)

)
− log

(
1− i

n

))
.

Let δn = εn + dn

n
. For large n, δn ≤ 1

2 , and hence, using the expansion log(1 − h) = −h+
O(h2) for |h| ≤ 1

2 , for any x ∈ [1− εn,1]:

logβn(x)=
dn−1∑
i=0

{
− i

n
− (1− x)+ i

n
+O

(
δ2
n

)}=−dn(1− x)+O
(
dnδ

2
n

)

= dn log
(
1− (1− x)

)+O
(
dnδ

2
n

)= logγn(x)+O
(
dnδ

2
n

)
.

Note that δ2
n = (εn+ dn/n)2 ≤ 2(ε2

n + d2
n

n2 ). Hence by our assumptions dnδ
2
n → 0. This proves

(5.6) and completes the proof of the lemma. �

A.8. Proof of Lemma 5.8. PROOF. By (5.2)

sup
x∈[0,1−εn]

∣∣βn(x)
∣∣≤ (1− εn)

dn = e−dnεn+o(1) → 0.

Similarly, by (5.3), under the assumption lim supn
dn

n
< 1, for large n,

sup
x∈[0,1−εn]

∣∣β̇n(x)
∣∣≤ (1− dn/n)−1dn(1− εn)

dn−1 = e−dnεn+logdn+O(1) → 0. �

APPENDIX B: PROOF OF LEMMA 6.8

For a right continuous bounded variation function F : [0, T ] → R, let dF denote the
signed measure on (0, T ] given by dF(a, b] = F(b) − F(a) for 0 ≤ a < b ≤ T , and dλ

denote the Lebesgue measure on (0, T ]. Bounded measurable functions h : [0, T ] → R act
on signed measure dμ on (0, T ] on the left as follows: hdμ denotes the signed measure
A !→ ∫

A h(x) dμ(x), A ∈ B(0, T ].
Let H(t)

.= ∫ t
0 h(s) dλ(s) for t ∈ [0, T ]. Note that z defined in (6.14) is a right continu-

ous function with bounded variations. The corresponding measure dz on (0, T ] satisfies the
identity

dz=−hzdλ+ g dλ+ dM,
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namely

dz+ hzdλ= g dλ+ dM.

Acting on the left in the above identity by the bounded continuous function eH (t)
.= eH(t) we

get

eHdz+ eHhzdλ= eHg dλ+ eH dM.

Since dH = hdλ, by the change of variable formula (cf. [28], Theorem VI.8.3) deH =
heH dλ. Hence

eHdz+ zdeH = eHg dλ+ eH dM.

Two applications of the integration by parts formula (cf. [2], Theorem 18.4) show that

d
(
eH z

)= eHg dλ+ d
(
eHM

)−M deH .

Computing the total measure on (0, t] for t ≤ T :

eH(t)z(t)− z(0)=
∫ t

0
eH(s)g(s) dλ(s)+ eH(t)M(t)−M(0)−

∫ t

0
M(s)deH (s).

Rearranging terms and multiplying by e−H(t) on both sides and noting, from (6.14), that
M(0)= 0:

(B.1) z(t)=
∫ t

0
eH(s)−H(t)g(s) dλ(s)+M(t)− e−H(t)

∫ t

0
M(s)deH (s)+ e−H(t)z(0).

We now estimate the various terms on the right-hand side of (B.1). The first term on the right-
hand side of (B.1) satisfies for t ∈ [0, T ∧ τ ]∣∣∣∣

∫ t

0
eH(s)−H(t)g(s) dλ(s)

∣∣∣∣≤ |g|∗,T∧τ

∫ t

0
eH(s)−H(t) dλ(s)

= |g|∗,T∧τ

∫ t

0
e−

∫ t
s h(u) du dλ(s)

≤ |g|∗,T∧τ

∫ t

0
e−m(t−s) dλ(s)

= |g|∗,T∧τ

1− e−tm

m
≤ |g|∗,T∧τ

m
.

(B.2)

Next we estimate the third term in the right-hand side of (B.1). Since h is nonnegative on
[0, T ∧ τ ], deH in a positive measure on (0, T ∧ τ ]. Hence for t ∈ [0, T ∧ τ ]∣∣∣∣e−H(t)

∫ t

0
M(s)deH (s)

∣∣∣∣≤ |M|∗,T∧τ e
−H(t)

∫ t

0
deH (s)≤ |M|∗,T∧τ .(B.3)

Finally, the last term in the right-hand side of (B.1) for any t ∈ [0, τ ∧ T ] can be bounded as

(B.4)
∣∣e−H(t)z(0)

∣∣≤ ∣∣z(0)
∣∣e−mt .

Using (B.2), (B.3) and (B.4) in (B.1) completes the proof of the lemma. �
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