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Abstract10

Identifying the directed connectivity that underlie networked activity between di↵erent cortical areas is crit-11

ical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely12

used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is13

low, making it di�cult to capture the millisecond-scale interactions underlying sensory processing. Magne-14

toencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear15

mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two16

stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC17

inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate18

into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we19

introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source20

dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from21

the MEG measurements, integrated with source localization, and employs the resulting parameter estimates22

to produce a precise statistical characterization of the detected GC links. We o↵er several theoretical and23

algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and24

application to MEG data from an auditory task involving tone processing from both younger and older25

participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch,26

network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false27

alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-28

level characterization of neural activity during tone processing and resting state by delineating task- and29

age-related connectivity changes.30

Keywords: MEG, Granger causality, source localization, statistical inference, functional connectivity31

analysis, auditory processing32
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1. Introduction33

Characterizing the directed connectivity among di↵erent cortical areas that underlie brain function is34

among the key challenges in computational and systems neuroscience, as it plays a key role in revealing35

the underlying mechanism of cognitive and sensory information processing (Sporns, 2014; Lochmann and36

Deneve, 2011). A remarkable data-driven methodology for statistical assessment of directed connectivity is37

commonly referred to as Granger causality, which quantifies the flow of information based on improvement38

in the temporal predictability of a time-series given the history of another one (Bressler and Seth, 2011).39

Mathematically speaking, for two time series x1,t and x2,t, if using the history of x1,t can significantly40

improve the prediction of x2,t, we say that there is a Granger causal (GC) link from x1,t to x2,t, i.e., x1 7! x2,;41

otherwise, there is no GC link from x1 to x2. An essential attribute of Granger causality distinguishing42

it from other connectivity metrics, such as Pearson correlation or mutual information, is its directionality,43

which makes it a powerful statistical tool for brain functional connectivity analysis (Seth et al., 2015).44

Granger causality has been widely utilized in analyzing functional magnetic resonance imaging (fMRI)45

data, in which multivariate autoregressive models are fit to the voxel-level activity, followed by parametric46

(Roebroeck et al., 2005; Chen et al., 2018; Azarmi et al., 2019) or non-parametric (Deshpande et al., 2009;47

Dong et al., 2019) testing of statistical significance. In addition to technical challenges such as hemodynamic48

variability and ambiguity in the interpretation of Granger causality analysis for fMRI data (Roebroeck49

et al., 2011; Deshpande and Hu, 2012), due to the relatively low temporal resolution of fMRI, on the50

order of seconds, cortical network interactions that occur on the millisecond-scale in cognitive and sensory51

processing cannot be captured. Magnetoencephalography (MEG) and Electroencephalography (EEG), on52

the other hand, provide higher temporal resolution in the order of milliseconds, but unlike fMRI, only53

provide low-dimensional linear mixtures of the underlying neural sources. Typically, the number of sensors54

and sources are in the order of ⇠ 102 and ⇠ 104, respectively, which makes the problem of estimating cortical55

sources highly ill-posed (Hämäläinen and Ilmoniemi, 1994; Baillet et al., 2001; Hauk et al., 2019; Samuelsson56

et al., 2020). To address this issue, existing methods typically follow a two-stage procedure, in which the57

neuromagnetic inverse problem is solved first to obtain source estimates, followed by connectivity analysis58

performed on the estimated sources (Scho↵elen and Gross, 2009). The connectivity analysis in the second59

stage is either performed using multivariate autoregressive fitting and non-parametric statistical assessment60

of Granger causality (Sohrabpour et al., 2016; Brookes et al., 2016; Cope et al., 2017; Farokhzadi et al.,61
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2018; Seymour et al., 2018; Blanco-Elorrieta et al., 2018; Liu et al., 2020; Rosenberg et al., 2021; Lu et al.,62

2013; Gao et al., 2020; Manomaisaowapak et al., 2021), forming a sparse estimate of the source covariance63

matrix (Liu et al., 2019), or by estimating the direct transfer function (Hejazi and Nasrabadi, 2019).64

While this two-stage approach is convenient to adopt, it comes with significant limitations. First, Granger65

causality, as a network-level property, is a second-order spatiotemporal relation between two sources. As66

such, it requires reliable estimates of second-order moments of cortical source activity. Source localization67

techniques, however, predominantly use strong priors to combat the ill-posedness of the neuromangetic68

inverse problem and thereby to estimate first-order moments of cortical sources with controlled spatial69

leakage (Wipf et al., 2010; Sekihara et al., 2010; Lamus et al., 2012; Gramfort et al., 2013b; Babadi et al.,70

2014; Fukushima et al., 2015; Sohrabpour et al., 2016; Krishnaswamy et al., 2017; Pirondini et al., 2018).71

In additional to the challenges caused by artefactual spatial mixing and mis-localization of the estimated72

sources, which can readily complicate connectivity analysis (Palva and Palva, 2012), the biases introduced73

in favor of accurate estimation of first-order source activities typically propagate to the second stage of74

connectivity analysis and may result not only in mis-detection of pair-wise interactions, but also capturing75

spurious ones (Palva et al., 2018).76

Second, a necessary step in establishing causal relationships among cortical sources entails accurate77

estimation of their temporal dependencies. Source localization methods using linear or non-linear state-78

space models address this challenge by modeling source dynamics as multivariate autoregressive processes.79

The source time-courses are estimated from the observed M/EEG data using the Expectation-Maximization80

algorithm (Long et al., 2006; Pirondini et al., 2018; Lamus et al., 2012; Ding et al., 2007; Limpiti et al., 2009;81

Nalatore et al., 2009; Sekihara et al., 2010; Cheung et al., 2010; Cheung and Van Veen, 2011; Sekihara et al.,82

2011), beamforming (Hui and Leahy, 2006; Cho et al., 2015), or variational inference (Fukushima et al.,83

2015). While these methods are able to increase the spatiotemporal resolution of the estimated sources,84

notably when they enforce spatiotemporal priors on the source activity (Sekihara et al., 2010; Fukushima85

et al., 2015; Pirondini et al., 2018), they come with massive computational requirements, especially when86

the number of sources and the length of the temporal integration window grows (Long et al., 2011; Cheung87

et al., 2010; Sekihara et al., 2010). Finally, existing methods that address these challenges lack a precise and88

scalable statistical inference framework to assess the quality of the inferred GC links and control spurious89

detection (Manomaisaowapak et al., 2021).90

In this paper, we address the foregoing challenges by introducing the Network Localized Granger Causal-91

ity (NLGC) inference framework to directly extract GC links at the cortical source level from MEG data,92

without requiring an intermediate source localization step. We model the underlying cortical source activ-93

ity as a latent sparse multivariate vector autoregressive (VAR) process. We then estimate the underlying94

network parameters via an instance of the Expectation-Maximization (EM) algorithm with favorable com-95

putational scalability. The estimated network parameters are then de-biased to correct for biases incurred by96
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Figure 1: A schematic depiction of the proposed NLGC inference. For cortical sources that form an underlying
network, our contribution is to directly infer this network, using the framework of Granger, from the MEG mea-
surements. NLGC is composed of network parameter estimation (blue block) and statistical inference (green blocks)
modules. Unlike the conventional two-stage methods, NLGC extracts the GC links without an intermediate source
localization step.

the sparsity assumption, and used to form a test statistic that allows to detect GC links with high statistical97

precision. In doing so, we provide a theoretical analysis of the asymptotic distribution of said test statistic.98

We evaluate the performance of NLGC through comprehensive simulations by comparing it with several99

two-stage procedures. Our simulation results indeed confirm the expected performance gains of NLGC in100

terms of reducing spurious GC link detection and high hit rate.101

We further examine the utility of NLGC by application to experimentally recorded MEG data from102

two conditions of pure-tone listening and resting state in both younger and older individuals. We consider103

two frequency bands of interest, namely, combined Delta and Theta bands (0.1 � 8 Hz) and Beta band104

(13� 25 Hz), for GC analysis which have previously yielded age-related changes in resting state coherence105

analysis (Fleck et al., 2016). The detected GC networks using NLGC reveal striking di↵erences across106

the age groups and conditions, in directional interactions between frontal, parietal, and temporal cortices.107

Further inspection of these networks reveals notable inter- vs. intra-hemispheric connectivity di↵erences.108

In summary, NLGC can be used as a robust and computationally scalable alternative to existing two-stage109

connectivity analysis approaches used in MEG analysis.110

2. Results111

2.1. Overview of NLGC112

Here, we give an overview of the proposed NLGC inference methodology, as depicted in Fig. 1, and113
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highlight the novel contributions.114

The sources of the signals recorded by MEG/EEG sensors are mainly the post-synaptic primary currents115

of a bundle of tens of thousands of synchronously active pyramidal cells that form an e↵ective current dipole116

(Murakami and Okada, 2006; Hämäläinen et al., 1993; Da Silva, 2009). As such, to formulate the MEG/EEG117

forward model, a distributed cortical source space is considered in which the cortical surface is discretized118

using a mesh comprising a finite number of current dipoles placed at its vertices. These current dipoles are119

henceforth called sources, and their activity as source time-courses.120

Assuming that there are M such sources, we denote the collective source activity at discrete time t121

as an M -dimensional vector xt, where its i
th element, xi,t is the activity of source i, for i = 1, 2, · · · ,M122

and t = 1, 2, · · · , T , where T denotes the data duration. The N MEG sensors measure the N -dimensional123

observation vector yt at time t. The MEG observations follow a well-known linear forward model given by124

(Sarvas, 1987; Mosher et al., 1999; Baillet et al., 2001):125

yt = Cxt + nt, (1)126

where the N⇥M matrix C maps the source space activity to the sensor space and is commonly referred to as127

the lead-field matrix. The N -dimensional measurement noise vector nt is modeled as a zero mean Gaussian128

random vector with covariance matrix R and is assumed to be identically and independently distributed129

(i.i.d.) across time (Cheung and Van Veen, 2011; Cheung et al., 2010; Long et al., 2011; Wipf et al., 2010).130

As for the evolution of the sources, we consider xt as a latent state vector and model its evolution over131

time by the following generic stochastic dynamical model:132

xt =
KX

k=1

Akxt�k +wt, t = 1, · · · , T, (2)133

where the M -dimensional vectors wt are assumed to be i.i.d. zero mean Gaussian random vectors with134

unknown diagonal covariance matrix Q = diag(�2
1 , · · · ,�

2
M ) and independent of vt. The M ⇥M coe�cient135

matrix Ak quantifies the contribution of the neural activity from time t� k to the current activity at time136

t, for k = 1, . . . ,K. This dynamical model is conventionally called a Vector Autoregressive (VAR) model of137

order K (or VAR(K)) and is commonly used in time-series analysis (Johansen, 1995).138

Assuming that the source time-series xt form an underlying network (Fig. 1, top left), our main con-139

tribution is to find the inverse solution to this latent network, in a Granger causality sense, directly from140

the MEG observations yt (Fig. 1, bottom left). If reliable estimates of the network parameters {bAk}
K
k=1141

were at hand, one could perform a statistical assessment of causality from source j to i by checking whether142

[bAk]i,j = 0 for all k = 1, 2, · · · ,K (i.e., no causal link) or [bAk]i,j 6= 0 for at least one of k = 1, 2, · · · ,K (i.e.,143

causal link). However, reliable estimation of the network parameters based on noisy and low-dimensional144

measurements yt of typically short duration is not straightforward. When noisy, but direct, observations of145
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the sources are available, statistical methods such as LASSO are typically used to test for these hypotheses;146

however, when the number of sources M and lags K are large, such methods su↵er from the large number147

of statistical comparisons involved.148

The classical notion of Granger causality circumvents this challenge by considering the ”bulk” e↵ect of149

the history of one source on another in terms of temporal predictability. To this end, for testing the GC150

link from source j to source i, two competing models are considered: a full model, in which all sources are151

considered in Eq. (2) to estimate the network parameters and thereby predict source i; and a reduced model,152

in which the coe�cients from source j to i are removed from Eq. (2), followed by estimating the network153

parameters and predicting source i. The log-ratio of the prediction error variance between the reduced and154

full models is used as the Granger causality measure. In other words, the better the prediction of the full155

model compared to the reduced model, the more likely that source j has a causal contribution to the activity156

of source i, in the sense of Granger causality.157

Considering the inverse problem of Fig. 1, there are several key challenges. First, unlike the classical GC158

inference frameworks, the sources are not directly observed, but only their low-dimensional and noisy sensor159

measurements are available. Second, GC inference inherently demands single-trial analysis, but the trial160

duration of cognitive and sensory experiments are typically short, which renders reliable model parameter161

estimation di�cult. Finally, testing the improvement of the full model over the reduced model requires a162

precise statistical characterization to limit false detection of GC links.163

Existing methods mostly treat these challenges separately, by operating in a two-stage fashion: a source164

localization procedure is first performed to estimate the sources, followed by performing parameter estimation165

and conventional GC characterization. However, source localization techniques use specific priors that aim at166

combating the ill-posed nature of the neuromagnetic inverse problem and thereby bias the source estimates167

in favor of spatial sparsity or smoothness (Lamus et al., 2012; Krishnaswamy et al., 2017; Babadi et al.,168

2014; Wipf et al., 2010; Sohrabpour et al., 2016; Gramfort et al., 2013b). As such, the network parameters,169

which inherently depend on second-order current source moments, are recovered from these biased first-order170

source estimates and thus incur significant errors that complicate downstream statistical analyses.171

In contrast, NLGC aims at addressing these challenges jointly and within a unified inference framework.172

The resulting solution is composed of a network parameter estimation module, in which the VAR model173

parameters {Ak}
K
k=1 are estimated directly from the MEG data by assuming sparse interactions among174

the sources, as opposed to the commonly-used spatial sparsity assumption. As such, the biases induced175

by this approach only e↵ect the VAR coe�cients, and not the spatiotemporal distribution of the sources.176

Furthermore, we account for these biases in the statistical inference module of NLGC: a de-biasing block177

is used to correct for biases incurred by sparse VAR estimation, a false discovery rate (FDR) control block178

is used to correct for multiple comparisons, and a test strength characterization block assigns a summary179

statistic in the range of [0, 1] to each detected link, denoting the associated statistical test power (i.e.,180

6



Youden’s J-statistic).181

While the building blocks that form NLGC are individually well-established in statistical inference liter-182

ature, including but not limited to Granger causal inference from directly observable states (Bolstad et al.,183

2011; Endemann et al., 2022) and state-space model parameter estimation (Cheung et al., 2010; Nalatore184

et al., 2009; Sekihara et al., 2010; Pirondini et al., 2018), our contribution is to unify them within the185

same framework and specializing them to the problem of direct GC inference from MEG observations. To186

this end, our technical contributions include: 1) developing a scalable sparse VAR model fitting algorithm187

by leveraging steady-state approximations to linear Gaussian state-space inference, sparse model selection,188

and low-rank approximations to the lead field matrix (Sections 4.4.1, 4.5.1, 4.5.2 and Appendix A.1);189

and 2) providing a theoretical analysis characterizing the asymptotic distribution of a carefully designed190

test statistic, namely the de-biased deviance di↵erence, that allows both FDR correction and test strength191

characterization (Theorem 1 in Section 4.4.3 and Appendix B).192

2.2. An Illustrative Simulation Study193

We first present a simple, yet illustrative, simulated example to showcase how the main components194

of NLGC work together to address the shortcomings of two-stage approaches. Consider M = 84 cortical195

patches, within which patches 1 through 8 are active and forming a VAR(5) network as shown in Fig.196

2A, and the rest are silent (See Section 4.5.1 for details of source space construction). The ground truth197

GC map of a subset of sources, indexed from 1 through 15, are shown in Fig. 2B (top left) for visual198

convenience. The (i, j) element of the GC matrix indicates the GC link (j 7! i). The time courses of the199

cortical patch activities are observed through a random mixing matrix (each element is independently drawn200

from a standard normal distribution) corresponding to N = 155 sensors for three trials of duration T = 1000201

samples each. To simulate the MEG observations, we used one lead-field per cortical patch for simplicity.202

The detailed parameter settings for this simulation study are given in Section 4.8.1.203

We compare the performance of NLGC to two baseline two-stage methods composed of an initial source204

localization stage via the Minimum Norm Estimate (MNE) algorithm, followed by VAR model fitting via205

either 1) least squares with no sparsity assumption, and 2) `1-norm regularized least squares to capture206

sparse parameters, similar to that used in NLGC. The details of the VAR model fitting given the source207

estimates are presented in Appendix A.2.208

Fig. 2B shows the J-statistics corresponding to the detected GC links for NLGC and the two baseline209

methods based on MNE. Note that a J-statistic near 1 interprets as a detection with both high sensitivity210

and specificity, and a J-statistic near 0 corresponds to either low sensitivity or specificity, or both. As it211

can be seen in Fig. 2B, NLGC not only captures the true links, but also only detects a negligible number212

of false links. On the other hand, the two-stage methods based on MNE only detect about half of the true213

links and su↵er from numerous spurious links. Note that while enforcing sparsity in the two-stage method214
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Figure 2: An illustrative simulated example. A. The underlying true GC network between the active sources
indexed by 1, 2, · · · , 8 (explaining 90% of the power of the 84 sources). The remaining 76 sources are silent and
are modeled as independent white noises accounting for the remaining 10% of the source power. B. The ground
truth and estimated GC maps using NLGC and MNE (with and without accounting for sparsity). Only a subset of
sources indexed by 1, 2, · · · , 15 are shown for visual convenience. NLGC fully captures the true links with only a few
false detection; on the other hand, the two-stage approaches using MNE, capture around half of the true links, but
also detect numerous spurious links. While enforcing sparsity mildly mitigates the false alarm performance of the
two-stage approach, it is unable to resolve it. C. Estimated activity time-courses of the patches with index 1, 3, 6,
and 10 based on full models and the reduced models corresponding to the GC link (1 7! 3) and non-GC links (1 7! 6)
and (1 7! 10) as examples. As expected, since the GC link (1 7! 3) exists, removing the 1st patch contribution from
the VAR model of the 3rd patch dramatically changes the predicted activity of patch 3 (second line). However, this
is not the case for the other two examples, since the links (1 7! 6) and (1 7! 10) do not exist (third and fourth lines).

seems to mitigate the number of spurious links (Fig. 2B, bottom left) compared to the two-stage method215

with no sparsity (Fig. 2B, bottom right), the errors incurred in the first stage of source localization can not216

be corrected through the second stage of parameter estimation.217

Fig. 2C shows the expected value of estimated cortical patch activities corresponding to the full and218

reduced models of 4 cortical patches (indexed by 1, 3, 6, and 10). Since the GC link (1 7! 3) exists, in the219

corresponding reduced model, i.e., when the contribution of the 1st cortical patch (shown in the first line) is220

removed from the VAR model of the 3rd cortical patch, the activity of cortical patch 3 is highly suppressed221

(second line, gray trace) compared to that of the full model (second line, black trace). On the other hand,222

for cortical patches 6 and 10, since none of the GC links (1 7! 6) and (1 7! 10) exist, including or excluding223

the 1st patch in their VAR model does not e↵ect their prediction accuracy and as a result, their estimated224

activity time-courses for both the full and reduced models are similar (third and fourth lines).225

The results so far validate the superior performance of the first component of NLGC, i.e., network226

parameter estimation. As for the second component, statistical inference, a key theoretical result of this227

work is to establish the asymptotic distribution of a test statistic called the de-biased deviance di↵erence228

between the full and reduced models of a link (i 7! j), denoted by D
db
(i 7!j). In Theorem 1, we establish that if229

a GC link from cortical patch i to j does not exist, the corresponding test statistic D
db
(i 7!j) is asymptotically230

chi-square distributed, and if the GC link exists, Ddb
(i 7!j) is distributed according to a non-central chi-square.231
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Figure 3: Empirical validation of Theorem 1. A. Theoretical and empirical distributions of the de-biased deviance
di↵erences corresponding to the GC link (7 7! 1) and non-GC link (7 7! 4) from the setting of Fig. 2. The
empirical distributions closely match the theoretical predictions of Theorem 1. B. Histogram of the de-biased deviance
di↵erences of all possible links between the first 15 sources for three di↵erent realizations of the VAR processes with
the same parameters and for two significance levels ↵ = 0.01 and 0.0001. The de-biased deviance di↵erences show a
clear delineation of the significant GC links (to the right of the dashed vertical lines) and insignificant ones (to the
left of the dashed vertical lines), while exhibiting robustness to the choice of the significance level.

Here we empirically examine this theoretical result for the foregoing simulation. Consider the links232

(7 7! 1) and (7 7! 4) which are GC and non-GC, respectively. We generated 200 di↵erent realizations233

of the VAR processes with the same parameters and compared the empirical distribution of the de-biased234

deviance corresponding to these two links with their theoretical distribution obtained by Theorem 1. Fig.235

3A illustrates the close match between empirical and theoretical distributions of Ddb
(7 7!1) and D

db
(7 7!4). Based236

on Theorem 1, for the non-GC link (7 7! 4), the de-biased deviance has a central �2(5) distribution. On237

the other hand, the de-biased deviance of the GC link (7 7! 1) is distributed according to a non-central238

�
2(5, 61.4).239

In Fig. 3B, the histogram of the de-biased deviance di↵erences corresponding to all links within the240

subset of sources indexed from 1 through 15 is plotted for three di↵erent realizations of the VAR processes241

with the same parameters as before. Depending on the threshold ↵ for rejecting the null hypothesis to242

detect a GC link, one can obtain an equivalent threshold for Ddb
(i 7!j). In Fig. 3B, two thresholds are shown243

with dashed lines for ↵ = 0.01 and 0.0001. It is noteworthy that most of de-biased deviance di↵erences244

corresponding to the true GC links lie on the right hand side of the dashed lines for both thresholds and for245

the three realizations, suggesting robustness of GC link detection framework. On the other hand, most of246
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the possible GC links are non-existent in our simulation setting, which results in the concentration of most247

of the de-biased deviance di↵erence values to the left of the dashed lines, and hence few false detections248

as shown in Fig. 2B. In NLGC, we further leverage this virtue by using an FDR correction procedure to249

control the overall false discovery rate at a target level.250

2.3. Simulated MEG Data Using a Head-Based Model251

We next present a more realistic and comprehensive simulation to evaluate the performance of NLGC and252

compare it with other two-stage approaches based on a number of di↵erent source localization techniques.253

In addition, we consider the e↵ect of signal-to-noise (SNR) ratio and model mismatch on the performance of254

the di↵erent algorithms. The latter is an important evaluation component, as model mismatch is inevitable255

in practice due to co-registration errors between MR scans and MEG sensors as well as the choice of the256

distributed cortical source model.257

As for the baseline methods, we consider two-stage GC detection schemes in which the source localization258

is performed by either the classical MNE (Hämäläinen and Ilmoniemi, 1994) and Dynamic Statistical Para-259

metric Mapping (dSPM) (Dale et al., 2000) methods, or the more advanced Champagne algorithm (Wipf260

et al., 2010). As for the VAR fitting stage, we use the same `1-regularized least squares scheme that is261

utilized by NLGC, to ensure fairness (See Appendix A.2).262

In order to create realistic test scenarios for assessing the robustness of the di↵erent algorithms, we263

consider four cases with attributes defined by the presence vs. absence of source model mismatch, and exact264

vs. relaxed link localization error:265

Source Model Mismatch. As it is described in detail in Section 4.5.1, in order to reduce the computational266

complexity of NLGC, we utilize low-rank approximations to the lead field matrix by grouping dipoles over267

cortical patches and summarizing their contribution using singular value decomposition (SVD) to reduce268

the column-dimension of the lead-field matrix. Let rgen. be the number of SVD components used for each269

cortical patch to generate the simulated MEG data, and let rest. be the number of SVD components used270

in the GC detection algorithms. Clearly, if rest. = rgen., the forward model matches the ones used in the271

inverse solution, so there is no model mismatch. However, if rest. < rgen., some modes of activity in the272

simulated data cannot be captured by the inverse solution, thus creating a mismatch between the forward273

and inverse models. We note that this notion of model mismatch pertains to lack of spatial resolution in274

the inverse model as compared to the forward model. As such, it does not account for the misalignment of275

the lead-fields with respect to the anatomy, but instead captures the spatial resolution limitation incurred276

by the choice of the source space used in the inverse solution.277

Link Localization Error. Suppose that the GC link (i 7! j) exists. If in the GC detection algorithm,278

i is mis-localized to i
0
6= i or j is mis-localized to j

0
6= j, the link is considered a miss under the exact279

link localization error criterion. Let N(k) be the 6 nearest neighbors of a source k. Under the relaxed link280
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Figure 4: Comparison of NLGC with two-stage procedures using a realistic simulation setting. A. Example of
the ground truth GC network, and estimates obtained by NLGC and two-stage approaches based on MNE, dSPM,
and Champagne overlaid on dorsal and lateral brain plots, with m = 10 active patches. NLGC captures nearly
all the existing GC links with no spurious detection, whereas the other three methods su↵er from significant false
detection. B. ROC curves (hit rate vs. false alarm) corresponding to NLGC, and two-stage approaches based on
MNE, dSPM, and Champagne for exact/relaxed link localization and in the presence/absence of model mismatch.
Each point corresponds to simulating data based on m active patches averaged over 10 di↵erent realization with
randomly assigned source locations, for m = 2, 4, · · · , 20. NLGC provides equal or better hit rate, while consistently
maintaining low false alarm rate. C. Evaluating the e↵ect of SNR for an example setting of m = 12 active patches in
presence/absence of model mismatch. While the hit rate of NLGC is comparable or better than the other algorithms,
it consistently maintains low false alarm rates across a wide range of SNR settings.

localization error, if i0 2 N(i) and j
0
2 N(j), we associate (i0 7! j

0) to the correct link (i 7! j) and consider281

it a hit. This way, small localization errors, potentially due to errors in the head model or the underlying282

algorithms can be tolerated.283

The source space is again composed of M = 84 cortical patches whose activity is mapped to N = 155284

MEG sensors using a real head model from one of the subjects in the study. For more details on the285

parameter settings for this study, see Section 4.8.2. Fig. 4A shows the ground truth GC network and286

the estimated ones using NLGC and two-stage methods using MNE, dSPM, and Champagne when m = 10287

patches are active. In this case, NLGC detected no spurious links and missed only 3 of the true GC links.288

On the other hand, even though MNE, dSPM and Champagne capture almost all true GC links, they su↵er289
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from a considerable number of falsely detected GC links.290

To quantify this further, Fig. 4B shows the receiver operating characteristic (ROC) curves correspond-291

ing to the di↵erent methods for exact vs. relaxed link localization and presence vs. absence of model292

mismatch. Each point is obtained by varying the number of active patches m in the simulation in the range293

m = 2, 4, · · · , 20 and averaging the performance of each method over 10 independent trials with randomly294

allocated patch locations. The 95% quantiles for the hit and false alarm rates are shown as vertical and295

horizontal bars, respectively. In the absence of source model mismatch (left columns), NLGC outperforms296

the other three methods in terms of both hit and false alarm rates. The gap between NLGC and the other297

methods widens when there is source model mismatch (right column, top panel). While the hit rate of NLGC298

degrades using the exact localization criterion, it remarkably maintains a false alarm rate of < 5%, whereas299

the other algorithms exhibit false alarm rates as high as ⇠ 50%. By using the relaxed link localization error300

criterion (bottom plots), the hit rate of NLGC becomes comparable or better than the other three methods,301

while it still maintains its negligible false alarm rate. Moreover, the corresponding vertical and horizontal302

errors bars for NLGC are considerably smaller than the other three algorithms, suggesting the robustness303

of NLGC to the location of the active patches used for di↵erent trials.304

Finally, in Fig. 4C, the hit and false alarm rates are plotted for varying levels of SNR in the range305

{0,�2,�5,�10} dB. The performance is averaged over 10 trials for m = 12 active patches. As the SNR306

reduces, even though the performance of all four methods becomes similar in terms of the hit rate, NLGC307

maintains its low false alarm rate whereas the other algorithms exhibit considerably high rates of false alarm.308

Overall, while NLGC achieves comparable hit rate to the other three methods, it maintains consistently309

low false alarm rates over a wide range of the simulation parameter space. This is a highly desirable virtue,310

as false detection is the main pitfall of any connectivity analysis methodology. Thus, this simulation study311

corroborates our assertion that NLGC is a reliable alternative to existing two-stage approaches.312

2.4. Application to Experimentally Recorded MEG Data313

We next consider application to MEG data from auditory experiments involving both younger and older314

subjects (the data used here is part of a larger experiment whose results will be reported separately). The315

MEG data corresponds to recordings from 22 subjects, 13 younger adults (5 males; mean age 21.1 years,316

range 17–26 years) and 9 older adults (3 males; mean age 69.6 years, range 66–78 years). Resting state317

data were recorded before and after the main auditory task, each 90 s long in duration. During the resting318

state condition, subjects with eyes open fixated at a red cross at the center of a grey screen. Just before the319

first resting state recording, 100 repetitions of 500 Hz tone pips were presented, during which the subjects320

fixated on a cartoon face image at the center of the screen and were asked to silently count the number of321

tone pips. The tones were presented at a duration of 400 ms with a variable interstimulus interval (1400,322

1200, and 1000 ms). The task was around 150 s long, from which two segments, each 40 s long in duration,323
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were used for analysis. More details on the experimental setting is given in Section 4.6.324

In order to assess the underlying cortical networks involved in tone processing and compare them with325

the resting sate, we further considered two key frequency bands of interest (Shafiei et al., 2021), namely326

the combined Delta and Theta bands (0.1–8 Hz), here called Delta+Theta band, and the Beta band (13–327

25 Hz). Since the goal is to capture the (age-related) di↵erences across tone listening versus resting state328

conditions, we combined the Delta and Theta bands for simplicity of our analysis, as they are both shown329

to be primarily involved in auditory processing (Baar et al., 2001). In addition, to structure our analysis in330

an interpretable fashion, we considered the frontal, temporal, and parietal regions of interest (ROIs) in each331

hemisphere, which are known to play key roles in auditory processing and to change with age (Kuchinsky332

and Vaden, 2020).333

NLGC for the Delta+Theta Band (0.1�8 Hz). Fig. 5A shows the detected GC links between frontal (F)334

and temporal (T) areas overlaid on the dorsal brain view, for the tone processing vs. resting state conditions335

and separately for the younger and older subjects. The group average of the detected links across younger336

and older participants are shown on the left and those of two representative individuals (one younger and337

one older) are shown on the right. Note that the links involving parietal areas are not shown for the sake of338

visual convenience. As it can be seen from both the group average and individual-level plots, the top-down339

links from frontal to temporal areas (red arrows) have a higher contribution to tone processing (first and340

third columns) compared to resting state (second and fourth columns) for both younger and older adults.341

On the other hand, more bottom-up links from temporal to frontal areas (green arrows) are detected in the342

resting state as compared to the tone processing condition.343

In Fig. 5B, the average normalized J-statistics of the detected GC links between the frontal, temporal344

and parietal (P) ROIs are shown as color-weighted edges in a directed graph. For instance, the arrows345

between temporal and frontal areas, enclosed in dashed ovals, show the normalized average of the arrows346

shown in the first two columns of Fig. 5A. In addition to the notable change of connectivity between347

temporal and frontal areas, i.e., from dominantly bottom-up under resting state to dominantly top-down348

under tone processing, there are several other striking changes both across conditions and age groups. First,349

from tone processing to the resting state condition, for both age groups, the contribution of outgoing links350

from frontal to parietal and temporal areas drops. Secondly, in the resting state condition, incoming GC351

links from parietal and temporal to frontal areas increase. Finally, frontal to frontal interactions become352

more prevalent in the resting state condition, for both younger and older subjects.353

To further quantify these observation, Fig. 5C summarizes statistical test results for comparing the354

detected link counts for the di↵erent connectivity types and across age groups. Interestingly, no significant355

di↵erence between younger and older participants is detected in either of the conditions. Within each age356

group, however, several significant changes are detected. In particular, the aforementioned visual observa-357

tions from Fig. 5B are indeed statistically significant: the top-down frontal to temporal connectivity under358
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Figure 5: NLGC analysis of experimentally recorded MEG data in the Delta+Theta band (0.1 � 8 Hz). A.
Extracted GC links between frontal and temporal areas overlaid on dorsal brain plots for younger (top row) and
older (bottom row) participants. The first two columns correspond to the group averages and the last two correspond
to two representative participants, for the two task conditions of tone processing (first and third columns) and resting
state (second and fourth columns). For the group average plots, only J-statistic values greater than 0.75 are shown
for visual convenience. There is a notable increase of top-down links from frontal to temporal areas during tone
processing (red arrows, first and third columns) as compared to the resting state in which bottom-up links from
temporal to frontal areas dominate (green arrows, second and fourth columns). B. Normalized J-statistics, averaged
over subjects within each age group, between frontal, temporal, and parietal areas for tone processing vs. resting
state conditions and younger vs. older participants. The dashed ovals indicate the normalized average number of
links shown in panel A. There are notable changes across task conditions, including dominantly top-down frontal
to temporal/parietal connections during tone processing, in contrast to dominantly bottom-up temporal/parietal to
frontal connections during resting state. C. Statistical testing results showing several significant di↵erences across
conditions. No significant age di↵erence is detected in the Delta+Theta band (⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05).
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Delta+Theta band (0.1 � 8 Hz). A. Normalized J-statistics, averaged over all subject, between frontal, temporal,
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to the detect networks are highly similar under resting state, there notable di↵erences under tone processing, including
higher number of intra-hemispheric connections from frontal to parietal and from parietal to temporal areas. C.
Statistical testing results showing several significant di↵erences across conditions and inter- vs. intra-hemispheric
contributions (⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05).

tone processing switches to bottom-up temporal to frontal connectivity; outgoing links from the frontal to359

temporal/parietal areas are significantly increased under tone listening compared to resting state; parietal360

to frontal connections have more contribution in the resting state compared to tone processing; and frontal361

to frontal connections increase in the resting state, as previously reported in the literature (Müller et al.,362

2009; Di Liberto et al., 2018; Henry et al., 2017).363

We further inspected the inter- vs. intra-hemispheric contributions of the aforementioned changes, as364

shown in Fig. 6, where we have combined the older and younger subject pools, given that no significant365

age di↵erence was detected. In the resting state, the inter- and intra-hemispheric networks are similar366

(Fig. 6A, right column). However, there are several interesting changes in the inter- vs. intra-hemispheric367

networks under tone processing (Fig. 6A, left column), such as the increased involvement of intra-hemispheric368

connections from frontal to parietal and from parietal to temporal areas. Statistical test results shown in Fig.369

6B suggest that the detected intra-hemispheric connections are significantly higher than inter-hemispheric370

ones under tone processing. In addition, the change from a dominantly bottom-up temporal to frontal371

network under resting state to a dominantly top-down frontal to temporal network under tone processing372

occurs at both inter- and intra-hemispheric levels.373

NLGC for the Beta Band (13 � 25 Hz). Fig. 7 shows the results of Beta band NLGC analysis in a374

similar layout as Fig. 5. Fig. 7A shows the detected GC links between frontal and parietal areas for the375

tone processing vs. resting state conditions and separately for the younger and older subjects. The group376
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Figure 7: NLGC analysis of experimentally recorded MEG data in the Beta band (13 � 25 Hz). A. Extracted
GC links between frontal and parietal areas overlaid on dorsal brain plots for younger (top row) and older (bottom
row) participants. The first two columns correspond to the group averages and the last two correspond to two
representative participants, for the two task conditions of tone processing (first and third columns) and resting state
(second and fourth columns). For the group average plots, only J-statistic values greater than 0.75 are shown for
visual convenience. There is a notable increase of frontal to parietal links under tone processing for older adults
(blue arrows, first and third columns, bottom row), whereas in all the other cases parietal to frontal links (green
arrows) are dominant. B. Normalized J-statistics, averaged over subjects within each age group, between frontal,
temporal, and parietal areas for tone processing vs. resting state conditions and younger vs. older participants. The
dashed ovals indicate the normalized average number of links shown in panel A. There are notable changes across
both task conditions and age groups, including the higher involvement of parietal areas during resting state, increase
of frontal to frontal connections for younger participants and top-down links from frontal to parietal areas for older
participants, during tone processing. C. Statistical testing results showing several significant di↵erences across task
conditions and age groups (⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05).
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average of the detected links across younger and older participants are shown on the left and those of two377

representative individuals (one younger and one older) are shown on the right. Note that the links involving378

temporal areas are not shown for the sake of visual convenience. As it can be seen from both the group379

average and individual-level plots, there is a striking dominance of frontal to parietal links (blue arrows) for380

older subject under tone listening (first and third columns, bottom plots), whereas in all the other three381

cases, parietal to frontal links (green arrows) dominate.382

Fig. 7B shows the average normalized J-statistics of the detected GC links between the frontal, temporal383

and parietal ROIs as color-weighted edges in a directed graph. The edges between parietal and frontal areas,384

enclosed in dashed ovals, correspond to the normalized average of the weighted arrows shown in the first385

two columns of Fig. 7A. The GC network under the resting state condition is similar for both age groups,386

but during tone processing, the network structures are quite di↵erent. First, for younger subjects, frontal to387

frontal connections have a higher contribution to the network as compared to older subjects. On the other388

hand, as pointed out earlier, for older participants during tone processing, the number of incoming links389

to parietal from frontal areas increase, as compared to the younger group. Finally, for both younger and390

older subjects, there are more parietal to temporal connections in resting state compared to tone processing.391

Fig. 7C summarizes the statistical test results which indeed show both across-age and across-condition392

di↵erences, for the two connectivity types of frontal to frontal and frontal to parietal, as well as several393

connectivity changes across the task conditions within the two age groups.394

3. Discussion and Concluding Remarks395

Extracting causal influences across cortical areas in the brain from neuroimaging data is key to revealing396

the flow of information during cognitive and sensory processing. While techniques such as EEG and MEG397

o↵er temporal resolution in the order of milliseconds and are thus well-suited to capture these processes398

at high temporal resolution, they only provide low-dimensional and noisy mixtures of neural activity. The399

common approach for assessing cortical connectivity proceeds in two stages: first the neuromagnetic inverse400

problem is solved to estimate the source activity, followed by performing connectivity analysis using these401

source estimates. While convenient to use, this methodology su↵ers from the destructive propagation of the402

biases that are introduced in favor of source localization in the first stage to the second stage of network403

inference, often resulting in significant spurious detection.404

In this work, we propose a unified framework, NLGC inference, to directly capture Granger causal links405

between cortical sources from MEG measurements, without the need for an intermediate source localization406

stage and with high statistical precision. We evaluated the performance of NLGC through comprehensive407

simulation studies, which revealed the performance gains of NLGC compared to the conventional two-stage408

procedures in terms of achieving high hit rate, remarkably low false alarm rate, and robustness to model409

mismatch and low SNR conditions.410
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We applied NLGC to experimentally recorded MEG data from an auditory experiment comparing tri-411

als of tone processing and resting conditions, from both younger and older participants. We analyzed the412

data in two frequency bands whose coherence has been shown to di↵er when processing auditory stimuli413

compared to rest (Weiss and Rappelsberger, 2000), namely the combined Delta+Theta band and the Beta414

band. The extracted cortical networks using NLGC revealed several striking di↵erences across the fre-415

quency bands, age groups, and task conditions. In particular, in the Delta+Theta band, the networks were416

dominantly top-down from frontal to temporal and parietal areas during tone processing. Previous studies417

have observed increased coherence between frontal and central and temporal electrodes during auditory418

processing versus rest, potentially indicative of greater demands on memory and inhibitory processes that419

are required for active listening (Weiss and Rappelsberger, 2000). Greater anterior to posterior interactivity420

has particularly been observed in the Theta band in support of working memory (Sarnthein et al., 1998) and421

other top-down processes (Sauseng et al., 2008), in line with the functioning of the frontal-parietal attention422

network (Sauseng et al., 2005). However, during resting state, bottom-up links towards frontal areas sig-423

nificantly increased. This broadly aligns with a previous Granger causality analysis that found evidence of424

unidirectional parietal to frontal connections during resting state fMRI (Duggento et al., 2018). In addition,425

intra-hemispheric links were more dominant during tone processing as compared to inter-hemishpheric links,426

whereas the inter- and intra-hemispheric contributions were nearly balanced during resting state. This may427

align with evidence that even low level auditory stimuli are processed in a lateralized fashion (Millen et al.,428

1995; Brown and Nicholls, 1997). Additionally, in an fMRI study of 100 adults, Granger causality analyses429

revealed that parietal-to-frontal connectivity was localized to within-hemispheric pathways (Duggento et al.,430

2018). Cross-hemispheric connectivity was largely observed within lobes (e.g., frontal-to-frontal). Although431

there are a number of methodological di↵erences between these studies, together they suggest that NLGC432

can reveal robust di↵erences in the directionality and band specificity of patterns of connectivity during task433

processing and at rest.434

In general, greater and/or more extensive frontotemporalparietal functional connectivity has been ob-435

served when processing clearer auditory stimuli (Abrams et al., 2013; Yue et al., 2013) and for younger436

compared to older adults (Andrews-Hanna et al., 2007; Peelle et al., 2010). The current results broadly437

align with these results, but further indicate the directionality and frequency band that may drive those438

observed di↵erences in connectivity. While our analysis of the Delta+Theta band did not suggest any age439

di↵erences across age groups, the networks seen in the Beta band revealed key age-related di↵erences during440

the tone processing task. For younger participants, most of the connections were from parietal and tempo-441

ral to frontal areas, including frontal to frontal connectivity. However, in older participants, parietal areas442

were significantly more engaged in the network with notable connections towards frontal areas. Long-range443

synchrony between frontal and parietal cortices in the Beta band has been observed to dominate during444

top-down attentional processing (Buschman and Miller, 2007) and is thought to support the enhancement445
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of task-relevant information (Antzoulatos and Miller, 2016). There is also some evidence that Beta band446

connectivity increases with aging (Moezzi et al., 2019; Vysata et al., 2014). The results did not yield support447

for previous observations of inter-hemispheric asymmetry reduction with age (Dolcos et al., 2002) in terms of448

increasing inter-hemispheric connectivity (Maurits et al., 2006). However, this is likely due to the simplicity449

of the tone counting and rest conditions examined in the present study. Future analyses of speech materials450

with greater task demands may be more sensitive to such di↵erences.451

The NLGC framework includes several technical contributions that are unified within the same method-452

ology, but may also be of independent interest in neural signal processing. These include: 1) a scalable453

sparse VAR model fitting algorithm based on indirect and low-dimensional observations, that leverages454

steady-state approximations to linear Gaussian state-space inference, sparse model selection, and low-rank455

approximations to the lead field matrix; and 2) establishing the asymptotic distributions of the de-biased456

deviance di↵erence statistics from MEG observations, that may be used in more general hypothesis testing457

frameworks.458

Along with its several improvements over existing work, NLGC comes with its own limitations. First,459

NLGC requires su�ciently long trial duration, so that the underlying network parameters can be estimated460

reliably. While the sparsity regularization in NLGC mitigates this issue to some extent, in general the461

number of parameters needed to be estimated from NT observed MEG sensor data points is in the order462

of ⇠ KM
2. As an example, to ensure that the number of parameters is in the order of the number of data463

points for the sake of estimation accuracy, for the typical configurations in this work (i.e., N = 155 sensors,464

M = 84 sources, 5-fold cross-validation, 10 Hz frequency band, 100 ms integration window), trials of at465

least T = 25 s in duration are needed. While this requirement was satisfied by the experimental trials used466

in our work, as also validated in Section 4.8.3, NLGC may not perform well in experiments involving short467

trials, such as those studying sensory evoked field potentials in which a large number of trials, each in the468

order of 1 s in duration, are available (David et al., 2006a,b).469

Second, while NLGC maintains a remarkably low false alarm rate in a wide range of settings, it is470

more sensitive to model mismatch in terms of its hit rate performance, as compared with existing two-stage471

approaches, as examined in Fig. 4B. This is due to the fact that while integrating source localization and VAR472

parameter estimation in NLGC is advantageous to rejecting spurious GC links, eliminating the first stage473

of source localization makes NLGC more sensitive to the accuracy of the source space used in estimating474

the source time-courses and thereby correctly detecting the true GC links. The hit rate performance of475

NLGC could be improved by using a more refined source space, but this in turn might require a longer476

observation duration for accurate parameter estimation. Finally, our experimental data validation here was477

limited by the lack of access to ground truth source activity. We defer validating the performance of NLGC478

using invasive recordings such as electrocorticography or intracranial EEG, in which the sources are directly479

observable, to future work.480
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In addition to the aforementioned technical contributions, NLGC also o↵ers several practical advantages481

over existing work. First, due to its scalable design, it can be applied to any frequency band of interest482

to extract the underlying GC networks. Secondly, due to the precise statistical characterization of the483

detected links, the networks can be transformed to span ROIs of arbitrary spatial resolution, from cortical484

dipoles to anatomical ROIs, cortical lobes, and hemispheres. Third, unlike most existing connectivity485

analysis methods that require heavy trial averaging to mitigate spurious detection, NLGC exhibits robustness486

to model mismatch and low SNR conditions, even where few trials are available. Finally, thanks to the487

plug-and-play nature of the NLGC building blocks, it can be modified for inferring other network-level488

characterizations, such as cortical transfer entropy (Daube et al., 2022). To ease reproducibility, we have489

made a python implementation of NLGC publicly available on Github (Soleimani and Das, 2022). In490

summary, NLGC can be used as a robust and scalable alternative to existing approaches for GC inference491

from neuroimaging data.492

4. Theory and Methods493

Here we lay out in detail the generative framework that entails the computational model for relating the494

neural activity, which produces magnetic fields outside of the brain, to the recordings at the highly sensitive495

MEG sensors. This generative framework deals with the unobserved neural activity as latent entities: the496

notion of Granger causality is defined with respect to the latent neural activity. We then propose a novel497

approach to identify the parameters of the generative model from the multi-channel MEG recordings and498

construct Granger causal measures to quantify the detected links. We call this unified framework the499

Network Localized Granger Causality (NLGC) framework.500

4.1. Main Problem Formulation501

Recall the observation and state evolution models given in Eqs. (1) and (2):502

yt = Cxt + nt, xt =
KX

k=1

Akxt�k +wt, t = 1, · · · , T, (3)503

where T is the observation duration, xt 2 RM and yt 2 RN are, respectively, the cortical activity of M504

distributed sources and the measurements of N sensors at time t. The process noise wt and observation505

noise vt are assumed to be independent of each other and are modeled as i.i.d. sequences of zero mean506

Gaussian random vectors with respective covariance matrices Q = diag(�2
1 , · · · ,�

2
M ) and R.507

The lead-field matrix C 2 RN⇥M can be estimated using a quasi-static solution to the Maxwell’s equa-508

tions using a realistic head model obtained by MR scans (Sarvas, 1987; Mosher et al., 1999; Baillet et al.,509

2001). The measurement noise covariance matrix R is assumed to be known, as it can be estimated based510

on empty room recordings (Engemann and Gramfort, 2015). Thus the unknown parameters in these models511

20



are: the M ⇥ M coe�cient matrices Ak, that quantify the contribution of the neural activity from time512

t� k to the current activity at time t, for k = 1, . . . ,K, and the process noise covariance matrix Q.513

Assuming that the source time-series xt form an underlying network, our main contribution is to find the514

inverse solution to this latent network, in the sense of Granger causality, directly from the MEG observations515

yt. We first give an overview of Granger causality while highlighting the challenges in GC inference from516

MEG data.517

4.2. Overview of Granger Causality518

First, we assume that the sources xt are directly observable. Noting that [Ak]i,j quantifies the contri-519

bution of source j at time t� k to the present activity of source i at time t, one can statistically assess the520

causal e↵ect of source j on source i via the following hypothesis test:521

• H0: [Ak]i,j = 0 for all k = 1, 2, · · · ,K, i.e., there is no causal influence from source j to source i.522

• H1: [Ak]i,j 6= 0 for any k = 1, 2, · · · ,K, i.e., there exists a causal influence from source j to source i.523

Given that the VAR coe�cients {Ak}
K
k=1 are unknown, to test this hypothesis, reliable estimates

⇥ bAk

⇤
i,j
,524

1  i, j  M and 1  k  K are needed. However, such accurate estimates are often elusive due to limited525

observation horizon T compared to the number of parameters. Granger causality (Granger, 1969; Geweke,526

1984, 1982) addresses this issue by considering the “bulk” e↵ect of the VAR model coe�cients through the527

prediction error metric. To this end, in assessing the causal influence of source j on source i two competing528

models are considered:529

• Full model, where the activity of source i is modeled via the past activity of all the sources:530

xi,t =
MX

m=1

KX

k=1

⇥
Af

k

⇤
i,m

xm,t�k + w
f
i,t, w

f
i,t ⇠ N (0,�2

i ), t = 1, . . . , T. (4)531

• Reduced model, where the contribution of the past of source j is removed from the full model by532

enforcing [Ak]i,j = 0, 8k = 1, 2, · · · ,K:533

xi,t =
MX

m=1,
m 6=j

KX

k=1

[Ar
k]i,m xm,t�k + w

r
i,t, w

r
i,t ⇠ N (0,�2

i\j), t = 1, . . . , T. (5)534

Note that we here use the conditional notion of Granger causality (Geweke, 1984), which includes all the535

processes xm,·,m 6= j in both the reduced and full models. The process noise variables w
f
i,t and w

r
i,t have536

di↵erent variances given by �
2
i and �

2
i\j , respectively. Define537

F(j 7!i) := log
�
2
i\j

�
2
i

. (6)538
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Clearly, when j has no causal influence on i, F(j 7!i) = 0, otherwise F(j 7!i) > 0, since the reduced model539

is nested in the full model, i.e., �2
i\j � �

2
i . In practice, the VAR model coe�cients Af

k and Ar
k, as well540

as the prediction variances �
2
i and �

2
i\j need to be estimated from the data. Let b�2

i and b�2
i\j be the541

respective estimates of the prediction variances of the full and reduced models. Then, the resulting estimate542

bF(j 7!i) := log
b�2
i\j
b�2
i

is a data-dependent random variable. Using bF(j 7!i), the previous hypotheses H0 and H1543

for causality can be replaced by those of Granger causality (Greene, 2003):544

• H
0
0: bF(j 7!i) ⇡ 0, or equivalently b�2

i ⇡ b�2
i\j . This implies that including the activity history of source545

j does not significantly improve the prediction error of source i, i.e., there is no Granger causal link546

from j to i.547

• H
0
1: bF(j 7!i) � 0, or equivalently b�2

i ⌧ b�2
i\j . This implies that including the activity history of source548

j significantly improves the prediction accuracy of source i, i.e., there is a Granger causal link from j549

to i.550

The test statistic bF(j 7!i) is referred to as the GC metric. In order to perform the latter hypothesis test,551

the asymptotic distribution of bF(j 7!i) is utilized to obtain p-values (Kim et al., 2011). More specifically,552

under mild conditions, T⇥ bF(j 7!i) converges in distribution to a chi-square random variable with K degrees553

of freedom, i.e., �2(K) (Wald, 1943; Davidson and Lever, 1970).554

4.3. Challenges of GC Analysis for MEG555

When it comes to GC analysis of cortical sources using MEG, there are several outstanding challenges:556

1) Indirect and Low-dimensional Sensor Measurements. The foregoing notion of Granger causality assumes557

that the source time-series {xi,t}
T
t=1, i = 1, 2, · · · ,M are directly observable. However, MEG only provides558

indirect and low-dimensional sensor measurements yt 2 RN , where typically N ⌧ M . As such, GC analysis559

of MEG data inherits the ill-posedness of estimating high-dimensional sources from low-dimensional sensor560

measurements (Wipf et al., 2010; Tait et al., 2021).561

2) Limited Observation Duration. In order to obtain accurate estimates of the VAR model parameters and562

consequently prediction variances of the full and reduced models, typically observations with long duration563

T are required. However, the observation length is limited by the typically short duration of cognitive or564

sensory experimental trials. Even if trials with long duration were available, for the stationary model of Eq.565

(2) to be valid (i.e., static VAR parameters), T may not be chosen too long.566

3) Precise Statistical Characterization of the GC Links. While the asymptotic distribution of the null hy-567

pothesis in the classical GC setting allows to obtain p-values, it is not clear how this asymptotic distribution568

behaves under the indirect and low-dimensional observations given by MEG. Furthermore, p-values only569
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control Type I error, and in order to precisely characterize the statistical strength of the detected GC links,570

Type II errors need to also be quantified.571

Existing methods aim at addressing the aforementioned challenges separately. In order to address chal-572

lenge 1, source localization is used in a two-stage approach, where the cortical sources are first estimated573

using a source localization method, then followed by GC analysis (Cai et al., 2021, 2018; Owen et al., 2012);574

in order to address challenge 2, regularized least squares estimation is used to reduce the variance of the575

estimated VAR parameters (Endemann et al., 2022; Bolstad et al., 2011); and challenge 3 is usually ad-576

dressed using non-parametric statistical testing, which may have limited power due to the large number577

of statistical comparisons involved (Cheung et al., 2010; Sekihara et al., 2010; Manomaisaowapak et al.,578

2021). It is noteworthy that these challenges are highly inter-dependent. For instance, the biases incurred579

by the source localization stage in favor of addressing challenge 1, may introduce undesired errors in the580

VAR parameter estimation to address challenge 2 (Scho↵elen and Gross, 2009). Similarly, using regularized581

estimators to address challenge 2 introduces biased in the test statistics used in addressing challenge 3.582

4.4. Proposed Solution: Network Localized Granger Causal (NLGC) Inference583

We propose to address the foregoing challenges simultaneously and within a unified inference framework.584

To this end, we first cast Granger causal inference as an inverse problem using the generative models of585

Eqs. (2) and (1). To address the parameter estimation challenge of this inverse problem, we leverage sparse586

connectivity in cortical networks and utilize `1-regularized estimation of the VAR parameters. Finally, to587

characterize the statistical strengths of the identified GC links, we establish the asymptotic properties of588

a test statistic, namely the de-biased deviance di↵erence, which will allow us to parametrically quantify589

both Type I and Type II errors rates and also control the false discovery rate. We refer to our proposed590

method as the Network Localized Granger Causality (NLGC) analysis. The main building blocks of NLGC591

are introduced in the remaining part of this subsection.592

4.4.1. E�cient Parameter Estimation and Likelihood Computation593

It is straightforward to show that this classical GC metric, i.e., log-ratio of the prediction variances of594

the reduced and full models in Eq. (6) is equivalent to the di↵erence of the log-likelihoods of the full and595

reduced models, for linear Gaussian generative models. This correspondence has led to the generalization596

of the GC metric to non-linear and non-Gaussian settings (Kim et al., 2011; Sheikhattar et al., 2018).597

We take a similar approach to generalize the classical notion of GC for direct observations of the sources598

to our indirect observations given by the MEG sensors. Recall that for assessing the GC from source j to599

i, we considered the full and reduced models given by Eqs. (4) and (5). Let Af := (Af
1,A

f
2, · · · ,A

f
K) and600

Ar := (Ar
1,A

r
2, · · · ,A

r
K) be the VAR parameters matrices, and Qf := diag(�f2

1 ,�
f2
2 , · · · ,�

f2
M ) and Qr :=601

diag(�r2
1 ,�

r2
2 , · · · ,�

r2
M ) be the process noise covariance matrices of the full and reduced models, respectively.602
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The main di↵erence between these sets of parameters is that [Ar
k]i,j = 0, 8k = 1, 2, · · · ,K. Let the log-603

likelihoods of the MEG observations under the full and reduced models be defined as:604

8
><

>:

`
i
�
Af

,Qf
|y1:T

�
:= log p

�
y1:T ;Af

,Qf
�
, full model log-likelihood

`
i\j (Ar

,Qr
|y1:T ) := log p (y1:T ;Ar

,Qr) , reduced model log-likelihood
(7)605

Let bAf
, bAr

, bQf , and bQr be the regularized maximum likelihood estimates of the corresponding parameters.606

We then define the GC metric from source j to i given the MEG observations as (Kim et al., 2011; Sheikhattar607

et al., 2018; Soleimani et al., 2020):608

eF(j 7!i) := `
i
⇣
bAf

, bQf
���y1:T

⌘
� `

i\j
⇣
bAr

, bQr
���y1:T

⌘
. (8)609

As for the regularization scheme, we consider `1-norm regularized maximum likelihood estimation. Let610

ai be the i
th row of A, correspond to all the network interactions towards source i. The parameters are611

estimated as:612

8
>>>><

>>>>:

n
bAf

, bQf
o
= argmax

A,Q
`
i (A,Q|y1:T )� �

MX

m=1

kamk1,

n
bAr

, bQr
o
= argmax

A0,Q0
`
i\j (A0

,Q0
|y1:T )� �

0
MX

m=1

ka0mk1,

(9)613

where �,�0 are regularization parameters that are tuned in a data-driven fashion using cross-validation (See614

Remark 3 below for details). Since the source activity {xt}
T
t=1 is not directly observable, we employ an615

instance of Expectation-Maximization (EM) algorithm (Shumway and Sto↵er, 1982; Dempster et al., 1977)616

to solve the regularized maximum likelihood problem. The EM algorithm is an iterative procedure which617

maximizes a lower bound on the log-likelihood function and provides a sequence of improving solutions.618

The EM algorithm has two steps: 1) The Expectation step (E-step) where we calculate the expectation619

of the log-likelihood of both the observed and unobserved variables given the observations and a current620

estimate of the parameters to construct a lower bound on the actual observation log-likelihood, and 2) The621

Maximization step (M-step) where we maximize the surrogate function obtained in the E-step to update622

the estimate of the unknown parameters.623

More specifically, we illustrate these two steps for estimating the parameters of the full model; the case of624

reduced model is treated in a similar fashion. Let the unknown parameters be denoted by ✓ := (✓1, . . . ,✓M ),625

where ✓i := (�f2
i ,afi) is the corresponding unknown parameters of the i

th source with afi := ([Af
k]i,j , 8j, k).626

The EM algorithm in this case comprises the following steps:627
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The E-step628

We start from the joint distribution of {xt}
T
t=1 and {yt}

T
t=1. From the Bayes’ rule we have629

log p(y1:T ,x1:T ;✓) = log p(y1:T |x1:T ;✓) + log p(x1:T ;✓). (10)630

The conditional distribution can be directly written from observation model in Eq. (1) as631

log p(y1:T |x1:T ;✓) =
TX

t=1

log p(yt|xt;✓) = �
T

2
log(2⇡|R|)�

1

2

TX

t=1

kyt �CxtkR�1 , (11)632

where kakB := a>Ba is utilized for notational convenience.633

Using the fact that Q = diag(�2
1 , . . . ,�

2
M ) along with the source dynamic model in Eq. (2), one can write634

down635

log p(x1:T ;✓) = �
T

2
log

 
2⇡

MY

i=1

�
2
i

!
�

MX

i=1

1

2�2
i

kxi � Xaik
2
2, (12)636

where xi := [xi,K+1:T ]>, ai = [[Ak]i,j , 8k, j]>, and637

X :=
h
[x1,K:T�1]

>
, . . . , [x1,1:T�K ]>, . . . , [xM,1:T�K ]>

i
. (13)638

Now, substituting Eqs. (11) and (12) into Eq. (10) along with taking the expectation yields639

Q(✓|b✓(l)) = E
⇥
log p(x1:T ,y1:T ;✓)|y1:T ,

b✓(l)
⇤

= K(b✓(l))�
T

2

MX

i=1

log(�2
i )�

MX

i=1

1

2�2
i

✓
ai

>G(l)ai � 2h(l)
i

>
ai + f

(l)
i

◆
,

640

where K(b✓(l)) represents the constant terms with respect to ✓641

K(b✓(l)) = �
T

2
log(2⇡|R|)�

T

2
log(2⇡)�

1

2

TX

t=1

E
⇥
kyt �CxtkR�1 |y1:T ; b✓(l)

⇤
,642

and643

G(l) = E
⇥
X

>
X|y1:T ; b✓(l)

⇤
, h(l)

i = E
⇥
X

>xi|y1:T ; b✓(l)
⇤
, f

(l)
i = E

⇥
xi

>xi|y1:T ; b✓(l)
⇤
(8i). (14)644

It is noteworthy to mention that the variables G(l), h(l)
i , and f (l)i can be written as a function of first- and645

second-order moments of the conditional density p(x1:T |y1:T ; b✓(l)). It can be shown that the conditional646

density p(x1:T |y1:T ; b✓(l)) is Gaussian due to the underlying Gaussian assumptions on wt and nt. Thus, the647

mean and covariance matrices can be e�ciently computed via the Fixed Interval Smoothing (FIS) algorithm648

(Anderson and Moore, 2005). The details are presented in Appendix A.1.649
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Figure 8: Block diagram of the EM algorithm for sparse VAR parameter estimation.

The M-step650

To mitigate the ill-posedness caused by the low dimensionality of MEG measurements, we leverage the651

sparse connectivity feature of cortical sources and add a regularization term in the M-step as follows:652

b✓(l+1) = argmax
✓

n
Q(✓|b✓(l)) +Rp(�,✓)

o
, (15)653

where Rp(�,✓) := �2
PM

i=1 �ikaikpp is the regularization function and � = [�1, . . . ,�M ]> 2 RM is the654

regularization coe�cients vector. The closed-form solution for p = 2 can be obtained as655

ba(l+1)
i =

⇣
G(l) + �iI

⌘�1
h(l)
i , 8i (16)656

657

b�2
i
(l+1)

=
1

T

✓
ba(l+1)
i

>
G(l)ba(l+1)

i � 2h(l)
i

>
ba(l+1)
i + f

(l)
i

◆
, 8i. (17)658

To enforce sparsity, we use p = 1. However, the closed-form solution does not exist. We use the well-known659

Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) to find the `1-norm regularized solution to Eq.660

(15) (Goldstein et al., 2014).661

Fig. 8 gives an overview of the EM algorithm, which is also summarized in Algorithm 1. These steps662

continue until convergence of the iterates b✓(l). To assess convergence, the log-likelihood of the MEG observa-663

tions is calculated (Gupta and Mehra, 1974) at each iteration, to check whether the successive improvements664

of the log-likelihood fall below a specified threshold.665

Employing the foregoing EM procedure, one can reliably estimate the set of parameters ✓ corresponding666

to the full model and the M(M � 1) reduced models for all possible links (j 7! i) and evaluate the log-667

likelihoods to form the GC metric eF(j 7!i) of Eq. (8), for all i, j = 1, 2, · · · ,M, i 6= j. Given the large668

number of EM runs, it is crucial to have computationally e�cient solutions to carry out the computations669

in the E-step. Before presenting these solutions and their computational savings, some remarks regarding670

the initialization of the EM algorithm, estimating the reduced models, and choosing the regularization671

parameters � are in order:672

Remark 1. (Initialization) Due to the biconvex nature of the problem in Eq. (15), the problem may have673

several saddle points. As a result, choosing a proper initial point for the EM algorithm is crucial and helps674
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Algorithm 1 EM-based Parameter Estimation

Input: MEG measurements {yt}Tt=1, lead field matrix C, measurement noise covariance matrix R, VAR model order K,

regularization coe�cients �, convergence tolerance tol, maximum number of iterations L.

1: Set l = 0 and initialize b✓(l) based on the minimum norm solution.

2: repeat

3: Compute the conditional density p(x1:T |y1:T ; b✓(l)) via FIS.

4: Calculate the surrogate function Q(✓|b✓(l)) in Eq. (14). . E-step

5: Solve b✓(l+1) = argmax
✓

n
Q(✓|b✓(l)) +R1(�,✓)

o
via FASTA. . M-step

6: Set l l + 1.

7: until `(b✓(l))�`(b✓(l�1))

`(b✓(l))
< tol or l = L.

Output: b✓.

the algorithm to converge faster as well. We first obtain the minimum norm source estimates as follows675

bX = (C>C)�1C>Y, (18)676

where Y = [y>
1 , · · · ,y

>
T ]

> is the MEG measurement matrix and bX = [bx>
1 , · · · , bx>

T ]
> is the source estimates677

matrix. Given the source estimates, we initialize all coe�cients {A}
K
k=1 with zero and variances matching678

the average power of each source, i.e., ba(0)i = 0, b�2
i
(0)

= 1
T

PT
t=1 bx2

i,t, 8i. In this way, the algorithm is679

initialized with an unbiased solution (Gorodnitsky et al., 1995).680

Remark 2. (Reduced Models) Algorithm 1 represents the full model parameter estimation. With some681

minor modification, one can find the reduced model estimation in a similar way. Let us assume we want to682

estimate the reduced model parameters corresponding to the link (j 7! i) 2 I. We can use Algorithm 1 by683

enforcing ai,j,k = 0, 8k at the M-step in each iteration. The output of the Algorithm 1 in this case is the684

estimated parameters for the reduced model corresponding to the link (j 7! i).685

Remark 3. (Regularization Parameters) To obtain the regularization parameters �, we utilize the686

standard K-fold cross-validation. To save the computational complexity and to speed up the tuning process,687

we assume � = �1 where 1 is the all-one vector. As for the cross-validation metric, we use the estimation688

stability criterion presented in (Lim and Yu, 2016). Given a set of candidates for �, this criterion constructs689

estimated versions of the MEG measurements based on the underlying parameters of the VAR model and690

returns the model with the lowest variance across the folds. In this way, the chosen � gives a stable solution691

across the folds. Moreover, once the optimal regularization parameter � is chosen for the full model, we692

use the same regularization parameter for all the subsequent reduced models (Das and Babadi, 2021). This693

way, the cross-validation only needs to be carried out for the full model.694

4.4.2. Computational Complexity of the Parameter Estimation Procedure695

Applied to MEG, o↵-the-shelf solvers do not scale well with the dimensions of the source space M , sensor696

space N , and observation length T . We employ several solutions to address this need for scalability of the697

parameter estimation procedure:698

(1) First, we use a low-rank approximation to the lead-field matrix that reduces the e↵ective dimensionality699

of the source space. This approach is explained in detail in Section 4.5.1.700
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(2) We use the steady-state solution to the smoothing covariance matrices involved in FIS that notably701

speed up the computations. This approach is explained in detail in Appendix A.1.702

(3) We use the Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) algorithm to e�ciently solve the703

`1-regularized optimization in the M-step. This approach was explained in Section 4.4.1.704

(4) We e�ciently evaluate the various log-likelihood functions, which are key for cross-validation and the705

EM stopping criterion, using the innovation form of the smoothed states (Gupta and Mehra, 1974).706

In what follows, we discuss the implications of these algorithmic solutions in reducing the computational707

complexity of our EM-based parameter estimation procedure used for solving Eq. (9), in comparison to708

existing work.709

Complexity of the E-step: As it will be shown in Section 4.5.1, Solution (1) results in an e↵ective lead-710

field matrix with rM columns, where M is the number of cortical patches used and r � 1 is the number711

eigenmodes retained in the low-rank representation of the lead-fields in each patch. Also, Solution (2), using712

the steady-stake Kalman filtering/smoothing, reduces the total number of state covariance matrix inversions713

in the FIS procedure from T to 2, by only adding O
⇣�

(rM)2K
�3⌘

multiplications required to find the steady-714

state covariance matrices (Malik et al., 2010). Considering the cubic dependence of matrix inversion to the715

matrix dimension, each instance of FIS requires O
⇣�

(rM)2K
�3⌘

+O

⇣
T
�
(rM)2K

�2⌘
multiplications, which716

can then be used to form the elements of the Q-function in the E-step.717

Complexity of the M-step: At the M-step, Solution (3) uses FASTA to update the parameters. As a gradient-718

based method, for an optimality gap of " > 0, it requires O( 1" ) iterations, and each iteration requires719

O

⇣
((rM)2K

�2⌘
multiplications (Beck and Teboulle, 2009; Goldstein et al., 2014). Here, we denote the720

complexity of FASTA by LFASTA = O

⇣
1
"

�
(rM)2K

�2⌘
.721

Complexity of Log-likelihood Computation: Solution (4) provides an e�cient method to compute the log-722

likelihood of the MEG observations (Gupta and Mehra, 1974), which only includes matrix additions and723

matrix by vector multiplications based on the quantities already calculated at the FIS procedure, adding up724

to O

⇣
T
�
(rM)2K

�2⌘
multiplications.725

Finally, letting LEM be the number of EM iterations, each application of the EM algorithm requires726

O

⇣�
(rM)2K

�3
LEM

⌘
+O

⇣
T
�
(rM)2K

�2
LEM

⌘
+O

⇣
LFASTALEM

⌘
multiplications. The problems in Eq. (9)727

need to be solved for both the full and reduced models. The only di↵erence between the full model and728

reduced model corresponding to the link (j 7! i) is the fact that in the reduced model, one set of the729

cross-coupling coe�cients ai,j,k (k = 1, · · · ,K) are constrained to be zero during the EM procedure (See730

Remark 2 in Section 4.4.1). The total number of such estimation problems to be solved is M(M � 1) + 1 =731

O(M2). Thus, the overall computational complexity of our parameter estimation procedure is given by732

O

⇣
r
6
M

8
K

3
LEM

⌘
+O

⇣
Tr

4
M

6
K

2
LEM

⌘
+O

⇣
M

2
LFASTALEM

⌘
. In the applications of interest in this work,733

typically the convergence criteria is satisfied with a choice of LFASTA ⇡ 100 and LEM ⇡ 1000, which mitigates734
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the dependence of the overall computational complexity on these parameters.735

The improvements achieved by Solutions (1) and (2) provide notable computational savings over existing736

work (Nalatore et al., 2009; Cheung et al., 2010; Sekihara et al., 2010; Long et al., 2011; Lamus et al., 2012):737

1) If the low-rank approximation to the lead-field matrix is not used, the term r is replaced by 61 (see738

Section 4.5.1 for details). Given that we use a value of r = 4 in our work, this amounts to a ⇠ 107-fold739

reduction in the complexity of the leading term that is O
⇣
r
6
M

8
K

3
LEM

⌘
.740

2) If the steady-state filtering/smoothing is not used, the first term in the computational complexity of741

the EM procedure would be increased to O

⇣
Tr

6
M

8
K

3
LEM

⌘
. Our approach reduces this term by a742

factor of T , which in the applications of interest in this paper amounts to a ⇠ 103-fold reduction in743

complexity.744

4.4.3. Statistical Test Strength Characterization745

The next component of NLGC is the characterization of the statistical significance of the obtained GC746

metrics. Let I := {(j 7! i)|1  i, j  M, i 6= j} be the set of all possible GC links among M sources.747

Consider the link (j 7! i) 2 I and let us represent the corresponding parameters of the full and reduced748

models of the link as ✓f and ✓r, respectively, where for ✓r we have a
r
i,j,k = 0, 8k. It is worth noting749

that the number of parameters to be estimated in the full and reduced models are M
f := K(rM)2 and750

M
r := K(rM)2 �Kr

2, respectively. We define the null hypothesis H(j 7!i),0 : ✓ = ✓r for the case that no751

GC link exists, and the alternative H(j 7!i),1 : ✓ = ✓f for the existence of a GC link from source j to source752

i. A conventional statistic for testing the alternative against the null hypothesis is the deviance di↵erence753

between the estimated full and reduced models defined as754

D(j 7!i) := 2
�
`(b✓f)� `(b✓r)

�
= 2 eF(j 7!i), (19)755

where `(✓) := log p(y1:T ;✓) is the log-likelihood of the observations. Large values of D(j 7!i) � 0 indicate756

a large improvement in the log-likelihood of the full model compared to that of the reduced model, which757

implies the existence of a GC link. Similarly, D(j 7!i) ⇡ 0 can be interpreted as the absence of a GC link758

from source j to source i (Kim et al., 2011).759

Conventionally, the asymptotic distribution of the deviance di↵erence is derived as a chi-square distri-760

bution, thanks to the asymptotic normality of maximum likelihood estimators (Wald, 1943; Davidson and761

Lever, 1970). However, due to the biases incurred by `1-norm regularization, the estimates are no longer762

asymptotically normal. To remove the bias and obtain a statistic with well-defined asymptotic behavior, we763

use the de-biased version of the deviance di↵erence introduced in (Sheikhattar et al., 2018; Soleimani et al.,764

2020):765

D
db
(j 7!i) := D(j 7!i) � B(b✓r) + B(b✓f), (20)766
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where B(✓) := � ˙̀(✓)> ῭(✓)�1 ˙̀(✓) is the empirical bias incurred by `1-norm regularization (van de Geer et al.,767

2014), with ˙̀(.) and ῭(.) denoting the gradient vector and Hessian matrix of the log-likelihood function `(.),768

respectively. Removal of the bias allows to recover the well-known asymptotic behavior of the deviance769

di↵erence. We characterize these distributions using the following theorem:770

Theorem 1. The de-biased deviance di↵erence defined in Eq. (20) converge weakly to the following distri-771

butions, under the null and alternative hypotheses (as T ! 1):772

[Ddb
(j 7!i)|H(j 7!i),0]

d
�! �

2(Md), (21)773

[Ddb
(j 7!i)|H(j 7!i),1]

d
�! �

2(Md
, ⌫(j 7!i)), (22)774

where �
2(q) denotes the central chi-square distribution with q degrees of freedom, and �

2(q, ⌫) represents the775

non-central chi-square distribution with q degrees of freedom and non-centrality parameter ⌫, with M
d :=776

M
f
�M

r = Kr
2.777

Proof. See Appendix B. ⌅778

In words, Theorem 1 states that the asymptotic distribution of the de-biased deviance di↵erence in the779

absence and presence of a GC link is distributed according to central and non-central �2 distributions, both780

with degree of freedom Kr
2, i.e., the number of VAR parameters from patch j to i, respectively. The non-781

centrality parameter in Eq. (22) can be estimated as b⌫(j 7!i) = max
�PL

l=1 D
db,(l)
(j 7!i)/L�M

d
, 0
 
where D

db,(l)
(j 7!i)782

is the l
th sample of the de-biased deviance computed from L � 1 independent trials (Saxena and Alam,783

1982). We will next show how the result of Theorem 1 can be used for FDR control as well as characterizing784

the test strength.785

FDR control. Recall that rejection of the null hypothesis for a given source and target pair implies the786

existence of a GC link. As a consequence, determining GC links among the source and target pairs requires787

preforming M(M � 1) multiple comparisons, which may result in high false discovery. To address this issue,788

we employ the Benjamini-Yekutieli (BY) FDR control procedure (Benjamini and Yekutieli, 2001). Consider789

the link (j 7! i) 2 I. According to the first part of Theorem 1, if the null hypothesis is true, i.e., the GC link790

does not exist, the corresponding de-biased deviance di↵erence is central chi-square distributed. Thus, at a791

confidence level 1� ↵, the null hypothesis H(j 7!i),0 is rejected if Ddb
(j 7!i) > F

�1
�2(Md)(1� ↵) where F

�1
�2(Md)(.)792

is the inverse cumulative distribution function (CDF) of the central �2 distribution with M
d degrees of793

freedom. Using the BY procedure, the average FDR can be controlled at a rate of ↵ := (|I|+1)↵
2|I| log |I| where794

|I| = M(M � 1) represents the cardinality of the set I.795

Test Strength Characterization. To determine the test strength, we use the second part of Theorem 1 as796

well to quantify Type II errors. To this end, the false negative rate at the given confidence level 1 � ↵ for797

a source-target pair (j 7! i) is given by ⌘(j 7!i)(↵) := F�2(Md,b⌫(j 7!i))(F
�1
�2(Md)(1 � ↵)) where F�2(Md,b⌫(j 7!i))(.)798
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Algorithm 2 FDR control and test strength characterization

Input: Degree of freedom M
d, confidence interval 1 � ↵, de-biased deviance and non-centrality parameter of all possible

links
n
Ddb

(j 7!i), b⌫(j 7!i)

��(j 7! i) 2 I
o
.

1: Define p-values

p(j 7!i) := 1� F�2(Md)(Ddb
(j 7!i)), 8(j 7! i) 2 I.

2: Sort p-values as pn1 � pn2 � · · · � pn|I| where {n1, n2, . . . , n|I|} = I.

3: Find largest imax such that pni  i↵
|I| log |I| .

4: Set ↵ = (|I|+1)↵
2|I| log |I| (FDR).

5: Reject null hypothesis Hni,0 for i = 1, 2, . . . , imax and calculate J-values:

Jni =

8
><

>:

1� ↵� F�2(Md,b⌫(ni)
)(F

�1
�2(Md)

(1� ↵)), i = 1, 2, · · · , imax,

0, otherwise.

Output: J-values
n
J(j 7!i)

��(j 7! i) 2 I
o
.

denotes the non-central �2 distribution with M
d degrees of freedom and non-centrality parameter b⌫(j 7!i).799

Given the false negative rate, we use the Youden’s J-statistic (Youden, 1950) to summarize the strength of800

the test as:801

J(j 7!i) := 1� ↵� ⌘(j 7!i)(↵), (23)802

for the given confidence level 1 � ↵. The J-statistic has a value in the interval [0, 1] summarizing the803

performance of a diagnostic test. When J(j 7!i) ⇡ 0, the evidence to choose the alternative over the null804

hypothesis is weak, i.e., the GC link is likely to be missing. On the other hand, when J(j 7!i) ⇡ 1, both805

the false positive and negative rates are close to zero, implying high test strength, i.e., strong evidence in806

support of the GC link.807

The overall statistical inference framework is summarized in Algorithm 2. Finally, obtaining the J-808

statistics for all links, we can construct the GC map � as follows809

[�]i,j :=

8
><

>:

J(j 7!i), (j 7! i) 2 I

0, otherwise
. (24)810

It is worth noting that to repeatedly evaluate the de-biased deviance di↵erence statistic, one needs to811

e�ciently calculate the log-likelihood function `(.), which is done using the innovation form described in812

(Gupta and Mehra, 1974). In the spirit of easing reproducibility, a python implementation of the NLGC is813

available on the open source repository Github (Soleimani and Das, 2022).814

4.5. Dimensionality Reduction and VAR Model Order Selection815

There are two remaining ingredients of NLGC which are key to ensure its scalability, namely, reducing816

the dimensionality of the source space and VAR model order selection.817
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4.5.1. Source Space Construction and Eigenmode Decomposition818

In practice, using MR scans of the participants, individual head models can be numerically computed819

and co-registered to each individual’s head using the digitized head shapes. We first define a cortical surface820

mesh-based source space for the ‘fsaverage’ head model (Dale et al., 1999), named ico-4, with average spacing821

of ⇠ 6 mm between any two neighboring sources, which is then morphed to each participant’s head model.822

The lead-field matrix is obtained by placing 3 virtual dipoles at each of the 5124 vertices of ico-4 source823

space and solving Maxwell’s equations. We further restrict the dipoles to be normal to the cortical surface,824

so that the resulting lead-field matrix C has M = 5124 columns of length N each (Gramfort et al., 2013a,825

2014). Solving the NLGC inverse problem over this source space is quite computationally demanding, as826

the computational time of FIS scales as O

⇣�
(rM)2K

�3⌘
(See Section 4.4.2). We thus need to reduce the827

dimension of the lead-field matrix to control the computational complexity.828

To this end, we summarize the contribution of the dipoles placed on the ico-4 source space vertices829

within a given region using their principal components (Limpiti et al., 2006; Cheung et al., 2010). We start830

from a coarse surface mesh-based source space, namely ico-1, with 84 vertices (42 vertices per hemisphere).831

We consider the Voronoi regions based on the geodesic distance between these vertices induced by ico-1832

vertices over the original ico-4 vertices, so that all the ico-4 vertices are partitioned into 84 non-overlapping833

patches (Babadi et al., 2014). The Voronoi regions around each of the ico-1 vertices are referred to as cortical834

patches in this work. We then approximate the contribution of the dipoles placed on the ico-4 vertices within835

each cortical patch by the first r leading eigenvectors of the partial lead-field matrix following singular value836

decomposition (SVD). We refer to these leading eigenvectors as eigenmodes. As such, the number of columns837
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Figure 9: An illustration of low-rank approximation to the lead-field matrix using eigenmode decomposition using
r = 2 eigenmodes. The contribution of the 7 dipoles to 10 MEG sensors is originally captured by a 10 ⇥ 7 sub-
matrix of the lead-field matrix (left), whereas using the eigenmode decomposition, it can be approximated by two
10-dimensional eigenmodes (right), resulting in a 10⇥ 2 e↵ect sub-matrix.
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in the e↵ective lead-field matrix is reduced to r⇥84, as opposed to original 5124, which significantly reduces838

the computational complexity. In addition to providing computational savings, dimensionality reduction839

through retaining the leading eigenmodes of the lead-field sub-matrices serves as denoising by suppressing840

the e↵ect of small lead-field errors (which are expected to appear in eigenmodes with small singular values).841

Fig. 9 shows a schematic depiction of the eigenmode decomposition for a given patch with r = 2842

eigenmodes. For this example, the 10 ⇥ 7 lead-field matrix of the cortical patch is reduced to a 10 ⇥ 2843

matrix, for which the two eigenmodes capture the main contributions of the patch to the MEG sensors. In844

other words, we summarize all the dipoles placed on ico-4 vertices within each cortical patch by the best r845

e↵ective dipoles, which explain most of the lead-field variance within that cortical patch. With increasing r,846

the approximation gets better in a similar way that a finer cortical mesh improves cortical current density847

approximation. The parameter r can be chosen by controlling the reconstruction error at a desired level.848

We will provide an example of this choice in the following subsection.849

4.5.2. VAR Model Order Selection850

In Section 4.4, the VAR model order K is assumed to be known. To estimate K in a data-driven851

fashion, we utilize the Akaike Information Criterion (AIC) to determine which model order best fits the852

MEG observations (Ding et al., 2018). Given a set of candidate model orders K for K, the optimal model853

order can be chosen as:854

KAIC = argmin
K2K

� 2`
⇣
b✓[K]

⌘
+ 2df, (25)855

where df is the degrees of freedom of the `1-norm regularized maximum likelihood problem (Zou et al., 2007)856

and b✓[K] denotes the estimated parameters corresponding to a VAR(K) model.857

Ideally, one can search within a large set of candidate values for K and r (number of eigenmodes) and858

choose the optimal pair according to an information criterion (Ding et al., 2018). However, due to high859

computational complexity of the estimation procedure in NLGC, especially for higher values of K and r,860

we first pick a suitable value for the number of eigenmodes r, followed by choosing the VAR model order K861

via AIC.862

To choose r, we require that at least 85% of the variance within each ROI can be explained using r863

eigenmodes. Depending on the subject’s head model and also the location of the dipoles, the choice of864

r may vary. For the MEG data in this study, r = 4 eigenmodes su�ced to capture at least 85% of the865

variance. Fig. 10A shows the histogram of explained variance ratio for all ROIs using r = 2, 3, 4 eigenmodes866

corresponding to 3 representative subjects.867

Once r = 4 is fixed, we use AIC to pick the optimal value of K. For the MEG data in this study, K = 2868

was the optimal choice according to AIC for all subjects. Fig. 10B shows the AIC curves of the same 3869

subjects as in panel A. Even though in some cases (e.g. subject 2), a choice of K = 3 results in a slight870

improvement compared to K = 2, to reduce the overall run-time of our inference framework, we picked871
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K = 2 for all cases.872

4.6. MEG Experiments: Procedures and Recordings873

The data analyzed in this study was a part of a larger experiment whose results will be reported sep-874

arately. Out of 36 total participants who completed the MEG experiment, 24 participants completed the875

structural MRI scans. Additionally, 2 subjects were excluded due to bad fiducials measurements. Ultimately,876

22 subjects, 13 younger adults (5 males; mean age 21.1 years, range 17–26 years) and 9 older adults (3 males;877

mean age 69.6 years, range 66–78 years) were included in the analysis. All participants had clinically normal878

hearing (125–4000 Hz, hearing level  25 dB) and no history of neurological disorder.879

The study was approved by the University of Maryland’s Institutional Review Board. All participants880

gave written informed consent and were compensated for their time. Subjects came in on two di↵erent days.881

MEG auditory task recording was performed on the first day and structural MRIs were scanned on the882

second day. Neural magnetic signals were recorded in a dimly lit, magnetically shielded room with 160 axial883

gradiometer whole head MEG system (KIT, Kanazawa, Japan) at the Maryland Neuroimaging Center. The884

MEG data were sampled at 2 kHz, low pass filtered at 200 Hz and notch filtered at 60 Hz. Participants885

laid supine position during the MEG experiment while their head was in the helmet and as close as possible886

to the sensors. The head position was tracked at the start and end of the experiment with 5 fiducial coils.887

During the task subjects were asked to stare at the center of the screen and minimize the body movements888

as much as possible.889

The resting state data were recorded before and after the main auditory task, each 90 s long in duration.890

During the resting state subjects fixated at a red cross at the center of grey screen. 100 repetitions of 500891

Hz tone pips were presented at the end. During the tone pips task, subjects were staring at a face image at892

the center of screen and were asked to silently count the number of tone pips. The tones were presented at893

a duration of 400 ms with a variable interstimulus interval (1400 ms, 1200 ms, 1000 ms). The tone pip task894

was around 150 s long and was divided into two trials, 40 s after the beginning of the first tone pip onset895
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Figure 10: Model selection curves. A. Histogram of the ratio of the explained variance to total variance for all
ROIs using r = 2, 3, 4 eigenmodes for head models of three representative subjects. With r = 4 eigenmodes, at least
85% of the variance can be explained for all ROIs. B. AIC curve for r = 4 egienmodes, suggesting a choice of K = 2
for the VAR model order for the three representative subjects.
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resulting in two trials. In summary, we analyzed the GC link counts in resting state and listening to tone896

pips task, each consisted of two trials.897

4.7. Pre-processing and Data Cleaning898

All the pre-processing procedures have been carried out using MNE-python 0.21.0 (Gramfort et al.,899

2013a, 2014). After removing the noisy channels, temporal signal space separation (tsss) was used to remove900

the artifacts (Taulu and Simola, 2006). The data were filtered between 0.1 Hz and 100 Hz using a causal FIR901

filter (with phase=‘minimum’ setting). Independent component analysis (extended Infomax algorithm, with902

method=‘infomax’ and fit_params=dict(extended=True) settings) was applied to extract and remove903

cardiac and muscle artifacts (Bell and Sejnowski, 1995; Lee et al., 1999). The initial 5 seconds of the data904

were removed and the subsequent 40 seconds were extracted. Finally, the data were filtered to the desired905

frequency bands using causal FIR filters followed by downsampling to 50 Hz.906

4.8. NLGC Parameter Settings907

As mentioned in Section 4.5.2, the VAR model order K is selected via AIC over a set of candidates908

K = {1, 2, 3, 4, 5}. The regularization parameter for the `1-norm are chosen using a standard 5-fold cross-909

validation over the range [10�15
, 1] spanned by 25 logarithmically-spaced points (Section 4.4.1, Remark 3).910

As for the convergence of the EM algorithm, we used a normalized error tolerance of tol = 10�5, with a911

maximum number of 1000 iterations (Algorithm 1). For all simulation studies as well as real data analysis912

FDR was controlled at 0.1% using the BY procedure.913

4.8.1. Parameters for the Illustrative Example914

We considered M = 84 cortical patches, whose activities are projected onto the MEG sensor space with915

N = 155 sensors. We simulated 3 di↵erent realizations (with T = 1000 samples each) for each run. To916

simplify the projection onto the MEG sensors, we considered a single lead-field vector for each cortical patch,917

generated via drawing 155 independent samples from a standard normal distribution. This simplification918

using a single lead-field vector per patch could be thought of as taking a random linear combination of all919

the lead-field vectors within a cortical patch as the representative of its activity. The noise measurement920

covariance matrix was assumed to be diagonal R = �
2I where �

2 was chosen to set the SNR at 0 dB.921

The cortical patch activities were simulated as a VAR(5) process. Among them, 8 patches were randomly922

selected to carry the dominant activities, i.e., explaining 90% of the total signal power. To compare the923

performance of NLGC with a two-stage method using MNE, we first obtained the source estimates for the924

first stage as:925

bx1:T = min
x1:T

TX

t=1

kxtk
2
2 s.t.

TX

t=1

kyt �Cxtk2  ⇣, (26)926
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for some ⇣ > 0. Given the source estimates, we then fit the VAR models to obtain the network parameters927

(Appendix A.2). Then, the same statistical inference framework used in NLGC was applied to extract the928

GC links in the second stage.929

4.8.2. Parameters for the Simulated MEG Data Using a Head-Based Model930

We computed the forward solution for ico-4 source space from a representative younger subject’s head931

model via MNE-python 0.21.0 and then obtained the low-rank lead-field matrix approximation over ico-1932

source space using the previously mentioned dimensionality reduction strategy (see Section 4.5.1 for details).933

Each of the cortical patches corresponding to ico-1 vertices had rgen. eigenmodes, resulting in 84⇥rgen. lead-934

field columns, which are summarizing the contribution of 5124 ico-4 sources, partitioned into 84 groups935

according to the Voronoi regions formed over the cortical manifold. As a result, in the generative model,936

the lead-field matrix has M = 84 ⇥ rgen. columns and N = 155 rows. The dipole activities {xt}
T
t=1 were937

generated using VAR(3) processes with T = 3000 time points (3 segments, 1000 samples each). With gk
i938

denoting the k
th eigenmode of the i

th cortical patch, the MEG observation at time t is generated as939

yt =
84X

i=1

 rgen.X

k=1

�
k
i g

k
i

!
x(i�1)rgen.+k,t + nt, t = 1, 2, · · · , T, (27)940

where �
k
i are drawn uniformly in the interval [�1, 1] and nt is a zero mean Gaussian random vector with941

a diagonal covariance matrix R = �
2I. The value of �2 is determined according to the desired SNR level942

which is set to 0 dB, unless otherwise stated.943

We considered varying numbers of dominant cortical patches, m = 2, 4, · · · , 20 that explain 90% of the944

total signal power. The remaining 10% of the signal power was uniformly distributed as white noise among945

the rest of cortical patches. The true underlying GC network structure among the dominant cortical patches946

was assumed to have 20% sparsity, i.e., with m active cortical patches, there are d0.2m(m�1)e true GC links,947

where dze denotes the smallest integer greater than or equal to z. For each m, we generated 10 di↵erent948

trials of the VAR processes, while randomly selecting cortical patches from the temporal and frontal lobes949

for each trial.950

In all the four cases considered to assess the robustness of the algorithms, we used rest. = 2. To induce951

source model mismatch, we simply used rgen. = 10 (> rest.) eigenmodes for the data generation process.952

We also considered a relaxed link localization criterion in addition to the exact link localization criterion.953

The rationale behind the relaxed link localization criterion is as follows: Let (j 7! i) be a true GC link, and954

let N(i) denote the 6 nearest cortical patches to cortical patch i over the ico-1 source space. If instead the955

link (j0 7! i
0) is detected, we consider it a hit if i0 2 N(i) and j

0
2 N(j). This way, we account for minor956

spatial localization errors. Note that in the exact link localization criterion, the link (j 7! i) is considered a957

hit only if it is exactly detected by NLGC.958

The NLGC settings were the same in all the aforementioned cases. For the two-stage methods, we used959
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the standard MNE and dSPM methods as well as the Champagne algorithm implemented in MNE-python960

0.21.0 using their default settings to localize the simulated MEG data into cortical time-courses. For each961

value of m, we ran NLGC and the three two-stage procedures and evaluated the performance of each method962

by calculating the hit rate (number of true detected links normalized by the total number of true links) and963

false alarm rate (number of spurious links normalized by the total number of non-GC links), both averaged964

over the 10 trials.965

4.8.3. Parameters in the Analysis of Experimentally Recorded MEG Data966

For the MEG data that were recorded during an auditory task, we analyzed the connectivity between967

ROIs in frontal, temporal, and parietal lobes (in both hemispheres) that broadly comprise the auditory968

cortex, the fronto-parietal network, the cingulo-opercular network, the ventral attention network, and the969

default mode network, which are known to fluctuate with task versus rest conditions (Fox et al., 2005) and970

with aging (Kuchinsky and Vaden, 2020). The included ROIs are selected from the 68 anatomical ROIs in971

the Desikan-Killiany atlas (Desikan et al., 2006):972

• Frontal: ‘rostralmiddlefrontal’, ‘caudalmiddlefrontal’, ‘parsopercularis’, ‘parstriangularis’.973

• Temporal: ‘superiortemporal’, ‘middletemporal’, ‘transversetemporal’.974

• Parietal: ‘inferiorparietal’, ‘posteriorcingulate’.975

We then mapped the 84 cortical patches onto these 68 anatomical ROIs. To illustrate this procedure,976

consider the example given in Fig. 11. There are three representative cortical patches, denoted by dk, k =977

1, 2, 3 with corresponding vertices in ico-1 (crosses) and ico-4 (arrows) mesh are shown with the same color.978

The goal is to allocate the representative cortical patches between the two ROIs marked by R1 and R2. For979

each representative cortical patch, we compare the ratio of the number of ico-4 vertices that lie within each980

R
1

R
2

d
1

d
2

d
3

ico-4

ico-1

Figure 11: Illustration of anatomical ROI to cortical patch assignment. Three ico-1 vertices shown as d1 (red ⇥),
d2 (green ⇥) and d3 (blue ⇥) as well as the corresponding ico-4 vertices (colored arrows) in the respective patches are
shown with the same color coding. Two anatomical ROIs R1 (dark grey) and R2 (light gray) are also highlighted.
Using the proposed association scheme, each cortical patch is assigned a pair of weights indicating its relative overlap
with the two ROIs. Here, the association weights of d1, d2 and d3 are given by (0, 1), (0.2, 0.8) and (0.67, 0.33),
respectively.

37



ROI and use it as an association weight between the representative cortical patch and the ROI. For the given981

example in Fig. 11, the association weights to R1 and R2 for the three representative cortical patches d1, d2,982

d3 are given by (0, 1), (0.2, 0.8), and (0.67, 0.33), respectively. Using this many-to-one mapping, the obtained983

NLGC map �, which represents the GC links among the ico-1 cortical patches, can be translated into a984

connectivity map among the 68 ROIs as follows. Let W 2 R84⇥68 denote the aforementioned association985

weight matrix, where [W]i,j is the association weight of the i
th representative cortical patch to the j

th ROI.986

The transformed connectivity map e� is then defined as e� = W>�W.987

As an example of this transformation, consider the setting of Fig. 11 and suppose that NLGC only988

detects one GC link (d2 7! d2). Assuming that there are only 3 patches d1, d2, and d3 in the model, we989

have:990

� =

2

6664

0 0 0

0 1 0

0 0 0

3

7775
, W =

2

6664

0 1

0.2 0.8

0.67 0.33

3

7775
, (28)991

where the weight matrix W contains the association weights of the setting in Fig. 11. The transformed992

connectivity matrix is thus given by:993

e� = W>�W =

2

40.04 0.16

0.16 0.64

3

5 . (29)994

We can then interpret e� as follows: the captured link (d2 7! d2) is decomposed into several possible links995

between the 2 anatomical ROIs R1 and R2, namely (R1 7! R1) with a weight of 0.04, (R1 7! R2) with a996

weight of 0.16, (R2 7! R1) with a weight of 0.16, and (R2 7! R2) with a weight of 0.64. Notably, the elements997

of e� add up to one, which guarantees that the link (d2 7! d2) is not double-counted under the many-to-one998

mapping from the patches to anatomical ROIs, and thus the total number of GC links is preserved.999

The VAR model order and the number of eigenmodes are chosen as K = 2 and r = 4 using AIC1000

criterion. The details of the model selection is described in Section 4.5.2. To obtain the directed networks1001

between frontal, temporal, and parietal areas, for each of the Delta+Theta and Beta frequency bands1002

of interest, we encoded the inferred connectivity maps for each subject in each trial and condition using1003

a 9-dimensional vector, where each entry represented the number of detected GC links corresponding to1004

the connectivity types A 7! B where A,B 2 {Frontal, Temporal, Parietal}. For the inter- vs. intra-1005

hemispheric refinement of our analysis, encoded the GC maps using a 36-dimensional vector in which the1006

entries also distinguished between the connectivity across and within hemispheres, i.e., A(h) 7! B(h) where1007

h 2 {left hemisphere, right hemisphere} and A,B 2 {Frontal, Temporal, Parietal}.1008

Another key parameter that may a↵ect the performance of NLGC is the choice of the trial duration T . To1009

investigate the e↵ect of the trial duration on the performance of NLGC, we repeated NLGC analysis using1010

di↵erent values of T corresponding to the first 20, 25, · · · , 40 seconds of the data. The results corresponding1011

38



T

F

P

T

F

P

T

F

P

T

F

P

T

F

P

G
ro

u
p

 A
ve

ra
g

e
 G

C
 N

e
tw

o
rk

Duration of Data (sec.)

4020 30

0.11

0.25

0.18

0N
o

rm
a

liz
e

d
 J

-s
ta

t

3525

1

0

0.5

J
-s

ta
t

C
o

n
n

e
ct

io
n

s

F
T

Figure 12: Evaluating the e↵ect of trial duration on the NLGC performance. The group average GC links from
frontal to temporal areas for younger participants during tone processing are overlaid on the dorsal brain plot in
the top tow. The corresponding directed graphs indicating the normalized J-statistics of the links between frontal,
temporal, and parietal areas are shown in the bottom row. Columns correspond to di↵erent choices of T corresponding
to the first 20, 25, 30, 35 and 40 s of the data. While for smaller values of T , several links are missing, by increasing
T beyond 30 s the detected networks stabilize and converge.

to the younger participants under the tone processing condition over the Delta+Theta band is shown are1012

Fig. 12. As it can be observed from the figure, for small values of T the detected networks are quite sparse,1013

as the algorithm does not have enough statistical power to detect all relevant links. It is worth noting that1014

NLGC did not capture any GC links using only the first 10 seconds of the data. For ⇠ 30 s and higher, the1015

captured GC network stabilizes and converges. Therefore, the choice of 40 s used in our analysis is taken1016

conservatively to make sure that enough data points are available for GC link detection.1017

4.8.4. Statistical Testing1018

We used generalized linear mixed e↵ect models (GLMM) to analyze the e↵ects of age, condition, connectivity1019

type and hemisphere on the GC link counts for each frequency band. The statistical analysis was conducted1020

via R version 4.0.5 (R core Team 2021) using glmmTMB (Brooks et al., 2017) with zero-inflated generalized1021

Poisson distributions to model the link counts. Based on a full model accounting for all the variables, the1022

best fit model was selected by stepwise elimination, implemented in buildglmmTMB Voeten (2021) based1023

on the likelihood ratio test (LRT). Model assumptions for dispersion, heteroskedasticity and zero-inflation1024

were examined and verified using the DHARMa package (Hartig, 2021). The post-hoc di↵erences among1025

the levels of the e↵ects were tested using pairwise comparisons based on estimated marginal means, with1026

Holm corrections using the package emmeans Lenth (2021). The summary of the statistical models is given1027

in Appendix C.1028
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B.M., 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Mod-1071

eling. The R Journal 9, 378–400. https://doi.org/10.32614/RJ-2017-066.1072

Brown, S., Nicholls, M.E., 1997. Hemispheric asymmetries for the temporal resolution of brief auditory stimuli. Perception &1073

psychophysics 59, 442–447. https://doi.org/10.3758/BF03211910.1074

Buschman, T.J., Miller, E.K., 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal1075

cortices. science 315, 1860–1862. https://doi.org/10.1126/science.1138071.1076

Cai, C., Hashemi, A., Diwakar, M., Haufe, S., Sekihara, K., Nagarajan, S.S., 2021. Robust estimation of noise for electromag-1077

netic brain imaging with the champagne algorithm. NeuroImage 225, 117411. https://doi.org/10.1016/j.neuroimage.2020.1078

117411.1079

Cai, C., Sekihara, K., Nagarajan, S.S., 2018. Hierarchical multiscale bayesian algorithm for robust MEG/EEG source recon-1080

struction. NeuroImage 183, 698–715. https://doi.org/10.1016/j.neuroimage.2018.07.056.1081

Chen, F., Ke, J., Qi, R., Xu, Q., Zhong, Y., Liu, T., Li, J., Zhang, L., Lu, G., 2018. Increased inhibition of the amygdala by1082

the mPFC may reflect a resilience factor in post-traumatic stress disorder: A resting-state fMRI Granger causality analysis.1083

Frontiers in Psychiatry 9, 516. https://doi.org/10.3389/fpsyt.2018.00516.1084

Cheung, B.L.P., Riedner, B.A., Tononi, G., Van Veen, B.D., 2010. Estimation of cortical connectivity from EEG using1085

state-space models. IEEE Transactions on Biomedical Engineering 57, 2122–2134. https://doi.org/10.1109/TBME.2010.1086

2050319.1087

40

http://dx.doi.org/10.1111/ejn.12173
http://dx.doi.org/10.1111/ejn.12173
http://dx.doi.org/10.1111/ejn.12173
http://dx.doi.org/10.1016/j.neuron.2007.10.038
http://dx.doi.org/10.7554/eLife.17822
http://dx.doi.org/10.1016/j.compbiomed.2019.103495
http://dx.doi.org/10.1109/TSP.2013.2287685
http://dx.doi.org/10.1016/j.neuroimage.2013.09.008
http://dx.doi.org/10.1016/j.neuroimage.2013.09.008
http://dx.doi.org/10.1016/j.neuroimage.2013.09.008
http://dx.doi.org/10.1109/79.962275
http://dx.doi.org/10.1016/S0167-8760(00)00145-8
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1162/neco.1995.7.6.1129
http://dx.doi.org/10.1214/aos/1013699998
http://dx.doi.org/10.1073/pnas.1809779115
http://dx.doi.org/10.1073/pnas.1809779115
http://dx.doi.org/10.1073/pnas.1809779115
http://dx.doi.org/10.1109/TSP.2011.2129515
http://dx.doi.org/10.1016/j.neuroimage.2010.02.059
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.1016/j.neuroimage.2016.02.045
http://dx.doi.org/10.32614/RJ-2017-066
http://dx.doi.org/10.3758/BF03211910
http://dx.doi.org/10.1126/science.1138071
http://dx.doi.org/10.1016/j.neuroimage.2020.117411
http://dx.doi.org/10.1016/j.neuroimage.2020.117411
http://dx.doi.org/10.1016/j.neuroimage.2020.117411
http://dx.doi.org/10.1016/j.neuroimage.2018.07.056
http://dx.doi.org/10.3389/fpsyt.2018.00516
http://dx.doi.org/10.1109/TBME.2010.2050319
http://dx.doi.org/10.1109/TBME.2010.2050319
http://dx.doi.org/10.1109/TBME.2010.2050319


Cheung, B.L.P., Van Veen, B.D., 2011. Estimation of cortical connectivity from E/MEG using nonlinear state-space models, in:1088

2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 769–772. https://doi.org/10.1089

1109/ICASSP.2011.5946517.1090
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van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R., 2014. On asymptotically optimal confidence regions and tests for1159

high-dimensional models. The Annals of Statistics 42, 1166 – 1202. https://doi.org/10.1214/14-AOS1221.1160

Geweke, J., 1982. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77,1161

304–313. https://doi.org/10.1080/01621459.1982.10477803.1162

Geweke, J.F., 1984. Measures of Conditional Linear Dependence and Feedback Between Time Series. J. Am. Stat. Assoc. 79,1163

907–915. https://doi.org/10.1080/01621459.1984.10477110.1164

Goldstein, T., Studer, C., Baraniuk, R., 2014. A field guide to forward-backward splitting with a FASTA implementation.1165

arXiv preprint URL: https://arxiv.org/abs/1411.3406.1166

Gorodnitsky, I.F., George, J.S., Rao, B.D., 1995. Neuromagnetic source imaging with FOCUSS: a recursive weighted min-1167

imum norm algorithm. Electroencephalography and Clinical Neurophysiology 95, 231–251. https://doi.org/10.1016/1168

0013-4694(95)00107-A.1169

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkko-1170
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Appendix A. Parameter Estimation1358

This appendix provides some technical details of the EM algorithm used in NLGC as well as the VAR1359

fitting used by the two-stage approaches. In Appendix A.1, we present the filtering and smoothing proce-1360

dures to obtain the conditional distribution p(x1:T |y1:T ;✓), followed by the VAR fitting procedure used in1361

two-stage approaches that are derived in Appendix A.2.1362

Appendix A.1. Fixed Interval Smoothing1363

As mentioned earlier, under Gaussian assumptions on nt andwt, the conditional density of p(x1:T |y1:T ;✓)1364

is also Gaussian (Anderson and Moore, 2005). As a result, we just need to find the conditional mean and1365

covariance matrix of the random vector x1:T given y1:T and ✓.1366

Using the Kalman filter, we can compute the filtered densities p(xt|y1:t;✓) for t = 1, 2, . . . , T . Using1367

the filtered densities, the FIS procedure allows us to also find p(xt|y1:T ;✓) for t = 1, 2, . . . , T . To this1368

end, we first perform state augmentation to transform VAR(K) models to equivalent VAR(1) models. The1369

augmented state vector is defined as ext = [x>
t ,x

>
t�1, . . . ,x

>
t�K+1]

>
2 RKM . The VAR(K) model in Eq. (2)1370

can thus be rewritten as a VAR(1) model given by:1371

ext = eAext�1 + ewt, t = 1, 2, . . . , T , (A.1)1372

where1373

eA :=

2

6666666664

A1 A2 . . . AK�1 AK

IM 0 . . . 0 0

0 IM . . . 0 0
...

...
. . .

...
...

0 0 . . . IM 0

3

7777777775

2 RKM⇥KM
, (A.2)1374

and ewt 2 RKM is the augmented state noise vector with covariance matrix eQ := diag(�2
1 , . . . ,�

2
M , 0, 0, . . . , 0).1375

Similarly, we can modify the measurement model in Eq. (1) as follows1376

yt = eCext + nt, t = 1, 2, . . . , T , (A.3)1377

with eC = [C,0, . . . ,0] 2 RN⇥KM .1378

Let us define the conditional mean, covariance, and cross-variance of the sources as ext1|t2 := E[ext1 |y1:t2 ],1379

⌃t1|t2 := Cov[ext1 |y1:t2 ], and ePt1,t2|T := Cov[ext1 , ext2 |y1:T ], respectively, for two given time-points 1  t1, t2 1380

T . Assuming that matrices eA, eB, eC, eQ, R, and {yt}
T
t=1 are given, we can utilize the Kalman filter to obtain1381

p(ext|y1:t) ⇠ N (ext|t, ⌃t|t), t = 1, . . . , T . Next, we use FIS to also find p(ext|y1:T ) ⇠ N (ext|T , ⌃t|T ), t =1382

1, . . . , T .1383

According to (Jong and Mackinnon, 1988), for the the conditional cross-covariance, we have the following1384
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Algorithm 3 Fixed Interval Smoothing

Input: MEG measurements {yt}Tt=1, lead field matrix C, measurement noise covariance matrix R, VAR models parameters

{Ak}Kk=1 and Q.

1: Construct augmented matrices eA, eQ, and eC.

2: Forward filter for t = 0, 1, . . . , T � 1:

ext+1|t = eAext|t.

⌃t+1|t = eA⌃t|t eA> + eQ.

Kt+1 = ⌃t+1|t eC>(eC⌃t+1|t eC> +R)�1.

ext+1|t+1 = ext+1|t +Kt+1(yt+1 � eCext+1|t).

⌃t+1|t+1 = ⌃t+1|t �Kt+1(eC⌃t+1|t eC> +R)K>
t+1.

3: Backward smoothing for t = T � 1, T � 2, . . . , 1, 0:

ext+1|t = eAext|t.

⌃t+1|t = eA⌃t|t eA> + eQ.

St = ⌃t|t eA>⌃�1
t+1|t.

ext|T = ext|t + St(ext+1|T � ext+1|t).

⌃t|T = ⌃t|t + St(⌃t+1|T �⌃t+1|t)S
>
t .

4: Covariance smoothing for t1, t2 = T, T � 1, . . . , 1, 0:

ePt1,t2|T =

8
>>>><

>>>>:

eP>
t2,t1|T

, t1 > t2,

⌃t1|T , t1 = t2,

St1
ePt1+1,t2|T , t1 < t2.

5: Extract the first- and second-order moments of source activities from the augmented model:

xt|T =
⇥
ext|T

⇤
1:M

, t = K + 1, . . . , T,

Pt1,t2|T =
⇥ePt1,t2|T

⇤
1:M,1:M

, t1, t2 = K + 1, . . . , T.

Output: Smoothed means and covariances xt1|T ,Pt1,t2|T , t1, t2 = 1, 2, · · · , T .

recursive relationship:1385

ePt1,t2|T =

8
>>>><

>>>>:

eP>
t2,t1|T , t1 > t2,

⌃t1|T , t1 = t2,

St1
ePt1+1,t2|T , t1 < t2,

(A.4)1386

where St1 = ⌃t1|t1
eA>⌃�1

t1+1|t1 .1387

Finally, to extract the first- and second-order moments of the sources from the augmented model, we1388

define xt|T := E[xt|y1:T ] and Pt1,t2|T := Cov[xt1 ,xt2 |y1:T ]. From the definition of the augmented model, we1389

have1390

xt|T =
⇥
ext|T

⇤
1:M

, t = 1, . . . , T,

Pt1,t2|T =
⇥ePt1,t2|T

⇤
1:M,1:M

, t1, t2 = 1, . . . , T.
(A.5)1391

Algorithm 3 summarizes the overall procedure for finding the smoothed means and covariance matrices. A1392

costly computational step in Algorithm 3 is the inversion of ⌃t+1|t 2 RKM⇥KM that needs to be performed1393

in each iteration. In order to mitigate this source of computational complexity, we use the steady-state1394
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filtering approach of (Pirondini et al., 2018). Let us define the steady-state covariance matrices ⌃(+) and1395

⌃(�) as follows1396

⌃(+) := lim
t!1

⌃t|t,

⌃(�) := lim
t!1

⌃t+1|t.
(A.6)1397

Replacing these steady-state values into the forward filter yields1398

⌃(�) = eA⌃(+) eA> + eQ,

⌃(+) = ⌃(�)
�⌃(�) eC>(eC⌃(�) eC> +R)�1 eC⌃(�)

,

(A.7)1399

which is known as the discrete-time algebraic Riccati (DARE) equation with respect to ⌃(+). The DARE1400

equation can be solved e�ciently using the MacFarlane-Potter-Fath eigen-structure method (Malik et al.,1401

2011). Solving the Riccati equation gives the steady-state covariance matrices and from there, we can1402

compute the Kalman gain (Kt) and smoothing gain (St) independent of t:1403

Kt+1 ⇡ K := ⌃(�) eC>(eC⌃(�) eC> +R)�1
, 8t,

St+1 ⇡ S := ⌃(+) eA>
⇣
⌃(�)

⌘�1
, 8t.

(A.8)1404

As a result, only two matrix inversions are required at the beginning of the FIS, thereby providing significant1405

computational savings.1406

Appendix A.2. VAR Model Fitting in the Two-Stage Methods1407

In the two-stage approaches, the source estimates are first computed using a source localization procedure,1408

followed by VAR model fitting. Let us denote the source estimates by {bxt}
T
t=1. The VAR(K) model fitting1409

can be performed in various ways, among which maximum likelihood estimation is a popular method (Haykin,1410

2013). To this end, one needs to compute b✓MLE := argmax
✓

log p(bx1:T ;✓), where1411

log p(bx1:T ;✓) = �
T

2
log(2⇡

MY

i=1

�
2
i )�

MX

i=1

1

2�2
i

kbxi �
bXaik

2
2, (A.9)1412

with bxi := [bxi,K+1:T ]>, and bX :=
h
[bx1,K:T�1]>, . . . , [bx1,1:T�K ]>, . . . , [bxM,1:T�K ]>

i
. Setting the derivative of1413

the log-likelihood with respect to the parameters to zero gives the following closed-form solution1414

bai = ( bX> bX )�1 bX>bxi, b�2
i =

1

T
kbxi �

bXbaik22, 8i. (A.10)1415

Similar to NLGC, we can enforce sparsity by considering an `1-norm regularized maximum likelihood prob-1416

lem. To this end, we need to find b✓SMLE := argmax
✓

log p(bx1:T ;✓)+R(�,✓), whereR(�,✓) := �
PM

i=1 �ikaik11417

is the `1-norm penalty and � := [�1, · · · ,�M ]> 2 RM is the regularization vector. As mentioned in Sec-1418

tion 4.4.1, this problem does not have a closed-form solution. However, we can use iterative methods such1419
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as FASTA (Goldstein et al., 2014) or Iteratively Re-weighted Least Squares (IRLS) (Ba et al., 2014) to1420

obtain the `1-norm regularized estimates. The regularization parameters � can be tuned using standard1421

cross-validation techniques, as mentioned in Section 4.4.1 (Remark 3).1422

Appendix B. Proof of Theorem 11423

The proof of Theorem 1 follows that of the main theorem in (Sheikhattar et al., 2018). First, we define1424

the following notations for a given log-likelihood function `(✓) with parameter ✓:1425

˙̀(✓) := r✓`(✓),

῭(✓) := r
2
✓`(✓),

I(✓) := E
h
˙̀(✓) ˙̀(✓)>

i
,

(B.1)1426

where ˙̀(.) denotes the gradient vector of the likelihood with respect to ✓, also referred to as the score1427

statistics, ῭(.) denotes the Hessian matrix of the log-likelihood, and I(.) is the Fisher information matrix.1428

We define the de-biased deviance di↵erence between the true value of ✓ and its estimate b✓ as (Sheikhattar1429

et al., 2018):1430

D(b✓;✓) := 2
�
`(b✓)� `(✓)

�
� ˙̀(b✓)> ῭(✓)�1 ˙̀(b✓). (B.2)1431

Starting from the definition of the log-likelihood function, we can decompose `(✓) as1432

`(✓) =
TX

t=1

`t(✓). (B.3)1433

where `t(✓) = log p(yt|y1:t�1;✓) for t = 2, · · · , T with the convention `1(✓) = log p(y1;✓). Using the1434

second-order Taylor expansion of `(✓) around b✓ along with the intermediate value theorem, we have1435

`(✓) = `(b✓) + (✓ � b✓)> ˙̀(b✓) + 1

2
(✓ � b✓)> ῭(e✓)(✓ � b✓), (B.4)1436

where e✓ := �✓ + (1 � �)b✓ for some � 2 (0, 1) such that ke✓ � ✓k2 <kb✓ � ✓k2. Substituting `(✓) from Eq.1437

(B.4) into Eq. (B.2) gives1438

D(b✓;✓) = �2(✓ � b✓)> ˙̀(b✓) + (✓ � b✓)> ῭(e✓)(✓ � b✓) + ˙̀(b✓)>⇥ ˙̀(b✓),1439

where ⇥ := ῭(✓)�1. Using an auxiliary vector # := b✓ � ⇥ ˙̀(b✓) and after rearrangement, the de-biased1440

deviance can be rewritten as1441

D(b✓;✓) = �(#� ✓)> ῭(b✓)(#� ✓) +�, (B.5)1442

with1443

� = 2(✓ � b✓)>
�
I� ῭(b✓)⇥

�
˙̀(b✓) + ˙̀(b✓)>⇥

�
I� ῭(b✓)⇥

�
˙̀
i(b✓) + (✓ � b✓)>

�
῭(e✓)� ῭(b✓)

�
(✓ � b✓). (B.6)1444

Employing the consistency of the estimation, i.e., b✓ p
�! ✓ and the Lipschitz property of the second-order1445
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derivative of the Gaussian log-likelihood function, one can show that the term � asymptotically goes to zero1446

as T ! 1 with a rate of kb✓ � ✓k3 = oP
�
1/T 3/2

�
(van de Geer et al., 2014; Sheikhattar et al., 2018).1447

Let us now consider the link (j 7! i) 2 I. In what follows, we prove the first and second assertions of1448

the theorem regarding the null and alternative hypotheses separately.1449

Null Hypothesis1450

The Taylor expansion of the score statistics can be expressed as1451

˙̀(b✓) = ˙̀(✓) + ῭(e✓)(b✓ � ✓), (B.7)1452

where e✓ = �✓ + (1� �)b✓ for some � 2 (0, 1). Combining the Taylor expansion in Eq. (B.7) along with the1453

definition # = b✓ �⇥ ˙̀(b✓), we have1454

#� ✓ = �⇥ ˙̀(✓) +�, (B.8)1455

with � :=
�
I � ⇥ ῭(e✓)

�
(b✓ � ✓). Following the same argument for � in Eq. (B.6), one can show that1456

� = oP(1/T ) is asymptotically negligible as T ! 1 (van de Geer et al., 2014). In order to obtain the1457

asymptotics of the score statistic and the Hessian matrix of the log-likelihood function `(✓), the conventional1458

law of large numbers (LLN) and the central limit theorem (CLT) can be used, since the process realizations1459

in the log-likelihood decomposition of Eq. (B.3) (yt|y1:t�1, 8t > 1) are independent across time. This is due1460

to the fact that the noise processes wt and nt in our generative model are i.i.d. Gaussian noise sequences1461

and are independent of each other (Anderson and Moore, 2005).1462

Using the LLN for the Hessian matrix of `(.) yields1463

h 1
T

῭(✓)|H(j 7!i),0

i
p
�! E

⇥
῭
t(✓)

⇤
= �I(✓). (B.9)1464

Moreover, the CLT for the score statistics gives1465

h 1
p
T

˙̀(✓)|H(j 7!i),0

i
d
�! N

⇣
0,I(✓)

⌘
. (B.10)1466

Using Slutsky’s theorem along with Eqs. (B.7), (B.9), and (B.10), asymptotic normality of # under the null1467

hypothesis can be obtained as1468

hp
T (#� ✓)|H(j 7!i),0

i
d
�! N

⇣
0,I(✓)�1

⌘
, (B.11)1469

as T ! 1. Following the definition of the deviance in Eq. (B.5) along with Eq. (B.9), we have1470

h
D(b✓;✓)|H(j 7!i),0

i
d
�! �

2(M), (B.12)1471

as T ! 1, where M is the dimension of the parameter ✓. Following the results in (Wald, 1943) and (Wilks,1472

1938) along with the fact that
h
D

db
(j 7!i) = D(b✓f ;✓f)�D(b✓r;✓r)

���H(j 7!i),0

i
, it can be shown that the de-biased1473
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deviance di↵erence converges to a central �2 distribution with M
d degrees of freedom1474

h
D

db
(j 7!i)|H(j 7!i),0

i
d
�! �

2(Md), (B.13)1475

where M
d = M

f
�M

r is the di↵erence between dimensions of the two nested models. This proves the first1476

assertion of Theorem 1. ⌅1477

Alternative Hypothesis1478

Following the development in (Davidson and Lever, 1970), we define a non-decreasing sequence
�
Tn

 1
n=1

1479

such that limn!1 Tn = T . Instead of defining a fixed alternative against the null hypothesis H(j 7!i),0 : ✓ =1480

(✓0,0), we instead define a sequence of local alternatives1481

n
H

{Tn}
(j 7!i),n

o1

n=1
=
n
H

{Tn}
(j 7!i),1 : ✓{Tn} =

⇣
✓⇤
0 ,✓

{Tn}
1

⌘o1

n=1
, (B.14)1482

where ✓{Tn}
1 = 1p

Tn
� is an unspecified sub-vector excluded from the reduced model with dimension M

d =1483

M
f
�M

r and � is a constant vector. According to (Davidson and Lever, 1970), we test for the departure1484

of the sequence of local alternatives from the null hypothesis at the true parameter ✓⇤ = (✓⇤
0 ,✓

⇤
1) with1485

✓⇤
1 = limn!1 ✓{Tn}

1 .1486

For notational convenience, we hereafter drop the subscript n in Tn, noting that the equations involving1487

limits of T denote sequential limits. Defining the de-biased vector #{T} := b✓{T}
�⇥⇤ ˙̀

�b✓{T}� corresponding1488

to the local alternative H
{T}
(j 7!i),1 with ⇥⇤ := ῭(✓⇤)�1 and utilizing the following expansions1489

˙̀
�b✓{T}� = ˙̀(✓⇤) + ῭(✓⇤)

�b✓{T}
� ✓⇤�+ oP(1/T ),

˙̀
�
✓{T}� = ˙̀(✓⇤) + ῭(✓⇤)

�
✓{T}

� ✓⇤�+ oP(1/T ),
(B.15)1490

we have1491

#{T}
� ✓⇤ = ✓{T}

� ✓⇤
�⇥⇤ ˙̀

�
✓{T}�+ oP(1/T ). (B.16)1492

Using LLN and CLT similar to the case of the null hypothesis, we conclude1493

h 1
T

῭
�
✓{T}�

���HT
(j 7!i),1

i
p
�! �I(✓⇤),

h 1
p
T

˙̀
�
✓{T}�

���HT
(j 7!i),1

i
d
�! N

⇣
0,I(✓⇤)

⌘
,

(B.17)1494

and the asymptotic normality of # follows as1495

hp
T
�
#{T}

� ✓⇤�
���HT

(j 7!i),1

i
d
�! N

⇣
�,I(✓⇤)�1

⌘
, (B.18)1496

where � := [0>
, �>]> is the asymptotic mean. It is noteworthy that the non-zero asymptotic mean is1497

obtained from the Pitman drift rate where the sequence of true local parameters ✓{T} tends to its limit ✓⇤
1498

at a rate
��✓{T}

� ✓⇤
�� = O(1/

p
T ) (Davidson and MacKinnon, 1987).1499

51



Next, using an extension of Cochrans theorem to non-central chi-square distribution (Tan, 1977) and1500

using the asymptotic normality of #{T} in Eq. (B.18), it follows that under the sequence of local alternatives1501

H
{T}
(j 7!i),1, the de-biased deviance di↵erence of the two nested full and reduced models converges to a non-1502

central chi-squared distribution as T ! 1:1503

h
D

db
(j 7!i)

���H{T}
(j 7!i),1

i
d
�! �

2(Md
, ⌫(j 7!i)), (B.19)1504

where M
d is the di↵erence between the dimensions of the two nested models and ⌫(j 7!i) presents the non-1505

centrality parameter. To identify the non-centrality parameter, let us consider the block decomposition of1506

I(✓⇤) corresponding to ✓⇤
0 and ✓⇤

1 as1507

I(✓⇤) =

0

@I0,0(✓⇤) I0,1(✓⇤)

I1,0(✓⇤) I1,1(✓⇤)

1

A . (B.20)1508

Then, ⌫(j 7!i) := �>I1,1(✓⇤)� with I1,1(✓⇤) := I1,1(✓⇤)� I1,0(✓⇤)I�1
0,0(✓

⇤)I0,1(✓⇤). This proves the second1509

assertion of the theorem. ⌅1510

Finally, to test whether the theoretical prediction of Theorem 1 regarding the null distribution is valid1511

for our analysis of experimental MEG data, we chose 4 representative trials (one older and one younger1512

participant in each condition) and plotted the histogram of the debiased deviance di↵erences of all the1513

tested GC links that were not significant. According to Theorem 1, the debiased deviance di↵erences of1514
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Figure B.1: Histograms of the debiased deviance di↵erences corresponding to non-GC links for younger and older
representative subjects in tone and rest conditions from Section 2.4. The histograms closely match the prediction of
Theorem 1.

52



such non-GC links should follow a chi-square distribution with degree of freedom 2 ⇥ 42 = 32 (r = 41515

eigenmodes and VAR(2) model). Fig. B.1 shows the corresponding chi-square density and the empirical1516

histograms. As it can be seen, the empirical histograms closely match the theoretical chi-square density.1517

Appendix C. Mixed-E↵ects Model1518

Full models for the mixed e↵ect models included interactions among the fixed e↵ects of age, condition,1519

connectivity type and hemisphere, and random slopes and intercepts for within-subject factors of condition,1520

connectivity type and hemisphere per subject. Summary tables are given in Table C.1.1521

Parameter Delta+Theta Band Beta Band
Count model: (Intercept) 3.06(0.07)⇤⇤⇤ 2.24(0.10)⇤⇤⇤

Count model: connectivityF->P �0.84(0.11)⇤⇤⇤ �0.10(0.14)
Count model: connectivityF->T �1.29(0.13)⇤⇤⇤ 0.29(0.12)⇤

Count model: connectivityP->F 0.13(0.08) 0.96(0.11)⇤⇤⇤

Count model: connectivityP->P �0.79(0.12)⇤⇤⇤ 1.03(0.11)⇤⇤⇤

Count model: connectivityP->T �0.84(0.11)⇤⇤⇤ 0.86(0.11)⇤⇤⇤

Count model: connectivityT->F �0.29(0.09)⇤⇤ 0.66(0.12)⇤⇤⇤

Count model: connectivityT->P �1.10(0.12)⇤⇤⇤ �0.02(0.13)
Count model: connectivityT->T �0.97(0.12)⇤⇤⇤ �0.13(0.14)
Count model: AgeOlder �0.16(0.11) �0.05(0.16)
Count model: Conditiontone �0.93(0.12)⇤⇤⇤ 0.96(0.11)⇤⇤⇤

Count model: hemi2inter �0.01(0.04)
Count model: connectivityF->P:AgeOlder �0.18(0.18) �0.10(0.23)
Count model: connectivityF->T:AgeOlder 0.25(0.21) �0.30(0.22)
Count model: connectivityP->F:AgeOlder 0.05(0.13) �0.07(0.19)
Count model: connectivityP->P:AgeOlder 0.26(0.17) �0.29(0.19)
Count model: connectivityP->T:AgeOlder �0.46(0.21)⇤ 0.24(0.18)
Count model: connectivityT->F:AgeOlder 0.12(0.15) �0.42(0.20)⇤

Count model: connectivityT->P:AgeOlder 0.26(0.19) �0.25(0.23)
Count model: connectivityT->T:AgeOlder 0.14(0.18) �0.03(0.23)
Count model: connectivityF->P:Conditiontone 1.86(0.16)⇤⇤⇤ �0.99(0.19)⇤⇤⇤

Count model: connectivityF->T:Conditiontone 2.61(0.17)⇤⇤⇤ �0.88(0.16)⇤⇤⇤

Count model: connectivityP->F:Conditiontone �0.07(0.16) �1.31(0.15)⇤⇤⇤

Count model: connectivityP->P:Conditiontone 1.39(0.17)⇤⇤⇤ �1.65(0.15)⇤⇤⇤

Count model: connectivityP->T:Conditiontone 1.47(0.16)⇤⇤⇤ �1.60(0.16)⇤⇤⇤

Count model: connectivityT->F:Conditiontone �0.07(0.17) �1.07(0.15)⇤⇤⇤

Count model: connectivityT->P:Conditiontone 1.13(0.18)⇤⇤⇤ �0.82(0.17)⇤⇤⇤

Count model: connectivityT->T:Conditiontone 0.91(0.19)⇤⇤⇤ �0.82(0.18)⇤⇤⇤

Count model: AgeOlder:Conditiontone �0.50(0.22)⇤ �0.57(0.19)⇤⇤

Count model: Conditiontone:hemi2inter �0.32(0.06)⇤⇤⇤

Count model: connectivityF->P:AgeOlder:Conditiontone 0.51(0.29) 1.57(0.29)⇤⇤⇤

Count model: connectivityF->T:AgeOlder:Conditiontone 0.30(0.30) 0.46(0.33)
Count model: connectivityP->F:AgeOlder:Conditiontone 0.72(0.28)⇤ 0.22(0.26)
Count model: connectivityP->P:AgeOlder:Conditiontone 0.64(0.28)⇤ 0.90(0.26)⇤⇤⇤

Count model: connectivityP->T:AgeOlder:Conditiontone 1.20(0.31)⇤⇤⇤ 0.43(0.26)
Count model: connectivityT->F:AgeOlder:Conditiontone 1.02(0.29)⇤⇤⇤ 0.77(0.26)⇤⇤

Count model: connectivityT->P:AgeOlder:Conditiontone 0.40(0.32) 0.26(0.32)
Count model: connectivityT->T:AgeOlder:Conditiontone 0.67(0.32)⇤ 1.03(0.29)⇤⇤⇤

Zero model: (Intercept) �3.49(0.22)⇤⇤⇤ �3.31(0.18)⇤⇤⇤

AIC 10122.64 10803.40
Log Likelihood �5020.32 �5362.70
Num. obs. 1584 1584
Num. groups: MEG ID 22 22
Var (count model): MEG ID (Intercept) 0.01 0.01
⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05

Table C.1: Statistical model summary table corresponding to Section 2.4.
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