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Abstract: All living cells generate structurally complex and compositionally diverse spectra of
glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense,
and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar
and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than
130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide
biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic
reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to
different locations of these compartments and sequentially add or cleave various sugars to synthesize
the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations,
the glycosylation sites, in the cell is essential and involves numerous secretory pathway components.
This review presents the current state of knowledge about the mechanisms of protein trafficking
between ER and Golgi. It describes what is known about the primary components of protein sorting
machinery and trafficking, which are recognition sites on the proteins that are important for their
interaction with the critical components of this machinery.

Keywords: glycosyltransferases; ER-Golgi trafficking; mechanism of protein sorting; COPI and
COPII complexes; sequences and motifs involved in trafficking

1. Introduction

All living cells generate structurally complex and compositionally diverse spectra of
glycans and glycoconjugates, critical for organismal evolution, development, functioning,
defense, and survival. The glycans attached to proteins and lipids determine their activity,
solubility, subcellular localization, and structural organization in cells during normal and
stressed conditions. Glycan-rich cell walls control cell growth and morphogenesis and
protect them against environmental stresses. Glycosylation is the reaction that forms glyco-
sidic linkages between activated sugar (donor substrate) and acceptor substrate (protein,
lipid, polysaccharide, etc.). This reaction is performed by a large group of specialized
enzymes, called glycosyltransferases, and broadly takes place in most organisms, such
as yeast, humans, plants, etc. Because of the diversity of sugars and acceptor substrates,
the resulting products of glycosylation present high variability and complexity in structures
and functions.

Glycosyltransferases (GTs) are distributed among more than 130 gene families [1].
Most GTs are type II transmembrane proteins with several distinct domains: a short N-
terminal cytosolic tail, transmembrane domain (TMD), flexible stem region, and large
catalytic domain. Another group of GTs comprises integral membrane proteins with
multiple TMDs and a large catalytic domain frequently localized on the cytosolic side of
the membrane. Based on the type of catalytic domain folds, the GTs are grouped into GT-A,
GT-B, and GT-C [2,3]. Two tight β/α/β Rossmann domains form a central β-sheet in GT-A
folding, and mostly GT-A type proteins contain DxD catalytic motifs that cooperate with
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metal. Instead of being tightly associated, the two β/α/β Rossmann domains in GT-B are
separate and form a cleft. GT-C proteins are predicted and found based on sequence and
structure research and contain multiple hydrophobic helices. In addition, it was also found
that the structure of the peptidoglycan glycosyltransferase of Aquifex aeolicus contains a
lysozyme-like domain [4].

The primary types of glycosylation in various glycoconjugates are N-glycosylation
and O-glycosylation. N-glycosylation is the formation of the glycosidic linkage between the
amino group of an asparagine residue and the first sugar of the glycan. Asparagine in the
Asn-X-Ser/Thr consensus sequence is the candidate for N-glycosylation, although not all
Asn residues are glycosylated [5]. N-glycosylation is essential and usually impacts protein
solubility, structure, and folding. It is also essential for protein localization and interactions
with glycan-binding proteins. The glycan oligosaccharides in N-glycosylated proteins share
the core sugar sequence and structure-Manα1-6(Manα1–3)Manβ1-4GlcNAcβ1-4GlcNAcβ1-
Asn [6], which can be further branched with different sugars depending on the type of
mature glycan synthesized. The N-glycosylation reactions take place in the endoplasmic
reticulum (ER) and Golgi. The initiation of N-glycosylation occurs in the ER with the
biosynthesis of the precursor oligosaccharide [7], which is later transferred to the peptide’s
Asn by the oligosaccharyltransferase (OST) complex.

At the end of the multistep process, the glycoprotein is transported to cis-Golgi, and the
next steps of N-glycan processing continue in different Golgi cisternae. The GTs, such as
medial-Golgi-localized N-acetylglucosaminyltransferase I (GnTI) [8,9], GnTII [10,11], trans-
Golgi-localized Galactose-1-phosphate uridylyltransferase l (GALT) [12], β-galactoside-
α2,6-sialyltransferase l (ST6Gal-l) [13–15], and β-galactoside-α2,3-sialyltransferase-III
(ST3Gal-llI) [16,17] are localized in distinct Golgi cisternae and responsible for subsequent
steps of the synthesis of final glycan structures. It was demonstrated that most of these GTs
form homo- and heterocomplexes, most likely to support the error-proof synthesis [14,18,19].

The O-glycosylation process is different in plant and mammalian cells. In mammalian
type O-glycosylation, the glycan is attached to the hydroxyl group of the serine or threonine
residue in a glycoprotein. O-glycosylation primarily occurs in Golgi and is also found
in the cytoplasm and nucleus [20–22]. The first sugar, N-acetylgalactosamine (GalNAc),
links to serine and threonine residues in Golgi and is called O-GalNAc. Multiple core
sugar sequences are found in O-GalNAc-type glycosylation, and different biosynthesis
steps are involved [6,23]. In plants, the main O-glycoproteins are the hydroxyproline-rich
glycoprotein (HRGP) superfamily, including arabinogalactan proteins (AGPs), extensions
(EXTs), and the repetitive Pro-rich proteins (PRPs) [24]. The type II arabino-3,6-galactans
(AGs) get attached to noncontiguous Hyp residues in AGPs in Golgi [24]. In A.thaliana,
eight Hyp-galactosyltransferases added the Gal to Hyp residues as the initiation steps of O-
glycosylation of AGPs [24,25]. The variation of AGPs depends on the complexity of galactan
side chains attached to Hyp residues [24]. The β 1-6 galactosyltransferases are involved
in the elongation of the side-chain backbone; other GTs, such as arabinosyltransferases,
rhamnosyltransferases, and xylosyltransferases, further branch this galactan backbone [24].
The Ser residues and three to five contiguous Hyp residues are the candidate sites of O-
glycosylation in EXTs. The β 1-3-arabinosyltransferase attaches the first arabinofuranose
reside to Hyp [24]. The Reduced Residual Arabinose 1–3 (RRA1-RRA3), Xyloglucanase 113
(XEG113), and Extensin Arabinose Deficient (ExAD) add the second, third and fourth Araf
residues sequentially [24].

Cell-wall polysaccharides are synthesized in two locations: the Golgi and the plasma
membrane. On the plasma membrane, most GTs involved in synthesizing polysaccharides
are integral membrane proteins with multiple TMDs. For example, in plants, cellulose
synthases (CESA) [3,26–28] are organized in multiprotein cellulose synthase complexes
(CSCs) and synthesize cellulose microfibrils. These complexes are assembled in Golgi
and delivered to the plasma membrane via cargo carriers. Multiple isoforms of CESA are
identified: in primary plant cell wall synthesis, CESA1, CESA2, CESA3, CESA5, CESA6,
and CESA9 assemble CSCs in Golgi [28,29]. At the same time, CESA4, CESA7, and CESA8
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are involved in the biosynthesis of the secondary plant cell wall [28,29]. Other plant cell
wall polysaccharides representing pectins and hemicelluloses are synthesized in Golgi
by Golgi-localized GTs [3]. The latest studies suggest that Golgi-localized GTs are also
organized in multiprotein complexes to synthesize polysaccharides. For example, β -1,4-
xylosyltransferase (IRX) 9, IRX10, and IRX14 are xylosyltransferases and form the protein
complex to synthesize the backbone of xylan [30–32]. The other seven GTs (cellulose
synthase-like C4; xyloglucan xylosyltransferases XXT1, XXT2, and XXT5; galactosyltrans-
ferases XLT2 and MUR3 and fucosyltransferase FUT1) involved in xyloglucan biosynthesis
were also shown to form heterocomplexes [3,33,34]. The homogalacturonan synthesizing
galacturonosyltransferase (GAUT) 1 and GAUT7 proteins form a heterocomplex required
to anchor catalytically active GAUT1 to Golgi [35].

2. Main Components of the Secretory Pathway

The trafficking of enzymes involved in glycosylation is essential for their proper
delivery to the sites of their functioning in the cell, but it is still poorly understood. However,
the information about trafficking processes available for various other proteins can also be
applied to GTs. More information has recently become available concerning the primary
components and routes of secretory pathways. The GTs and glycosidases involved in
glycosylation, the focus of this review, most likely follow a similar secretory pathway and
therefore are subjected to similar sorting mechanisms like other membrane proteins.

Thus, it has become clear that the coat protein complex I (COPI) -coated cargo carriers
and the coat protein complex II (COPII)-coated cargo carriers mediate the trafficking path
between the ER and the Golgi (Figure 1). One part of this trafficking pathway is the sorting
signal in the protein sequence of GTs, which is recognized by the cargo receptor or COP
coatomer to trigger the trafficking of proteins. The transmembrane region and N-terminal
cytoplasmic domain of lipid phosphatase Sac1 are essential in the retention mechanism
of phosphatidylinositol-3-phosphatase (Sac1) in Golgi [36]. The core components of the
COPI-coated cargo carriers are the α-COP, β-COP, β’-COP, γ-COP, δ-COP, ε-COP, and ζ-COP
subunit. The activation of the GTPase ADP-ribosylation factor 1 (Arf1) is a prerequisite
for the assembly of the COPI coat [37–39]. Guanine nucleotide-exchange factors (GEFs)
stimulate the GTPase Arf1 activation by exchanging GDP to GTP; then, the activated
GTPase Arf1 embeds into the lipid membrane by using a myristoylated α-helix [40,41].
In turn, GTPase Arf1 recruits the coatomer complex with an inner coat and outer coat
to transport protein and lipid cargo from the Golgi to the ER and between the Golgi
cisternae [42,43]. COPII-coated cargo carriers deliver the cargo proteins from the ER to the
Golgi, with the inner and outer layers of the protein lattice acting as the core component
of COPII-coated cargo carriers [44–47]. The activation of the Ras-like small COPII coat
Sar1 GTPase is the prerequisite of the assembly of the COPII coat [48]. Guanine nucleotide-
exchange factor Sec12 assists the exchange of the GDP to the GTP on Sar1 to recruit the
coat protein Sec23-Sec24 inner layer of the protein lattice, and the heterotetramers of coat
protein Sec13 and Sec31 as the outer layer of the protein lattice is recruited to continue the
assembly of the COPII coat [44–47].

There are some differences in COPI and COPII transportation in plants compared to
animals and yeast. In plant cells, the COPII and COPI-coated cargo carriers’ transportation
impacts plant growth, stress response, and protein transportation. In A.thaliana, multiple
paralogs of COPI components have been discovered [49,50]. The silencing of the β1/2-
COP gene enhanced the sensitivity of A.thaliana to salt stress [49,51]. Double mutant of
β1/2-COP and a single mutant of α2-COP were dwarfed compared to Col-0 [49,52], and the
silencing of β1/2-COP or α2-COP or p24 protein altered the structure of the Golgi [49,52,53].
The knockout of α1-COP, γ-COP, and ε-COP resulted in a reduction in seed production due
to altered pollen grain adherence and pollen tube germination [54]. The β′-, γ-, and δ-COP
proteins were shown to interact with each other and were localized in Golgi [55]. The β′-,
γ-, and δ-COP proteins were required to support the Golgi structure, and the silence of
these genes caused the plant cell death [55]. The maintenance of the Golgi structure also
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requires the recruitment of Arf1 [56] and multiple paralogs of the cargo receptor p24 family
protein [53]. The multiple paralogs of the p24 family proteins are involved in the trafficking
of GPI-anchored proteins to the plasma membrane. For example, it was shown that these
paralogs could interact with GPI-anchored protein arabinogalactan protein 4 [50]. In the
Arabidopsis p24δ3δ4δ5δ6 quadruple mutant, ER lumen protein-retaining receptor A(ERD2a),
as the K/HDEL receptor, accumulated in Golgi and, as a result, the expression of Sec31
gene was upregulated [53]. The p24 family protein affected the ERD2a trafficking by
direct interaction with ERD2a via luminal GOLD domain, and their interaction showed
pH-dependence [57,58].

Figure 1. The cargo transportation between ER and Golgi via COP-coated cargo carriers. ER:
endoplasmic reticulum; COPI: coat protein complex I; COPII: coat protein complex II; ERGIC: ER-
Golgi intermediate compartment. Note that the ERGIC compartment has not been demonstrated in
plant and yeast cells.

The Multiple paralogs of COPII protein components were also discovered in plants [59].
The expression pattern, subcellular localization, and function of the COPII protein paralogs
showed a significant difference [60–63]. SEC23A/SEC23D [64], SEC31A/B [61,65] and
Sar1B/C [62] had been reported to be required in pollen development. In Physcomitrium
patens, Sec23D is localized in the presumptive ER-exit sites [60]. The knockout of the Sec23d
gene suppressed the protein transportation between ER and Golgi and protein secretion in
the mutant plants, leading to ER morphology defects and ER stress [60]. In A.thaliana, Sar1A
is also localized in ER-exit sites [63]. The residue Cys84 in the Sar1A is crucial for its specific
interaction with AtSec23A, essential for the ER-export process [63]. The mutation of this
residue disturbed their interaction resulting in the suppression of the ER-export process of
vacuolar protein [63]. In A.thaliana, the formation of unusually giant COPII vesicles, which
modulated the transport of channel proteins and transporters, was observed in response to
stress conditions [66]. Even though the importance of COPII components in plant growth
and development has been demonstrated, the existence of COPII-coated cargo carriers in
plant cells is still disputed [67,68]. The notion that the Golgi entry core compartments can
work independently from COPII-coated cargo carriers formation has been proposed [69].

The cargo sorting during COPI and COPII coat assembly is essential. The sorting
signal in the cargo protein plays a dominant role in the direct or indirect interaction between
cargo proteins and components in the coat. The Sec24 subunit in the COPII complex is
involved in cargo sorting and directly binds with the cargo protein [70–72]. The diverse
cargo binding sites in the Sec24 protein recognize different cargo sorting signal motifs in
cargo proteins, and multiple isoforms of Sec24 are involved in diverse cargo sorting [71–73].
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For example, the ER-exit signal DxE [74,75], LxxLE [75,76], YxxNPF [77], triple arginine
(RRR) motif [78], and ΦXΦXΦ motif of bovine anion exchanger 1 (AE1) [79] are recognized
by Sec24. Sar1 also participates in cargo sorting and directly interacts with cargo sorting
signal motifs. Sar1A directly interacts with the polybasic motif of planar cell polarity
protein Frizzled-6 to adjust the cargo packaging into coated cargo carriers [80]. The RNKR
motif of Drosophila type I transmembrane protein Crumbs is the ER-exit signal interacting
with Sar1 [81]. Cargo transportation via COPII-coated cargo carriers also requires the
protein–protein interaction between cargo sorting motifs and COPI coatomers or cargo
receptors. The KXD/E motif of A.thaliana endomembrane protein 12 binds with COPI
coatomers [82]. α- COP, β’-COP, and γ-COP bind with diverse motifs to assemble the COPI-
coated cargo carriers. For example, α- COP and β’-COP directly bind di-lysine motifs [83],
and γ-COP recognizes the FFxxBB(x)n of the P24 protein [38] and directly binds with
human ER α-1, 2-mannosidase [84].

Besides the direct interaction between the cargo protein and COP complex, the cargo
receptors mediate the cargo sorting. In mammalian cells, the ER-Golgi intermediate com-
partment (ERGIC) ERGIC-53 protein [85] and p24 protein families [76,77,86] are known
as the cargo receptors for the soluble cargo proteins, and Erv29 proteins are involved in
COPII vesicles assembly with the GFP-HDEL and glycosylated pro–α-factor (gpαf) cargo
proteins [87–89]. Transmembrane proteins Erv14 [90,91] and Erv26 [72] work as the cargo
receptors for the membrane proteins via their direct interaction with Sec24 and cargo
proteins. It has been shown that KDEL receptors recognize ER-retrieval signal KDEL and
directly interact with the KDEL motif. At the same time, the strength of interaction and
release of cargo protein is regulated by the difference of pH in the ER and the Golgi [72].
The Arg residues in the KDEL receptor anchored the KDEL peptides via salt bridge interac-
tions, whereas the Glu residues formed a hydrogen bond with tryptophan in the KDEL
receptor [92]. The Glu residues hydrogen bonding with histidine in the KDEL receptor
was shown to be pH-sensitive [92]. The cargo receptor Rer1 binds to the KKXX motif in
the ER membrane proteins [93] and the polar residue in the TMDs [94]. The positively
charged amino acids in the cytosolic tail, such as the di-arginine motif (RXR) and di-lysine
motif (KK or KXKXX), have proven to play essential roles in the trafficking of type I
membrane proteins [38]. In addition, so-called kin recognition has also been proposed.
The interactions between kin oligomers and GTs and glycosidases occur in specific Golgi
cisternae and prevent their entry into transportation carriers and their forward movement
to later cisternae [95].

3. Specific Sequence Motifs Involved in GTs and Glycosidases Sorting and Trafficking

The mechanism of trafficking GTs and glycosidases between the ER and the Golgi
is somewhat similar to the mechanism of diverse protein sorting in the Golgi and ER.
The transportation and localization of GTs and glycosidases rely on the presence of a single
amino acid (e.g., arginine, lysine, leucine, and phenylalanine residues) in the cytosolic tails
of GTs, or several amino acids together determine the localization of GTs. In yeast, the con-
sensus sequence of (F/L)-(L/I/V)-X-X-(R/K) is broadly found in many GTs and has been
shown to interact with the cargo receptor Vps74p protein in the assembly of COPI-coated
cargo carriers (Figure 2A) [96]. The single mutation of F4 or L5 and the double mutation of
K7 and R8 in the FLSKR motif in the cytosolic tail of α 1,2-mannosyltransferase (Kre2p)
impaired the protein interaction between vacuolar protein sorting-associated protein 74
(Vsp74) and Kre2p. Thus, the presence of the F4, L5, K7, and R8 residues is required in the
Kre2p cargo transportation via the coat complex COPI-coated cargo carriers [96]. In plants,
the localization of A.thaliana ER-α-mannosidase I (MNS3) depends on the four amino acid
sorting signal. MNS3 typically localizes in the early Golgi, and the LPYS Golgi-targeting
signal motif in the cytosolic tail of MNS3 is believed to be involved in the retaining mecha-
nism [97]. The fusion protein MNS3-GFP-HDEL contained the GFP and ER-targeting signal
HDEL at the C terminal of MNS3 and was primarily localized in the Golgi and weakly
in the ER [97]. This indicated that the retrieval function of the ER-target signal HDEL is
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inhibited in this fusion protein, and the LPYS Golgi-target signal drives the localization of
MNS3. However, the deletion of the LPYS Golgi-target signal and, specifically, the mutation
of leucine in the LPYS motif recruited fusion protein, MNS3-GFP-HDEL, to the ER [97],
which demonstrates the LPYS Golgi-target signal and primarily the leucine residue is
essential for localization of MNS3.

Figure 2. The protein–protein interaction between cargo sorting signal motifs in the GTs and COPI
coatomers or cargo receptors. (A): The cargo sorting signal motifs in the cytosolic tail of GTs interact
with cargo receptors (e.g., Vps74p and GOLPH3). (B): The GTs interact with putative cargo receptors
or directly interact with the COPI complex via cargo sorting signal motifs in the cytosolic tail and/or
TMDs. (C): The cargo sorting signal motifs in the cytosolic tail of GTs interact with the MHD domain
of δ-COP and β-COP. (D): The cargo sorting signal motifs in the cytosolic tail of GTs interact with the
MHD domain of δ-COP, ζ-COP, and β-COP. The figures are created in BioRender.com.

The arginine and lysine residues also play a dominant role in the transportation of GTs
in plants and animals. Di-arginine motifs (RR, RXR, or RXXR) are other ER-retaining signals
in plants [98]. The first 90 amino acids have been proved to be sufficient to localize A.thaliana
glucosidase I (AtGCSI) to the ER [99]. The di-arginine motifs (R6R7SAR10GR12) were found
in the cytosolic tail of AtGCSI, and the mutation of all four arginine residues altered its
ER-localization to the Golgi. In contrast, preserving only one of these di-arginine motifs was
sufficient for retaining the AtGCSI protein in the ER and punctate structures [98]. In animals,
three isoforms of GM3 synthase (SAT-I), a GT involved in ganglio-series ganglioside
synthesis, were discovered and named M1-SAT-I, M2-SAT-I, and M3-SAT-I. Surprisingly,
these three isoforms showed different localizations: M2-SAT-I and M3-SAT-I were localized
in the Golgi, and M1-SAT-I was found in the ER [100]. The arginine-rich motif RRXXXXR
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has proven critical for M1-SAT-I retention in the ER. The single mutation of any arginine in
this motif could not change the ER-localization of M1-SAT-I. However, the mutation of any
two arginine residues in this arginine-rich motif held M1-SAT-I in the Golgi [100].

In addition to being essential for the ER retention of GTs, the arginine and lysine
residues are also involved in the Golgi-targeting of GT and glycosidases in both plant
and animal cells. In N. tabacum, two arginine residues were found in the cytosolic tail
(MR2GYK5FCCDFR11) of Golgi-localized N. tabacum GnTI [101]. The mutation of R11 and
K5 resulted in GnTI being localized in the ER and the Golgi, while the mutation of R11, K5,
and R2 held GnTI predominantly in the ER. However, the mutation of K5 and R2 resulted
in GnTI being localized only in the Golgi [101]. These results demonstrate that the arginine
residues (R11) proximal to the TMD are essential for retaining GnTI in the Golgi [101].
The lysine residues in the cytosolic tail (MPRKRTLVVN) of A. thaliana a-mannosidase II
(GMII) are required for Golgi-localization. In contrast, the arginine and lysine residues in
the cytosolic tail (MSKRNPKILK) of A. thaliana glycosyltransferase XylT are essential for
this protein localization in the Golgi [101].

In mammalian cells, the [RK](X)[RK] sequence, as an ER-exit signal, is found in
the cytosolic tail of Golgi-localized β-1,3-galactosyltransferase (GalT2) [102]. GalT2 was
localized in the ER when the RR motif was mutated [102]. Meanwhile, the replacement
of RR to RAR/KAK/KK also held GalT2 in the Golgi, which indicates that the motifs
with similar [RK](X)[RK] properties have similar functions [102]. The mutations in the
[RK](X)[RK] sequence in the cytosolic tails of β-1,4-N-acetyl-galactosaminyltransferase
(GalNAcT), GM3 sialyltransferase (Sial-T2), and β1,4Galactosyltransferase (β1,4GT) also
altered their Golgi-localization [102]. Meanwhile, there are two [RK](X)[RK] motifs in
the cytosolic tail of Golgi-localized Sial-T2, and the mutation of any [RK](X)[RK] motif
resulted in the ER-localization of Sial-T2 [102]. The mutation of R7R8 held Sial-T2 in dual
localization—the majority of the Sial-T2 proteins localized in Golgi and partial Sial-T2
protein localized in the ER. In contrast, the mutation of R23R25 held Sial-T2 mostly in ER
and partially in the Golgi [102]. This indicated that the contribution of the [RK](X)[RK]
motif to localization could differ. The conserved sequence “φ-K4LLQR8” was critical for
the Golgi-localization of GlcNAc-1-phosphotransferase (Ptase). The localization of mutant
proteins with the single mutations of the K4/R8/S15 residues did not overlap with the
Golgi marker, GOLPH4 [103]. The Golgi-retention signal motif RPWS, which is in the
cytosolic tail of UbiA prenyltransferase (UBIAD1), determines the protein localization in
the Golgi, and the RPWS signal is highly conserved in its orthologs in different species [104].
The UBIAD1 protein with a mutation of the arginine residue in its RPWS motif failed to
retain UBIAD1 in the Golgi [104]. The positive charge and branched structure of the
arginine and lysine residues may be significant in the trafficking of GTs. Hence, the sorting
signal in the cytosolic tail of GTs determines the localization of GTs.

Arginine-based motifs are broadly involved in the trafficking of GTs and retaining
them either in the Golgi or ER. Therefore, the mechanism of recognizing arginine-based
motifs as specific to ER or Golgi-target signals is unclear. The distance between the arginine-
based motif and lipid bilayer and the distance between the arginine/lysine residues within
the motif can affect the function of arginine-based motifs. For example, the ER-localized
M1-SAT-I proteins changed localization primarily to Golgi when the amino acids 28-55 on
its N-terminus were deleted. Such deletion shortened the distance between the ER-target
signal RRXXXXR and membrane from 53 amino acids to 25 amino acids, indicating that the
function of ER-target signal RRXXXXR in localization of M1-SAT-I requires a long enough
functional distance [100]. The change in the distance between the arginine residues within
motifs can also alter the localization of plant and mammalian GTs. For instance, increasing
the distance between two arginine residues in the cytosolic tail of ER-localized A.thaliana
AtGCSI recruited this protein to the Golgi or partial Golgi [98]. In addition, shortening or
elongating the distance between K4 and R8 in the cytosolic tail of Ptase switched normal
Golgi-localization of the Ptase to ER-localization [103].
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4. Other Protein Domains Essential for the Trafficking of Enzymes Involved
in Glycosylation

Although the cytosolic tail of GTs and glycosidases is critical for their localization [98,101,102],
the transmembrane and luminal domains also impact the plant GTs localization. For exam-
ple, the lumen domain of A.thaliana AtGCSI, as well as its di-arginine motifs in the cytosolic
tail, affects the ER-localization of AtGCSI; the shortening of the AtGCSI lumen domain
results in a switch from its ER-localization to Golgi-localization when the di-arginine motifs
are deleted [98], which indicates the di-arginine motifs in the cytosolic tail and lumen
domain independently affect the localization of AtGCSI. The N-terminus protein sequence
of two proteins, Golgi-localized GnTI from N. benthamiana and trans-Golgi marker a–2,6-
sialyltransferase (ST), are grouped into three parts: the cytosolic tail, the TMD, and the
stem region. To study the function of the cytosolic tail, the TMD, and stem region in
localization of GnTI and ST, three parts of sequences of two proteins were switched in
different types of recombination [105]. The GnTI-ST-GnTI fusion protein generated by
swapping the TMD of GnTI with the TMD of ST was mislocalized and unable to function
correctly. Conversely, the switching of the cytosolic tail and stem region of GnTI to the
cytosolic tail and stem region of ST did not impact the localization of the fusion proteins in
the Golgi [105], indicating that the TMD is more critical for the correct localization of GnTI
(Figure 2B). The highly conserved sequence (FIYIQ) in the TMD of NtGnTI is responsible
for the protein localization in the cis/medial-Golgi [106]. The Q residue in the FIYIQ
sequence is conserved, and the mutation of Q25 altered the cis/medial-Golgi localization
of NtGnTI to trans-Golgi. In addition, the NtGnTI-Q25A-GFP was detected in the vacuole
and occasionally in the apoplast, indicating the secretion of full-length NtGnTI-Q25A or
a degradation product [106]. It was also observed that the mutation of Q25 impacted the
formation of the homodimer of NtGnTI [106]. In A.thaliana GnTI, the Q residue has a
similar function. The AtGnTI protein with a mutation on Q23 failed to restore the process
of complex N-glycans synthesis in the gntI mutant plants and was mislocalized to apoplast
instead of Golgi [106]. Furthermore, AtGnTI-Q23A-GFP protein was hardly detected on
the immunoblot, while its transcript level was comparable with the level of wild-type
mRNA. It was also estimated that the half-life of the AtGnTI-Q23A mutant protein was
much shorter in comparison with wild-type protein, indicating that AtGnTI-Q23A-GFP is
not stable and degrades more quickly [106]. To investigate how the Q residue affects the
localization of AtGnTI, the Q23 residue was replaced by either His, Leu, Glu, Tyr, Val, or Ser
residues. Only AtGnTI-Q23H was localized in Golgi and showed a result similar to that
of the wild-type AtGnTI function when expressed in mutant A.thaliana gntI plants [106].
It was determined that the stem region of GnTI contributed predominately to homomeric
and heteromeric protein complex formation [105].

In some cases, either the cytosolic tail, TMD, or lumen domain alone cannot deter-
mine the localization of GTs, and the cooperation of two domains is frequently required.
The cooperation of several GTs domains to determine their localization is broadly re-
ported in mammalian cells, but not much is known about such cooperation in plants.
Therefore, below, we describe what is currently known in animals. The polypeptide N-
acetylgalactosaminyltransferases (GalNAc-T) are type II transmembrane proteins localized
in the Golgi. Although GalNAc-T1, GalNAc-T2, GalNAc-T7, and GalNAc-T10 belong to
the same GT family, the mechanism that supports their Golgi-localization is different [107].
For example, neither cytosolic tail, TMD, or luminal stem domain could determine the
Golgi-localization of Gal-NAc-Ts. It has been shown that GalNAc-T1 and GalNAc-T2
proteins share a similar mechanism where the cooperation of their cytosolic tail and TMD
are required to determine their localization. The cytosolic tail or luminal stem together with
TMD recruit GalNAc-T7 to the Golgi, whereas the luminal stem and TMD are necessary for
the Golgi-localization of GalNAc-T10 [107].

The N-acetylglucosamine-1-phosphotransferase (PT) complex is involved in the biosyn-
thesis of mannose 6-phosphate; α-, β-, and γ -subunits are the essential components of
the Golgi-localized PT complex [108]. The maturation of α/β-subunits requires cleavage
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of the precursor protein. Both versions of the α/β -subunits, precursor and cleaved, were
detected in the Golgi. The cleavage of the precursor protein in the Golgi is necessary for the
assembly of the PT complex, and the ER-export of the precursor protein of α/β -subunit is a
prerequisite of cleavage of α/β -subunit in the Golgi [108]. Thus, the trafficking of precursor
protein to the Golgi considerably affects the proper function of the PT complex in the
biosynthesis of mannose 6-phosphate. There are four potential ER-export signals in the α/β
-subunit precursor protein: di-leucine motif (L5L6) in the N-terminus and [RK]X[RK] motifs
(K1236RK1238, R1242RR1244, and R1253IR1255) in the C-terminus. The double mutation
of L5L6 to AA and R1253IR1255 to AAA caused the precursor protein to be recruited to
the ER [108], indicating that the ER-export of α/β -subunit precursor protein requires two
ER-export signals on its N- and C-termini. UBIAD1 is involved in the biosynthesis of
vitamin K and CoQ10, and UBIAD1 has eight putative TMDs. The UBIAD1 N-terminal
domain contains the Golgi-retention signal RPWS, which, together with the first two TMDs,
is required for its Golgi-localization [104].

5. Recycling of Glycosyltransferase and Glycosidases Involved in Glycosylation

The transport cargo carriers (i.e., the COPI and COPII complexes) are critical for
GTs recycling. It was shown in plants when the N-terminal domain of GnTI and Sar1p
were co-expressed in N. benthamiana leaf epidermal cells, both proteins were co-localized
in the punctate structure at ER-exit sites (ERES) [101]. However, a mutant version of
GnTI, where basic amino acids within its cytoplasmic tail were mutated, was not able to
recruit Sar1 to ERES, indicating that COPII proteins are involved in GnTI transport. Even
though the studies about the transport of the plant GTs via the COPI and COPII complexes
are limited, the results indicate that the mechanism of membrane proteins transport in
plant and mammalian cells are similar. For example, the LxxLE motif functions as the
ER-export signal in animals and plants [75,76,109]. Hence, the advanced knowledge about
trafficking of GTs via COPI and COPII-coated cargo carriers in animal cells might offer
some clues to the GTs transport via COPI and COPII complexes in plants. For example,
the silencing of the coatomer subunits δCOP or εCOP results in the mislocalization of the
Golgi-resident A.thaliana MNS3-GFP protein [97]. During the formation of the COPI and
COPII-coated cargo carriers harboring GTs as cargo, indirect or direct interactions between
GTs and COPI/COPII complex proteins were observed. For example, the Vps74p protein
was detected as the intermediate protein in interaction with the COPI complex in yeast,
and the knockout of Vps74p impacted the localization of Kre2p, Mnn2, Mnn9, and Ktr6 [96].
Vps74p was shown to bind to Sec26p (β-COP) and Ret2p (δ-COP) in in vitro experiments
(Figure 2A) [96].

In animal cells, the Vps74p ortholog protein GOLPH3 functions similarly to Vps74p
in yeast. GOLPH3 binds to C2GnT and SiaTI in vitro, and all three proteins, GOLPH3,
C2GnT, and SiaTI, were detected in COPI vesicles [110]. Meanwhile, the knockout of
GOLPH3 triggered the mislocalization of C2GnT and SiaTI from ER/Golgi to Golgi only.
At the same time, the content of C2GnT and SiaTI in COPI vesicles was significantly
decreased [110]. In recent studies, GOLPH3 was proved to interact with not only the LxxR
motif but the positively charged amino acids upstream of the LxxR motif, [111], which
further confirmed the function of GOLPH3/ Vps74p in retaining the cargo protein in the
Golgi cisternae and preventing cargo from leaving to the TGN [111,112]. The protein was
transported to lysosomes when it escaped the GOLPH3-mediated cisternal inter-conversion
mechanism. This indicated that GOLPH3/ Vps74p controls the lysosomal degradation of
the protein [111,112]. The ER-target signal, R11R12XXXXR, in the cytosolic tail of M1-SAT-I
has been proven to interact with β-COP or δ-COP (Figure 2C), while the mutation, M1-SAT-I-
R11/12S, interrupted this interaction [100]. This indicates that the RR residues may directly
bind to β-COP or δ-COP (Figure 2C). The Golgi protein GlcNAc-1-phosphotransferase
(Ptase) synthesizes the mannose 6-phosphate recognition marker. The utilization of the
recently developed BioID2 assay revealed the interactions among the Ptase, δ-, and ζ-COP
subunit proteins [103]. The direct interaction between δ-/ζ-COP and Ptase was confirmed
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by pull-down assay, which also detected traces of β-COP and γ-COP (Figure 2D) [103].
It has been shown that Ptase directly binds to the highly reserved sequence, VRFSTE,
in the MHD domain of δ-COP [103]. The mutations of K4 to Q, R8 to G, and S15 to Y
in the cytosolic tail of Ptase impaired and weakened its interaction with δ-/ζ-COP [103].
The φ- (K/R)-X-L-X-(K/R) sequence is also found in the cytosolic tail of other GTs, such
as C2GNT1, GALNT3, GALNT6, and GALNT8 [103]. C2GNT1, GALNT3, and GALNT8
directly bind to β-COP, ζ-COP, and the MHD domain of δ-COP (Figure 2D); GALNT6
interacts with β-COP and the MHD domain of δ-COP (Figure 2C) [103]. The arginine
residues in the R3TLLR7R8R9 sequence in the cytosolic tail of C2GNT1 are essential for
recruiting C2GNT1 to the Golgi. The mutation of arginine residues impaired the interaction
between C2GNT1 and ζ-COP protein, and the interaction between C2GNT1 and the MHD
domain of δ-COP (Figure 2D) [103]. In previous studies on CHO-K1 cells, C2GNT1 was
shown to interact with GOLPH3 and later with COPI subunits [110]. However, in HeLa
cells, the knockout of GOLPH3 did not affect the localization of C2GNT1 [103]. UBIAD1 is
localized in the Golgi in L02 cells, but UBIAD1 is localized in the ER and the Golgi in both
HEK293 and T24 cells [104], which indicates that the mechanism of trafficking of GTs might
vary for different cell types. Although there is no φ- (K/R)-X-L-X-(K/R) sequence in the
cytosolic tail of GALNT4, the WTW motif was found to be responsible for its interaction
with the MHD domain of δ-COP and β-COP (Figure 2C) [103]. In addition, the Sar1 protein
has been proven to interact with GTs directly. Synthetic cytosolic tails with RR motifs of
GalNAcT and GalT2 interacted with Sar1 in vitro. The mutation of RR to AA impaired
the interaction between Sar1 and GalT2 or GalNAcT (Figure 3) [102]. The cytosolic tails
of GalNAcT and GalT2 bond to Sec23p in vitro, and the presence of active Sar1 increased
interaction between GalNAcT or GalT2 with Sec23p [102].

Figure 3. The protein–protein interaction between cargo sorting signal motifs in GTs and
COPII coatomers.

In addition to Vps74p and GOLPH3 being shown to affect GT-localization via direct
interaction with the COPI complex, other proteins are involved in determining the localiza-
tion of GTs. The Golgi-localized STELLO1 and STELLO2 proteins (STL1 and STL2) from
A.thaliana, which contain the glycosyltransferase-like domain, were shown to alter the CesA
distribution and assembly via direct interaction with the latter [113]. The genes encoding
the STL1 and STL2 proteins were co-expressed together with CesA genes in the A.thaliana
stl1stl2 mutant recovering the cellulose content that was reduced in the stl1stl2 mutant [113].
In animal cells, the GlcNAcT-I inhibitory protein (GnT1IP) shares a similar protein sequence
with GlcNAcT-IV glycosyltransferases and inhibits GlcNAcT-I activity [114]. Two GnT1IP
transcripts were named GnT1IP-L and GnT1IP-S, and the GnT1IP-L protein was shown
to be the type II membrane protein [114]. GnT1IP-L can interact directly with GlcNAcT-I,
causing its mislocalization from the medial-Golgi to the ER, ERGIC, and cis-Golgi [114].
Golgi-resident GRASP55 regulated the subcellular localization of glycosylation protein
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involved in glycosphingolipid biosynthesis by direct interaction [115]. The L95LGV98
sequence in the GRASP domain of GRASP55 interacted with the cytosolic tail of GlcCer
synthase (GCS), which catalyzes the critical step in glycosphingolipid biosynthesis [115].
The direct binding with GRASP55 promoted the correct subcellular localization of GCS by
preventing GCS from entering in the retrograde transportation [115]. The GTP exchange
factor GBF1 facilitated the phosphorylation of Arf1-GDP, and the Src tyrosine kinase (Src)
played an essential role in the ARF GTP formation [116]. Src phosphorylated the Y876 and
Y898 in the GEF domain C-terminus of GBF1, further increasing the binding between GBF1
and Arf1 and the GALNT relocation [116].

6. Protein–Protein Interactions Contribute to GT Trafficking

It was proposed that the protein–protein interactions between plant GTs are required
for the ER-export of protein complexes. GAUT1 and GAUT7 are involved in plant cell wall
pectin biosynthesis and form a protein complex in the Golgi [35]. The TMD of GAUT1
becomes post-translationally cleaved and, thus, the GAUT1-recruitments to the Golgi
require its interaction with GAUT7 [35]. Proteomic analyses of wheat glycosyltransferases
involved in the xylan synthesis [117] showed the network of protein–protein interactions
among the glycosyltransferases TaGT43-4 and TaGT47-1, mutases TaGT75-3 and TaGT75-4,
and the TaVER2 and TaGLP proteins. The protein–protein interactions among TaGT43-4,
TaGT47-13, TaGT75-3, and TaGT75-4 were confirmed, and a single complex was detected
via immunoblot analysis. TaGT43-4, TaVER2, and TaGLP were localized in the ER when
transiently expressed in tobacco leaves, while TaGT47-13 was localized in trans-Golgi,
overlapping with ST-GFP trans-Golgi maker [117]. Meanwhile, TaGT43-4 interacted with
TaGT47-1, TaGLP, TaVER2, and TaGT75-4 to form heterodimers in the ER, and co-expression
with TaGT47-13 recruited these heterodimers to trans-Golgi [117]. Thus, it is proposed that
TaGT43-4 functions as a scaffold protein, assisting in forming a xylan biosynthesis complex
in the ER [117]. It was proposed that the interaction between TaGT43-4 and TaGT47-13 was
required for the xylan-synthesizing protein exportation from the ER to trans-Golgi [117].

In Asparagus officinalis, AoIRX14A and AoIRX10 proteins with catalytic DxD motifs are
involved in xylan biosynthesis. AoIRX9, AoIRX14A, and AoIRX10 were detected within
a single multiprotein complex via the GFP-trap approach [30]. When AoIRX9, AoIRX10,
or AoIRX14A were individually expressed in N.benthamiana leaves, AoIRX9, and AoIRX10
localized in ER, while AoIRX14A localized in the ER and Golgi [30]. When AoIRX9,
AoIRX14A, and AoIRX10 were co-expressed, the signal of AoIRX9-VENUS or AoIRX10-
VENUS was detected in the Golgi, and direct protein interactions between AoIRX9 and
AoIRX14A were confirmed [30]. These studies strongly suggest that AoIRX9, AoIRX10,
and AoIRX14A function as components of the xylan-synthesizing complex, and the protein–
protein interaction among these GTs is required for their ER-export.

It is also proposed that ER and Golgi acidic environments impact protein–protein inter-
actions of GTs and, specifically, the formation of homo- and heterocomplexes. For example,
the GnT-I, GnT-II, GalT-I, ST3Gal-III, and ST6Gal-I proteins form the homodimers in the
ER, and no heterodimers among these GTs have been detected in the ER [118]. Meanwhile,
the heterodimers among GTs were detected in Golgi, and the formation of heteromeric
GT complexes inhibited the formation of homomers in the Golgi [118]. In the study by
Antti Hassinen [119], treatment with chloroquine (CQ) altered the pH in the observed cells,
thereby inhibiting the formation of heteromers. The increase in pH by 0.4 in the Golgi
inhibited the formation of heteromers and facilitated the formation of homomers. Thus,
the difference in pH between the ER and Golgi alters the probability of forming either
heteromers or homomers [118].

7. Conclusions

The common mechanism of GTs and glycosidases trafficking between the ER and
Golgi involves the motifs or specific amino acids in their cytosolic tails, their TMDs, and cat-
alytic domains. These different factors can act either independently or cooperatively via
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directly or indirectly interacting with COP coatomer proteins, ultimately affecting the
localization and transportation of GTs and glycosidases (Table 1). The common mechanism
of GTs and glycosidases trafficking is similar to the trafficking mechanism of other proteins.
Thus, the studies of other protein trafficking mechanisms can offer clues to investigate the
potential mechanism for GTs and glycosidases trafficking. Arginine and Lysine residues
are commonly found in most GTs and glycosidases and can directly interact with cargo
receptors and COP coatomers. The positive charge and branched structure of the arginine
and lysine residues are critical in the protein–protein interactions with the cargo receptors
and COP coatomers. Some motifs are the ER-retrieval signal and Golgi-retrieval signal,
but the mechanism of recognizing and distinguishing these two signaling sequences re-
mains unclear. One possible mechanism might depend on the different positions of these
motifs in the structure of GTs and glycosidases, determining the specific type of the retrieval
signal. Different isoforms of COP coatomers and cargo receptors recognize these motifs at
various positions. For the GTs that lack the motifs and specific amino acids recognized by
COP coatomers, the protein–protein interaction with other GTs or cargo proteins is critical
to their proper localization. These protein complexes work as a unit of cargo in COP-coated
cargo carriers. In addition, the localization and transportation of GTs are regulated by
various inhibitors and environmental conditions in the ER/Golgi. The altered distribu-
tion of GTs influences the outcome of glycosylation in the ER and Golgi, and ultimately,
signal diverse pathways, affecting cell development and growth. In different types of
cells, the mechanism for trafficking the identical or homologous GTs can be numerous,
affecting the cell differentiation and function differently. As a whole, the proper localization
and effective trafficking of GTs and glycosidases are the prerequisites of their proper and
efficient functioning. They require broader and intensive investigation to advance our
knowledge in this significant field of research.

Table 1. The cargo sorting signals of GTs and glycosidases in their trafficking via COP-dependent
transportation.

COPI-Dependent Transportation

Motif Species Interaction with Position GTs Ref.

(F/L)-(L/I/V)-X-
X-(R/K) Yeast Vps74p Cytosolic tail Kre2, Mnn5, Mnn9,

Mnn2, Ktr6 [96]

RRXXXXR Mouse β-and/or δ-COP
(data not shown) Cytosolic tail M1-SAT-I [100]

Di-arginine
motifs/lumen

domain
A.thaliana Receptor (putative) Cytosolic tail/

lumen domain AtGCSI [98]

φ- (K/R)-X-L-X-
(K/R) Human

β -, ζ-COP and
MHD domain of

δ-COP
Cytosolic tail

Ptase, C2GNT1,
GALNT3,
GALNT8

[103]

φ- (K/R)-X-L-X-
(K/R) Human β -COP and MHD

domain of δ-COP Cytosolic tail GALNT6 [103]

WTW Human β -COP and MHD
domain of δ-COP Cytosolic tail GALNT4 [103]

Q residue N. benthamiana/
A.thaliana TMD GnTI [105,106]

Human GOLPH3 SiaTI, C2GnT [110]
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Table 1. Cont.

COPII-Dependent Transportation

Motif Species Interaction with Position GTs Ref.

RPWS/ first two
TMDs Human Sar1 (putative) Cytosolic tail/

TMDs UBIAD1 [104]

[RK](X)[RK] Mouse/ Human Sar1 Sec23p Cytosolic tail GalT2, GalNAcT [102]

RLR Rat Cytosolic tail β1,4GT [102]

RR, RTR Chicken Cytosolic tail Sial-T2 [102]

R and K residues N.
tabacum/A.thaliana Cytosolic tail GnTI, XylT, GMII [101]

Di-leucine motif
/[RK]X[RK] motifs Human N-terminus/C-

terminus

Precursor protein
of α/β-subunit of

PT complex
[108]

Others

Motif Species Interaction with Position GTs Ref.

LPYS A.thaliana Cytosolic tail MNS3 [97]

Cytosolic tail or
luminal stem and

TMDs
Human GalNAc-T7 [107]

Luminal stem and
TMDs Human GalNAc-T10 [107]

Cytosolic tail and
TMDs Human GalNAc-T1,

GalNAc-T2 [107]
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